
1

Abstract—In the rapidly evolving and growing environment of
the internet, website owners aim to maximize interest for their
website. In this article we propose a model, which combines
the static structure of the internet with activity based data, to
compute a website interest ranking. This ranking can be used
to gain more insight into the flow of users over the internet,
optimize the position of a website and improve strategic decisions
and investments. The model consists of a static centrality based
component and a dynamic activity based component. These
components are used to create a Markov Model in order to
compute a n-th order ranking.

Keywords: web graph; website interest; centrality; user
flow; Markov Model

I. INTRODUCTION

The internet is a rapidly growing and evolving environment,
currently it contains approximately 20 billion indexed web-
pages1 and only 24% of the world’s population has access to
it2 . Users are entering the internet on a web site and use the
available hyperlinks to travel to other pages and web sites.
Simultaneously web site owners are constantly updating their
existing web sites and creating new web sites. Over time web
sites might also cease to exist (although others might have
created cached copies). In short, users follow the structure
created by web masters and others while this structure is
constantly evolving.

Several theories have been developed to study the internet.
One of these theories models the internet as a graph, called
the web graph [1]. Webpages are represented as nodes in this
graph and hyperlinks between pages as edges. The graph can
both be directed, incorporating the direction of the hyper-
link, or undirected. Since the internet is now modeled as a
normal graph, all known graph theory can be applied to it.
A restriction of the web graph to note is that page content
is not incorporated in the graph model. The webgraph only
contains connectivity information. Nevertheless, studies have
proven that clusters in the webgraph usually are about the same
topic. Therefore, discarding the actual content of the website
and only looking at the graph structure, allows us to make
claims about the content of the pages.

This web graph can be used to derive all kinds of interesting
properties. Several techniques exist to determine an importance
value for a node (website) in the graph. This is known as
the centrality of a node. In a more social context, prestige
can also be used as a measure of importance [2]. Identifying
communities in this graph by local algorithms is also a well
studied topic [3].

An important issue for website owners is: how to maximize
the interest for their page. This can be seen as the problem to
optimally position a website in the webgraph. See figure 1 for
an example. The grey node (labeled as ”?”) is the website that
has to be inserted as optimal as possible. The question now
is, which links are required to achieve this goal?

Several website properties can be used to define what an
optimal position for a website is:

1http://www.worldwidewebsize.com
2http://www.internetworldstats.com/stats.htm

Fig. 1. Example graph.

• Content
The content of a website has to be of high quality for it’s
customers. If the content does not meet the customers
requirements, they loose interest for the website. But,
before content comes into play, customers have to reach
the website first.

• Links
Links from other pages to a website define the reachabil-
ity of a website. A link from a website with high traffic
will increase interest more than a link from a low traffic
website.

• Advertisement
The more people know about a website, the more people
will be interested in it. Again the traffic of the potential
candidate for advertisement is important to maximize the
yield of the advertising.

• Other
There are other aspects that might improve the interest
for a website, e.g. search engine rankings, but those are
not considered in this research project.

In this article we want to investigate how we can gain more
insight into the static structure of the internet and the dynamic
flow of users through this structure. This results in a flow
potential score for a website. The improved insight, based on
the flow potential score, can result in more strategic decisions
and investments. Think about questions like “where should
I advertise for my website”. By placing adverts on external
website, you are basically creating hyperlinks to your own
website with the goal to attract visitors. With the flow potential
score you can make a better choice about which website is
best to advertise on in order to maximize the visitors to your
website.

Flow potential, which is more than just flow if it also
depends on properties of the underlying structure, will be
referred to as website interest. The research question in this
article is:

• How can website interest be measured based on static
and dynamic properties?

In order to answer this question, the following sub questions
have to be answered:

• What are the static and dynamic properties of websites?
• How can these properties be measured?
• How can these two types of properties be combined?
The rest of this article will try to answer these questions.

In order to do so we will start with looking into interest
and defining a model used for interest optimization in section
two. This model consists of two components. One of these



2

components, centrality, will be discussed in the third section.
The other component will be related to the discussion of
existing work in section four. In section five an experiment is
presented to test the proposed ideas. Section six will present
the results of this experiment and in section seven we will
conclude this article.

II. THE MODEL

In this section we will propose a model which can be used
to optimize the interest for a webpage. Before we do this, we
will first define what interest is, in this article.

A. Webpage Interest

Webpage interest is a very broad concept to describe which
webpage 3 or website 4 is important for a user. In the context
of this research we will restrict ourselves to websites and not at
single pages. However, as it turns out, single pages have been
used to research methods to optimize navigation through a
webpage, based on (amongst other properties) the importance
of the pages of the webpage. In later sections, this existing
work will be discussed as well as the relation to this article.

Some research has already been conducted on the subject
of measuring explicit and implicit user interest. This research
mainly focussed on single pages, but this can easily be
extended to sites. Two types of interest can be distinguished:

• Explicit: user specifies what he/she thinks about the
webpage after being asked to do so.

• Implicit: infer what the user thinks about the webpage
without asking it. Information used generally are things
like: time spend on a page, the amount scrolled on a page,
the amount of clicks on a page and/or any combination
of these properties [4].

Both have disadvantages. Explicit interest requires the user
to stop what he/she is doing and write down what he/she thinks
about the page. This is very invasive. Implicit interest solves
this problem, the user is not required to stop what he/she
is doing. The main disadvantage of measuring implicit user
interest is that this method requires a custom build browser or
plugin which gathers the required information (clicks, scrolls,
etc) on the client side.

In the context of our research we don’t want to ask the
user to specify his/her interest in a webpage. Most likely we
won’t have access to the webpage we want get information
about. We also do not want to measure this interest on the
client side. This would mean releasing our own browser and
we would only be able to gather data from the user base using
this browser. Therefore, both implicit and explicit interest as
mentioned above, do not offer what we need.

We would like to use the webgraph, and therefore loose
content information, to measure the user interest for a web-
page. The two disadvantages mentioned above, are not relevant
anymore when using the webgraph. By writing a spider
application we can construct this graph (or a relevant part of

3webpage = a single page of one website.
4website = the collection of all (single) webpages of one website.

it) ourselves, or we can buy this data from an external party
specialized in this matter.

As a first approach we will use the page importance,
calculated from the webgraph, as the measure for interest in
a webpage. In the remainder of this paper, this measure will
be extended and refined.

B. The Model

The model, proposed in this section, derives the webpage
interest value R(p) of a webpage p from the following two
components. The first component is the webpage importance,
I(p), which is measured relative to other webpages. The
second component P (p) is a property that quantifies the
interest in page p. These components are combined by a
function called Rc:

R(p) = Rc(I(p), P (p))

The two components combine static and dynamic properties
of webpages respectively. The importance function I is a
static property of the (web) graph, and may be measured by
centrality, which is a known concept from graph theory. In
section three we will discuss the concept of centrality in depth
and in a later section we will also see what types of centrality
are suitable for applying to the proposed model.

The interest function P is a flexible, dynamic component.
P depends on the domain of the problem we are looking at,
but it should be an indication of the activity of the nodes.
Link traversal counts, a count of how often users follow a
specific link, would be the best activity based measure. It can
measure incoming traffic and outgoing traffic and it can be
used to compute the number of user entering and leaving a
certain domain. Unfortunately this information is not publicly
available. We will propose a solution to convert activity based
data for single nodes into probabilities of traversing a link.
This will be discussed moro thoroughly in section four, in
relation to the existing work. Section four will be concluded
with a solution for the relation between I(p) and P (p).

III. CENTRALITY IN A GRAPH

In this section we will discuss the concept of centrality in a
graph. As mentioned in the previous section, centrality is one
of the two components of the proposed model. First, a short
introduction into graph theory is given. All concepts for the
later sections will be discussed. After this introduction the four
well-known concepts of centrality will be explained. Then we
will relate these concepts to the proposed model and finally
we will explain a little about how to calculate theses centrality
measures.

A. Basic Graph Theory

A (web) graph G is defined as an ordered pair G = (V,A)
where V is the set of vertices or nodes and A is the set of
(directed) arcs between the nodes in the graph: A ⊆ V 2. We
will also write A(v, w) to denote arc (v, w) ∈ A. In the case
of a webgraph, the nodes of the graph are the webpages and
the arcs are the hyperlinks between them.



3

A graph can be either directed or undirected. In the case of a
directed graph, the direction of the arc is important. Therefore
(v, w) 6= (w, v) holds. In the case of an undirected graph,
the direction of the arc does not matter and (v, w) = (w, v)
holds, in this case we also speak of edges. In this article
however, we will only use the term arc and assume the graph
is directed unless we specify otherwise. If we look at the
webgraph, a hyperlink indicates a directed link between two
webpages. If one page links to another page, it does not
necessarily mean this also holds the other way around.

Let P (v, w) be the set of all paths between nodes v and w.
The path between two nodes v and w through another node z
can then be defined as P (v, w, z, ) = P (v, z) ◦ P (z, w). We
have introduced a new operator here: ◦. This operator is used
to concatenate two sets of paths in such a way that the resulting
set has every possible combination of paths. The number of
paths between two nodes is equal to the number of paths in
the set, p(v, w) = |P (v, w)| and p(v, w, z) = |P (v, w, z)|.

A path itself is a concatenation of arcs. It we consider this
an ordered set of arcs, the length of this set is the length of
the path, |p| ∈ P (v, w).

A geodesic is a shortest path between two nodes. In a later
section we will need information about the geodesics between
two nodes v and w. Therefore the function G(v, w) is defined:

G(v, w) = {p ∈ P (v, w)|∀q∈P (v,w)[|p| ≤ |q|]} (1)

As with the path definitions, we will also include a definition
for geodesics between two nodes v and w, passing through
node z:

G(v, w, z) = G(v, z) ◦G(z, w) (2)

If we are interested in the number of geodesics between two
nodes, we can look at the size of the set with geodesics:
g(v, w) = |G(v, w)| and g(v, w, z) = |G(v, w, z)|.

Lemma III.1. Let v, w, z ∈ V then g(v, w, z) = g(v, z) ∗
g(z, w)

Proof: According to (1) G(v, z) is the set with shortest
paths from node v to node z. If a shorter path existed, that
would be the set G(v, z) because |p| ≤ |q| has to hold to
qualify as geodesic. The same holds for G(z, w). The total
number of shortest paths is the number of shortest paths from
v to z, g(v, z), multiplied by the number of shortest paths
between z and w, g(z, w). Therefore g(v, w, z) = g(v, z) ∗
g(z, w) holds.

The distance 5 of two nodes v and w is the length of the
geodesic between those two nodes. This is defined as follows:

d(v, w) = |p| with p ∈ G(v, w) (3)

And the distance of a geodesic between two nodes v and w,
through node z:

d(v, w, z) = |p| with p ∈ G(v, w, z) (4)

Lemma III.2. Let v, w, z ∈ V then d(v, w, z) = d(v, z) +
d(z, w)

5distance and length are synonymous

Proof: According to (3) d(v, z) is the distance of the
shortest path between node v and z. The same holds for
d(z, w). If there is a shorter path between v and z, that would
have been in the set of geodesics. It doesn’t matter which of the
shortest paths is selected from the set. The total length of the
shortest path is then the length of the two shortest sub paths,
d(v, z) + d(z, w). Therefore d(v, w, z) = d(v, z) + d(z, w)
holds

Another well known concept in graph theory is the adja-
cency matrix. The adjacency matrix represents the set A of
arcs as a matrix where the non zero entries represent the
existing arcs. So A[v, w] 6= 0 ⇔ (v, w) ∈ A. By extending
this principle more information can be stored in the adjacency
matrix. If arcs have non-zero weights assigned, then these
weights may be stored in the adjacency matrix. Another option
is that the adjacency matrix stores probabilities corresponding
to the likelihood of folowing that arc when traversing the
graph.

B. Centrality

A natural question in a webgraph is: ”How important is
some page?”. To answer this question the concept of centrality
has been introduced. Centrality is a measure to calculate the
importance of a webpage in the webgraph. This importance
measure may be used in the webpage interest model as the
static component I . The main approaches to centrality are:

• (1) Degree centrality.
• (2) Betweenness centrality.
• (3) Closeness centrality.
• (4) Eigenvector centrality.

The first three have been discussed extensively in a article by
Freeman [5]. Eigenvector centrality is discussed by Borgatti
[6] and is based on the work of Bonacich [7]. Later on, the
well known PageRank [8] algorithm has been been based on
this centrality measure.

1) Degree Centrality: Degree centrality will look at the
degree value of a node. The degree of a node is defined as the
number of links for that specific node. The indegree, Cin

d , is
the number of incoming links and the out degree, Cout

d , the
number of outgoing links. Formally the degree centrality is
defined as follows:

Cin
d (v) =

∑
w∈V

A(w, v)

Cout
d (v) =

∑
w∈V

A(v, w)

In the matrix representation we have:

Cin
d = 1T A

Cout
d = A1

where 1 is a (column) vector of all ones. This degree centrality
depends on the size of the graph. The maximum value for
indegree and outdegree is n − 16, where n is the number of

6This is based on the assumption there are no point cycles.



4

nodes in the graph. To be able to use this measure to compare
different graphs, the Cd formula needs to be normalized:

Cin
dNorm =

1
n− 1

Cin
d

Cout
dNorm =

1
n− 1

Cout
d

The degree centrality measures the potential of a point to
be part of a flow in a graph. The higher the degree, the more
connections to other points there are. This means it is more
likely that this node is part of some flow in the graph. In the
sections about eigenvector centrality we will see a definition
of centrality which is the opposite of this definition.

2) Betweenness Centrality: Betweenness centrality,CB ,
counts the number of geodesics (= shortest paths between two
nodes) a specific node is part of. The probability that point z
is part of a randomly selected geodesic linking v with w.

B(v, w, z) =
g(v, w, z)
g(v, w)

Based on this probability we can compute the betweenness
centrality:

Cin
b (z) =

∑
v 6=w∈V −z

B(v, w, z)

Cout
b (z) =

∑
v 6=w∈V −z

B(w, v, z)

Freeman [5] has shown the maximum value for This is
normalized against the number of pairs of vertices that do
not include z (see Freeman [5]):

(n− 1)(n− 2)
2

leading to:

Cin
bNorm =

2
(n− 1)(n− 2)

Cin
b

Cout
bNorm(z) =

2
(n− 1)(n− 2)

Cout
b

When using this formula, the betweenness centrality can be
seen as the potential of a point to control the flow in the graph.
A point with maximum betweenness centrality has maximum
control over the flow in the graph, since all paths go through
this node. As an example, think of a 4 point star with one
point in the middle. The middle point has maximum control.

This betweenness centrality considers all shortest paths in a
graph. For large graphs this is computationally not attractive.
In order to optimize this computation, an alternative approach
has been proposed by Everett and Borgatti in [9]. They have
proposed to compute betweenness centrality in the ego graph
rather than the entire graph. So if we want to compute the ego
betweenness centrality of a node v, CEB(v), we have to focus
on the ego v and extract the ego graph of v from the entire
graph. Then we can compute the betweenness centrality of v in
it’s ego graph. Everett and Borgatti have shown there appears
to be some relation between the ego betweenness centrality
and the normal betweenness centrality, but they didn’t define
this relation yet. They have shown that it’s likely for this
relation to exists, with an experiment.

Ego networks have been formally defined by Freeman [10]
as follows: A graph G is a k-star if the following holds: The
graph G = (V,E) where V is the set of n nodes (or vertices)
and E is the set of e symmetrical edges linking pairs of points.
If n > 2 and there are n− 1 edges such that some point p∗ is
directly connected or adjacent to all others. A centered graph
is then defined as any graph of n points with a k-star. Any
ego network is structurally a centered graph.

Centered graph have some interesting properties:
• Centered graphs have two extremals. The minimal k-star

has k− 1 edges connecting p∗ to the k− 1 other points.
The maximal k-star is the complete graph where all edges

are present with
(

k
2

)
= 1

2k(k − 1) edges connecting

each point to all of the others.
• Centered graphs are connected. There is a path from any

point to all others.
• The longest geodesic linking any pair of points in a

centered graph is ≤ 2. This is also called the diameter of
the graph.

• Any geodesic has either a length of one or two. If a path
has a length of one, the nodes involved are adjacent. If
the length of the path is two, the points are linked by a
point in the middle.

Considering the last property, computing the ego between-
ness is fairly straightforward in the ego graph. Every pair
of non-adjacent nodes must have a geodesic of length two,
through p∗. Everett and Borgatti have described a method to
compute the ego betweenness from the adjacency matrix of
the the ego graph.

AEB = A2[1−A]

where A is the adjacency of the ego graph and 1 is a matrix
with only 1’s with the same dimensions as A. The ego
betweenness is the sum of the reciprocals of the non zero
entries in AEB .

An important thing to note is how A2[1−A] is computed.
Each matrix position in A2 is multiplied with the same matrix
position in 1−A. So AEB

i,j = A2
i,j × [1−A]i,j where 0 ≤ i ≤

rows and 0 ≤ j ≤ columns
3) Closeness Centrality: According to Freeman both the

degree centrality and the betweenness centrality are useful
as and index for flow control potential. The last centrality
measure discussed by Freeman is a bit different. Closeness
centrality is based on the degree to which a point is close to
all the other points in the graph and therefore is able to avoid
the control potential of others.

The most simple formula for closeness centrality, was first
presented by Sabidussi as the decentrality of a point z:

Cc(z)in =
1∑

v∈V d(v, z)

Cc(z)out =
1∑

v∈V d(z, v)

For this formula to work, the graph needs to be connected.
Otherwise infinite paths are included. If we consider the
webgraph, this need not be the case. Therefore additional



5

work is required to use this formula for the webgraph. The
normalized form is:

C ′
c(z)in =

n− 1
Cc(z)in

C ′
c(z)out =

n− 1
Cc(z)out

4) Eigenvector Centrality: The last centrality measure is
the eigenvector centrality. Based on the work of Katz [11] and
Hubble [12], Bonacich eventually developed a new approach
to degree centrality [7]. It is interesting to see that Bonacich
definition is almost the opposite of Freemans definition of
degree centrality.

Freeman claimed that having a high degree meant it would
be very likely to be part of the flow in the graph. Bonacich does
agree with this, but regards this as a (possible) negative feature.
If having a high degree means being important, depends on
the nodes you are connected to. To be more specifically, it
depends on the degree of those nodes. Being connected to
nodes with a low degree, makes you more powerful and being
connected to nodes which are themselves connected to a lot
of other nodes, makes you only a little bit more important.

An example might clarify this. Consider Bill and Fred.
They each have five close friends (meaning they are directly
connected to them in the graph representation). Bill’s friends
are isolated people, Fred’s friends also have lot’s of friends
themselves. It is easy to imagine Bill has more influence
on his friends than Fred on his. If Fred tells his friends
something, they will also hear things from their other friends.
Therefore they might not believe Fred. In Bill’s case, his
friends will probably believe what he tells them. Bill is more
influential then Fred.

We define the centrality of a node v as CE(v), CE is a
vector in this case and CE(v) is the element in this vector
at position v. If we combine this with the influence of the
neighbors of v, we get the following formula:

CE(v) =
1
λ

∑
w∈V \v

A(v, w)× CE(w)

where λ is a constant and A is the adjacency matrix of the
graph. If we define CE(w) as the vector of centralities x =
(w, z, . . . ), the formula can be rewritten as follows:

λx = Ax

and this is the eigenvector equation and therefore this centrality
measure is called eigenvector centrality.

C. Back to the model

In the previous section we have seen an overview of
methods to compute the importance of a node in a graph.
The importance component I(p) of the model R(p) =
Rc(I(p), P (p)) can be instantiated with one of these methods.
Which method is preferred depends on the interest property
P (p). If, for example, we are interested in webpage traffic as
the property for our model, the betweenness centrality looks
like a promising candidate to use for measuring importance.

Nodes or webpages with a lot of potential to control the flow,
meaning that a lot of other webpages are connected to them,
are good candidates to connect to in order to get a good amount
of traffic to your webpage. Another good option could be
the eigenvector centrality. By using the eigenvector centrality
of a webpage, you can compute it’s influence. Connecting to
webpages with a lot of influence might result in more traffic
to your webpage.

At first it is a good option to choose the centrality measure
for the I(p) component based on the conceptual meaning. At
the end of this article we will test our model and the choices
we made on a real data set.

Another challenge in order to compute the I(p) component
is the size of the webgraph. The webgraph is an incredibly
large graph and it is growing larger every day. It’s very unlikely
to claim we can maintain an up-to-date graph of the internet,
and providing a solution for this problem is beyond the scope
of this article. The graph we use will always be obsolete
as soon as we have modeled it. Moreover, computing the
importance measures on such a large graph, might require
a lot of computational time. This obviously depends on the
centrality measure, degree centrality is more easy to compute
than for example betweenness centrality. Therefore it might
be good to use other techniques to create subgraphs which are
relevant for us, in order to decrease the total size of the graph
used to calculate our model.

A good example is the addition to betweenness centrality
about ego betweenness centrality. By focussing on the ego
graph instead of the entire graph, the complexity to compute
the betweenness decreases and is therefore more easy to
compute.

It might also be a good option to just focus on a specific
part of the total webgraph. Several techniques exists which
show that by using the static graph structure, logically con-
nected subgraphs can be extracted. In order to create such
subgraphs, techniques like community identification could be
used. A community is a related subset of the total webgraph.
By ”zooming” in on only a small interesting part of the
total internet, the problem to solve is made easier from the
beginning.

IV. EXISTING WORK

Several techniques are available to analyze the popularity
of single pages inside a single website. Based on this measure
and the history of the current user’s navigation, a prediction
is made about which pages are of most interest to this user.
The technique and model proposed in this paper aims to
do something similar, but on a larger scale, the scale of
the internet or a relevant part of the internet. Community
identification is an example of a technique to obtain a relevant
subset of the webgraph.

Analyzing the webgraph and constructing rankings based
on the static structure of the graph is pretty common now. On
the other hand, looking at activity based criteria is also pretty
common. Several measures exist to indicate the number of
visitors to a website, the duration of their visits and so on. A
measure which combines these properties is not so common.



6

In the past years several studies have been conducted in
the direction of adaptive websites. The studies are trying to
improve the static website structure by incorporating dynamic
activity based information.

In this section, several of these existing techniques, focussed
on single websites, will be discussed. In the next section
we will propose our definitive model, based on some of the
techniques discussed in this section.

We will now list, part of, the evolution in the field of adap-
tive websites. We will start with some very basic techniques
which will evolve into more sophisticated solutions.

A. Website optimization and adaptation

In the article about adaptive websites [13], the authors
propose a system which is able to increase the effectiveness
of websites based on several actions: (1) promotion and
demotion, (2) highlighting, (3) linking and (4) clustering.

1. Promotion and demotion is the process of placing links
to pages of the website into some reserved space on the
front page. This operation is restricted to this reserved space
(usually a boxed area) mainly to ensure web masters the
algorithm cannot rearrange the entire structure of the website.
The algorithm can only create new links into the existing
website structure, called promotion. And it can only remove
links it has created itself, called demotion. In order to promote
a page v, the page has to be popular but not very accessible.
The popularity of a page v is defined as the number of page
accesses, which are extracted from the web servers logs.

pop(v) = # page accesses

The accessibility acc on the other hand is a measure for how
far away a page v is to the frontpage.

acc(v) =
1

d(frontpage, v)2

where d(frontpage, v) is the distance function as defined in
(3).

Based on the popularity and the accessibility, the promotion
score pro is defined as follows:

pro(v) =
pop(v)
acc(v)

A page will be promoted to the reserved area on the front
page if pro(v) > pro(w) with w being a page already in the
box, and v being a page not in the box and pro(v) > π, with
π being a threshold value. By using a certain threshold value,
a certain promotion score is needed in order to be promoted.
This definition causes pages which have many visitors but are
far away from the frontpage to score a high promotion score.

2. Highlighting is emphasizing certain links by altering the
font, color or graphics. This is a lightweight operation and can
be done on all pages. The set L(v) is defined as the set of all
pages, a page v links to. The links in this set L are ordered by
their access value. Based on this ordering, the top x% links
on page v are highlighted.

3. Linking is connecting two previously unconnected pages
or disconnecting two previously connected pages. The idea is

to connect pages which are highly correlated. Two pages are
highly correlated when a users visit both of them frequently.
Let P (v) be the probability that page v will be visited. If
page v and w are not already linked, if ρ(P (v), P (w)) > δ
the pages should be linked. Where δ is a threshold value.

4. Clustering associates a collection of related pages and
makes them accessible as a group on a newly created page.
The authors propose a set of rules to group pages, which are
not grouped already, based on their similarity in filename and
correlation of user visiting path.

The disadvantage of the proposed approach is promotion
and demotion is limited to certain boxed areas on a page. This
limitation however, is mainly introduced because web masters
are not considered to be ready for fully adaptive websites.
An advantage of this approach is both creating, removing
and highlighting links look promising. Unfortunately, no
empirical evidence is available to indicate how this approach
performs.

The authors in the next article, website optimization using
page popularity, [14] propose a method to measure page
popularity for offline web rearrangement, in order to create a
more accessible and effective website. The idea is very similar
to the basic concept of promotion and demotion in the previous
discussed article. This approach however, rearranges the entire
website structure and is not limited to certain boxed areas.

Absolute page accesses, pop(v), are proposed as a mea-
sure for page popularity. However, this can be a misleading
measure. The closer to the home page a certain page is, the
more absolute accesses it will get. The authors define three
properties which should be taken into consideration. (1) The
depth of the page v relative to the front page z, d(z, v), (2)
the number of pages of the same depth as the page being
examined, n(v) and (3) the number of references to this page
from any other page of the website, Cin(v).

All three of these parameters can be combined into a new
measure, the relative page access pop′(v), defined by the
following formula:

pop′(v) = c1 ∗ d(z, v) + c2 ∗
n(v)

Cin(v)
∗ pop(v)

where c1 and c2 are constants which depend on the structure of
the webpage. What a proper value could be for these constants
is not sure yet, in the articles case study c1 = 1 and c2 = 1
is used. Therefore

pop′(v) = d(z, v) + 3 ∗ n(v)
Cin(v)

∗ pop(v)

d(z, v) is an indication of how special a page v is. The
further away from the frontpage, the more special page v
is. The other component, n(v)

Cin(v) , defines page v as special
when there are many pages at the same depth (it is chosen out
of a large collection) and v has little incoming links (more
incoming links increase the probability a user reaches page v
and therefore decreases how special it is).

Three other properties are of interest, t(v) which is the time
a user spends on a specific page v thus T =

∑
v∈V t(v)



7

is the total time a users have spend on the entire website.
These two properties are used to discard cases where users
spent very little or too much time on a webpage. A very
short time indicates a user clicking on a link immediately
after entering page v or going back to the previous page by
using the browsers back functionality. A very long time is an
indication of a user leaving the webpage v open, but doing
something else. The third property q is a measure for the
number of different pages a user visits in one session. These
properties are used the measure the effectiveness of the website
structure. The goal is to increase page accesses, t(v) and T
while decreasing q.

Based on these definitions an application has been written
by the authors: SOALA. This application has been used to test
their proposed algorithm: If the relative page popularity of a
given page exceeds the relative page popularity of at least one
ancestor, the two pages are swapped. This approach assumes
all pages in the website are ordered as a tree.

However, there are some limitations to the algorithm. In
some situations automatic changes in structure are not possible
because of the logical structure of the data. Think of a lyrics
website, where songs are ordered alphabetically, the links A
to Z should not be changed.

The initial experimental results look promising. The test
application has been tested on several ad hoc generated web-
pages with different structures. The improvements where good.
Next a webpage has been developed and logs were gathered
for 15 days. After measuring this base situation the webpage
was optimized by executing the SOALA application and again
logs where gathered for 15 days. The new structure showed an
improvement of approximately 14% in absolut page accesses
and an 11% in the average page time (the time a user spends
on a page).

B. Website link structure evaluation and improvement based
on user visiting patterns

The author’s in this article about Website link structure
evaluation [15], describe a method where the website link
structure results in a user preference measure. This measure is
based on user visiting patterns which are used to construct a
weighted directed graph. This weighted graph can then be used
to compute connectivity between pages. By optimizing this
connectivity, by adding or removing hyperlinks, the website
structure is improved.

Web servers can be configured to create web logs of users
visiting the server. These web logs are divided in user visiting
sessions, where information of one user in a certain time
period is stored. Let M(s, v) = 1 if page v was visited in
user session s and M(s, v) = 0 otherwise.

A row in this matrix M contains the request status for each
page in a certain user visiting session. A column contains the
page accesses of a certain page for all user visiting sessions.
The associate degree, H(v, w) ∈ [0, 1] between page v and
page w is the number of sessions in which both v and w have
been accessed (h′) divided by the sessions in which only v

has been accessed (h). This is defined as follows:

H(v, w) =

{
h′(v,w)

h(v) if h(v) 6= 0
0 otherwise.

where
h(v) =

∑
s∈S

M(s, v)

h′(v, w) =
∑
s∈S

M(s, v) ∗M(s, w)

The weighted directed graph, G = (V, A, W), can now be
constructed where V is the set of pages in the website, A is
the set of links between the pages and W is the set of weights
for each link. A weight weight for a link A(v, w) is defined
as follows:

weight(v, w) =
H(v, w)
H ′(v)

where H ′(v, w) is the sum of all associate degrees for the
outgoing links of v:

H ′(v) =
∑
v→z

H(v, z)

The weight of a route l from node v to node w, is defined as
weightroute(l) = weight(v, z0) × . . . weight(zn, w). Let L be
the set of all routes between v and w, the connectivity from
node v to node w is defined as

C(v, w) =
∑
l∈L

weightroute(l)

Based on the weighted graph and connectivity function, an
average connectivity score, E, can be calculated. The function
E is defined as follows:

E =
∑
v 6=w

C(v, w)
n(n− 1)

where n(n−1) is the total number of page pairs in the website.
The higher the value for E is, the better the link structure of
the site is.

The goal was to optimize the link structure of a website.
Therefore E has to be optimized. The authors propose an
algorithm which computes E for the base situation. Then it
will add new links randomly and keep the link if the E for
this new structure has increased. If E has decreased, the link
is discarded again.

The algorithm proposed by the authors only tries to add
links. It might also be interesting to remove existing links and
see if E improves.

C. Markov Models

This section will give an introduction to Markov models.
A Markov model is a stochastic process with the Markov
property. This means the future states of the process are
independent of the previous states and depend only on the
current state. Based on the Markov property, a Markov chain
is defined as a sequence of random variables, the states S, with
the Markov property:

P(Xn+1) = x|Xn = xn, . . . , X1 = x1) =
P(Xn+1) = x|Xn = xn) (5)



8

A Markov chain can also use a memory. The size of the
memory is called the order of the Markov chain. Therefore, a
m-th order Markov chain is defined as follows:

P(Xn = xn|Xn−1 = xn−1, . . . , Xn−m = xn−m) (6)

In relation to this article the nodes in a graph can be seen as the
states in the Markov model and the value of P(Xn|Xn−1) can
be seen as the probability of following a link from node Xn−1

to node Xn. If Xn = v and Xn−1 = w, then P(Xn|Xn−1 =
P(v|w). Since we are mainly interested in graphs, the Markov
model memory can be seen as the path followed by a user to
reach a certain node. If a user has followed a path, of n steps,
to node w, z1 → z2 → · · · → zn−1 → w, then this history
can be used to see what the probability is the user will go to
node v given this history:

P(v|zn−1 → w, . . . , z1 → z2) (7)

If the state space is finite, which is the case for our
webgraph, the transition probability of going from one state to
another state is modeled with a one-step transition probability
matrix Q. In this matrix element (v, w) = P(v|w) = P(w →
v). Besides the transition probability, an initial probability
distribution L is needed as well. This is used to determine
a starting situation. The initial probability distribution is just a
vector with for each state the probability to start in that state,
∀v∈SP(v).

With these definitions in place, the Markov model is defined
as < S, Q, L > where S is the state space, Q is the one-step
transition matrix and L is the initial probability distribution.

By multiplying the initial probability distribution with the
one-step probability matrix, L×Q , the probabilities of ending
up in a certain node after one step are computed. The one-step
probability matrix to the power of m, where m is the order of
the Markov model, computes the probabilities of going from
node v to node w in m steps. Therefore, L × Qm computes
the probabilities of ending up in a certain node after m steps.

By using the chain rule, the probability of a given path can
be computed. The basic chain rule is:

P(v, w) = P(v|w)p(w)

By applying the chain rule multiple times, the probability of
a path in a graph can be computed. Let the followed path of
length n be z1 → z2 → · · · → zn, then:

P(z1, z2, . . . , zn)
= P(zn|z1, z2, . . . , zn−1)P(z1, z2, . . . , zn−1)
= P(zn|zn−1)P(z1, z2, . . . , zn−1)
= P(zn|zn−1)P(zn−1|zn−2)P(z1, z2, . . . , zn−2)
= P(zn|zn−1)P(zn−1|zn−2) . . . P(z2|z1)P(z1)

In general, the chain rule can be written as follows:

P(z1 → · · · → zn) = P(z1) ∗
n∏

i=2

P(zi|zi−1) (8)

By using the definition of conditional probability:

P(z2|z1) =
P(z1 → z2)

P(z1)
(9)

and the result of applying the chain rule, the solution is:

P(z1 → z2 → · · · → zn)
= P(zn|zn−1) . . . P(z2|z1)P(z1)

=
P(zn−1 → zn)

P(zn−1)
. . .

P(z1 → z2)
P(z1)

P(z1)

D. Using Markov Models for Website Link Prediction

The authors in the articles, about Markov Models for
website link prediction [16] [17] [18], propose a method
where a directed graph is created with the pages of the site
being the nodes and the hyperlinks between the pages the
arcs. By analyzing the web logs, weights are assigned to
the edges representing the number of times a hyperlink has
been followed by the users of the website. The weights in
this graph are used to compute a probability transition matrix
containing one-step transition probabilities between the nodes
in the directed graph.

A Markov model is constructed by taking the nodes in the
directed graph as the states S. Based on the directed weighted
graph, a one step probability matrix can be constructed. A
start and exit node are added to the graph to put weights on
users entering or leaving the website. With this information,
the one-step probability transition matrix is created. The one-
step transition probability from page v to page w, P(v →
w) = P(w|v) can be seen as the fraction of traversals, or
weight, from v to w over the total number of traversals from
v to other nodes:

P(w|v) =
weight(v, w)∑

z|(v,z)∈A weight(v, z)

where weight(v, w) is the weight of the link between node v
and node w.

By using this one-step transition probability matrix, pre-
dictions can be made about which page is interesting to the
user based on the users link history. Let a user currently be
visiting page v and let the users visiting history be a sequence
of m pages z → · · · → w → v, where z is the page m
link traversals ago. This history is together with the transition
matrix to calculate vector ranking for the probability of each
page to be visited in the next step as follows:

ranking = a1 × L(v)× Q+
a2 × L(w → v)× Q2 + · · ·+
am × L(z → · · · → w → v)× Qm

where a1, a2, . . . , am are the weights assigned to the history
vectors. These weights indicate the level of influence these
history vectors have on the future. Normally 1 > a1 > a2 >
· · · > am > 0 so the closer the history vector is to the present,
to more influence it has on the future.

By adding a technique to compress the transition matrix,
proposed by [17], even more steps into the future can be
computed. Based on these principles a prototype, ONE (Online
Navigation Explorer), has been build. It has been used to assist
user navigation on the authors university website. The initial
feedback from the users is very positive. It was more easy to
find useful information by using ONE than not using it.



9

E. Web Path Recommendations based on Page Ranking and
Markov Models

In this article [19] markov model’s are, again, used to pre-
dict the users’ navigation. Instead of using purely usage based
statistics from http logs, or uniformly distributed probabilities,
the authors propose a method to use structural properties. They
use importance in the webgraph for this. The importance is
calculated using a PageRank [20] style authority score, which
is based on the eigenvector centrality and therefore on the
structure of the graph. As in the previous article, web usage
logs are used to compute the one-step transition probability
matrix Q with the pages of the website as the states S.

The structural part of the approach proposed in this article
is based on PageRank. PageRank models the behavior of a
user which is surfing the web by choosing an outgoing link
of the page he is currently visiting or by jumping to a random
page on the web. The PageRank of a page then becomes the
probability of the random surfer being at the current page in a
particular time step k > K. This probability is also correlated
with the importance of the page as it is defined as the number
and the importance of the pages pointing to it.

PR = ε ∗ Q ∗ PR + (1− ε)p

where (1−ε) is a dump factor with ε being very small, usually
0.15 and p is usually chosen as p = 1

n .
The authors propose an algorithm which constructs a

weighted tree-like structure, based on the user visiting patterns.
A special root node, W , is introduced, the other nodes are
instances of the S webpages and all branches terminate in a
special leaf-node E. For each user session a branch in the
tree is created. If part of this branch overlaps with a existing
branch, the overlapping part is merged and the weights of the
overlapping part are increased.

This tree structure can be transformed to a markov model
and be used to compute the probabilities of the next page.
Normally a Markov model is instantiated by assigning either
equal probabilities to all nodes or as the ratio between the
number of times this page has been visited as a first page and
the total number of times a page has been visited as a first
page (the total number of user sessions). The first approach
favors unimportant pages while the seconds approach favors
only top-level entry pages. A better approach, proposed by the
authors, is an importance based measure, based on PageRank.

L(v) = (1− ε)× o(v) + ε
∑
w→v

(PRn−1(w)× o(w, v))

weight(v, w) is the number of link traversals and
weight(v) =

∑
z→v weight(z, v)

Three variants are presented for o(v) and o(w, v):
1) PR (PageRank):

o(v) =
1
n

o(w, v) =
1

Cout
d (w)

2) SUPR (Semi-Usage PageRank):

o(v) =
1
n

o(w, v) =
weight(w, v)∑

w→z weight(w, z)

3) UPR (Usage PageRank:

o(v) =
weight(v)∑

z∈S weight(z)

o(w, v) =
weight(w, v)∑

w→z weight(w, z)

Experiments have been conducted to test the proposed
method. In the test setup, five types of instantiations for
the markov model have been used. Two purely usage based
instantiations (START and TOTAL) and the three page-rank
based instantiations (PR, SUPR and UPR). The experiments
show promising results in favor of the PR, SUPR and UPR
approach. The results however, depend heavily on the data set
used. Further research is required in order to determine the
superiority of these PR, SUPR and UPR methods.

F. Back to the model again

The early approaches used structural properties combined
with usage data to estimate the next (set of )page(s) of interest
to the current user. The more advanced approaches are able
to incorporate the navigation history of the user to further
improve the predictions for the next relevant (set of) page(s).

Based on the discussed techniques, we can describe the P
component of the model in a bit more detail, although this
property is very situation specific as we will see in the next
section. On the other hand, the relation (I(p), P (p)) can be
defined based on the techniques seen in this section. We have
the static property I(p), based on the structure of the graph
and we have the dynamic property P (p). If we can come
up with a method of transforming these two properties in a
initial probability distribution and a one-step transition matrix,
Markov Models might be a very good method to define this
relation.

What about this P (p) component? It is still quite vague what
this should be. If we look at the discussed techniques, they
are all more or less based on web logs. These logs contain the
exact information of paths traversed by the users of the website
and also the number of visits to the specific pages. For website
and server administrators this information should be easily
obtainable. But outside this web server, this information is very
difficult to obtain (if obtainable at all). Some websites might
choose to publish this information, but most choose to do not.
And even if this information is published, it is susceptible to
manipulation since it is very difficult to verify. But for now
we will assume we can obtain this information outside the
web server, on the scale of the internet or communities on the
internet.

This information of traffic and traffic flows over the internet
can then be used to construct a weighted graph, which can be



10

transformed into a one-step probability matrix. This is pretty
similar to the approach discussed in the section about Markov
Models.

In order to use the model to obtain a ranking of websites
which are of the most interest to us, we have to look at all the
websites we are not connected to. For each of these websites
the mth Markov Model can be used to compute the probability
a user will be at that site after following m links. The websites
with the highest probability are the most interesting since they
have the highest probability of user arriving at their website
in m steps.

V. THE MODEL INTO ACTION

So far we have proposed a model to calculate webpage
interest, based on a static I(p) and a dynamic P (p) compo-
nent, and discussed these I(p) and P (p) components related
to existing theories and work. This has resulted in a solution
where a Markov Model defines the relation between the two
components. The Markov Model can be used to compute a
mth-order ranking. In this section we will propose a specific
situation for which the model can be used. Based on this
example we will show how to combine the discussed topics
so far, describe an possible implementation of an algorithm
and give arguments for the choices we made.

A. The Experiment

The experiment will be situated around the Dutch blo-
gosphere 7. The blogograph, the graph with all blogs and the
links between blogs, data for this experiment is supplied by
the company SiteData 8. Blogs in general are very diverse by
nature. Some people use their personal blogs 9 to write about
their daily lives and others use them to talk about their ideas.
Another category of blogs are the blogs, where entire teams
of people work to acquire and present interesting stories for
their readers. These blogs can be non profit, run be volunteers,
but they can also be funded by commercial companies.

One important aspect is the fact that bloggers like to adopt
each others stories. If someone publishes an interesting article,
there is a big chance other people will read it and start writing
about it as well and thereby creating links (or references) to
the original blog.

Another important aspect of the blogosphere is that most
bloggers like to discuss blog entries. Most blogs allow other
people to post comments about the original post or about other
comments. The results in very active user communities around
popular blogs.

This fits quite nicely to the proposed approach where we
combine the static and dynamic properties. Situated in this
setting, we want to use our model to create a ranking of the
blogs in the data set, based on combining the two properties.
The data set consists of approximately 75K blogs, which will
make the nodes in our graph. If we only take into consideration
the blogs which actually have links to other blogs, this amount

7See http://en.wikipedia.org/wiki/Blogspace for more information about the
blogosphere.

8Sitedata: http://www.sitedata.nl.
9The term blog is a contraction of the word web log.

is more reduced a lot. Approximately 12K blogs have links
with other blogs (either incoming or outgoing). These 12K
blogs are good for approximately 35K directed edges in the
graph and approximately 1750K links in total.

Blogs without any links to other blogs are very isolated and
can only contribute to our proposed ranking by their dynamic
information. They don’t have links which enable users to reach
their blogs, or reach other blogs from their blog. User will
enter their blog by jumping directly to it. Because of this, we
will not use these blogs in our ranking.

The amount of unique links between blogs is lower than the
total amount of links. This is caused by the fact most blogs
feature several articles which we have bundled into one blog.

In the following sections we will discuss how the model
can be instantiated and used to compute an actual ranking,
situated in the context we have just described.

B. The static property

Based on the static graph structure we have to compute
a centrality score for each node. Four major alternatives
to compute centrality have been discussed in this article.
Based on their conceptual meaning, betweenness centrality,
the potential of a point to control the flow in the graph, seems
like a very promising candidate.

In order to optimize the calculation for betweenness, we will
use ego betweenness. n ego networks have to be computed
but the ego networks themselves will be relatively small. The
data set consists of approximately 75K blogs, which are the
nodes in our graph. If we only take into consideration the
blogs which actually have links to other blogs, this amount is
reduced drastically. Approximately 12K blogs have links with
other blogs (either incoming or outgoing). These 12K blogs
contain approximately 35K directed edges in the graph and
approximately 1750K links in total. This is because a blog
is made up of several postings which link to others. In this
experiment we will look at the blog as a single entity. A blog
v can have 10 links to blog w, but we are only interested in
the fact there is a link.

How do we extract the ego network, Gego = (Vego, Aego),
for a node v ∈ V from graph G = (V,A)? Based on this
definition, two properties hold: (1) Vego ⊆ V and (2) Aego ⊆
A and based on the definition of Freeman all direct neighbors
and their arcs of v need to be included.

We perform two steps to extract the ego network. First we
will get the set with all nodes in the ego network for a certain
node v:

Vego = {v} ∪ {w ∈ V |(v, w) ∈ A ∨ (w, v) ∈ A}

Second, based on the set with nodes in the ego network, Vego,
we can construct the set of arcs in the ego network, Aego. If
an arc (v, w) ∈ Vego, exists in A then it should also exist in
Aego:

Aego = {(v, w) ∈ A|v ∈ Vego ∧ w ∈ Vego}

Now that we have the ego network in place, the actual
ego betweenness score, Cb, can be computed. Let Bego =
A2

ego × (1−Aego) where 1 is a matrix with only ones of the



11

same dimension as Aego and × is the cellwise multiplication
operator for matrices. The ego betweenness is the sum of the
reciprocals for the non zero entries in Bego:

Cb =
1

‖ Bego ‖1
(10)

If the ego betweenness is computed for all nodes in the graph,
the result will be a vector with these scores for each node.
Next, this vector is transformed into the initial probability
distribution by dividing each centrality score by the sum of
all centrality scores:

L =
1

‖ Cb ‖1
Cb (11)

Degree centrality could also be an interesting measure to
use. It is the potential of being part of a flow in the graph. This
claim is weaker than betweenness centrality. Being part of the
flow, but not able to control it is not as good. The betweenness
measures the participation of a website on shortest paths
between two other sites. This means that a higher betweenness
score means more of the shortest paths between two points go
through the website we are interested in. People generally take
the shortest path from A to B, so with a higher betweenness
score the chance of people going through the website we are
interested in is bigger. With a high degree centrality lot’s of
routes pass through the website, it has a lot of connection. But
if none of this connected are part of a shortest path, people
will take the other,shorter, routes. And that will result in less
people visiting the website we are interested in. However, it
could be interesting to compare results using the two centrality
measures on the same data set to compare the differences. We
expect the method based on betweenness centrality to perform
better.

Closeness centrality is the potential of a point to avoid being
part of the flow. Since we are interested in optimizing the flow
to our own website (by using the highest ranked website), we
are not so much interesting in websites which can avoid the
flow of other websites. This might however be a desirable
measure if information independence is very important. You
could about a ranking with the most independent blogs.

Eigenvector centrality is a bit of an outsider here. This
centrality measure will look at the influence of the other nodes
and incorporate this into it’s centrality value. This is similar to
the effect of incorporating multi step paths as the user history
when computing our ranking with a mth order Markov Model.
Especially if we look at a page rank style approach, it will also
incorporate the random aspect of people starting and leaving
the website. Mixing these properties, the centrality measure
incorporates similar effects as the Markov Model, might result
in mixed results. It could however be interesting to look at
how this could be effectively incorporated, since page rank
style ranking has proven to be pretty reliable.

C. The dynamic property

As mentioned already, it would be ideal to have usage data
of all websites on the internet, or just the blogosphere in our
case. Unfortunately this is not possible. We have come up
with a different approach to work around this problem. Blogs

often have the option to post reactions with a topic. These
reactions can be characterized by a time stamp on the page.
For our experiment we will gather all time stamps associated
with a blog and use this as the activity measure for the
dynamic property. This approach is based on the assumption
that reactions to a blog are related with the traffic of that blog.

This approach has a big advantage, it’s easy to add into the
crawling process which analyzes the blogs to construct the
graph structure. By using these time stamps as a measure for
the number of reactions on a blog, we have an easy way to
obtain a measure for the activity on a blog.

While reactions are reasonably easy to obtain, they also have
some unwanted properties. Spam bots could leave messages
and therefore trouble the measured reactions since they aren’t
real users. Some blogs might have better solutions in place
to handle bots than others. At this time, we don’t really have
a solution for this problem, although we estimate its impact
relatively small. It is a disadvantage of our choice to take
reactions as an activity measure. However, by increasing the
logic used to extract reactions this could improve.

The method we use to extract reactions also has some side
effects. There could easily be other time stamps on a page,
next to the ones associated with reactions. Every blog entry
is usually associated with a time stamp as well. This will
add to the activity of the blog but since nearly all blogs
suffer from this problem, the relative scores will not change.
Another issue with the time stamps is the usage of all kinds of
widgets10. These widgets can display information which can
also contain time stamps. These time stamps should not be
counted as reactions to a posting, but the current parse method
will include these time stamps as reactions. Not all blogs use
the same widgets, therefore the number of incorrect reactions
included will differ for each blog. This is a fact we have to
take into account when we interpret the results. It could be
solved by more complex parsing methods to get the number
of reactions on a page.

Another thing to consider, as we only look at time stamps,
is the fact we cannot see the number of different users. Why is
that important? Some blogs have very small, yet very active,
user bases. Two or three users could post a lot of reactions.
This would be less valuable with respect to popularity of a blog
than just a handful of posts by different users. This problem
could also be solved by using a different parsing method,
which searches for (username,time stamp) combinations.

We will use the number of time stamps found on a blog as
a measure for its popularity or activity. This is a choice based
on the fact that real traffic information is not obtainable and
reactions to blog postings seem like a reasonable alternative
to measure this popularity.

The provided usage data is in the form of
(blog,#reactions). In order to create a weighted graph
we will have to assign weights to the arcs, which represent
a traversal from website v to website w. The provided data
however, provides information about the websites itself and
not about the traversals. In order to come with a solution to

10See http://en.wikipedia.org/wiki/Web widget for more information about
widgets.



12

this problem we will make the assumption that, on average,
more people will leave website v for a website w with higher
traffic. Since a destination website that is active has more
traffic, more people are going there. To create a weight
based on this assumption, the ratio between the activity of
destination website w and the total activity of all destination
websites from v has to be computed.

Let G = (V,A) be a graph consisting of a set nodes V and
a set arcs, A ⊆ V 2. We will denote (v, w) ∈ A as v → w.
For each node v ∈ V the function r(v) returns the activity
measure for the supplied node v. In our case this activity
measure is the number of reactions that were posted on a
blog. Blog visitors are traveling this network structure. Let
P (w|v) be the probability the visitor follows a link to node
w given the fact he is currently in node v. These probabilities
have to be estimated from the activity measure. So basically
we are constructing a flow network, where each link has an
unbounded capacity.

Besides by following links, the activity measure of a blog
will originate from visitors starting in that particular node and
visitors will stop in certain blogs. This is modeled by adding
two nodes source and sink to the graph and create arcs from
source into each blog and also links from each blog to sink.
The resulting graph is denoted as G′ = (V ′, A′). The activity
measure of the new nodes still needs to be defined. Of course,
r(source) is the number of unique visitor to the blog graph.
Obviously r(source) = r(sink).

We assume the flow through a link (v, w), from node v
to node w, amounts to: P (w|v)r(v). When traversing a link,
we assume it is more likely to take a link to a node with a
higher activity measure. In other words: P (w|v) ≥ P (z|v) if
and only if r(w) ≥ r(z). Based on this assumption P (w|v) is
defined as follows:

P (w|v) =


d(v) r(w)

R(v) if v → w ∈ A

1− d(v) if w = sink

0 if w = source

(12)

where

R(v) =
∑

w 6=sink∈V ′:v→w

r(w) (13)

and d(v) is a damping factor that determines the likelihood a
visitor stops in a particular blog. It should hold that the sum of
all probabilities equals to one, this is shown in the following

proof: ∑
w∈V ′:v→w

P (w|v)

=
∑

w∈V :v→w

P (w|v) + P (sink|v) + P (source|v)

=
∑

w∈V :v→w

d(v)
r(w)
R(v)

+ (1− d(v))

=
d(v)
R(v)

∑
w 6=sink∈V ′:v→w

r(w) + (1− d(v))

= d(v) + 1− d(v)
= 1

The flow conservation law states that incoming flow and
outgoing flow, of a node v, should be equal. This should also
hold for this model:∑

w 6=sink∈V ′:w→v

P (v|w)r(w) =

r(v) =∑
w 6=source∈V ′:v→w

P (w|v)r(v)

If we look at the incoming flow we can derive some properties
by looking at the following cases:
1) if v ∈ V :

r(v) =
∑

w 6=sink∈V ′:w→v

P (v|w)r(w)

=
∑

w 6=sink∈V ′:w→v

d(v)
r(v)
R(w)

r(w)

= d(v)r(v)
∑

w 6=sink∈V ′:w→v

r(w)
R(w)

we conclude:
1

d(v)
=

∑
w 6=sink∈V ′:w→v

r(w)
R(w)

(14)

2) if v = sink:

r(sink) =
∑

w∈V :w→sink
P (v|w)r(w)

we conclude:

r(sink) = r(source) =
∑

w∈V :w→sink
(1− d(w))r(w) (15)

obviously, if v = source the sum results in 0.

D. The Ranking

Now that the basic components of the markov model are
in place, we can look at how to compute the actual ranking.
The one step probability matrix, Q, contains the probabilities
of moving from one state to another state in one step. Qm



13

contains the probabilities of moving from one state to another
state in m steps. To compute the 1-step ranking, Q × L has
to be computed. This results in a vector with the probabilities
of being in a node after 1 step. This vector is our ranking.
To compute the ranking after m steps, we have to compute
Qm × L to get our ranking vector.

E. The algorithm

Looking back at what we have discussed so far, we have
made the following choices in the context of the proposed
experiment.

1) the static property, I(p), will be the initial probability
distribution based on ego betweenness centrality: I =

1
‖Cb‖1

Cb.
2) the dynamic property, P (p), will be the one-step transi-

tion matrix based on the reactions (time stamps) found
on the blog p.

3) The relation is defined by the Markov Model <
S, Q, L > where S is the set of blogs (nodes), Q is the
one-step transition matrix and L is the initial probability
distribution.

Based on these choices we have developed an algorithm
to compute rankings on our data set. We will now introduce
and explain the steps of the algorithm in pseudo code. The
algorithm can be divided in several steps, the first three steps
are the initialization steps and the fourth step is the actual
ranking computation. This is a very basic description of the
steps needed in the algorithm, no optimizations have been
applied.

1) Construct the one-step probability matrix from the
weighted graph. See algorithm 1

2) Compute the ego betweenness for all nodes, based on
the static graph structure. See algorithm 2

3) Compute the initial probability distribution from the ego
betweenness values. See algorithm 3

4) Compute the rankings for all nodes based on a history
of m steps. See algorithm 4

In order to describe the actual steps of the algorithm, we will
define some basic helper functions. Graph G is a pair of a set
of nodes and a set of arcs, G = (V,A), in the algorithm G.V
will refer to the set of nodes and G.A will refer to the set of
arcs in graph G. Also, Matrix(G), will return the association
matrix for the supplied graph G. The function r(v) returns the
total number of reactions for node v, based on the supplied
data. A ← is used to add an item to a set, Vego ← v means
we add v to the set Vego. A ⇐ is used to assign a weight to
a link, (v, w) ⇐ weight assigns the value of weight to the
link (v, w).

VI. CONCLUSION AND FUTURE WORK

Existing techniques mostly focus on one aspect. Either a
ranking based on static data or on dynamic (activity) data. Very
few techniques try to combine the two. This has been done
on a website level in order to create adaptive websites. In this
field promising results have been achieved by techniques based
on Markov Models. Extend this to a larger scale to compute a
ranking which is based on both static and dynamic properties.

Algorithm 1 ComputeOneStepTransitionMatrix(G)
G′ = G
G′.V ← source
G′.V ← sink

for all v ∈ G.V do
G′.A← (source, v)
G′.A← (v, sink)

for all w ∈ G′.V |(v, w) ∈ G′.A ∧ w 6= source do
if w ∈ G.V then

(v, w)⇐ d(v) ∗ r(w)
R(v)

else
(v, w)⇐ 1− d(v)

end if
end for

end for

return Matrix(G′)

Algorithm 2 ComputeEgoBetweenness(G, v)
Ensure: Vego ⊆ V ∧Aego ⊆ A

Vego ← v
for all w ∈ G.V do

if (v, w) ∈ G.A ∨ (w, v) ∈ G.A then
Vego ← w

end if
end for

for all v ∈ Vego do
for all w ∈ Vego do

if (v, w) ∈ G.A then
Aego ← (v, w)

end if
end for

end for

Gego = (Vego, Aego)
Bego = Matrix(Gego)2 × (1−Matrix(Gego))

return 1
‖Bego‖1

Algorithm 3 CreateInitialProbDist(G)
btotal = 0
for all v ∈ V do

b = ComputeEgoBetweenness(G, v)
btotal = btotal + b
L← b

end for

for all p ∈ L do
p = p

btotal

end for

return L

In order to answer the questions, asked in the beginning



14

Algorithm 4 ComputeRanking(G, k)
S← G.V
Q← ComputeOneStepTransitionMatrix(G)
L← CreateInitialProbDist(G)

R = L ∗ Qk

of this article, a model has been presented and a summary
of the current state-of-the-art has been given. Based on these
sections, we have presented a solution, situated around an ex-
ample. The importance of a website, the static component, can
be measured by using any of the known centrality measures.
Based on their conceptual meaning, we have chosen to us
betweenness centrality in our example. In order to optimize
the algorithm we have implemented an ego betweenness
algorithm. The dynamic property has been defined as the
number of reactions to the postings of a blog in our example.
In the most ideal situation however, we should have access to
traversal information between websites. The relation between
the static and dynamic property is defined by a Markov Model,
inspired by research conducted into the field of adaptive
websites. The dynamic property is used to construct the one-
step probability transition matrix, Q, the static property is used
to compute the initial probability distribution, L, and the states,
S of the Markov Model are the unique blogs in our example.

In order to optimize interest to a given website, the Markov
Model is used to compute a ranking based on a depth of m
navigational steps. By creating links, advertising for example,
to the highest ranking websites, we can optimize interest for
the given website because it’s positioned optimal in the graph
based on the graph’s structural properties combined with actual
activity information.

A problem is the fact how to get this dynamic information.
Traffic data is not freely available. We propose a solution
for this problem in the domain of blogs (and possibly other
community based areas). Instead of traffic we will measure
reactions to posting, based on the number of time stamps
encountered on the website. This has the big advantage to be
easy to gather and work with, but two main disadvantages. (1)
The results might be polluted with wrong time stamps. A page
could contain time stamps which are not related to reactions.
In fact, it is probably very common. This can be solved by
crawling time stamps related to usernames, since most of the
time the name of the user and the time of posting is displayed
with an answer.

(2) the other disadvantage is the fact we actually need
transition or traversal numbers. If we measure reactions, it’s a
activity measure of a node in the graph, not an arc. In order to
translate the node activity numbers to traversal numbers, we
made the assumption it is more likely for people to leave for
a page with more visitors. What this means is we will look at
the destination nodes of all outgoing links of a certain page.
The weight of a specific outgoing arc, is the activity number
of the destination node divided by the total activity number of
all destination nodes.

The second disadvantage is the more fundamental one. As
long as we don’t get techniques to effectively measure traversal

information, we have to come up with some estimation for
this traversal information based on the information we have
of the nodes. Therefore, if we could effectively measure traffic
(which might be a possibility in the future), we still have this
problem. The first disadvantage is only related to the fact we
look at reactions instead of traffic and can be refined to get
more adequate results. It could also be replaced with more
accurate measures, like actual traffic numbers.

A. Future work

Based on the foundations presented so far, some topics are
still open and others raised more questions. Therefore more
work could be done into the following topics to gather more
insight in the proposed model:

1) Perform the described experiment.
2) Incorporate other centrality measures for the static com-

ponent.
3) Use a betweenness centrality algorithm which takes to

whole graph into account.
4) Extend the measuring of reactions. Use a combination

of time stamps and usernames to improve the rankings.
5) Research solutions to get actual traffic and/or traversal

information.
At this moment, we are working on a prototype implementa-
tion to conduct the described experiment. Our intention is to
present these results in a follow up article.

VII. ACKNOWLEDGEMENTS

The author is grateful to Theo van der Weide for his
valuable supervision and discussions and to SiteData B.V.11

for providing the dataset of the .NL-domain.

REFERENCES

[1] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Altavista
Company, IBM Almaden Research Center, Compaq Systems Research
Center, Tech. Rep., 2003.

[2] J. Rupnik, “Finding community structure in social network analysis
- overview,” Department of Knowledge Technologies, Jozef Stefan
Institute, Tech. Rep., 2006.

[3] M. Hinne, “Local identification of web graph communities,” in Pro-
ceedings of the first International Conference on Theory of Information
Retrieval (ICTIR), 2007, pp. 261–278.

[4] M. Claypool, P. Le, M. Wased, and D. Brown, “Implicit interest indica-
tors,” in Proceedings of the 6th international conference on Intelligent
user interfaces. ACM Press, 2001, pp. 33–40.

[5] L. C. Freeman, “Centrality in social networks - conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215–239, 1979.

[6] S. P. Borgatti, “Centrality and network flow,” Social Networks, vol. 27,
no. 1, pp. 55–71, January 2005.

[7] P. B. Bonacich, “Factoring and weighing approaches to status scores
and clique identification,” Journal of Mathematical Sociology, no. 2,
pp. 113–120, 1972.

[8] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Stanford Digital Library Technolo-
gies Project, Tech. Rep., 1998.

[9] M. Everett and S. P. Borgatti, “Ego network betweenness,” Social
Networks, vol. 27, no. 1, pp. 31–38, January 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.socnet.2004.11.007

[10] L. C. Freeman, “Centered graphs and the structure of ego networks,”
Mathematical Social Sciences, vol. 3, no. 3, pp. 291–304, October 1982.
[Online]. Available: http://dx.doi.org/10.1016/0165-4896(82)90076-2

11http://www.sitedata.nl/



15

[11] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, pp. 39–43, 1953.

[12] C. H. Hubbell, “An input-output approach to clique identification,”
Sociometry, vol. 28, no. 4, pp. 377–399, December 1965.

[13] M. Perkowitz and O. Etzioni, “Adaptive sites: Automatically learning
from user access patterns,” Department of Computer Science and Engi-
neering, University of Washington, Seattle, Tech. Rep.

[14] J. Garofalakis, P. Kappos, and D. Mourloukos, “Web site optimization
using page popularity,” University of Patras, Greece, Tech. Rep., 1999.

[15] B. Zhou, J. Chen, J. Shi, H. Zhang, and Q. Wu, “Website link structure
evaluation and improvement based on user visiting patterns,” in in
HYPERTEXT ’01: Proceedings of the twelfth ACM conference on
Hypertext and Hypermedia. ACM Press, 2001, pp. 241–244.

[16] R. R. Sarukkai, “Link prediction and path analysis using markov chains,”
in Proceedings of the 9th international World Wide Web conference
on Computer networks : the international journal of computer and
telecommunications netowrking. Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co., 2000, pp. 377–386.

[17] J. Zhu, J. Hong, and J. G. Hughes, “Using markov models for web
site link prediction,” School of Information and Software Engineering,
University of Ulster at Jordanstown, Tech. Rep., 2002.

[18] J. Zhu, J. Hong, and J. Hughes, “Using markov chains for link prediction
in adaptive web sites,” in In Proc. of ACM SIGWEB Hypertext. Springer,
2002, pp. 60–73.

[19] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis, “Web path recom-
mendations based on page ranking and markov models,” in in WIDM
’05: Proceedings of the 7th annual ACM international workshop on Web
information and data management. ACM Press, 2005, pp. 2–9.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” 1999.


