
On Behavioral Subtyping and Completeness

Cees Pierik1 and Frank S. de Boer1,2,3

1 ICS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands

3 LIACS, Leiden University, The Netherlands
cees@cs.uu.nl frb@cwi.nl

Abstract. Behavioral subtyping forces objects of subtypes to behave in
the same way as objects of supertypes. It is often favored over standard
subtyping because it provides a means to obtain a modular program
logic. Relative completeness is a formal property of a Hoare logic that
ensures that any failed attempt to verify the correctness of a program is
not caused by a weakness of its Hoare rules.
In this paper, we argue that the standard relative completeness notion is
too stringent for program logics that are based on behavioral subtyping.
Subsequently, we propose two novel and complementary completeness
notions that can be employed to assess the strength of program logics
that rely on behavioral subtyping.

1 Introduction

Investigating the relative completeness of a Hoare logic is the classical way to
evaluate its strength [2]. Relative completeness is a formal property of a Hoare
logic that ensures that any failed attempt to verify the correctness of a program is
not caused by a weakness of one of its reasoning rules or axioms. Many program
logics are known that satisfy this property.

We do not believe that a program logic must necessarily be complete in
the above sense in order to be useful. Several logics of which the completeness
is unknown have been applied in industrial studies in recent years. Moreover,
extended static checkers intentionally employ incomplete logics to increase their
cost-effectiveness [8, 4, 3].

However, this does not mean that completeness becomes irrelevant. For ex-
ample, the documentation of an extended static checker will have to explain
its limitations in detail in order to prevent its users from frantically trying to
prove claims that are beyond its reach. A precise definition of completeness is a
prerequisite for this task. This paper aims to give such a definition for program
logics that are based on behavioral subtyping.

Behavioral subtyping is a particular stance on subtyping. It demands that
what holds regarding the behavior of elements of a type also holds for elements
of its subtypes [1, 13]. In other words, each type should be a refinement of its
supertype.

Behavioral subtyping validates proof rules for method calls that justify the
specification of a call using the specification of the corresponding method in



some supertype of the actual dynamic type of the receiver. This technique is
known as supertype abstraction [11]. Moreover, it also ensures that new sub-
types cannot invalidate existing proofs by forcing overriding methods to satisfy
the specifications of the methods that they override. Thus behavioral subtyping
leads to modular proof systems, i.e., program logics with proofs that cannot be
invalidated by program extensions.

Several proof logics have been proposed that are based on behavioral sub-
typing. However, the completeness of these logics has never been properly inves-
tigated. This situation is rather dissatisfactory because it is far from clear that
these logics are complete. Behavioral subtyping raises several novel questions
with respect to completeness. For example, the above-mentioned supertype ab-
straction principle must clearly be used with care because an implementation of
the dynamic type of an object may have a stronger specification than the corre-
sponding implementation of its supertype. It is also unclear if the specification
inheritance principle [7] that is sometimes used to enforce behavioral subtyping
leads to a complete proof system. These questions become even more challeng-
ing if one also imposes scoping restrictions on specifications, which is common
in program logics for open programs.

In this paper, we argue that the standard relative completeness notion is
too stringent for program logics which are based on behavioral subtyping. Sub-
sequently, we propose two novel and complementary completeness notions that
can be employed to assess the strength of program logics that rely on behavioral
subtyping.

2 Behavioral Subtyping

This section defines behavioral subtyping in the context of a Java-like language.
Our aim is to employ general descriptions of the relevant concepts. We will
therefore avoid committing ourselves to some particular verification framework.

2.1 Java-like Programs

We assume that we are dealing with a Java-like programming language in which
each program consists of classes. A class declaration specifies the (unique) name
C of the class, its parent class D, its supertype E, a set of fields, and a set of
instance methods.

class ∈ Class ::= class C extends D refines E { field∗ meth∗}
We use C, D, and E as typical elements of the set of class names. A clause
extends D indicates that the new class is a subclass of class D, implying that it
inherits the attributes of class D. We write C C D if C is a direct subclass of
D. The subclass relation E is the usual reflexive and transitive closure of the C
relation.

A clause refines E declares the new class C to be a subtype of class E. We
require that DEE, thus ensuring that the subclass relation subsumes the subtype

2



relation. Declaring C to be a subtype of E implies that C-objects behave in the
same way as E-objects. By distinguishing between the subclass and the subtype
relation we give programmers the opportunity to reuse code using inheritance
without the obligation that the new class should behave in the same way as its
superclass (cf. [1]). We write C ≺ E if C is declared as a subtype of E, and
C ¹ E if (C, E) is an element of the reflexive and transitive closure of the ≺
relation.

Java and C# identify the subtype relation with the subclass relation and do
not support a refines clause. However, it is of course possible to add this kind of
information as part of the specification of a class. We will assume in this paper
that programs are typechecked using the subtype relation instead of the subclass
relation. For example, an assignment x := e is valid if [e] ¹ [x], where [e] and
[x] denote the static types of the expression e and the variable x, respectively.

A method declaration lists the return type t of the method, its name m, a
list of parameter types t1, . . . , tn, and a statement S (its body).

meth ∈ Meth ::= t m(t1, . . . , tn) { S }

A method name m should be unique in its class; we do not consider overloading
for simplicity. Note that a method does not specify the identifiers of its param-
eters. A method with parameter types t1, . . . , tn is assumed to have parameters
p1, . . . , pn. We only consider public methods in this paper.

We use the following definition of overriding. Let the implementation of
method m in class C have return type t and parameters types t1, . . . , tn. Further-
more, assume that the implementation of method m in class D has return type
t′ and parameter types t′1, . . . , t

′
m. The implementation in class D then overrides

the implementation in class C if (1) D EC, (2) n = m, (3) t′ ¹ t, and (4) ti ¹ t′i
for every i ∈ {1 . . . n}. That is, we allow contravariant changes in parameter
types, and covariant changes in return types.

2.2 Hoare-like Specifications

We will use standard Hoare triples of the form {P} S {Q} as partial correctness
formulas of a statement S. We will not be specific about the syntax of formulas;
we will only assume that the values of P and Q are either true or false in a given
program state.

Secondly, we will also use Hoare triples of the form {P} m@C {Q}. This
kind of triple specifies the behavior of a method implementation. A Hoare triple
{P} m@C {Q} states that the final state of every terminating computation of
the implementation of method m in class C satisfies Q provided that its initial
state satisfies P .

We write |= {P} . {Q} if the Hoare triple {P} . {Q} is valid. By ` {P} . {Q}
we denote that the Hoare triple {P} . {Q} can be derived using the axioms and
rules of a particular Hoare-like logic.

3



2.3 Behavioral Subtyping and Refinement

According to Leavens, behavioral subtyping is essentially refinement of object-
types [10]. We will also stress the relationship between behavioral subtyping
and refinement by defining the former in terms of a refinement relation between
method implementations.

So far, we have said that a class is a behavioral subtype of another class if
its objects show the same behavior as objects of its supertype. The behavior
of objects is determined by the behavior of the instance methods that can be
called on the objects. A method of a behavioral subtype must therefore reveal the
same behavior as the corresponding method of its supertype. This requirement is
trivial for methods that a class inherits from its supertype. However, behavioral
subtyping imposes restrictions on methods that override methods of a supertype.
In the sequel, we will refer to the methods implementations that a class C
declares or inherits as the methods of C; this set does not include inherited
method implementations which are overridden by methods that are declared in
C.

Let m@C ′ be a method of C. Let m@D′ be a method of class D that
overrides method m@C ′. We say that m@D′ refines the method specification
{P}m@C ′{Q} if |= {P}m@D′{Q}. The latter should be checked in the context
of class D, which ensures that the receiver this has type D, but the formal pa-
rameters p1, . . . , pn must retain the types that are specified in the declaration
of method m@C ′. One may, however, assume that the return expression has
the static type that is specified in the declaration of method m@D′. We simply
say that m@D′ refines m@C ′ if m@D′ overrides method m@D′, and moreover,
m@D′ refines every valid method specification {P}m@C ′{Q}. Finally, we say
that a class D is a behavioral subtype of some class C if class D is a subclass of
class C, and moreover, each method m@D′ of class D that overrides a method
m@C ′ of class C also refines that method.

It is usually not necessary to check whether every class D that is declared to
be a subtype of class C is indeed a behavioral subtype of class C in the given
sense. It may be enough to ensure that every method of D that overrides a
method of class C refines the given, fixed method specification of that method.
The latter check suffices if we view method specifications as an integral part of
a type, which is, e.g., done in the early work on behavioral subtyping [1, 13]. We
will use the corresponding weaker definition of behavioral subtypes in Section 5.

The definition of refinement that we have given above is intentionally rather
basic. In the context of open programs, one should additionally take modifies
clauses and data groups into account [12]. Invariants and constraints can also be
incorporated in the definition [13]. The completeness notions that we propose in
this paper also make sense with more enhanced refinement notions.

4



3 Relative Completeness

Completeness of a logic means, in general, that every valid formula can be derived
within the logic. Completeness of a Hoare logic boils down to the property that

|= {P} S {Q} implies ` {P} S {Q}

for every statement S, and every precondition P and postcondition Q.
It is customary to prove completeness for Hoare logics under two additional

assumptions. The first assumption is that every valid formula of the assertion
language is an axiom of the Hoare logic [2]. This assumptions enables the com-
pleteness proof to focus on the strength of the Hoare rules instead of the under-
lying proof system for the assertion language. The second assumption concerns
the expressiveness of the assertion language; one only proves completeness for
interpretations of the assertion language that allow one to express the strongest
postcondition or the weakest precondition of every statement in the assertion
language [5, 2]. This notion of completeness is known as relative completeness.

We believe that relative completeness is not the right completeness criterion
for program logics that are based on behavioral subtyping; it is too stringent
for such logics. Recall that behavioral subtyping forces subtypes to behave in
the same way as their supertype. However, the standard relative completeness
notion does not restrain subtypes at all. This leads to a problem, which we will
illustrate using an example.

Consider the following two classes that each model a clock.

class Clock extends Object
refines Object {

int maxHour ;
void init() {

maxHour := 12; }
}

class EnhClock extends Clock
refines Clock {

void init() {
maxHour := 24; }

}
The first class Clock models a simple clock that represents, for example, 23:00

(11:00 PM) by 11:00. Its field maxHour , which stores the maximum value of the
(omitted) hour field, is initialized to 12. Its more enhanced subclass EnhClock
initializes maxHour to 24 by overriding the init-method that it inherits from
Clock . The other fields and methods of the classes do not play a role in our
example and are therefore omitted. We assume that Object is the name of the
root class.

Now consider the following Hoare triple.

{ true } c := new Clock(); c.init(); {c.maxHour = 12} (1)

This Hoare triple is valid in every possible program that includes class Clock as
defined above. The dynamic type of the new clock is Clock , and the subsequent
call to the init-method will therefore be bound to the implementation of the
method in that class.

5



The Hoare triple (1) can be derived in a Hoare-like logic if we annotate the
init-method in class Clock with the specification

{true} init@Clock {this.maxHour = 12} .

However, we must now show that the implementation in class EnhClock that
overrides the original init-method also satisfies this specification, which is clearly
not the case.

There is a way out that is often used in this kind of situations. One can change
the method specification such that it does not confine overriding methods by
restricting the specification to receivers of a particular type. For this purpose,
we introduce a function type that yields the dynamic type of an object. The
specification of the init-method then becomes

{true} init@Clock {type(this) = Clock ⇒ this.maxHour = 12} . (2)

This specification also holds for the implementation in class EnhClock because
the receiver has static type EnhClock in that class. Hence this cannot denote a
Clock -object. Moreover, the specification still suffices to prove (1).

However, we now run into another problem. Imagine that we add a class
FancyClock (another subclass of class Clock) to our program that does not over-
ride method init . Then we should be able to prove that

{ true } c := new FancyClock(); c.init(); {c.maxHour = 12}
is a valid Hoare triple. But (2) is too weak to prove this specification. Naturally,
we can change (2) such that it also supports the new class FancyClock . But
then we can repeat our counterexample with another class. The proposed way
out only seems to solve the problem for closed programs in which all subclasses
are know beforehand. This is not satisfactory because the main reason for using
behavioral subtyping is that it allows one to reason about open programs.

4 Behavioral Completeness

The example in the previous section shows that the standard completeness notion
is too stringent for program logics that are based on behavioral subtyping. The
problem is that the standard completeness notion does not restrict the set of
programs that must be considered. As a consequence, program logics must also
be able to prove properties of programs in which subtypes occur that do not
reveal the same behavior as their supertype, which seems to be undesirable.

For this reason, we propose a new notion of completeness that restricts the
set of programs that must be considered. We will require that every program
satisfies the behavioral subtyping principle. A program satisfies the behavioral
subtyping principle if each class C in the program that is declared to refine
another class D is indeed a behavioral subtype of class D. Moreover, for an open
program we require that the program is only extended with classes that preserve
the behavioral subtyping principle.

6



We propose to call this novel completeness notion behavioral (subtype) com-
pleteness. It is defined as follows.

Definition 1 (behavioral completeness). A program logic is behavioral com-
plete if and only if |= {P} S {Q} implies ` {P} S {Q} for every correctness
formula {P} S {Q} in the context of a program that satisfies the behavioral
subtyping principle.

Note that every Hoare logic operates in the context of some particular program,
a fact which is usually not directly reflected in the Hoare triples for brevity. We
omitted the two additional assumptions of relative completeness (see Section
3) in our definition of behavioral completeness. However, the definition above
should be read as an extension of the definition of relative completeness. In other
words, the two assumptions of relative completeness are also allowed in order to
prove behavioral completeness of a proof system. Thus behavioral completeness
becomes a truly weaker property than relative completeness.

The problem that we signalled in the previous section for relative complete-
ness does not apply to behavioral completeness. The class EnhClock is not a
behavioral subtype of class Clock because its implementation of the init-method
does not satisfy the valid specification

{ true } init@Clock {this.maxHour = 12}

of the implementation that it overrides. The class can nevertheless be allowed in
a program if it is only declared as a subclass of Clock , and not as a subtype of
Clock . In other words, it would be allowed if its first line would read

class EnhClock extends Clock refines Object .

The standard approach to proving relative completeness of a Hoare logic,
which has been proposed by Gorelick [9], annotates every method with its Most
General (correctness) Formula, and subsequently shows that each valid correct-
ness formula of a statement can then be derived (see also [6]). This approach
cannot be followed if a program calls methods from predefined modules or pack-
ages. More precisely, it does not support reuse of the supplied method specifi-
cations. We will investigate a completeness notion that supports proof reuse in
the following section.

5 Behavioral Modular Completeness

Object-oriented programs usually heavily depend on functionality that is pro-
vided by imported classes. Ideally, the methods in these classes are already an-
notated with specifications, which then can be reused. In this scenario, one can
treat the provided methods as black boxes, and reason about calls to these meth-
ods on the basis of their specifications.

Viewing imported methods as black boxes has consequences for the require-
ments that subtypes should meet. The definition of the behavioral subtyping

7



principle that we gave in the previous section does not treat a method as a
black box. It requires that an overriding method satisfies every valid specifica-
tion of the method that it overrides. An overriding method in a subtype can
only meet this criterion if it has knowledge about the (hidden) implementation
of the method.

We will therefore adopt a different criterion for subtypes in this section. Es-
sentially, we will require that each method that overrides a method in a supertype
has a specification that refines the specification of the overridden method. We
say that a particular specification spec refines the specification spec′ of another
method if every statement that satisfies spec also satisfies spec′. (We assume here
that a method has only one specification.) A class C is said to refine a supertype
D if every method of C that overrides a method of D has a specification that
refines the specification of the overridden method. Finally, we say that a pro-
gram satisfies the specification refinement principle if every class in the program
refines its supertypes.

The choice to view imported methods as black boxes also has consequences for
the completeness of a program logic. The provided specifications of the imported
methods may be weaker than the strongest possible specifications that would be
required to prove all valid specifications of calls to those methods. Hence it may
be impossible to prove behavioral completeness in these circumstances.

This latter phenomenon has already been observed by Zwiers. He responded
to this problem by introducing the notion of modular completeness [16]. We pro-
pose the following variant (dubbed behavioral modular completeness) of modular
completeness for proof systems that are based on behavioral subtyping.

Definition 2 (behavioral modular completeness). A formal proof system
is behavioral modular complete if, for every Hoare triple {P} S {Q}, and for all
method specifications {Pi} mi@Ci {Qi}, where i ∈ {1 . . . n}, we have that

{P1} m1@C1 {Q1}, . . . , {Pn} mn@Cn {Qn} |= {P} S {Q}

implies

{P1} m1@C1 {Q1}, . . . , {Pn} mn@Cn{Qn} ` {P} S {Q} ,

in the context of a program that satisfies the specification refinement principle.

There are several elements of this definition that deserve some clarification.
We will start with the last formula, which says that we can derive {P} S {Q}
using the assumptions {P1} m1@C1 {Q1}, . . . , {Pn} mn@Cn{Qn}. We will as-
sume that m1@C1, . . . , mn@Cn are mutually distinct to maintain our earlier
assumption that methods only have one specification.

The method enumeration m1@C1, . . . , mn@Cn is the set of methods that are
in scope in the context of the statement S. It contains at least the methods
that statically match the method calls that occur in S. That is, if S contains a
method call e.m(. . .), where [e] = C, then we assume that the method m@C ′ of
class C occurs in the enumeration m1@C1, . . . , mn@Cn.

8



An interesting phenomenon arises if the enumeration contains methods that
override methods that statically match a particular call in S. The specification
of such an overriding method may provide additional information because the
behavioral subtyping principle forces it to have a specification that refines the
specification of the overridden method. In other words, it may have a stronger
specification. If the receiver of the call belongs to the domain of the class of the
overriding method, then we know that the implementation that is bound to the
call satisfies the specification of the overriding method. Hence we may reason
about the call using the stronger specification of the overriding method.

We will use this observation to assign a meaning to the antecedent

{P1} m1@C1 {Q1}, . . . , {Pn} mn@Cn {Qn} |= {P} S {Q} (3)

of the implication in the definition. This equation roughly says that {P} S {Q} is
a valid Hoare triple if the Hoare triples {P1}m1@C1{Q1}, . . . , {Pn}mn@Cn{Qn}
are also valid.

One can formalize this notion by defining an (operational semantics) relation
〈S, σ〉 SPEC−→ σ′ between configurations 〈S, σ〉, which consist of a statement S and
an initial state σ, and final states σ′. The parameter SPEC of the relation denotes
a finite set of method specifications

{P1} m1@C1 {Q1}, . . . , {Pn} mn@Cn {Qn} .

By 〈S, σ〉 SPEC−→ σ′ we denote that a computation of S that starts in state σ
may terminate in state σ′ if the methods that are called by S satisfy their
specifications in SPEC .

We model the state σ of an object-oriented program as a pair (s, h) that
consists of a stack s and a heap h. The stack s is a function that assigns values
to simple variables. A heap h specifies the set of objects that exists in a state,
and the values of their fields (see [15] for more details).

The relation is defined as usual by a set of rules and axioms (cf., e.g., [14]).
The only non-standard rule is the rule for method calls. It is the only rule that
takes the set SPEC into account. It specifies when

〈e0.m(e1, . . . , ek), (s, h)〉 SPEC−→ (s, h′) (4)

holds. The validity of (4) is determined by the specifications of the methods
in SPEC ; methods specifications that are not in scope and specifications of
future methods are ignored. More specifically, if C is the dynamic type of the
object denoted by e0 in the state (s, h), then we use the specification of the
most specific implementation of m in SPEC that is inherited by C to determine
whether (4) holds (a method is more specific than another method if it overrides
that method). Let {P} m@C {Q} be this specification. Then (4) is true if the
following conditions hold.

– The precondition P holds in the state (s′′, h), where s′′ is obtained from s
by assigning the value of e0 in (s, h) to this, and the values of e1, . . . , ek in
(s, h) to p1, . . . , pk.

9



– The heap h′ is an extension of h, i.e., every object that exists in h also exists
in h′ (we do not take object deallocation into account).

– The postcondition Q holds in the state (s, h′).

With the defined relation we can give a formal meaning to expressions of the
form of Eq. (3). We have SPEC |= {P} S {Q} if for every state σ that satisfies
P , and every final state σ′ such that 〈S, σ〉 SPEC−→ σ′, we have that σ′ satisfies Q.

By defining the SPEC−→ -relation in terms of the most specific available method
specification we get a larger set of valid specifications {P} S {Q}, and conse-
quently a stronger completeness criterion. Alternatively, we could have used the
specification of the method m that belongs to the methods of the static type of
the receiver expression e0. The most specific method is a method that is defined
in a subtype of [e0]. Hence it may have a stronger specification.

Example 1. Suppose that we have a class Point with a subtype ThreeDPoint .
Class Point has two integer fields x and y, and class ThreeDPoint has an addi-
tional z field. Suppose that each of the two classes implements a reset method.
We will assume that these two methods have the following specifications.

{true} reset@Point {this.x = 0 ∧ this.y = 0} (5)
{true} reset@ThreeDPoint {this.x = 0 ∧ this.y = 0 ∧ this.z = 0} (6)

Note that the specification of reset in class ThreeDPoint refines the specification
of reset in class Point . Next, consider the following Hoare triple

{p instanceof ThreeDPoint} p.reset() {((ThreeDClock)p).z = 0} , (7)

where p is a local variable of type Point . Suppose that the call p.reset() occurs
in a context in which both classes are in scope. Then (7) is a valid specification
because in each state that satisfies the precondition of (7) we have that the
dynamic type of the receiver is an instance of (a subclass of) ThreeDPoint .
Hence its most specific implementation of reset is the one in class ThreeDPoint .
The Hoare triple would not be valid if we would have based our semantical
relation on the specification of the method that corresponds to the static type
of p because that would be the specification in class Point which says nothing
about the value of the z field of its receiver.

6 Conclusions

This paper reveals several interesting aspects of the completeness of logics that
are based on behavioral subtyping. We have argued that relative completeness
is not the right criterion for logics that are based on behavioral subtyping, and
subsequently proposed two completeness criteria that are more suitable for these
logics. The outlined criteria can be used to clarify the (possibly intentional)
incompleteness of existing logics. We also hope that they foster research that
may result in logics that satisfy one of the completeness criteria, or even both.

10



References

1. P. America. Designing an object-oriented programming language with behavioral
subtyping. In Proceedings of the REX School/Workshop on Foundations of Object-
Oriented Languages, volume 489 of LNCS, pages 60–90. Springer, 1991.

2. K. R. Apt. Ten Years of Hoare’s Logic: A Survey - Part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, October 1981.

3. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure and Interoperable Smart
devices (CASSIS 2004), volume 3362 of LNCS, pages 49–69. Springer, 2005.

4. D. R. Cok and J. R. Kiniry. ESC/Java2: Unitying ESC/Java and JML. In Con-
struction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS
2004), volume 3362 of LNCS, pages 108–128. Springer, 2005.

5. S. A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. Siam Journal of Computing, 7(1):70–90, February 1978.

6. F. S. de Boer and C. Pierik. How to Cook a complete Hoare logic for your pet OO
language. In Formal Methods for Components and Objects (FMCO 2003), volume
3188 of LNCS, pages 111–133. Springer, 2004.

7. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering (ICSE ’96), pages 258–267. IEEE Computer Society Press, 1996.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for Java. In Proceedings of Programming Language Design
and Implementation (PLDI 2002), pages 234–245. ACM Press, 2002.

9. G. Gorelick. A complete axiomatic system for proving assertions about recursive
and non-recursive programs. Technical Report 75, Dep. Computer Science, Univ.
Toronto, 1975.

10. G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and a sketch
of their extension to component-based systems. In G. T. Leavens and M. Sitara-
man, editors, Foundations of Component-Based Systems, chapter 6, pages 113–135.
Cambridge University Press, 2000.

11. G. T. Leavens and W. E. Weihl. Specification and verification of object-oriented
programs using supertype abstraction. Acta Informatica, 32(8):705–778, 1995.

12. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and
check side effects. In Programming Language Design and Implementation (PLDI
2002), pages 246–257. ACM Press, 2002.

13. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

14. D. A. Naumann. Observational purity and encapsulation. In Fundamental Ap-
proaches to Software Engineering (FASE 2005), volume 3442 of LNCS, pages 190–
204. Springer, 2005.

15. C. Pierik and F. S. de Boer. A syntax-directed Hoare logic for object-oriented
programming concepts. In Formal Methods for Open Object-Based Distributed
Systems (FMOODS 2003), volume 2884 of LNCS, pages 64–78, 2003.

16. J. Zwiers. Compositionality, Concurrency, and Partial Correctness, volume 321 of
LNCS. Springer-Verlag, 1987.

11


