Deploying the Semantic Web in the
Welfare Environment

A DUTCH CASE STUDY

Master Thesis Computer Science
RADBOUD UNIVERSITY NIJMEGEN

Jos Claessens
August 25, 2009

Thesis nr: IC 612

Supervisors
Radboud University: ~ Prof. dr. ir. Th. (Theo) van der Weide
PPC: Jan-Willem Schoenmakers

Second reader: dr. P. (Patrick) van Bommel

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

ii

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

in memory of Sjaak Claessens

"A #2 pencil and a dream can take you anywhere”
- - Joyce A. Myers

iii

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

iv

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

Preface

In the summer of 2008, I got in contact with Partners in Professional Computing (PPC).
The main question we had after our meeting: "Does the Semantic Web have any benefits,
and if so: how should we exploit them?" An entire world opened up for me when
exploring this exciting area of web technology. The subjects at hand happened to fit my
computer science interests nicely: web technology, conceptual modeling and logics,
deployed in an environment closely related to human interests. I was pleasantly
surprised with the clear human relevance radiating from the Social Map. My first thanks
therefore go out to my colleagues at PPC, in particular my supervisor Jan-Willem
Schoenmakers, for their assistance in my analysis of their daily environment.

As it happens, one of the most important aspects of academic writing is its academic
character. Right from the start, I found an excellent supervisor in the person of Theo van
der Weide. I dare to express here that I couldn't have finished this thesis without him.
He made me realize that a pencil and a dream really can take you anywhere*.
Unfortunately, the associated quote belongs to Joyce A. Myers. Nevertheless, I thank
Theo very much for showing me how to deal with all kinds of uncertainty that are
typical for the process of becoming a master.

I would like to thank many people for their seemingly eternal patience and
tranquility, especially when I sometimes lost mine. In the first place, this goes for those
closest to me: my Father, parents, family and of course Laura — you are wonderful.
Thanks to all friends that kept motivating me with comforting words when it was
needed — or when it was not needed, for that matter.

Finally, I would like to thank you, reader, for taking the effort to read at least part of
these roughly 28,000 words describing the results of my research. After all, I wrote them
for you. I hope you enjoy reading them at least as much as I enjoyed writing them.

Jos Claessens

Nijmegen, August 2009

* or 23 figures, at least

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

vi

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

Abstract

In this thesis, we investigate the abstraction gap between the real world and knowledge-
intensive applications supporting tasks. We propose to bridge this gap by constructing a
machine-interpretable conceptual model. To illustrate our method, we perform a case
study in the welfare environment, deriving a model from an existing Dutch web-based
database-driven information system. Our model is constructed using the established
languages PSM and ORC and subsequently interpreted using a novel logics language
called PSL. The result is suitable to support any novel web application in the welfare
domain, using Semantic Web techniques. We investigate how these techniques can be
used to enhance efficiency and effectiveness of the resulting application, compared to
the current approach.

vii

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
Master Thesis

viii

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT

Master Thesis

Table of Contents
T INEOAUCHION. ittt sese s sas st sesas st sssssessaesssssssssssssssssssasssasssnsanes 1
1.1 Background ..o 2
1.1.1 Web technolOgyccoiiiiiiiiiiiiiiiic 2
1.1.2 The Social Map ..o 4
1.2 ReSEarch OULHNEcoiuiiiiiiieeee ettt ettt e 7
1.2.1 Problem identifiCation...........coeceirieiierieeieeee ettt 7
1.2.2 Research tOPiC........ccuvuiiiiiiiiiiicicccc 9
1.2.3 TheSiS OULIMNEeiiieiieiieeee ettt sttt 9
2 Modeling the Welfare ENVIironmentcoccovevvcreirunencnncsecsnincssesncsssessessessessesees 10
2.1 Whatisa domain model?.........cccooiiiiiiiiiiiinieeeeteee e 10
2.2 Way of WOTKING......ccoiiiiiiiiiiiiiici e 11
2.3 Our model [anguagesccccceurviiiiiiiiiiiiie s 12
2.3.1 Predicator Set MOdel........coouiiiiiiiiie et 13
232 Object Role Calculuscccoiviiviiiiiiiiiiiiiiiicc 14
3 Welfare Environment Model.........c.cocivieininninninninniininninninnnnininnsnniecsnesssescsssssens 16
3.1 The MOl ettt ettt et st b e saeas 16
3.1.1 IMOAEL COTE ..ottt ettt et e st esbeesneeesaeeas 16
3.1.2 SOIULION SPACE.....uiiuiiiiiiiiiiii e 17
3.1.3 Problem SPace.........cccoviiiiiiiiiiiii e 28
3.2 Possibilities and challenges...........c.ccccoviviiiiiiiiiiiiii 30
3.2.1 ATLICE TEVISTEEM ...ttt et ettt s 31
3.2.2 Dynamic knowledgecccooviiiiiiiiiniiiiii 32
4 Towards a Semantic Web application...........iiicininiiiiiinininicicininennenenenes 36
4.1 Semantic Web languages...........ccccueeiiiiiiiiiiiiiiiiiiiicic 36
4.1.1 XML: the mediating metalanguage............c.ccocoeveviiiiiiininiiiiiiicice 37
4.1.2 RDF and RDF Schema........ccccovuiiiiiiiiiiinieeiieeeiee ettt 39
4.1.3 OWL ettt ettt ettt ettt ettt e st e et e eate st e ente st e enaeenes 44
414 SPARQIL .ttt ettt ettt ettt ettt et sttt et 46
4.2 Transforming to the Semantic Webcccocooiiiiiiiiiii 47
421 Transforming an ORM modelcccooiiiiiiiiiiiiii 47
422 Transforming a thesaurus...........ccocoiviiiiiiiiiiiii 49
423 Transforming a relational databaseccoccooeviiiiiiiiiiiiiiiiie 50
4.3 Interconnecting semantic modelscccooiiiiiiiiiiiiii 52
4.3.1 Conceptual model typesccccoeviiiiiiiiiiiiii 53

ix

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT

Master Thesis
4.3.2 Connecting to the Worldcooooiiii 55
5 Transforming PSM to PSL.........cninininninininininininreiiisissessessesssessessessesesees 57
5.1 PSL syntax and semanticsccccueviiiiuiiiiiiiiiiiiiici 57
5.2 Transforming basic PSM to PSL..........ccccccciiiiiiiiiiiiiiiiicc 58
521 Fact tyPe..cciiiiiii 58
5.2.2 Specialization...........ccccvviiiiiiiiiii 59
5.2.3 GeNETAlIZATION ..eivuviieiiiiiie ettt sttt et e s esbee s eeeae s 59
524 Uniqueness consStraint.........cccoouvvviiiiiniiiiiiiiiiii s 59
5.2.5 Mandatory constraint............ccccoevviiiininiii 60
5.2.6 St CONSEIAINES ...ceiuiiiiiiiiiie ettt sttt ettt e s beesbee b e saeees 60
5.3 Transforming advanced PSM to basic PSM...........cccccceviiiiniiiiiiiiiiciie, 61
5.3.1 Objectification........ccoiiiiiiiiiiic 61
5.3.2 POWET tYPC ettt 62
53.3 SeqUENCe tYPecoiiiiiiiiiiiii 63
5.4 Transformation exampleccccoiiiiiiiiiiiiiiiic 63
5.4.1 Sample populationccccceiiiiiiiiiiiiiiiii 63
542 Transformation to basic PSMccccieriiiiiiiniiiniiieneceeeeee e 64
543 Transformation t0 PSLccccoiiiiiiiieeeeeee e e 65
6 Conclusion and futture WOTKooivievinnernininnenntincnninninneninissssieessesssesessssssens 69
6.1 CONCIUSIONeiiiiieiie ettt et ettt et e e st e et e sateesbeeesbeeenbeeennteesbeeesaseeeas 69
6.2 FULUTE WOTK .ottt sttt ettt sae e 69
RELEIEIICES .ucuviniriiriieiitiiieirieststssescesessesssessssssssesssssesasessssssessssssssssssossssssossonsessassassssssesns 71

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

1 Introduction

We have grown used to the World-Wide Web (WWW), which was originally designed
in the early ‘90s by Tim Berners-Lee [1]. The WWW can be characterized as a collection
of linked documents. The innovative part of the original web was the use of a uniform
format to mark up web documents and - more importantly - using hyperlinks to link
different documents and other resources to each other. Since its introduction, the Web
has grown explosively. Currently, automatic spiders are constantly wandering around
to determine its structure, which is ever changing. The Web being so large, human users
try to find what they want using powerful search engines. However, this process still
often proves difficult due to ambiguity of search terms or the sheer size of possible
matches. It's up to the user to further refine his search query and formulate it in a way
that’s probably successful, given the search engine’s rather limited possibilities.

The most important reason wide-spread search engines currently feel limited is the
markup of the documents they have to work with. Most of the structural elements of
(X)HTML documents are aimed at presentation, and therefore, human understanding.
Automatic reasoning about content remains difficult. Annotating this content with
semantical metadata is a major step forward: it enables more intelligent processing of
user queries and related documents, comparing results not only on the textual level but
also on the level of their meaning. By using standardized formats for representing
knowledge and reasoning rules, the Web is changing into a Semantic Web. Semantic
documents may be processed automatically, answering information need by using
underlying data concepts, rather than only the used representation. Intelligent searching
and reasoning will become much easier and consequently more advanced.

The Semantic Web’s effect will be most notable in an environment where users have
a complex or (textually) ambiguous information need that cannot easily be converted to
"Googlian" search terms. In this thesis, we focus on one such environment, which we call
the "welfare environment": everything related to residents with a specific welfare need,
for example impaired or chronically diseased. Such residents are also called "clients", a
label inspired by their common need for help to find their way in regular society. Special
service organizations have emerged to assist conventional health care in this task, which
lies beyond their responsibility. A (web-based) information system can support clients
by answering their specific information need. We call such information system a Social
Map. Clients may query the system directly or visit a service organization, where a
counselor may use it to support his own knowledge of the welfare environment.
Improvements upon the Social Map reflect upon the quality of counseling sessions.

There are three major service organizations operating in the Dutch welfare
environment: MEE!, GGD? and the union of Dutch libraries (VOB)?. MEE is most
specifically targeted at servicing people that ‘need a hand’, our target group. The GGD is

! http://www.mee.nl
2 http://www.ggd.nl
3 http://www.debibliotheken.nl

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

more generally targeted at extending health care ‘outside hospital walls’, while the VOB
is most generally oriented, providing residents with all sorts of information, including
information about their social welfare environment. Although the activity focus is
different, all three have developed a Social Map system to suit their needs (and those of
clients).

Our research has been done in cooperation with Partners in Professional Computing
(PPC)4, the technical partner of MEE. The BSK system, as their Social Map is called,
strongly resembles the SoCard® system used by the GGD and the G!DS¢ system used by
the VOB. In fact, a cooperation between all three parties has been established in April
2008 to start integrating the different information systems and make use of each other’s
knowledge. However, due to the fact that the Social Maps have been developed
independently and with a different view on the environment in mind, this task proves
very difficult. Even when extending a single Social Map, typically to resemble client's
desires more closely, practical design issues occur more often than not.

In this thesis, we will investigate the Dutch welfare environment in a case study, to
determine how to approach the deployment of Semantic Web technologies. We believe
that successfully connecting to the emerging Semantic Web can significantly benefit
service organizations to help clients and their counselors in their information need, both
individually and cooperatively. By approaching the matter in a generic way, we aim to
ensure that resulting recommendations should also be useable for comparable
integration challenges in other environments.

The remainder of this chapter is organized as follows: in section 1.1 we will provide
some background information about the current Social Map and its environment. In
section 1.2, we will present the setup of our research towards a novel approach.

1.1 Background

We will first briefly investigate the development of web technology, to gain insight in
the technical environment around the Social Map. Then, we will look more closely into
the Social Map itself. We identify the key challenge in the current approach, which leads
towards the main research question of this thesis.

1.1.1 Web technology

The inventor of the Web, Tim Berners-Lee, originally designed it as “an information
space, with the goal that it should be useful not only for human-human communication,
but also that machines would be able to participate and help” [2]. Interestingly, already
in 1998, when the worldwide creation of web pages had led to machine-supported
human-human information sharing, he identified certain key missing elements that
would be needed to truly reach the full potential of the Web as originally intended: to
enrich data so that machines can process and reason about them. However, realistically

4 http://www.ppcnet.nl
5 http://www.socard.nl
¢ http://gids.bibliotheek.nl

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

enough, he admitted those elements were technically out of reach at that moment. In the
years that followed, the potential of the Web targeted at humans advanced dramatically.
Reflecting upon these changes, we can identify some developmental stages.

Firstly, the number of web pages and links between them increased as the benefits of
“being online” became clear for both suppliers and consumers of information. The
development of search engines further changed the way the Web was used; nowadays
humans can relatively easily find what they want using appropriate queries. We can
summarize this first major development stage as follows: it was made possible to
publish and access information designed for human consumption.

The next major developmental stage is commonly referred to as Web 2.0. It roughly
describes the Web as we experience it today. Ankolekar et al. identified three main
features introduced in this “new Web”: community, mashups and AJAX [3]. Just like
search engines, these features were gradually introduced in the existing web and
afterwards considered fundamental enough to be worthy of a special designation. The
community feature concerns the ability of regular web users to collaborate and share
information, creating a collection of information for all to use. This collection could not
have been made by any individual user, for he or she would not know as many other
users as there are contributors to a community web page. Furthermore, the permanent
availability and automatic processing of a web site provides the community with a
natural environment that replaces all organization and structuring effort that would be
hard to reach with human effort. Because users gain more from the system than they are
required to put into the system, hardly any external motivation is required and the
emerging of a community mostly depends on its familiarity in the web environment.
The mashup feature is about pulling together different sources of information, to create a
new source that is greater than the sum of its parts. Examples include a personal
homepage, where parts of different other pages are shown together for easy overview,
but also the integration of “things with a location” with Google Maps’, to show their
location in a much more intuitive way (namely on a map). Examples of this include
housing overviews, online market places, but also just an easy map view of just a
company’s location. The mashing up of different information sources already stimulates
web application developers to provide interfaces for other web developers, so
cooperative efforts may emerge which benefit all involved parties. Finally, AJAX is the
technological achievement that largely made the other two features possible. The main
benefit provided by AJAX is asynchronous communication. This allows more intuitive and
advanced user interfaces. Also, the responsiveness of mashed up web pages increases
when different parts may be retrieved and refreshed independently.

Web 2.0 provides humans with a solid platform in which human-human
communication is possible. However, this is not reflected in human-machine or
machine-machine communication. All efforts related to interpretation, combining and
evaluation of information are left to the human user. This state of affairs calls for the
next major development, which was already called the Semantic Web in the 1998

7 http://maps.google.com

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

visionary document by Tim Berners-Lee [2]. As outlined in a recent evaluation by Jorge
Cardoso [4], this vision is rapidly becoming reality. The key idea of the Semantic Web
vision is to provide a machine-readable representation of knowledge, so that facts about
concepts and relations are accessible independent of the (human-targeted)
representation. Using logics, machines can efficiently reason about world knowledge
and answer questions more accurately. Users may search the Web “as though it were
one giant database, rather than one giant book” [2]. The abstraction from representation
will not only help machines to “understand” the information that is stored, it will also
help integrate different information sources or reconcile different views upon the same
world. By explicitly stating how all views are related to each other, we may ultimately
reach a total model of all views on all world concepts, which represents all knowledge
known and published. In this thesis, we will humbly start by looking at a small part of
this global environment: the Dutch welfare environment.

1.1.2 The Social Map

The purpose of the Social Map is to provide Dutch residents with information about
their welfare environment. It is aimed at residents with a specific welfare need, such as
chronically diseased or impaired, which we call clients. But anyone might benefit from
the provided information. We can think of the Social Map as a conceptual application,
which tries to cover all information that clients in the welfare environment are interested
in. Let’s take a look at the welfare environment’s environment.

e imoafaa:ja obout, z,;:»rfa‘.'_\b- }

" e Yl paf{:-

. f lenoviled a¢. o of

aboul lrml{ ot

MEE @
Ccoynselop C By i ornenl

SEF-lcinﬂ vaiﬂ{inﬁ
advice. oelvice,
(o ? !
[l %]
i mkom{:} %‘?
Chenl Proi»rrrm
»4._ o arer

Figure 1 - The informal welfare environment

In Figure 1, we see the counselor and client depicted, including the interaction between
them. The associated thought clouds contain their main contribution to this interaction.
The client has some problem, which is obviously in some way related to the real world.
But typically, once a client fulfils the role depicted here, this connection is unclear for

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

him. Therefore, he seeks advice from a counselor whose knowledge is more focused
upon the welfare environment. Just like the welfare environment itself, this knowledge
is part of the knowledge about the whole world. Of course, we cannot place all world
knowledge in just a few square centimeters. But we tried to give an idea of what we
mean: related organizations (org), offering products (P) and services (S), sometimes only
when certain rules (R) are met. All these may play any role, for we may view the real
world as an environment in which everything is possible.

We may also look at the welfare environment at a formal level. By this, we mean all
systems, information and technical structures about the (welfare) environment. This is
depicted in Figure 2 below.

MEE ey o
counselor 2
result

. Provi!ﬂ(n
sl "3/]\ lmfvimj
odvice.
query

Lrowse
,i _ e e
l ,{__.-...__._._...._.._..._

e —

p— - e e e e
.;ocmt{ SR Taternet ' ~ A |
e | B Taes

in F«;:a.t-‘om

Figure 2 — The formal welfare environment

There is a clear resemblance between the formal and informal environment. Note that
the client and counselor, as well as their interaction, are still informal in this picture. In
fact, Figure 2 depicts the current way of working. Knowledge outside of system
boundaries is omitted. What remains is the Social Map, which is a part of a larger
network of applications and information, the internet. For knowledge sharing purposes,
this may be regarded as the formal version of the real world, together with other
networks which are more private (but may nevertheless contain useful information for
some areas). Interaction with formal systems is not just a matter of thought invocation,
but rather based on a query or browsing, gaining feedback which is hopefully useful. As
we can see, the counselor and client may both retrieve information from the Social Map.
The length of arrows illustrates a bit how difficult the process involved is.

This Social Map, representing this welfare environment, will be the center of our
case study. It is a deviously simple single rectangle in Figure 2, but we will now have a
closer look to appreciate encountered difficulties.

As we saw before, there are three major service organizations in the Netherlands: MEE,
GGD and VOB. Each has a different activity focus and a corresponding view on how the
welfare environment should be modeled. These views are not formally modeled, but
they are the foundation of their different Social Map applications, which look like the

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

abstract conceptual one in their own way. They have been implemented as a web
application, enabling easy access and maintenance, as is a common way to design an
information system nowadays. This situation has been depicted in Figure 3.

r:: well Fa re. environiment [ono LJI@.&{S&

",

o

.
1
b
I
\
!
1
]

I .

[—

Figure 3 — Social Map approaches

In this figure, “welfare environment knowledge” is defined by all knowledge that could
possibly be useful for clients. Thereby, we can neatly reference an ungraspable part of
total world knowledge. We hope you appreciate the joys of abstract conceptual
modeling. The different Social Map approaches each try to model this knowledge. Some
observations about this situation are worth noting.

* There should be a certain conceptual similarity between the different Social
Maps. All three parties could therefore benefit from each other’s knowledge,
while still respecting the different ways to make use of it.

* Knowledge from the welfare environment (such as information about available
organizations, services or products) is possibly stored in three different ways, or
not captured in all three systems. As a result, it costs more effort than desired or
the scope is too limited.

* Clients or other web users have to “translate” their information retrieval process
to match the different approaches and may as such miss out information or at
least need to combine results from multiple sources.

As a result of these considerations, there is a desire to integrate the different approaches
and share present knowledge. This has led to the cooperation of the three service
organizations, trying to interconnect their data models. However, since there is no
formal conceptual model of the welfare environment and the applications and the
underlying data models have a different nature, this integration process quickly stifles
and is restricted to sharing very common information about which all views agree, for
example the name and address of an organization. Though it is possible to use this kind
of basic information to extend an individual Social Map, it is unsatisfactory.

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

This lack of data structure interoperability is typical for a data-intensive web
application. Note that this problem exists even in a thorough cooperation of technical
partners; connecting to related third party applications will prove even harder. In this
thesis, we are going to analyze why this problem occurs and propose an abstract,
general approach towards dealing with it.

1.2 Research outline

In this section, we will provide an overview of our research. We will start with the
identification of what we regard as the main problem encountered in contemporary
application deployment. Based on this analysis, we will set out the path we follow
during the rest of this thesis.

1.2.1 Problem identification

Deploying a data-intensive (web) application requires some sense of the environment
about which data will be stored. The formalization and transformation process is far
from simple, since the environment needs to be modeled towards an application-specific
data structure. No matter how the resulting data structure might become, there will
always be a gap between it and the way people in the environment work and think.
Figure 4 illustrates various design steps which are typically implicitly or explicitly taken
during data-intensive application development.

T 1

P ——

| [m————

|

: i Dﬂmmin : Dati‘ \ F'IPF;UC&{';EQH !

Y Erwviconment | model ‘ >| medel = o J

'\ ,A/EA_.J‘-J"‘-*')‘ | A] I
| I : Application |
; U Domain Bla |
| E moedel L——’J [
l ! B ! !
| | — \ '
| { (ﬂ"iodej | — — i
; 1 l B2, ﬂp[ﬁiiba{iaﬁ 1
‘ l l \4‘\}[Bab [
! A i

. SOURCE | MODEL | INTERPRETATION! APPLICATION ,‘

Figure 4 — Application abstraction layers

We distinguish four main abstraction layers: source, model, interpretation and
application. The first layer is the environment itself. This is where typically the user base

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

and real information, objects and relations reside. In our case, this is of course the
welfare environment. An application which belongs in this environment has some
connection with it. Note that since we are concerned with data-intensive applications,
the connection typically has to do with data from the environment. Therefore, the
development layers are targeted at deriving a suitable supporting data model which has
its roots in the environment. Each design step, visualized by an arrow, introduces a set
of decisions, errors and concessions. This is why two different models, though sharing
the same direct root, are different. The further away this shared root is, the larger the
difference between elements of the same layer becomes. We are interested in three main
difficulty areas encountered in the current approach:

(1) satisfactorily interconnecting two applications

(2) extending an application

(3) satisfactorily interconnecting an application with the rest of the world
When we look at Figure 4, we can see why targets from these areas are so difficult.

Target 1 gets more difficult the more the roots of the involved applications differ
from each other. For example, interconnecting application Ala with B2b will prove
much more difficult than interconnecting B2a with B2b. A satisfactory connection can
typically be made on the nearest commonly agreed model, establishing a translation
between different specializations after that point. The nearest common model of Ala
and B2b doesn’t exist, it is the informal environment. B2a and B2b share the same
interpretation model and may therefore relatively easily be interconnected.

Target 2 may prove difficult when there is no clear path between the source layer
and the application layer, for the desired extension. Typically, an application extension
comes forth from a desire in the real world environment (the source layer). This desire is
typically not simply transformed into a comparable desire in the application layer.

Target 3 is perhaps the most ambitious of them all, trying to connect different
applications based on a connection between different environments. Nevertheless, this is
what users are trying to achieve when browsing the web using different solitary
applications, which can be combined to achieve a larger goal.

As we see, even when all design steps are explicitly followed and elaborated, some
frequently occurring targets are difficult to achieve. Additionally, domain model and
data model layers are often unknown or imperfect, which makes connecting different
information sources even more difficult. It would be a tremendous help if the
environment were formally modeled independent of actual implementation approaches.
This eliminates the non-formal common ancestor that is often the only ancestor known
to all applications, creating a formal model that serves as a central interoperability
network that relates to all specific implementations and by which all can use each other
without needing to construct their own transformations.

To do this, the environment should be formally described in a standard way. The
resulting model is about the meaning of concepts in the environment, in contrary to the
representation. This separates the challenge of what the environment looks like from the
challenge of how its data should be stored and accessed. Reaching such a semantic

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 1 — Introduction

structure, called an ontology, is one of the main goals of the Semantic Web. Creating an
ontology is the matter of ontology engineering and therefore beyond our scope.

However, we may just assume that such ontology were in place, replacing the informal
source called the welfare environment with a welfare ontology counterpart. Still, there
should be a path between this new source and future applications. This is the second
goal of the Semantic Web: real life applications that make use of the common general
source model and extend it across all respective layers. In this utopic vision, all our three
difficult targets are within reach, since everything is connected by a machine-
interpretable semantic structure. Within this vision, we shall now identify the most
relevant part which will be the topic of our research.

1.2.2 Research topic

Currently, a lot of research effort is spent towards ontology engineering and application-
specific concerns around the Semantic Web. When we look at the Semantic Web goals,
there is some sense in these topics: the first is targeted at creating an ontology, while the
second is targeted at deploying applications within the new semantic structure.
However, when we put it in the perspective of Figure 4, we see that most work is
focused at the “beginning” (layer 1) and the “end” (layer 4). Interestingly, the missing
link between both ends is rarely investigated in a structural and general manner. We
believe such investigation is essential for successful deployment of the Semantic Web in
any environment, so we will focus our research on the creation of a suitable domain
model and interpretation model. This leads to our main question:

How should the abstraction gap between environment and application be bridged?

1.2.3 Thesis outline

Our research will have the form of a case study. By taking the MEE/PPC view upon the
welfare environment for granted, we will construct a transformation design in two
phases. The first phase will be targeted at the model layer. We will construct a domain
model of the welfare environment in chapter 2 and 3. After that, we will have a literature
overview intermezzo in chapter 4, investigating what the Semantic Web really is and
what others have done towards reaching its goals. In chapter 5, we will extend our
domain model with a general transformation method towards the interpretation layer.
The combined result will largely fill up the gap found between the source and
application layer. We conclude in chapter 6, with a reflection upon our case study,
briefly summarizing its value for the general case of application development for the
Semantic Web. Finally, we will suggest some topics for future work.

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

2 Modeling the Welfare Environment

In chapter 1, we saw the domain model placed in the second layer of application
development (Figure 4). It has its roots in the actual (welfare) environment. In this
chapter, we will prepare the construction of such a model. First, we will define a domain
model more closely in section 2.1. Then, we will investigate the way such models are
typically constructed in section 2.2. We will conclude this chapter in section 2.3, by
shortly introducing the languages we will use to create our domain model.

2.1 Whatis a domain model?

The purpose of a model may be formulated as follows: "a model tries to grasp (describe)
the essence of some part of the world around us" [5]. This definition refines our initial
view with a small addition: the essence. Apparently, we are not simply trying to grasp
the world or some part of it. Since a definition tends to become worse when the essence
is removed, we choose to keep it. So what does this essence look like?

We are constructing an administrative model, the purpose of which is to construct a
"shadow world (...) powerful enough to answer all kinds of questions about the state of
affairs in the shadowed world" [5]. A typical information system has the same purpose.
Common practice in information system design is to store only data that is really
needed, to save storage space. In other words: only store elementary facts. The rationale
behind this is that when (preferably all) essential elementary facts are known, we can
easily derive more complex facts from them for occasional interests by using temporary
computing power instead of using permanent storage.

all Locts about the world
all f e \
f”';_u facts akout

welfore ervirenmenk

; elem é’.ﬂl;ﬁ(ﬁ
Lacts about

welface
thviromneink

. ety e

Figure 5 — Fact hierarchy

10

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

This brings us to the essence of a domain model: (1) elementary facts from the shadowed
world, and (2) a grammar for deriving more complex facts, which is maximally simple
and maximally expressive. This essence is depicted in Figure 5. As we see, the core of
our model is a base of elementary facts, depicted by the inner space. Furthermore, there
are derivation rules, combining elementary facts to construct facts in the larger space
that contains all facts about the welfare environment. These derived facts are visualized
by arrows, accounting for their relation with elementary facts. Facts that are about the
world outside of the welfare domain are neglected, but of course the welfare
environment is not really isolated.

By using fact orientation, we focus on actual information, communication and facts from
the welfare domain that describe the most essential things, as objectively as possible. By
doing this, we create a model that is an abstract shadow version of the subjective
environment as it is experienced by different people. Therefore, it is a suitable method to
create a model in the second layer of application development. The shadow world is
easier to grasp, maintain and reason about, while it is still widely applicable due to its
abstract general purpose.

2.2 Way of working

Now that we know what we are trying to gather, we will look at how we may gather it. In
this process, we can identify an interaction between two roles: the domain expert versus
the system analyst. The domain expert role is much like the counselor role we already
saw. He knows a lot about the target domain, and he can be asked to formulate
sentences that express facts from this domain. Essentially, the domain expert may
provide all possible facts, but lacks the bird-eye view needed to structurally sort them
out. This bird-eye view is provided by the system analyst, who is capable of (formally)
structuring facts and determining what to consider elementary and how to define the
grammar to derive the remaining facts. This interaction is depicted in Figure 6, adapted
from [5].

informe | sewi - Formen formal
level level level

:
 e-o-s T @Pe----> @Y |
!
:
1

mode.f

informant modle ;ﬂj builder

mediaktor

DomAam EXPERT SYSTEM ANﬂLj ST

Figure 6 — Interaction to construct a model featuring domain expert and system analyst roles

We can see that the domain expert role actually consists of two different roles: the
informant and the modeling mediator. How these roles are implemented in a concrete

11

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

situation differs, but generally the informant role is least specifically targeted at one
person. It consists of the knowledge, thoughts, processes and communication that takes
place inside the target domain. The informant can be regarded as a spokesperson for the
domain that knows a lot about these things. On the other hand, the modeling mediator
forms expressions for the system analyst, based on his communication with the
informant. These expressions may be seen as suggestions for facts that could be part of
the constructed model. Whether they really will become part of the model is up to the
system analyst. Where needed, he will communicate with the domain expert to clarify
unclear or ambiguous fact sentences. Notice the telephone icon associated with this
communication. It depicts the difference in nature between both communication lines:
the modeling mediator communicates with the informant by informal language (as
natural as it gets, including circumstantial influences like facial expressions or
intonation) while he communicates with the system analyst using formal language.
There are two main differences: formal language is restricted in form (only spoken text,
hence the telephone symbol) and it is controlled (not all expression power of a regular
natural language is suitable for a model). The communication between modeling
mediator and system analyst is strictly fact-oriented. As we can see, the mediator role is
crucial in that it provides the translation between the natural informal world and the
structured formal world. The quality of the model depends on the quality of mediating
fact sentences. To maximize the probability of success, assuming that the domain expert
and system analyst have a fixed quality, we should focus on the language used to
communicate. A well-chosen language is a key success factor, and therefore it deserves
special attention.

2.3 Our model languages

The model language should meet two requirements. First of all, it should be formal so its
meaning is clearly defined and strong reasoning can be applied. Secondly, it should be
understandable for people in the welfare domain, who generally have less understanding
of mathematical languages and concepts. These people use natural language, which
tends to be ambiguous and informal. Meeting both requirements seems to be a
challenge, but when you think of it, it is the very nature of computer science: trying to
bridge the gap between computer and human in such a way that both worlds
understand each other and that the bridge provides a desired connection between both.
Therefore, it's not surprising that nowadays there are some very mature and widely
used modeling languages that are both formal and understandable. They make use of
something called structured natural language. The key idea of this is that one is allowed to
use natural language to make expressions, but only when the expression meets certain
conditions. These restrictions ensure that the expression is predictable enough to be
interpretable in the formal domain, while allowing for maximized natural
expressiveness. Resulting sentences are generally "almost natural”; they may just
sometimes look a bit odd around the points where the structural restrictions were most

12

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

hard to meet. We will make use of this kind of language to create our domain model.
Recall that it will consist of elementary and derived facts.

The first language of choice is very similar to Object Role Modeling (ORM), first
introduced by Terry Halpin [6]. ORM is widely used for conceptually modeling a
domain based on natural language examples from the domain itself. The resulting
model is a formal basis from which a desired implementation may be derived, which is
typically an information system that contains data about the modeled domain. We will
make use of an ORM variant called the Predicator Set Model (PSM), formalized by Ter
Hofstede et al. [7]. Compared with traditional ORM, it contains some additional
constructs which provide greater expressivity. We will summarize the main idea and
used constructs in section 2.3.1. With PSM, we will build a model of the welfare
environment, containing elementary facts and a framework for constructing derived
facts.

The second language is Object Role Calculus (ORC). While ORM is targeted at
structurally modeling the environment, ORC is targeted at defining additional derived
facts and logical rules, as well as reasoning. A detailed overview of ORC is provided in
the PSM introductory paper by Ter Hofstede et al. [7], where it is called LISA-D. It was
conveniently designed as an extension upon PSM, so using both languages together for
our domain model is quite straightforward. We provide a summarized version in section
2.3.2.

2.3.1 Predicator Set Model

With the Predicator Set Model, we can define an information structure using mainly the
following constructs.

1. A finite set P of predicators, or roles.

2. A nonempty set O of object types, containing label types and entity types. Label
types are concrete object types (such as Name), while entity types are abstract
(such as Person). Typically, entity types are connected to label types by binary
relationships called bridge types. Officially, there may be no entity type without
such relation; however, we will omit many of them in our model for the sake of
clarity.

3. A partition F of the set P; elements of F are called fact types. Bridge types are a
special kind of fact type. Also, fact types may be objectified and play the role of
an object type.

4. A set G of power types, a special kind of object type. A power type is the parent of
its element object type. Instances of a power type are always (nonempty) sets of
instances of its element type. A power type does not necessarily contain all
possible sets.

5. A set S of sequence types, which are quite like power types. The differences are
that sequence type instances may contain an instance of its element type multiple
times, and ordering is important. As such, we call an instance of a sequence type
tuple, rather than set.

13

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

6. A binary relation Spec on object types, capturing specialization. A Spec B means:
the instances of A are formed by all instances of B meeting some requirement.
This requirement is referred to as the subtype defining rule.

7. A binary relation Gen on object types, capturing generalization. A Gen B means:
all instances of B are also an instance of A. Typically, different object types are
generalized towards one common parent object type. As such, all instances of A
must be identifiable by their properties as an instance of B.

8. The function Fact : P — F yields the fact type containing given predicator.

9. The function Base : P — O yields the object type associated to given predicator.

Using the elements above, a formal grammar may be constructed. In this grammar,
object types are grammatical concepts and fact types are language rules. It enables
expressing elementary and derived facts about the shadowed world, in our case the
welfare environment. Furthermore, we express restrictions upon the allowed population
of the model by using the usual ORM constraints.

Like ORM, PSM uses a graphical notation of which the above set model is the formal
basis. We will use this graphical notation in the design of our model. We assume reader
familiarity with ORM graphical notation. A complete overview of PSM as well as
elaborated examples of both the mathematical linguistic and graphical notations can be
found in [7].

2.3.2 Object Role Calculus

Besides creating a fundamental network of elementary facts in our ORM model, we
would also like to express things about the welfare domain that do not have an
elementary nature. Frequently, these expressions are combinations of multiple facts,
combined with logic operators or conditions. To express such facts in a formal and exact
way, we would traditionally have to use abstract languages from mathematics.
However, such languages are typically hard to understand for people inside the target
domain. The main argument for using ORM still holds: they are used to natural
language and a more specific vocabulary about welfare related concepts. This
vocabulary is found in the ORM schema, and therefore it is logical to extend the ORM
vocabulary with some logical keywords that have sufficient expressive power to
formulate interesting facts in structured natural language, but are also sufficiently
formally defined to facilitate disambiguous reasoning. Such extension has been
proposed by Ter Hofstede et al. together with PSM, and was originally called LISA-D
[7]. Later, the language has been slightly refined and renamed to Object Role Calculus
(ORC). There is a more obvious link with Object Role Modeling in this name. We will
shortly summarize ORC here; for a complete overview we refer to [5] and [7].

We will mainly use the following constructs from ORC. In the following definitions, we
use D; for an arbitrary ORC expression, analogously to [5].

1. LET D; BE D,. This defines a new concept (D;), based on a combination of already

present concepts (D). D, may be constructed directly from the PSM model or

14

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 2 — Modeling the Welfare Environment

from earlier ORC definitions. For example, we might introduce an alias for a
known PSM object type Product: LET Deliverable BE Product.

2. D; D, THAT D3. With this construct, we can express a correlation rule. This is a
combination of multiple properties of the same object type. For example, we
might write Product delivered at Location belonging to Organization producing
THAT Product. Omitting the keyword THAT would result in the selection of
Products that are delivered at a location belonging to an Organization producing
any Product.

3. D; D, ANOTHER D3. Analogous to THAT, but now we state explicitly that the D;

instance must be different from D;, rather than equal.

D; AND D,. Operator to express that D; and D, should both hold.

D; OR D,. Operator to express that either D; or D, should hold.

D; BUT NOT D;. Operator to express that D; should hold, but D, should not.

D; D, IS ALSO D;. With this construct, we state that when relationship D, holds

for instances from D;, relationship D3 should also hold. For example: Product

delivered in Area “6500” IS ALSO delivered in Area “6600”.

8. D; IMPLIES D;,. This is the subset condition again, but now it concerns both ends
of expressions D;. Whenever D; holds, D, should also hold. For example: Product
delivered in Area IMPLIES Product delivered at Address at Location in Area.

NG

Since ORC is used to formulate derived fact types, we will only scarcely use these
constructs in our case study to illustrate its purpose. Using the full set of ORC keywords,
any desired rule about the basic domain model may be expressed based on the grammar
provided by the ORM model. This enhances the number of natural language concepts
and relations that are covered by the domain model, without introducing redundant
ORM constructs.

15

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

3 Welfare Environment Model

It's important to note that there is no such thing as the welfare environment. We are
trying to capture some part of the real world, which consists of entities like persons,
organizations, products, relations. The definition of which part this is, is not one we will
find in a dictionary, nor in literature. It is a subjective and rather arbitrary definition,
usually formalized for a specific purpose, if formalized at all. However, we would still
like to reason about it. Therefore, we performed a case study to create a model of the
welfare environment as experienced by MEE.

We define this welfare environment as follows: “all organizations, products, services
and information related to needs of individuals who are impaired in some way”. This is what we
will try to capture in our model. For more details, we refer back to section 1.1.2. To
maximize general applicability and for the sake of clarity, we focus on the most
important concepts and relations.

This chapter is organized as follows: in section 3.1, we gradually introduce all
relevant concepts, resulting in an ORM model and ORC rules. We follow up in section
3.2 with an analysis of this model, providing an overview of interesting possibilities and
challenges.

3.1 The model

In this section, we will look at all relevant concepts inside the welfare environment, as
well as those directly connected to it. Looking at Figure 2, we can identify two key parts
of our model.

1) The relevant welfare-related information known by a MEE counselor, which
reflects the actual environment. This is the knowledge captured by the Social
Map. As the environment is structured, so is this information. This part of the
model defines the solution space available to the client directly or through a
counselor.

2) The connection to the client; where we look at what a typical question looks like
and how it can be answered using facts in the welfare environment. In this part
of the model, we investigate the characteristics of the problem space. We will add
basic reasoning and model the dynamics of interaction.

The combined model is a reflection of the total information flow in typical welfare
problem solving. But first, we will start off simply with the abstract core of the model.

3.1.1 Model core

One of the most universal and abstract facts is also a fact within the welfare
environment. The shortest abstract of many academic writings is the core of our model:

[ORM1] Solution X solving / solved by Problem Y.

This is our first structured natural language sentence from the welfare domain. Note that
we use the shorthand notation of sentence interleaving, writing down a bidirectional

16

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

sentence in one go. It should be read as the sentence pair “Solution X solving Problem
Y” and “Problem Y solved by Solution X”. Together, they can be transformed directly to
an ORM fact type, with two objects (“Solution” and “Problem”) and two roles (“solving”
and “solved by”). See Figure 7 for this simple ORM snippet.

[Prob)

Figure 7 — Problem and Solution

The uniqueness constraint (UC), indicated by the double-sided arrow, is on both roles.
This indicates that Problems may have multiple Solutions, and Solutions may solve
multiple Problems. We can regard this core model as the interface between the
upcoming solution space and problem space. We will elaborate both abstract concepts
now, starting with the Solution concept. The Problem concept will be covered in section
3.1.3.

3.1.2 Solution space

We will introduce relevant concepts around the abstract Solution concept step by step,
creating different ORM snippets. Together, they form the solution space. We start off by
refining the Solution concept itself.

3.1.2.1 Redefining the Solution concept

The first question we ask is: “What is a Solution?”. To answer this question, we take a
look at the welfare environment. Inside the welfare environment, there are companies,
governmental and non-governmental organizations and individuals who have
something to offer for people with a specific welfare need. In structured natural
language, this may be represented as:

[ORM2] Solution : Organization X offering / offered by Product Y

This introduces a new fact type, connecting the new concepts Organization and Product.
This fact type is very suitable to be objectified as a refinement of the Solution concept.
Concrete problem solving usually happens when a client gets in contact with an
appropriate Organization, which has something to offer for him (i.e. the Product). The
most accurate definition of a Solution is the combination of Organization and Product.
In example sentence ORM2, we define the Solution concept to be the objectification of
the fact type following the semicolon. We will use this notation multiple times in this
chapter when introducing new objectified fact types.

17

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

»SQJ le

. Ol‘fjanimi: iory vqﬂ . Prodick

Figure 8 — Refining the Solution concept

In Figure 8, the new fact type and redefined Solution concept are shown. Note that
throughout the creation process, we are focusing on new model parts in the shown
snippets, omitting unchanged parts for readability. Although the omitted part of the
model is not shown, new parts are always an extension or refinement upon what we
already had.

The UC is again on both roles. This means that Organizations and Products may
both also play a role in other Solutions. For example, the Problem “I cannot walk” may
be solved by some wheelchair offering. Suppose that the “Roundabout 2000” is such a
wheelchair; it would be an instance of the Product concept. Wheelchairs of this type may
be offered by different Organizations. Also, a wheelchair delivery organization can
surely be expected to deliver different types of wheelchairs.

It's important to note that the Product concept as intended here has a very abstract
nature. Therefore, we will leave it as an atomic entity type, although Products surely
have relations other than their role in a Solution. For example, we might think of a
manufacturer, build year or dimensions. Although those properties are suitable for a
wheelchair, they don’t make sense when talking about another valid Product: “basket
ball training”. In case of that product, we would rather add fact types for a trainer and
course times. In our model, we try to keep the concepts as concise and general as
possible to be able to focus on the key points of interest in the welfare domain. A real life
application (in the Semantic Web) would deal with more details. These details may be
introduced by further extending the Product concept just like we are extending the
Solution concept now. One of the most straightforward ways would be to identify and
model the characteristics of different product categories and generalizing these
categories to the more abstract Product entity type as it is now.

3.1.2.2 Organization

When we look at Organizations, there are a few generally applicable related concepts
worth investigating. More often than not, the site of an organization is an important
detail in the search for an applicable solution. Therefore, we take this detail into account.
Exemplary structured sentences about the housing of an Organization are as follows.

[ORM3] Organization X housed at / housing Site Y
[ORM4] Organization X having headquarters at / headquarters of Site Y
[ORM5] Site X having role / role of Siterole Y

18

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

The first two sentences (ORM3 and ORM4) are about organization housing. Typically,
an organization has at least one site where it is reachable for one or more kinds of
activity. Especially larger organizations with multiple sites have one site designated as
headquarters. However, both fact types regarding a Site do not explicitly require
involvement of every Organization. Theoretically, an Organization may exist which has
no physical site related to it. Sentence ORM5 expresses the role a Site plays. Typically,
different activities are related to different Sites, especially in larger Organizations.
Examples of Site roles include postal, delivery, visitor or production. The Siterole
concept contains all occurring activities that may be related to a Site. Putting all this into
an ORM diagram, we get the following:

{w‘gito P{:'!’,
delivery, Pﬂxdud‘ion}

Figure 9 — Introducing the Site concept

Every Site should have at least one Site Role assigned to it. This is enforced by the
totality constraint (TC), depicted by the large dot on the “having role” role. The
population of the Site Role concept itself may only be taken from a set of predefined
values. In Figure 9, there is a value constraint containing four possible values on the Site
Role concept. These values may seem awkwardly limiting, but they facilitate the
expression of automatic reasoning rules about different Sites of an organization. For
example, suppose we would like to know where to send a letter to Organization “MEE”.
We need only use the following ORC sentence:

[ORC1] Site housing “MEE” AND ALSO having role “postal”.

Any Site satisfying this rule is a valid MEE site to send a letter.

Notice the lack of a totality constraint on both Organization and Site, regarding the
office and headquarters. This is because not all Organizations need to have a (physical)
site, and not all relevant sites need to host an organization. For example, a site may just
be a general place of delivery. The UC for the office fact type is only on the Site role: a
Site is forbidden to house two different Organizations. This distinguishes the abstract
Site type from its physical location. Multiple Sites may have the same physical location,
but by this UC we enforce that we are able to address them all separately when it comes
to their Site Role.

Headquarters are defined using ORM rather than ORC. Specifically, we use the
subset constraint to enforce that any instance of headquarters is also an instance of

19

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

office. Additionally, an organization may only have one headquarters. This is enforced
by the additional single role uniqueness constraint.

3.1.2.3 Delivery methods

Now that we have a notion of Sites related to Organizations, we introduce delivery
methods of a Solution. We should keep in mind that “delivery” should be interpreted in
the broad sense, for it is implicitly related to the Product part of the Solution. Recall that
both the wheelchair and the basketball training are Product examples which need to be
“delivered”. Although “delivering training at the gym” has an illogical sound to it, it is
logically sound. Should the use of natural language ever drive us nuts, we can use ORC
to define a convenient alias.

Solutions may be delivered in two different ways: at a fixed location or at home. Here
are the corresponding structured natural sentences:

[ORMS6] Solution X delivered at / having delivered Site Y
[ORM7] Solution X delivered in / eligible for delivery of Area Y

Although both methods of delivery are equal in some sense (the Solution arrives at some
other place), they are also different. Take a look at Figure 10 below.

f Solubion
del _sfv&m?i

wy

e;f::;ii;%a _ ..
olejiverj of- .

Figure 10 — Solution delivery methods

Delivery at location (ORMS6) relates a Solution to a Site, the concept we saw before. A
Site is a single fixed location. Furthermore, we have some information on what role the
site fulfills. When designing a system based on this model, we could for instance
formulate a reasoning rule about a solution to be delivered to all sites related to its
organization, but only if that site has the “delivery” role. This kind of rule may be
specified according to the needs of specific organizations and doesn’t need to hold
system-wide. Therefore, there is no such harsh restriction in this ORM model: any site
may principally host a delivery at location. With ORC, we might add the rule like this:

20

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

[ORC2] Site having_delivered Solution IMPLIES Site having role “delivery” AND
ALSO housing Organization INVOLVED_IN Solution

Sentence ORMY7 concerns delivery of a Solution in a geographic Area. This is a new
concept, which we will soon further refine. For the time being, it's an abstract type
which stands for the area to which the Solution is available. Typically, this means that it
is something to be used at home. As we can see, there is an UC on only one role here;
contrarily to the on-site delivery a Solution is just deliverable to one area. Of course,
what this area looks like may geographically be very hard to describe. Using ORC, its
characteristics are captured very simply; we can define a Service Area as follows.

[ORC3] LET ServiceArea BE Area eligible_for_delivery_of Solution

A ServiceArea is a specialization of a regular Area. ORC3 is its subtype defining rule.

As a last note, we see a TC over two roles here, enforcing that any Solution is at least
deliverable in one of these two ways. After all, what use is a solution if it cannot be
“delivered” to solve a problem?

3.1.2.4 Geography

Geography is an important factor in the determination of an appropriate Solution for a
client’s problem. The purpose of our model is to get a physical client in touch with a
physical solution. Adding geographical concepts to our model places the abstract
concepts we saw up until now into the real world. It’s of great general value to be able to
reason with geographic concepts in the model, just like we are used to in real life. For
example, knowing that a country is larger than a street and being able to express an area
of delivery in terms of postal codes, but also in terms of geographic coordinates. Maybe
we would even like to express a vague definition like “near Nijmegen” as a delivery
area. When we have a conceptual framework grasping basic geographic concepts, we
can use ORC to express this kind of derived concept based on specific needs. This setup
is analogous to the one we saw in the previous section, where we chose to keep the ORM
model generic, using ORC rules to narrow down constraints when desired (see ORC2).

The geography model consists of two parts. The first part is modeling locations. built
up around an abstract concept called “Location”. This is simply any physical location. In
practice, it will mostly be a combination of two geographic coordinates. They might for
example be coordinates in the well-known latitude-longitude system. However, we do
not make such implementation choices in our domain model and leave the Location
concept atomic. The Area concept we saw earlier is just a set of these Locations.

[ORMS] Area CONTAINING Location

To distinguish power type definition from fact type definition, we use the keyword
CONTAINING. ORMS defines Area to be a power type having Location as its element

type.

21

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

The second part is modeling geographic concepts. By this, we mean concepts used in
natural language to indicate a specific geographic area. Examples of this are “address”,

“postal code”, “street”, etc. We regard an Address as the center concept of this part. It
consists of a postal code and a (house) number.

[ORMO9] Address : Housenumber in / with PostalCode
[ORM10] Site X at/ of Address Y

An Address is located at exactly one location, and every Address has a Location. This
ties both geographic model parts together.

[ORM11] Address X at/ of Location Y

The following ORM diagram shows all new concepts and relations graphically.

Figure 11 — Geography model

Note that we placed the PostalCode concept inside a layered model of different
geographic concepts. Each geographic area concept is a power type of a smaller
geographic area concept. We defined a PostalCode to be the elementary area concept,
followed by Street, finally leading to the largest concept: Country. This model part is a
basic example of how geographic concepts may be integrated into the welfare
environment to be able to reason with or about them. In a real application, we could
attach a more complete semantic web of geography, linking more geographic terms to
each other, with a more elaborated relationship. However, it's already possible to
structurally store all postal codes and larger geographic areas in this model.

22

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

This geographic model allows us to answer relatively exotic queries. For instance,
we can answer “Is Solution X delivered at Toernooiveld 1, Nijmegen?” using a fully
populated model and some basic reasoning. The reasoning system should understand
that Nijmegen is a City containing the Street Toernooiveld, which is a set of Postal
Codes. Only one of them has the number 1 attached to it, leading to a unique Address
instance. Now we only need to verify that the Location of this Address is inside the
Service Area of Solution X. Strictly, we are cheating a bit here. In our model, nothing
enforces that only one PostalCode within a Street is associated with a HouseNumber, as
is a geographic rule. This may be added using ORC and is formulated as follows:

[ORC4] Street CONTAINING PostalCode with HouseNumber BUT NOT Street
CONTAINING ANOTHER PostalCode with THAT HouseNumber

3.1.2.5 Refining Solution delivery

Solutions are not always just delivered under all circumstances. More often than not,
there are conditions to their availability for a client. For example, a Solution might only
be deliverable to women experiencing the Problem it solves. Although a certain male
might have the exact Problem that is solved by this Solution, he will still not be able to
receive it because he doesn’t meet the condition “Client needs to be a woman”. This
leads us to refine our general model, adding the concept DeliverableSolution.

[ORM12] DeliverableSolution : Solution X deliverable when being met / enabling
delivery of Conditions Y

[ORM13] Conditions CONTAINING Condition

])glivera%m Solukior Conditiong

vhen be,:'v:j mek

delivere
in

d delivered

eligible. for
delivery of

h&vi

Figure 12 — Adding the DeliverableSolution concept

23

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

This change also impacts the model part we constructed in section 3.1.2.3. The delivery
methods did not change, but they should now be connected to the DeliverableSolution
concept. In Figure 12, the new concepts are added, including relevant constraints.

Note that the Condition concept is very abstract. The nature of conditions may vary
heavily, therefore it is difficult to further refine the Condition concept. Just like we
argued when dealing with the Product concept, we might also cover various forms of
condition by elaborating some and then generalizing them to the abstract Condition
concept. Because conditions are a more vital part of client — counselor interaction, we
will investigate one such concrete form: the age restriction.

The age restriction
The age restriction is an example of a condition that is related to some Solutions. When
modeled, it may be automatically verified whether a client satisfies it. The following

example sentences are expressing relevant facts. Figure 13 shows them graphically.

[ORM14] Person X having / of Age Y
[ORM15] AgeGroup CONTAINING Age
[ORM16] AgeGroup X targeted by / targeted at Solution Y

Figure 13 — Example of a delivery condition: age restriction

Note the asterisk sign (*) on the Age-of-Person role in the ORM model. This denotes that
Age is a temporary variable, which will be computed when needed based on static data.
Assuming we can compute the Age of a Person, it can be automatically verified whether
a Person is eligible to receive the Solution targeted at some Age Group: the Age of the
Person only needs to be a member of that set. This condition may be expressed in ORC.

[ORC5] Client having Age IN AgeGroup targeted by Solution

When this condition is associated with a Solution, it results in a DeliverableSolution
which is deliverable to its associated delivery Area and/or Site when this condition is
satisfied.

Another example of an automatically verifiable delivery condition is the gender
restriction we saw in the example with which we started this section off. Creating a
model for this condition is more straightforward than the age restriction. We leave it as
an exercise for the reader.

24

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

3.1.2.6 Textual knowledge

The presented collection of models defines an overview of the basic composition of the
welfare environment, when put together. It defines the core of what basic concepts and
relations are available to answer the needs of a regular client, who is searching for a
solution to a certain problem. Within this model, we can identify a special kind of client.
He is just searching for information about something welfare related. This information
might serve different purposes: for example it provides insight in his situation or what
possibilities there are for him. It might lead to spawning new interests or guide the client
in an unstructured way. Therefore, it does not necessarily fit the basic definition of a
client being a Person with a Problem. However, textual knowledge is a vital part of the
welfare environment, and it is treated as such in the current Social Map approach.

The core concept of this informative part of the environment is simply an unstructured
text called a Describing Text (or shortly: DText). The concrete information is inside these
DTexts; due to the heavily unstructured nature of its content, we cannot further
conceptually break up a DText itself. However, there are interesting things to say about
the structure at a higher level. We regard a DText as an elementary concept which is
targeted at providing information to a human. DTexts are structurally related to one
another through two external structuring mechanisms: a thesaurus and a DText Tree.
Both mechanisms are linking DTexts, so they have a navigational and relational
purpose. We will look at both mechanisms in more detail.

Structuring DTexts by means of thesaurus terms
A thesaurus is a semantically ordered vocabulary and as such a structured set of terms.

These terms may be designated to a DText, typically functioning as a very short
summary or providing hints about the content of the text. This relation may be used to
find other DTexts (or other objects for that matter) related to this thesaurus term,
semantically connecting different pieces of information or concepts from the welfare
environment. Specific welfare environment thesauri have already been designed. In our
case, the Dutch NIZW thesaurus is being used?®.

Structuring DTexts by means of a DText Tree

Besides linking DTexts to thesaurus terms and making use of its semantic structure to
relate different items to each other, we might also structure them directly. In fact, this is
a quite common feature, comparable to a text book that can be navigated by its index

and its table of contents. Both ways of navigation may be preferable at different times.
Generally, someone who is in need of information first needs a rough guide to clarify
what he is really looking for, while the result of this action may be fine-tuned
afterwards. Note that both the table of contents and the index of a text book are strictly
redundant once someone is able to directly search by any keyword, as is common
practice on the internet. Describing Texts are manually structured in a navigable tree
with labeled nodes which act as categories. By selecting applicable categories, one may

8 http://www.thesauruszorgenwelzijn.nl/

25

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

refine his interest area until the best matching DText -
is found. We will now analyze the composition of a Ll LA
DTeXt Tree. s R e e -

question? [

- ore. 'm{'@ g
hel

Figure 14 shows an example of a DText tree about
Living. It contains various texts with information
about this general subject. We call “Living” a Main
Category. After selecting this main topic of interest, ‘

we can see how it is divided in different products
subcategories. In this case, we see “at home” and people F
“somewhere else” as examples of first level

subcategory and that there is also a second level - Somevhere 343&;

inside both. Of course, there is no boundary as to waiking tirm

how many levels there may be, so we just call them
“Category” regardless of level. In the example
tigure, Categories are underlined. Last but not least,
we have the actual Describing Texts are depicted
with labeled dark squares; a combination of Title N e S
and DText. Essentially, Titles do not differ from

question? [
Spégdiﬂ& wp

) o Figure 14 — Example DText tree
Categories, for they are both fulfilling the same

navigational and presentational role. The difference is that a Category labels a tree node,
while a DText title labels a tree leaf. Since both nodes and leafs are some part of a tree,
we call them both a DText Subtree. Altogether, this leads to the following formal rules.

DText Tree composition

[ORM17] DTextTree SEQUENCING DTextSubtree

[ORM18] DTextSubtree : DTextNode OR DTextLeaf

[ORM19] DTextLeaf : Title X labeling / labeled by DText Y
[ORM20] DTextNode : Title X labeling / labeled by DTextTree Y

Thesaurus link

[ORM21] DText X described by / describing ThesTerm Y

Additional concept definitions

[ORC6] LET Root BE (DTextNode BUT NOT OCCURRING-IN DTextTree)
[ORC7] LET Subject BE (Title of DText)

[ORCS] LET Category BE (Title of DTextTree)

[ORCY] LET MainCategory BE (Category INVOLVED-IN Root)

26

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

We defined four additional concepts as a subtype of the general concepts. They are
common terms used in the textual knowledge representation and have an illustrative
purpose. A Root node is a node that is not occurring as an element of a larger tree
(ORC6). With the concepts Subject and Category, we distinguish between title labels
associated with an actual text (ORC?) and title labels associated with a tree, thus used
for navigational purposes (ORCS). Finally, a Category of a Root node is a special kind of
category. With rule ORCY9, we may address it directly as a MainCategory. All new ORM
and ORC rules together lead to the model depicted in Figure 15. Note that this model is
independent of the model we had constructed until now, because it models a different
aspect of the welfare environment.

Thes.

Term

dﬁ&crib@

'E)

described

Figure 15 — Describing Texts about the Welfare Environment

27

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

3.1.3 Problem space

Now that we have explored the Solution concept, we will proceed with the Problem
concept. The importance of this concept immediately becomes clear when we formally
define the Client concept.

[ORC10] LET Client BE Person experiencing Problem

The Problem concept has a crucial role in the subtype defining rule distinguishing a
Client from any other Person. Note that since we are modeling the welfare environment,
a Problem is always regarded to be welfare-related.

Inside the welfare domain, there are Solutions that solve Problems, as we saw in the
previous section. However, it is very unlikely that there is a direct match between the
Client's Problem and the Problems that have a Solution. In a naive approach, this would
mean that the counselor would have to send the client back home without a cure to his
pain. Luckily, we are not naive, and we will look more closely to what a Problem
essentially is.

We define a Solvable Problem as a Problem that has a Solution:

[ORM22] SolvableProblem X being solved by / solving Solution Y

Sentence ORM22 replaces sentence ORM1. Now, how does the Problem concept relate to
the SolvableProblem concept? A client's Problem is solvable when it is a
SolvableProblem or it can be regarded as a series of SolvableProblems, where solving
each of them individually also solves the Problem as a whole. Identifying
SolvableProblems is the task of the counselor, and possibly also of the ultimate
intelligent supporting application. The result of this process of analyzing a Problem to
identify Solvable Problems inside of it can be represented using a pie chart. The
examples in Figure 16 illustrate possible results of a counselor's analysis of a Problem.

Figure 16 — Different breakups of a Problem to SolvableProblems

SPx denote different SolvableProblems which constitute part of the total Problem. Also,
part of the Problem may be Unsolvable (U). Note that Unsolvable just means that the
counselor doesn't know any Solution for it. We follow the closed world assumption here,
which means that if we don't know a Solution, we boldly state that "... therefore there

28

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

isn't any". How a Problem is decomposed into a pie chart like the ones above is a very
interesting process and it would be worthwhile to have the information system help the
counselor as much as possible with this. In this model, the main question a counselor —
and therefore the information system — is trying to answer is: "What is the largest
possible part of the Problem that can be solved using only Solutions of which the Client
can meet their delivery Conditions?”. The ORM model capturing this is our target in this
section.

Let's take a look at an example of a typical counseling meeting. Alice, a young
woman of 25 years old, just revalidated from a car crash accident. Unfortunately, she
will have to live in a wheelchair from now on. She used to be the sporty type, but what
should she do now? One day, she decides to visit a welfare counselor specialized in this
kind of questions. The counselor has a meet and greet with Alice and he gains an
understanding of her situation in a short session. There are all kinds of organizations,
products and services targeted at practicing sports with a disability, but a lot of them
have special requirements. For example, there is a gymnastics group targeted at elderly
people, a target group Alice clearly cannot identify herself with. Some training courses
require prior knowledge, or a health club gives preferential treatment for people who
live in roughly the same area as its location. The seemingly simple task of guiding Alice
towards a new life with sports is not that simple after all. After a few sessions, Alice
gains a fine understanding of her possibilities and is able to choose from amongst them.
So how does this example break up? We will now reformulate it in terms of our
conceptual structure and see what’s added.

1. Person Alice experiencing SolvableProblem P

2. SolvableProblem P solved by Solution S

3. Solution S deliverable when being met Conditions C

4. Condition Ci IN C IS ALSO met by Person Alice
The challenge to be solved is to find the best possible set of SolvableProblems adhering
to these four rules. The first step is to identify all SolvableProblems being a part of
Alice's Problem. However, this is more difficult than it seems. Not all SolvableProblems
known to the counselor are also solvable in Alice’s case. Constructing a set of
SolvableProblems for Alice is therefore twofold. First, we need to validate whether Alice
meets Conditions C for all relevant general SolvableProblems. After that, we should
choose a subset from this set which will altogether solve the largest part of Alice's
Problem. This way of working is not necessarily the way a counselor exactly acts.
However, it captures the essence of the difficult matching problem that needs to be
solved. The ORM model in Figure 17 shows the counseling process. We added the
following sentences:

[ORM23] Person X experiencing / experienced by SolvableProblem Y
[ORM24] Person X meeting / met by Condition Y

We included the original sentence “Person experiencing / experienced by Problem”,
since that essentially didn’t change. The dashed line between Problem and

29

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

SolvableProblem indicates the interpretation process involved, which we cannot model
with a simple power or sequence type.

Tdelivorable
Wihen Les na
mek

Deliverpble

Solution Conditions
Figure 17 — The counseling process

The addition of the Client to the static solution space introduces two new fact types
labeled A and B. Figure 17 may be regarded as a dynamic information system which
needs population. The counselor starts this population process by analyzing the Client’s
Problem, thus filling fact type A. This acts as a filter upon the static knowledge base; all
Solutions can be retrieved matching with the identified Solvable Problems, and the
related Condition sets may also be populated through related Deliverable Solution
instances. The result of this population is a list of identified Solvable Problems and their
Conditions for delivery. Now for the hard part: all that remains is calculating the set of
Solvable Problems with an actually deliverable DeliverableSolution that solves the largest
part of the original Problem. For this, fact type B needs to be populated. As we saw at
the introduction of the Condition concept, automatically verifying whether a condition
is satisfied is not straightforward. Correctly populating fact type B ensures that the
Solvable Problem concept is finally only populated with problems that are actually
solvable in Alice’s case. Although the population of this schema is far from trivial, the
population does provide a complete overview of the Client’s situation and what
possibilities there are for her.

3.2 Possibilities and challenges

So far, we have focused on the more traditional part of (ORM) information system
modeling. We paid attention to those concepts and relations that are easily translated to
a data model. Storing data is most easy when it is static (i.e. doesn’t change at all or not
often). We just need to fill the generic model with instances from the real welfare
domain, and the information system may thereafter be queried based on users’ need.
However, not everything in the welfare environment is static. To illustrate the
counseling process using our model, we will first revisit the running example in section

30

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

3.2.1. After that, in section 0 we will zoom in on different interesting possibilities and
challenges arising in our model, which come forth from dynamic aspects in the model.

3.2.1 Alice revisited

An information system based upon our domain model contains a static population
which describes all possible (Deliverable) Solutions, which are closely related to a
Solvable Problem and a certain set of Conditions, as was shown in Figure 17. A sample
population may be as follows:

Solvable Problem Deliverable Solution
Solution Conditions
Organization Product
Sports Gym A Youth Basketball Age between 18 and 30
Sports Gym A Basketball 55+ Age>=55
Sports w/ wheelchair |Gym A Disabled Mothers’ Age between 20 and 45;
workout Must have at least 1 child;

Must be a woman

Sports w/ wheelchair | Gym B Wheelchair Hockey | Living max 20 km from Gym B

Wheelchair usage Gym C Training course

Table 1 - Solution space population

In this sample information system fragment, we suppose the counselor already
identified that Alice’s Problem has something to do with getting to practice sports in her
wheelchair. However, to solve (part of) this Problem, different Solvable Problems may
be available. As we see, there is a Solution for “Sports” in general, but also for “Sports
with a wheelchair” in particular. Also, Alice may be assisted in general “Wheelchair
usage”, not specifically targeted at sports but without any conditions. Although not
shown here, the counselor typically knows more details about the surroundings of a
particular Solution. For instance, he may know that Alice’s Problem is solved most
effectively by either solving “Sports w/ wheelchair” or solving both “Wheelchair usage”
and “Sports”, because in a regular — though disabled-friendly — environment, affinity
with one’s wheelchair is assumed and there are less other disabled people to help
getting used to it in the sports environment. However, not all listed Solutions are really
deliverable to Alice, because she doesn’t fit all conditions. Alice’s age is 25, she doesn’t
have any children and her home is 19 km from Gym B. This results in two options for
her, outlined in Table 2. Alice will have to choose between Wheelchair Hockey in Gym
B, which will accept her but is 19 km away, or playing regular basket ball assisted by a
wheelchair usage training course. This will involve two gyms, but they are closer to her
home. And of course, hockey is not the same as basket ball. It's up to Alice to choose
between these two options.

31

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

Solvable Problem Deliverable Solution
Solution Conditions
Organization Product
Sports w/ wheelchair |Gym B Wheelchair Hockey | Living max 20 km from Gym B
Sports Gym A Youth Basketball Age between 18 and 30
Wheelchair usage Gym C Training course

Table 2 — Possible breakups of Alice's Problem with associated Solutions

As we can see, retrieving the relevant part out of the static information system after
attaching a dynamic Client concept proves difficult and requires a lot of human thought,
particularly by the counselor but also by the Client herself. The non-trivial parts are
found at the analysis of what Solvable Problems lie inside the Client’s Problem (fact A in
Figure 17) and determining whether the Client fulfils associated Conditions (fact B in
Figure 17). Even after this, it may still not be clear what combination of Deliverable
Solutions is most desired by the Client. In our simple example, choosing between hockey
and basket ball may already do the trick, but most often the choice will be harder (and
thus automated machine assistance in choosing will be more difficult). We will now
briefly analyze some important challenges concerning dynamic data. Addressing these
challenges in our model is beyond our scope, although they should be dealt with in a
real application.

3.22 Dynamic knowledge

We will now look at some examples of what we call dynamic knowledge. This is
knowledge that is not fully static because it depends on a realtime component. We will
look at some of these components: time, interpretation and environment.

3.2.2.1 Time dependency: Age

A Client’'s Age is a concept easily grasped by humans. However, it is constantly
changing. The Age concept can be split up in a static part (birth date) and a dynamic
part (current date). Just subtracting someone’s birth date from the current date is
enough. A process that’s quite easy, really. But in a static model, it is difficult to just add
an Age concept directly because it would not be possible to populate it statically. To
avoid this problem, we used an advanced modeling construct for dynamic population
based on static information: recall the asterisk in Figure 13. We have the concept Person
and may add the concept Birthdate, both corresponding to clear real world counterparts
that essentially don’t change. The Age concept may now be dynamically populated
based on a calculation function upon Birthdate and it will be repopulated every time it is
accessed. When this information system is queried, a Person’s Age can be populated and
everything is fine. Of course, this is a fairly simple example of time dependency. But the
idea remains the same for more difficult concepts. When time is the only dynamic part,
the asterisk role construct remains applicable and the added complexity will be

32

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

represented in other roles and the calculation functions defining the population of the
dynamic role.

3.2.2.2 Interpretation dependency: Walking Distance

When defining concepts and relations, we are naturally searching for a strict definition.
Sometimes, such a definition cannot be given since it is subject to interpretation. In
literature, this kind of concept is called a linguistic variable, a concept originating from the
area of knowledge representation in fuzzy logic [8]. An example of this is the concept
“Walking Distance”. Certainly, some meaning can be given to this concept. Most
typically, it will be a distance that is “not too long” and it intuitively carries a notion of
time involved to travel this distance. Often the concept of “Walking Distance” is used
when asserting a public transportation route, or determining whether a location can be
reached for someone that doesn’t have any other means of transportation. What is
considered walking distance may vary a lot between elderly and young people, but also
between seemingly comparable people. However, this variance adheres to underlying
statistical rules. Therefore, we use probability theory to approach this kind of dynamic
information, more specifically the expected value distribution graph. Let’s look at how
the expectation about what is considered walking distance may be represented as a

graph.

P (d > olling distance)
1 o

..,.9
d (Jum)
Figure 18 — Walking distance as a linguistic variable

On the horizontal axis, we simply put the distance. We are talking about walking
distance, after all. The vertical axis hosts some probability, of which the values are fixed
between 0 and 1. In this case, we are interested in the probability that given distance is
considered beyond walking distance. Note that we achieve the exact opposite graph when
plotting the probability “distance is within walking distance”. We must keep in mind
that the plotted graph describes the expected distribution for all Clients within a certain
statistic group, such as “all Dutch people”. When a random Dutch Client walks into the

33

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

counselor’s office, this graph should describe what can be expected of his interpretation
of the concept “walking distance”. By using this method, we create a statistical
expectation of a semantically indefinable concept, which acts as a definition. To show
how this works, let us return to the Alice example we saw before. One of the conditions
of Gym B was that the Client should be living “within 20 km from Gym B”. This
condition is seemingly discrete: Alice either lives within 20 km or she does not, 1 or 0.
However, in Alice’s mind this distance condition may be less discrete. It might be one of
these three:

P (vithin 20 lgn) P (within 20 bu) P (ithin 20 i)
/ j 14

l —
s b P) 5 0 o

- o) t' 'ilp - -
“ difon) T e d (i)

k2l
A B C
Figure 19 — Different interpretations of "within 20 km"

As we see, the concept “within 20 km” is interpreted in three different ways.
Interpretation A follows the standard definition: you are either within 20 km (1) or not
(0). In interpretation B, there is a linear reduction from 1 to 0 while the distance gets
higher. The farther away you are, the less you interpret your situation as being “within
20 km”. After 20 km, interpretation A is equal to B. The borderline of twenty kilometers
is equally strict. The last interpretation releases this strictness: here we follow roughly
the same pattern as B, where the feeling of being “within 20 km” will decline even faster
in interpretation C. However, the borderline is not at twenty but at thirty kilometers,
extending the limit because of the notion that it doesn’t really matter that much whether
we would have to travel 21 km or 20, after all. Interpretation C comes near the condition
“should preferably be close, but since 20 km is quite far away, it doesn't matter when it's
not exactly within 20 km”.

This approach of linguistic variables enables us to express information that is subject to
interpretation, and use this information in the knowledge base and querying. The
probability value can directly be used to determine relevancy of a given Solution.

When used for the knowledge base, it enables us to store a Condition. In this case, there
might be three gyms offering services in a radius of “twenty kilometers”, but when
investigated more closely their service area condition looks like graph A, B and C,
respectively. Now we can see that Gym A will always be applicable for a client who
lives within 20 km, while B is more suitable for clients living closer than 15 km and C for
clients living farther than 15 km. Furthermore, C is the only one which services clients
that are not strictly within 20 km.

34

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 3 — Welfare Environment Model

When we apply the idea of linguistic variables to the query side, we view it as the
searcher’s interpretation. This is most useful when the knowledge base does not provide
a definition, but just the variable itself. It might be left to the searching client to think
about whether a gym is within walking distance for him. The gym itself would just state
that a condition is that you live “within walking distance”. For one client, this may mean
that every gym within 5 km is equally suitable (according to interpretation A) while
another client may strongly prefer something very close and have a larger maximum
distance (according to interpretation C). Being able to handle this kind of variables at
both sides of the information retrieval process makes a huge difference.

3.2.2.3 Environment dependency: Conditions and SolvableProblems

The Condition concept is already subject to formulation and validation challenges when
viewed as a static concept, as we saw during the construction of our model. However,
there is also a dynamic dimension involved. Conditions may only be satisfied under
certain circumstances, that may hold at one moment and be negated at another moment.
This effect notably occurs in our model when a Problem is splitted into different
SolvableProblems. Conditions for each SolvableProblem are stored individually and
may be validated as such, but this validation occurs at counseling time in our model.
Some conditions depending on another client environmental situation may be satisfied
at that time, but not at another time, and vice versa. For example, suppose Gym A in
Alice's example would have explicitly required her to have attended the wheelchair
course of Gym C. Alice, not having attended this course at the time, might therefore not
realize that Gym A has an interesting offer for her. Failing to satisfy the condition
associated to playing youth basketball in Gym A at counseling time, she might have had
the choice between a wheelchair training and playing hockey.

When analyzing what the best way to split up a Problem is, the changes occurring to
the environment of the Client should ideally also be taken into account when validating
the conditions associated with possible solutions. This is an even harder challenge, but
handling it to some extent will reduce the number of false positive or false negative
results.

35

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

4 Towards a Semantic Web application

When implementing a traditional database driven application, a conceptual model like
the one we constructed in the previous chapter may to be transformed into a relational
database. Because this transformation may be performed in different ways, we put it
inside the interpretation layer (see Figure 4). With the resulting database, knowledge
data may be structurally stored and retrieved. However, useful data activities like
interpretation and interconnection largely depend upon customized human action.

In a mature Semantic Web, this situation is improved in two ways. First of all, data is
annotated with semantics that are both machine and human interpretable. Because of
these available semantics, reasoning rules are now on the surface and search results or
answers to questions may be based upon them rather than on some invisible strategy.
Therefore, the expected reasoning and understanding level which can be reached by
applications will be more reliable. Instead of providing users with just a result that
hopefully looks like what they needed without really expressing why, conclusions may
now be supported by arguments derived from semantics. Secondly, the data structure is
connected to other (semantic) data structures, thus forming a global web of data. Because
the Semantic Web is like a worldwide database, the combination of world facts to draw
conclusions from is no longer limited by any boundaries, as long as there is some
connection between different sources.

Both improvements are required to increase the functionality offered by a typical
current web information source. When there is a lack of semantics, conclusions are not
supported by strong arguments and as a result they will often be too untrustworthy to
be of use. When the web is too small, combinatory power is too limited and few
interesting facts may be derived. For both improvements, another supporting data
structure is needed. In other words, we should transform our ORM/ORC model to
something else than simply towards the traditional relational database.

In this chapter, we will investigate the Semantic Web more closely. We start off in
section 4.1 with an overview of W3C standards defining the Semantic Web languages.
After that, we will use section 4.2 to investigate research efforts towards transforming
non-semantic structures into their semantic counterparts. In section 4.3, we conclude
with an analysis of how to proceed from our current situation.

4.1 Semantic Web languages

When investigating Semantic Web languages, it's important to distinguish between the
conceptual and implementation aspect. Since we are dealing with web languages, they
are technically founded upon XML. This metalanguage is commonly used as a
mediating language between different applications. In section 4.1.1, we will first look at
this XML foundation to place the Semantic Web languages into a Web context.
Consequently, we will look at the main conceptual language standards found in the
Semantic Web. As we will see, they are RDF and RDF Schema (4.1.2) and OWL (4.1.3)
and SPARQL (4.1.4).

36

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

411 XML: the mediating metalanguage

Web pages are mostly written in HTML. Since the first webpage was written, most
significant improvements have been in the area of what is written and how it is written.
While creating a Web page may still be done in the old-fashioned way, by hard-coding
every single line in a text editor, nowadays there is a variety of tools to make this process
more easy. Advanced text editors provide us with syntax highlighting and assist in
writing by showing available language options. Moreover, there are tools at a higher
level of abstraction which let users design a Web site without writing code themselves.
This has enabled a very large group of users to create their own Web page. But the
underlying foundation essentially remained good old HTML, designed to present a
document in an easy way - for humans. Markup is targeted at the presentation level, not
at the content level. When we want to use content automatically, a machine should be
able to consistently and predictably retrieve bits of information from the document.
When this information is not clearly structured, information retrieval is subject to errors
or at least less predictable accuracy. To cope with this, eXtended Markup Language
(XML) was designed.

_document_tepresentation keowledge represenbation
3
all9.]] &
. e] RS &
)) s i O
i Vo IR =1 | % EHI0El| o
(< o o I SVs | s
> ! giYHON J1=lse
P > b — e ol [V S
2=l >l s A °l=
Ollz||u|l&
%- > OWL

RDF Schema
RDF

XML (Schema, Namegpaces)

Figure 20 - Document and knowledge representation languages on the Web (adapted from [9])

XML is based on the same general ancestor as HTML: the Standardized General Markup
Language (SGML). Therefore, it also uses tags to enclose relevant parts of data.
However, the meaning of these tags is not defined. While in HTML every tag has some
fixed meaning and suggested usage, this is left open in XML. There are only rules which
define valid usage of tags in general, such as the obligatory closure of every tag and
nesting rules. It is up to the programmer to define a suitable vocabulary and process

37

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

given data. These vocabularies may be defined, so one does not just adhere to XML but
for example to XHTML. Strictly spoken, an XHTML document is “just an XML
document”, but because all used tags happen to be XHTML tags, a browser knows how
to display all content as intended by the programmer. Using XML as an underlying
metalanguage and some predefined vocabularies on top of it has the advantage of
extensibility (“everything may be expressed in XML"”) without losing interpretability
(“we know what things from our vocabulary mean”).

Figure 20 provides an overview in which XML is the foundation of all document
and knowledge representation. XHTML, the XML-based Web language, is just one of the
available predefined vocabularies. In this figure, we see mostly language standards
recommended by the the World Wide Web consortium (W3C?), which develops and
maintains proposed global document standards. But since XML is in fact the underlying
general markup language, it is used for a wide array of specialized vocabularies in small
domains. Because machines can parse XML everywhere and interpretation rules are
neatly structured by the vocabulary definition, “talking XML” quickly became the way
to go. In this XML-based communication, there is a clear distinction between
(structured) data and presentation. The structure may be enforced by XML schema rules;
these same rules may be used to know what to expect. However, this information is still
subject to human interpretation. If we see that there is a list of Books, which contain
Authors and PublishDates, we consider this as something else as a list of Animals, which
contain BiologicalNames and AverageAges. For a machine, both lists appear identical.
Also, common structuring concepts such as classifying and hierarchy, which help
humans (and machines, for that matter) to navigate through a lot of information, have
no special predefined meaning in XML. If we want to interpret data with a machine, all
interpretation guidelines should be defined again for every XML application, unless
both adhere to the same standard and the guidelines may be defined for this standard.

When the amount of (XML represented) data on the Web grew, the need for more
intelligent interpretation and reasoning became apparent. In fact, when we search for
information, we most often seek knowledge instead of a document. We don’t really care
how the information is presented or where, but we just need the information. Because of
the enormous size of knowledge available on the Web, represented in even more
documents, it becomes more and more of a problem to manually sift through all
potentially relevant documents, searching for bits of knowledge that provide us with an
answer when combined in a logical way. When all documents are represented apart
from each other in their own (human-interpretable) vocabulary, help of a search engine
remains limited to providing us with a set of documents that seems as relevant as
possible. And it’s up to us to interpret and combine the pieces of information.

The Semantic Web languages help to enrich the current Web with semantical
annotations, so the knowledge aspect may be stored in a standardized way. This
complementing relation between the two “versions” of the Web has been topic of
various research efforts. Ankolekar et al. sum it up nicely as: “future web applications

o http://www.w3.org

38

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

will retain the Web 2.0 focus on community and usability, while drawing on Semantic
Web infrastructure to facilitate mashup-like information sharing” [3]. Iyad Rahwan also
pointed out the benefit of using the human element from Web 2.0 in the Semantic Web,
especially when trying to structure subjective natural language [10]. The community
aspect of Web 2.0 is of such great value because extracting knowledge and intelligence
aspects automatically from natural language text is most difficult. Therefore, human
effort is vital for constructing desired applications. Semantic Web languages are
basically only providing a framework to store the results of this human effort in a
machine-usable way.

In Figure 20, the Semantic Web languages are colored grey. Unsurprisingly, they are
all technically an XML implementation. We would like to pay attention to the depicted
knowledge representation standards based on RDF: Platform for Internet Content
Selection (PICS), Friend-Of-A-Friend (FOAF) [11] and Dublin Core (DC) [12]. PICS
provides a standard way to describe a rating of online resources, the FOAF standard
contains concepts and relations typically used in a social network context. The Dublin
Core standard defines general markup metadata to describe properties of resources, like
author, title and publication date. We will use some of these constructs where applicable
in our examples.

We will now take a closer look to these essential Semantic Web languages and their
use. Note that RDF and RDF-S are depicted on a different level than OWL. This accounts
for a difference in usage: RDF is used to describe and structure the actual knowledge
that’s available, while OWL is used to describe what kind of knowledge is available and
what (logical) rules apply when looking at the structure. In other words, OWL describes
knowledge at a higher level of abstraction. Because of this distinction, we will first look
at RDF and RDF-S and subsequently at OWL. We used the second version of "A
Semantic Web Primer" by Antoniou et al. [13] as a reference source. Furthermore, all
latest details may be found at their respective W3C web pages, which are kept up to date
with latest developments.

4.1.2 RDF and RDF Schema

RDF" (Resource Description Framework) is essentially a data model. Although the
Semantic Web is centered around the XML representation because of its machine
usability, we should keep in mind that other representations are also possible. For
example, a graph representation is more suitable for humans. To gain an understanding
of RDF, we will therefore start with this representation and keep in mind that it can be
easily translated to a version that is interpretable for machines.

4.1.2.1 Data model

The main component of any RDF model is an object-attribute-value triple, also called a
statement. Objects, or resources, are things from the domain we want to be accessible.
They are identified by a Universal Resource Identifier (URI). What a URI looks like

10 http://www.w3.org/RDF/

39

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

depends on the kind of object it identifies. For example, a web page may be identified by
its URL, and a book may be identified by its ISBN number. In Figure 21 we see an
example of some objects, represented in the graph form.

.

htt p: e amp le. @ @

. e

Nﬂme ﬂrzm

Figure 21 - Objects

When looking at this piece of RDF, humans may have an idea of the meaning of some
objects, but in fact they are just arbitrary instances of which the class and type are
unknown. The object “#6231” is arguably the most semantically unidentifiable of the lot.
Keep in mind that the values inside objects are short-hand notations of URIs. We may
look upon them as unique identifiers of instances found in the real world domain. In
fact, every object represented in the graph corresponds to a unique object somewhere in
the real world. Denoting objects is nice for a start, but they become semantically
interesting when they are really different, not only by name. For a machine without any
notion of what words or concepts mean, an object is only given unique meaning by its
relations with other objects.

P%Oﬁ&
http'-//wwu.emmple. com > . Zfifféj)
N~ — - %ﬁw«* S
product -

offer

Figure 22 — A couple of object-attribute-value triples

40

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

Object types which have the same relations attached to them, are treated as semantically
equivalent. To assign semantics to a given object, we therefore have to be able to
describe its unique attributes or properties. In RDF, properties are identified by a URI
just like objects. They are just a special kind of resource: the attribute itself is also
possibly an interesting “thing” to describe further. To describe a domain, we write down
statements asserting resources and their attributes. Such statements have the form of a
triple; a predicate and two associated variables. Either part of this triple may be a URI-
identified resource or a plain string text. An example of a statement triple is “Jos
Claessens is the writer of thesis 612”. Logically, this might also be represented as
WriterOf (Jos Claessens, Thesis 612), which shows more clearly that it's a binary predicate.
For the human reader, this single statement already carries some intuitive meaning,
because we have an understanding of writing a thesis, and we may recognize person
naming. Besides its general meaning, this statement may be ambiguous. It depends on
how many “Jos Claessens” you know, how familiar you are with the concept of writing
and how many kinds of thesis numbering systems use the format used by the Radboud
University. To minimize ambiguity, we should provide a URI for all parts of the
statement that may be ambiguous, in this case: all. It might better be reformulated as
“<Person with Dutch ID number 1234.56.789>, <writer-of> <Thesis with number 612
according to Radboud University Computer Science numbering>". The semantics of all
these parts may be formally described somewhere. In RDF, all statements have the form
of such triples, which are equivalent to binary predicates. It is the most elementary way
of expressing relationships between two entities. ORM also enforces that statements
fulfill certain requirements when it comes to the number of used roles. The number of
roles is not limited to two per fact type, but due to the n-1 rule the number of roles in a
fact type may not surpass the number of roles of its largest uniqueness constraint by
more than 1. Relations between entities are expressed in n-ary predicates, with n > 2.
When converting an ORM model to a Semantic Web implementation, n-ary relations
will have to be transformed to a set of binary relations. We will use this technique in our
own transformation method in chapter 5.

RDF supports statements about statements (reification). This concept is identical to
the ORM notion of objectification. Having only binary predicates feels limiting here,
because for a simple pointer to a RDF statement already three binary predicates are
needed. This is not a problem for expressive power, because we can use the same
transformation method as with n-ary predicates, but nevertheless it is rather
cumbersome.

RDF Schema
RDF is just about describing resources and their relations, in other words it is about the
instance part of a model. However, in practice we want to express more general
statements. For this, we need RDF Schema, or RDFS!!. The main addition to RDF is the
use of classes.

1 http://www.w3.org/TR/rdf-schema/

41

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

We may express the following things:

* class definitions

» property definitions (domain and range)

* class and property hierarchies
In RDFS, we may construct a structure very similar to a domain model; RDF instances
may be seen as the population of this model. They are given a type from the associated
RDF Schema. For example, we may define the property “Student writes thesis
ThesisNumber”. If “Jos Claessens” is a Student, he is in the correct domain. Similarly,
“612” should be a correct ThesisNumber. Classes and properties may have subclasses
and subproperties. In that case, children inherit the properties associated with their
parents. For example, if any Person might write a thesis, and Student is a subclass of
Person, then it will still be enough if “Jos Claessens” is defined as a Student. Because a
Student is also a Person, he is inside the domain. Contrarily, if only Students may write a
thesis and Jos is defined only as a Person, he may not write a thesis. Or at least, that is
not a valid statement in the RDF schema.

Besides these basic functionality constructs, RDFS also includes some utility
properties to further enrich class definitions. These are not strictly necessary, but they
may save some time when working with (especially large) RDFS documents. There are
two main purposes of utility functions:

» Stating where a (more complete) definition of a resource may be found. This is

especially useful when a resource is defined at multiple places across the Web.

» Attaching a human-readable comment or label in unstructured natural

language, to improve human understanding of RDFS classes and their purpose.

4.1.2.2 XML representation

For completeness, we will briefly take a look at the most important RDF(S) constructs in
XML with an example. More elaborated examples may be found in [13].

Namespace definition (XML)

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-synta X-ns#”
xmins:rdfs="http://www.w3.0rg/2000/01/rdf-schema# "
xmins:xsd="http://www.w3.0rg/2001/XMLSchema#”
xmins:ex="http://www.example.com/ex-ns#">

</rdf:RDF>

42

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

Any RDF document should start off with some namespace declarations. In addition to
disambiguation, which is the main purpose of using namespaces in XML, this specifies
the semantics of used constructs. When a RDF knowledge entity has been defined
somewhere, it may easily be reused by including the original definition as a namespace.
Our new definitions file is thereby connected to the larger graph of interconnected RDF
documents. Or in other words, it is connected to the Semantic Web. Note that the “ex”
namespace is our own virtual example namespace

Class definition (RDES)

<rdfs:Class rdf:ID="supervisor”>
<rdfs:comment>In this case, we mean thesis superv isor</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="student” />
<rdfs:Class rdf:ID="thesis” />

We defined the (thesis) supervisor class, the student class and the thesis class.

Subclass definition (RDES)

<rdfs:Class rdf:ID="professor">
<rdfs:subClassOf rdf.resource="#supervisor” />

</rdfs:Class>

<rdfs:Class rdf:ID="manager”>
<rdfs:subClassOf rdf.resource="#supervisor” />

</rdfs:Class>

Both professors and (business) managers may be a thesis supervisor.

Property definition (RDF / RDFS)

<rdf:Property rdf:ID="writes">
<rdfs:domain rdf:resource="#student” />
<rdfs:range rdf:resource="#thesis” />
</rdf:Property>

<rdf:Property rdf:ID="supervises”>
<rdfs:domain rdf:resource="#supervisor” />
<rdfs:range rdf:resource="#thesis” />
</rdf:Property>

<rdf:Property rdf:ID="title">
<rdfs:domain rdf:resource="#thesis” />
<rdfs:range rdf:resource="&rdf;Literal” />
</rdf:Property>

We define three properties: the first two are writing and supervising a thesis. The third
is the title of a thesis. Note that its range is the RDF Literal, which is essentially just a
string. After defining relevant classes and properties, all that remains is providing a
sensible population.

43

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

Instances (RDF)

<ex:thesis rdf:id="612">
<ex:title>
Deploying the Semantic Web in the Welfare Envir onment
</ex:title>
</ex:thesis>

<ex:student rdf:id="JC">
<foaf:name>Jos Claessens</foaf:name>
<ex:writes rdf:resource="#612" />
</ex:student>

<ex:professor rdfid="TvdW">
<foaf:name>Theo van der Weide</foaf:name>
<ex:supervises rdf:-resource="#612" />
</ex:professor>

<ex:manager rdf:id="JWS">
<foaf:name>Jan Willem Schoenmakers</foaf:name>
<ex:supervises rdf:-resource="#612" />
</ex:manager>

In this example, we can clearly see how verbose the XML representation is compared to
the graph representation. This accounts for the fact that it is targeted at machine
interpretation rather than human interpretation.

413 OWL

RDF and RDF Schema allow us to create a simple knowledge base, as we saw in the
previous section. But their expressiveness is deliberately limited. Consequently, we need
another language for those cases where more expressiveness is needed. OWL!? is such a
language, positioned on top of RDF/RDEFS in Figure 20. It is the W3C recommended Web
Ontology Language, originating from its predecessor DAML+OIL which was on its turn
the result of joining the American initiative DAML-ONT and the European initiative
OIL. In this section, we will look at the addition this language brings to RDF/RDEFS.

Compared to RDF/RDFS, OWL mainly adds features to further refine class
definitions and restrictions. Definition was limited to placing new classes into a
hierarchy and hinting towards related classes with rdfs:seeAlso . Restrictions were
basically only possible with the global scope (domain and range) introduced in RDFS. In
OWL, the following features are added:

Definition
* Classes may be defined based on already existing other classes, using well-
known set operators. They are also called Boolean combinations. We are talking
about one class being owl:disjointWith , owl.complementOf ,
owl:equivalentClass , owl:unionOf or owl:intersectionOf another
(set of) class(es). These properties may be nested as desired.

12 http://www.w3.org/TR/owl-features/

44

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

* With the owl:oneOf construct, all possible elements of a class may be
enumerated as its definition.

* RDF Properties are specialized into two kinds of properties in OWL: object
properties, which relate objects to other objects, and data type properties, relating
objects to a data type value. If applicable, properties may be defined as the
owliinverseOf or owl:equivalentProperty of another property.

* Property properties may be expressed, for reasoning and verification purposes.
Available constructs include owl:TransitiveProperty ,
owl:SymmetricProperty and owl:FunctionalProperty. They
correspond to mathematical properties with the same name. Furthermore, we
have an owl:InverseFunctionalProperty , which indicates that two objects
with that property may not have the same value. Transitivity and symmetry may
only be associated with object properties, while functionality may be associated

to any property.

Restriction
Restrictions are encapsulated in an owl:Restriction element and may take various forms.
* Scope of properties may be restricted in a more finegrained way, by using

owl:hasValue , owl:allValuesFrom or owl:someValuesFrom . With these
constructs, we may define a relation between a concrete resource and a class of
other resources or express universal quantifications or existential quantifications,
respectively. For example, we might specify that "JC" must be the writer of thesis
"612", or that in case of a computer science thesis, both the student and the
supervisor should be from that department.

* Cardinality of classes may be expressed by owl:cardinality . In case of a
cardinality range, we may use owl:minCardinality and
owl:maxCardinality . We might for instance specify that a thesis should have

at least two supervisors.

This list is not complete, but it sums up the most important features added by OWL. For
a complete overview, we refer to the official W3C page.

The main purpose of OWL is to support reasoning about the constructed ontology.
Reasoning support is useful for checking ontology consistency and finding new relations
between classes which may be unintended. Besides this reasoning on the model level,
we may also use reasoning on the instance level, to classify instances in classes and for
query answering. To be able to use automatic reasoning, we need a well-defined syntax
(so the language is machine-readable), a well-defined semantics (so the language is
unambiguously interpretable) and a good balance between needed expressiveness and
computational efficiency. OWL meets the syntax requirement by adhering to XML,
which is perfectly machine readable. Formal semantics are usually provided by logical
formalisms to which OWL may be mapped. Reasoners which are able to use this logical
formalism may consequently also reason about OWL documents. Our focus is upon the
last requirement: a good balance between expressiveness and computational efficiency.

45

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

Perhaps unsurprisingly, the full set of OWL and RDF/RDES constructs (conveniently
named OWL Full) may lead to situations of computational intractability. In any
application where reasoning should be reasonably efficient, this possibility is
undesirable. Therefore, work has been done to specify the subset of OWL constructs that
is still computationally efficient. For this, the largest part of first order logic for which
efficient reasoning is still possible, known as Description Logics, was used as a reference.
The result is OWL DL, in which the following constraints must be obeyed:

1. Resources may only be one type of object as found in the OWL vocabulary. For
example, a class may not also be an individual. This typing should be explicit. For
example, when C1 is an owl:subClassOf C2, both C1 and C2 should explicitly
be defined to be an owl:Class

2. Because a property may not be both an object property and a data type property
because of rule 1, property properties that were applicable to both kinds of
properties are now only applicable to object properties.

3. Cardinality restrictions may not be placed upon transitive properties.

The third official W3C subset of OWL is OWL Lite, which we will not further discuss
here. It's most important to realize that this balance between expressivity and
computational tractability is a real concern and that we should try to find the subset of
OWL that is just expressive enough to reach our goals without giving up too much
computational efficiency. The choice which subset this is, depends too much on the
situation. However, we may conclude here that OWL DL is a subset with an arguably
well overall applicability.

OWL XML syntax is an extension upon RDF syntax. In fact, it inherits all constructs
we saw earlier; only the rdf:Class and rdf:Property have been replaced by their
OWL counterparts for computational purposes. Elaborated examples may be found in
[13].

414 SPARQL

SPARQL?®" is the W3C recommended query language to use on semantic data structures.
It enables powerful reasoning questions, structurally formulated to suit the RDF
representation. SPARQL consists of three different parts: the query language specification,
a query results XML format and data access protocols.

Syntactically, the query language closely resembles SQL. Although the underlying
data model is fundamentally different, it is only minimally reflected in the language
constructs. This makes migration from a relational database situation to a semantic web
situation easier. Just like in SQL, a typical SPARQL query has the form
SELECT..WHERE... . In this expression, what is searched for appears after the
SELECTkeyword. In case of SQL, this is usually a set of column names selected FROMa
certain table. Because we choose actual column names, a SELECT...FROM... query is
enough to return a subset of the queried table. In SPARQL, there are no column names,
so as a result they cannot be referenced. Instead, we can define variables that will be

13 http://www.w3.org/TR/rdf-sparql-query/

46

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

given a meaning by the WHERElause. In SQL, this clause is used to restrict the results.
The WHERKElause acts as a filter upon the selected results. In SPARQL, it acts as a
definition of the variables. Restrictions may directly be included. We might select x and
y where x foaf:knows y, but also include that y must be a professor, or that y should have
at least 3 friends. If desirable, local variables may also be introduced inside the WHERE
clause. In this example, we could only select x with the same relatedness to y, which
would still be expressed inside the WHEREIause. To restrict the accepted return values,
a SPARQL WHERElause may contain the keyword FILTER. Using this construct, results
are filtered based on a regular or arithmetic expression.

Designing a suitable query engine has been topic of various research efforts, for
example towards the Semantic Web Search Engine (SWSE) [14] and Swoogle [15].

4.2 Transforming to the Semantic Web

Defining Semantic Web languages is a first step towards the Semantic Web. However, to
actually construct the Web itself, documents should be written using these languages.
Most of the time, they will not be written from scratch but rather transformed from
existing structures or integrated in existing languages. Depending on the nature of the
origin of a future semantic document, different strategies may prove to be best here.

Existing HTML structures may be targeted at human readers, but this usually means
there is some structure in them. This structure may be exploited to design (ad hoc)
transformations extracting a semantic document from arbitrary HTML tags. Web
content creating tools may be enhanced to have users publish their new pages enriched
with semantic metadata. Since enriching current web content seems like an easier
process than creating full RDF documents, there have been several initiatives to support
this intermediate solution. Using RDFa'4, a W3C recommended extension upon XHTML,
RDF may be embedded in existing XHTML pages using special tag properties.

In this section, we investigate the possibilities to transform the different aspects of
the Social Map to the Semantic Web standard languages. We will look at the
transformation of three relevant types of conceptual structure: an ORM model, a
thesaurus and a relational database.

421 Transforming an ORM model

Transforming an ORM model towards OWL enables using ORM for ontology
engineering. The benefits of ORM for usage by domain experts (which is why we used it
to create our model in the first place) would then also hold for ontology engineering.
Logical sentences, which will ultimately be represented in a machine-accessible
language, may first be expressed in structured natural language, which may easily be
verified by human domain experts.

As we saw when we discussed OWL, the focus is upon the balance between
expressivity and computational tractability. Description Logics provide a logical

1 http://www.w3.org/TR/rdfa-syntax/

47

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

foundation which is targeted at maximum expressivity while still being decidable.
Therefore, it has extensive automatic reasoner support and an associated OWL language
subset (OWL DL). Therefore, mapping ORM into Description Logics has been topic of
various research efforts. The most notable results have been achieved by Mustafa Jarrar
[16] and C. Maria Keet [17]. In their research, they both mapped ORM into DLRj, which
is asserted to be “one of the most expressive description logics” [16]. Jarrar showed that
27 of 29 ORM constructs and constraints are mappable and therefore decidable.
Consequently, there are two undecidable constructs: the acyclic ring constraint and a
frequency constraint spanning more than one role. Since we don’t make use of these two
in our ORM model, this might lead us to conclude that our ORM model does not exceed
complexity of description logics. Unfortunately, we should refine this quick judgement.
First of all, we don’t make use of classic ORM, as was mapped by Jarrar. Neither do we
make use of ORM2, as was mapped by Keet. We have some additional constructs,
specifically generalization and power type, that allow for greater expressivity. But
therefore, they are also possibly introducing greater complexity. The lack of support for
these constructs is logical since the mappings by Jarrar and Keet do not intend to include
them, but nevertheless such mapping should be available before we can transform our
model.

Although we did not expect coverage of our constructs, we did expect the regular
mapping to be satisfactory. Unfortunately, some core constructs of base ORM were not
mapped completely. Keet already found some incomplete and even incorrect mappings
in Jarrar’s work. Firstly, he did not always map ORM to DLRit, but sometimes borrowed
from other types of DL languages. Secondly, some mappings are also incomplete or even
incorrect [17]. Because of this investigation, less constructs are mappable than originally
specified by Jarrar. Keet defines ORM- as the subset of ORM that is mappable, according
to her transformation rules. This is a rather arbitrary definition that’s still inaccurate in
our opinion. Both Keet and Jarrar neglect the transformation of subtype defining rules,
which admittedly form the hardest and least specified part of the subtype construct.
However, without such transformation, we can hardly speak of a successful mapping of
the subtype construct. In fact, the approach towards subtyping used by Keet reflects the
generalization construct rather than the subtype construct. Furthermore, both Jarrar and
Keet neglect an essential external uniqueness constraint when interpreting the
objectification construct, as we will see later in this section. Therefore, their mapping
towards DLRi«u is incomplete.

Finally, as was also concluded by Keet [17], mapping ORM to description logics in
general may be feasible, but not to any single language. Most DL languages are capable
of handling certain constructs well, but the mapping of other constructs is
unsatisfactory. Therefore, current results about ORM mapping towards DL mainly serve
as an indication of general ORM construct decidability, rather than being useful for
transformation of (complex) models towards a real Semantic Web application. This
target is even further away because the standard language OWL DL does not make use
of DLRi1, but SHOIN. The main reason that OWL DL uses a different DL language is a
performance concern. SHOIN was designed to be “a compromise between expressive

48

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

power and decidability” [18]. Here, the goal is to maximize practical decidability, i.e.
having maximum expressive power without losing too much performance. This concern
is most critical when using logics on the web, for example in a query language.
Compared to DLRi, some expressivity is sacrificed to gain performance. Since it is the
official underpinning of our target model language, it makes sense to look more closely
at the difference in mapping possibilities. Jarrar already followed up his research of the
general level of ORM decidability and investigated SHOIN/OWL more closely [18]. The
difference clearly shows: when mapping into SHOIN/OWL, only 22 of 29 ORM
constructs could be transformed. When we take into account the criticism we discussed
earlier, this result should be regarded to be at the optimistic side. To aid in the ORM
schema validation and transformation process, all mapping rules have been
implemented as an extension to the DogmaModeler tool. This tool allows (visually)
creating an ORM diagram, mapping it to the DL interface DIG and reasoning about the
resulting description logics. At the moment, three types of reasoning services are
implemented (schema satisfiability, concept satisfiability and role satisfiability). These
validate the ORM model itself using logics. Extended reasoning services like constraint
implications, inferencing and subsumption, as well as support for OWL syntax export
are planned for the future, but as for now they have not yet been realized. Note that this
has been the case for the last two years since Jarrar published the mappings and related
implementation.

Unfortunately, current state of the art research targeted at mapping ORM to
Semantic Web languages has not been able to provide us with a fully functional and
satisfactory transformation method. Some crucial constructs are missing or incomplete,
and the logic languages and reasoners currently supporting the Semantic Web are still in
development and should not be expected to be a full match for ORM in the near future.
This is a bit of a disappointment, but it may be explained by looking at Figure 4 once
more. In this picture, description logics languages should be put towards layer 4. This is
because the languages have syntax and semantics that are targeted at a specific
application field. Recall that the ORM model is in layer 2. We believe that not all ORM
constructs can simply be transformed towards the same description logics language
because of the gap between layer 2 and 4, which is simply too large. Therefore, we prefer
to construct a mapping towards a more abstract, “level 3” kind of logics, in which all
ORM constructs may still be expressed. From there, transforming various parts to
suitable description logics should be easier and more straightforward. We will provide
such transformation method in chapter 5.

4.2.2 Transforming a thesaurus

A thesaurus is a special kind of conceptual structure. Concepts in a thesaurus are
structured based on their relatedness, without investigating why this relatedness exists.
Typical relations are broader term and narrower term, structuring based on generality of
concept. Also, one may navigate to similar terms, which are considered a synonym in
isolation, but differ in their environment. By looking at the relations of a term, one may
distinguish between homonyms as well. In information retrieval, a thesaurus is used for

49

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

indexing and tagging documents. Since most search methods are word-based, it’s
valuable to know for a given word how related it is to the exact query word. Besides
during the initial retrieval process, a thesaurus may also be used to refine search results
afterwards. Terms that appear in the query itself or in highly ranked results may
indicate that the user is interested in related terms as well. They may be shown together
with actual query results, to guide the searcher when actual results are not satisfying. In
fact, the current welfare environment information system uses this strategy already.
However, the representation of the underlying thesaurus is technically structured in a
legacy format, a document standard specifically developed for thesauri. It conforms to
the ISO maintained thesaurus standard ISO 2788:1986. Interestingly, this standard does
not account for the used representation, but rather for available relations between terms
and their (short-hand) notation. Because the available semantic relations are
standardized, the conversion from any representation to Semantic Web language should
be feasible, as long as these relations are reflected. Therefore, work has been done to
define a neat semantic web standard for thesauri, called the Simple Knowledge
Organization System (SKOS). Since June 15, 2009, the SKOS specification is a W3C
proposed recommendation. According to W3C’s technical reports website's, “a Proposed
is a mature technical report that, after wide review for technical soundness and
implementability, W3C has sent to the W3C Advisory Committee for final
endorsement”. This means SKOS is not yet an official recommendation, but it will
expectedly become one in the near future. Therefore, it has already led to some
interesting related research. For example, Van Assem et al. have shown that it is possible
to automatically convert more traditional thesauri to SKOS, as long as they comply to
the ISO 2788 standard [19]. Their method values interoperability higher than
completeness: although some thesaurus relations might not be (fully) transformed to
SKOS, there is a clear interoperability advantage of using a semantic web standard of
which the semantics are known and predictable when the thesaurus is used in a larger
semantic web application. The method of Van Assem et al. consists of analyzing
thesaurus content, creating mappings to SKOS constructs and consequently writing a
conversion program that converts the thesaurus to a SKOS ontology based on these
mappings. Case studies showed that the whole process typically takes one analyst
around two weeks to complete. They also showed that actual thesauri are often less
neatly standardized than one might expect, which might reduce the applicability of the
transformation method.

4.2.3 Transforming a relational database

Relational databases are a well-known existing structure supporting many current web-
based applications. There are several approaches to the reuse of such a conventional
database. We will investigate them briefly.

Motik et al. defined concepts from relational databases in OWL terminology, to bridge a
terminology and concept gap they identified [20]. This gap is caused by the logical

15 http://www.w3.org/TR/

50

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

approach to the “world”. The relational database model uses the closed world
assumption, while OWL uses the open world assumption. This affects reasoning about
data that doesn’t satisfy constraints. For example, when a certain property is explicitly
required to be filled in a database model, but it isn’t in a particular case, the relational
model would consider this an error, while the semantic model would just consider it a
critical, but as for now unknown property. Due to the open world assumption, nothing
that is unknown is thereby also considered nonexistent. Motik et al. extended the
description logics model to support integrity constraints with the same intuitive
meaning as their relational database counterparts.

Bizer and Seaborne constructed D2RQ, a language to describe mappings between a
relational database and a related semantic model [21]. This mapping may be used in the
Jena framework [22]. Jena is a complete framework to create and maintain a native RDF
store, but it does not provide for migration from a relational database situation. Using
D2RQ, Semantic Web applications may easily use data stored in a conventional, non-
RDF database, for it will be represented as a virtual RDF graph. This technique allows
for easy reuse of legacy data, but usage of the Jena framework may be too heavy for
smaller applications, introducing an unneccessary performance hit. For example, in a
benchmark performed by Svihla and Jelinek [23], their own METAmorphoses and
Sesame [24] generally produce query results faster. These approaches all require
significant human effort to reuse existing data. But there are also attempts to process
existing structures automatically and extract semantic data from them. Although this
may not be as complete and accurate as the manual methods, it may be enough in many
cases or at least be a nice starting point that is a lot more desirable than having to start
from scratch. One of the leading methods is provided by Stojanovic et al. [25]. They
developed a mapping and migration architecture that automatically generates semantic
annotations from database content, under human supervision. Instead of designing the
complete ontology, the engineer only has to resolve ambiguities or unclear situations
which will occur during the transition. Similar projects have recently been carried out by
Hu et al. [26] and Cullot et al. [27]. The method can generally be summarized as follows:
database tables are converted to ontology concepts, while columns and integrity
constraints are converted to concept properties. Hierarchic relationships already present
in the relational database, such as a foreign key to another table with higher level
information, are translated into making the concept of the “lower” table a subclass of the
“higher” table. We illustrate this with an example adapted from [27]. The Student table
may be related to a Person table with names of all people related to the school (including
teachers). Based on the student’s ID, the database application may retrieve his name
from the Person table. This construction will result in the generation of a Student
concept, which is a subclass of the Person concept. The Student concept will then
automatically use the property ‘name’ from its parent concept. Note that data types need
to be converted to XML schema data types. Whereas a column data type is inherently
present in a relational database, it has to be explicitly specified in the ontology situation
to avoid content with multiple types, which is allowed by default in RDF.

51

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

When we combine the results of database and thesaurus conversion, we have a
reasonable starting point for a Semantic Web application, which is already connected to
existing data and supports the same usage. It is therefore an alternative to creating a
domain model from scratch. The semantic structure resulting from the transformation
step is more easily extensible to reach new possibilities, especially when compared to the
old situation. To illustrate this, we refer back to Figure 4. When domain and database
models are converted to semantic models, they can be interconnected by hooking on to a
global environment model. By doing this, all information inside will become
interconnected and useable, albeit in the most primitive way.

When not following the route of creating an ORM model and deploying a Semantic
Web application from there, we propose to first create a global ontology which can be
semi-automatically generated from existing data sources. This ontology will not contain
much new information, but mainly serves as a starting point. It can consequently be
edited by domain experts from different parts of the environment to add their
knowledge to it. This way, existing specialized subsystems and previously invisible or
erroneous data are added. This results in a continuous process of ontology evaluation
and expansion, in which eventually anyone may participate.

4.3 Interconnecting semantic models

How to approach the integration of different semantic models is a research topic of its
own. Vdovjak et al. describe a RDF based architecture to provide this integration [28].
They distinguish between two general approaches to the matter: “In the data
warehousing (eager) approach all necessary data is collected in a central repository
before a user query is issued. This however, brings consistency and scalability problems.
The on-demand driven (lazy) approach collects the data from the integrated sources
dynamically during query evaluation”. Vdovjak et al. favor the latter approach.

We already saw the different nature of the components which will make up the
semantic web applications in the near future. On one hand, we have a structured
collection of facts with a focus on the concrete facts but not on how to interpret, relate or
use them. When adding semantics to an otherwise syntactic and meaningless collection
of structured data, we deviate from the detailed and application oriented environment
of data modeling and work towards increasingly conceptual and abstract structures.
However, this transformation is not straightforward. Simply transforming everything
towards OWL, as we saw in the previous section, does not yet ensure that it will be a
coherent logical knowledge base. The converted data base has a different nature than the
converted domain model. And both are probably too specific to be called a true
ontology, the most abstract of conceptual structures. We will first investigate this
difference in conceptual model nature more closely in section 0, to gain a more complete
understanding of the concerns to keep in mind when designing a future Semantic Web
application. Finally, we will conclude this chapter in section 4.3.2, looking at how to
connect a new application to the larger Semantic Web.

52

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

43.1 Conceptual model types

When working towards a global semantic data structure for use on the Semantic Web,
we will analyze the nature of source and goal models. Dillon et al. provide an overview
of the differences between modeling approaches [29]. As we saw before, the target of the
Semantic Web is to reach a shared, agreed common conceptual structure. Because it is
impossible to create such structure in one go for the whole world (if such structure is
ever possible), the Web starts off with smaller domains and smaller levels of agreement
about the representation and meaning of concepts and relations. Furthermore, almost all
Semantic Web documents, like our own, have non-ontology predecessors. Since all is
based upon extensible markup language, different views may be represented next to
each other. After a while, some differences will be reconciled, resulting in a de facto
standard view of the domain, while others may remain. However, it's good to keep in
mind that the real target of ontology engineering is an abstract model that’s commonly
agreed upon by as many parties as possible. The most important properties of a real
ontology identified by Dillon et al are as follows: both knowledge and its meaning
should be agreed upon, the ontology should be shared and used, and it should be
designed without a specific application in mind. Our welfare domain model is targeted
to be such ontology. We chose to create a conceptual model, to restrain from
implementation details which would not be recognized by other parties in the same
domain. For example, another counseling organization will definitely use another
supportive system with another underlying data structure. They will more easily agree
upon concept and relation names than table and column names, or which columns are
grouped. Since we are planning to deploy our semantic web model, it will be used. But
the usage of a real ontology should be extended beyond the scope of one counseling
organization. When the contents are satisfactory for a small isolated domain, new
challenges await when seeking agreement with surrounding or comparable domains.
Our model is not totally an ontology when we look at the general application
requirement. Our Problem and Solution concepts are more targeted at the specific
counseling application than more general concepts like Organization and Address.
When we use the terminology of Dillon et al, our model looks like a mix between a
knowledge base and an ontology. See Table 3 for the result of our analysis.

objectives conceptual structure of welfare domain (ontological), but with
some concepts targeted at particular states for counseling

consistency most facts are always true; however, there are also facts that can
only be verified or populated based on a particular state of affairs.
The static part of our model can be regarded ontology, while the
dynamic part looks more like a knowledge base.

actions the model is targeted at problem solving. This aspect is therefore
like a knowledge base.
knowledge all stored knowledge is domain knowledge. Operational

knowledge is not taken into account in the model, but is left
outside as a population problem.

53

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

applicability some concepts are applicable for a wider domain. Especially the
static part, describing domain knowledge, is useable by a wide
array of applications in the welfare environment. However, the
concepts of Problem and Solution, that form the center of our
model, are designed with our application background in mind.

Table 3 — Analysis of relationship of our model towards knowledge base and ontology, adapted
from Dillon et al. [29]

This observation leads us to conclude that we cannot just transform our model to an
ontology. We should rather identify the knowledge base parts in it and separate these
from the ontology part. Dillon et al. call the knowledge stored in these two parts
operational knowledge and domain knowledge, respectively. Consequently, creating an
ontology for both types of knowledge would result in an operational ontology and a
domain ontology. The domain ontology is a conceptual structure containing abstract and
generally agreed concepts and relations. For example, concepts like Organizations,
Products, Persons and Addresses may be reused based on their definition in a wider
domain. New properties specific to the welfare environment may be added. But the
domain ontology remains void of any reference to applications one may design around
it. These references, as well as the link to specific conceptual (data) models used for a
specific application in the welfare domain, will be put into the operational ontology.
Different counseling organizations may want to use the same global information
structure — they are after all operating in the same environment — but disagree upon the
way this information should best be used. They may even disagree on what counseling
is exactly. By designing their own operational ontology, as we have implicitly done in
our model, each party may extend upon the shared part to create an interoperable
semantic data structure.

Figure 23 shows a graphical overview of the described situation. As we see, a
supporting (legacy) relational database is residing at the operational level, connected to
its corresponding semantic model. This model might be originating from a domain
model as the one we constructed in chapter 3, it might be a result of the transformation
described in section 4.2.3, or perhaps most likely, a combination of both. The most
generic concepts will become a shared welfare domain ontology, to which all
operational ontologies may be connected. As the Semantic Web grows, the boundaries
between different kinds of conceptual models will dissipate; everything will be part of a
large, interconnected structure. However, the conceptual differences between parts of
this model will remain. It will be worthwhile to keep in mind that in a mature Semantic
Web all RDF triples are equal, but some are more equal than others.

54

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

MEE

BSK /?
5 ¢

D | operatione! ontelagy

GGED

SOC&fOt d ﬁ {) .)
DB Joperolional ontology g))

VOB@

GIDS /ﬂ?}x

B |operational ontology

Figure 23 - Structuring of different conceptual models, adapted from Dillon et al. [29]

4.3.2 Connecting to the world

The semantic model will probably be related to other semantic models. Wherever
possible, existing overlap can be utilized to minimize redundancy in the definition of
concepts. This is important to avoid ambiguity and make it easy to understand other
semantically annotated applications and also to be understood. However, should
redundancy occur, it is not necessarily a problem. Constructing a mapping between two
comparable definitions of a (high level) concept is usually feasible.

We assume that the constructed semantic concept structure will also be filled with
instance data to actually create a data structure, which is interlinked with other sources
of data. After all, we are mostly interested in actual data and not only in general
concepts and their relations.

The Semantic Web will only become a global web if there are links between different
smaller webs. Therefore, it is desirable to try to connect a new semantic application to
existing structures where possible. When this connection is not present, navigating to
related information, using derivations or combining different information sources
becomes more difficult and less reliable. A first step may be to convert our own existing

55

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 4 — Towards a Semantic Web application

applications to a coherent web of semantic counterparts. But to facilitate a connection to
the rest of the world, at least a global idea of existing structures is needed. To find these
existing structures, we tried three presently available semantic search engines: SWSE'®,
Swoogle'” and Sindice®. The most promising results are shown in Table 4.

location size
http://lat.inf.tu-dresden.de/~meng/ontologies/nciOntology.owl 32 MB
http://www.loa-cnr.it/ontologies/OWN/OWN.owl 24 MB
http://www.esd.org.uk/standards/Igcl/1.03/Igcl-schema 1,5MB
http://www.smartweb-project.de/ontology/swinto0.3.1.rdfs 1 MB
http://dbpedia.org > 103 mil

Table 4 — ontologies related to the welfare environment

While searching for available ontologies, we were disappointed by current results. There
are some very large ontologies available, of which the DBpedia ontology is the best
example. This ontology is generated from the very large user-maintained Wikipedia. It
contains semantically structured fragments extracted from all kinds of Wikipedia pages.
However, the relevance for our domain is very limited and doesn't come near the more
than 103 million triples in the DBpedia ontology. Furthermore, a lot of semantically
enriched web resources make use of common and very global ontology concepts, mainly
from FOAF, Dublin Core and DBpedia. Some resources from the welfare domain are
also expressible in concepts and properties found in these general ontologies. Based on
this short investigation, we believe that currently a specific ontology may best be
designed using the following steps:

* identify subsets from currently available widely used ontologies to use in the
new ontology. This serves a dual purpose: we don't need to reinvent the wheel
and we make sure our ontology is reusable for people familiar with these third
party concepts.

* define our own concept structure ourselves, to keep it closely related to the way
people think in our own domain and already reap the benefits of local semantic
search.

We expect that the Semantic Web will grow like the normal Web did; once the Web is
dense enough and every aspect of it has been polished and become common knowledge,
using other semantic web pages and being used by other applications should be easier
than it is now.

16 http://swse.deri.org
17 http://swoogle.umbc.edu
18 http://sindice.com

56

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

5 Transforming PSM to PSL

As we concluded in section 4.2.1, current transformation methods from ORM towards
(description) logics [17] [18] are not satisfactory in our opinion. This has two main
reasons:

1. description logic languages are designed with a certain application area in mind,
therefore they typically don’t support expressing all constructs from a more
generic language like ORM well. We argue that such transformation is overly
cumbersome, since we don’t want to choose from available logic languages at
this level of abstraction. Rather, we propose to first transform the ORM model
into generic logics and from there choose an appropriate more specific logic
language when needed. Bridging the gap between generic logics and description
logics is easier than bridging the gap between ORM and description logics in one
go.

2. ORM transformation methods do not include PSM constructs, notably the power
type and generalization. Furthermore, we noticed that the notion of
objectification as covered by the analyzed transformation methods differs from
our notion. The objectified n-ary fact type, split up into n binary fact types in the
same way we will show in our method, is missing the external uniqueness
constraint which is present in our version.

In this chapter, we introduce a transformation from ORM to a generic logics language,
which we call PSL. This stands for Predicator Set Logics or Pretty Simple Logics,
depending on what you prefer. Our point is that it is based on the Predicator Set Model
and that it’s pretty simple to understand, as was our main target when designing it. In
our opinion, a transformation step towards the formal logics domain should be intuitive
and quite straightforward, to minimize the probability errors or inconsistencies will be
introduced. Preferably, the ORM model, when transformed to logics, should still be
readable for a domain expert with some logics affinity.

The remainder of this chapter is structured as follows: first we introduce syntax
elements specific to PSL in section 5.1. The transformation from PSM to PSL will then be
performed in two steps. In section 5.2, we construct a transformation from the most
important basic PSM constructs to PSL. In section 5.3, we show how to transform more
advanced PSM constructs to their equivalent using only basic PSM constructs that can be
handled by the method introduced in section 5.2. We conclude this chapter in section 5.4
with a small example illustrating our method.

5.1 PSL syntax and semantics

The PSL language makes use of default logical operators (-, J 0 -) and PSM
expressions (as described in section 2.3.1), or more completely in [7]. The syntax and
semantics of PSL are described in Table 5. In the running text, we will use "x is of type A"
as the natural language semantics of the x : A PSL construct.

57

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

syntax Semantics

x: A x O Pop (A)

x[T] return element t contained in x
x{t} select subset T contained in x
f£D f is defined as D

- logical implication (rule level)
C logical and (rule level)

C logical or (rule level)

- logical not (rule level)

Table 5 — PSL syntax and semantics

5.2 Transforming basic PSM to PSL

We define the following PSM constructs as the basic PSM constructs:

* Bl: fact type

* B2: specialization

* B3: generalization

* CI: uniqueness constraint

* C2: mandatory constraint

* (C3: set constraints
The B-type constructs are basic PSM building blocks, while the C-type constructs are
basic PSM constraints. Note that this categorization does not indicate the level of schema
complexity which may be reached using only these constructs. The following definition
explains the difference between advanced and basic PSM constructs: an advanced PSM
construct is a PSM construct that can be transformed in a different PSM construct with the same
meaning using only basic PSM constructs. We will treat these constructs in section 5.3.

5.21 Fact type

When considering a fact type x, we are interested in the interpretation of x : F. A fact
type in PSM is a set of roles which draw their population from an associated base entity
type. It may be retrieved by using the PSM Base function. Consequently, we may define
the PSL rule associated to fact types as follows:

[PSL1] x:F - 0Op [x[r]:Base(r)]

58

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

5.2.2 Specialization

When entity type A is a specialization (or subtype) of entity type B, this is expressed in
PSM as A Spec B. The population of A is not assigned to it directly, but rather derived
from the population of B. The subtype defining rule P acts as a filtering condition upon
the population of B. This leads to the following PSL rule:

[PSL2] x:BUOP(x) & x: A

The specialization rule is twofold: firstly, we know that any instance x which is of type A
is an instance of type B for which subtype defining property P holds. Secondly, this rule
also holds the other way around since every instance x of type B for which property P
holds is also of type A.

5.2.3 Generalization

A generalization occurs when one or more entity types are put together into a newly
formed entity type. When n entity types generalize to entity type B, this may be
expressed as A1 Gen B, A2 Gen B, ..., Ax Gen B. For an instance x having type B, with B a
generalization of one or more other entity types, we have this PSL rule:

[PSL3] x:B - [0, [A Gen BDx:A]

5.24 Uniqueness constraint

A basic uniqueness constraint spans i <n roles of a n-ary fact type. Typically, i is equal
to n — 1 or n. This fact type may simply be an element of F, as we have seen in section
5.2.1, but it may also be composed of different fact types in case of an external
uniqueness constraint. We will see an example of such uniqueness constraint in section
5.3. For now, we assume there is a Uniquest function present that has the following
definition:

Uniquest(t) = f

with: T2 the set of roles forming the uniqueness constraint;

f = the result of the join via common object types of the fact type set ®

®2{¢0F | Oy [Fact(r) =9}

The Uniquest algorithm, outlined in the overview article by Van der Weide et al. [30],
implements this function. We refer to this article for further details. Note that the
Uniquest function is always one fact type f, of which T is a subset. Using these fand 1, we
can define a PSL rule capturing the uniqueness constraint.

[PSL4] Unique(T) o Dx’y [(x :Uniquest(T) Oy : Uniquest(T) Ox{t} = y{t}) - x = y]

59

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

We introduce the shorthand notation Unique(T) to express that T is a uniqueness
constraint according to PSL4. This rule states that two instances x and y of the fact type
which is constrained by UC 1 are in fact the same instance when they don't differ from
each other regarding only the roles captured by the UC. This is exactly what uniqueness
means in PSM. Note that by evaluating the Uniquest algorithm for 1, we achieve that
every valid uniqueness constraint is covered in one go.

5.25 Mandatory constraint

We now look at the mandatory constraint, using the shorthand notation Mandatory(1).
This constraint may be defined for one role as well as multiple roles, just like the
uniqueness constraint. However, all these roles must share a common base for the
mandatory constraint to be valid. This requirement for T is expressed as follows:

Tis a valid argument in Mandatory(t) iff DrlerDT [Base(rl) = Base(rz)] .

CommonBase(1) returns the common base of all roles in such T.

Given a mandatory constraint with a valid 1 like described above, we may also
formulate the corresponding PSL rule as follows:

[PSL5] Mandatory(T) « [, [x :CommonBase(T) — DrDer [f :Fact(r) O f[r] = xﬂ

To put PSL5 in natural language: for all instances x from the population of the common
base, there should be a corresponding fact type instance containing a role from the
mandatory constraint in which x occurs as an instance. This is the meaning of a
mandatory constraint as intended in PSM.

5.2.6 Set constraints

The last constraint type we will cover is the set constraint, which is between two sets of
roles with equal population capabilities. The constraint C(g,T) includes a mapping
function ® between both sets of roles 0 and 1. We assume this mapping to be present in
all cases. ® may be given a role from 0 or T as an argument and it will return the
associated mapped role from T or 0, respectively. There are three different kinds of set
constraint: subset, equality and exclusion. We will treat them subsequently.

5.2.6.1 Subset constraint

The notation Subset(o, T) means that the population of roles in o should always be a
subset of the population of corresponding roles in T. Expressed in PSL, this looks like:

[PSL6] Subset(o,T) « U,0, [x:r - DsDT[GD(r):sDx:s]]

60

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

5.2.6.2 Equality constraint

The notation Equal(o, T) means that the population of roles in 0 should always be equal
to the population of corresponding roles in 1. This is equivalent to a bidirectional subset
constraint. Therefore, it may be expressed as follows:

[PSL7] Equal(o,T) ~ Subset(o, T) LISubset(T, 0)

5.2.6.3 Exclusion constraint

The notation Exclusion(o, T) means that the population of roles in 0 should never occur
in the population of corresponding roles in 1. The logical interpretation is expressed in
PSL8 below.

[PSLS8] Exclusion(g, 1) « 0,00, [x:r - O [P(r) =5 D—n(x:s)]]

5.3 Transforming advanced PSM to basic PSM

With the constructs in section 5.2, a simple PSM schema can already be interpreted
logically. However, we are missing some essential constructs which we did in fact use in
our own welfare domain model. We will treat the three most important remaining
constructs in this section:

* T1: objectification

* T2 power type

* T3: sequence type
These constructs will all be transformed to a semantically equivalent PSM model which
only uses basic PSM constructs. Consequently, any general PSM schema X may be
transformed to PSL by first applying the rules in this section, leading to a projection Z',
and then applying rules from section 5.2 to X'.

5.3.1 Objectification

An objectified fact type is of course still a fact type, but besides this it also plays the role
of an object type in another fact type. Therefore, it may be defined as follows:

Objectified(f) 2 £ [1F 01, [Base(x) = f]

For all fact types f for which Objectified(f) holds, we are going to introduce a derived
object type taking its place in relation to other fact types. In fact, this transformation is
analogous to the one performed by Jarrar [16] and Keet [17]. However, compared to
their transformation we add an extra external uniqueness constraint to capture the full
meaning of the fact type in X in the projection X' as well.

61

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

Let f :{71/”2/- . .,rn} be a n-ary fact type in X (n 2 2) for which Objectified(f) holds.

We introduce binary fact types ¢(r,), ¢(r,),...,d(r,) with ¢(r;) ={rﬂ,ri2} and an entity type
fo» such that the following properties hold for every fact type §(r,) (with 1<i<n):

(1) Base(r;)=fo

(2) Base(r;,) =Base(r;)

(3) Mandatory({r, })

(4) Unique({r,,})

(5) Unique({r;y, Ty .- sT,})

Additionally, the Base function is modified as follows:

(6) For every role x, if Base(x) = f in %, Base(x) = f, in Z'.

In this method, we create an additional object type f,of which the instances may be

directly addressed. Each instance corresponds to an instance of the fact type f it reflects.
The reflection is represented using n binary fact types, relating all roles within f to the
new object type. The mandatory and uniqueness constraints ensure that this projection
has the same behavior as the original fact type (i.e. all roles are being part of of it exactly
one time and any two instances should be different on at least one role).

5.3.2 Power type

A power type A containing an element type B can be represented as a simple binary
relationship with an additional specific power type constraint. The transformation is as
follows:

Let A be a power type containing element type B.

We introduce a fact type f, ={rp,rE} such that:
(1) Base(rp,)=A, Base(r;)=B

(2) Mandatory(r)

The fact type f, may be populated according to the population of A and B. Every
instance a[JA contains n elements from B and has the form {b,,b,,...,b,} (n=1). This
leads to n instances of f;of the form {a,b;} (1<i<n). As two instances a, and 4, cannot

both consist of exactly the same elements from B in Z, this requirement should also be
reflected in Z'. We do this by adding the following rule:

[PSLY] O, [{ay,b}: fr o {ay,b}: fr | - oy =a,

62

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

Rule PSL9 is a rather abstract logical rule, which ensures that when two elements
a, and a, are equal when they behave the same with respect to all instances of B. The left

hand side of the implication only evaluates to true when all b B are either related to
both a4, and a, or not related to botha, and 4, . If that is the case, we have a reflection of

an g, and a, that have exactly the same elements from B. This is only legal when

a, and a, are in fact the same element.

5.3.3 Sequence type

The sequence type is converted the same way as a power type, but with an extra
indexing fact type related to an index label type I and the objectified element fact type
fe, - Using the rules from section 5.3.2 and 5.3.1, we can already handle this

transformation.

5.4 Transformation example

In this section, we will illustrate our transformation method with a concrete example,
taken from the welfare domain. For this example, we use the PSM model about
describing texts (found in Figure 15) as a source, since it contains many special
constructs and because it is a quite isolated part of the larger model. In section 5.4.1, we
will first define a sample population associated with the general model for use in this
example. From this model, we will choose a typical example instance. Thereafter, we
will transform the necessary advanced constructs to basic PSM in section 5.4.2. Finally,
we will transform some exemplary parts to PSL in section 5.4.3.

5.4.1 Sample population

The sample population is based on the Living example found in Figure 14. For clarity,
we reformulate it to its PSM counterpart. Figure 14 breaks up as follows: there are two
kinds of basic objects: DTextNodes and DTextLeafs. The leafs are marked with a filled
square, marking their associated DText. They are populated with (x,y) tuples according
to the PSM schema:

» For a DTextLeaf according to “Title x labeling DText y”.

» For a DTextNode according to “Title x labeling DTextTree y”.
All DTextLeaf and DTextNode instances are generalized to be DTextSubtrees. Therefore,
the DTextSubtree population contains the following 11 elements:

stl: (‘Question 1?7, dt1) st7: (‘Living’, dttl)

st2: (“More info’, dt2) st8: (At home’, dtt2)

st3: (‘Products’, dt3) st9: ("Help’, dtt3)

st4: (‘People’, dt4) st10: (‘Somewhere else’, dtt4)
stb: (‘Question 27’, dt5) stll: (“Waiting time’, dtt5).

st6: (‘Speeding up’, dt6)

63

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

Note that ‘st’ stands for DTextSubtree, ‘dt’ for DText and ‘dtt’ for DTextTree.

As we see, the subtree pool is composed of six DTextLeafs and five DTextNodes, all of
which may be placed in any larger DTextTree. DTexts which are required to have an
associated DTextLeaf, may also have related ThesaurusTerms; an example population
for this is simply one tuple, coming from “DText dtl described by ThesaurusTerm

‘home’”. The DTextTree elements are sequences of subtrees, specified as follows:

dttl: [st8, st10]
dtt2: [stl, st2, st9]
dtt3: [st3, st4]
dttd: [stl1]

dtt5: [st5, st6]

Note that the only DTextSubtree that is not included in a DTextTree is st7, which
happens to be the root subtree. By rule ORC6, we can indeed derive that st7 is a Root.

5.4.2 Transformation to basic PSM

We will not transform the total population to PSL, but rather take one intesting part of it:
dtt2 and its properties. This is a sequence type, so we should apply the rule found in

section 5.3.3. We construct the membership fact type f, :{rp,rE} and fill its population
accordingly. This leads to three tuples: (dtt2, stl), (dtt2, st2) and (dtt2, st9). An index

needs to be assigned to all of these tuples. For this, we objectify F, to create the object

type FEO and the fact types ¢(r,) and §(r.), using the method in section 5.3.1. The

converted population is as follows (including the fact type F, relating index and FEO to

each other).

F. 6(rp) 0(7;) F,

t1 (t1, dtt2) (t1, stl) (t1, 0)
t2 (t2, dtt2) (t2, st2) (t2, 1)
t3 (t3, dtt2) (t3, st9) (t3,2)

So instead of dtt2 being a sequence type, we now have three simple binary fact types
and a set of constraints describing dtt2. This is all still in ORM. We omit the details
concerning the constraints here; they are in the boxes of section 5.3.1 and 5.3.2. The fact
types constituting the sequence type may be simple, but the same cannot be said about
the object types. First of all, we have the DTextSubtree object, which is a generalization
of the fact types DTextLeaf and DTextNode. They are both objectified in Figure 15;
according to our PSL definition a fact type f is objectified when there is a role x with
Base(x) = f. This doesn't seem the case in Figure 15, but in the breakup of the sequence
type we see that DTextNode and DTextLeaf are both base of a role in ¢(r,). After

generalization, that is. We therefore have to derive DTextNode, and DTextleaf,in the

64

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

same way like we did it inside the sequence type. We don't go through all steps here
again, but we present the result at once:

DTextleaf, ¢,(r) b, (r,)
stl (stl, 'Question 1?") (st1, dt1)
st2 (st2, 'More info') (st2, dt2)
DTextNode, ¢,(,) oy (r,)
st9 (st9, 'Help') (st9, dtt3)

Note that we already labeled the tuples according to the label we chose for the
generalized DTextSubtree instances for readability, although technically this is not
needed. All instances featured in the objectified fact types DTextNode, and DTextlLeaf,

together form the population of the DTextSubtree object type.

5.4.3 Transformation to PSL

5.4.3.1 Fact types

All fact types we saw may be easily transformed to PSL in the same manner. We will
transform one fact type to get the idea:

general rule for ¢(r;): x:9(rg) - O, [x[r] : Base(r)]

(tl,stl):(l)(rE)—>DrD(tllstl)[(tl,stl)[r]:Base(r)] leadingto 1) t,:F;

()

2) st, :DTextSubtree

(t2,5t)):0(7) = Oy, or)[(2 51,)[r]:Base(r) | leadingto 1) t,:F,
2) st, :DTextSubtree

(t3,5t) 1 0(r) — Doy ory [(b3,589)[r]:Base(r) | leadingto 1) t;:F,

(0]

2) sty :DTextSubtree

In the same manner, we may derive st, :DTextleaf, and st,:DTextNode, from the

transformation of the DTextLeaf and DTextNode fact types.

5.4.3.2 Generalization
The dual typing of st;and st, is due to the generalization, as we can also verify using

PSL3. Clearly, this rule is valid for all our DTextSubtree instances.

x :DTextSubtree - [, [A Gen DTextSubtree Ux : A]

DTextLeaf, Gen DTextSubtree and DTextNode, Gen DTextSubtree

65

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

5.4.3.3 Specialization

As an example, we will treat two of the specializations in Figure 15: Root and Subject.
Recall the subtype defining rules ORC6 and ORC7:

[ORC6] LET Root BE (DTextNode BUT NOT OCCURRING-IN DTextTree)
[ORC7] LET Subject BE (Title of DText)

ORC rules need to be manually transformed to PSL now. However, an automatic
mapping is reachable with future research. In PSL, these rules are as follows:

Root(x) = x : DTextNode - 0, [(y,x): b(re)]

Subject(x) = x : Title [0,[(x,y) : DTextLeaf]

When we would evaluate these rules using our example population, we would get the
following truth tables, corresponding to PSL2, as a result. Note that we only consider
instances matching the first condition and an exemplary instance that does not.

x:B P(x) x:A
X x : DTextNode | ~ Elj[(y,X) :9(re)] | Root(x)
st6 |0 0
st7 |1 1 1
st8 |1 0 0
st9 |1 0 0
st10 | 1 0 0
stll | 1 0 0

x:B P(x) x:A

x x: Title | 0 [(x,y) : DTextLeaf] | subject(x)
dt1 0 1 0
‘Question 1?7’ 1 1 1
‘More info’ 1 1 1
‘Products’ 1 1 1
‘People’ 1 1 1
‘Question 2?’ 1 1 1
‘Speeding up’ 1 1 1
‘Living’ 1 0 0
‘At home’ 1 0 0
‘Help’ 1 0 0
‘Somewhere else’ | 1 0 0
‘Waiting time’ 1 0 0

66

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

Note that the subtype specialization rules define both parts of the PSL2 right hand side
and that the specialization type defines the left hand side.

5.4.3.4 Constraints

We finish up this example section with an example for all three constraints found in
Figure 15: the mandatory constraint and exclusion constraint on both "Title labeling..."
roles, and the external uniqueness constraint within the sequence type. These constraints
can be expressed in PSL according to our transformation rules, as follows:

Unique(T) - Dx,y [(x:Uniquest(T) Oy :Uniquest(t) Ox{t} = y{t}) - x = y]

In our example, T ={rp, 1} The result of Uniquest(t) is a quadruple fact type in this

case, containing roles associated to FEO , DTextTree, DTextSubtree and Index. When we

restrict ourselves to the example sequence type dtt2, we get the following population:

r h ", T, "
Base(r) FEO DTextTree DTextSubtree Index
X t1 dtt2 stl 0

X, t2 dtt2 st2 1

Xy t3 dtt2 st9 2

In the population table, T is colored gray. This uniqueness constraint states that if we
take any two rows from the table, they should be different when only taking the gray
columns into account. If two rows are the same when only considering the gray
columns, they should be the same as a whole. As our population adheres to this rule,
there are no double rows offending it.

We transformed both objectified fact types DTextLeaf and DTextNode to their basic PSM
counterparts. Now, since we are going to look at the mandatory and exclusion
constraints on the roles which have Title as their Base, we are only interested in sub fact
types ¢, (r,)for the DTextlLeaf part and ¢, (r,)for the DTextNode part. To be able to
separate them, we define ¢, (r,) ={r, ,r, }and ¢, (r,) ={r, ,7, }. Now, we can define T

for the mandatory constraint: 1= {rL1 N, }, with CommonBase(1) = Title.

Mandatory(T) « [, [x:CommonBase(T) - DrDer [f:Fact(r) Df[r]:xﬂ

The mandatory constraint is only valid if for all x in Title we can find a role in T that has
an associated fact type instance containing x. Let's look at the table summing up these
roles, validating the constraint.

67

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 5 — Transforming PSM to PSL

x: Title rOt | Fact(r) | f[f: Fact(r) Of[r] =
‘Question 1?7’ n, o, (r,) | (stl, "Question 1?")
‘More info’ , $,(r,) | (st2, "More info’)
‘Products’ n, o, (r,) | (st3, "Products’)
‘People’ , o, (r,) | (st4, "People’)
‘Question 2?7’ n, ¢, (r,) | (st5 ‘Question 2?7)
‘Speeding up’ n, o, (r,) | (st6, "Speeding up’)
‘Living’ ™, ¢, (r,) | (st7, "Living’)

‘At home’ ™, d,(r,) | (st8, “At home’)
“Help’ n, | §y(r) | 69, Help)
‘Somewhere else’ ™, ¢, (r,) | (st10, ‘Somewhere else’)
‘Waiting time’ ™, ¢, (r,) | (stl1, "Waiting time’)

The exclusion constraint is also concerning both roles , and ™,/ but this time they
should be put in a separate set of one instance: 0={r } and T={ry }. The mapping
function @ is clear: only one mapping is possible in this case. &,) =1y, and that's the

only case we need to evaluate. Since there is only one element in ¢ and T, we may
simplify the Exclusion constraint PSL rule to:

Echusion({rL1},{er D e O, [x:rL1 -7 (x:er)J

As we can see in the table above, all Title instances are assigned to either 7, or ry, . This
1 1

constraint enforces that no x may populate both roles at the same time. Note that the
exclusion constraint is bidirectional, so we may also reverse n, and ™, -

This example shows the transformation of only a tiny bit of the total population of our
PSM schema. It should be possible to perform it automatically once appropriate tools are
available. This is a realistic scenario, given that there already exists a plugin for the
DogmaModeler tool that (largely) implements the Jarrar transformation method from
ORM to Description Logics [18].

68

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 6 — Conclusion and future work

6 Conclusion and future work

6.1 Conclusion

After analyzing the demands of a Semantic Web application and the current application
development approach in the welfare domain, we found there is an apparent abstraction
gap between the activities in the real environment and the functionality of current
applications. Because there often is no formal bridge between the real world and
supporting applications, deploying such applications in the Semantic Web is difficult.
This led to our main question: “How should the abstraction gap between environment and
application be bridged?”

The desired bridge is essentially a sound and complete formalization process,
translating knowledge present in the real welfare domain — or any other domain - to a
formal model which is suitable for formal reasoners. Such model may be deployed in the
Semantic Web without much effort.

The result of our approach is a PSM/ORC formalization using structured natural
language, ensuring that people from the domain are able to relate their real world
activities to corresponding activities in the model. At the same time, this formalization
ensures that the model is suitable to be interpreted by logics reasoners, as we have
shown in chapter 5 by transforming it to a generic logics language called PSL. Together,
the PSM/ORC model and its PSL interpretation provide Semantic Web application
developers with a knowledge model which is formal enough to serve as a generic base,
while still allowing different application choices to be made. In fact, these choices will
have to be made, since there is an expressivity versus computability tradeoff to be
handled. Since this is an application specific concern, we did not further elaborate it.

The Semantic Web is evolving, with the establishment of standards in domain
ontologies on one hand and web application languages on the other hand. However, we
believe that any successful knowledge-intensive application, such as the Social Map we
investigated in our case study, needs a generic underlying semantic framework as we
showed in our approach. Only when there is a thorough formal conceptual mapping
between the environment and its applications, the vision of the Semantic Web will
become reality.

6.2 Future work

Concerning the mapping between conceptual languages like PSM and ORM on one
hand and actual logics reasoners on the other hand, some work has already been done,
notably by Jarrar [16] [18] and Keet [17]. The main conclusion from their work is that a
complete mapping to Description Logics is not possible. However, it is not yet clear how
to determine which DL language should be chosen when designing an actual application
based on a conceptual model. We chose to abandon this decision for now and construct
a general mapping to logics. For an actual application, the tradeoff between needed

69

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
chapter 6 — Conclusion and future work

expressivity and computability should be investigated. This might be done at a general
level or ad hoc.

We did not further address the challenge of populating Deliverable Solutions (see
section 3.2.2.3). This challenge is an interesting future research topic, since dynamic
knowledge dependencies will be occurring quite often in the future Semantic Web. This
challenge is now mostly addressed by human effort, but using a machine-interpretable
knowledge base and applicable techniques (e.g. from artificial intelligence) applications
may become able to assist in this process.

70

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
References

References

[1] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and A. Secret, "The
World Wide Web," Communications of the ACM, vol. 37, no. 8, pp. 76-82, 1994.

[2] T.Berners-Lee, "Semantic Web Road map," Sep. 1998.

[3] A. Ankolekar, M. Krotzsch, T. Tran, and D. Vrandedic, "The Two Cultures," Institut
AIFB, University of Karlsruhe (TH), 2007.

[4] J. Cardoso, "The Semantic Web Vision: Where are We?," IEEE Intelligent Systems, pp.
22-26, Sep. 2007.

[5] T.P.v.d. Weide, "Modeling and Reasoning," Radboud University Lecture Notes,
version 01-12-2007.

[6] T. Halpin, "A logical analysis of information systems: static aspects of the data-
oriented perspective," PhD Thesis, University of Queensland, 1989.

[7] A. t. Hofstede, H. Proper, and T. v. d. Weide, "Formal definition of a conceptual
language for the description and manipulation of information models," Information
Systems, vol. 18, pp. 489-523, 1993.

[8] L. A. Zadeh, "Knowledge Representation in Fuzzy Logic," IEEE Transactions on
Knowledge and Data Engineering, vol. 1, no. 1, pp. 89-100, 1989.

[9] J. v. Ossenbruggen, L. Hardman, and L. Rutledge, "Hypermedia and the Semantic
Web: A Research Agenda," Journal of Digital Information, vol. 3, no. 1, pp. 1-18, May
2002.

[10] I. Rahwan, "Mass Argumentation and the Semantic Web," Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 6, no. 1, pp. 29-37, 2008.

[11] L. Ding, L. Zhou, T. Finin, and A. Joshi, "How the Semantic Web is Being Used: An
Analysis of FOAF Documents," in Proceedings of the 38th Annual Hawaii International
Conference, 2005.

[12] J. Ward, "A Quantitative Analysis of Unqualified Dublin Core Metadata Element Set
Usage within Data Providers Registered with the Open Archives Initiative," in
Proceedings of the Joint Conference on Digital Libraries, 2003, pp. 315-317.

[13] G. Antoniou and F. v. Harmelen, A Semantic Primer, 2nd ed. MIT Press, 2008.

[14] A. Harth and S. Decker, "Optimized Index Structures for Querying RDF from the
Web," in Third Latin American Web Congress, 2005, pp. 1-10.

[15] L. Ding, et al., "Swoogle: A Search and Metadata Engine for the Semantic Web," in
Proceedings of the 13th ACM international conference on Information and knowledge
management, New York (NY), USA, 2004, pp. 652-659.

71

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
References

[16] M. Jarrar, "Towards Automated Reasoning on ORM Schemes," in Proceedings of the
26th International Conference on Conceptual Modeling, Heidelberg, Germany, 2007, pp.
181-197.

[17] C. M. Keet, "Mapping the Object-Role Modeling language ORM2 into Description
Logic language DLRifd," Arxiv preprint cs/0702089, 2007.

[18] M. Jarrar, "Mapping ORM into the SHOIN/OWL Description Logic," Lecture Notes in
Computer Science, vol. 4805, 2007.

[19] M. v. Assem, V. Malaisé, A. Miles, and G. Schreiber, "A Method to Convert Thesauri
to SKOS," in ESWC, 2006, pp. 95-109.

[20] B. Motik, I. Horrocks, and U. Sattler, "Bridging the Gap Between OWL and
Relational Databases," in Proceedings of the 16th international conference on World Wide
Web, New York, NY, USA, 2007, pp. 807-816.

[21] C. Bizer and A. Seaborne, "D2RQ - Treating Non-RDF Databases as Virtual RDF
Graphs," in Proceedings of the 3rd International Semantic Web Conference, 2004.

[22]]. Carroll, et al., "Jena: implementing the semantic web recommendations,” in
Proceedings of the 13th international World Wide Web conference on Alternate track papers
& posters, New York, NY, USA, 2004, pp. 74-83.

[23] M. Svihla and I Jelinek, "Benchmarking RDF Production Tools," Lecture Notes in
Computer Science, vol. 4653, p. 700, 2007.

[24] J. Broekstra, A. Kampman, and F. v. Harmelen, "Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema," Lecture Notes in Computer Science, vol.
2342, pp. 54-68, 2002.

[25] L. Stojanovic, N. Stojanovic, and R. Volz, "Migrating data-intensive web sites into
the Semantic Web," in Proceedings of the 2002 ACM symposium on Applied computing,
New York, NY, USA, 2002, pp. 1100-1107.

[26] C. Hu, H. Li, X. Zhang, and C. Zhao, "Research and Implementation of Domain-
Specific Ontology Building from Relational Database," in The Third ChinaGrid Annual
Conference, Dunhuang, Gansu, China, 2008, pp. 289-293.

[27] N. Cullot, R. Ghawi, and K. Yétongnon, "DB2OWL: A Tool for Automatic Database-
to-Ontology Mapping," in Proceedings of the 15th Italian Symposium on Advanced
Database Systems, Torre Canne, Italy, 2007, pp. 491-494.

[28] R. Vdovjak and G.-J. Houben, "RDF Based Architecture for Semantic Integration of
Heterogeneous Information Sources," in Workshop on Information Integration on the
Web, 2001, pp. 51-57.

72

DEPLOYING THE SEMANTIC WEB IN THE WELFARE ENVIRONMENT
References

[29] T. Dillon, E. Chang, M. Hadzic, and P. Wongthongtham, "Differentiating
Conceptual Modelling from Data Modelling,Knowledge Modelling and Ontology
Modelling and a Notation for Ontology Modelling," in Proceedings of the fifth on Asia-
Pacific conference on conceptual modelling-Volume 79, Wollongong, Australia, 2008, pp.
7-17.

[30] T. P. v. d. Weide, A. H. M. t. Hofstede, and P. v. Bommel, "Uniquest: Determining
the Semantics of Complex Uniqueness Constraints," The Computer Journal, vol. 35,
no. 2, pp. 148-156, 1992.

73

