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Abstract. In the specification language JML we can see pure methods
as a way to express user-defined predicates that will simplify the anno-
tations. We take this idea a step further in allowing to only declare these
predicates in JML without giving an explicit definition. The explicit def-
inition is done directly in the language to which the Java program and
the specifications are translated. To this end we introduce a new keyword
to JML, the keyword native. To facilitate these definitions we have en-
abled the user to define also native types in the same way. In this paper
we will describe these new constructs as well as their implementation in
Jack, and their application to JML’s libraries and model fields.

1 Introduction

The Java Modeling Language (JML) is a widely used specification language used
to annotate Java programs for both runtime verification and static verification.
It has a vast syntax defined in its manual and most of the tools only implement
a part of its syntax. The part of JML we will be interested to in this paper is
one that is common in most of the tools using JML [5]: pure methods, ghost
variables and model fields.

When doing program verification with JML, one of the difficulties that ap-
pears is to handle the connection between the specifications and the interpreted
program specifications.We have decided to add the keyword native to specify
some specification-only methods and types that would be directly defined to the
environment to which specifications are interpreted. This keyword can be used
in dynamic verification of programs, but it is in a static verification context, that
it can be the most helpful. It can be used to define predicates, as well as give a
real definition to which lemmas can be proven upon.

In order to test our new construct and our modifications of the JML language
we have used a tool that does static program verification, Jack (the Java Applet
Correctness Kit)[14, 4]. Jack takes as an entry Java programs annotated with
JML. The proof obligations are generated to an intermediate language called
JPOL (the Java Proof Obligation Language) and afterward are translated into
proof languages, like Coq, Simplify, AtelierB and PVS. Jack handles most of
JML constructs, and is integrated as a plugin within Eclipse [8].

The latest developments in Jack concern its Coq output. The interest of
this output is that it permits to prove interactively some proof obligations that
would not be provable automatically in a first order prover like Simplify [2].
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Together with the Simplify output this is the output which is used the most.
Coq is a proof assistant based on the calculus of inductive construction [1]. It can
express higher-order logic which first-order automatic provers cannot. In Jack’s
Coq output, the logic of Java is expressed through Coq as axioms, definitions,
inductive definitions as well as recursive functions (in more sparse cases).

In section 2, we will discuss of the pure methods and their interpretation in
Jack. We will then introduce the native keyword and its use to define predicates.
In section 3, we will define the native types and we will see the application of
these constructs as a way to implement JML’s model classes. Finally, in section
4, we will show applications of the native libraries with ghost variables and model
fields.

2 Pure methods

JML’s pure methods are methods that can be used in specifications. They cannot
mutate already existing objects but they can allocate new objects. Nonetheless,
the pure keyword is not an alias for JML modifies \nothing, it implies also that
the methods terminates, giving a result or throwing an exception. For instance
if a constructor only modifies the object that is being created and terminates
properly it can be considered as pure. A mean to verify whether a method is
pure or not according to JML can be found in [15].

In dynamic program verification pure methods are usually built from their
source code. The method is first thought on the Java level, without side effects,
and afterward the user writes its specifications on the JML level; in order to be
able to use it in JML annotations. In static program verification, pure methods
can be built directly from their specifications, since most of the tools replace
pure method’s calls by the instantiation of the pure method’s specifications.

2.1 Specification macros

When specifying a program with JML one of the main problems is the growth of
the size of the annotations. The way static verification tools usually define the
handling of pure methods, we can use them to do some specification macros. The
method calls will be replaced by their specifications when the annotations will be
interpreted by the tool. It is useful to avoid the growth. If we have for instance
a property to tell an array is sorted we would prefer to read the annotation
withinBounds(tab, i) instead of: (0 ≤ i && i < tab.length).

This method makes the annotations clearer, but as annotations grows big,
proof obligations grows big too. In order to ease the readability of the proof
obligations, we would like to keep track of the pure method name that was used
as the macro in order to see what part of the specification we are proving. That’s
why we do pure method’s substitution in Jack. We have a couple Definition /
hypothesis. A functional definition is generated of the form:

mypurefun norm Args Result := (requires Args) → (ensures Args Result)

mypurefun exc Args Result := (requires Args) → (exsures Args Result)
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where requires is a predicate that is on the arguments of the pure function
and which correspond to JML requires clause the same for ensures and exsures

which are predicates that correspond to JML’s ensures and exsures clause re-
spectively. These functions are then called within the hypothesis at the places
where they were used in the code.

It is nearly what is done in Krakatoa[13], as Krakatoa use a functional defini-
tion of the pure method if it can generate it but otherwise use an axiomatisation
of it like in ESC/Java[6]. The axiomatisation is done in 3 parts: the pure method
is first declared as a variable, there is some hypothesis using it and giving it its
properties (which correspond to its specifications), and then the variable is used
within the lemma which has to be proved (for more detailed comparison between
the different technique see: [7, 9]).

This way of defining Definition/Hypothesis doesn’t change anything for au-
tomatic proof of the proof obligations with prover like Simplify. With Coq, it
facilitate the readability of the proof obligation for the user which is a critical
point, notably when doing an interactive proof.

2.2 Pure as Predicates

Some of the properties we have to express are not so easy to deal with on
the JML level. We want to be able to prove lemmas concerning pure methods,
and also have relations over variables without specifying any property on the
relation. So we decided to be able to define pure methods directly within the
language in which the proof obligations are generated or the JML annotations
are interpreted. We added a new keyword to JML in order to allow it explicitly:
the native keyword. If a method is declared within a specification as native, it
will be an uninterpreted symbol function. Its specifications will be to the target
prover or environment discretion.

Since the native methods are declared within the specifications they must be
pure: they must not have any side-effect, they can only create objects, they have
to be terminating. But native is more restrictive than pure: a native method
must not throw any exception.

For instance we can have the property withinBounds declared as native, inside
the specification:

//@ public native static boolean withinBounds(int [] tab, int i);

If interpreted with a dynamic program verification tool, it can be defined with
the Java method:

public static boolean withinBounds(int [] tab, int i) {
return (tab ! = null) && (0 ≤ i) && (i ≤ (tab.length));

}

If interpreted with a static program verification tool, it can be defined this way
in Coq, within a library file:

Definition withinBounds :=

fun (tab i) =>

(and (not (tab = null)) (and (0 ≤ i) (i ≤ (arraylength tab))).
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In Simplify it will be seen as an uninterpreted function symbol, just a relation
on the arguments. In Jack, the binding from the JML declaration to the native

language is done automatically. The arguments passed to the method are the
same as the one whose the method was declared with except:

– if the method is an instance method, an extra argument this is added by
Jack at the beginning of the method when it is translated

– if one of the argument is an array, the array dereferencing relation (to do
array access) and its length relation are also given

For static program verification, this construct can be really useful, especially
if it is used in the pure macro fashion. We can also easily prove properties over
specifications in the target prover language. Once these properties are proved,
they can be added as a help to ease the automatic solving to some of the proofs
of the proof obligations.

In ESC/Java or Krakatoa it is permitted to define a pure method in spec-
ifications only, but the methods declared this way are defined by the tools in
their prover output. The native keyword for methods is more similar to other
constructs of these tools. In Krakatoa, we can find the parameter construct but it
is not used on the JML level, it is used on the Why tool [10] level. In ESC/Java,
the dttfsa construct is a way to call prover defined function symbols, but these
functions are not declared on the JML level.

3 Native types

One of the interest of these native methods would be to use them to define
specification-only libraries. But to do so, native methods are not expressive
enough: primitive Java types and object types as defined in JML are not re-
ally good to handle some Coq native functions and expressions. A good thing
would be to be able to use directly some Coq types within our specifications. A
solution can be to embed some Coq types within a Java type (like Reference).
First we need some new axioms to get and set the Coq special values, together
with a reduction rule. For instance if we want to manage a list type we would
need the relation setList:

Variable setList: Reference → list → Reference.

and the relation getList:

Variable getList: Reference → list.

and the rewriting rule:

Axiom getsetList: ∀ r l, getList (setList r l) = l.

This method is bad because we have to add many axioms, and this is not really
done in a natural way. To properly do this kind of manipulation we would need
some types directly defined in the target environment, some ’native’ types.
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3.1 Definition

We have extended the native construct to the type definitions, in order to be
able to map existing libraries well defined in the target prover language to some
specification written in JML. With this construct we can declare a type and
some operations on it (with the native methods) that will be entirely defined in
the target language.

The syntax is the same as for the ’native’ pure methods:

/*@ public native class MyNativeType {
@ public native boolean nativeMethod();

@ public native static MyNativeType staticMethod1();

The native keyword is mandatory for native methods inside the native classes
since static verification tools (notably Krakatoa) usually allow defining specifica-
tion only methods, which are pure methods defined only by their specifications.

These native types are not standard Java/JML classes, they are more akin
of a functional type:

– they do not inherit from the Object class, they are outside the Java type
hierarchy, and they do not subtype one another;

– they are not instances, in fact they are not even some references but they
could be bound to a reference type in the target language;

– they have no default initializer: if a specification variable is declared with
this type it must be initialized to a value returned by a method or taken
from another variable of the same type;

– it has no constructors: since constructors are used in Java to initialize the
object (they return nothing) there is no semantic in initializing the newly
created ’object’ from a native type

– the equality (==) and inequality (!=) are the same as for Java object. So it
is mapped to a Leibniz equality (in Coq, it is mapped to eq). The 2 object
compared should be of the same type.

– they forbids Java cast operations

On the other hand they allow method calls à la Java on them. There are two
kind of method calls on these types:
– the static call, which is just a normal method call from a method defined

inside a specification library.
For instance we can have this kind of calls:
//@ assert MyNativeType.staticMethod1() != MyNativeType.staticMethod2();

where staticMethod1() and staticMethod2() return values of type MyNativeType,
and are two native static methods.

– the instance call, where the variable on which the native method is called is
passed as a parameter. For instance:
//@ assert MyNativeType.staticMethod1().nativeMethod();

which correspond to a call to nativeMethod(), with only one argument passed
to the method: the result of staticMethod1() call. This is a valid for JML
assertion since the method nativeMethod() is pure (native in fact) and returns
a boolean.
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3.2 Native libraries

The native construct in JML enables to easily declare libraries that will be used
within the specifications like JML’s model classes. For instance, if we want to
have a library on sets we could define it this way:

/*@ public native class ObjectSet {
@ public native static ObjectSet create();

@ public native static ObjectSet add(ObjectSet os, Object o);

@ public native boolean member(Object o);

On the Coq level an easy way to bind this to a library, is to map it to the Coq
library ListSet:

Definition ObjectSet := set Reference.

Definition ObjectSet create := empty set.

Definition ObjectSet add (os: ObjectSet) (o: Reference) := set add o os.

Definition ObjectSet member (this: ObjectSet) (o: Reference) := set mem o this.

First we define the Coq type on which the ObjectSet native type will be
bound: it is a set of objects. For Jack, objects are seen as Reference, hence the
first definition where ObjectSet is defined by set Reference. Then we define the
method create by the definition ObjectSet create, which is static and takes no
argument. When it is created the set is empty. The add method is defined by
ObjectSet add; in Coq it is directly bound to the set add method of the library
ListSet of Coq. It returns a new ObjectSet where o has been added to the
preexisting ObjectSet os. The member method is an instance method, it tells if
the ObjectSet on which it is called rightly contain the argument o which is an
object. It is mapped directly to the set mem method of the ListSet library.

In fact when we define a library this way, there are two distinct sort of
methods:

– the modifiers which are implemented solely as static methods. Since native
types are of a functional nature (all their methods must be without any
side-effect), each time we want to modify a data of this type we must create
a new object.

– the observers which can be instance methods or static methods.

This way of defining the libraries forces the programmer to make a clear distinc-
tion between modifiers and observers.

It gives a way to have a Set library in JML a bit like what is done for
JMLObjectSet [11], but with differences: modifiers here are all static (which is not
the case for JMLObjectSet), the ObjectSet type is outside the Java class hirarchy
since it is a native type, so it does not have to define all the inherited methods
from the class Object (namely equals(Object obj), hashCode() or wait()...) and
are not interesting when defining a library to use sets within specifications.



7

4 Application of the native libraries

4.1 Ghost variables

The direct application of native libraries is their use with ghost variables. In JML
ghost variables are specification-only variables. In the Jack implementation as
well as for all the other JML tools, these variables are treated as normal variables
except they can only be used in specifications and they can only be modified
using the JML set construct.

Since they are only defined within the specifications, ghost variables can have
a native type. To use our ObjectSet library we could have for instance a variable
mySet. It would be declared as followed in a Java program:

//@ ghost ObjectSet mySet = ObjectSet.create(); // native types variables

// must be initialized since they have no default initializer

We could add elements to our ObjectSet using JML’s set instruction (with the
static modifier):

//@ set mySet = ObjectSet.add(mySet, new Object());

and finally we could then use it within an assertion (with the instance accessor):

//@ assert mySet.member(new Object());

The only difference in the use of native types for ghost variables instead of Java
types is the reduced number of properties and proof obligations we have on them.
For instance there’s no point for the assertion to generate a proof obligation to
verify that the program is not dereferencing a null pointer. We had to initialize
the ghost variable with a first value, for which we have a priori no hypothesis
(except if we know the implementation of the natives, which is prover or target
system dependent).

The native types add some expressiveness to JML annotations and are a way
to implement easily the JML model classes libraries. Ghost variables are useful
when specifying a program, but sometimes we would like to be sure specifca-
tion variables model real program behaviours. That’s why we used our native
construct with JML’s model variables.

4.2 Model fields

Definition Model fields are specification variables defined by a representation
function or with a representation relation that maps a program variable to a
model variable. Here we will only interest ourselves in defining the model field
by a representation function (detailed hints on the implementation of model
fields for static verification can be found in [12, 3]). One must use 3 constructs
in JML to declare a model field:

– first it must be declared with the model keyword:

//@ model MyType myModel
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– then it must be linked to a program variable with an abstraction function:

//@ represents myModel ← myFun(progVar);

– finally we must specify that when the program field is modified the model
field is modified too.

//@ depends myModel ← progVar;

The represents and depends clauses are strong invariants: they must not be
broken in any way in any state of the program.

Since one of the aims of model fields is to gain abstraction from the program,
we could do this abstraction with a native construct. Program variables can be
abstracted to a native type using a native abstraction function that will link the
native type with the Java type. The native method would have this signature
inside of JML:

//@ public native static MyNativeType translate(MyJavaType var);

Once defined we can use it smoothly within the represents clause.

Modeling an array with sets One of the immediate applications would be to
implement such a translation function to model a Java array of Objects with sets,
using the sets defined as a native library (as defined in subsection 3.3). To be able
to model an array with our native sets, the only thing missing is an abstraction
function from array to sets. This function would have this declaration:

//@ public static native ObjectSet toSet(Object [] tab);

Translated through Jack it would be linked with an ObjectSet toSet definition
in Coq:

Fixpoint toSet intern (tab: Reference)

(refelements: Reference → Z → Reference)

(len: nat) {struct len} : set Reference :=

match len with

| S n => set add (intelements tab (Z of nat n))

(toSet intern tab refelements n)

| S 0 => empty set

end.

Definition ObjectSet toSet :=

fun (tab: Reference) (refelements: Reference → Z → Reference)

(arraylength: Reference → Z) =>
if (tab = null)

empty set

else

match (arraylength tab) with

| Zpos p => toSet intern tab refelements (nat of P p)

| => empty set

end.

where refelements is a dereferencing relation and arraylength the relation to
get the length of an array. This translation function is built around 2 functions:
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– a first one (ObjectSet toSet) determining the value of the result if the tab

parameter is null

– a recursive function (toSet intern) that add to the set each element from
the array

The only thing missing from these definition are the lemmas to ease the proofs.
Typical examples are:

∀ tab arraylength, tab <> null →(∀ i, 0 ≤ i ∧ i < (arraylength tab) →
(∀ refelements, ObjectSet member

(ObjectSet toSet tab refelements arraylength) (refelements tab i)).

each element in the array tab is a member of the corresponding set defined by
the translation function.

∀ tab arraylength, (∀ ref, ObjectSet member

(ObjectSet toSet tab intelements arraylength) ref →
∃ i, (refelements tab i) = ref).

for each element of the result set of the translation, there exist an element in
the array from which the set was translated.

5 Conclusion

We have added the native keyword inside of Jack to help solve the different
proofs. It can be used to build native libraries that could replace or at least
elegantly complement the model classes, adding more expressiveness to define
such types and simplifying their definitions. Defining abstractions over program
variables with model fields and native types enable one to refine Coq data struc-
tures to Java programs. The proof obligations using these abstractions are not
so easy to prove using Jack. One needs lots of intermediate lemmas to do so.
With this methodology, one must first prove some properties on the library, like
that the translation function toSet has the same number of elements as the orig-
inating array, if each element in the array was different otherwise it will have
less elements.

We have done the same kind of work over a list library to help implement
a QuickSort. The size of the library that only binds the Coq constructs with
the JML native methods and types is 251 lines long, the lemmas proved to
help do the proof obligations are 569 lines long. With Jack, around 230 proof
obligation are generated, half of them are solved automatically, and the proof
scripts of each solved interactively range from 2 or 3 lines (most of the proofs) to
20. Here with the model variables about just as much are solved automatically,
and afterward the longest proof takes around 10 lines. First we have to prove
properties on the library, and after the proof is easier to do. For multiple use,
it is really good to have such JML libraries, fully proven, enabling faster proof
and program developments.

Jack doesn’t check yet if the defined native methods or types well-fit with
the declared ones. This verification would be helpful to allow the user to check
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his libraries before using them for the proofs. We could also verify that these
libraries have the same behaviour with every prover. Another work would be to
do refinement from the target language not only on the data level but also on the
program level. We could use JML’s model program construct together with the
native methods and types. We could imagine to implement a program with our
favorite prover, then bind it to JML’s model program construct using the native
methods and types, and finally have to prove that the program behave the same
as the model program which is in fact the prover-implemented program.
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