
Dynamic linking of polymorphic bytecode?

Giovanni Lagorio

DISI - Università di Genova
Via Dodecaneso, 35, 16146 Genova (Italy)

email: lagorio@disi.unige.it

Abstract. In standard compilation of Java-like languages, the bytecode
generated for a given source depends on both the source itself and the
compilation environment. This latter dependency poses some unneces-
sary restrictions on which execution environments can be used to run
the code.

When using polymorphic bytecode, a binary depends only on its source
and can be dynamically adapted to run on diverse environments.

Dynamic linking is particularly suited to polymorphic bytecode, because
it can be adapted to an execution environment as late as possible, max-
imizing the flexibility of the approach.

We analyze how polymorphic bytecode can be dynamically linked pre-
senting a deterministic model of a Java Virtual Machine which interleaves
loading and linking steps with execution.

In our model, loading and execution phases are basically standard, whereas
verification handles also type constraints, which are part of polymorphic
bytecode, and resolution blends in verification.

1 Introduction

Java sources are compiled into .class binary files in order to be executed on a
JVM (Java Virtual Machine). These binaries contain JVM instructions, better
known as bytecodes, and other ancillary information.

Running a program, at the JVM level, actually means running a class c,
that is, the main method of class c, in a certain binary environment. A binary
environment is a collection of binaries, where the classes needed to execute c can
be dynamically loaded1 from.

Before a class can be executed, it must be loaded and linked. Linking consists
of three different activities: verification, preparation and resolution. Verification
ensures that binaries are structurally correct and that every instruction obeys the
type discipline of the Java programming language [8]. If an error occurs during
verification, then the exception VerifyError is thrown. Preparation, which we
do not model, creates and initializes static fields. Resolution validates symbolic

? Partially supported by APPSEM II - Thematic network IST-2001-38957, and MIUR
EOS - Extensible Object Systems.

1 This is a simplified view: we are not considering class loaders [10, 11].

references to fields and methods2. If an error occurs during resolution, then the
exception IncompatibleClassChangeError or one of its subclasses, for instance
NoSuchMethodError, is thrown.

The JVM specification [10] does not impose an order of execution for loading
and linking activities, as long as errors detected during linkage are thrown at a
point in the execution where some action is taken by the program that might
require linkage to the class or interface involved in the error. Standard JVMs
are indeed quite lazy: they resolve symbolic references just before the execution
of the instruction they are associated with.

Keeping references to class members in symbolic form inside binaries, as
opposed to fixing object layouts at compile time3, greatly enhances the possibility
of reusing binaries in diverse binary environments.

However, binaries could be even more reusable if some of these symbolic ref-
erences were not fixed at compile time: in standard Java, compilation binaries
depend on both their corresponding sources and the compilation environment
they are compiled in4. This latter dependency poses some unnecessary restric-
tions on which execution environments can be used to run the code.

Polymorphic bytecode [1], which has been proposed as a means for obtaining
a compositional compilation for Java-like languages, makes (polymorphic) bina-
ries dependent only on the sources they have been compiled from, employing
type variables and accompanying type constraints stored inside binaries.

In [1] the focus is on compilation and the described linking process, necessary
to instantiate polymorphic bytecode to standard monomorphic one, is static.
However, as already noted [2, 3], combining polymorphic bytecode with dynamic
linking allows to reuse code with more flexibility, because the same polymorphic
binaries can be dynamically adapted to run on diverse environments.

Of course, standard JVMs cannot directly execute polymorphic bytecode, as
it contains type variables and type constraints. Hence, in this paper we analyze
how the JVM specification could be modified in order to make it run polymorphic
bytecode natively, and give a model trying to describe as close as possible how
a modified JVM could be implemented.

In our model, loading and execution phases are basically standard, whereas
verification handles also type constraints, which are part of polymorphic byte-
code, and resolution blends in verification, because we chose to design the linking
process as an incremental version of the inter-checking algorithm described in
[1].

One drawback of this choice is that we need to resolve references earlier than
standard JVMs; making our approach lazier is subject of further work.

Section 2 defines binary environments and describes the binary language we
model; this section can be seen as a crash course in polymorphic bytecode and
we refer to [1] for a complete presentation. Section 3 defines runtime expressions.
Section 4 describes execution; for lack of space we had to omit some technical

2 Constructors are considered special methods, named <init>, at binary level.
3 As it happens, for instance, in languages as C/C++.
4 We recall some more details in Section 2.

2

details, so this is just an overview. Interested readers can find the auxiliary
definitions and the missing rewriting rules in the Appendix. Finally, Section 5
discusses related work and concludes.

2 Binary environments

Figure 1 defines binary environments. A binary environment B is a sequence of
binary fragments where each fragment defines a differently named class5.

B ::= b1 . . . bn

b ::= (cdb, γ̄)

cdb ::= class Object {} | class c extends c′ { fdb mdb } where c 6= Object

fdb ::= fdb
1 . . . fdb

n

fdb ::= c f;

mdb ::= mdb
1 . . . mdb

n

mdb ::= mh { return eb; }
mh ::= c0 m(c1 x1, . . . , cn xn)

eb ::= x | eb[t.f t′] | eb
0[t.m(t̄)t′](eb

1, . . . , eb
n) | new [c t̄](eb

1, . . . , eb
n) |

(c)eb | �c, t� eb

t ::= c | α
t̄ ::= t1 . . . tn

γ ::= t ≤ t′ | φ(t, f, t′) | µ(t, m, t̄, (t′, t̄′)) | κ(c, t̄, t̄′) | c ∼ t

γ̄ ::= γ1 . . . γn

where class, field, method and parameter names in B, fdb, mdb and mh are distinct

Fig. 1. Binary environments.

Binary fragments b are pairs consisting of a binary class declaration cdb and
a sequence of type constraints γ̄. These constraints express the requirements
that a binary environment B should meet in order to be compatible with cdb. In
other words, if γ̄ hold in an environment B, then cdb can be run on B without
getting stuck.

With the exception of some very small changes, we have inherited the syntax
of binary class declarations and type constraints from [1]; the language is basi-
cally a binary version of Featherweight Java [9]. The superscript “b”, used on
many syntactic categories, means binary ; for instance, a cdb is a binary class dec-
laration (that is, an abstract view of the bytecode contained in .class binary
5 This corresponds to the viewpoint of a JVM: when the binary of a certain class is

searched, the first one found in the CLASSPATH is used, no matter how many other
binaries may define the same class.

3

files). In [1] this superscript is used to distinguish between source and binary
entities. Although we do not model any source level entity here, we keep the su-
perscripts for two reasons: for consistency and for distinguishing between binary
and runtime expressions, which we mark with the superscript “r”.

Class declarations cdb are either the declaration of the predefined class Object
which, for simplicity, we assume declaring no fields or methods, or the declaration
of a class c, which contains a superclass name c′, a sequence of field declarations
fdb and a sequence of method declarations mdb.

Field and method declarations are standard, while binary expressions eb de-
serve a detailed explanation. They are: parameter names, field accesses, method
invocations, instance creations, casts and polymorphic casts (explained below).

Field accesses, method invocations and instance creations contain annota-
tions between square brackets. These annotations reflect, in an abstract way,
the actual encoding of those kinds of expression in Java bytecode.

Types t are either class names c (that is, the types ordinarily available at
source level) or type variables α, which are instead inherent to the polymorphic
approach and are not available to the source level programmer.

Let us describe annotations by means of an example: suppose to have to
compile the source expression anA.f.g , where anA is a parameter of type A, in
the following compilation environment:

class A { B f ; } class B { Object g ; }

Because class A declares a field named f of type B, the subexpression anA.f
is correct and has type B. Following the same reasoning, any standard Java
compiler figures out that the whole expression is correct, has type Object, and
generates the binary expression eb

mono = anA[A.f B][B.g Object].
The first annotation, [A.f B], means that type A must provide (that is, inherit

or declare) a field named f of type B. Analogously, class B must provide a field
named g of type Object.

Method invocations and instance creations are annotated as well. The former
are annotated with: the static type of the receiver, and the name, parameter type
and return type of the method to be invoked. The latter are annotated with the
class name and the parameter type of the constructor to be invoked.

Back to our example, the fact that field f must have exactly type B is deduced
from the compilation environment, rather than explicitly expressed by the source
code: while the programmer clearly wants a field named g from whatever anA.f
is, there is no need for anA.f to have type B or anA.f.g to have type Object.
Fixing all these types at compile time hinders the reusability of the code.

Indeed, the following environment

class A { C f ; } class C { Object g ; }

obtained from the previous one by renaming class B, cannot be used to run
eb
mono even though the original source could be successfully recompiled in this

environment as well.
Polymorphic bytecode solves this problem by fixing at compile time only the

things that are known and cannot change. The code of our running example, for

4

instance, would be compiled in the following polymorphic bytecode:

eb
poly = anA[A.f α][α.g β]

where α and β are type variables. These variables can be replaced by class names
when the execution environment, as opposed to the compilation environment, is
known, making eb

poly usable in more environments than eb
mono.

However, type variables are just a part of the solution. Of course, an arbitrary
substitution of type variables into class names is not guaranteed to produce a
sensible result. This is why we need type constraints too. The polymorphic binary
expression eb

poly should go hand in hand with the following type constraints:

γ̄ = φ(A, f, α) φ(α, g, β)

whose informal meaning is: “class A must provide a field named f of type α
which, in turn, must provide a field named g of any type6”. Indeed, we can find
the value of α looking for a field named f in A; then, we either find the value of α
(that is, the type f is declared of) or we know that no substitution can produce
a sensible result7.

The compilation of cast expressions presents another issue to take care of:
consider the source expression es of type t and the expression: es

cast = (c)es.
This cast is correct whenever t and c are in subtype relation, however the trans-
lation of an upcast is different from the translation of a downcast. Indeed, in the
former case the cast is just discarded, while in the latter case a runtime check is
required. If the relation between t and c is unknown, then the polymorphic cast
expression �c, t� eb can be used. When polymorphic bytecode is instantiated,
that expression is replaced by eb in binary environments where t is more specific
than c, and by a standard cast (c)eb in the others.

The bottom of Figure 1 shows the five kinds of constraints that we need;
their informal meaning is the following:

– t ≤ t′ — type t is a subtype of t′
– φ(t, f, t′) — type t provides a field named f of type t′

– µ(t,m, t̄, (t′, t̄′)) — type t provides a method named m, applicable to ar-
gument types t̄, with parameter types t̄′ and return type t′ (this type of
constraint and the following one need to consider both the formal and the
actual parameter types to produce standard bytecode out of polymorphic
one).

– κ(c, t̄, t̄′) — class c provides a constructor applicable to argument types t̄,
with parameter types t̄′

– c ∼ t — class c and type t are comparable.

These are the constraints given in [1], with the exception of constraints “∃ c”,
with the informal meaning “class c must exist”. Indeed, these existential con-
straints are only needed to make compositional compilation equivalent to stan-
dard global compilation. In a JVM we do not need to require the existence of
6 The variable β is not used in any constraint and can assume any value.
7 If A is unavailable or does not provide a field f, then no substitution can make

φ(A, f, α) hold.

5

all classes named in the sources: if a class is not needed for the execution, then
we do not care whether such a class exists.

3 Runtime expressions

Figure 2 shows runtime expressions; except for verifyCls and bootstrap, which
are peculiar of our approach and are described, respectively, below and in the
next section, they are standard: values v, field accesses, method invocations,
instance creations, cast expressions and exceptions ε.

er ::= v | er[c.f c′] | er
0[c.m(c̄)c′](er

1, . . . , er
n) | new [c c̄](er) |

(c)er | ε | verifyCls(c, er) | bootstrap(γ̄, eb)
er ::= er

1, . . . , er
n

v ::= new c(v̄)
v̄ ::= v1, . . . , vn

ε ::= NoClassDefFoundError | ClassCircularityError | VerifyError |
ClassCastException

Fig. 2. Syntax of runtime expressions.

Values v represent objects; each object consists of the keyword new, followed
by its class name and the sequence of its field values between round brackets.

Field accesses, method invocations and instance creations are annotated like
their binary counterpart, but in this case annotations contain no type variables
because polymorphic code is verified and instantiated before it is executed. That
is, type constraints are checked and, when verification succeeds, type variables
are replaced by class names found in the execution environment and polymorphic
casts replaced as previously described.

Exceptions ε are: NoClassDefFoundError, thrown when a needed class can-
not be found, ClassCircularityError, thrown when loading a certain class
would introduce a cycle in the inheritance hierarchy, VerifyError, thrown when
the checking of a type constraint fails or when type constraints are not strong
enough to guarantee the safe execution of the class they are associated with, and
ClassCastException, thrown when the execution of a cast fails.

The special expression verifyCls is wrapped around an expression er when
the execution of er is stuck because it needs some class c to be verified.

The only expressions that can trigger this behaviour in our model are instance
creations: the creation of an object of type c can happen only if class c has been
successfully verified (this action, in turn, may require other classes to be loaded).

So, in an environment where c has not been verified yet, the expression
er
1 = new c(. . .) is rewritten into er

2 = verifyCls(c, er
1), that can be read as

“verify class c first, then go on with the execution of er
1”.

6

Rewrite rules (Section 4) guarantee that either the execution of er
1 will restart

in a new environment where class c has been successfully verified, or the whole
expression er

2 will be rewritten into a loading/verification exception.

4 Execution

Execution, modeled in small step style, has the form: BL
1,BV

1, e
r
1 B BL

2,BV
2, e

r
2

where:

– B is the execution environment where classes are loaded from; it contains
polymorphic binary fragments.

– BL
1 and BL

2 contain the loaded classes; they are contained8 in B, and BL
2 is

always equal to or greater than BL
1.

– BV
1 and BV

2 contain the verified classes; that is, they contain monomorphic
code and no type constraints. BV

2 is always equal or greater than BV
1, and

each class they contain is also contained in BL
1 (but in polymorphic form).

– er
1 and er

2 are the expressions to execute.

No rewrite rule changes all three components at once: the rewriting rules for
loading classes act only on BL, the ones for linking on BV, and the ones for
standard execution on er.

Execution starts with the special expression bootstrap from the empty en-
vironments of loaded and verified classes:

Λ, Λ, bootstrap(γ̄, eb) B BL,BV, . . .

The binary expression eb corresponds to the code of the main method and γ̄
contains its type constraints. This bootstrap expression is either rewritten into
a monomorphic expression (see Figure 6 in the Appendix), when verification
succeeds, or into an exception, if constraints γ̄ are not strong enough to guarantee
a safe execution for eb or if verification of γ̄ fails.

Constraint verification is modeled by the execution of verification actions A.
The execution of these actions can either produce a new action, to go on with
the verification, or produce a final result: a substitution σ, when the verification
succeeds, or an exception ε, when the verification fails. Substitutions produced
by successful verifications map the type variables contained in the constraints to
actual type names (of the current environment) that make the constraints hold.

Because the verification of a class can never trigger the verification of another
class, the execution of verification actions does not need to know or update the
set of verified classes. So, verification has the form BL

1,A1 B BL
2,A2, where:

A ::= load(c,A) | verify(γ̄,A) | verifyEither(A1,A2,A3) |
match(t̄, c̄,A) | σ | ε

The informal meaning of actions A is, respectively,
8 Formally they are sequences, but we assume that no binary environment contains

different declarations for the same class, so we can consider them as maps when this
simplifies the discussion.

7

– load c, then execute A;
– verify γ̄, then execute A;
– verify either A1 or A2, then execute A3;
– produce a substitution σ matching t̄ with c̄, then execute σ(A) – note that

this is the standard application of a substitution except when σ is applied
to another σ′ (inside A): in this case the result of the substitution is the
composition of σ and σ′;

– the verification has succeeded and the result is the substitution σ,
– the verification has failed and the exception ε has to be thrown.

BL, load(c,A) B BL,A c ∈ def (BL)

BL, load(c,A) B BL, NoClassDefFoundError
c 6∈ def (B)

BL
1, load(c,A) B BL

1, ClassCircularityError

c ∈ def (B \ BL
1)

BL
2 = BL

1 B(c)
isInsideACycleBL

2
(c)

BL
1, load(c,A) B BL

2,A

c ∈ def (B \ BL
1)

BL
2 = BL

1 B(c)
¬isInsideACycleBL

2
(c)

Fig. 3. Rewrite rules for loading classes.

As an example, let us consider the rewrite rules for action load, shown in
Figure 3 (the rewrite rules for the other actions can be found in the Appendix).
In an environment where class c has already been loaded, action load(c,A) just
vanishes to let the execution continue with A (first rule). If the requested class
cannot be found or its loading would introduce a cycle in the type hierarchy,
then the corresponding exception is thrown (second and third rules). Finally, if
everything is fine then the verification continues with A in a new environment
BL

2 where the binary b, loaded from B, has been added to BL
1. Note that we check

that loading a class does not create cycles in the type hierachy, whereas we do
not check overriding rules, exactly as it happens in standard JVMs.

In [1] method overloading and field hiding are not modeled, so we resolve
type constraints without taking these two features into account9. That is, when
we search for a method named m, invoked with n arguments, we end the lookup
procedure at the first m accepting n arguments. Analogously, when we search
for a field f we end the lookup procedure at the first field named f. However,

9 Type constraints would have to be changed to model overloading and hiding fully.

8

we do not need to forbid the presence of overloaded methods or hidden fields to
obtain soundness10, so we do not check their presence when loading a class.

BL,BV, verifyCls(c, er) B BL,BV, er
c ∈ def (BV)

BL
1, load(c, ∅) B BL

2, ∅
BL

1,BV, verifyCls(c, er) B BL
2,BV, verifyCls(c, er)

c 6∈ def (BL
1)

BL, load(c, ∅) B BL, ε

BL,BV, verifyCls(c, er) B BL,BV, ε
c 6∈ def (BL)

BL,BV, verifyCls(c, er) B BL,BV, verifyCls(c′, verifyCls(c, er))

c ∈ def (BL) \ {Object}
c′ = superBL(c)
c′ 6∈ def (BV)

BL
1, verify(γ̄, ∅) +

B B
L
2, σ

BL
1,BV

1, verifyCls(c, e
r) B BL

2,BV
2, e

r

readyTBV(c,BL
1,BV

1)

(cdb, γ̄) = BL
1(c)

wellFormedAndCompliant(γ̄, cdb)
∆ = type(BL

2)

BV
2 = BV

1 (Iσ
∆(cdb), Λ)

BL
1, verify(γ̄, ∅) +

B B
L
2, ε

BL
1,BV

1, verifyCls(c, e
r) B BL

2,BV
1, ε

readyTBV(c,BL
1,BV

1)

(cdb, γ̄) = BL
1(c)

wellFormedAndCompliant(γ̄, cdb)

BL,BV, verifyCls(c, er) B BL,BV, VerifyError

readyTBV(c,BL,BV)

(cdb, γ̄) = BL(c)

¬wellFormedAndCompliant(γ̄, cdb)

readyTBV(c,BL,BV) = (c ∈ def (BL) \ def (BV)) ∧ (c = Object ∨ superBL(c) ∈ def (BV))

wellFormedAndCompliant(γ̄, cdb) = wellFormed(γ̄) ∧ γ̄ ` cdb�

Fig. 4. Rewrite rules for verifying and linking classes.

As said in the previous section, class verification, and the subsequent in-
troduction of successfully verified classes in the system, is carried out by the
execution of the special expression verifyCls, whose rewrite rules are shown in
Figure 4. The first four rules encode, respectively, that: there is no need to verify
a class twice, to verify a class we must load it first (second and third rules), and
classes are verified after their superclass.

The next three rules are more interesting and use two auxiliary predicates
defined at the bottom of the figure: readyTBV and wellFormedAndCompliant.
10 At the moment this is a conjecture: full proofs are work in progress.

9

The former expresses that a class is “ready To Be Verified” when it has been
loaded, has not been verified yet and its superclass, if any, has already been
verified. The latter encodes the requirements on the constraints γ̄ accompanying
a binary class cdb: they must be well-formed and cdb must be compliant with
them.

Well-formedness of sequences of type constraints is defined in [1] and guaran-
tees that well-formed sequences can be reordered in a way that allows to check
them (w.r.t. a type environment) with a single iteration. At each step of such an
iteration a constraint γ is processed, finding either a substitution which makes
γ hold in the current environment or a proof that no substitution exists.

The judgment γ̄ ` cdb�, to be read “class declaration cdb is compliant with
type constraints γ̄”, holds when type constraints γ̄ are strong enough to guar-
antee the safe execution of cdb. Following the terminology introduced in [4], this
corresponds to the intra-checking of cdb, while inter-checking happens incremen-
tally when executing match actions (triggered by verification).

Compilers could infer the most general type constraints for a given source
[1] but, at the JVM level, we are not interested to know whether they are the
most general or not, as long as they are strong enough. Indeed, developers could
use type constraints to enforce particular requirements, not apparent from the
source code, if they desire to.

Back to the fifth rule: if all the above conditions are met and γ̄ are successfully
verified producing the substitution σ (premise of the rule), then the execution of
er continues in BL

2 (verification may require to load new classes) and BV
2, where

the monomorphic class11 obtained instantiating cdb using the substitution σ has
been added. The instantiation function Iσ

∆(cdb), which we have only informally
described, has been given in [1].

The remaining two metarules of the figure deal with error cases.
All other rules for verifying type constraints can be found in the Appendix,

along with the rules describing normal execution, abnormal execution (that is,
exception throwing) and standard closures.

5 Related and further work

Dynamic linking for Java has already been described [5, 11], also in more abstract
models covering both the Java and .NET behaviours [6, 7]. Of course, modelling
standard dynamic linking, these models do not consider the possibility of having
type variables inside the bytecode.

Some recent work [2, 3] has introduced the notion of flexible dynamic linking
in .NET, where type variables are contained in binaries exactly as it happens in
polymorphic bytecode [1].

In our approach binaries are equipped with type constraints which drive the
process of substituting variables, while [2] is not concerned in how substitution

11 Actually, the pair consisting of the monomorphic class and an empty constraint
sequence.

10

are chosen, but rather in when they can be chosen and applied maintaining type-
safety. Furthermore, the non-deterministic model in [2] allows type variables to
appear in field declarations and method signatures as well.

We designed the dynamic linking process as an incremental version of the
inter-checking algorithm described in [1], trying to reflect the linking phases and
timing from the JVM specification. These design choices led to a deterministic
model where each concern (loading, verification and so on) is nicely isolated from
the others.

We expect the execution we have modeled to be sound, but full formal proofs
are work in progress.

Future work includes a lazier approach in substituting variables and a proto-
type implementation to experiment with. On the implementation side, we need
to support some more features of Java in order to promote the polymorphic
bytecode approach. In particular, method overloading and (user defined) excep-
tions are two features that users expect to be available in any Java-like language
and that are challenging to deal with.

Acknowledgements We are grateful to all FTfJP reviewers for their feedback
and suggestions. Alex Buckley and Sophia Drossopoulou have provided an in-
credible amount of insightful comments and helpful suggestions for enhancing
the presentation of our model. We warmly thank also Elena Zucca and Davide
Ancona for their advice and feedback.

References

1. D. Ancona, F. Damiani, S. Drossopoulou, and E. Zucca. Polymorphic bytecode:
Compositional compilation for Java-like languages. In ACM Symp. on Principles
of Programming Languages 2005. ACM Press, January 2005.

2. A. Buckley and S. Drossopoulou. Flexible Dynamic Linking. In 6th Intl. Workshop
on Formal Techniques for Java Programs 2004, June 2004.

3. A. Buckley, M. Murray, S. Eisenbach, and S. Drossopoulou. Flexible bytecode for
linking in .NET. Electr. Notes Theor. Comput. Sci, 141(1):75–92, 2005.

4. L. Cardelli. Program fragments, linking, and modularization. In ACM Symp. on
Principles of Programming Languages 1997, pages 266–277. ACM Press, 1997.

5. S. Drossopoulou. An abstract model of Java dynamic linking and loading. In Types
in Compilation, pages 53–84, 2000.

6. S. Drossopoulou, G. Lagorio, and S. Eisenbach. Flexible models for dynamic link-
ing. In P. Degano, editor, ESOP 2003 - European Symposium on Programming
2003, pages 38–53, April 2003.

7. S. Drossopoulou, G. Lagorio, and S. Eisenbach. A flexible model for dynamic
linking in Java and C#. Theoretical Computer Science, 2006. To appear.

8. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java language specification.
The Java series. Addison-Wesley, third edition, 2005.

9. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core cal-
culus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems,
Languages and Applications 1999, pages 132–146, November 1999.

11

10. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Second edition, 1999.

11. Z. Qian, A. Goldberg, and A. Coglio. A formal specification of Java class loading.
In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA 2000), volume 35(10) of SIGPLAN Notices,
pages 325–336. ACM Press, October 2000.

12

A Auxiliary definitions and remaining rules

declaredClass(class c extends c′ { fdb mdb }) = c

super(class c extends c′ { fdb mdb }) = c′

fields(class c extends c′ { fdb mdb }) = fdb

methods(class c extends c′ { fdb mdb }) = mdb

classDeclaration((cdb, γ̄)) = cdb

constraints((cdb, γ̄)) = γ̄

b ∈ B if B = b1 . . . bn and ∃i : bi = b
def (B) =

S
b∈B declaredClass(classDeclaration(b))

B(c) = bi if B = b1 . . . bn and declaredClass(classDeclaration(bi))
B1 ≤ B2 ⇐⇒ def (B1) ⊇ def (B2) and ∀c ∈ def (B2) : B1(c) = B2(c)

fdb ∈ fdb if fdb = fdb
1 . . . fdb

n and ∃i : fdb
i = fdb

mdb ∈ mdb if mdb = mdb
1 . . . mdb

n and ∃i : mdb
i = mdb

superB(c) = super(classDeclaration(B(c)))
fieldsB(c) = fields(classDeclaration(B(c)))
methodsB(c) = methods(classDeclaration(B(c)))

subtypeB(c, c′) = (c = c′) or ∃n ≥ 0 : superB(c) = c1 ∧ . . . ∧ superB(cn) = c′

isInsideACycleB(c0) = ∃n ≥ 0 : superB(c0) = c1 ∧ . . . ∧ superB(cn) = c0

noCycles(B) = ∀c ∈ def (B) : ¬isInsideACycleB(c)

allFieldsB(Object) = Λ
allFieldsB(c) = allFieldsB(superB(c))fieldsB(c)

indexOfFieldB(c, f, c′) = i if

8<:
allFieldsB(c′) = fdb

1 . . . fdb
n

fdb
i = c′′ f

6 ∃j > i : fdb
j = c′′ f

methodB(c, c0, m, c1 . . . cn) =8<: mdb if mdb = c0 m(c1 x1, . . . , cn xn) { return eb; }
and mdb ∈ methodsB(c)

methodB(superB(c), c0, m, c1 . . . cn) otherwise

Fig. 5. Auxiliary functions and shortcuts.

13

Λ, verify(γ̄, ∅) +
B B

L, σ

Λ, Λ, bootstrap(γ̄, eb) B Λ,BL, Iσ
∆(eb)

wellFormed(γ̄)

γ̄, ∅ ` eb :
∆ = type(BL)

Λ, verify(γ̄, ∅) +
B B

L, ε

Λ, Λ, bootstrap(γ̄, eb) B Λ,BL, ε

wellFormed(γ̄)

γ̄, ∅ ` eb :

Λ, Λ, bootstrap(γ̄, eb) B Λ, Λ, VerifyError
¬wellFormed(γ̄) ∨ γ̄, ∅ 6` eb :

Fig. 6. Rewrite rules for bootstrapping the system.

γ̄ ` class Object {}�
γ̄ ` mdb�

γ̄ ` class c extends c′ { fdb mdb }�

i ∈ {1, . . . , n} γ̄ ` mdb
i�

γ̄ ` mdb
1 . . . mdb

n�
n > 1

γ̄, {x1 7→ c1, . . . , xn 7→ cn} ` eb : t
γ̄ ` t ≤ c0

γ̄ ` c0 m(c1 x1, . . . , cn xn) { return eb; }�

γ̄, Π ` x : c
Π(x) = c

γ̄, Π ` eb : t
γ̄ ` φ(t, f, t′)

γ̄, Π ` eb[t.f t′] : t′

i ∈ {0, . . . , n} γ̄, Π ` eb
i : ti

γ̄ ` µ(t0, m, t1 . . . tn, (t′, t̄′))

γ̄, Π ` eb
0[t0.m(t̄′)t′](eb

1, . . . , eb
n) : t′

i ∈ {1, . . . , n} γ̄, Π ` eb
i : ti

γ̄ ` κ(c, t1 . . . tn, t̄′)

γ̄, Π ` new [c t̄′](eb
1, . . . , eb

n) : c

γ̄, Π ` eb : c′

γ̄ ` c ∼ c′

γ̄, Π ` (c)eb : c

γ̄, Π ` eb : t
γ̄ ` c ∼ t

γ̄, Π ` �c, t� eb : c

γ̄ ` t0 ≤ t1

γ̄ ` t0 ∼ t1

γ̄ ` t1 ≤ t0

γ̄ ` t0 ∼ t1

γ̄ ` t0 ≤ t1 γ̄ ` t1 ≤ t2

γ̄ ` t0 ≤ t2 γ̄ ` γi
γ̄ = γ1 . . . γn

Fig. 7. Compliance of code and constraints.

14

BL, verify(γ,A) B BL, load(c, verify(γ,A))

c 6∈ def (BL)
γ ∈ {c ≤ , φ(c, ,),

µ(c, , , (,)), κ(c, ,)}

BL, verify(c1 ≤ c2,A) B BL,A
c1 ∈ def (BL) ∧ (c1 = c2 ∨ c2 = Object)

BL, verify(φ(c, f, t),A) B BL, match(t, c′,A)

c ∈ def (BL)
c′ f ∈ fieldsBL(c)

BL, verify(µ(c, m, c̄, (t, t̄)),A) B
BL, verify(c1 ≤ c′1 . . . cn ≤ c′n, match(t t̄, c′ c̄,A))

c ∈ def (BL)
c′ m(c̄′) ∈ methodsBL(c)
c̄ = c1 . . . cn

c̄′ = c′1 . . . c′n

BL, verify(κ(Object, Λ, Λ),A) B BL,A Object ∈ def (BL)

BL, verify(κ(c, c̄a c̄b, t̄a t̄b),A) B
BL, match(t̄b, c

′
1 . . . c′m,

verify(cn+1 ≤ c′1 . . . cn+m ≤ c′m κ(c′, c̄a, t̄a),A))

c ∈ def (BL)
c̄a = c1 . . . cn

c̄b = cn+1 . . . cn+m

t̄a = t1 . . . tn

t̄b = tn+1 . . . tn+m

c′1 f1 . . . c′m fn = fieldsBL(c)
c′ = superBL(c)

BL, verify(c ∼ c′,A) B BL,A c
′ ∈ {c, Object}

BL, verify(c ∼ c′,A) B
BL, verifyEither(verify(c ≤ c′, ∅), verify(c′ ≤ c, ∅),A)

BL, match(c, c,A) B BL,A BL, match(c, c′,A) B BL, VerifyError
c 6= c

′

BL, match(α, c,A) B BL,A[α 7→ c]

Fig. 8. Rewrite rules for verifying constraints.

15

BL, verify(Λ,A) B BL,A

BL, verify(γγ̄,A) B BL, verify(γ, verify(γ̄,A))
γ̄ 6= Λ

BL, match(Λ, Λ,A) B BL,A

BL, match(cc̄, tt̄,A) B BL, match(c, t, match(c̄, t̄,A))
c̄ 6= Λ

BL ` [c]Super

BL, verify([c]Super ,A) B BL, verify([superBL(c)]Super ,A)

c ∈ def (BL)
c 6= Object

[·]Super ::= [·] ≤ c | φ([·], ,) | µ([·], , ,)

BL ` c1 ≤ c2

c1 6= c2

Object 6∈ {c1, c2} BL ` φ(c, f,)
f 6∈ fieldsBL(c)

BL ` µ(c, m, , (,))
m() 6∈ methodsBL(c)

BL, verify(γ,A) B BL, VerifyError

Object ∈ def (BL)
c 6= Object

n > 0
γ ∈ {Object ≤ c, φ(Object, ,),

µ(Object, , , (,)),
κ(Object, c1 . . . cn, t1 . . . tn)}

Fig. 9. Propagation and error rules for verifying constraints.

16

BL,BV, new [c c̄](v1, . . . , vn) B BL,BV, verifyCls(c, new [c c̄](v1, . . . , vn))
c 6∈ def (BV)

BL,BV, new [c c̄](v1, . . . , vn) B BL,BV, new c(v1 . . . vn)
c ∈ def (BV)

BL,BV, new c(v1 . . . vn)[c′.f c′′] B BL,BV, vi
indexOfFieldBV(c′, f, c′′) = i

BL,BV, v0[c.m(c̄)c′](v1, . . . , vn) B

BL,BV, eb[v0/this, v1/x1, . . . , vn/xn]

v0 = new c0(c̄0)
methodBV(c0, c

′, m, c̄) =

c′ m(c1 x1, . . . , cn xn) { return eb; }

BL,BV, (c)new c′(v̄) B BL,BV, new c′(v̄)
subtypeBL(c′, c)

BL,BV, (c)new c′(v̄) B BL,BV, ClassCastException
¬subtypeBL(c′, c)

Fig. 10. Rewrite rules for execution.

[·]Exp ::= [·][c.f c′] | [·][c.m(c̄)c′](er) | v[c.m(c̄)c′](v̄, [·], er) |
new [c c̄](v̄, [·], er) | (c)[·]

BL
1,BV

1, e
r
1 B BL

2,BV
2, e

r
2

BL
1,BV

1, [e
r
1]

Exp B BL
2,BV

2, [e
r
2]

Exp

BL
1,BV

1, e
r B BL

2,BV
2, ε

BL
1,BV

1, [e
r]Exp B BL

2,BV
2, ε

Fig. 11. Contextual closure for regular and abnormal execution.

BL
1,A1 B BL

2,A4

BL
1, verifyEither(A1,A2,A3) B BL

2, verifyEither(A4,A2,A3)

BL, verifyEither(σ,A2,A3) B BL, σ(A3)

BL
1,A2 B BL

2,A4

BL
1, verifyEither(ε,A2,A3) B BL

2, verifyEither(ε,A4,A3)

BL, verifyEither(ε, ε′,A) B BL, ε′

BL, verifyEither(ε, σ,A) B BL, σ(A)

Fig. 12. Contextual closure for execution of verifyEither.

17

