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Abstract. We are interested in observing changes to a particular web
graph community over time. A small subset of the entire web graph can
provide sufficient information about our community of interest. There-
fore we use a local approach where knowledge of the entire web graph
is not needed. In this paper we will consider how we may track the
evolution of a community from a local point of view and analyze the
quality of our model. We use local modularity as our community def-
inition of choice and propose an improvement thereof. An incremental
definition is coined such that we may analyze the consequences of ele-
mentary modification of a community. We analyze the quality of a local
community as constructed using this incremental definition. Therefore
we propose a probability model that we demonstrate on omission er-
rors for the incremental algorithm. Keywords: Web graph; community;
tracking; evolution; local modularity

1 Introduction

The internet is a topic of interest to many. It is ever growing, evolving and the
number of users is increasing.

Advertisers may try to reach their target audience on the internet in order
to sell a product. But they may also try to observe their target audience and
observe their interest. A shift of interest may indicate a trend amongst a group
of people, opportunities arise if one can spot these in an early stage.

Finding communities within a graph is receiving much attention from various
academic disciplines. Physicists may be interested in representing the patterns
of interactions in complex systems as networks [11]. In the field of biology, com-
munity structure in graphs is used for research on the structure of bio-molecular
networks [12]. And computer scientists study internet phenomena using commu-
nity structure within the web graph [10].

We are interested in observing and tracking a target audience on the internet.
Assuming we can identify this group of people as the visitors of websites in a web
graph community, we would like to observe their shifting interest by observing
changes to a community. For example, such mutations may be used for trend
analysis.

The entire web graph is huge [1] and if we are only interested in a particular
community we would rather use a local approach where we only have knowledge
about the nodes in our community of interest.

In order to do an analysis of local community evolution we first consider the
definition of a local community. Then we consider two techniques for modeling
community evolution in section 3. In section 4 we use local modularity as in-
troduced by Clauset [3] as our community definition of choice and propose an
improvement thereof. This will provide understanding and insight in the struc-
ture and measured quality of a local community.

In section 5 we coin an incremental definition that allows us to consider the
impact of the addition of a single node to a community from a local point of



view. This allows us to observe small step evolution of a local community and
reason about elementary modifications.

Using a local view on the web graph to observe local communities may lead
to a lack of information about nearby nodes that may be, or become, relevant
to that community. In section 6, we propose two methods for grouping nodes
outside a community by their relevance to that community in order to gain more
relevant contextual information.

In section 6 we also analyze the presence of errors in a local community model
compared to the actual web graph community. This is done by considering the
probability that a node outside a local community should be a member of that
community. In the last section we give some conclusions.

2 Community Definition

The internet contains a lot of websites that are somehow related. Websites can
have a relation by a common topic or interest. Examples of such a relation are
a direct link to each other, being a member of the same web ring or both be
referenced to by another site. The web graph preserves these relations, so any
community on the internet should be in the web graph too.

Web graph communities can be loosely defined as a collection of nodes that
are somehow related. A community in the web graph is a subsets of nodes which
are more densely linked when compared to the rest of the graph. Despite the lack
of information about the contents of a node within the web graph, communities
are quite accurately grouped by a particular topic or theme [6].

Visitors of any website within a community are very likely to be interested in
other websites of the same community due to the shared topic. The interest of a
visitor in a certain topic relates it to a community. While there is no explicit link
between the visitor of a website and a node in the web graph, we can say that
each community in the web graph has an implicit target audience. A community
within the web graph does not only project websites and links, it implicitly
reflects the interest of people on a topic.

The implicit relation between a website and its visitors is also expressed
by the way they influence each other. One can question if it is the website
who influences the visitors and thereby changes their interest, or do the visitors
have a somewhat rigid interest such that websites adapt accordingly to be more
successful? We assume the answer lies in the middle since both actors will have
at least some influence on each other.

The web graph is exceedingly sparse [13]. Being mostly read and written
by humans, typical vertices have a relative low degree when compared to the
amount possible if the web graph as a whole was dense. There are, of course,
variations in the density within the web graph and some specific nodes may have
a huge degree.



2.1 Community properties

We consider the web graph as a directed graph and assume that each node knows
its outgoing edges. There is an edge from node u to node v if and only if the
corresponding web pages are not the same and there is a hyperlink from the
website corresponding to w to that of v. A node may have incoming edges but
it is not aware of them, just like web pages do not know by what hyperlinks
they are referred to. Consequently, there are no point cycles. Also there are no
multiple edges between nodes.

We will refer to G as the entire web graph from now on. We define G.N as
its set of nodes and G.FE as its set of edges. We use arcs(X,Y) for the set of
edges from some node in X to some node in Y.

A graph can also be regarded as an adjacency matriz. This is a n X n matrix
where n is the number of nodes in the graph. In this matrix we can map the
edges between nodes such that the value A,, is the number of edges from node
u to node v. On the diagonal axis of the matrix one can see the number of self
references, A,, illustrates the number of edges from node v to node v. In our
model, the latter will always be 0 because point cycles are not allowed.

2.2 Community identification

From a graph theoretic point of view a community can be regarded as a cluster
within the web graph with dense linkage between nodes within the community
and sparse density outside the community. This notion builds a bridge to a vast
resource of knowledge on the topic of graph theory. The process of community
identification can be regarded as a simplification of general graph clustering
since one only needs to identify a group of nodes which is similar to a given seed
node [6].

There are many approaches to defining and identifying graph communities.
There is much interest in the topic from various scientific disciplines and many
different approaches to community identification have been introduced [13] [7].

Because there are many different applications for community identification,
a lot of algorithms have been developed that may suit specific properties. Some
of these require a priori knowledge of some expected community properties in
the graph in order to function well, such as the algorithm proposed by Wu
& Huberman [14]. However, in most complex real world networks we have no
knowledge about how many communities we wish to discover.

In general, most methods for community identification have their own niche
in which they operate. For example, the specialty of an algorithm may be a
specific type of network or a focus on computational complexity.

More specifically, finding a community is the same as looking for all members
of the cluster that also contains a given seed node. Community identification
algorithms are easily converted to clustering algorithms and vice-versa, so there
is no significant theoretical difference. Research has shown that regardless of the
algorithm and data source, the quality of clustering can be measured in various
ways [7] and no single measure for cluster quality is perfect [8].



The computational complexity of community identification is vast because
clustering algorithms generally require the analysis of every node in the web
graph. Instead of trying to identify the optimal community one could make a
tradeoff between quality and computational complexity in order to obtain an
acceptable result. While searching for clusters in the web graph one can use
distinct web graph properties that may not be present in a generic graph. For
an overview of different approaches to community identification considering both
quality and computational complexity refer to [15].

Modularity Graph modularity defines a community as the collection of nodes
that have more links between them than to nodes outside the community [9].
Thus such a community is separated, distinct, from the rest of the graph but
(most likely) not entirely disconnected.

Newman & Girvan proposed a modularity optimization method that indi-
cates a good division of an undirected graph into communities [4]. Their ap-
proach to finding communities requires total knowledge of a graph. The modu-
larity measure defines a good graph partitioning such that there is a maximum of
edges within communities and a minimum of edges between nodes from different
communities. This measure also compares the division of the graph into commu-
nities with a random graph in order to measure if the partitioning is statistically
surprising. The modularity measure is intuitively defined as:

@ = (fraction of edges within communities)
- (expected fraction of such edges)

where higher values for @ indicate when a statistically surprising fraction of the
edges in a network fall within the chosen communities.

Several notions of random graphs have been introduced, see for example [16]
for a brief overview. In the context of social networking the configuration model
has obtained a central position. In this model random graphs are generated that
are like a given graph such that they have the same set of nodes and for each node
the same degree as the given graph [16]. Two variants are used, the undirected
and the directed variant.

Let graph G be represented by an adjacency matrix where A;; yields 1 if
there is an edge from j to ¢ and zero otherwise. The total amount of edges in
the graph is defined by m. Let k" be the indegree of node 4 in this graph, k¢!
the outdegree and the degree k; = ki + k¢ut.

Then, according to the configuration model, the probability of a connection
between nodes ¢ and j in an undirected graph is proportional to both k; and k;
such that p;; = a.k;.k;. For an undirected graph, we consider each edge twice
since both the begin- and end-node of each edge add the edge to their degree.
Thus the sum of the degree of all nodes equals 2m. Then the total number of
2m connections in the graph will be equal to:

Zpij = Zaklk] = a(2m)2
i i

Lemma 1.



Consequently, a = ﬁ

We can now derive the probability of an edge between nodes ¢ and j as:
Lemma 2.
kik;
2m

bij =

where one considers the chance for these two nodes to be connected given a
random distribution of their edges over m nodes.

Since graph modularity considers the amount of inter community connections
the Kronecker delta §;; may be used to define if both nodes are in the same
community. Let ¢ be a clustering of G' and let [i] € ¢ be the cluster assigned to
node i. Then we introduce:

Lemma 3.

So if nodes ¢ and j are in the same community d;; yields 1 and zero otherwise.
Using the intuitive definition, probability p;; and the Kronecker delta d;; we
may derive Newman’s modularity measure for undirected graphs:

Lemma 4. Let  be a clustering of G.

Q(C) = (fraction of edges within communities)
- (expected fraction of such edges)

= ZCGC [edges within C - expected amount)

= 5w Loec |lares(C,0)| = Sy pis
= ﬁ Zceg ZijeC [Aij — pij]

= 5 Lijec.n [Aij — Pij] 8

= 2 22ij [Aij - %} dij

This measure can be used for identifying graph communities by finding the op-
timized value for @ for any possible graph partitioning. This process is quite
exhaustive, local and greedy implementations optimize this process. Besides the
identification of communities this measure may also be used as an evaluation for
the quality of a graph partitioning while comparing various community identifi-
cation algorithms [15].

However, this approach does not apply to directed graphs. An adapted mea-
sure of @ was later introduced by Leicht & Newman [5] such that @ can be
used to consider the optimal community diversion of a directed graph using
modularity.

For a directed graph one must consider that the edge direction has great
influence on the expected degree distribution. Suppose there are two nodes, u
and v. Node v has a high outdegree and a low indegree while v has the opposite



degree distribution. So a given edge is more likely to run from u to v than
vice versa. Thus if we observe such a degree distribution in a directed graph we
should consider an edge from v to u statistically surprising and we should value
its contribution to the modularity as such, according to Newman [5].

For directed graphs, as opposed to undirected graphs, we do not consider
each edge twice. For each node we consider whether the connected edges are
incoming or outgoing. We can now derive the probability of an edge between
nodes ¢ and j in a directed graph as:

Lemma 5.
in r.out
k? kj

m

Pij =

Note that the degree distribution is normalized by m here, whereas it was nor-
malized by 2m for undirected graphs as we have seen earlier.

Consequentially, the modularity measure for directed graphs by Newman
amounts to:

Lemma 6.

kzn k;?ut
Aij — (Sij

m

where we can see that edges from j to i indeed make a larger contribution if k"
and/or k3" is small.

Local modularity Instead of finding an optimized division of the entire graph
into communities, one may rather be interested in just one community that
contains a node of special interest. While processing the entire web graph is quite
exhaustive because of its size, a local approach that does not require knowledge
and processing of the entire graph is desirable.

A local modularity measure was introduced by Clauset in the context of
restricted knowledge of the graph [3]. Since this model only has local knowledge
of the graph, the configuration model as used by ) cannot be used since the
total amount of edges (m) is unknown.

Suppose we consider graph G where we have knowledge of a set of nodes and
their edges that we consider to be a community which we denote as C'. Since we
are aware of all edges from C, we are aware of a set of nodes outside of C about
which we know only their adjacencies to C. We will refer to this as the universe
of C, denoted as U(C). If we only consider the nodes in C that have at least one
neighbor in U(C), thus each node in this set contains at least one edge towards
a node in U(C), we obtain the boundary of C denoted as B(C). See Figure 1.

In this local model we can only gain additional knowledge of the graph by
visiting neighboring nodes of C, thus nodes in U(C'). Processing these nodes one
at a time, we may add nodes to C' and thereby obtain previously undiscovered
nodes in the universe.



Fig. 1. An abstract graph with a community, its boundary and universe.

Clauset defined local modularity by considering all edges originating from the
boundary and then calculating the fraction that is pointed at C internally [3].
This measure defines the sharpness of the boundary of a community and is
independent of the size of the community, whereas the graph modularity measure
@ is not. Intuitively, one would expect that a community with a sharp boundary
will have few connections from its boundary to the unknown portion of the graph
(U(C)), while having a greater proportion of connections from the boundary back
into the local community (C).

As a result, the local modularity for community C' is defined as:

_ ares(B(C),C)|
R(C) = larcs(B(C),G.N)|

where the resulting local modularity, R(C), lies on the interval 0 < R(C) < 1.

. . . L 3
The local modularity in Figure 1is 2.

3 Modeling Community Evolution

We consider tracking a web graph community over time as observing mutations
to a community as it evolves. Since the web graph and its communities evolve
fast, we need to define a way to observe one and the same community and all
changes to it over time. In this chapter we consider two models for observing the
evolution of a community.

3.1 Snapshot model

The first model takes snapshots of the web graph at several moments in time and
performs community identification within each dataset. We will refer to this as
the snapshot model. The datasets are not explicitly linked or related in any way
using this model. After acquiring snapshots of the web graph of the moments we
are interested in, the next step is to identify the community we wish to monitor



from the first dataset and try to find the same community in the other datasets.
If we can successfully find this community in every snapshot we can compare
the resulting subgraphs and analyze their differences.

Using this approach it is fairly straightforward to gather and format necessary
data since all it takes is making a copy of the web graph in the time frames we are
interested in. Identifying communities is done using any community identification
algorithm. These basic steps required for the snapshot model indicate that it is a
very practical approach which suits widely used web graph analysis techniques.

The next step to the snapshot model, finding a community that is similar to
the initial community, is more challenging. Suppose we have identified commu-
nity C in the first snapshot and want to find the same community in a collection
of communities identified within another snapshot for the purpose of observing
mutations. One will require a characteristic which uniquely defines community
C such that this characteristic still defines C' after (moderate) evolution of C. If
this characteristic can be converted to practical metrics it is possible to find C
in a collection of web graph communities.

The main problem while defining such characteristics (and metrics) is the lack
of connections between different datasets. The most reliable metric available is
that one can see if nodes and edges from C' are in another community as well. A
common approach is to find similar communities by pattern matching 2% of the
nodes or edges from C with nodes or edges from another community. However,
there is no known measure based upon this principle which guarantees that for
each possible mutation to the original C, the mutated C in another dataset
is found. Usually, such algorithms depend on a specific threshold (eg. 80% of
the nodes from C must be in the other community as well) which is trained
by running the algorithm on several datasets where the results are known in
advance.

The problems that arise while finding similar communities are increased when
the snapshots are taken far in between such that there are a lot of mutations
in the web graph. The consequence is an even greater difference between com-
munity C' and communities in other datasets which makes algorithms based on
an overlap of similar nodes or edges less effective, assuming C' is an active and
evolving community.

Splitting communities prove to be a hard problem for snapshot models as
well. Suppose we are tracking community C' and this community splits up and
evolves as two separate communities. It is likely that we can still consider C' to
be the same community according to some community definition even if a lot
of nodes are lost due to the split. For instance, if 30% of the total amount of
nodes left C' but these were all unimportant nodes, one could consider this as
an insignificant mutation because all the important nodes in C' are still there.
This example illustrates that a hard criteria for community similarity, such as
an overlap of 2% of the nodes, is not able to find similar communities for certain
community mutations.

We conclude that the snapshot model as presented here does not suit our
needs for tracking web graph community evolution. The model seems too impre-



cise because it can only show all mutations between one snapshot and another
instead of individual changes. This problem cannot be overcome by taking snap-
shots more frequent because it is not feasible to make a snapshot of the web
graph for each mutation. The problem of finding similar communities in differ-
ent snapshots attributes to further imprecision in tracking one and the same
community over time. Taking these defining properties of the snapshot model
into account we consider the model too imprecise for tracking mutations within
a web graph community over time.

3.2 Incremental model

Another approach is to take a single snapshot of the web graph as a base dataset,
identify the community we are interested in and then incrementally record all
mutations to this community. We shall refer to this as an incremental model. In
this model we register changes to nodes in community C' from the base snapshot
in such a way that we can see each new node or edge as a mutation to C. The
model can only observe mutations that consist of references, edges, from nodes
within this community because the model initially is only aware of all nodes and
edges that it contains. So new outdegree edges can be observed because these are
mutations to already known nodes while new indegree edges cannot since they
origin in unknown nodes. Indegree edges can only be observed and analyzed in
retrospective, after the originating node has been discovered by outdegree from
a known node.

An obvious advantage for the incremental model is the ease in which we
can both register and observe changes to nodes and edges in a community. This
property leads us to the prime advantage of the incremental model, it enables
us to very accurately observe the consequences of any change to a node or edge
to specific nodes or to the community as a whole. This model allows for small
step analysis that is not possible using the snapshot model presented earlier.

Whereas it was easy to gather data for the snapshot model it can be hard
to do so for the incremental model. It is not common for websites, nodes in
the web graph, to record and distribute all their mutations. This model would
either requires them to do so or the model could depend on an accurate crawler
that monitors specific nodes in the web graph for mutations. Having nodes report
their own mutations could result in a system with asynchronous information flow
because it is possible for nodes to be slower then others in signalling changes.
Reliability is another apparent issue if there is no system enforcing nodes to
regularly update their status. Compared to the conventional data acquisition
techniques of the snapshot model, gathering the necessary data for this model
seems overly complicated.

We conclude that the incremental model is better suited then the snapshot
model because it enables accurate analysis of small step mutations and their
consequences whereas the snapshot model does not. The increased difficulty in
gathering necessary data is considered a solvable practical problem that does
not outweigh the said advantages.



In order to track mutation in communities using the incremental model we
will need to use a definition for web graph communities that is compatible with
the incremental mode. The candidate local community definition will need to
enable small step analysis such that we can reason about the impact of single
node mutations. Local modularity, as introduced in the previous chapter, meets
these requirements and is our community definition of choice.

4 Analyzing Local Modularity

In this section we will focus on local modularity as introduced in section 2 which
is our community definition of choice. It does not require total knowledge of
the graph and is capable of operating in an incremental model, as thoroughly
reviewed in the next section, so it satisfies all our criteria for a community
definition.

A community is identified as a set of nodes. Let C' be a community as en-
countered during the tracking algorithm. Since we are aware of all edges from
nodes in C, we also are aware of the set of nodes outside of C' that are adjacent
to C. We will refer to this as the universe of C, denoted as U(C'). The boundary
of C is formed by those nodes from C with an edge to a neighbor in U(C'). The
boundary of C is denoted as B(C).

Let D be defined as all nodes outside of community C':

Lemma 7.
D(C)=G.N-C

We will denote D(C) as D and we may refer to this set as the external nodes of
community C.

The boundary of a subgraph C from G, noted as B(C), is defined as the set
of all nodes within C' that have an edge towards a node outside of C"

Lemma 8.
B(C) ={ueC |Jvep[(u,v) € G.E]}

Note that the boundary of C' is a part of C, thus B(C) C C.
The universe of C' is defined as the set of all nodes outside C' that are referred
to by some node from C"

Lemma 9.
U(C)={veD |Juecl(u,v) € GE]}

Here we can see that the universe of C is a part of D, thus U(C) C D.
We can divide the set of edges from any cluster in the graph into the edges
towards C' and the edges towards D:

Lemma 10. Let Z be a set of nodes, then:

arcs(Z,G.N) = arcs(Z,C) U arcs(Z, D)

10



We denote i(C) = |arcs(B(C), C)| as the indegree of the boundary of C' and
u(C) = larcs(B(C),G.N)| as its total degree in accordance to Hinne [2].

Lemma 11.
arcs(B(C),C) C ares(B(C),G.N)

thus
0<i(C) <u(C)

Local modularity as defined by Clauset [3], a local variant of Newman’s well
known modularity measure [4], considers the fraction of boundary edges that are
directed at nodes inside the community. The local modularity of a community,
R(C), is consequently defined as:

Note that 0 < R(C) < 1 by lemma 11.

We define the mutual interest of v and C as a fraction of the edges between
C and v by all interest of v (its total outdegree). This notion is used to express
how strong C' and v are committed to each other in terms of edge overlap.

|arcs(B(C),v)| + |ares(v, C)|
lares(v, G.N)|

MI(C,v) =

4.1 Improved Definition

Using the given definition of R(C) may lead to some problems with specific
communities. We will show some limitations of this definition and propose an
improvement to solve the demonstrated problems.

Ezample 1. Let C be the set of all nodes, then C = G.N, B(C) =0, U(C) =10
and thus R(C') is undefined.

Ezample 2. Let v be a node in G.N and C = {v}.

1. If v has no outgoing link, then B(C) and U(C) are empty and thus R(C) is
undefined.

2. Suppose v has outgoing links, then:

()—{U}
{u;év’ v, U EGE}
wey =0

R(C) =

As Example 1 illustrates, a single node can not be a local community for any
amount of outdegree edges because there are no edges from the boundary into
the community if there is only one node in C, thus |arcs(B(C),C)| will always
be zero and so will the resulting modularity R(C).

11



However, we regard each set of nodes as a community, its quality is measured
as R(C). Low values mean a low community structure. Furthermore, we consider
a single node with only one edge to be a stronger community then a single node
with multiple edges because if a community has less references to the outside
world it is more introvert, has a higher inbound modularity, thus is stronger by
definition of local modularity. Since we have shown that the current definition
of R(C) does not reflect this, we adapt R(C) such that:

i(C)+€

R(©) = u(C) +e

for some yet undetermined ¢ > 0. The addition of € prevents the division by
zero problems that arise in the original definition while maintaining the desired
properties mentioned before. For this improved definition, 0 < R(C) < 1 still
applies.

Ezample 3. Let C be the set of all nodes, then C = G.N, B(C) =0, U(C) =10
and thus R(C) = £ = 1.

Ezample 4. Let v be a node in G.N and C = {v}.

1. If v has no outgoing link, then B(C) and U(C) are empty and thus R(C) =
¢ =1 as we have seen in the previous example.

2. Suppose v has outgoing links, then:

B(C) = {v}
UC)={u#v ’(v,u) €G.E}
R(C) = wse #0

Now that we have considered how e improves R(C) we regard its influence
on the result. We find that choosing a small value for € will cause no significant
influence on R(C).

Lemma 12. As the community boundary grows, the influence of € on the out-

come of R(C) decreases rapidly. A smaller e will cause less deviation from ;((g))

as well.
Proof.
Let e<u(C),a=1i(C),b=u(C), c=c¢
R(C) = §%
= st o

_ — b
R R

__a bc—ac
=% 1 ¥276c
Here we can see that the influence of € is expressed by gg:gg. The deviation from

% decreases as we use a smaller value for € (¢) or when u(C') (b) grows.

12



Note that if either i(C) or u(C) is zero, € corrects problems from the original
definition we mentioned earlier so we do not consider € to negatively influence
the result in that case.

Lemma 13. U(C) =0 < R(C) = 1.

Proof. = If C has no universe there are no outbound edges in C' thus the bound-
ary of C'is empty as well. Therefore i(C) = u(C) thus R(C) = 1.

< If R(C) =1 then i(C) = u(C) and therefore |arcs(B(C), D)| = 0. Thus there
are no outbound edges in C and therefore C' has no boundary nor a universe.

5 Community Tracking and Evolution

So far we have analyzed and extended the definition of local modularity and now
we propose an incremental definition such that we can regard the impact of the
addition of one universe node to a community. This definition may represent the
next step in a (local) community building algorithm or a step in the evolution
of a predetermined community.

Given a community C' under construction, the question is what nodes are
the best candidates to extend C. Nodes in U(C') are candidates as they are at
least connected to C'. Other nodes in the rest of the graph may have a link to
C but there is no direct link from C' to these nodes , otherwise they would have
been a member of U(C). Since the local view of the web graph implies limited
knowledge of the entire graph we may only consider known nodes as possible
community candidates.

Only nodes that have an indegree can be detected by any algorithm that
follows the principle of local modularity since they are unknown to C' otherwise.
A node v that has no indegree cannot be a member of U(C) since there is no
node from C that has an edge to v. Thus our incremental model only considers
nodes from the universe of C' and these all have an indegree of at least one. We
will use the conventional notation C' + v to denote C' U {v}.

5.1 Node Position Within a Community

By definition of R(C) a member of a community has a different impact on the
local modularity depending on its position in the community since the outdegree
of a node in B(C) affects the modularity of C' while the outdegree of a node in
C' — B(C) does not. So in order to determine the impact of the addition of any
node v € U(C) to C, we distinct two consequences for v:

1. v will not become a member of the boundary because all edges of v are
inbound to C, thus v ¢ B(C + v)

2. v will end up in the boundary because v has edges outbound to C, thus
v e B(C+w)

13



Fig. 2. Four graphs with different consequences of adding node v € U(C) to C.

Besides the consequences for v we must also consider the consequences for C
after adding v to C. Adding a node from the universe to a community may,
or may not, affect the position of nodes from B(C) such that they are not a
member of the boundary of C' + v. All nodes from B(C) for which their edge to
v is their only edge towards a node outside of C' are not a member of B(C + v)
because they have no edges towards any node outside of the new community. So
we distinct two cases for the consequences for nodes in B(C) after adding v to
C:

1. All nodes from B(C') are a member of B(C'+v) as well, thus B(C') C B(C+v)
2. At least one node from B(C) is repositioned such that it is not a member of
B(C +v), thus B(C) € B(C +v)

If we combine these cases, there are four situations where we must consider the
differences between R(C) and R(C + v):

a:v & B(C +wv),B(C) C B(C+v)
b:v € B(C +v),B(C) C B(C +v)
c:v ¢ B(C+w),B(C)Z B(C+v)
d:v € B(C +v),B(C) € B(C +v)

Figure 2 illustrates all four situations listed above situated in example graphs.

If we consider the set of nodes that is B(C') and add node v to community
C, we observe that the boundary of the new community C + v is either the same
as B(C) or a subset thereof.

Lemma 14.
B(C+v) CB(C)+w

Proof. As we have seen earlier, the addition of a node to a community may
cause previous members of B(C) to leave the boundary such that they are not
a member of B(C +v). In this case, B(C) € B(C +v). Also, we know that node
v does not have to become a member of the boundary when it joins community
C' such that v ¢ B(C + v).

When combined, these two observations show that the boundary of C + v is
a subset of B(C) + v.
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Lemma 15.
v¢ B(C+v)AB(C)CB(C+v)= B(C+v)=B(C)

Proof. As v & B(C + v) we have B(C 4+ v) C B(C). Because v is not a member
of B(C' +v) there are no nodes from B(C') that will leave the boundary and thus
by Lemma 14 B(C +v) = B(C).

5.2 Case a

First we will consider cases a and b. Because B(C) C B(C + v) applies we only
need to consider the impact v has on the modularity. For case a we place v in
C' — B(C) because all edges from v are directed at nodes in C'. We also know that
there is at least one edge from a node in B(C') to v because v used to be a member
of U(C). Thus moving v from U(C) to C increases the amount of inbound edges
for the boundary. And since v will not be a member of the boundary we observe
that the amount of edges in the boundary does not change.

Lemma 16. Thus case a amounts to:

i(C) 4+ e+ |ares(B(C),v)]

R(C+v) = u(C) +e¢

Corollary 1. Suppose v ¢ B(C +v) and B(C) C B(C + v), then we observe
that v always tmproves the community:

i(C +v) =1i(C) + |ares(B(C),v)|
u(C +v) = u(C)

R(C +v) = R(C) + LB > R(C)

5.3 Caseb

Case b places v in B(C + v) because there is at least one edge from v to D.
As seen in condition a, the edges from B(C) to v are considered an increase to
the amount of inbound edges in the boundary because v is a (new) member of
C'. But since v also is a member of B(C + v), all edges from v towards C are
contributing to the amount of inbound edges as well. Finally, the total amount
of edges from the boundary is increased by the amount of edges from v towards
any node in the graph.

Lemma 17. Thus case b amounts to:

(C) + e+ |ares(B(C), v)| + |ares(v, O)|
u(C) + e+ |arcs(v, G.N)|

R(C+v) ="

Corollary 2. By definition of R(C+v) for case b we may use the mutual interest
in this case to consider if an external node will improve a community.

R(C +v) > R(C) & R(C) < MI(C,v) Av € U(C)
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Lemma 18.
ve B(C+v)ANB(C)C B(C+v)= B(C+v)=DB(C)+v

Proof. According to Lemma 14, B(C' +v) C B(C ) —|— v. Let © € B(C + v) and
x # v then x € B(C). So B(C +v) —v = ( ) thus B(C' +v) = B(C) +v

Suppose node v € U(C) has one edge towards a node outside of C, w € D,
then the addition of v to C' will be an improvement to C. Moving v € U(C) to
C will only add 1 edge to the boundary that does not lead to a node in C in this
case, that edge is (v, w), thus u(C + v) = u(C) + 1. Since any edge from B(C)
to v has now become an internal edge from the boundary, there is at least one
such edge by definition of U(C), and the modularity was less then 1 by Lemma
13 the local modularity of C' has improved.

Lemma 19. If case b applies and |arcs(v, D)| = 1, then the addition of v im-
proves the community.

Proof. Note that |arcs(v, D)| = 1is equivalent with |arcs(v, G.N)| = |arcs(v, C)|+
1. Let |ares(B(C),v)| > 0 since v € U(C') and R(C) < 1 by Lemma 13. Then
MI(C,v) = |MCS(B|(£SC)SE)3‘8TE§(“ A and thus MI(C,v) > 1 > R(C). Therefore
R(C +wv) > R(C).

5.4 Case c

For cases ¢ and d we will consider which nodes from B(C) are not a member of
B(C +v). If we consider B(C) Z B(C + v), we define the set of nodes that will
leave the boundary as a consequence of adding v to C' as:

Z(C,v) = B(C) — B(C + )
={ue B(C) |U€B(C+v)}

Intuitively, case c is the same as case a except for the loss of a set of boundary
nodes Z as a consequence of adding v to C. From the inbound boundary edges
i(C) we will need to subtract the edges from Z to C' and from the boundary
degree u(C) we must subtract the edges from Z to G.N.

Lemma 20. Thus case ¢ amounts to:

i(C) + €+ |arcs(B(C +v),v)| — |arcs(Z,v)]
u(C) + e —|ares(Z,G.N)|

R(C +v) =

5.5 Case d

The last case, d, is similar to case b except for the loss of boundary nodes as we
have seen in case c.
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Lemma 21. Thus case d amounts to:

1(C)+e+ B(CHw),v)|+ 5(v,C)|— s(Z,
R(C +v) = HO e e e !

Note that cases ¢ and d can also define cases a and b respectively, since Z
will be the empty set in cases a and b. The fraction of inbound edges from Z
may be used to reason about cases ¢ and d just as we reason about cases a and b.
Suppose we are considering case ¢ for some C +v. Then we may apply Corollary
1if |ares(Z,v)|\|ares(Z,G.N)| < R(C + v) if we use the R(C + v) definition
from case a. The use of case b while considering case d is analogous.

6 Error Analysis

After each step in the algorithm the community found is an approximation of
the actual community. We denote the actual community around a given source
node v as [v].

There are two kinds of errors in this approximation. The first is an error of
omission where we may exclude a node from the actual community, u € [v] Au &
C. The second is an error of commission where we may include a node that is
not within the actual community, © € C Au ¢ [v]. In this paper we only consider
the first kind.

To analyze such errors we require additional information about nodes out-
side of a local community in order to consider their relevance to that community.
Therefore we group such external nodes in multiple boundaries around a com-
munity such that we are able to reason about their relevance to that community
in term of their distance to that community. In this section we consider two
distinct ways to determine membership of a boundary, by path distance from
the community or by their optimal local modularity value.

Regardless of how membership of a boundary is determined, we assume that
the nodes that are in the boundary closest to the community are the most
important nodes. Thus nodes closer to the community are more likely to be a
member of this community.

Ideally, we would like to see new nodes in the web graph that become in-
creasingly important to a community move closer to that community over time
instead of appearing in the community out of the blue. If the node first appeared
at boundary k, it should gradually move to a boundary with a lower value for k
until finally merging with the community.

Suppose there is a node u that is a part of the actual community [v] but it is
not within community C. So C' + u would represent community [v] better then
C does. However, we may not know much about node u and therefore we may
need to assume information about the edges, and perhaps nodes, between u and
C.

This node v may be at a k step distance from community C', meaning there
are k—1 nodes in the path from C' to u. In this paper we only consider the prob-
ability that u is 1 step away from C, thus u € U(C). If we find this probability,
distance k£ may be determined by induction.
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In this section we propose a probability function for omission errors for a
local community defined by the incremental definition we coined earlier.

6.1 Boundaries by Distance

First we consider community boundaries by distance. In order to group external
nodes we express their importance to C by path distance. We define community
boundaries as clusters of nodes that are referred to by nodes from the community
in k steps.

One can imagine that an external node can be reached through various paths
with a different length. We will place a node in the boundary according to
its shortest path from the community, thus a node can only be a member of
one boundary. We define boundaries by distance as By = C and By41(C) =
B(B(C)). Note that B;1(C) = B(C) and B2(C) = U(C). We may also define
boundary k for community C' as:

Bk(C) = {1} € G.N | v kal(C) A HuGBk_l(C) [u — ’U]}

6.2 Boundaries by Modularity Value

We may also define boundaries by modularity value. Instead of using node dis-
tance, we define importance of a node in terms of the modularity value of a
subset that both this node and the community source node are in.

A local community is defined as a set of nodes that has a coherence that
corresponds to a modularity threshold. The set of local communities in G defined
by modularity threshold d is:

LO(G,d) = {C CG.N | R(C) > d}

We define a layer as a cluster of nodes from the graph that contains some source
node and, as a whole, corresponds to a given modularity value indicating the
coherence of this cluster.

Layer(v,d) = {C € LC(g,d) |ve C}

where d is the defining modularity threshold for a layer. For a graph that contains
several layers around some source node there will be a series of such layers.

The layers are sorted by their modularity thresholds such that the most co-
herent layer, that has the highest value for d, is L;. In contrast to the boundaries
defined by node distance, the use of layers allows room for overlap. This approach
may be more computationally intensive then the usage of boundaries by distance
because it requires the community identification algorithm to be used a number
of times, the exact amount depends on the desired amount of layers.

The approach is quite versatile and may be used for other community def-
initions if one would substitute the modularity criterium in LC(G,d) with the
criterium for any other community definition.
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Fig. 3. Left: Multiple boundaries for community C' defined by node distance. Right:

Multiple layers around source node v. R(L1) = gj:, R(L2) = ii:, R(Ls3) = gj:

6.3 Omission Error Probability

In this subsection we consider the probability of missing a relevant node such
that v € [v] Au & C. Let k be the distance from C to node u. Then there is
a (shortest) path of lenght k& from C to u. The addition of each of the k — 1
nodes on this path starting with the one closest to C' will have an impact on
the modularity of C'. Since we cannot predict the impact of the addition of more
than one node at a time we will require each node in this path to improve the
community.

The probability function considers how likely it is that a node from the actual
community is not in C but at k steps away from C instead. This distance is
expressed by being a member of boundary (by distance) k. Thus the probability
function is defined as:

Pr(ue[v] |ue By)

We use the configuration model for directed graphs [5] which represents a
random (directed) graph with a given degree sequence to reason about unknown
edges. In the configuration model random graphs are generated that are like a
given graph such that they have the same set of nodes and for each node the same
degree as the given graph. The edges are randomly distributed in accordance to
the predetermined in and out degree of each node.

For a directed graph one must consider that the edge direction has great
influence on the expected degree distribution. Suppose there are two nodes, u
and v. Node u has a high outdegree and a low indegree while v has the opposite
degree distribution. So a given edge is more likely to run from u to v than vice
versa. Thus if we observe such a degree distribution in a directed graph we should
consider an edge from v to u as statistically surprising.

For each node we consider whether the connected edges are incoming or
outgoing. Let m be the total amount of edges in the graph, k" is the indegree
of node 7 in the graph and k¢“! the outdegree. The configuration model leads to
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the probability of an edge from j to 7 in a directed graph:

kz_'nkqut

Pr(j —i)=—21—
m

We may use the power law to reason about the degree distribution of unknown
nodes. As mentioned in the introduction of this section, we reduce the k step
path to £ = 1 and consider how likely it is for a random node at distance 1 to
become a member of C'. Later we may determine the probability at distance k
by induction. So we are adding a node from the universe to the community and
we are interested in the probability that this will improve the community.

Pr(R(C+v)>R(C) |veU(C))

The incremental definition for the local modularity of a web graph community
considers four cases. So we can break this probability function down to finding
the probability of R(C + v) > R(C) for each case and the probability that each
case may occur. In this paper we elaborate case a, the other cases are analogous.

For case a we proved that adding node v to the community C' always improves
C in Corollary 1. So we only need to consider the probability that this case may
occur, the requirements being v ¢ B(C' + v) A B(C) = B(C + v). The first
condition is met when all edges from v are directed at nodes within C', the
latter requires all nodes that refer to v from C to remain within the boundary.
Thus these nodes need to have another reference outside of C. We denote this
probability as:

Pr(v#u ’uED)*ZPr(u—M) ‘u—>w,w€D—v)
ueC

The probability of no edges from v referring outside of C' may also be denoted
as 1— Pr (v — D). So we can resolve both probabilities using Pr (z — A) where
x € G.N and A C G.N. We will denote the combined indegree of all nodes in
set A as k. By using the configuration model and the power law we find this
probability:
Pr(z— A)=Y07Pr(z— A |k =d)x
Pr (k2 = d)

oo d.EY 4
NZd:O m e

in

= T > a0 de™?

kit oo —x
~ A [Pre T dr

Using the omission error probability coined in this section we illustrate how to
estimate the quality of a local community defined by our incremental definition.
Our analysis has shown how this can be achieved and the results look promising.
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7 Conclusions and Future Work

We have considered relevant web graph community properties and analyzed how
to identify such communities. We discussed two models for observing community
evolution and found the snapshot model too coarse and proposed the use of an
incremental model for tracking web graph communities.

We chose to use local modularity for defining a local community in the web
graph without having knowledge of the entire graph. After observing specific
local community cases we have proposed an extension to the definition of lo-
cal modularity and subsequently we have introduced an incremental definition
thereof. Our incremental definition considers four distinct cases to explain the
impact of the addition of a new node to a community. So this technique allows
us to observe the small step evolution of the structure of a community and its
boundary in terms of local modularity.

While observing a community in a local model there may be a need for ad-
ditional contextual information of a community. Using a local approach there
usually is only knowledge of all nodes within a community and its universe. We
have proposed the use of multiple boundaries to group external nodes by their
relevance to a community. We proposed two measures for defining such bound-
aries, grouping nodes by distance to a community or by the highest modularity
value of all possible clusters that relate a node to a community.

The error analysis for local communities looks promising. We are able to
reason about the quality of a local community by considering the probability
of omission errors for a local community. For future research we are interested
in continuing the error analysis. Besides considering the other cases of the in-
cremental definition for omission error analysis we would like to validate the
omission error probability.
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8 Appendix: list of symbols

Ajj An edge j to 7 in an adjacency matrix
arcs(X,Y) Set of edges from X to Y

B(C) The boundary of community C
Bi(C) Same as B(C') but at distance k
C A web graph community

D All nodes outside of community C
G A graph

G.E All edges in graph G

G.N All nodes in graph G

i(C) Edge count from B(C) towards C
kin Indegree of node ¢

kout Outdegree of node 4

k; Degree of node i

LC(G,d) Set of local communities with R(C) = d
Layer(v,d) Element of LC(G,d) containing node v
MI(C,v) The mutual interest of C' and node v

Pr Probability function

Q Newman’s modularity measure
R(C) The modularity of C

u(C) Edge count from B(C) to any node
U(C) The universe of community C

[v] Actual community for source node v
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