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Abstract. In this master thesis we investigate to infer models of stan-
dard communication protocols using automata learning techniques. One
obstacle is that automata learning has been developed for machines with
relatively small alphabets and a moderate number of states, whereas
communication protocols usually have huge (practically infinite) sets of
messages and sets of states. We propose to overcome this obstacle by
defining an abstraction mapping, which reduces the alphabets and sets
of states to finite sets of manageable size. We use an existing imple-
mentation of the L* algorithm for automata learning to generate ab-
stract finite-state models, which are then reduced in size and converted
to concrete models of the tested communication protocol by reversing
the abstraction mapping.

We have applied our abstraction technique by connecting the Learn-
Lib library for regular inference with the protocol simulator ns-2, which
provides implementations of standard protocols. By using additional re-
duction steps, we succeeded in generating readable and understandable
models of the SIP protocol.

1 Introduction

Verification and validation of software systems using model-based techniques,
like model checking and model-based testing, currently are attracting a lot of
attention and are being applied in a practical way [BJKT04,TB03]. For this
purpose, the existence of a formal model that describes the intended behaviour
of the system is essential. Normally, this should be done in an early stage of
the development process. However, in reality often no model is created, because
it is a very time-consuming task. Besides, most software projects are pressed
for time. Therefore, it would be desirable if such models could be generated
automatically from an existing implementation. A potential approach is to use
program analysis to construct models from source code [NNH99]. In many cases,
access to source code is restricted, so that we will concentrate on an alternative
technique to construct models from observations of their external behaviour.

* The research for this master thesis has been conducted at Uppsala University in
collaboration with Bengt Jonsson and Johan Uijen. A paper of our joint work has
been submitted to FASE 2010 [AJUO09].



A widely used technique for creating a model from observations is regular
inference, also known as automata learning [Ang87]. The regular inference algo-
rithms provide sequences of input, so called membership queries, to a system,
and observe the responses to infer a finite-state machine. In addition, equivalence
queries check whether the procedure is completed. A limitation of this approach
is that thus far it only proved satisfactory when being applied to machines with
small alphabets.

In this research, we take a look at a certain kind of systems that typically
do not have small alphabets: communication protocol entities. Such components
communicate by sending and receiving messages that consist of a message type
and a number of parameters, each of which potentially can take on a large
number of values. In order to tackle the large (or even unbound) data domains,
we propose to use abstraction techniques. A possible solution is to transform the
large parameter domains of the protocol implementation to small ones by means
of an intermediate mapping module. As a result, the inference can be performed
on a small alphabet. All membership and equivalence queries are translated to
realistic messages with possibly large parameter domains by the mapping module
to accomplish the communication with the entity we want to model. For answers
to the queries, this works the other way around. Finally, the abstract machine
generated by the inference algorithm has to be converted to a concrete model of
the component’s behaviour by reversing the abstraction mapping.

We have applied the approach above to generate Mealy machine models of
the Session Initiation Protocol (SIP) [RSCT02,RS02]. For this purpose, we have
created a mapping module and connected it to the LearnLib library for regular
inference as well as to the protocol simulator ns-2, which provides implementa-
tions of standard communication protocols.

Related Work. In previous work, Berg et al. have introduced an optimization of
regular inference to cope with models where the domains of the parameters are
booleans [BJRO6]. Also an approach using regular inference has been presented,
in which systems have input parameters from a potentially infinite domain and
parameters may be stored in state variables for later use [BJRO8]. However,
the framework is limited to handling inputs, but not outputs and it has not
been evaluated on a realistic communication protocol module. Moreover, regular
inference techniques have been widely used for verification, e.g. to perform model
checking without access to source code or formal models [GPY02,PVY99] or
for regression testing [HHNS02,HNS03]. Groz, Li, and Shahbaz [SLGO7] extend
regular inference to Mealy machines with parameter values, for use in integration
testing, but use only some of the parameter values in the obtained model. The
framework we present in this thesis, is able to infer systems that typically can
take on a large number of values. This is not only done in a theoretical way,
but in addition we have tested our technique in order to generate complete
Mealy machine models of realistic communication protocols. The work has been
conducted in collaboration with Johan Uijen [Uij09]. The theoretical background
for this research has been performed together. For the experiments, the work has
been split: Johan Uijen has concentrated on the communication with ns-2 as well



as learning the TCP protocol, whereas my work focussed on the communication
with LearnLib, the implementation of the mapping module and the definition
and execution of model reduction steps.

Organization. The thesis is organized as follows. In the next section, we review
the Mealy machine model and in Section 3 we present the inference algorithm
for Mealy machines by Niese [Nie03]. In order to model communication proto-
cols, we introduce an adaption to Mealy machines in Section 4: Symbolic Mealy
machines. The inference for this kind of automata using abstraction is discussed
in Section 5. Because the learned model probably becomes huge, we define sev-
eral reduction steps in Section 6. After this, we describe the architecture of
the model generating tool. A realization with concrete tools applied to infer a
symbolic Mealy machine of the SIP protocol is discussed in Section 8. Finally,
Section 9 contains conclusions and directions for future work.

2 Mealy Machines

The state machine model that we will infer has the form of a Mealy machine
[MCO7]. The basic version of a Mealy machine is as follows.

A Mealy machine is a tuple M = (X1, Yo, Q, qo, 6, \) where X is a nonempty
set of input symbols, Yo is a finite nonempty set of output symbols, Q) is a set
of states, qo € Q is the initial state, § : Q x X1 — Q is the transition function,
and A\ : Q x X; — Yo is the output function. Elements of (X7)* and (Xp)* are
input and output strings respectively.

An intuitive interpretation of a Mealy machine is as follows. At any point
in time, the machine is in a simple state ¢ € Q. It is possible to give inputs to
the machine by supplying an input symbol a € Y;. The machine then responds
by producing an output symbol A(g,a) and transforming itself to the new state

b
0(q,a). Let a transition q o/t ¢’ in M denote that §(q,a) = ¢ and A(g,a) = b.
We extend the transition and output functions from input symbols to input
strings in the standard way, by defining:

5(q,e) =q Mg,e) =¢
6(q, ua) = 6(6(q, u),a) A(g; ua) = (g, u)A(6(q, u), a)

The Mealy machines that we consider are deterministic, meaning that for
each state ¢ and input a exactly one next state §(q, a) and output symbol A(q, a)
is possible.

Given a Mealy machine M with input alphabet X7, output function A, and
initial state qo, we define Aaq(u) = A(qo, ), for u € (X7)*. Two Mealy machines
M and M’ with input alphabets X are equivalent if Apq(u) = Apq (u) for all
input strings v € (X7)*.

Ezxample 1. In Figure 1 an example of a Mealy machine is presented. When the
automaton is in the initial state gy and receives input INVITE, it will produce
output lzz and put itself in state g;. There it will accept input PRACK, respond



with output 2zz and move to state ¢o. State ¢o leads back to final state gg with
input ACK, which will produce no output, so that we have to define a symbol
ourselves. In the continuation of this thesis we will use timeout as output, when
no response is generated.

PRACK [2zx

Fig. 1. An example of a Mealy machine

3 Regular Inference

In this section, we present the setting for inference of Mealy machines. For this
purpose we make use of the L* algorithm [Ang87] by regarding the System
Under Test (SUT) as a black box and observing how it responds to certain
inputs. The algorithm was introduced by Angluin in order to learn an unknown
Deterministic Finite Automaton (DFA). Niese has modified it in order to infer
Mealy machines [Nie03]. Our description is based on work of Grinchtein and
Bohlin [Gri08,Boh09]. In the framework a so called Learner, who initially has
no knowledge about the Mealy machine M, can ask queries to a Teacher, who
knows the automaton. The queries are of two kinds:

— A membership query' consists in asking what the response is to an input
string 7 € (X7)*. The Teacher answers with an output string o € (Xo)*.

— An equivalence query consists in asking whether a hypothesized machine H
is correct, i.e., whether H is equivalent to M. The Teacher will answer yes if
"H is correct or else supply a counterexample, which is a string u € (X7)* such
that u produces a different output string for both automata, i.e., Ay (u) #
)\H (u)

The typical behaviour of a Learneris to start by asking a sequence of membership
queries until a “stable” hypothesis H can be built from the answers. After that an
equivalence query is made to find out whether H is equivalent to M. If the result
is successful, the Learner has succeeded, otherwise the returned counterexample
is used to perform subsequent membership queries until converging to a new
hypothesized automaton, which is supplied in an equivalence query, etc.

1 Actually, the term membership query does not conform to this setting, because we do
not check whether a certain string belongs to the language or not. In fact, the term
output query would be more appropriate. However, because it is commonly used, we
decided to keep the term membership query in the continuation of this thesis.



In order to organize the collected observations, the Learner in the L* al-

gorithm maintains an observation table O7. An observation table is a tuple
OT = (S,E,T) counsisting of a nonempty finite set S of prefixes, a nonempty
finite set E of suffixes and a function 7' which maps ((SU(S-X7))-E) to a symbol
from the output alphabet X, where - denotes the concatenation of strings.
An observation table can be viewed as a table with the elements of (SU (S - Xr)
representing the rows and the elements of F labelling the columns, see Figure 2.
A field in the table identifies the last symbol of the output string that is produced
after the sequence of input symbols, defined by its row and column accordingly,
is executed. If the last input action does not result in a corresponding output
action, the symbol timeout is entered in the field as described in Example 1 in
Section 2.

E
SU(S-Xr) S Yo
S-Xr| Yo

Fig. 2. Example of an observation table

To construct a Mealy machine from the observation table, it must fulfill two
criteria. It has to be closed and consistent. We say that an observation table is

— closed if for each w’ - a, where w’ € S and a € X there exists a string
w € S that has the same answer to the corresponding membership query,
thus row(w’ - a) = row(w), and

— consistent, if whenever wy,ws € S are such that row(w;) = row(ws), then
for all @ € X we have row(w; - a) = row(ws - a).

As described before, the Learner maintains the observation table O7 = (S, E, T),
where initially S contains the single element {¢} and FE is initialized with the
whole set of input symbols X;. The Learner starts by asking membership queries
of form ((SU (S - X))) - E) to fill the fields in the table. Each entry in the table
is filled with an element of the output alphabet Yo representing the last symbol
of the answer. After this it is checked whether the given observation table fulfils
the conditions of closedness and consistency.

If OT is not closed, then the Learner picks a w’ € S and a € X such that
row(w’ - a) # row(w) for all w € S. In this case, the Learner adds w’ - a to S
and asks membership queries for all the strings of the form w’ - a - b - e, where
ec€ E,be X;and w - a-b corresponds to a row that has to be added to the
lower part of the table.

If OT is not consistent, then the Learner picks two strings wy,ws € S, e € E
and a € X such that row(wr) = row(ws), but T'(wy -a-e) # T(ws - a-e). Then
the Learner adds the string a - e to F and asks membership queries in order to
fill the missing fields in the new column.



When O7T is closed and consistent it is possible to construct the correspond-
ing Mealy machine H = (X, X0, @, qo, 0, A) as follows:

Q = {row(w)|w € S}, note: the set of distinct rows,
— qo = row(e),

— d(row(w), e) = row(w - e),

— AMrow(w),e) =T (w - e).

The Learner creates the hypothesized automaton H and asks an equivalence
query to the Teacher. If the Teacher replies with yes, then the algorithm halts
with output H. Otherwise a counterexample u is returned, which, including all
its prefixes ', is added to S. Then the Learner asks membership queries for the
missing entries.

For a correctness and termination proof of the algorithm, we refer to Niese
[Nie03]. The complexity has been measured by Bohlin [Boh09] in the number of
required membership and equivalence queries. In Niese’s adaption of L* to Mealy
machines, the upper bound on the number of equivalence queries is n, where n
is the number of states in the minimal Mealy machine model of the SUT. The
upper bound on the number of membership queries is O(max(n, |X7|)|X|nm),
where | Y| is the size of the input alphabet X7, m is the length of the longest
counterexample and n is again the number of states in a minimal model of the
SUT.

Ezxample 2. Let us consider an example Mealy machine M based on Sipser
[Sip96], which we want to infer using the L* algorithm. The automaton M
is depicted in Figure 3(a). We start the algorithm by asking membership queries
for a, b, aa, ab, ba and bb. The answers of the Teacher are filled in the initial
observation table O7; shown in Table 1(a), where S = {¢} and E = {a,b}. This
table is not closed since row(a) # row(e) and row(b) # row(e). As they are
equal, it is sufficient to add one of them to S. Thus, a is moved to S and O7 is
extended with membership queries for aaa, aab, aba and abb, see O75 shown in
Table 1(b). Now the table is both closed and consistent. The Learner can make a
first guess by constructing the hypothesized automaton H shown in Figure 3(b)
and asking an equivalence query to the Teacher. The Teacher rejects H and
replies with a counterexample - assume bba, for which M produces the output b
and H the symbol a. To process the counterexample, we add bba and all its pre-
fixes (b and bb) to S. S is now {¢, a, b, bb, bba} and we ask membership queries for
all ((SU(S-X1))-E). The newly constructed observation table O7; is depicted in
Table 1(c). This observation table is no longer consistent since row(a) = row(b)
but row(aa) # row(ba). So we add aa and ab to E and ask membership queries
to fill the new columns. This results in observation table 074, which is shown
in Table 1(d). This table is closed and consistent, so that we can make a second
guess and ask an equivalence query to the Teacher. The Teacher replies yes,
i.e. the hypothesized automaton is equal to M and L* terminates. Note that in
Table 1(d) row(e) = row(bb) and row(a) = row(bba). Because @ is the set of
distinct rows, the hypothesized Mealy machine H merges these states and as a
result contains three states equivalent to the states of M.



b/a a/a

a a/a > bla a2
a/b b/a <::)
(a) An example Mealy machine M
b/a
A an :
a/b b/a

(b) A hypothesized Mealy machine H

Fig. 3. A Mealy machine to be inferred and a hypothesized Mealy machine

(a) OT1 (b) OT2 (c) OT3 (d) 074
OTi|al|b OTz2|al|b OT3|alb OT7s |al|blaalab
€ |bla € |bla € |bla e |blalal|a
a |ala a |ala a |ala a |ala|b|a
b |ala b |ala b |ala b |alala|a
aa |bla bb |b|a bb |bla| a|a
ab |ala bba |a|a bba |ala| b | a
aa |bla aa |bla| a | a
ab |ala ab |ala| b | a
ba |a|a ba |ala|a|a
bbb |a|a bbb |a|a| a | a
bbaa |b|a bbaa |bla| a | a
bbab | a|a bbab|a|a| b | a

Table 1. Observation tables

4 Symbolic Mealy Machines

In our research we want to infer a Mealy machine for a communication protocol
entity. Usually information in communication protocols is contained in protocol
data units (PDU) with a number of parameters, like Request(Alice, Bob, 1).
The standard definition of a Mealy machine as described in Section 2 does not
include data parameters and therefore will be extended, based on work of Bohlin,
Jonsson and Soleimanifard [BJS09]. Furthermore, our description will also in-
clude state variables in order to store and use information received in input
messages. This will be of importance when using an abstraction scheme for the
inference of such an automaton.



Let I and O be finite sets of (input and output) action types, each of which
has a certain arity. Let Dq 1, ..., Da,n be domains, where n depends on a. Each
domain is a set containing the possible values of the corresponding parame-
ter. Let X be the set of input symbols of form «(dy,...,d,), where o € I
and di € Dy1,...,dn € Doy, ie., the parameter values fall in the appropri-
ate domains. The set of output symbols Yo is defined analogously as consis-
tency of expressions of the form 3(di,...,d,). We write d for di,...,d,. We
use a(d) for input symbols with input action type a and d to denote an ap-
propriately sized tuple of di,...,d, parameter values for the input action type
a and analogously 3(d) for output symbols with output action type 3 and d
parameter values. In some examples, we will use an alternative record notation
with named fields to denote parameter values and an according formal param-
eter name, e.g., as Request(from = Alice, to = Bob, id = 1) instead of just
Request(Alice, Bob, 1).

Let V be a finite set of state variables, in which each state variable v has a
domain D, of possible values. Again we write v for vy,...,vg. Let a valuation
o be a mapping from the set V of state variables to parameter values in their
respective domains. Let g denote the valuation which maps each state variable
to its initial value. The set of states of a Mealy machine is now the set of pairs
(I,0), where | € L is a location, and o is a valuation.

Our representation of the transition and output functions for symbolic Mealy
machines will be based on guarded assignment statements. This means that the
evaluation of guards defines the update of state variables and the output symbols
produced. We will use a finite set of formal parameters, ranged over by p1, po, .. .,
which are introduced in the definition of an input symbol and which will serve as
local variables in each guarded assignment statement, e.g. in the guard statement
or update of state variables. Furthermore, the guarded assignment statement
will contain expressions composed of (local and state) variables, constants and
operators. Also the definition of valuations will be extended to expressions; for
instance, if o(vs) = 8, then o(2 * vz +4) = 20.

A guarded assignment statement is a statement of form

I:api,.ospn) g/ 01,0 i=e1,... e ; Bef,...,eQ) = I

where

— [ and I’ are locations,

— p1,...,DPn is a tuple of different formal parameters,

— ¢ is a boolean expression over p and the state variables in V', called the
guard,

— V1,...,V = €1,...,€k is a multiple assignment statement, which assigns to
some (distinct) state variables vy, ...,v; in V' the values of the expressions
e1,...,ex; here eq, ..., e, are expressions over p and state variables in V,

— €9,...,€e2 is a tuple of expressions over  and state variables, which evaluate

to data values dy, ..., dn, so that 5(di,...,d,,) is an output symbol.

Intuitively, the above guarded assignment statement denotes a step of the Mealy
machine in which some input symbol of form a(dy,...,d,) is received and the



values dy, ..., d, are assigned to the corresponding formal parameters p1, ..., py,.

If the guard g is satisfied, the state variables among vy, ..., vy are assigned new
values and an output symbol, obtained by evaluating 3(e?, ..., e2), is generated.

The statement does not denote any step in case g is not satisfied.
We can now define a symbolic Mealy machine as follows.

Definition 1 (Symbolic Mealy machine). 4 symbolic Mealy machine (SMM)
is a tuple SM = (1,0, L, 1y, V, ), where

— I is a finite set of input action types,

— O is a finite set of output action types,

— L is a finite set of locations,

— lop € L is the initial location,

— V is a finite set of state variables, and

@ is a finite set of guarded assignment statements. It is required that for each

l € L, each valuation o of the variables in V, and each input symbol a(d),
there is exactly one guarded assignment statement of form

I:alpl,...,pn) @ g/ v, vp i =e1,...,ex; B(eP,....eQ) : I,

which starts in 1 and has o as input action type for which o(g[d/p]) is true.
O

The requirement on the set of guarded assignment statements serves to ensure
that the symbolic Mealy machine is deterministic and completely specified.

A symbolic Mealy machine SM = (1,0, L,ly,V,P) denotes the Mealy ma-
chine Msam = (X1, X0, Q, qo, J, \), where

— X7 is the set of input symbols,

— Yo is the set of output symbols,

— @ is the set of pairs (I, o), where | € L is a location, and o is a valuation of
the state variables in V,

qo is the initial state (lg, 0p), and

— ¢ and \ are defined as follows. Each guarded assignment statement of form

I aryeespn) @ g/ V1 i=e1,ennep; B9, ..,e0) o 1

implies that for the location ! and for any input symbol of form «(d) that
makes o(g[d/p]) true, we have
e 5({l,0).a(d)) = (I'."), where
x o'(v) = o(e;[d/p]) if v is v; for some ¢ with 1 < ¢ < k denoting that
v; is updated according to the expression e;, and
* o'(v) = o(v) for all v € V, which are not among vy, ..., v, and which
are retained unchanged, B
o M(l,0), a(d)) = B(o’(eP[d/P]), .. -, o' (e [d/P)))-
Ezxample 3. An example of a symbolic Mealy machine is shown in Figure 4. The
symbolic Mealy machine has three input action types INVITE, PRACK and
ACK each with arity one and three output actions types lzz, 2zx and timeout
with arity one, one and zero, respectively. If in this example id = 10, the guards
id > 0 and id = v;q evaluate to true, so that the location variable v;4 is used to
store the parameter value and the according output symbols are produced.



INVITE(id) : id > 0/viq = id; lax(via PRACK (id) : id = via/2xx(vig)

ACK (id) : id = viq/timeout

Fig. 4. An example of a symbolic Mealy machine

5 Inference Using Abstraction

In the previous section, we have introduced the concept of symbolic Mealy ma-
chines to model communication protocol entities. Such entities usually have a
number of parameters with large domains, e.g. there can be many possible val-
ues for an id or a sequence number. As a result the input and output alphabets
will contain numerous symbols. In that case, the learning process using regular
inference will take a long time and will result in very large and unreadable mod-
els. Therefore we restrict the problem of inferring the SUT to that of inferring
a (hopefully small) finite-state Mealy machine, in which the alphabets and set
of states are small. Later on we will transform this finite-state Mealy machine
to a symbolic one with parameters having realistic, possibly large, domains. To
accomplish our goal, we extend the framework with an intermediate abstraction
layer that maps data parameters with a large domain to a small one and vice
versa, so that the inference algorithm and the SUT can communicate with each
other.

The challenge of this task is to find a suitable abstraction mapping. For this
purpose we use an external source, i.e., a human who has knowledge of the com-
munication protocol. This knowledge can by acquired by reading the interface
specification or RFC documents describing the protocol we want to infer. This
is of course a significant help to the learning algorithm and could be regarded as
”cheating”. However, inferring a symbolic Mealy machine in combination with
the abstraction scheme presented in this section is still a nontrivial task, so that
we leave the automatical discovery of such expressions open for further research.
In fact, such a discovery procedure is used in the learning of timed automata
models by Grinchtein [GJP06,Gri08].

Our definition of finite domains has been inspired by ideas from predicate
abstraction. Predicate abstraction [DDP99] has been a very successful technique
for extending finite-state model checking to larger and even infinite state spaces,
and can also be useful for the model generation of systems with large parameter
domains. Das et al. use predicates to create an abstract system. The predi-
cates are just the possible ranges of a variable, e.g. ¢1 = 0 < a < 10 identifies
predicate @1, where variable a can take on values from 0 to 9. In an analogous
manner, we partition the parameter values in our approach into a finite number
of equivalence classes €qy, ..., eqn, each defined by a predicate pry®, ..., prpi,
where p; is a formal parameter. According to the definition of equivalence classes,
its elements should behave similarly. Each equivalence class corresponds to an
abstract value. Because the inference algorithm is well-suited for learning au-
tomata with small alphabets, we let it generate membership queries with input

10



symbols a(EA), where the parameter values dy',...,d:* are chosen from a small
number of equivalence classes or rather abstract values. We will consistently use
the superscript “ when referring to the abstract version of parameter values, do-
mains, etc. A straightforward partitioning is to divide the values of a parameter
in two equivalence classes: VALID and INVALID. This should be possible for
the parameters of many communication protocols due to the fact that certain
parameter values in a message will be accepted while others not. If the elements
in an equivalence class do not behave the same, the equivalence class has to be
partitioned further. Moreover, the user should prepare the learning procedure
by supplying the predicate for each equivalence class.

Ezxample 4. We use a simple example to exemplify the use of the abstraction
scheme. Let us assume a sample protocol, like the one defined by the symbolic
Mealy machine in Figure 4. It has three input action types each with arity one.
The inference algorithm asks membership queries of form INVITE(id = d;‘}i),
PRACK(id = dfy) or ACK(id = d#}), where d#} is an abstract value. The latter
has to be mapped to a concrete value, so that the SUT can understand the
INVITE, PRACK, or ACK message. First, the user has to define the equivalence
classes or rather abstract values for dg‘c‘l. We start with the standard partitioning:
VALID and INVALID. The first id sent should be a natural number; thus the
predicate for the equivalence class VALID is id > 0. The abstract values and
according predicates are always a complement of each other, thus VALID =
INVALID® and erALID = (priIdN VALID )C. If the equivalence classes are not
disjunct, non-determinism could occur. For this reason the equivalence class
INVALID is defined by the predicate id < 0. Because in our example all elements
in one class behave the same, no further division is needed.

Our objective is to map the abstract parameter values to concrete ones, which
can be understood by the SUT. For this purpose we make use of a mapping table
MT as shown in Table 2. In the first row of the mapping table M7; in Table 2(a)
the names of the different equivalence classes are entered, whereas the (formal)
parameter names are listed in the leftmost column. The field, defined by row p;
and column egq;, contains a predicate, which is a boolean expression over p and
that identifies the concrete values for this equivalence class of the parameter.
For brevity, we have omitted the predicate indices in the mapping tables.

(a) MT; (b) MT;
eq1 | eq; VALID INVALID
p1| pr | pr id|pr:=id>0|pr:=id <0
pi | pr | pT

Table 2. Mapping tables translating abstract parameter values to concrete ones
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Ezample 5. We use the mapping table M7; in Table 2(b) to translate the ab-
stract values VALID and INVALID to concrete ones. Also here, the equivalence
classes are listed in the first row of the table. If parameter id has the abstract
value VALID, the corresponding predicate id > 0 in column VALID in the map-
ping table has to be used to define a concrete value. By contrast, the predicate
for the abstract value INVALID is id < 0.

The predicates in the mapping table can be history dependent. This means
that previous messages that have been sent have to be taken into account. For
this purpose, state variables v, ..., v, are used that store the parameter values
of past input symbols. The user should supply when the state variables have to
be updated and in which predicates they will be needed.

Ezample 6. The sample protocol may require that the id has to stay the same
during the entire session. Accordingly, the predicate for the parameter id, where
id = VALID has to be changed to id = past id after a first message. In order to
store the id that has been sent in the beginning, a state variable can be used.
This one will be part of the predicate to define the concrete values: id = v;4.
Consequently, the predicate for the parameter id, where id = INVALID has to
be changed to id # vq.

The pseudo code shown below will illustrate how the mapping is implemented
and how state variables are updated assuming there are two equivalence classes.

If p; =eq then d; € prp®;(v; = d;)
else d; € prp?; (v; :==d;)

This means that if an arbitrary parameter p; has the abstract value eq;, the
concrete parameter value d; will be an element of this equivalence class, defined
by the predicate pry?*. When the set has more than one element, a value is chosen
randomly. Typically, the selected value is stored in a state variable v; for future
use. It is not always necessary to remember past input symbols, which is denoted
by the parentheses around the update of the state variable. For parameters with
a different finite domain, this works in a similar manner.

Usually, we will get for each abstract parameter value dii,...,dA € DA a
concrete one: dy,...,d, € D, where D can be a large domain. It is also possible
that one abstract value translates to several concrete values. As a result, the in-

put symbols a(d ) generated by the learning algorithm are mapped to symbols
of the form a(d), where d denotes an appropriately sized tuple of concrete pa-
rameter values for the input action type «, which has been retained unchanged.
The membership queries asked to the SUT contain sequences of these new input
symbols that can be understood by the communication protocol implementation.

Ezample 7. In Example 5 we mentioned that d;q will either be a value in id > 0
or in id < 0, depending on the value of the abstract parameter. Let us as-

sume the inference algorithm created a membership query with the input symbol
INVITE(VALID), thus the parameter id has the abstract value VALID. Assume
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also that the random value 10 for the concrete parameter value d;q is chosen
from the set defined by the predicate id > 0. We store this value in a state
variable v;q for future use. The concrete input symbol will be INVITE(10) and
can be interpreted by the communication protocol implementation.

The SUT responds with a sequence of output symbols of the form 3(d). 3
is an output action type, d is a tuple of di,...,d,, concrete output parameter
values. Output symbols of this form cannot be returned directly to the learning
algorithm, because it cannot handle concrete parameter values. Therefore, we
need to translate the concrete values back to abstract ones. Again, we use a
mapping table as shown in Table 3 for this purpose.

(a) MTs (b) MT4
eq1 | eq; VALID INVALID
p1| pr | pr id | pr=id = viq|pr :=1id # viq
pbi | pr | pPT

Table 3. Mapping tables translating concrete parameter values to abstract ones

Table M7; in Table 3(a) has the same structure as Table M7; in Table 2(a),
but it will be used in a slightly different way. The names of the different (formal)
parameters are again listed in the leftmost column of the mapping table. For each
parameter p; its concrete value, which is received from the SUT, should fall in
one of the equivalence classes defined by the predicate pry?. All predicates for
one parameter are entered in the same row, so that we are working the other way
around. In contrast to Table 2(a), the predicates in Table 3(a) refer to concrete
output values instead of input values. If the concrete output parameter value d;
is an element of the equivalence class defined by the predicate pry?, the abstract
parameter value d;“ will be eq;, otherwise it will be one of the other equivalence
classes. The abstract parameter value can be found at the top of the column
that contains the corresponding predicate for the equivalence class. Note that
an output symbol can have a different action type and parameters than an input
symbol. Accordingly, the mapping tables used to transform the input and output
can specify completely different parameters, equivalence classes and predicates.
To clarify how the concrete values are mapped to abstract ones, we use again
pseudo code assuming there are two equivalence classes.

If d; € prp* then p; :=eq
else p; ;= eq2

As can be seen in the two lines of code, no state variables are mentioned. How-
ever, their use can be encapsulated in the predicates that define the equivalence
classes. In this way it is possible to map the concrete output values dy,...,d,
back to abstract ones df‘, e ,dﬁ with a small domain. The transformed output
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symbols will be of the form 5(3“4)7 where 8““ represents an appropriately sized
tuple of abstract parameter values for the output action type 3, which has not
been changed. The answer to the membership query denoted by a sequence of
abstract output symbols can be returned to and understood by the learning
algorithm.

Ezample 8. The SUT responds with an output symbol of form lax(d;q), where
d;q is a concrete value. This behaviour is specified in the symbolic Mealy machine
in Figure 4. Let us assume the sample protocol requires that the ¢d has to stay
the same during the entire session. We assume that the protocol implementation
works correctly and that it returns the concrete output symbol 1zz(10). This
one has to be translated to an abstract symbol, so that it can be interpreted by
the learning algorithm. When we take a look at mapping table M7 in Table

3(b), we see that the concrete value falls in the equivalence class VALID, because

the predicate pri‘d/ALID , which is defined as id = v;q4, evaluates to true. In order

to make this comparison, we stored the concrete parameter value in the input
symbol in a state variable v;4. Accordingly, d7y will be the abstract value VALID
and the output symbol lzz(VALID) can be returned to the inference algorithm.
Finally, the learning algorithm should produce an abstract model, like the one
shown in Figure 5, which should behave in the same way as the SUT illustrated
in Figure 4.

INVITE(VALID)/1zz(V ALID, PRACK (VALID)/2xx(VALID)

O ACK (VALID)/timeout @

Fig. 5. An inferred abstract Mealy machine model

5.1 Obtaining a Concrete Model

The abstract model generated by the learning algorithm describes the parameter
values in an abstract way. The meaning of each abstract parameter value will
not be clear to the user, so that the exact behaviour of the SUT is hard to
understand. For this reason we will transform it to a symbolic Mealy machine
a*y/p@Et
as follows. Each transition in the abstract model of form [ (/8 " has to
be transformed to a guarded assignment statement of form
I aryeepn) @ g/ U1, i=e1,.. e B(e?,...,e0) o 1.

Therefore, we copy the start location [ and the destination location I’ from
the transitions in the abstract model to the guarded assignment statements in
the symbolic Mealy machine. The action types o and 3 in the input and output
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. A .
symbols are retained unchanged, whereas the abstract parameter values d  will
be replaced by

— formal parameters p1,...,p, in the input symbols and
— expressions ¢, ..., % which evaluate to data values dy, . . ., d,,, in the out-

put symbols.

A list of formal parameters used for an input action type can be found in
the mapping table(s) that map(s) abstract values to concrete ones. In order to
obtain the guard ¢ in the concrete model, we use the same table(s) as follows.
For each parameter value in an input symbol in the abstract model, there is a
corresponding predicate, which we used to define a concrete value. These pred-
icates are concatenated with each other by means of a A symbol to build the
guard expression. Moreover, the update of state variables vq,...,v; has to be
added, which can be retrieved from the mapping implementation. Finally, we

have to specify the expressions €{, ..., €9 in the output symbols, which can be

rm
derived from the predicates in the mapping table(s) that map(s) concrete values
to abstract ones.
When applying these steps to the abstract Mealy machine model in Figure

5, we should obtain the symbolic Mealy machine shown in Figure 4.

6 Model Reduction

The abstract Mealy machine that is generated by the inference algorithm typi-
cally becomes huge and cannot easily be understood by humans. In this section,
we therefore present some heuristics to reduce the model, so that it becomes
more compact and understandable by, e.g., developers and test engineers. Such
a transformation involves several steps, which we describe in detail.

Before we do this, we want to discuss a different subject. As mentioned in Sec-
tion 5, knowledge of the communication protocol is required when creating the
abstraction scheme but also when the final generated model is checked. Acquir-
ing this knowledge can be a difficult task, because descriptions of the protocol
can be complex and vague, e.g. RFC’s can be hard to understand and leave
things open for interpretation. Moreover, in most instances undesired behaviour
of the system is not defined. Another aspect is that we specified the abstraction
scheme before we made a definite choice for a concrete SIP implementation as
SUT. Because the interface of the prospective SUT was unknown at that time,
i.e. the format of messages and parameter types, the abstraction scheme was
solely made on the basis of informal specifications. Due to this, it can be that
in practice the protocol implementation may not allow to define concrete values
for abstract values referring to invalid behaviour. For example, concrete values
for the parameter id and abstract value VALID may be in the set N. According
to this, the complement of this set would define the concrete values for the ab-
stract value INVALID, which would be id < 0. However, it may be the case that
the SUT implements the parameter id as an unsigned int, so that no negative
values can be entered, although in theory this has been specified. Therefore, we
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recommend to select a SUT and examine the interface before starting with the
abstraction scheme.

A solution to these problems is to create a simple mapping first by consid-
ering only valid messages. The partitioning into a number of equivalence classes
stays the same, i.e. the inference algorithm generates the same abstract values in
the messages. However, inside the mapping module some changes are required.
For messages containing abstract values that refer to sets with valid values, the
mapping module works as before - the abstract parameter values are mapped to
concrete ones and sent to the SUT. In contrast, messages with at least one ab-
stract value referring to invalid values, like the abstract value INVALID, need to
be handled in a different way. When receiving such a message, an error message
is created inside the mapping module and returned to the learning algorithm
without communicating with the SUT. As a result the abstract model produced
describes the valid behaviour of the SUT, whereas invalid input leads to a final
error state. By inferring only a part of the system, the model stays smaller in
size. Furthermore, this approach is less complicated, because we do not need to
struggle with how to define concrete invalid parameter values. Also understand-
ing and reviewing the model is easier due to its smaller size and the knowledge
we have of the desired behaviour of the system. However, because of its input
enabledness, typically the model still contains a lot of transitions, which can be
reduced by applying the steps stated below in the following order.

1. Removing transitions with invalid input: As mentioned above, error mes-
sages are produced for inputs containing invalid parameter values. All these
transitions lead to an error state and so do not add any value to the model.
Therefore these transitions are removed.

2. Removing transitions with empty input and output: An input message sent
to the SUT may be answered by one or more concrete output messages by the
SUT. These are translated to one or more abstract messages and returned to
the inference algorithm. However, it may be the case that the implementation
of the inference algorithm expects for one input symbol exactly one output
symbol and that it cannot handle multiple responses. A possible solution is
to adapt the learning algorithm or to implement a transformation layer in
order to learn a different kind of machine, e.g. an I/O automaton, that is
capable to model several outputs in succession. Because this goes beyond
our scope, we leave the option open for future research. Another solution is
to introduce a workaround by extending the input alphabet with an empty
input symbol nil, which can serve to accept more than one response. Because
the model is input enabled, but not in each state multiple responses can be
expected, the output alphabet also has to be extended with an empty output
symbol nil to cope with this situation. Very likely the learned automaton
will contain transitions with an empty input and output symbol. As holds
for transitions with invalid input, they do not add any value to the model
and accordingly can be removed.

3. Standard minimization: After having applied the previous two steps, typi-
cally the model will comprise non-reachable states, like the final error state,
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where no transitions lead to any more. By using standard minimization,
i.e. the model is reduced to its minimal size, all non-reachable states are
eliminated.

4. Merging transitions with same source state, output and next state: In a fi-
nal step we can reduce the number of transitions by merging transitions
that have the same source state, output and next state. This can be done
by concatenating the input symbols of the transitions for which this prop-
erty holds with an ”or” symbol, i.e. |, so that no information gets lost. Note
that this kind of transitions do not exist according to definitions of Mealy
machines. However, we introduce the notation in this setting, because it can
decrease significantly the size of the model.

In a second step, both valid and invalid abstract parameter values are mapped
to concrete ones and sent to the SUT. As a result, the model is much larger,
especially because there can be numerous combinations of invalid messages and
traces. The model size should be reduced considerably by applying the steps
mentioned below as follows.

1. Merging states by grouping output messages: After the inference algorithm
has terminated, the learned model usually contains a lot of states. By looking
carefully at the outgoing transitions leaving each state, we might discover
some similarities. For example, several states might have a great number of
transitions in common, i.e. they have the same input and output symbol.
When the remaining transitions only differ in their output, some messages
probably can be grouped together according to similar behaviour. One possi-
bility to achieve this is by extending the output alphabet with another sym-
bol, which is assigned to the input symbols exhibiting the same behavioural
pattern. For example, assume that two states only differ in their output pro-
duced for the empty input symbol nil and that both output symbols refer
to messages with invalid values. By introducing a new output symbol, let us
say invalid, we abstract from the exact parameters having an invalid value.
The old outputs are replaced by the new one in the mapping module, so that
both states have identical transitions and as a result will be merged by the
learning algorithm. Note that this can only be done when the information
that gets lost due to the grouping is not crucial. In the example given, the
adjustment can be undertaken, because in this special case it is sufficient to
know that several parameters have invalid values. Depending on how much
information can be merged, the size of the model can be reduced.

2. Removing symmetry: Dividing concrete parameter values into a number of
equivalence classes is done on the basis of external specification or docu-
mentation. According to this it is not proven that the defined abstraction
scheme is correct. The elements in one class should behave differently than
the elements in the other classes. However, when a mistake is made in the
abstraction scheme or the SUT is not implemented in correspondence to the
requirements, it is possible that two distinct equivalence classes are treated
identically by the SUT. For example, the protocol implementation may ac-
cept input symbols that in the mapping table were classified as INVALID or
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the other way around. In that case symmetry will occur in the model, i.e. the
behaviour of both equivalence classes is modelled with equivalent states and
transitions except that the abstract values in the input and output symbols
refer to the respective equivalence class. Because the SUT does not make
a difference, both equivalence classes can be combined, so that the states
and transitions describing the same behaviour will be merged. Note that
detecting symmetry in a model is not a trivial task.

3. Removing transitions with timeout as output: When a concrete input sym-
bol is sent to the SUT, it might be the case that nothing is sent back, e.g.
when an invalid message is rejected. However, the inference algorithm expects
an answer to a membership query. In order to deal with such a situation, a
timeout message is generated in the mapping module and returned to the
Learner. Although formally it is not allowed to omit these transitions, we
decided to introduce a convention and to remove them, because apparently
they are not accepted by the SUT. An exception is that we maintain the
transitions with inputs that may generate no output, but that are needed
for the typical functioning of the protocol according to the specification.

4. Removing transitions with invalid input: Although in this approach invalid
abstract parameter values are mapped to concrete ones, there can be pa-
rameters for which no concrete invalid value can be produced. Think about
the implementation of the parameter id mentioned above. Because we are
restricted to observe the behaviour of the SUT to certain input, we are not
allowed to change it. Hence for parameters to which no concrete invalid value
can be allocated, we use the technique introduced to create a partial model,
i.e. generate error messages ourselves in the mapping module. As before these
transitions can be removed from the model.

5. Removing transitions with empty input and output: see reduction steps for
a partial model

6. Standard minimization: see reduction steps for a partial model

7. Merging transitions with same source state, output and next state: see reduc-
tion steps for a partial model

Several of the above mentioned steps can be automated. Steps 1 and 2 first
require some thorough investigation of the produced model. After having found
out if and how output messages can be grouped and whether the model contains
symmetric states and transitions, the reductions can be performed by adapting
the mapping module. Also steps 3 to 5 can be easily integrated into the mapping
module. Automating steps 6 and 7 is possible, but the implementation would
take some time because the entire structure of the automaton has to be analyzed.
Therefore, doing it manually is much quicker. How these reduction steps are
carried out for a specific model of a communication protocol will be discussed
in Section 8.

7 Architecture

Actually, we would like a learning algorithm to communicate with an implemen-
tation of a communication protocol in order to infer a symbolic Mealy machine.
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However, because of the limitations mentioned in Section 5, we get a different
setup. Several components are needed, which communicate with each other and
that can be organized in a tool. The architecture of this model generating tool is
as illustrated in Figure 6. A realization with concrete tools used for the different
components will be described in Section 8.

Inference algorithm abstract input Mapping module concrete input | Protocol implementation
Inputs contain parameters Translates parameter Inputs can contain

with a finite domain domains parameters with a large
domain

abstract output concrete output

generates is modelled by

is transformed to w
15 transtormed to

Fig. 6. Architecture of the model generating tool

is reduced to
Reduced abstract Mealy

machine

Inference algorithm This component initiates and terminates the learning
process. It implements an inference algorithm, which is powerful enough to gen-
erate an abstract Mealy machine. The component only knows parameters with a
finite domain and communicates with the mapping module by sending either a
sequence of abstract input symbols in the form of a membership query or an ab-
stract hypothesized automaton in an equivalence query. The responses received
can be: a sequence of abstract output symbols, which constitutes the answer to
a membership query, a counterexample in the form of a sequence of abstract
input symbols or a confirmation to an equivalence query. Finally, the algorithm
holds and produces an abstract Mealy machine, which is equivalent to the SUT.

M apping module The mapping module implements an abstraction scheme and
acts as a translator between the inference algorithm and the protocol implemen-
tation. Therefore, it can handle both types of parameter domains including the
mapping from abstract parameter values to concrete ones and vice versa. The
received messages are translated according to the description in Section 5 and
forwarded to the next component.

Protocol implementation The protocol implementation is the SUT we want to
infer. This component can be a protocol implemented in an operating system or
a protocol simulator. In the first case, the concrete messages will thereafter also
be translated to actual bit-patterns for communication with an actual protocol
module. The queries received in this component will be answered by carrying
out concrete input sequences that possibly have large parameter domains and
sending back the corresponding concrete behaviour to the mapping module.
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Trans formation to symbolic M ealy machine The abstract Mealy machine gen-
erated by the inference algorithm has to be reduced to a smaller automaton first
to make it readable and understandable. For this purpose the steps defined in
Section 6 are used. After this, the reduced abstract model can be transformed to
a symbolic Mealy machine by manually applying the steps described in Section
5.1. As a result we will obtain a symbolic Mealy machine, which models the
SUT.

8 Experiments

Our approach described in the previous sections has been applied to two case
studies to learn models of implemented communication protocols. The first one
was about the Session Initiation Protocol (SIP) and will be discussed in detail
in this section. First, we will explain the experimental setup; thereafter the
protocol and according mapping will be defined. Second, the resulting models
will be illustrated and finally we will evaluate our approach. For the second case
study, which was about the Transmission Control Protocol (TCP), we refer to
the Master thesis report of Johan Uijen [Uij09].

8.1 LearnLib

We used the LearnLib library [RSBO05], developed at the Technical University
Dortmund, as Learner in our framework. This tool provides a C++ implemen-
tation of Angluin’s L* algorithm that can construct finite automata and Mealy
machines. Both versions can be used in two modes: an automatic mode, which
proceeds in a predefined way, and an interactive mode, which gives the user more
control on how the learning process proceeds. In our experiments we have used
the first mode.

In detail the communication between LearnLib and our mapping module
works as follows. The learning is started by calling a function in the mapping
module that controls the inference process. This method contains an inner loop
that continues to retrieve membership queries from LearnLib and returns an-
swers until the learning is finished, which is announced by LearnLib, see Figure
7. Equivalence queries are handled differently in this practical setting. They can
only be approximated, because the SUT is viewed as a black box, where the in-
ternal states and transitions are not accessible. So it is not possible to compare
a hypothesis with the implementation of the SUT. Therefore, LearnLib provides
a number of heuristics, based on techniques adopted from the area of confor-
mance testing, to approximate the equivalence queries. Conformance testing can
be briefly defined as the process of testing whether an implementation conforms
to the specification on which it is based. In general also this problem is unde-
cidable, but several approaches exist that try to show equivalence between a
specification and implementation. An example is the testing strategy defined by
Chow [ChoT8]. Tt does not require an ”executable” specification. Nevertheless,
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Fig. 7. Communication between LearnLib, the mapping module and ns-2

test sequences guarantee to detect any errors in the control structure (not data
manipulation), provided that the following assumptions are satisfied. 1) The im-
plementation and specification have the same input alphabet; 2) The estimation
of the maximum number of states the correct implementation might have is
correct. Because we do not have access to the correct implementation, human
judgement must be used for this purpose. The current version of LearnLib sup-
ports, besides the W-Method by Chow, also the Wp-Method [FvBK*91]. This
so-called ”partial W-Method” is based on the W-Method, but it yields shorter
test suites. In our case studies we used a random method, where the user can
define a maximum number of test cases with a maximum length. For all runs,
we specified 100 test cases with a maximum length of 10. If the hypothesis and
the SUT respond the same to all tests, the learning algorithm stops, otherwise
a counterexample is found. The quality of this method depends on the potential
number of counterexamples. Because we do not have any information on this,
it is hard to make a meaningful statement. However, practical experience of the
LearnLib developers has shown that if a counterexample is found, in general
this takes less than 100 tests. In contrast, if no counterexample is found, al-
though there is a deviation from the SUT, on average considerably more tests
also will not reveal this. For this reason, we decided to use 100 test cases in
equivalence queries. In any case, when LearnLib stops, this means that the hy-
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pothesized model is sufficiently close to the SUT in order to be a useful model of
its behaviour. In addition, it can be improved by continued conformance testing,
monitoring or inspection by experts that have knowledge of the operation of the
protocol.

Moreover, in this practical attempt of learning a given protocol entity, some
more issues have to be considered. First, LearnLib only is capable of inferring
deterministic automata, otherwise it will give an error message. Second, in order
to work reliably LearnLib requires that the SUT is reset to an initial state
after each membership query. This may be a nontrivial task, because additional
communication with the SUT is needed, but we cannot check whether everything
is reset correctly due to restricted access to the black box implementation. Third,
LearnLib does not have any knowledge of the format of the abstract protocol
messages. The input alphabet simply consists of positive integers, which are
sent to the mapping module. These numbers need to be transformed to unique
abstract messages by an intermediate layer first. In an analogous manner abstract
output symbols need to be converted back to positive integers before they are
returned to LearnLib. Fourth, as mentioned in Section 6, it can be the case
that the implementation of the inference algorithm expects for one input symbol
exactly one output symbol, so that it cannot handle multiple responses. This
characteristic applies to LearnLib. By extending the input alphabet with an
empty input symbol as described, a workaround could be created. Fifth, LearnLib
provides the user with statistics to analyze a run in terms of memory usage, time
elapsed, membership queries, counterexamples and others.

8.2 mns-2

As SUT in our framework, we used the protocol simulator ns-2 [ns]. It provides
implementations of a large number of standard communication protocols, such
as SIP and TCP. Communication between the mapping module and ns-2 is ac-
complished by means of C++ functions and objects, saving us the trouble of
parsing messages represented as bit strings. However, this kind of interaction is
natively not supported by ns-2. Because of this, resetting ns-2 after each mem-
bership query using method calls imposed overhead on the memory usage. As a
result, the number of membership queries that could be performed in reasonable
time was limited. For more details about ns-2 and an evaluation of its usability,
we again refer to [Uij09].

8.3 SIP

SIP [RSCT02,RS02] is an application layer protocol for creating and managing
multimedia communication sessions, such as voice and video calls. Although a
lot of documentation is available, such as the RFC 3261 and 3262, no proper
reference behaviour model, as a state machine, is available. Our first case study
consisted in modelling the behaviour of a SIP server entity when setting up a
connection with a SIP client. A message from the client to the server has the
form Request(Method, From, To, Contact, Callld, CSeqNr, Via) where
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— Method defines the type of request, either INVITE, PRACK or ACK.

— From contains the address of the originator of the request.

— To contains the address of the receiver of the request.

— Callld is a unique session identifier.

— (CSeqNr is a sequence number that orders transactions in a session.

— Contact is the address on which the client wants to receive request messages.

— Via indicates the transport that is used for the transaction. The field iden-
tifies via which nodes the response to this request need to be sent.

A response from the server to the client has the form

Response(StatusCode, From, To, Callld, CSeqNr, Contact, Via), where StatusCode
is a three digit code status that indicates the outcome of a previous request from
the client, and the other parameters are as for a request message. A detailed de-
scription of the protocol including a Mealy machine model of the server, which
has been created by ourselves according to RFC 3261 and 3262, can be found in
[Uij09].

8.4 Abstraction Scheme for SIP

The membership queries generated by LearnLib contain positive integers as men-
tioned in Section 8.1. Each number represents a unique abstract symbol, to which
it has to be transformed first. For this purpose, we need to determine the equiva-
lence classes for each parameter. As usual, we start with the standard partition-
ing VALID and INVALID. For all parameters except for Method this division
should work due to the fact that a parameter value will either be accepted or
not, see Table 4(b). The parameter Method constitutes an exception, because
it has three valid equivalence classes (INVITE, PRACK and ACK), which are
only valid at a certain time. For example, only the INVITE method is valid in
the first message sent. The corresponding partitioning is summarized in a sec-
ond mapping table in Table 4(a). We could abstract from this by combining the
three valid equivalence classes to one, but then too much important informa-
tion would get lost. For both parameters, Callld and C'SeqNr, we merged all
valid equivalence classes, denoted by the disjunction in the predicate. However,
here no information gets lost, because by means of the Method value the true
proposition can be deduced.

Altogether, this results in 256 abstract input symbols, i.e. 26 x 4 = 256 per-
mutations of combining the abstract parameter values and equivalence classes
respectively shown in Table 4. In addition, we have an empty input symbol n:l in
order to cope with multiple responses, so that in total the size of the input alpha-
bet is 257. Accordingly, LearnLib generates numbers between 0 and 256 that in a
structured way can be translated to a unique abstract input symbol. For example,
in our implementation 0 is transformed to Request(INVITE, VALID, VALID,
VALID, VALID, VALID, VALID).

Next, each abstract symbol has to be mapped to a concrete one. For this
purpose, we use the mapping tables in Table 4 that specify for every parame-
ter and abstract value a predicate characterizing the set of concrete values. We
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(a) Method parameter

INVITE PRACK ACK INVALID
Method |Method = INVITE | Method = PRACK |Method = ACK |Other

(b) Other SIP input parameters

VALID INVALID
From From = Alice From # Alice
To To = Bob To # Bob
Callld |Method = INVITE A Callld > 0 A Other

Callld # prev_Callld V
(Method = PRACK V Method = ACK) A

Callld = prev_Callld
CSeqNr |Method = INVITE A prev_CSeqNr =0 A Other

CSeqNr = prev_.CSeqNr + 1V
Method = PRACK A

CSeqNr = prev_CSeqNr + 1V
Methd = ACK N CSeqNr = invite_.CSeqNr
Contact |Contact = Alice Contact # Alice
Via Via = 1.1.2; branch=2z9hG4bK 214 Other

Table 4. Mapping tables translating abstract parameter values to concrete ones for
the SIP protocol

modelled the interaction with one particular client, by choosing fixed concrete
values for F'rom, To, Contact and Via. Concrete values for the other parameters
can be generated by means of ns-2 functions, which return a value in the valid
set. For each input symbol in the membership query, we store all concrete val-
ues in state variables for future use. On the one hand, they are needed to define
valid concrete values for input parameters, see state variables with prefixes prev_
and invite_ in Table 4. On the other hand, they are used to map the concrete
parameter values in the response messages back to abstract ones, see Table 5.
Except for the StatusCode, which is not part of the request message, the other
parameter values in the response have to match the values sent in the preceding
request according to Table 5(b). The StatusCode parameter is, equivalent to the
Method parameter, divided into four equivalence classes (lzx, 2zz, 3zz — 6zx
and INVALID), so that a more detailed outcome of a request can be tracked, see
Table 5(a). Also here we have 2° x 4 = 256 possible output symbols. Further-
more, the alphabet contains an empty output symbol nil, a timeout symbol as
well as an error message. For more details about these outputs, we refer back to
Section 6. Finally, each abstract output symbol is transformed in an analogous
manner to a number between 0 and 258 before it is returned to LearnLib.
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(a) StatusCode parameter

lzx 2z 3xx — 6xx INVALID
StatusCode |100 < Code < 199 {200 < Code < 299 (300 < Code < 699 |Other

(b) Other SIP input parameters

VALID INVALID
From From = prev_From From # prev_From
To To=prevTo To # prevTo

Callld |Callld = prev_Callld Callld # prev_Callld
CSeqNr |CSeqNr = prev_CSeqNr |CSeqNr # prev_CSeqNr
Contact |Contact = prev_Contact |Contact # prev_Contact

Via Via = prev_Via Via # prev_Via

Table 5. Mapping tables translating concrete parameter values to abstract ones for
the SIP protocol

8.5 Results

We have generated two models of the SIP implementation in ns-2 using Learn-
Lib and our mapping module. As explained in Section 6, a partial model that
only describes the valid behaviour of the SUT has been created first. The infer-
ence performed had an execution time of approximately 23 minutes and needed
about 333000 membership queries and one equivalence query. The input and
output alphabet contained 257 and 259 symbols respectively, which resulted in
a model with 7 states and 1799 transitions. Due to space limitation the complete
Mealy machine cannot be shown here. However, applying the steps of Section 6
helped us to reduce the model to an understandable size. After the transforma-
tion 85,71% of the states and only 1,06% of the transitions, i.e. 6 states and 19
transitions, remained in the automaton, see Table 6. Reducing the number of
transitions was primarily achieved by removing transitions with invalid input,
which comprised almost 99% of the model.

Step Nr. of states |Nr. of transitions
Without reduction 7 1799
Removing transitions with invalid input 7 24
Removing transitions with empty input and output |7 22
Standard minimization 6 22
Merging transitions 6 19
85,71% 1,06%

Table 6. Reduction of partial model

25



After having replaced the numbers by according abstract messages, the Mealy
machine looked like in Figure 8. In this model only the Method type is shown
as input and the StatusCode as output, because all abstract values of the other
parameters are equal to VALID. Moreover, the vertical line | denotes an ”or”,
which has been introduced when merging transitions with the same source state,
output and next state; nil is the empty symbol.

RACK|ACK [timeout

PRACK|ACK [timeout | nil/3zx — 6zx

Fig. 8. Partial model of SIP

Usually, a connection is established as follows. The client sends an INVITE
message to the server, which tries to establish a connection, marked by one
or more lzx responses (state 1 or 3). Then the client acknowledges the lzx
response with a PRACK message. This is answered by the server with a 200
message, indicating that the request has succeeded (state 4). Finally, the client
acknowledges the 200 with an ACK message, which is not answered by the server,
denoted by timeout. Other traces may also lead to an established connection.
In spite of that not all traces leading to state 0 refer to successful requests.
For example, the sequence INVITE/laxx, PRACK/2zx, nil /1zx does not define
a valid session establishment according to RFC 3261 and 3262. It simply means
that all traces ending in state 0 behave similarly and react in the same way to
new inputs. When we take a closer look at those traces, we can see that they
all have two transitions in common - INVITE/lzz an PRACK/2xx, which are
essential in order to establish a connection. In addition, also the ACK request
is required, but in the generated model the existence of this last message is
irrelevant. On that account, the sequence INVITE/1zx, PRACK/2zx, nil /lxx
also leads to state 0. As a solution, we could analyze this question by taking a
look at the observation table to see why those traces seem to be identical. In each
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case, we need to distinguish traces that denote a successful request from traces
that do not, and thus should lead to different states. In this concrete situation,
we have to discriminate between traces with and without a final ACK request.
One possibility to achieve this could be to infer more behaviour of the SUT, e.g.
besides the establishment of a connection also the closing could be modelled. In
that case, the sequences should be differentiated from each other, because only
an established session can be shut down.

Finally, the abstract partial automaton in Figure 8 has been transformed to
a symbolic Mealy machine. We will explain this process in more detail for the
complete model, because it poses a greater challenge. In a second approach, we
have learned a complete Mealy machine that describes the valid as well as the
invalid behaviour of the SIP implementation. The inference has been performed
with a smaller input and output alphabet, 129 and 131 symbols respectively, in
order to learn 6 out of 7 parameters (the Via parameter has been skipped). It
was not possible to infer all 7 parameters, because the number of membership
queries was limited due to overhead on memory usage for setting up and closing
sessions, see Section 8.2 and [Uij09]. In total, LearnLib asked about two million
membership queries and two equivalence queries, which took about 100 minutes
to execute and which resulted in a Mealy machine with 29 states and 3741
transitions.

Again, we reduced the model by applying the steps introduced in Section
6. First, we merged states by grouping output messages. When analyzing the
transitions of all states, we detected that several states differed only in the
output produced for the empty input symbol nil. For example, some output
symbols contained once the abstract value INVALID (for different parameters)
while other output symbols had several times the value INVALID. Because this
information is not of vital importance, we decided to abstract from it by grouping
these invalid outputs according to their StatusCode. This means that the output
alphabet has been extended with 3 new output symbols - each referring to one
of the three StatusCodes (lxx, 2zx and 3zx — 6xx) and each having at least
one abstract value INVALID. By adapting the mapping module and assigning
the new output symbols to the empty input where appropriate, the model could
be reduced to 19 states and 2451 transitions, see Table 7.

In the next step we checked thoroughly if the Mealy machine contained sym-
metric behaviour. We discovered that the equivalence classes defined for the
CSeqNr parameter were treated similarly by the SUT. As a result, ns-2 not
only accepted accurately produced C'SeqNrs according to mapping table 4(b),
but also incorrect numbers generated for the abstract value INVALID. For the
latter, we decremented the values instead of incrementing or retaining them.
These values should not be accepted by the SUT, as in [Joh04], it is stated that
for the PRACK method the C'SeqNr is always incremented and the C'SeqNr in
the ACK method should be equal to the number in the INVITE, see Figure 4.11
in [Joh04]. Accordingly, our abstraction scheme was accurate, but the imple-
mentation differed from the specification. By analyzing the source code of ns-2,
which typically is not accessible in a black box environment, we detected that the
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Step Nr. of states |Nr. of transitions
Without reduction 29 3741
Merging states by grouping output messages 19 2451
Removing symmetry 10 1290
Removing transitions with timeout as output 10 716
Removing transitions with invalid input 10 153
Removing transitions with empty input and output |10 150
Standard minimization 7 103
Merging transitions 7 41
24,14% 1,10%

Table 7. Reduction of complete model

way we communicated with it, the C'SeqNr was not checked. The functionality
is implemented in the SUT, but additional parameters and changes would be
required in order to make use of it. Because the goal of this research is to infer a
Mealy machine of an entity by observing its external behaviour, no adjustments
have been made to the SUT. However, we slightly adapted the mapping module,
so that both equivalence classes for the C'SeqNr parameter are combined and
the number of states and transitions is reduced.

Moreover, we found out that ns-2 did not discriminate between the equiva-
lence classes specified for the Callld parameter. Admittedly, this is the case due
to a mistake made in the abstraction scheme. The SIP implementation should
not only accept Calllds > 0 for an INVITE message, but all unique identifiers,
i.e. also negative integers, which we defined as invalid. The SIP description in
RFC 3261 does not define invalid Calllds, so that we made our own assump-
tions, which in this case were incorrect. Because of time constraints, we did not
revise the abstraction scheme for the Callld parameter, but solely merged the
symmetric behaviour. Altogether, removing symmetry resulted in a Mealy ma-
chine with 10 states and 1290 transitions. By applying the remaining 5 steps,
finally the model could be reduced to 7 states and 41 transitions, see Figure
11 in Appendix A. This is 24,14% of the original states and 1,10% of the tran-
sitions and thus a significant improvement. When we compare the partial and
complete Mealy machine with each other, we can see that all states and paths
in the partial model exist also in the complete one. The notation used for the
complete model has been extended slightly, so that a (T) behind the Method
or StatusCode denotes that one ore more parameters have the abstract value
INVALID.

Transforming the entire abstract model in Figure 11 to a symbolic Mealy
machine is a vain endeavour, because the obtained automaton would never fit
legibly on one page. For this reason, we will illustrate the process with a part
of the model, see Figure 9. Here, the abstract values of the different parameters
are shown in detail. When the name of a parameter is entered, this stands for
the abstract value VALID, whereas T denotes the abstract value INVALID.
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Request(ACK, From,To,Callld,CSeqNr,Contact) /timeout

Request(INVITE, From,T,Callld, CSeqNr|T, Contact),
Response(lzx, From, T,Callld,CSeqNr, T)

Request(INVITE, From,To,Callld, CSeqNr|T, Contact)/
Response(lzz, From,To,Callld,CSeqNr,Contact)

Fig. 9. Example of abstract transitions and states in the complete SIP model

In order to translate the automaton above to a symbolic Mealy machine, we
applied the steps described in Section 5.1. The Method types and the T in the
input symbols are replaced by formal parameters, where needed. As you can see,
we added a guard, which is composed of predicates for each parameter taken
from Table 4 that correspond to the abstract values in Figure 9. Furthermore,
we store all concrete values in state variables and added the according predicates
from Table 5 as expressions to the output symbols. After the transformation,
the abstract model in Figure 9 results in the symbolic Mealy machine presented
in Figure 10. Note that this automaton is non-deterministic, because the expres-
sions 100 < StatusCode < 199, To # prev_To and Contact # prev_Contact
in the output symbols do not evaluate to one definite data value. Possibly, the
Mealy machine can be made deterministic by storing more information or speci-
fying a different abstraction scheme, but we leave this open for further research.

Request(Method, From,To,Callld, CSeqNr, Contact) :
Method = ACK A From = Alice A To = Bob A Callld = prev_Callld A CSeqNr = invite_C'SeqNr A Contact = Alice/
prev_From,prev_To,prev_Callld, prev_CSeqNr, prev_Contact := From,To,Callld, CSeqNr, Contact;
timeout
Request(Method, From,To, Callld, CSeqNr, Contact) :
Method = INVITE A From = Alice AN To # Bob A Callld > 0
Callld # prev_Callld A Contact = Alice/
prev_From, prev_To, prev_Callld,invite_.C'SeqNr, prev_C'SeqNr,
prev_Contact := From,To,Callld, CSeqNr, CSeqNr, Contact;
Response(100 < StatusCode < 199, From = prev_From,
To # prevTo,Callld = prev_Callld,
CSeqNr = prev_CSeqNr, Contact # prev_Contact)

Request(Method, From,To, Callld,CSeqNr, Contact) :
Method = INVITE A From = Alice ANTo = Bob A CallId > 0 A
Callld # prev_Callld A Contact = Alice/
prev_From, prev_To, prev_Callld,invite_.C'SeqNr, prev_C'SeqNr,
prev_Contact := From,To,Callld, CSeqNr,CSeqNr, Contact;
Response(100 < StatusCode < 199, From = prev_From,

To = prev_To,Callld = prev_Callld,

CSeqNr = prev_CSeqNr, Contact = prev_Contact)

Fig. 10. Symbolic representation of the model in Figure 9
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8.6 Evaluation

In this subsection, we evaluate our approach applied to infer a symbolic Mealy
machine of a SIP implementation. We take a look at the resulting model, the
abstraction scheme and the tools used.

— LearnLib: The LearnLib tool provided by the TU Dortmund has proven
itself to be a very powerful library for the inference of deterministic finite
automata and Mealy machines. It offers a straightforward interface, which
needed only small adjustments to communicate with our mapping module.
We have created an intermediate layer in order to translate the input and
output symbols maintained by LearnLib to abstract SIP messages and back.
Moreover, we have extended the input and output alphabets with an empty
symbol to cope with multiple responses, which by default are not accepted
by LearnLib. In the future, we recommend to adapt the algorithm or to
implement a transformation layer in order to learn a machine that is capable
to model several outputs in succession. Also an algorithm, which is suited to
infer non-deterministic automata would be desirable.

— ns-2: The communication with the network simulator was a lot more chal-
lenging. Besides sending and receiving requests and responses, additional
communication with ns-2 was required. After each membership query the
SUT had to be reset. This was a difficult task, because it was not clear,
which functions had to be used for this task and if all outdated informa-
tion was disposed successfully. Due to the restricted access to the black box
implementation, we also did not know whether the information sent was suf-
ficient to guarantee a correct functioning of the SUT. In case of the C'SeqNr
parameter additional information and set-ups would have been necessary.
Because we want to learn an implementation by observing its responses to
inputs without having too much knowledge of its internal operations, ns-2
seems not to be an optimal choice for a SUT in this framework. An alter-
native could be to use a network packet generator and a network packet
analyzer.

— Abstraction scheme: For the definition of an abstraction scheme, knowledge
of the communication protocol is required, which should be supplied by the
user. Nevertheless, creating a correct mapping remains a great challenge. As
in case of the Callld parameter, mistakes can be made easily, especially when
knowledge is based on complex and vague descriptions, which often applies
to RFC documents. Anyway, an accurate abstraction scheme is essential and
it forms the foundation for the success of this approach.

— Resulting model: Evaluating the Mealy machine generated by LearnLib is
hard, because no reference model of SIP exists to which it can be compared.
However, some characteristics of the Mealy machine can be mentioned. First,
the correct bahaviour of SIP defined in RFC 3261 [RSCT02] and RFC 3262
[RS02] is contained in the model. The sequence of messages needed to estab-
lish a connection is described in the documents, i.e. INVITE/1zxz, PRACK/
2zx, ACK/timeout and according transitions can be found in the learned
Mealy machine. Second, it does not comprise unexpected output symbols,
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e.g. all inputs with valid parameter values produce equivalent outputs. Third,
the fact that all traces lead back to the initial state can be explained by the
observation that LearnLib does not discriminate between certain traces. De-
spite this last aspect, we can conclude that a sophisticated model of the SIP
implementation in ns-2 has been learned.

9 Conclusions and Future Work

We have presented an innovative approach using regular inference and abstrac-
tion to infer models of communication protocol entities. Both in theory and by
means of a case study on SIP, we have shown that it is feasible to learn a Mealy
machine with inputs and outputs containing parameters with large domains. In
order to communicate with the black box implementation, the abstract symbols
produced by the inference algorithm have to be transformed to concrete mes-
sages and vice versa by an intermediate mapping module. When the learning
process has terminated, the generated abstract model has to be transferred to a
symbolic Mealy machine and to be reduced to a smaller size to make it readable
and understandable.

Our approach has been applied to infer a model of the Session Initiation
Protocol implemented in the network simulator ns-2. Thus, in contrast to pre-
vious research, we did not choose a theoretical or classic example. By using
LearnLib, a library for regular inference, an abstract model of the SUT could
be created. We succeeded in minimizing it to 7 states and 41 transitions by
executing the reduction steps newly introduced in this thesis. The generated
symbolic Mealy machine specifies the valid as well as the invalid behaviour of
the protocol in terms of different parameter values, and thus gives a more so-
phisticated presentation than other models or descriptions. As a result of using
a realistic communication protocol, we discovered several characteristics as well
as limitations of our approach. For example, it is restricted to infer deterministic
automata. In order to learn non-deterministic behaviour, other algorithms need
to be investigated and used. Furthermore, inferring an I/O automaton model
could be preferable, not only to handle multiple responses, but also to apply
model-based testing [vdBP04].

A prerequisite for our approach is that the user supplies information for the
mapping module, i.e. an abstraction scheme and state variable valuations. In
order to make the techniques more useable, standard abstractions for sequence
numbers, connection identifiers and other types of parameters commonly found
in communication protocols should be developed. Besides studying other pro-
tocols, we should also test our approach on them. In future work, we hope to
develop techniques to automatically discover a significant part of the information
that is now supplied by the user.

In addition to the connection establishment, we should model its closing,
which is also part of the SIP protocol. We would also like to apply our research to
other implementations of SIP or other communication protocols, like a protocol
implementation of the operating system that includes timing issues. Learning
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of timed systems has already been discussed by Grinchtein [Gri08] and maybe
can be combined with our approach. Another possibility could be to infer timed
automata in UPPAAL [LPY97] in order to perform model checking. Also other
recent developments are conceivable, such as inferring a model of the biometric
passport or wireless sensor networks.
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