
When separation logic met Java (by example)

Matthew Parkinson

Middlesex University

Abstract. Separation logic is a promising new approach to modular reasoning,
but so far it has primarily been applied to low-level C-like languages. To extend
separation logic to allow modular reasoning about object-oriented languages like
Java, we must add behavioural subtyping to the logic. However, a naı̈ve integra-
tion of behavioural subtyping and separation logic is too restrictive. In this paper
we demonstrate how abstract predicate families provide an abstraction mecha-
nism that addresses these restrictions, by mirroring dynamic dispatch in the logic.
We demonstrate the utility of our approach with a series of examples, including
the Visitor pattern.

1 Introduction

Modularity is key to building large software systems. Object-oriented languages like
Java provide support for modularity through encapsulation and inheritance. This mod-
ularity allows portions of object-oriented programs to be modified without rewriting, or
even recompiling, all the code. We need formal methods that reflect this modularity.

Separation logic [10, 14, 18] is a promising new approach to modular reasoning.
It provides local reasoning for low level C-like languages. The essence of “local rea-
soning” is that in order to understand how a piece of code works it should only be
necessary to reason about the memory the code actually accesses (its so-called “foot-
print”). The pre-condition of a method specifies its footprint: all the state (the fields of
objects) the method touches during its execution. This contrasts standard Hoare logic:
in Hoare logic{y = 7}x = 3; {y = 7} is a valid judgement, but in separation logic
{y.f 7→ 7}x.f = 3; {y.f 7→ 7} is not a valid judgement, because the pre-condition
does say the heap containsx.f . This constraint on pre-conditions means that anything
disjoint from the pre-condition is guaranteed not to be changed. This allows method
specifications to be adapted to different calling contexts, and avoids the need to reverify
methods at every call site. This is essential for modular reasoning.

To achieve modular verification in object-oriented languages with dynamic dis-
patch, we must also enforcebehavioural subtyping[2, 12]. Dynamic dispatch means
that many methods can be potentially called at a single call site. Behavioural subtyping
allows us to consider just a single call by enforcing compatibility between subtypes’
methods. We use a slightly generalised notion calledspecification compatibility[16],
which allows the manipulation of logical variables1 and intersection of specifications.
Our generalisation is similar tospecification inheritance[7].

1 Sometimes called ghost or auxiliary variables.

However, a näıve combination of behavioural subtyping and separation logic does
not work. The footprint of methods in subtypes are larger, in general than at supertypes,
but behavioural subtyping requires that footprints are the same (or smaller). This is
theextended state problem[11]. To address this problem, we use an abstraction called
abstract predicate families[16].

An abstract predicate family is a predicate with a set of definitions indexed by class.
In object-oriented programming a method body is selected based on the dynamic type
of the first argument, the receiver. We reflect this in the logic: an abstract predicate
family definition is selected based on the dynamic type of the first argument.

In this paper we show that abstract predicate families provide enough abstraction
to introduce subtypes that are typically not considered to bebehaviouralsubtypes. We
demonstrate the utility of this approach with a series of examples. In particular, we
present an example using the Visitor pattern [9]. The visitor pattern is an important test
for program verification as it uses call-backs: the visitor’svisit method calls the data
structure’saccept methods, and theseaccept methods call-back into the visitor’s
visit methods. Call-backs can cause problems when reasoning using class invari-
ants [4]. By using abstract predicate families, we do not encounter these complications.

In previous work with Bierman [16], we defined abstract predicate families and
specification compatibility. This paper elaborates on the intuitions behind abstract pred-
icate families and uses examples to demonstrate their utility. We also present more
details on the integration with behavioural subtyping. In particular, we show how spec-
ification compatibility generalises behavioural subtyping to allow the intersection of
specifications.

2 Separation logic for Java

Separation logic is an extension to Hoare logic that permits reasoning about shared
mutable state. It extends Hoare logic by adding spatial connectives to the assertion lan-
guage, which allow us to assert that two portions of the heap are disjoint. This separation
provides the key feature of separation logic—local reasoning—specifications need only
mention the state they access [14].

Previous works on separation logic have dealt with a low-level C-like language. In
this section, we present our separation logic for a simple subset of Java. Space prevents
us from giving the complete description of the separation logic, but it may be found in
Parkinson’s thesis [15].

We use a simple subset of Java based on Middleweight Java (MJ) [5, 15]. We restrict
MJ’s expressions to be stack variables andnull ,2 and remove constructors. We present
the full syntax in Figure 1. We write f and m to range over field and method names
respectively. We useC, D to range over class names, andx, y to range over variable
names. We will assume two functions:fields(C), which returns the set of field names
for the class,C; andmethod(C,m), which returns a four tuple of (1) the argument
types, (2) the return type, (3) argument names, and (4) method body.

2 This restriction simplifies the presentation of the rules.

Program
prog ::= cldef1. . . cldefn; s
Class definition
cldef ::= class C extends C′{fdef mdef}
Method definition
mdef ::= Cm(C1x1, ..., Cnxn){s return x; }
Field definition
fdef ::= Cf ;

Expressions
e ::= x | null
Statements
s ::= x=y.f ; | x=(C)y; | x=new C();
| x.f=e; | x=y.m(e); | C x;
| {s} | ; | if (e == e)s else s

Fig. 1.Syntax of MJ subset

2.1 The storage model

Separation logic is a logic of partial heaps, that is, heaps with (potentially) dangling
pointers. The spatial connectives are based on the composition of disjoint partial heaps,
which allows the logic to specify the splitting, or separation, of the heap.

To reason about Java, we must extend this partial heap model to represent the struc-
ture of objects. In addition to the consideration of dangling pointers, we also consider
heaps with partial objects, that is objects with fields missing. A method might not mod-
ify all the fields of an object. We consider the heap to store two forms of information:
(1) the values of fields; and (2) the type of objects. Thus a heap,h, is a pair of functions:
(1) a partial function from object identifier and field names to values (for simplicity we
takeValues to be the object identifiers and null); and (2) a partial function from object
identifier to class.

Heaps
def= (OIDS× FieldNames ⇀fin Values)× (OIDS ⇀fin Class)

We useh to range over heaps, andhv andht for the first and second components of a
heap respectively. We writeh ∗ h for the composition of two disjoint heaps:

(hv,ht) ∗ (h′
v,h′

t)
def=

{
(hv ∪ h′

v,ht) (dom(hv) ∩ dom(h′
v) = ∅) ∧ (ht = h′

t)
undefined otherwise

We only consider the composition where the value heaps,hv, contain disjoint pairs of
object identifiers and field names. We do not split the typing information, because it is
immutable and hence valid to share.

A stack is a function from (program) variables to values. In addition to program
variables, we also use logical variables,3 which are variables that can be quantified
over and used to relate values between pre- and post-conditions. In general, we will
use upper case letters for logical variables to distinguish them from program variables.
Unlike other presentations [10], we do not interpret logical variables using the stack
because the fragment of Java does not have globally scoped variables. Instead, we define
a logical interpretation that is a function from logical variable names to values

Stacks
def= ProgVarNames → Values

Interpretations
def= LogVarNames → Values

3 Sometimes called ghost or auxiliary variables.

We define a state as a triple consisting of a stack, a heap and an interpretation.

States
def= Heaps× Stacks× Interpretations

2.2 The assertion language

A predicate is interpreted as a set of states, and formulae are given by the following
grammar wheree ranges over variables and null.

P,Q ::= true | false | ¬P | P ∧Q | P ∨Q | P ⇒ Q
| P ∗ Q | e.f 7→ e′ | e : C | ∃X · P | ∀X · P

The intuitionistic4 connectives (¬,∨,∧,⇒) and quantifiers (∀,∃) are interpreted in the
usual way [10]. In addition to the intuitionistic connectives, we have the new spatial
connective∗ , along with the predicate7→, and a predicate for Java’s dynamic type
information,e : C. Taking these in reverse order:

e.f 7→ e′ consists of all the states where the heap consists of at least the single mapping
from the field f of the object given by the meaning ofe to the value given by the
meaning ofe′.

P ∗ Q means the heap can be split into two disjoint parts in whichP andQ hold
respectively. Heaps of more than one element are specified by using the∗ to join
smaller heaps.

e : C means that the result ofe is an object whose dynamic type is preciselyC.

We useP () as a shorthand for∃X · P (X), for example,e 7→ means∃X · e 7→ X.

2.3 The rules

The essence of “local reasoning” is that to understand how a piece of code works it
should only be necessary to reason about the memory the code actually accesses (its
so-called “footprint”). Ordinarily, aliasing precludes such a principle but the separa-
tion enforced by the∗ connective allows this intuition to be captured formally by the
following rule.

L-FRAME
` {P} s {Q}

` {P ∗ R} s {Q ∗ R}
wheres does not modify the free variables ofR, i.e. mods(s) ∩ FV (R) = ∅.

Note 1. mods(s) denotes the set of stack variables assigned by a given command,s, e.g.
mods(x = e) = {x}. However assignment through a stack variable to a field is not
counted: mods(x.f = e) = ∅. See [15] for the full definition.

4 Intuitionistic separation logic [10] allows memory leaks; it admits weakening,P ∗ Q ⇒ Q
holds. This is required for Java because it lacks an explicit “dispose” primitive. Note: we do
not have to worry about memory leaks, because Java is a garbage collected language

The frame rule’s side-condition is inherited from Hoare logic. It is required because
∗ only describes the separation of heap locations and not variables; see [6, 17] for more
details. Without the side-condition we could make the following incorrect derivation:

{true}x = new C() {x .f 7→ }
{true ∗ x .f 7→ }x = new C() {x .f 7→ ∗ x .f 7→ }

The two fields in the post-condition of the conclusion are of different objects, but with-
out the side-condition we can wrongly infer them to be the same field.

By using the frame rule, a local specification concerning only the variables and parts
of the heap that are used bys can be arbitrarily extended as long as the extension’s free
variables are not modified bys. Thus, from a local specification we can infer a global
specification that is appropriate to the larger footprint of an enclosing program.

A judgement in our assertion language is written as follows:

Γ ` {P} s {Q}

This is read as the statement,s, satisfies the specification{P} {Q}, given the method
hypotheses,Γ . These hypotheses are given by the following grammar:

Γ := ε | {P}C.m(x){Q}, Γ

However, when it simplifies the presentation, we will treatΓ as a partial function from
method and defining class name,C.m, to specifications. For the hypotheses,Γ , to be
well-formed each method,C.m, should appear at most once; and each specification’s
free program variables should be contained in the method’s arguments and ret, the vari-
able used for returning values from methods. We will only consider well-formedΓ .

We present the rules and axioms for Java in Figure 2. The top section presents the
axioms associated to particular Java statements. We give small axioms for field manip-
ulation in the style of O’Hearn, Reynolds, and Yang [14]. Field write, L-FWRITE, re-
quires the heap to contain at least the single field being written to, and the post-condition
specifies it has the updated value. Implicitly the axiom specifies that no other fields are
modified, and hence it can be extended by the frame rule to talk about additional state.
The field access axiom, L-FREAD, simply requires the field’s state to be known and
sets the variable equal to its contents. The logical variablesX andY are used to allowx
andy to be syntactically the same variable without needing a case split or substitution
in the rule definition. The cast axiom, L-CAST, ensures that a cast will complete suc-
cessfully: the type of the object identifier being cast must be a subtype of the target type
or null. The rule for constructing an object simply constructs all the fields of the class.
The final axiom of the section, L-CALL , allows the call of a dynamically dispatched
method without case analysis. In the next section we will place a constraint on method
environments to make this axiom sound. The logical variableY is used so thatx ande
can mentiony. If x ande do not mentiony, then we can remove the substitution[Y/y]
and equalityY = y from the axiom.

The second section of Figure 2 defines the rules for introducing assumptions about
methods. We define a new judgementΓ1 Γ2 to allow the introduction of mutually
recursive methods.Γ1 Γ2 means that the bodies of the methods inΓ2 can be verified

Java Commands

L-FWRITE Γ ` {x.f 7→ } x.f=e; {x.f 7→e}

L-FREAD Γ ` {X = x ∧X.f 7→Y} y=x.f ; {X.f 7→Y ∧ y = Y}

L-UPCAST Γ ` {P [x/y] ∧ (x : C ∨ x = null)} y=(C′)x; {P} providedC ≺ C′.

L-NEW Γ ` {true}x=new C();{x:C ∗ x.f1 7→ ∗ . . . ∗ x.fn 7→ }
providedfields(C) = f1, . . . , fn

L-CALL {P}C.m(w̄){Q}, Γ ` {θ(P) ∧ Y = y ∧ x 6= null } y=x.m(ē); {θ(Q)}
providedθ = [ē[Y/y], x[Y/y], y/w̄, this , ret], and x has static typeC

Method introduction

L-DM ETHOD
Γ ` {P ∧ this : C}C y; y = x; s[y/x] {Q[x/ret]}

Γ {P}C.m(x) {Q}
providedmethod(C, m) = (C, , x, s return x) andy is fresh.

L-DSPLIT
Γ Γ1 Γ Γ2

Γ Γ1, Γ2

L-DI NTRO
Γ, Γ ′ Γ ′ Γ, Γ ′ ` {P}s{Q}

Γ ` {P}s{Q}

Fig. 2.Java rules and axioms

assuming all the method calls satisify the specifications inΓ1. The method introduction
rule, L-DMETHOD, checks that the body,s, meets the specification assuming it is in-
voked on the correct class. The additional variable declarations are used to ensure that
the call-by-value semantics is respected. The remaining two rules are used to introduce
and manipulate these definitions. These rules are similar in style to those used by von
Oheimb [19] to reason about mutually recursive procedures.

For completeness we present the standard rules from Hoare and separation logic in
Figure 3.

3 Behavioural subtyping

Next we presentspecification compatibility: a generalised notion of behavioural sub-
typing. For the purpose of this exposition we focus on method specifications and ignore
class invariants and abstraction functions [2, 12] as we, later, use abstract predicate
families to deal with these issues.

A method specification,{PD} {QD}, is said to be a subtype of another method
specification,{PC} {QC}, iff the pre-condition of the supertype implies the pre-con-
dition of the subtype,PC ⇒ PD, and the subtype’s post-condition implies the super-
type’s,QD ⇒ QC . We can see behavioural subtyping of specifications as simply the
rule of consequence in Hoare logic, L-CONSEQUENCEin Figure 3. We can generalise
this notion to allow the other structural rules: L-FRAME and L-VARELIM in Figure 3.

Standard commands
L-A SSIGN Γ ` {P [e/x]} x=e; {P}

L-BLOCK
Γ ` {P} s {Q}

Γ ` {P} {s} {Q}

L-SKIP Γ ` {P} ; {P}

L-I F
Γ ` {P ∧ x=y} s1 {Q} Γ ` {P ∧ x 6=y} s2 {Q}

Γ ` {P} if (x == y) s1 else s2 {Q}

L-SEQ1
Γ ` {P} s1 {R} Γ ` {R} s2...sn {Q} s1 6= C x;

Γ ` {P} s1s2...sn {Q}

L-SEQ2
Γ ` {P} s1...sn {Q} x /∈ FV (P) ∪ FV (Q)

Γ ` {P}C x; s1...sn {Q}

Structural rules

L-CONSEQUENCE
P ⇒ P ′ Γ ` {P ′} s {Q′} Q′ ⇒ Q

Γ ` {P} s {Q}

L-VARELIM
Γ ` {P} s {Q}

Γ ` {∃X · P} s {∃X ·Q}
providedX is not free ins.

L-FRAME
Γ ` {P} s {Q}

Γ ` {P ∗ R} s {Q ∗ R}
provided mods(s) ∩ FV (R) = ∅

Fig. 3.Standard rules

Specification compatibility generalises behavioural subtyping in two important ways:
it allows the introduction of new logical variables in subclasses’ specifications; and it
allows the intersection of specifications. We demonstrate these at the end of the section.

Definition 1 (Specification compatibility). We define specification compatibility,
` {PD} {QD} =⇒ {PC} {QC}, iff

∀s, Γ · (mods(s) ⊆ {ret}) ⇒
Γ ` {PD}s{QD}

...
Γ ` {PC}s{QC}

That is, a proof ofΓ ` {PC}s{QC} exists whose only assumption isΓ ` {PD}s{QD}.

The quantification overs andΓ in the definition restricts the derivation to the struc-
tural rules in Figure 3. The frame rule, L-FRAME, can only introduce formulae that do
not mention ret: all methods potentially alter this variable.

We will restrict method environments towell-behaved environments, where meth-
ods in subtypes have compatible specifications with their supertypes’ specification.

Definition 2 (Well-behaved environments).Γ is well-behaved iff for each specifica-
tion {PC}C.m(x){QC} in Γ , if D ≺ C, then{PD}D.m(x){QD} is in Γ and
` {PD} {QD} =⇒ {PC} {QC}

For simplicity, we assume parameter names are not changed in subclasses.
As mentioned earlier, our generalised notion of behavioural subtyping allows the

following additional ideas:

3.1 Logical Variable Manipulation

Consider the following specifications

{this .f 7→ } {this .f 7→ } (1)

{this .f 7→ X} {this .f 7→ X} (2)

If code expects the behaviour of (1), then clearly it would be satisfied with (2), after all
(2) is a refinement of (1). However, the standard idea of behavioural subtyping would
not permit this refinement asthis .f 7→ ⇒ this .f 7→ X does not hold. This is valid
in specification compatibility as it is a use of the variable elimination rule, L-VARELIM .

3.2 Specification intersection

Consider two specifications:

{PC} {QC} (3)

{PD} {QD} (4)

How can a single specification capture both of the above? Consider{
(PC∧X = 1)
∨ (PD∧X = 2)

} {
(QC∧X = 1)
∨ (QD∧X = 2)

}
(5)

We use a fresh logical variableX to allow us to encode the intersection of the specifi-
cation. Semantically, logical variables are universally quantified at the level of specifi-
cations, i.e.

∀X ·
{

(PC∧X = 1)
∨ (PD∧X = 2)

} {
(QC∧X = 1)
∨ (QD∧X = 2)

}
Hence, we can understand the specification as

({PC} {QC})
∧

({PD} {QD})

We use this notation as a shorthand in the examples later. We can show that (5) is
specification compatible with both (3) and (4). We present the derivation for (3).

`
{

(PC∧X = 1)
∨ (PD∧X = 2)

} {
(QC∧X = 1)
∨ (QD∧X = 2)

}
L-FRAME

`

X = 1 ∗(
(PC∧X = 1)
∨ (PD∧X = 2)

)
X = 1 ∗(

(QC∧X = 1)
∨ (QD∧X = 2)

)
L-CONSEQUENCE

`
{
PC∧X = 1

} {
QC∧X = 1

}
L-VARELIM

`
{
∃X · PC∧X = 1

} {
∃X · QC∧X = 1

}
L-CONSEQUENCE

`
{
PC

} {
QC

}
The key to the proof is the L-FRAME rule, which lets us preserve the value of the

logical variable across the call. In standard Hoare logic the invariance rule [3] could be
used.

Specification inheritanceof Dhara and Leavens [7] also allows the intersection of
specifications.

4 Abstract predicate families

So far, we have presented a separation logic for Java and enforced behavioural subtyp-
ing. As it stands, it is very hard to create any valid subtypes, because the specifications
are too concrete. In this section, we define our abstraction mechanism,abstract predi-
cate families.

We useα to range over abstract predicate family names. One can think of an abstract
predicate family as a predicate that existentially hides the type:

e.α(e) ≈ ∃C · αC(e; e) ∧ e : C (6)

whereαC is the definition ofα for classC. This intuition mirrors dynamic dispatch
in object-oriented languages, wheree.m(...) is a call to a methodm, but the body is
selected by the dynamic type of the receiver,e. Abstract predicate families reflect this
in the logic, by allowing predicates whose definition is selected by the dynamic type of
the “receiver”.

We define abstract predicate family definitions,Λ, with the following syntax.

Λ := ε | (αC(x;x) def= P), Λ

Λ is well-formed if it has at most one entry for each predicate and class name pair, and
the free variables of the body,P , are in its argument list,x;x. The first argument is
distinguished, as it is used to index by class. We use a semi-colon,;, to separate this
distinguished argument, and commas to separate the remaining arguments. We treatΛ
as a function from predicate and class name pairs to predicate definitions. Each entry
corresponds to the definition of an abstract predicate family for a particular class.

This semantic intuition, (6), leads to the following pair of axioms:

OPEN Λ |= (x : C ∧ x.α(x)) ⇒ Λ(α, C)[x; x]

CLOSE Λ |= (x : C ∧ Λ(α, C)[x; x]) ⇒ x.α(x)

whereα, C ∈ dom(Λ).

To OPENor CLOSEa predicate we must know which class contains the definition, and
must have that definition in scope.

In our examples later, we find it useful to consider the predicate to have many dif-
ferent arities. We add the following pair of axioms to alter a predicate’s arity.

WIDEN Λ |= x.α(x) ⇒ ∃y · x.α(x, y)

NARROW Λ |= ∃y · x.α(x, y) ⇒ x.α(x)

As we allow changes in arity, we must provide an operation to provide fewer or
more arguments than expected. We use square brackets to denote this unusual argument
application operation.

(αC(x;x) def= P)[e; e] def=

{
P [e/x, e1/x] |e1| = |x| ande = e1, e2

∃x′ · P [e/x, (e, x′)/x] |e, x′| = |x|

If we give a predicate more arguments than its definition requires, it ignores them. If
too few, it existentially quantifies the missing arguments. This definition of substitution
is used in the definition of OPEN and CLOSE.

We present the following rule for introducing abstract predicate families

ABSTRACT WEAKENING
Λ; Γ ` {P}s{Q}

Λ, Λ′; Γ ` {P}s{Q}
provideddom(Λ′) anddom(Λ) are disjoint.

This rule allows us to add more predicate definition without affecting a proofs validity.
For details of the modularity and scoping of abstract predicate families see [15, 16].

5 Examples

For legibility, in the following examples we use full Java statements and expressions
and a primitive type of integer,int . These can be encoded in the obvious way [15].

5.1 Cell/Recell

We begin with a simple example of subtyping:Cell andRecell [1]. We give the
source code in Figure 4. We ignoreNullCell until the next subsection.

If we give the obvious specification toCell˘
this .cnts 7→

¯
Cell.set(n)

˘
this .cnts 7→n

¯
then there is no specification thatRecell satisfies and is a behavioural subtype. This
is the extended state problem: the subclass is modifying more state. Therefore, we need
to introduce an abstract predicate family into the specification. We present the correct
specifications in Figure 5.

We have to validate four methods: theset and get methods of bothCell and
Recell . Details of these proofs can be found in [15, 16]. Even though the bodies of

class Cell extends Object {
Object cnts;
void set(Object x)
{this.cnts = x;}
Object get()
{return this.cnts;}

}
class NullCell extends Cell {

Object get() {return null;}
}

class Recell extends Cell {
Object bk;
void set(Object o) {

temp = this.cnts;
this.bk = temp;
this.cnts = x;

}
}

Fig. 4.Source code for Cell classes

Method Specification
Cell.set(y)

˘
this .Val()

¯ ˘
this .Val(y)

¯
Cell.get()

˘
this .Val(X)

¯ ˘
this .Val(X) ∧ ret = X

¯
Recell.set(y)

˘
this .Val(X,)

¯ ˘
this .Val(y , X)

¯
Recell.get()

˘
this .Val(X, Y)

¯ ˘
this .Val(X, Y) ∧ ret = X

¯
Nullcell.set(y) ({this .Val()} {this .Val(y)})V

({this .NVal()} {this .NVal()})
Nullcell.get() ({this .Val(X)} {this .Val(X) ∧ ret=X})V

({this .NVal()} {this .NVal() ∧ ret=null })

ValCell (x; y) def= x.cnts 7→ y ValRecell (x; y, z) def= x.cnts 7→ y ∗ x.bk 7→ z

ValNullcell (x;) def= false NValNullcell (x;) def= x.cnts 7→

Fig. 5.Specifications and predicate definitions for Cell classes

Cell.get andRecell.get are the same, we must validate both, because they have
different predicate definitions. We will return to this point in§6.

We must prove that the method specifications are compatible, defined in the sense of
definition 2. The twoget methods have the same specification, so they are compatible.
The compatibility of theset method follows as

` {this .Val(X,)} {this .Val(n, X)}
L-VARELIM` {this .Val(,)} {this .Val(n,)}

L-CONSEQUENCE
` {this .Val()} {this .Val(n)}

Above L-CONSEQUENCEusesWIDEN on the pre-condition, andNARROW on the post-
condition.

5.2 NullCell

Normally, we would not consider the cell that always returns null,NullCell , to be a
behavioural subtype ofCell . However, we may wish it to inherit fromCell . Abstract

class Ast extends Object {
void accept(Visitor x) {;}

}
class Const extends Ast {

int v;
void accept(Visitor x)
{ x.visitC(this); }

}
class Plus extends Ast {

Ast l; Ast r;
void accept(Visitor x)
{ x.visitP(this); }

}

class Visitor {
void visitC(Const x) {;}
void visitP(Plus x) {;}

}
class Calc extends Visitor {
int amount;
void visitC(Const x)
{ this.amount += x.n; }
void visitP(Plus x) {

x.l.accept(this);
x.r.accept(this);

}
}

Fig. 6.Source code for formulae and visitor classes.

predicate families allow us to seeNullCell as a behavioural subtype (using specifica-
tion compatibility), while preventing it being used in place of aCell .

In Figure 5, we define the predicate familyVal for NullCell to be false. This
means that it is never possible to get a satisfied instance ofVal where its first parameter
is a NullCell , and hence we cannot use aNullCell in place of aCell . We give
the NullCell a new predicate family,NVal , to represent its internals, and specify
its methods as the intersection, as defined in section 3.2, of its supertype’s method’s
specification and its own specification withNVal .

Abstract predicate families allow implementations to be inherited, while not pre-
serving behavioural subtyping. They distinguish implementation inheritance from spec-
ification inheritance.

5.3 Visitor pattern

Now let us consider an extended example using the visitor design pattern [9]. We con-
sider a visitor over a very simple syntax of formulae with just constants and addition of
two terms. We present the source code in Figure 6. TheVisitor class has two meth-
ods: the first,visitC is invoked when the visitor visits aConst node; and the second,
visitP is for aPlus node. TheVisitor class is a template that should be overridden
to produce more interesting visitors. We define three classes to represent an abstract
syntax tree of these formulae:Ast is used as a common parent for the term construc-
tors;Const represents constant terms; andPlus represents the addition of two terms.
We define a single method,accept , in Ast that is overridden in each of the subclasses.
The Const class represents an integer constant, and callsvisitC when it accepts a
visitor. ThePlus class represents an addition of two formulae and callsvisitP when
it accepts a visitor.

Before we can formally specify the visitor, we must extend the logic with the for-
mulae’s syntax:

τ ::= n | τ ⊕ τ

µ ::= • | τ ⊕ µ | µ⊕ τ

Method Specification
visitC(x)

˘
x : Const ∧ x .Ast(τ) ∗ this .Visitor(µ)

¯ ˘
this .Visited(x , τ, µ)

¯
visitP(x)

˘
x : Plus ∧ x .Ast(τ) ∗ this .Visitor(µ)

¯ ˘
this .Visited(x , τ, µ)

¯
accept(x)

˘
this .Ast(τ) ∗ x .Visitor(µ)

¯ ˘
x .Visited(this , τ, µ)

¯
VisitorCalc (x;µ) def= x.amount 7→ lcalc(µ)

VisitedCalc (x; y, τ, µ) def= x.amount 7→ (lcalc(µ) + calc(τ)) ∗ Ast(y; τ)

where
calc(n) def= n

calc(τ1 ⊕ τ2)
def= calc(τ1) + calc(τ2)

lcalc(•) def= 0
lcalc(µ1 ⊕ τ) def= lcalc(µ1)
lcalc(τ ⊕ µ1)

def= calc(τ) + lcalc(µ1)

Fig. 7.Specifications for accept and visit methods.

We useτ to represent the structure of an abstract syntax tree, andµ for a context: a
tree with a hole,•, in it. We use,⊕, to distinguish it from the arithmetic operation of
addition, and useµ[µ′] to mean replace• by µ′ in µ. We define theAst predicate family
for the three classes.

AstAst (x; τ) def= false
AstConst (x; τ) def= ∃n · x.v 7→ n ∧ τ = n

AstPlus (x; τ) def= ∃i j τl τr · x.l 7→ i ∗ x.r 7→j ∗ Ast(i, τl) ∗ Ast(j, τr) ∧ τ =τl⊕τr

Note 2. Defining the predicate for theAst class asfalse prevents any invocation of its
methods.

We give the specifications for thevisit andaccept methods in Figure 7. There
are many choices one can make for the specification of a visitor. Theµ parameter is used
to allow the evaluation to depend on the context. In the example that follows we use the
context to accumulate the value of the expression as we traverse it, rather than calculat-
ing it in a bottom up fashion. We can remove theµ parameter from the predicates if we
do not want context sensitive visitors, that is, if the state of the visitor did not depend
on its context. One might have expected the methods all to have post-conditions of the
form this .Visited(. . .) ∗ x.Ast(τ). However, this kind of specification prevents us
altering the structure of the expression.

We are now in a position to verify theaccept methods for thePlus andConst

classes. We only present thePlus case as theConst case is very similar.˘
this .Ast(τ) ∗ x .Visitor(µ) ∧ this : Plus

¯˘
(x .Ast(τ) ∗ this .Visitor(µ) ∧ x : Plus)[this , x/x , this]

¯
x.visitP(this);˘

(this .Visited(x , τ, µ))[this , x/x , this]
¯

9=;

L
-C

A
L

L

˘
x .Visited(this , τ, µ)

¯

9>>>>=>>>>;

L
-C

O
N

S
E

Q
U

E
N

C
E

The verification of the method call introduces the current class’s type: this is exactly
what is required to meetvisitP ’s specification. This method call simply provides in-
formation about which type of node this is to theVisitor : it is providing a case selec-
tion using dynamic dispatch. This proof does not need changing no matter how many
subclasses ofVisitor are added.

Let us consider an actual visitor implementation. The implementation given in Fig-
ure 6 calculates the value of the expression. We define theVisitor andVisited predi-
cates for this class in Figure 7. Thecalc function calculates the value of the tree, and
the lcalc function is used to calculate the accumulated total from the context: the sum
of everything to the left of the hole,•, i.e. the nodes we have already visited.

We verify thevisitP method as˘
x : Plus ∧ x .Ast(τ) ∗ this .Visitor(µ) ∧ this : Calc

¯˘
∃i, j, τ1, τ2 ·Q ∗ i.Ast(τ1) ∗ j.Ast(τ2) ∗ this .Visitor(µ)

¯˘
Q ∗ i.Ast(τ1) ∗ j.Ast(τ2) ∗ this .Visitor(µ)

¯
x.l.accept(this); x.r.accept(this);˘

Q ∗ i.Ast(τ1) ∗ this .Visited(j, τ2, µ[τ1 ⊕ •])
¯

9=; (7
)

˘
∃i, j, τ1, τ2 ·Q ∗ i.Ast(τ1) ∗ this .Visited(j, τ2, µ[τ1 ⊕ •])

¯

9>>>>=>>>>; L
-V

A
R

E
L

IM

˘
this .Visited(x, τ, µ)

¯

9>>>>>>>>=>>>>>>>>; L
-C

O
N

S
E

Q
U

E
N

C
E

whereP
def= x : Plus ∧ this : Calc ∧ τ = τ1 ⊕ τ2

and Q
def= P ∗ x .l 7→ i ∗ x .r 7→ j

Above L-CONSEQUENCEuses OPEN with the definition ofVisitor for Calc in
the implication between the pre-conditions, and for the post-conditions uses both OPEN

and CLOSE with the definition ofVisited andlcalc(µ) + calc(τ) = lcalc(µ[τ ⊕ •])
which can be shown by induction onµ.

We present an outline of the proof for the two function calls:˘
P ∗ x .l 7→ i ∗ x .r 7→ j ∗ i.Ast(τ1) ∗ j.Ast(τ2) ∗ this .Visitor(µ)

¯˘
x .l 7→ i ∗ i.Ast(τ1) ∗ this .Visitor(µ, •)

¯
x.l.accept(this);˘

x .l 7→ i ∗ this .Visited(i, τ1, µ)
¯

9=; (8
)

˘
P ∗ x .l 7→ i ∗ x .r 7→ j ∗ j.Ast(τ2) ∗ this .Visited(i, τ1, µ)

¯
(9)

9>>>>=>>>>; L
-F

R
A

M
E

To prove (8), we expand the code and actually provet=x.l;t.accept(this); .
We omit the details of the proof.˘

P ∗ x .l 7→ i ∗ x .r 7→ j ∗ j.Ast(τ2) ∗ i.Ast(τ1) ∗ this .Visitor(µ[τ1 ⊕ •])
¯
(10)˘

x .r 7→ j ∗ j.Ast(τ2) ∗ this .Visitor(µ[τ1 ⊕ •])
¯

x.r.accept(this);˘
x .r 7→ j ∗ this .Visited(j, τ2, µ[τ1 ⊕ •])

¯
9=; (1

1)

˘
P ∗ x .l 7→ i ∗ x .r 7→ j ∗ i.Ast(τ1) ∗ this .Visited(j, τ2, µ[τ1 ⊕ •])

¯

9>>>>=>>>>; L
-F

R
A

M
E

(11) is verified in the same way. We can combine these two proofs to prove 7, provided
(9) ⇒ (10) holds, which follows from using CLOSE with Visitor and OPEN with
Visited , andlcalc(µ) + calc(τ) = lcalc(µ[τ ⊕ •]).

We can produce different subclasses ofVisitor to perform many different func-
tions, such as checking whether an AST contains a particular constant, or to clone an
AST. Parkinson’s thesis [15] presents another subclass that removes all additions of
zero from the term. As the proof is modular, we only need to verify the new classes we
write: we know all the other classes interact correctly.

6 Related and future work

In this paper, we have built on our previous work [16]. Our examples have demon-
strated the flexibility of separation logic and abstract predicate families. Although we
have enforced behavioural subtyping, this has not placed undue constraints on subtypes.
Additionally, we have shown that this methodology does not have difficulties with call-
backs, because we do not need class invariants.

One drawback of this methodology is that it requires the rechecking of every in-
herited method. This is because the predicate definitions can be changed completely in
subclasses. We are currently investigating ways of structuring abstract predicate fami-
lies to allow the inheritance of methods without rechecking their specifications.

Our original inspiration for abstract predicate families came from Leino’s work on
the extended state problem [11]. He proposeddata groupsto abstract modifies clauses,
the set of fields modified by each method. The clauses were given in terms of abstract
groups of fields. Each class was free to add its new fields to the abstract groups. Abstract
predicate families generalise data groups by allowing constraints to be placed on these
fields.

Closely related to our work is Boogie [4], which takes a different approach to the
class invariant and call-backs problem. Boogie uses an auxiliary field,st, to indicate
if the invariant holds (or even how much of the invariant holds). The invariant can be
seen as(this.st = V alid) ⇒ P (this), whereP is the property that should hold of
the object.pack andunpack operations are used to validate and invalidate thest field,
respectively. These operations roughly correspond to the OPEN and CLOSE axioms in
our logic. Boogie also represents similar encapsulation to abstract predicate families
using an auxiliaryowner field. Owned objects can only beunpack ed, if its owner is
unpacked. For comparison, consider an example from [4]:

class T {
rep U f;
invariant 0 ≤f.g;
void m() requires st=Valid
{ unpack this;

f.n();...
pack this; }

}

class U {
int g;
void n() requires st=Valid
{ ... }

}

In this exampleT owns itsf field. We could encode this in our methodology using a
single predicate family

BoogieInvT(x;) def= ∃i, g · x.f 7→ i ∗ i.BoogieInv(g) ∧ g ≥ 0
BoogieInvU(x; g) def= x.g 7→ g

and making the pre- and post-conditions of each methodthis .BoogieInv . In the Boo-
gie proof, theunpack operation inT.m() exposes the object in thef field. In our
proof, we simply use OPEN on the predicate family to replacethis .BoogieInv() with
∃i, g · x.f 7→ i ∗ i.BoogieInv(g) ∧ g ≥ 0. This allows us to meet the pre-condition

of the call tof.n() . In the Boogie proof, thepack operation inT.m() hides the ob-
ject in thef field, and must also check the invariant holds. Similarly in our proof, we
use CLOSE, which requires the predicate family for the field, and the invariant is true.
There are many similarities between to the two proof systems. In the future, we plan to
explore the correspondence between the two systems in more detail.

Another closely related work is Typestates by Fähndrich and DeLine [8], which
allows specification to be given with respect to named externally visible states. These
states correspond to abstracted predicates in a similar way to that used here. They im-
pose a strong structure on the predicates, which allows them to inherit methods without
reverifying code.

Finally, in this paper we have only considered sequential Java. Recently, O’Hearn
has shown how to extend separation logic with rules to reason about concurrency prim-
itives [13]. They allow state to be stored in a semaphore, and by manipulating this
semaphore the state can be transferred between threads. Unfortunately the semaphore
is statically scoped, which prevents reasoning about heap allocated semaphores includ-
ing, for example, Java’ssynchronised primitive. We are currently investigating how
to extend O’Hearn’s system for concurrency to allow for reasoning about semaphores
in the heap, and hence Java with threads.

AcknowledgmentsI should like to thank Gavin Bierman, Sophia Drossopoulou, Alis-
dair Wren and the anonymous referees for their comments on this work. This work was
support by an EPSRC DTA at the University of Cambridge, EPSRC grant EP/C523997/1,
and Intel Research Cambridge.

Bibliography

[1] M. Abadi and L. Cardelli.A theory of objects. Springer-Verlag, 1996.
[2] P. America. Designing an object-oriented programming language with behavioural sub-

typing. In Proceedings of the REX School/Workshop on Foundations of Object-Oriented
Languages, pages 60–90, 1991.

[3] K. R. Apt. Ten years of Hoare’s logic: A survey: Part I.ACM TOPLAS, 3(4):431–483,
1981.

[4] M. Barnett, R. DeLine, M. F̈ahndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants.Journal of Object Technology, 3(6):27–56, 2004.

[5] G. M. Bierman and M. J. Parkinson. Effects and effect inference for a core Java calculus.
In Proceedings of WOOD, volume 82 ofENTCS, 2004.

[6] R. Bornat. Variables as resources in separation logic. InProceedings of MFPS, pages
125–146, 2005.

[7] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specification inheri-
tance. InProceedings of ICSE, pages 258–267, 1996.

[8] M. Fähndrich and R. DeLine. Typestates for objects. InProceedings of ECOOP, pages
465–490, 2004.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1994.

[10] S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In
Proceedings of POPL, pages 14–26, 2001.

[11] K. R. M. Leino. Data groups: Specifying the modification of extended state. InProceedings
of OOPSLA, pages 144–153, 1998.

[12] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping.ACM TOPLAS, 16(6):
1811–1841, 1994.

[13] P. W. O’Hearn. Resources, concurrency and local reasoning. InProceeding of CONCUR,
volume 3170, pages 49–67, 2004.

[14] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. InProceedings of CSL, pages 1–19, 2001.

[15] M. J. Parkinson.Local Reasoning for Java. PhD thesis, Computer Laboratory, University
of Cambridge, 2005. UCAM-CL-TR-654.

[16] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. InProceedings of
POPL, pages 247–258, 2005.

[17] M. J. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logic. In
Proceedings of LICS, 2006.

[18] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. InProceedings
of LICS, pages 55–74, 2002.

[19] D. von Oheimb. Hoare logic for mutual recursion and local variables. InProceedings of
FSTTCS, pages 168–180, 1999.

