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Abstract

The readers-writers algorithm is a widely used mutual exclusion mechanism in
concurrent programming. Several versions of the algorithm exist. This thesis ex-
amines the algorithm used by Nokia’s Qt framework. The algorithm is checked
for deadlock and starvation issues using the Spin model checker. Previous work
found a deadlock in the algorithm, and proposed and verified a corrected algo-
rithm. The used model was limited. In this thesis, we reverify the results using
a more detailed model. While verifying the algorithm for absence of starvation,
no issues were found in the algorithm itself. However, the condition variables
used by Qt’s implementation have algorithmic starvation issues which makes
the readers-writers implementation prone to starvation. A new algorithm for a
starvation-free condition variable is presented and verified. This condition vari-
able is constructed out of a starvation-prone condition variable, and is therefore
applicable to similar situations were only a starvation-prone condition variable
is available.
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Chapter 1

Introduction

There is an increasing interest in concurrent programming with current develop-
ment of consumer priced multicore processors. Yet the reliability of concurrent
algorithms is hard to determine as it is hard to reproduce race conditions and to
reason about these algorithms [26]. These difficulties are caused by the concur-
rency used. In this thesis an industrial-used reentrant readers-writers algorithm
and an implementation thereof are verified. The algorithm is a mutual exclusion
algorithm. Such algorithms are used to serialise access to resources (memory, pe-
ripherals, etc). The implementation of the algorithm is part of Nokia’s popular
Qt toolkit, used in programs like Google Earth, Opera and Skype [41].

The algorithm is verified using the widely used formal method model checking
[7, 24]. Model checking can be performed automatically on a model. User-
specified properties are checked to be valid for a given model. If a counter-
example for such a property is found, a trace is produced by the model checker.
Such a trace indicates the exact order of events leading to the violation of the
property. Model checking suffers from the state-space explosion problem and
requires a closed and finite system.

This thesis continues with earlier work1 on increasing the reliability of the
readers-writers algorithm [16, 17]. A deadlock was found and a corrected version
of the algorithm was verified. Although positive results were found, the work
left room for improvement. The model was very abstract: important supporting
classes were not modelled and parts of the model were not entirely accurate.
Although the absence of deadlocks was verified, the absence of starvation was
not verified. Also, only a limited amount of safety properties were checked.

To introduce the subject matter, an overview of multithreading and mutual ex-
clusion, including readers-writers, is given in Chapter 2. Qt’s implementation of
the algorithm is discussed in detail in Chapter 3. Abstract versions of operating
system primitives used in the supporting classes of the algorithm are modelled
in Chapter 4, along with an example verification of a concurrent stack.

This thesis’s contribution is the improvement on the issues in the earlier work
1For my course Research 2, I converted the Uppaal models of [16] and [17] to Spin and

reverified the result, as Spin is better suited for this kind of problems [24]. For the course
I handed in the last draft of my contribution to [18] prior to the editing process with the
other authors. Additionally I gave a 15 minute presentation of Research 2 about my own
contributions. For clarity reasons, this work is also included in this thesis.

1
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mentioned above. We model Qt’s readers-writers implementation more accu-
rately and model Qt’s conditional variable on which the algorithm depends.
Also, using the model of Qt’s condition variables, we reverify the earlier found
deadlock in Chapter 5. The corrected readers-writers algorithm is presented in
Chapter 6 and reverified, again using the model of Qt’s condition variables (Sec-
tion 6.2). Before starvation can be considered, the abstract operating system
primitives must be adjusted to be free of starvation (Section 6.4). Next, the im-
plementation and is checked for starvation issues (Sections 6.5). In Chapter 7,
the cause of the deadlock is analysed. The algorithm is successfully verified
for absence of starvation (Section 7.1). Based on this result it is shown that
Qt’s condition variables are flowed: they are inherently prone to starvation
and must be replaced. A new condition variable build on a starvation-prone
condition variable is presented and is verified to be free of starvation. Using
the new starvation-free condition variable, the readers-writers implementation
is also verified free of starvation. Finally, related and future work is discussed
in Chapter 8, and concluding remarks are found in Chapters 9.

Part of the results of this thesis are also reported in [18]. The sources of all
models and a tool for easy batch checking of Promela models are available
online at https://www.bitpowder.com/~bvgastel/research/masterthesis.

https://www.bitpowder.com/~bvgastel/research/masterthesis


Chapter 2

Background of concurrency

Computers are able to execute multiple tasks concurrently. This enables applica-
tions to become more responsive and increase performance. With the recent de-
velopment of consumer multi-core and multi-processor machines, multithreaded
programming is used to fully exploit the maximal performance of a machine.
The down side of concurrent programming is increased complexity. In practice
many errors are introduced. In this chapter we will introduce the concept of
threading and how a program can use it on Unix systems. We explain com-
mon pitfalls which are introduced by threading. Next we describe a number
of synchronisation methods, both for access to resources and for synchronisa-
tion between threads. To get some idea how these mechanisms are used, an
implementation of a common data type is described.

2.1 Threading

Computers execute multiple tasks concurrently. These tasks are called processes.
The operating system executes a specific process a limited amount of time be-
fore switching to another process. Eventually the process is scheduled again for
execution. The process is not aware of a context switch. This is called pre-
emptive multitasking. The switching may occur even when the process has not
finished execution yet. Processes function as a whole unit, isolated from other
processes. Their memory space is separate from other processes, i.e. processes
can only read and change their own memory. Inter Process Communication
(IPC) mechanisms offer structured ways to communicate with other processes.
IPC can be used to exchange information, draw to the screen (managed by a
windowing process), get updates on system events, etc. If a program generates
an unrecoverable error, e.g. reading from a non existent memory location, the
process is terminated. But a process is isolated from the errors occurring in
other processes. The notable exception is if two processes communicate with
each other and one of them crashes. This of course influences the other process
too.

Modern operating systems support running multiple tasks concurrently in a spe-
cific process. These tasks are called threads. They are executed and preempted
in the same way as processes. The primary advantage is that the threads reside
in the same memory space. Therefore costly IPC mechanisms can be avoided.

3



4 2.2. POTENTIAL SYNCHRONISATION PITFALLS

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit(void *value_ptr);
int pthread_join(pthread_t, void **);

5 pthread_t pthread_self(void);

Figure 2.1: The most important function prototypes of the Posix.1c standard.

But if one of the threads makes an unrecoverable error, the whole process is
terminated, including all its threads. Depending on the operating system which
is used, there are several scheduling policies for threads. These policies regulate
the order of execution of threads.

In this thesis we use the Portable Operating System Interface [for Unix] (Posix)
standard. This standard defines a platform-independent Application Program-
ming Interface (API) for all sorts of operations, including process creation, sig-
nal delivery, timers, pipes, etc. A special part of the standard, called Posix.1c,
defines functions for thread creation and manipulation. The most important
functions are listed in Figure 2.1. The specification also includes standards for
thread scheduling and thread synchronization. To create a thread, the function
pthread create is used. The first argument of the function is a thread control
structure, allowing later manipulation of the thread. The second argument con-
tains attributes, including scheduling behaviour, priority, stack size, etc. The
last two arguments specify a function and an argument to that function. The
specified function is executed in the newly created thread. It is also possible
to wait for another thread to finish execution with the pthread join function.
Good introductions to Posix multithreaded programming are available online,
e.g. [40].

If threading is used, problems can arise when a resource, i.e. data structure
or peripherals, is accessed concurrently. Traditionally, each task (process or
thread) expects that a resource is changed by itself, but not by other tasks.
E.g. a method that reads some attributes of an object, calculates some sort of
successor and stores the result. If two such operations execute concurrently, it
is possible that both threads read the same information, both calculate the next
values, and both write their results at the same time. The effect of one of the
operations is lost. Even simple objects are prone to these problems. To avoid
this kind of errors, a synchronisation mechanism must be implemented. Such
mechanism controls access to a shared resource, e.g. a data structure. This
effectuates that only one operation can run concurrently on a shared resource.
But such mechanisms introduce another class of potential errors. These are
described in the next section.

2.2 Potential synchronisation pitfalls

There are roughly two kinds of problems for synchronisation mechanisms: star-
vation and deadlock. They both influence the program in which they manifest,
but in different ways.

The first common pitfall is deadlock. This is a situation in which a number of
threads can not make progress. E.g. two threads both need exclusive access to
two resources before they can finish execution. But both threads have exclusive
access to one of the two resources, disallowing the other one to finish executing.
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So both threads are waiting for each other. This situation is called a deadlock.
More generally: a state where multiple tasks are stalled forever due to activities
of other tasks. A variant of deadlock is livelock. The difference with deadlock
is that the threads still actively try to obtain exclusive access to the resource.
But instead of being descheduled in anticipation of obtaining the access, tries
continually to obtain the lock. This costs many processor cycles.

The other problem is called starvation. This happens if one of the threads is
favoured over other threads consistently. E.g. if both threads require exclusive
access, the access is always given to one thread. The other thread can not get
any resources. Therefore it can not make any progress, i.e. it starves.

A good example illustrating deadlock and starvation is the Dining Philosophers
Problem [42, 44]. This classical problem is a retold version by Tony Hoare of a
problem described by Dijkstra.

2.3 Access synchronisation mechanisms

There are several options to regulate access to shared resources. The access syn-
chronisation methods include mutexes, semaphores and finally readers-writers
locking. In this section, we give a description of these methods, from low to
high complexity. With all these methods there are two types of implementa-
tions: starvation-free locking and opportunistic locking. The first one tracks
the order in which threads request the synchronisation primitive. The order in
which access to a resource is requested, is maintained. This is starvation free.
But this comes with a performance penalty: the queue has to be maintained and
more switches between threads are needed. The latter implementation is called
opportunistic locking: if a synchronisation primitive is available for locking the
thread locks it, even if other threads are waiting for it. This implementation
has higher performance but suffers from starvation.

Mutexes

The term mutex stands for mutual exclusion. If a task wants to access a shared
resource, it should execute a lock method. This method only returns, if and
only if no other tasks are accessing the resource. When the tasks is done with the
resource it should call an unlock method. A thread waiting on the resource can
then proceed. A mutex can be implemented as a boolean with an operations
defined on it. The operation tests the boolean for a specific value, and if it
matches the boolean is set to a new value. This operation must be atomic. The
idea of this implementation is still in use today, and is called a spin lock. An
example is implemented in Figure 2.2. In this example a imaginary keyword
atomic is used to indicate a block is uninterruptible. This keyword is used
to simulate an atomic hardware test-and-set operation. Spin locks are often
implemented using these atomic hardware operations.

These spin locks have a major disadvantage: the busy-wait loop in the lock
operation. This makes them processor intensive for heavily contended mutexes.
To avoid this loop, operating system support for suspending tasks is needed. If
a thread wants to acquire a mutex and the mutex is not available, the thread
should be descheduled until the mutex is available. Such a task should be woken
if the unlock method of the mutex is called. Posix defines a pthread mutex



6 2.3. ACCESS SYNCHRONISATION MECHANISMS

boolean mutex = false;

void unlock(boolean *lock) {
atomic {

5 assert(*lock);
*lock = false;

}
}

10

void lock(boolean *lock) {
boolean succes = false;
while (!succes) {

15 atomic {
if (!*lock) {

*lock = true;
succes = true;

}
20 }

}
}

Figure 2.2: Simple implementation of a mutex with a busy-wait loop. The
atomic keyword denotes an atomic operation, not interruptible by anything
else.

object supporting this behaviour. The object has a lock and unlock method.
The unlock method must be called by the same thread as the lock method is
called.

The Posix compliant threading library Native Posix Thread Library (NPTL)
on Linux [35] is implemented by means of futexes [37, 34], a special kernel
primitive. These futexes support descheduling if another thread has already
obtained the mutex. Futexes consist of two parts: an integer in user-space
and a thread queue in the kernel. The integer can be adjusted with atomic
operations. If such an operation can not succeed, the thread is placed into the
kernel queue. Another thread can wake the thread again, in its unlock method.
An implementation in this manner yields considerable performance benefits.
This is because the lock is mostly not contended and atomic operations are
sufficient for the lock and unlock operations.

Reentrant mutexes allow a single thread to execute the lock operation multiple
times, i.e. nest them. The thread is required to perform an equal amount of
unlock operations. This is useful for functions operating on the same object,
each beginning and ending with a lock operation. Allowing reentrancy enables
these functions to call each other. This avoids the problem of the non-reentrant
version where two lock operations result in a deadlock. Posix offers the op-
tions to store information in thread local storage. This is memory which is only
available to one thread. Reentrant mutexes can be implemented easily by wrap-
ping the mutex. The wrapper function counts the number of nested calls. It
only calls the real mutex for the first lock call and the last unlock call, oth-
erwise it only adjusts the reentrancy count. A real implementation based on
this scheme will be slow because thread local storage is really slow in almost all
implementations. Therefore support for reentrancy is mostly build directly into
the mutexes.

Semaphores

Another locking mechanism are semaphores. Developed by Dijkstra [15] in 1965,
these semaphores were the first real solution for concurrent programming. A for-
mal analysis of semaphores and starvation issues is available in [31]. Semaphores
are more flexible as mutexes and can also be used to implement mutexes. A
semaphore is a non-negative counter with two associated functions, P (the imag-



Background of concurrency 7

inary Dutch word prolaag1) and V (the Dutch word verhoog). The P function
tries to decrease the counter with one, or returns an error if the counter is not
greater than zero. The V increases the counter with one. Both actions are ex-
ecuted atomically. Unlike mutexes, the functions P and V can be called from
different threads.

The semaphore is initialised with a value. If this value is one, the semaphore is
called a binary semaphore. Such semaphore can be used as a mutex. Also just as
with mutexes, semaphores can support descheduling of threads if the semaphore
can not be decreased. But unlike mutexes, semaphores can not be reentrant,
because there is no notion of ownership by a specific thread. Semaphores are
often used for regulating the number of tasks doing a specific job.

Readers-writers mutexes

For efficiency considerations readers-writers were introduced by Courtois et al
[14] in 1971. This method distinguishes tasks that only access the resource
without modifying it, called readers, from tasks requiring full access, called
writers. When obtaining a lock, the programmer must indicate wether the
thread only needs read access to the resource or full access. A thread that has
obtained read access is called a reader. A writer is a thread that has obtained
full access. This facilitates higher efficiency: or multiple readers and no writers
or no readers and only one writer are allowed concurrently.

There are three types of readers-writers mutexes. The types are based on the
starvation properties of threads obtaining the mutex. The first type states
that if a thread has been given read access from the mutex, all other threads
requesting read access should obtain it without delay. This is called the first
kind of readers-writers. In this case writer starvation is possible: if readers are
always busy, no write lock can be obtained. The second kind of readers-writers
gives priority to writers. This type of mutex first executes all requests for
obtaining a write lock, after which it executes the remaining read lock requests.
But this type of mutex suffers from reader starvation. This occurs when there
are always writers waiting to obtain the mutex. The last type is called the third
kind readers-writers. This is a starvation-free version of readers-writers. Both
readers and writers are guaranteed to execute.

As with plain mutexes, readers-writers mutexes can be reentrant too. But be-
cause there are two kinds of lock operations, there are different kinds of reen-
trancy. The most simple form is weakly reentrant. This only permits reentrant
operations of the same kind as the first operation. If the first operation was a
request for a read lock, only read locks are allowed. This can hamper modular
programming. If a thread has already obtained a write lock one can not call
for a method which obtains a read lock. The other form is strongly reentrant.
This form is more interesting. It allows one to obtain a read lock after the same
thread has already obtained a write lock. The inverse is not included, otherwise
an obvious deadlock is possible. If two threads first request a read lock and then
a write lock, both threads are deadlocked.

1The Dutch word for increase is verhoog, while the word for decrease is verlaag. As Dijkstra
thought this was too confusing for non-Dutch speaking people, he invented the word prolaag,
a composition of probeer te verlagen (try to decrease).
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Summary of the properties of readers-writers mutexes:

• There is maximal one executing writer.

• No readers can execute when a writer is executing.

• For the first kind of readers-writers: if a read lock has been obtained, all
requests for other read locks are executed.

• For the second kind of readers-writers: if a request for a write lock is
pending, no new (non-reentrant) read lock requests are executed.

• For the third kind of readers-writers: The order in which the threads are
given a lock is the same order as the lock were requested.

2.4 Thread synchronisation mechanisms

Another class are thread synchronisation mechanisms. These mechanisms regu-
late the scheduling of the threads. One thread can influence another thread.

Barriers

Barriers facilitate synchronisation between threads, by means of synchronisation
points. When a thread reaches a barrier, it waits until all other threads also
reach the barrier before continuing. These kind of barriers can be implemented
in all sorts of ways. E.g. if programming a for loop with OpenMP, barriers
are used by semantics of the language.

A special case of barriers is the joining of threads. This means that a thread
can wait until another thread has finished execution. The joining of threads
can easily be implemented with semaphores. If x threads needs to be joined,
a semaphore with a count of 0 can be created. The threads each execute a V
operation on the semaphore when the barrier is reached, which increases the
count. The thread waiting on the other threads can execute the P operation x
times. This thread blocks until all x threads have finished execution. The Posix
library also supports this kind of joining. The function is called pthread join
and its prototype is listed in Figure 2.1. The second argument to the function is
a memory location where the return code of the finished thread will be written.

Conditional Variables

Conditional variables, or conditions, offer a tight integration between access
synchronisation and event notification. The concept was developed by C.A.R.
Hoare [23] and P. Brinch Hansen [12] in 1974, in a somewhat different form called
monitors. Such monitor is an object used by multiple threads. All methods
are protected by a mutex, so at any moment just one method of the object
can be executed. Monitors also provide conditions. These are declared in the
class definition. Two methods operate on the conditions: wait and signal.
Conceptually a thread executing the wait method for condition c waits for
the condition c to be true, by executing wait c. Such a thread unlocks the
mutex, waits until it is signalled for condition c, regains the mutex and continues
execution. Another thread can signal that condition c is true by signalling on
condition c. This translates to executing the following code: signal c.
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int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

Figure 2.3: Function operating on pthread cond.

Depending how the signalling is handled there are two sorts of monitors: blocking
and non blocking. The first was as proposed originally by Hoare. The latter was
used in the Mesa programming language developed by Xerox PARC in the late
1970s. The blocking type transfer the control directly to the signalled thread.
Non-blocking does not transfer control, but enqueues the signalled thread in a
high priority queue for obtaining the mutex.

The Posix variant of condition variables differs from monitors that the condition
variables are created explicitly, as there are no objects available in C. A condi-
tion variable has to be used in conjunction with a mutex. There are three op-
erations available: pthread cond wait, pthread cond signal and pthread -
cond broadcast. The function prototypes are listed in Figure 2.3. The signal
function works as expected. The broadcast function wakes all waiting threads.
The wait function has an extra argument: the mutex on which the condition
functions.

The condition variable should always be used in a loop which reevaluates the
condition used to determine if the thread got signalled. Otherwise certain
scheduling scenario’s exists where a thread continues execution while the the
condition the thread just waited for is unsatisfied. For example, two threads
are signalled based on a condition. Statements executed by the first scheduled
thread could make the condition unsatisfied. The second thread should not con-
tinue execution. But as the second thread is already scheduled for execution it
should revalidate the condition variable to prevent wrongful continuation. An
example of this is shown in Section 4.4. Also this leads inherently to a possible
starvation issue, as the order in which the threads waits on a condition variable
can not be used to prevent starvation. Depending on the algorithm which uses
condition variables it is possible that a thread can not escape the loop described
above, as every time the thread is scheduled the condition remains not satisfied
and the thread will wait again for the condition. To avoid these issues one have
to maintain some sort of order oneself in the algorithm using condition variables.

2.5 Example: a concurrent stack

We can demonstrate the use of a number of Posix synchronisation mechanisms
with a concurrent stack with a fixed maximum size. This stack can contain
maximal STACK SIZE number of integers. It supports two operations: push and
pop. The push operation adds an item to the stack. If the stack is full it
blocks on the condition variable isFull. If the operation succeeds it signals
the condition isEmpty. The pop operation performs the inverse: it pops an
item from the stack. If the stack is empty it blocks on the condition variable
isEmpty. It the operation succeed it signals the condition isFull. The code is
listed in Figure 2.4.
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#define STACK_SIZE 5
typedef struct int_stack IntStack;
struct int_stack {

pthread_mutex_t m;
5 pthread_cond_t isEmpty;

pthread_cond_t isFull;
unsigned int size;
int item[STACK_SIZE];

};
10

void push(Stack *s, int value) {
pthread_mutex_lock(&s->m);
while (s->size == STACK_SIZE)

pthread_cond_wait(&s->isFull, &s->m);
15 s->item[s->size] = value;

s->size++;
pthread_cond_signal(&s->isEmpty);
pthread_mutex_unlock(&s->m);

}
20

int pop(Stack *s) {
pthread_mutex_lock(&s->m);
while (s->size == 0)

pthread_cond_wait(&s->isEmpty, &s->m);
25 s->size--;

int retval = s->item[s->size];
pthread_cond_signal(&s->isFull);
pthread_mutex_unlock(&s->m);
return retval;

30 }

Figure 2.4: Simple implementation of a stack of integers with a Posix mutex
and conditions for synchronisation.

2.6 Alternative approaches

A good overview of the problems with threads and possible solutions can be
found in [26]. As task queueing systems are omitted from the overview, they
are described next. Task queueing systems decouples tasks to be executed and
the threads running them. There exist several implementations, most notably
Grand Central Dispatch (GCD), created by Apple. This implementation is de-
scribed next. Tasks can be dispatched to specific work queues. Tasks in the
same queue are executed in order, but tasks from different queues can execute
parallel to each other. GCD automatically schedules the tasks for execution.
The number of concurrent executing tasks is managed by the operating system.
Based on the load of the machine and the activity of other application, extra
execution threads are started or stopped. The main difference with other sys-
tems such as the Executor class of Java, is that GCD can enqueue tasks if an
external event is triggered, for example: GUI events, arrival of network data,
timers or signals. This way polling loops can be avoided. This dispatch system
can also be used for certain access synchronisation problems. E.g. mutual ex-
clusion for an object can be implemented by enqueueing all operations on that
object to one specific queue. All operations from that queue are executed in
order. Therefore these operations can not access to the object concurrently.



Chapter 3

Qt’s readers-writers explained

In this chapter Qt’s implementation of a readers-writers lock is presented. Qt
is a development framework, available for Windows, Mac OS X and Linux.
In this thesis the 4.3.5 version of Qt for Linux is considered. This is due to
the availability of the sources of Linux, so the entire system can be analysed.
Qt implements a weakly reentrant readers-writers with writers preference, in
the class QReadWriteLock. The implementation is dependent on mutexes and
condition variables. Both are available in the Qt framework, as respectively
QMutex and QWaitCondition. We start with explaining these classes.

3.1 Qt’s mutex

The implementation of QMutex is highly optimized. It has two parts: a platform-
independent part and platform dependent. The mutex starts platform indepen-
dently. This part implements a lock with an atomic operation. If obtaining the
spin lock fails, control is handed over to the platform dependent part. This part
deschedules the thread. The unlock method checks if there are other threads
waiting on the lock. If there are threads waiting, it signals one of those.

The implementation of QMutex uses a private object, of class QMutexPrivate,
to hide the platform-dependent part. This part is accessible through an in-
direction d. The class is listed in Figure 3.1. The self method returns an
unique identifier for thread calling the method. The wait deschedules the cur-
rent thread until it receives a signal. The method returns a boolean, with
a value of true indicating the wait succeeded without problems. The wakeUp
method signals a waiting thread. QMutex can be initialised as recursive or non
recursive mode, the boolean attribute recursive indicates this. contenders is
a QAtomic object, implementing atomic operations on an integer. The integer
count of this variable indicates the number of threads contending for the lock.
The count variable indicates the number of locks the thread identified by owner
has obtained. At last there are some platform specific variables. The boolean
wakeup indicates a thread has to wakeup. This variable is needed to counter
spurious wakeups of pthread mutex wait many vendors warn about. Also this
counters the situation when a wakeUp is performed, before the wait it should
wake up is called. This situation is explained clearly in [36]. At last follows a
Posix mutex called mutex and a Posix condition variable called cond.

11
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class QMutexPrivate {
public:

QMutexPrivate(QMutex::RecursionMode mode);
~QMutexPrivate();

5

ulong self();
bool wait(int timeout = -1);
void wakeUp();

10 const bool recursive;
QAtomic contenders;
ulong owner;
uint count;

15 #if defined(Q_OS_UNIX)
volatile bool wakeup;
pthread_mutex_t mutex;
pthread_cond_t cond;

#elif defined(Q_OS_WIN32)
20 HANDLE event;

#endif
};

Figure 3.1: Attributes of the QMutex object.

void QMutex::lock() {
ulong self = 0;

#ifndef QT_NO_DEBUG
self = d->self();

5 #endif
if (d->recursive) {

self = d->self();
if (d->owner == self) {

++d->count;
10 Q_ASSERT_X(d->count != 0, "QMutex::lock", "Recursion counter overflow");

return;
}

}

15 bool isLocked = d->contenders.fetchAndAddAcquire(1) == 0;
if (!isLocked) {

#ifndef QT_NO_DEBUG
if (d->owner == self)

qWarning("QMutex::lock: Deadlock detected in thread %ld", d->owner);
20 #endif

// didn’t get the lock, wait for it
isLocked = d->wait();
Q_ASSERT_X(isLocked, "QMutex::lock", "Infinite wait has timed out.");

25

// don’t need to wait for the lock anymore
d->contenders.deref();

}
d->owner = self;

30 ++d->count;
Q_ASSERT_X(d->count != 0, "QMutex::lock", "Overflow in recursion counter");

}

void QMutex::unlock() {
35 Q_ASSERT_X(d->owner == d->self(), "QMutex::unlock()",

"A mutex must be unlocked in the same thread that locked it.");

if (!--d->count) {
d->owner = 0;

40 if (!d->contenders.testAndSetRelease(1, 0))
d->wakeUp();

}
}

Figure 3.2: Platform independent part of the implementation of QMutex::lock,
Qt version 4.3.5.
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The working of the implementation is not clear. There are three observations
to be made about the lock method of QMutex, listed in Figure 3.2. First of
all the boolean isLocked at line 15 is indicating its inverse. This hampers the
understanding of the code. Secondly, the check if it is a recursive call to the
mutex, at line 8 and 18, is not atomic. This means a potential error could occur
if the memory where the variable owner is located, is not correctly processor
aligned. On some processors non aligned memory is updated in two steps. This
can introduce all sorts of access synchronisation errors. Third, the code at
line 28 is not clear. This code is needed because of an unneeded case distinction
in the unlock method, as listed in Figure 3.2. The working of the code is more
clear if line 28 of the lock method is removed and line 40 of the unlock method
is changed to: if (!d->contenders.deref()). This has the same workings,
as the deref method decreases the integer with one and returns a boolean
indicating if the integer has reached zero after the subtraction. If the integer
has not reached zero, more threads are waiting and one needs to be signalled.

Also, for a relatively simple mutex a lot of code is needed. Both a mutex and a
condition variable are needed in the Unix case, the mutex is only needed to use
the condition lock. Also for non reentrant locks a special mode exists in Linux
and FreeBSD called PTHREAD MUTEX ADAPTIVE NP. This mode tries to obtain
a mutex with an atomic operation and if this fails this mode will deschedule the
thread. This mode functions the same as the QMutex optimisations. But using
this mode instead of the optimisations avoid the cost of a explicit condition
variable. The case a thread needs to be descheduled can probably be handled
more efficient internally. Also, from the code it is not clear why semaphores
are not used to wake up waiting threads. As semaphores are more reliable (not
suffering from spurious wake-ups), the boolean wakeup and much code in wait,
listed in Figure 3.3, is not needed.

bool QMutexPrivate::wait(int timeout) {
report_error(pthread_mutex_lock(&mutex), "QMutex::lock", "mutex lock");
int errorCode = 0;
while (!wakeup) {

5 if (timeout < 0) {
errorCode = pthread_cond_wait(&cond, &mutex);

} else {
struct timeval tv;
gettimeofday(&tv, 0);

10
timespec ti;
ti.tv_nsec = (tv.tv_usec + (timeout % 1000) * 1000) * 1000;
ti.tv_sec = tv.tv_sec + (timeout / 1000) + (ti.tv_nsec / 1000000000);
ti.tv_nsec %= 1000000000;

15
errorCode = pthread_cond_timedwait(&cond, &mutex, &ti);

}
if (errorCode) {

if (errorCode == ETIMEDOUT)
20 break;

report_error(errorCode, "QMutex::lock()", "cv wait");
}

}
wakeup = false;

25 report_error(pthread_mutex_unlock(&mutex), "QMutex::lock", "mutex unlock");
return errorCode == 0;

}

void QMutexPrivate::wakeUp() {
30 report_error(pthread_mutex_lock(&mutex), "QMutex::unlock", "mutex lock");

wakeup = true;
report_error(pthread_cond_signal(&cond), "QMutex::unlock", "cv signal");
report_error(pthread_mutex_unlock(&mutex), "QMutex::unlock", "mutex unlock");

}

Figure 3.3: Unix specific part of the implementation of QMutex::wait and
QMutex::wakeUp, Qt version 4.3.5.
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struct QWaitConditionPrivate {
pthread_mutex_t mutex;
pthread_cond_t cond;
int waiters;

5 int wakeups;
};

bool QWaitCondition::wait(QMutex *mutex, unsigned long time) {
if (! mutex)

10 return false;

if (mutex->d->recursive) {
qWarning("QWaitCondition: cannot wait on recursive mutexes");
return false;

15 }

report_error(pthread_mutex_lock(&d->mutex), "QWaitCondition::wait()", "mutex lock");
++d->waiters;
mutex->unlock();

20
int code;
forever {

if (time != ULONG_MAX) {
struct timeval tv;

25 gettimeofday(&tv, 0);

timespec ti;
ti.tv_nsec = (tv.tv_usec + (time % 1000) * 1000) * 1000;
ti.tv_sec = tv.tv_sec + (time / 1000) + (ti.tv_nsec / 1000000000);

30 ti.tv_nsec %= 1000000000;

code = pthread_cond_timedwait(&d->cond, &d->mutex, &ti);
} else {

code = pthread_cond_wait(&d->cond, &d->mutex);
35 }

if (code == 0 && d->wakeups == 0) {
// many vendors warn of spurios wakeups from
// pthread_cond_wait(), especially after signal delivery,
// even though POSIX doesn’t allow for it... sigh

40 continue;
}
break;

}

45 Q_ASSERT_X(d->waiters > 0, "QWaitCondition::wait", "internal error (waiters)");
--d->waiters;
if (code == 0) {

Q_ASSERT_X(d->wakeups > 0, "QWaitCondition::wait", "internal error (wakeups)");
--d->wakeups;

50 }
report_error(pthread_mutex_unlock(&d->mutex), "QWaitCondition::wait()", "mutex unlock");
mutex->lock();

if (code && code != ETIMEDOUT)
55 report_error(code, "QWaitCondition::wait()", "cv wait");

return (code == 0);
}

60 void QWaitCondition::wakeOne() {
report_error(pthread_mutex_lock(&d->mutex), "QWaitCondition::wakeOne()", "mutex lock");
d->wakeups = qMin(d->wakeups + 1, d->waiters);
report_error(pthread_cond_signal(&d->cond), "QWaitCondition::wakeOne()", "cv signal");
report_error(pthread_mutex_unlock(&d->mutex), "QWaitCondition::wakeOne()", "mutex unlock");

65 }

void QWaitCondition::wakeAll() {
report_error(pthread_mutex_lock(&d->mutex), "QWaitCondition::wakeAll()", "mutex lock");
d->wakeups = d->waiters;

70 report_error(pthread_cond_broadcast(&d->cond), "QWaitCondition::wakeAll()", "cv broadcast");
report_error(pthread_mutex_unlock(&d->mutex), "QWaitCondition::wakeAll()", "mutex unlock");

}

Figure 3.4: Unix specific implementation of the QWaitCondition object, Qt
version 4.3.5.
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3.2 Qt’s condition variables

The QWaitCondition class works about the same as the conditional variable part
of QMutex. The implementation is listed in Figure 3.4. As with the QMutex
class, it uses an indirection to hide its implementation details (attribute d from
class QWaitCondition). It has three methods: wait, wakeOne and wakeAll.
As expected, the wait function deschedules the thread until a ‘wake’ method is
called by another thread. The wakeAll wakes all waiting threads, while wakeOne
signals just one thread, both in no special order.

As one can see, the class depends on pthread mutex, pthread cond (appearing
as attribute types) and on QMutex (passed as an argument to the method
QWaitCondition wait). QWaitCondition is designed in this manner to counter
spurious wake-ups, the same problem as occurring in QMutex. The variable
wakeups is needed to keep track of the number of threads allowed to wake up
and is bound by the number of waiting threads, as contained in the variable
waiters. Precisely formulated: 0 ≤ wakeups ≤ waiters. The pthread mutex
used in QWaitCondition is needed because QMutex does not use a pthread mutex
in the optimised case, and such a mutex is needed if calling the pthread cond -
wait function.

As mentioned in the previous chapter, waiting on conditional variables should
occur in a loop reevaluating the condition to prevent race conditions. This
also applies for these condition variables. In code using these condition vari-
ables, there are two loops: the inner loop checking the wakeups variable in
QWaitCondition::wait and the outer loop in which wait is called. The in-
ner loop is used to counter spurious wakeups. But the outer loop can also
counter these spurious wakeups. So using only the outer loop is already suffi-
cient. Therefore also the variable wakeups is not needed.

3.3 Qt’s readers-writers

With the basics explained we can continue with the class QReadWriteLock. This
class implements a weakly reentrant readers-writers algorithm with writers pref-
erence. The relevant code of the implementation is listed in Figure 3.5. The
structure QReadWriteLockPrivate contains the attributes of the class. These are
accessible via an indirection named d. The attributes mutex (of type QMutex),
readerWait (of type QWaitCondition) and writerWait (of type QWaitCondition)
are used to synchronize access to the other administrative attributes, of which
accessCount keeps track of the number of locks acquired (including reentrant
locks) for this lock. A negative value is used for write access and a positive
value for read access. The attributes waitingReaders and waitingWriters
(both int’s) indicate the number of pending threads requesting read respec-
tively write permission. If some thread owns the write lock, currentWriter
contains a HANDLE to this thread; otherwise currentWriter is a null pointer.

It has three methods: lockForRead, lockForWrite and unlock. All three
methods first lock the basic mutex QReadWriteLock is build upon. This is done
via the constructor of the wrapper class QMutexLocker, e.g. line 19 in Figure 3.5.
Unlocking this mutex happens implicitly in the destructor of this wrapper (when
the function returns).
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struct QReadWriteLockPrivate {
QReadWriteLockPrivate()
: accessCount(0),

currentWriter(0),
5 waitingReaders(0),

waitingWriters(0)
{ }

QMutex mutex;
10 QWaitCondition readerWait,

writerWait;

Qt::HANDLE currentWriter;
int accessCount,waitingReaders,

15 waitingWriters;
};

void QReadWriteLock::lockForRead() {
QMutexLocker lock(&d->mutex);

20 while (d->accessCount < 0 ||
d->waitingWriters) {

++d->waitingReaders;
d->readerWait.wait(&d->mutex);
--d->waitingReaders;

25 }
++d->accessCount;
Q_ASSERT_X(d->accessCount>0,

"...","...");
}

30

void QReadWriteLock::lockForWrite() {
QMutexLocker lock(&d->mutex);
Qt::HANDLE self =

QThread::currentThreadId();
35 while (d->accessCount != 0) {

if (d->accessCount < 0 &&
self == d->currentWriter) {

break; // recursive write lock
}

40 ++d->waitingWriters;
d->writerWait.wait(&d->mutex);
--d->waitingWriters;

}
d->currentWriter = self;

45 --d->accessCount;
Q_ASSERT_X(d->accessCount<0,

"...","...");
}

50 void QReadWriteLock::unlock() {
QMutexLocker lock(&d->mutex);
Q_ASSERT_X(d->accessCount!=0,

"...","...");
if ((d->accessCount > 0 &&

55 --d->accessCount == 0) ||
(d->accessCount < 0 &&

++d->accessCount == 0)) {
d->currentWriter = 0;
if (d->waitingWriters) {

60 d->writerWait.wakeOne();
} else if (d->waitingReaders) {

d->readerWait.wakeAll();
}

}
65 }

Figure 3.5: The QReadWriteLock class of Qt 4.3.5.
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A lockForRead operation may only continue if the lock is not currently locked
for writing and there are no waiting writers. It checks these conditions and
otherwise waits on the readerWait condition variable. Otherwise it can continue
and increases the accessCount variable. A write lock can only be obtained when
the lock is completely released (d->accessCount == 0), or the thread already
has obtained a write lock (a reentrant write lock request, d->currentWriter ==
self). Otherwise it waits on the writerWait condition variable. The unlock
method decreases the accessCount variable. If the lock count reaches zero, it
wakes a thread waiting on a write lock if available. Otherwise all threads waiting
on a read lock are signalled. In this way preference is given to threads waiting
on a write lock. Threads are signalled by executing the wakeOne method on
writerWait (in case of thread waiting on a write lock) or executing the wakeAll
method on readerWait (in case of threads waiting on a read lock).

The code could be polished a bit. Some of the administrative attributes can be
expressed in terms of the others. The distinction between readers and writers in
the accessCount variable is unneeded, as currentWriter already contains the
same information. Also the variables waitingReaders and waitingWriters
are redundant, both are contained in the QWaitCondition objects: respectively
readerWait and writerWait. The QReadWriteLock uses one QMutex object and
two QWaitCondition objects. In total three pthread mutex objects are used and
three pthread cond objects. If the readers-writers was implemented with Posix
primitives, only one mutex and two condition variables are needed. However,
this thesis continues with the original code, except for the messages in the
assertions which were, of course, more informative.
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Chapter 4

Modelling the Posix basics

Spin is an explicit state model checker with support for assertions and Linear
Temporal Logic (LTL), including liveness properties. Spin converts a model
written in the specification language Promela to a checker written in C. By
compiling and running the checker, properties can be verified; e.g. see [10, 24, 7].

In my Bachelor thesis (which also ended up in [17]) Uppaal was used for mod-
elling the system. An advantage of Uppaal is its intuitive and easy to use
graphical interface. However, the switch to Spin was made mainly because of
two reasons. First, the input language Promela resembles C. Almost all lan-
guage constructs used in the Qt case study of readers-writers are available in
Promela. This allows for a direct and clear conversion of the code to a model.
Second, compiled models generated by Spin appear to be more efficient for this
case study than equivalent models specified in Uppaal. This allows one to
verify larger models.

A few general notes can be made about modelling code in Promela. Promela
is not a (general-purpose) programming language, and therefore it lacks some
features that are found in common language like C/C++ and Java. For instance,
there are no functions that return values in Promela. For simple non-recursive
procedures, one can use the inline construct instead. Moreover, Promela
does not support object oriented programming. In this thesis the attributes
of objects will be represented as structs. Non-static methods are converted as
an inline construct, having the object it operates on as an explicit argument
called this. Also the function names of C++ methods needs to be converted.
Because colons are not allowed in inline names in Promela, those characters
are converted to an underscore.

A feature of Spin is the ability to embed C code directly. With a couple of special
Promela statements C code can be inserted in the model and is executed
atomically in the model. Spin tracks the memory used by these statements and
include the memory regions in the state space. One can easily convert source
code to a Promela model by wrapping all C code in the proper Promela
statements. This method is not applicable to this case study: the mutexes are
system calls which modify memory outside the process space. The content of
these (kernel) memory regions can not be rolled back by Spin as the state space
is explored. So we have to model the whole implementation in Promela.

19
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The readers-writers algorithm we looked into uses the pthread mutex and pthread -
cond components of the Posix Thread Library. This library is part of the oper-
ating system. Creating a code based model of these components would require
the treatment of OS dependent details making the whole system too complex.
Instead this thesis will use abstract versions of these components. We first model
pthread mutex in Promela, followed by pthread cond. To get more feeling with
Promela and Spin, the integer stack example of Figure 2.4 is converted to
Promela and checked with Spin.

As mentioned in Chapter 3, we consider the Unix version of the Qt library.
If using the 2.6 version of the Linux kernel, the default behaviour for Posix
components is opportunistic and prone to starvation. Other Unix platforms,
like Mac OS X, implement starvation-free mutexes. Later on these starvation-
free mutexes are considered, as we look into absence of starvation. However,
we will begin with the opportunistic behaviour, as it applicable to all Unix
platforms.

4.1 Modelling pthread mutex

We start with modelling the basic pthread mutex component. The two main
functions of this component are pthread mutex lock and pthread mutex -
unlock, which both can be specified easily in Promela; see Figure 4.1. The
lock itself is represented as a single boolean, named locked, initially set to
false. The pthread mutex lock function is an atomic operation that waits
until locked is false before setting it to true, even if the expression is con-
tained in an atomic block. Waiting can be expressed in Promela just by using
a boolean expression as a statement. If, during the execution of the model
such a statement is encountered, the corresponding computation branch will
be suspended until the expression becomes true. The pthread mutex unlock
function resets locked to false. To check for incorrect use, an assertion is
added to the code verifying that no lock is released if it has not been obtained
before. By wrapping the locked variable in a typedef (named pthread mutex t),
it is possible to use this pthread mutex component in the same manner as in the
original C++ code.

typedef pthread_mutex_t {
bool locked = false

};

5 inline pthread_mutex_unlock(this) {
assert(this.locked);
this.locked = false;

}

inline pthread_mutex_lock(this) {
10 atomic {

!this.locked;
this.locked = true;

}
}

15

Figure 4.1: Abstract model in Promela of the non-reentrant pthread mutex.

4.2 Modelling pthread cond

We now model pthread cond. This component allows a thread owning a mutex
to wait until some condition is satisfied and another thread notifies this thread
about it. While waiting the thread releases the mutex obtained by the thread,
and if signalled reacquires the mutex. When another running thread completes
a task and determines that a waiting thread can now continue, it can wake
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typedef pthread_cond_t {
byte waiters = 0;
chan cont = [0] of {bit};

};
5

inline pthread_cond_signal(this) {
atomic {

if
:: this.waiters > 0 ->

10 this.waiters--;
this.cont?_;

:: else
fi;

}
15 }

20 inline pthread_cond_broadcast(this) {
atomic {

do
:: this.waiters > 0 ->

this.waiters--;
25 this.cont?_;

:: else -> break;
od;

}
}

30
inline pthread_cond_wait(this,mutex) {

atomic {
this.waiters++;
pthread_mutex_unlock(mutex);

35 this.cont!1;
}
pthread_mutex_lock(mutex);

}

Figure 4.2: Abstract starvation prone model of pthread cond in Promela.

up the waiting thread by signalling the corresponding condition. Actually, two
kinds of signals are available in pthread cond: pthread cond signal for waking
one thread and pthread cond broadcast for waking all threads. Our abstract
version of pthread cond uses a basic synchronisation mechanism of Promela:
(synchronous) rendez-vous channels. The pthread cond wait function uses a
send operation on the rendez-vous channel cont. The thread invoking this
method will be blocked until another thread execute a receive operation. The
contents of the message sent over this channel are irrelevant, only the timing of
the message matters. On the receiver side this is specified by using an anony-
mous write-only variable named , resulting in the Promela statement cont? .
On the sender side an arbitrary value of 1 is chosen. The resulting statement
becomes cont!1. Before waiting on the channel the wait function has to release
the mutex and, after continuing, to acquire the mutex again. To be able to
wake all the waiting threads, the condition keeps track of the number of waiting
threads in the variable waiters. The value of this variable equals the number
of receive operations that have to be performed if all threads are signalled. For
correctness atomic blocks are used to limit the interleaving of processes (oth-
erwise the test waiters > 0 and waiters-- could be interrupted). Just like
pthread mutex the variables are wrapped in a new type pthread cond t. The
Promela model is listed in Figure 4.2.

The correctness of the pthread cond broadcast function depends on the atom-
icity of the body of the function, otherwise too many threads can get a signal.
Therefore the send and receive operations can not be exchanged. This is due to
the semantics of the atomic block in combination with the send and receive op-
eration on a rendezvous channel. From the Promela manual page on atomic:
‘If an atomic sequence contains a rendezvous send statement, control passes
from sender to receiver when the rendezvous handshake completes’ [38]. Thus
an atomic block is no longer atomic if it contains a rendezvous send statement.
As the atomic block in the broadcast function contains such a send operation.
The function can therefor be interrupted. This would make the function behave
incorrectly. A receive operation on channel c can only be interrupted if no other
process is blocking on sending a message to channel c. In our model of pthread -
cond, for each receive operation a send operation is always already blocking.
For each increment of the waiting variable a send operation tries to execute
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but is blocked, as the body of the pthread cond wait method is wrapped inside
an atomic block. This manner of using receive operations does not suffer from
the same atomically problems as send operation and can be safely used inside
a atomic block.

4.3 Modelling the concurrent stack example

The stack of integers example of Figure 2.4 is easily converted to Promela.
The result is listed in Figure 4.3. Because of the lack of pointers, pointers are
converted to structs, declared global or on the stack. Accessing a member m
of a structure s can be done by s.m. The while loop in C is converted to a
do ... od loop in Promela. This loop can be thought of as a while (1)
loop in C, as the loop has to be aborted explicitly by a break statement. Each
loop can have multiple condition blocks (a block prefix by ::). A condition
block is only executable if the first statement is executable (so a block starting
with false; is never executable). Normally, one of the executable blocks is
chosen non-deterministically for execution. In the translated code, only one of
the blocks should be executable to match the semantic of the while statement
in C. A similar construction is needed if converting if statements from C to
Promela. By adding a second condition block with as condition the negation of
the condition of the original while loop, only one of the two blocks is executable.
This can be stated shorter by using the else keyword, Spin calculates the
negation automatically1.

typedef IntStack {
pthread_mutex_t m;
pthread_cond_t isEmpty;
pthread_cond_t isFull;

5 byte size = 0;
int item[STACK_SIZE];

};

inline push(s, value) {
10 pthread_mutex_lock(s.m);

do
:: s.size == STACK_SIZE ->

pthread_cond_wait(s.isFull, s.m);
:: else -> break;

15 od;
s.item[s.size] = value;
s.size++;
pthread_cond_signal(s.isEmpty);
pthread_mutex_unlock(s.m);

20 }

inline pop(s, retval) {
pthread_mutex_lock(s.m);
do
:: s.size == 0 ->

25 pthread_cond_wait(s.isEmpty, s.m);
:: else -> break;
od;
s.size--;
retval = s.item[s.size];

30 pthread_cond_signal(s.isFull);
pthread_mutex_unlock(s.m);

}

Figure 4.3: Conversion of the concurrent stack of Figure 2.4 to Promela.

4.4 Verifying the concurrent stack example

To be able to model check this example we have to model typical usage of
the stack somehow. The test setup includes multiple consumers and multiple
producers. A model of such a setup is listed in Figure 4.4. The producers and
consumers loop forever, doing their job: pushing and popping the integer 1 to
and from the stack. Next we can continue with checking the example.

1As noted in [39], a few exceptions exist. The exceptions deals with message queues and
nesting of do and if loops, but do not apply here.
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IntStack s;

active[PRODUCERS] proctype producer() {
do

5 :: push(s, 1);
od;

}

active[CONSUMERS] proctype consumer() {
int retval;

10 do
:: pop(s, retval);
od;

}

Figure 4.4: Model of usage of a stack.

There are three kinds of properties which can be checked, each by invoking
Spin differently. The absence of deadlock property is checked implicitly when
running the verifier for assertion violations. Each time a non-end state is en-
countered and no transitions out of the state are valid an ‘invalid end state’
error is reported. The second type of properties we check are safety properties,
which are valid in each state of the model (specified as LTL formulas beginning
with the [ ] operator). Most of the informal correctness properties specified in
Section 2.3 are of this type. The last type are liveness properties, guaranteeing
that each process can make progress in some sort. Spin has special support
for liveness properties, called progress states, although they can also be checked
with LTL properties.

For the stack example the output of a run verifying absence of deadlocks and
assertion violations is listed in Figure 4.5 (the megabytes listed are actually
mebibytes). It shows the number of visited states, the number of transitions
taken, the memory usage, and unexecuted lines of code in the model. There are
no problems listed.

(Spin Version 5.2.3 -- 25 November 2009)
+ Partial Order Reduction
+ Compression

5 Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

10
State-vector 136 byte, depth reached 115770, errors: 0

1003870 states, stored
388596 states, matched

1392466 transitions (= stored+matched)
15 167725 atomic steps

hash conflicts: 16618 (resolved)

Stats on memory usage (in Megabytes):
157.008 equivalent memory usage for states (stored*(State-vector + overhead))

20 46.674 actual memory usage for states (compression: 29.73%)
state-vector as stored = 21 byte + 28 byte overhead

64.000 memory used for hash table (-w23)
457.764 memory used for DFS stack (-m10000000)
568.248 total actual memory usage

25
nr of templates: [ globals chans procs ]
collapse counts: [ 232 11 11 ]
unreached in proctype producer

line 46, state 40, "-end-"
30 (1 of 40 states)

unreached in proctype consumer
line 54, state 40, "-end-"
(1 of 40 states)

35 pan: elapsed time 1.92 seconds
pan: rate 522848.96 states/second

Figure 4.5: Output of Spin for the stack example, with 5 producers, 5 consumers
and a stack size of 5.
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pan: assertion violated (s.size<5) (at depth 360)
pan: wrote stack.spin.trail
pan: reducing search depth to 359

...
5 pan: wrote stack.spin.trail

pan: reducing search depth to 69

(Spin Version 5.1.7 -- 23 December 2008)
+ Partial Order Reduction

10 + Compression

Full statespace search for:
never claim - (none specified)
assertion violations +

15 cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 80 byte, depth reached 365, errors: 10
1080 states, stored

20 504 states, matched
1584 transitions (= stored+matched)
460 atomic steps

hash conflicts: 0 (resolved)

25 Stats on memory usage (in Megabytes):
0.119 equivalent memory usage for states (stored*(State-vector + overhead))

458.335 actual memory usage for states (unsuccessful compression: 383619.54%)
state-vector as stored = 444963 byte + 36 byte overhead

64.000 memory used for hash table (-w23)
30 0.003 memory used for DFS stack (-m69)

522.154 total actual memory usage

nr of templates: [ globals chans procs ]
collapse counts: [ 66 14 23 ]

35 unreached in proctype producer
line 57, state 43, "-end-"
(1 of 43 states)

unreached in proctype consumer
line 66, state 44, "-end-"

40 (1 of 44 states)

pan: elapsed time 0.01 seconds

Figure 4.6: Output of Spin for the stack example, with an error introduced.
Executed with 2 producers, 1 consumer and a stack size of 5.

To show the output when an error occurs, an error is introduced in the exam-
ple. The loop in the push function is changed to a conditional statement. Also
an extra assertion is added just after this conditional statement: an assertion
checking if the size is below the maximum size of the stack. In Promela one can
state this as assert(s.size < STACK SIZE). Running the verifier again yields
the output listed in Figure 4.6 (the megabytes listed are actually mebibytes2).
At the beginning Spin indicates there is an assertion violation and a trail was
written to stack.spin.trail. In this file, Spin records how the violation oc-
curred. Spin also has the ability to replay these steps in debug mode. The
output in this mode is listed in Figure 4.7. First Spin lists all running pro-
cesses. Following is the order in which the statements were executed. It finishes
with a final system state of all global variables and the line numbers the running
processes are at. After close inspection it is clear what caused the assertion vio-
lation. Between a consumer signalling a producer and the producer enqueueing
a new integer, another producer has enqueued another integer. To avoid this
situation, a woken thread has to reevaluate the condition causing the wait. A
loop is necessary3.

2A mebibyte is 220 = 1, 048, 576 bytes, and is established by the International Electrotech-
nical Commission (IEC).

3If starvation-free mutexes and condition are used, a loop is unnecessary. By verifying this
example with such versions (introduced later in this thesis) one can see this for oneself.
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Starting producer with pid 0
Starting producer with pid 1
Starting consumer with pid 2

1: proc 1 (producer) line 17 "pthread_mutex.basic.abs" (state 1)
5 [(!(s.m.locked))] <merge 0 now @2>

1: proc 1 (producer) line 18 "pthread_mutex.basic.abs" (state 2)
[s.m.locked = 1]
......

69: proc 0 (producer) line 24 "pthread_mutex.basic.abs" (state 35)
10 [assert(s.m.locked)] <merge 40 now @36>

69: proc 0 (producer) line 25 "pthread_mutex.basic.abs" (state 36)
[s.m.locked = 0] <merge 40 now @40>

70: proc 1 (producer) line 17 "pthread_mutex.basic.abs" (state 13)
[(!(s.m.locked))] <merge 0 now @14>

15 70: proc 1 (producer) line 18 "pthread_mutex.basic.abs" (state 14)
[s.m.locked = 1] <merge 23 now @18>

spin: line 24 "stack.spin", Error: assertion violated
spin: text of failed assertion: assert((s.size<5))
71: proc 1 (producer) line 25 "stack.spin" (state 23)

20 [assert((s.size<5))]
spin: trail ends after 71 steps
#processes: 3

s.m.locked = 1
s.isEmpty.waiters = 0

25 s.isFull.waiters = 0
s.size = 5
s.item[0] = 1
s.item[1] = 1
s.item[2] = 1

30 s.item[3] = 1
s.item[4] = 1

71: proc 2 (consumer) line 62 "stack.spin" (state 41)
71: proc 1 (producer) line 26 "stack.spin" (state 24)
71: proc 0 (producer) line 54 "stack.spin" (state 40)

35 3 processes created

Figure 4.7: Trace of Spin for the stack example with a bug. Executed with 2
producers, 1 consumer and a stack size of 5.

Unless otherwise stated, all experiments in this thesis are executed on a Sun
Fire X4440, with 16-cores and 128 GiB memory. Also, in Spin the maximal
stack depth to be searched must be specified, since a stack for the depth-first
search is allocated in advance. In this thesis, the unused part of the stack is
subtracted from the actual memory usage to obtain the memory usage in which
the example can be verified. A 64-bits verifier was used. If less as 4 GiB is
needed for verifying a certain case, it is possible to use even less memory by
compiling the verifier as 32-bits executable, but for a more fair comparison the
results from the 64-bits version are used unless otherwise noted.

Memory usage in mebibytes4 if checking for assertion violations and deadlocks:

Memory Usage (in MiB) Stack Size
1 4 7 10

1 1 4.39 4.40 4.41 4.43
4 6.04 11.19 18.36 27.09
7 748.75 4471.74 7005.64 10012.96

4 1 4.45 4.66 4.70 4.92
4 129.35 96.78 143.39 178.27
7 39651.62 43053.70 40621.57 50061.57

7 1 12.23 19.68 16.68 18.00
4 5483.77 6171.12 2869.96 3471.56
7 n/a n/a n/a n/a

Producers Consumers
4A mebibyte is 220 = 1, 048, 576 bytes, and is established by the International Electrotech-

nical Commission (IEC).
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Reached depth if checking for assertion violations and deadlocks:

Stack Depth (in steps) Stack Size
1 4 7 10

1 1 67 208 486 790
4 1997 3574 6557 9403
7 53518 96584 162906 228975

4 1 1222 1711 2385 3109
4 46495 21557 28806 35611
7 1344364 481112 585697 687034

7 1 34738 35279 33737 37098
4 1327782 518108 308797 377983
7 n/a n/a n/a n/a

Producers Consumers

Runtime in hours, minutes and seconds if checking for assertion violations and
deadlocks5:

Run Time (in HH:MM:SS) Stack Size
1 4 7 10

1 1 0:00:05 0:00:03 0:00:03 0:00:04
4 0:00:03 0:00:03 0:00:04 0:00:04
7 0:00:43 0:03:31 0:06:02 0:09:07

4 1 0:00:03 0:00:03 0:00:03 0:00:03
4 0:00:10 0:00:07 0:00:10 0:00:11
7 0:50:07 0:48:40 0:41:49 0:50:45

7 1 0:00:04 0:00:03 0:00:04 0:00:04
4 0:05:59 0:06:15 0:03:01 0:03:18
7 n/a n/a n/a n/a

Producers Consumers

In the next chapter we continue with modelling and verifying readers-writers.

5As other cores on the machine were used by other programs, the runtime measurement is
not entirely accurate across the different runs.



Chapter 5

Verifying Qt’s readers-writers

Now that we have abstract versions of the relevant Posix components, we can
model the readers-writers available in Qt. The QReadWriteLock class imple-
ments this algorithm. As explained in Chapter 3, this class depends on the
QMutex and QWaitCondition classes. Before we can model the QReadWriteLock
class we must first model those dependancies.

5.1 Modelling Qt’s basics

The implementation of the QMutex class appears to be rather complex to model,
due to optimisations that have been performed. As a consequence, the code base
is large. Modelling this part faithfully is outside the scope of this thesis. Instead
we will use pthread mutex to provide the locking mechanism, because it has the
same functional behaviour as the QMutex class is supposed to have. Hence
QMutex is a wrapper around around pthread mutex. The Promela model is
listed in Figure 5.1.

typedef QMutex {
pthread_mutex_t mutex;

};

5 inline QMutex_lock(this) {
pthread_mutex_lock(this.mutex);

}

inline QMutex_unlock(this) {
pthread_mutex_unlock(this.mutex);

10 }

Figure 5.1: QMutex class.

The implementation of QWaitCondition, on the other hand, is much shorter, and
can therefore be converted to Promela straightforwardly. Again, as with the
stack example, the attributes of this class are wrapped in a Promela typedef.
Each of the statements of the original implementation, listed in Figure 3.4,
can be easily translated in Promela statements. The translation is done in
the same manner as with the stack example in Section 4.3. while loops are
translated to do ... od loops, conditional if statement are translated to if
statements with two explicit branches. The result is listed in Figure 5.2.

An abstract version of QWaitCondition can also be constructed. Looking at the
documentation [43], one can see the class has the same specification as pthread -
cond. To construct an abstract model of QWaitCondition one can just change

27
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typedef QWaitCondition {
pthread_mutex_t mutex;
pthread_cond_t cond;
int waiters = 0;

5 int wakeups = 0;
};

inline QWaitCondition_wakeOne(this) {
pthread_mutex_lock(this.mutex);

10 this.wakeups = min(this.wakeups + 1,
this.waiters);

pthread_cond_signal(this.cond);
pthread_mutex_unlock(this.mutex);

}
15

inline QWaitCondition_wakeAll(this) {
pthread_mutex_lock(this.mutex);
this.wakeups = this.waiters;
pthread_cond_broadcast(this.cond);

20 pthread_mutex_unlock(this.mutex);
}

inline QWaitCondition_wait(this, m) {
pthread_mutex_lock(this.mutex);
this.waiters++;

25 QMutexUnlock(m);
do
:: this.wakeups == 0 ->

pthread_cond_wait(this.cond,
this.mutex);

30 :: else > 0 ->
break;

od;
this.waiters--;
this.wakeups--;

35 pthread_mutex_unlock(this.mutex);
QMutexLock(m);

}

Figure 5.2: Concrete model in Promela of QWaitCondition

the name of the typedef and of the functions of the pthread cond component.
The only real difference is that the pthread mutex lock and unlock method calls
must be converted to the lock and unlock method calls of the QMutex. The
abstract model of QWaitCondition is trivial, constructing the Promela model
is left to the reader.

5.2 Modelling Qt’s readers-writers lock

Now we have modelled all the components on which the QReadWriteLock class
depends, we can convert the QReadWriteLock itself to Promela. All class at-
tributes can be expressed directly (the type Qt::HANDLE is converted to the
Promela type pid, both identifying a specific thread). In Figure 5.3 the vari-
ables of the class and the code of lockForRead are listed, on the left the original
C++ code, and on the right the conversion in Promela. Methods are converted
to inline definitions. The QMutexLocker is a convenience wrapper around a mu-
tex, obtaining the mutex when the object is constructed and releasing the mutex
implicitly (via its destructor) when the object is deallocated. When used as a
local (stack) object, QMutexLocker obtains the lock during its initialisation and
releases the lock when this local object gets out of scope. This implicit destruc-
tor invocation is converted to an explicit call of QMutexUnlock. The rest of the
Promela code should be self-explanatory. The full code is listed in Figure 5.4.

5.3 Modelling usage of the readers-writers lock

In order to verify the model we will simulate all possible usages of the QRead-
WriteLock. For this reason we will define a number of threads, each (sequen-
tially) executing a finite number of read and/or write locks, and matching un-
locks, in a proper sequence (i.e. no unlocks if the lock is not obtained first by the
thread, and no write lock requests if the thread already has obtained a read lock,
or visa versa). Eventually each thread relinquishes all locks, so other threads
are allowed to proceed. The variable maxLocks indicates how many locks a
thread may request before it relinquishes all locks. We model these threads by
Promela processes as shown in Figure 5.5. Here, THREADS indicates the num-
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struct QReadWriteLockPrivate {
QMutex mutex;
QWaitCondition readerWait,

writerWait;
5 Qt::HANDLE currentWriter;

int accessCount,
waitingReaders,
waitingWriters;

};
10

void QReadWriteLock::lockForRead() {
QMutexLocker lock(&d->mutex);
while (d->accessCount < 0 ||

d->waitingWriters) {
15 ++d->waitingReaders;

d->readerWait.wait(&d->mutex);
--d->waitingReaders;

}
++d->accessCount;

20 Q_ASSERT_X(d->accessCount > 0,
"...", "...");

}

typedef QReadWriteLock {
QMutex mutex;
QWaitCondition readerWait;
QWaitCondition writerWait;

5 pid currentWriter = NT;
int accessCount = 0;
int waitingReaders = 0;
int waitingWriters = 0;

};
10

inline QReadWriteLock_lockForRead(this) {
QMutex_lock(this.mutex);
do
:: this.accessCount < 0 ||

15 this.waitingWriters > 0 ->
this.waitingReaders++;
QWaitCondition_wait(this.readerWait,

this.mutex);
this.waitingReaders--;

20 :: else -> break;
od;
this.accessCount = this.accessCount + 1;
assert(this.accessCount > 0);
QMutex_unlock(this.mutex);

25 }

Figure 5.3: Part of QReadWriteLock (Qt 4.3 version) in C++ (left) and
Promela (right).

typedef QReadWriteLock {
QMutex mutex;
QWaitCondition readerWait;
QWaitCondition writerWait;

5 int accessCount = 0;
pid currentWriter = NT;
int waitingReaders = 0;
int waitingWriters = 0;

}
10

inline QReadWriteLock_lockForRead(this) {
QMutex_lock(this.mutex);
do
:: this.accessCount < 0 ||

15 this.waitingWriters > 0 ->
this.waitingReaders++;
QWaitCondition_wait(this.readerWait,

this.mutex);
this.waitingReaders--;

20 :: !(this.accessCount < 0 ||
this.waitingWriters > 0) ->

break;
od;
this.accessCount = this.accessCount + 1;

25 assert(this.accessCount > 0);
QMutex_unlock(this.mutex);

}

inline QReadWriteLock_lockForWrite(this) {
30 QMutex_lock(this.mutex);

pid self = _pid;
do
:: this.accessCount != 0 ->

if
35 :: this.accessCount < 0 &&

self == this.currentWriter ->
break;

:: else
fi;

40 this.waitingWriters++;
QWaitCondition_wait(this.writerWait, this.mutex);
this.waitingWriters--;

:: !(this.accessCount != 0) ->
break;

45 od;
this.currentWriter = self;
this.accessCount = this.accessCount - 1;
assert(this.accessCount < 0);
QMutex_unlock(this.mutex);

50 }

inline QReadWriteLock_unlock(this) {
QMutex_lock(this.mutex);
assert(this.accessCount != 0);

55 if
:: this.accessCount > 0 ->

this.accessCount = this.accessCount - 1;
:: this.accessCount < 0 ->

this.accessCount = this.accessCount + 1;
60 fi;

if
:: this.accessCount == 0 ->

this.currentWriter = NT;
if

65 :: this.waitingWriters > 0 ->
QWaitCondition_wakeOne(this.writerWait);

:: else ->
if
:: this.waitingReaders > 0 ->

70 QWaitCondition_wakeAll(this.readerWait);
:: else
fi;

fi;
:: else

75 fi;
QMutex_unlock(this.mutex);

}

Figure 5.4: The Promela model of the 4.3 version of the QReadWriteLock class.
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active[THREADS] proctype user() {
byte maxLocks;
byte nest = 0;
do

5 :: maxLocks = MAXLOCKS;
if
:: do

:: maxLocks > 0 -> nest++;
QReadWriteLock_lockForRead(rwlock);

10 :: nest > 0 -> nest--;
QReadWriteLock_unlock(rwlock);

:: maxLocks != MAXLOCKS && nest == 0 -> break;
od;

:: do
15 :: maxLocks > 0 -> nest++;

QReadWriteLock_lockForWrite(rwlock);
:: nest > 0 -> nest--;

QReadWriteLock_unlock(rwlock);
:: maxLocks != MAXLOCKS && nest == 0 -> break;

20 od;
fi;

od;
}

Figure 5.5: Promela process of QReadWriteLock usage.

ber of threads the model is checked with. Note that the do statement chooses
one of the options non-deterministically. The readNest variable is used to ex-
clude the case in which a (reentrant) write lock is performed after a read lock is
already obtained. Both readNest and writeNest are used to control unlocking.

5.4 Verifying assertions and absence of deadlock

As stated before, deadlock detection is done implicitly when checking for asser-
tions. Each state not marked as an end state and with no outgoing transitions
is reported. Also all assertions in the model are checked. Besides the assertions
that were present in the original code, there is one assertion in lockForWrite
that has been added, to verify that no thread gets write access when readers
are busy. Also debug output was added, so in case of an error, the trail would
be easier to analyse.

Running our model resulted immediately in a deadlock. This occurs if checking
the model with two threads and a reentrancy of two. The counter-example can
also be found if the abstract model of condition variables is used. For clarity
reasons the Spin output using this model is listed in Figure 5.6. The debug
output of the shortest trail is printed. For readability, the debug output is
filtered to only include our own debug statements. Appended to the output
are the values of all variables in the last state, and ends with a message in
which state the processes are. The situation reported by Spin occurs when a
thread already having a read lock requests another one, while another thread is
waiting for a write lock. The deadlock is clear: the first thread is never going to
proceed with the reentrant read lock request because there is a writer waiting.
The second thread is never going to proceed because the first thread can never
release the lock. A change to the algorithm is needed to avoid this deadlock.

As errors are returned by the model checker, no useful information about the
model checking can be summarized.
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pan: invalid end state (at depth 188)
pan: wrote qreadwritelock43.usage.trail
...
pan: reducing search depth to 32

5 ...
0: enter lockForRead
0: leave lockForRead

1: enter lockForWrite
1: waiting

10 0: enter lockForRead
0: waiting

spin: trail ends after 34 steps
#processes: 2

rwlock.mutex.m.lockedBy = 255
15 rwlock.mutex.m.count = 0

rwlock.readerWait.waiters = 1
rwlock.readerWait.wakeups = 0
rwlock.readerWait.waiting = 1
rwlock.writerWait.waiters = 1

20 rwlock.writerWait.wakeups = 0
rwlock.writerWait.waiting = 1
rwlock.accessCount = 1
rwlock.currentWriter = 255
rwlock.waitingReaders = 1

25 rwlock.waitingWriters = 1
readers = 1
writers = 0

34: proc 0 (user) line 19 "qwaitcondition.abs" (state 29)
34: proc 1 (user) line 19 "qwaitcondition.abs" (state 187)

Figure 5.6: Output of Spin when checking for a deadlock.
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Chapter 6

Verifying a deadlock-free readers-writers

As noted in the previous chapter, the implementation of the readers-writers lock
in Qt 4.3 contains a deadlock. We need to adjust the model. A change to the
algorithm is described, along with new models. This chapter then continues
with checking the adjusted algorithm for starvation issues. Spin has special
support for this kind of properties, called progress states. These are explained
and used in the verification.

6.1 Adjusting the model of Qt’s readers-writers

The solution to the deadlock stated in the previous chapter is to let a reentrant
lock always proceed [16, 17]. To check if a lock request is a reentrant operation,
for each thread the number of calls to the specific lock should be remembered.
If this number is positive the lock operation should always succeed. In the
original C++ code, an extra variable count of type QHash〈Qt::HANDLE, int〉 is
introduced, mapping thread identifiers to numbers. In our translated model we
represented this hash table by an integer array count in which count[pid] is
the number of reentrant locks of thread pid. In Promela the array in declared
with the statement int count[THREADS].

Furthermore, we take this opportunity to change the strange use of the access-
Count variable: the sign of the value of accessCount indicates whether active
locks are read locks or write locks. This distinction between readers and writers
appears to be superfluous. In fact, leaving out this distinction provides that
our implementation is strongly reentrant. Moreover, we changed the name of
the variable into threadCount to indicate it actually contains the number of
different threads that are currently holding the lock. The new model of QRead-
WriteLock is listed in Figure 6.1.

We reported the deadlock to Trolltech. Recently, Trolltech released a new ver-
sion of the thread library (version 4.4) in which the deadlock was repaired.
However, the new version of the Qt library is still only weakly reentrant, not
admitting threads that have write access to do a read lock. This limitation
unnecessarily hampers modular programming.

33
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typedef QReadWriteLock {
QMutex mutex;
QWaitCondition readerWait;
QWaitCondition writerWait;

5
int threadCount = 0;
int waitingReaders = 0;
int waitingWriters = 0;

10 pid currentWriter = NT;
int count[THREADS] = 0;

}

inline QReadWriteLock_lockForRead(this) {
15 QMutex_lock(this.mutex);

// check if this is a reentrant lock
if
:: this.count[_pid] == 0 ->

do
20 :: (this.currentWriter != NT ||

this.waitingWriters > 0) ->
this.waitingReaders++;
QWaitCondition_wait

(this.readerWait,this.mutex);
25 this.waitingReaders--;

:: else -> break;
od;
this.threadCount++;
assert(this.waitingWriters == 0);

30 :: else
fi;
this.count[_pid]++;
... update model variables ...
QMutex_unlock(this.mutex);

35 }

inline QReadWriteLock_lockForWrite(this) {
QMutex_lock(this.mutex);
// check if this is a reentrant lock

40 if
:: this.currentWriter != _pid ->

do
:: this.threadCount != 0 ->

this.waitingWriters++;
45 QWaitCondition_wait

(this.writerWait,this.mutex);

this.waitingWriters--;
:: else -> break;
od;

50 this.currentWriter = _pid;
this.threadCount++;

:: else
fi;
assert(this.threadCount == 1 &&

55 this.currentWriter == _pid);
this.count[_pid]++;
... update model variables ...

QMutex_unlock(this.mutex);
}

60
inline QReadWriteLock_unlock(this) {

QMutex_lock(this.mutex);
this.count[_pid]--;
// is it the last unlock by this thread?

65 if
:: this.count[_pid] == 0 ->

this.threadCount--;
// is it the last unlock of the lock?
if

70 :: this.threadCount == 0 ->
this.currentWriter = NT;
if
// if available wake one writer,
:: this.waitingWriters > 0 ->

75 QWaitCondition_wakeOne
(this.writerWait);

// otherwise wake all readers
:: else ->

if
80 :: this.waitingReaders > 0 ->

QWaitCondition_wakeAll
(this.readerWait);

:: else
fi;

85 fi;
:: else
fi;

:: else
fi;

90 ... update model variables ...
QMutex_unlock(this.mutex);

}

Figure 6.1: Updated Promela model of readers-writers algorithm.

active[THREADS] proctype user() {
byte readNest = 0;
byte writeNest = 0;
byte maxLocks; // number of lock operation remaining

5 do
:: maxLocks = MAXLOCKS;

do
:: maxLocks > 0 ->

maxLocks--;
10 if

:: readNest == 0 ->
writeNest++;
QReadWriteLock_lockForWrite(rwlock);

:: readNest++;
15 QReadWriteLock_lockForRead(rwlock);

fi;
:: writeNest + readNest > 0 ->

QReadWriteLock_unlock(rwlock);
:: MAXLOCKS != maxLocks && writeNest + readNest == 0 ->

20 break;
od;

od;
}

Figure 6.2: Promela process of QReadWriteLock usage.
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6.2 Verifying assertions and absence of deadlock

Before we can verify we have to adjust the usage model, as the algorithm is now
strongly reentrant. So obtaining a read lock while already holding a write lock
is possible. To fully verify the new algorithm we have to use the new algorithm
in all possible and valid ways. The new usage model is listed in Figure 6.2.

After the adjustments to the model Spin reports no invalid end states and
thereby no deadlocks for 3 threads and a maximum of 7 lock operations. Also
no assertion violations where found. An overview of the results is given below.
More extended validation was not possible as no machine with more as 128
gibibyte of memory was available.

Memory usage in mebibytes if checking for assertion violations and deadlocks:

Max Locks 1 3 5 7
2 Threads 4.42 5.82 11.37 25.54
3 Threads 6.93 153.46 1405.38 5986.89
4 Threads 55.30 9974.17 n/a n/a

Reached depth if checking for assertion violations and deadlocks:

Max Locks 1 3 5 7
2 Threads 557 5585 20201 43927
3 Threads 8636 321289 1957287 6921311
4 Threads 118050 13679353 n/a n/a

Runtime in hours, minutes and seconds if checking for assertion violations and
deadlocks1:

Max Locks 1 3 5 7
2 Threads 0:00:17 0:00:17 0:00:17 0:00:18
3 Threads 0:00:17 0:00:26 0:01:31 0:05:55
4 Threads 0:00:21 0:13:18 n/a n/a

6.3 Verifying absence of starvation

In Section 2.3 we stated that the design decision to give preference to writers
results in a possible reader starvation. Therefore it only makes sense to check
for absence of writer starvation. In Spin one can verify starvation properties by
using progress states. A looping process obtaining and releasing write locks, but
no read locks, is added and labelled with a progress label. When checking the
model, it is verified that all execution cycles (i.e. an execution path on which
the same state occurs twice) contain this progress label. The special process
used in the verification is listed in Figure 6.3.

If checking the model for starvation, a trivial starvation issue in pthread mutex
is revealed. The root of the problem is the lock function. This method stalls if

1As other cores on the machine were used by other programs, the runtime measurement is
not entirely accurate across the different runs.
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active[1] proctype userWriter() {
byte readNest = 0;
byte writeNest = 0;

progress:
5 QReadWriteLock_lockForWrite(rwlock);

QReadWriteLock_unlock(rwlock);
goto progress;

}

Figure 6.3: Extra process which checks absence of starvation of write locks.

the mutex is locked, otherwise it continues. But the duration of the stall is un-
specified, although eventually the process will try again to lock the mutex. This
is the same opportunistic scheduling behaviour of the standard mutexes found
on some operating systems, and therefore this behaviour is also used by default
by the readers-writers algorithm on those systems. This mutex is not starvation
free, and moreover the readers-writers algorithm is also prone to starvation.
We want to fully verify the algorithm under all conditions, so we want to ver-
ify the algorithm is free of starvation for systems with starvation-free mutexes
(like FreeBSD and Mac OS X). If we want to verify Qt’s readers-writers
algorithm is starvation free for those systems we have to avoid the mentioned
issue in the model of pthread mutex. The necessary adjustments to the model
of pthread mutex are discussed in the next section.

6.4 Making the primitives starvation free

In order to eliminate the starvation issue mentioned in the previous section,
pthread mutex must be converted to a starvation-free version. The order in
which threads call the lock method is remembered. Threads are only allowed to
claim the mutex in the same order (FIFO), as opposed with the old opportunistic
behaviour (see Section 2.3). Also pthread cond must be converted, as a signalled
thread reclaiming the mutex must get priority over threads requesting the mutex
for the first time. Otherwise a trivial starvation issue can be found if checking
the algorithm with the old model of pthread cond2.

To this end the new version of both modules combined implements a non-
blocking monitor (see Section 2.4). To each mutex two queues of processes are
added. The queues are modelled using buffered channels in Promela. These
channels can contain a maximum amount of THREADS messages of the type pid.
The first queue is to remember the order of the threads in which they call the
lock function. The second contains the order in which signalled threads should
continue. The unlock method transfers the lock to another thread if there are
threads waiting. Threads in the second queue are given priority over threads in
the first queue. A condition variable consists of a single queue. In this queue,
the order in which the threads executed the wait method is stored. When a
condition variable gets signalled a thread is transferred from the queue of the
condition variable to the second queue of the corresponding mutex. Sleeping and
waking specific threads is performed by waiting on a specific rendevouz commu-

2If a signalled thread is added to the normal queue for waiting on the mutex instead,
starvation issues are still present. There exists a possibility that just before a thread is
signalled another thread tries to claim the lock. After the mutex is unlocked, this first threads
gets executed. This first thread then can obtain the resource (in this thesis a read or write
lock), starving the woken thread. If this occurs repeatedly the signalled thread is starved.
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nication channel. The specifics are in the file schedular.abs, see Section A.3.
Two methods are available: processSleep to let the current thread sleep, and
processWake to wake a specific thread. The models of both modules are listed
in Figures 6.4 and 6.5. Now we can continue with checking for starvation issues
in the algorithm itself.

typedef pthread_mutex_t {
byte locked = false;
chan queue = [THREADS] of {pid};
chan requeue = [THREADS] of {pid};

5 };

inline pthread_mutex_lock(this) {
atomic {

if
10 :: this.locked ->

this.queue!_pid;
processSleep();

:: else ->
this.locked = true;

15 fi;
assert(this.locked);

}
}

20 inline pthread_mutex_unlock(this) {
atomic {

assert(this.locked);
if
:: nempty(this.requeue) ->

25 this.requeue?p1;
processWake(p1);

:: empty(this.requeue) ->
if
:: nempty(this.queue) ->

30 this.queue?p1;
processWake(p1);

:: empty(this.queue) ->
this.locked = false;

fi;
35 fi;

}
}

inline pthread_mutex_requeue_one(this, process) {
40 atomic {

assert(this.locked);
this.requeue!process;
assert(nempty(this.requeue));

}
45 }

inline pthread_mutex_requeue_queue(this, aqueue) {
atomic {

assert(this.locked);
50 do

:: nempty(aqueue) ->
aqueue?p1;
this.requeue!p1;

:: empty(aqueue) -> break;
55 od;

}
}

Figure 6.4: Starvation-free Promela model of pthread mutex.

typedef pthread_cond_t {
chan queue = [THREADS] of {pid};

};

5 inline pthread_cond_wait(this, m) {
atomic {

this.queue!_pid;
pthread_mutex_unlock(m);
processSleep();

10 assert(m.locked);
}

}

15

inline pthread_cond_signal(this, m) {
atomic {

20 if
:: nempty(this.queue) ->

this.queue?p1;
pthread_mutex_requeue_one(m, p1);

:: empty(this.queue)
25 fi;

}
}

inline pthread_cond_broadcast(this, m) {
30 atomic {

pthread_mutex_requeue_queue(m, this.queue);
assert(empty(this.queue));

}
}

Figure 6.5: Starvation-free Promela model of pthread cond.
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6.5 Verifying absence of starvation, again

Despite using the starvation-free Posix basics, the model still contains the possi-
bility of writer starvation. This appeared when the model is checked for absence
of progress, and Spin found an execution cycle with no progress states. The
output of Spin is listed in Figure 6.7. This is the shortest counterexample found
by Spin. The output is not obvious because both QMutex and QWaitCondition
uses a pthread mutex. The debug output in the model was changed slightly to be
more informative, displaying also the current value of count[ pid]. A graphic
representation of this cycle is shown in Figure 6.6.

The problem is caused by the wait method of QWaitCondition; see Figure 5.2.
When a thread t calls QWaitCondition wait it will suspend (by calling pthread -
cond wait) until some other thread s signals that t can continue its execution.
However, at that time t has released the mutex this.mutex. Another thread
can now lock this mutex (as occurring by calling lockForWrite) just before t
does, effectively stealing the turn of t. When t obtains the mutex, it can not
obtain a write lock, because s has already a write lock.

cycle

(waking writer)

Thread s

begin executing lockForWrite

finished executing lockForWrite

begin executing unlock

finished executing unlock

executing 
QWaitCondition::wakeOne

begin executing lockForWrite

finished executing lockForWrite

begin executing unlock

Thread t

begin executing lockForWrite

begin executing QWaitCondition::wait

wakeup

finished executing 
QWaitCondition::wait

begin executing 
QWaitCondition::wait

sleep

tim
e

Figure 6.6: Graphical representation of the counterexample indicating a star-
vation problem. The thick black line indicates that the mutex this,mutex is
locked.
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Starting userWriter with pid 0
Starting user with pid 1
spin: couldn’t find claim (ignored)

1: pthread_mutex_lock done
5 1: want writelock (this thread nested 0 deep)

1: has writelock (this thread nested 1 deep)
1: pthread_mutex_unlock done

0: pthread_mutex_lock done
0: want writelock (this thread nested 0 deep)

10 0: wait for writelock (this thread nested 0 deep)
0: begin qwait::wait
0: pthread_mutex_lock done
0: pthread_mutex_unlock done

1: pthread_mutex_lock done
15 1: going to release lock (this thread nested 1 deep)

1: waking one writer
<<<<<START OF CYCLE>>>>>

0: pthread_mutex_unlock done
1: pthread_mutex_lock done

20 0: sleeping
0: waked, continuing
0: pthread_mutex_lock waiting
0: sleeping

1: waked 0
25 1: pthread_mutex_unlock done

1: pthread_mutex_unlock waking 0
0: waked, continuing
0: pthread_mutex_lock continuing
0: pthread_mutex_lock done

30 1: waked 0
1: released lock (this thread nested 0 deep)
1: pthread_mutex_unlock done
1: pthread_mutex_lock done
1: want writelock (this thread nested 0 deep)

35 1: has writelock (this thread nested 1 deep)
1: pthread_mutex_unlock done
1: pthread_mutex_lock done
1: going to release lock (this thread nested 1 deep)
1: waking one writer

40 0: pthread_mutex_unlock done
1: pthread_mutex_lock done
1: pthread_mutex_unlock done
1: released lock (this thread nested 0 deep)
1: pthread_mutex_unlock done

45 1: pthread_mutex_lock done
1: want writelock (this thread nested 0 deep)
1: has writelock (this thread nested 1 deep)
1: pthread_mutex_unlock done

0: pthread_mutex_lock done
50 0: done qwait::wait

0: continue for writelock (this thread nested 0 deep)
0: wait for writelock (this thread nested 0 deep)
0: begin qwait::wait
0: pthread_mutex_lock done

55 0: pthread_mutex_unlock done
1: pthread_mutex_lock done
1: going to release lock (this thread nested 1 deep)
1: waking one writer

spin: trail ends after 318 steps

Figure 6.7: Output of Spin checking the adjusted QReadWriteLock class for
absence of starvation.
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Chapter 7

Verifying a deadlock-free and starvation-
free readers-writers

In the previous chapter we have seen that there is a starvation issue in Qt’s
condition variable. It is still possible there also exists starvation or deadlock
issues in the readers-writers algorithm itself. In this chapter we first check the
readers-writers algorithm. As it turns out, the algorithm is correct. Therefore
it is possible to construct a new condition variable for Qt with the same speci-
fication as the condition variable primitive used in verifying the readers-writers
algorithm. The implementation of such a class is discussed, and verified. The
readers-writers using the new condition variable is verified next. This chap-
ter concludes with verifying all kinds of safety properties for readers-writers,
indicating if it works as intended.

7.1 Verifying the readers-writers algorithm

The starvation issue can be avoided by ensuring that no non-signalled thread can
get the mutex before the signalled thread (t in the counterexample of Figure 6.6)
can start executing again. So a signalled thread requesting the mutex should
get priority over threads trying to acquire the mutex for the first time. This is
precisely the way the adjusted model of pthread cond functions, as explained in
the previous chapter, with a priority queue and a normal queue. QReadWrite-
Lock can use the Posix primitives more directly, so this particular starvation
issue should not occur again. This means that QMutex functions as a wrap-
per around pthread mutex and QWaitCondition functions as a wrapper around
pthread cond. Although this solves our problem, it is not a solution as such
a pthread cond with described properties is not available1. However successful
verification indicates the readers-writers algorithm itself is starvation free. Both
verifying for absence of deadlock and starvation succeed. The results are listed
below. As the algorithm is starvation and deadlock free, we can continue with
creating a correct implementation of QWaitCondition, with the same semantics
as our model of pthread cond.

1Tests indicate that Posix mutexes are on some platforms implemented as a FIFO queue,
so no starvation issues originating from the mutex can occur. However, a thread blocked on a
pthread cond variable, when signalled, request the mutex without extra priority. This can be
the source of starvation problems, as explained in the previous chapter.

41
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Memory usage in mebibytes if checking for assertion violations and deadlocks,
with a maximum of 3072 mebibyte memory:

Max Locks 1 3 5 7
2 Threads 2.40 3.08 5.65 11.89
3 Threads 4.00 114.42 1118.98 > 3072
4 Threads 85.25 n/a n/a n/a

Reached depth if checking for assertion violations and deadlocks, with a maxi-
mum of 3072 mebibyte memory:

Max Locks 1 3 5 7
2 Threads 450 3461 10836 23418
3 Threads 14316 439339 2667541 n/a
4 Threads 526515 n/a n/a n/a

Memory usage in mebibytes if checking for starvation, with a maximum of 3072
mebibyte memory:

Max Locks 1 3 5 7
2 Threads 2.41 2.43 2.83 3.23
3 Threads 4.37 31.47 173.29 552.82
4 Threads 138.01 n/a n/a n/a

Reached depth if checking for starvation, with a maximum of 3072 mebibyte
memory:

Max Locks 1 3 5 7
2 Threads 536 1150 1570 1986
3 Threads 13617 95151 218847 403487
4 Threads 515703 n/a n/a n/a

7.2 Constructing a starvation-free condition variable

For a real solution we have to construct a starvation-free condition variable
(QWaitCondition), out of Posix starvation-free mutexes and starvation-prone
condition variables. To construct a starvation-free QWaitCondition with these
basics primitives we will also have to re-implement QMutex. This because preser-
vation of the order of threads calling the condition variable as well as giving pri-
ority to signalled threads in the mutex is needed to avoid starvation. Both must
be implemented manually in QMutex and QWaitCondition, as the Posix primi-
tives do not have these features. As the Posix condition variable is unreliable
due to the spurious wake-ups, the correct order is not preserved. As a Posix
mutex has no sense of priority2, giving priority to specific threads is not possible
inside a Posix mutex. As Posix does not define an interface to actively letting
specific threads sleep and wake them up, the standard construct pthread cond
has to be used for this purpose. We will first describe the implementation of
QMutex and continue with the implementation of QWaitCondition.

2Only superusers can set a different scheduling policy, and select a policy with different
priorities per thread. This is not viable for typical Qt applications.
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typedef QMutex {
pthread_mutex_t mutex;
pthread_cond_t normalWait;
pthread_cond_t transferWait;

5 byte transferWaiting = 0;
byte currentLevel = 0;
byte nextLevel = 0;

};

10 inline QMutex_lock(this) {
pthread_mutex_lock(this.mutex);
level = this.nextLevel;
this.nextLevel = (this.nextLevel + 1) % THREADS;
do

15 :: this.transferWaiting > 0 || level != this.currentLevel ->
pthread_cond_wait(this.normalWait, this.mutex);

:: else ->
break;

od;
20 level = 0;

this.currentLevel = (this.currentLevel + 1) % THREADS;
}

inline QMutex_wakeNext(this) {
25 if

:: this.transferWaiting > 0 ->
pthread_cond_broadcast(this.transferWait, this.mutex);

:: else ->
pthread_cond_broadcast(this.normalWait, this.mutex);

30 fi;
}

inline QMutex_unlock(this) {
QMutex_wakeNext(this);

35 pthread_mutex_unlock(this.mutex);
}

Figure 7.1: Starvation-free Promela model of QMutex.

QMutex naturally includes a pthread mutex variable, so mutual exclusion is avail-
able. On the beginning of the lock method of QMutex, this mutex is acquired.
In the unlock method, the mutex is released. Two pthread cond variables are
also included in QMutex, so threads can sleep while waiting on the QMutex or
on the QWaitCondition (which does not include any Posix primitives). One
condition variable, called transferWait, is for waiting and signalled threads.
The other one, called normalWait, is for new threads obtaining the mutex
but which turn has yet to come (both explained later on). An integer named
transferWaiting indicates the number of threads currently signalled and wait-
ing to acquire the mutex. If this number is not equal to zero, only signalled
threads may obtain the mutex. If a thread waiting on a condition variable gets
signalled, it is appended to the queue of threads waiting on the pthread mutex.
Due to this reason it is possible that non-signalled threads obtains a lock (on a
QMutex object) before a signalled thread can acquire this mutex. This should
not occur. So if a thread is not allowed to acquire the mutex due to this, it
remembers its position in the queue and sleeps on the condition variable. The
order is remembered by the thread in a local level variable. When entering the
lock method of QMutex the nextLevel counter is copied to this level variable,
and subsequently nextLevel is increased. In this way each waiting thread has
therefore a unique number. The thread with the lowest number can only pass
and obtain the mutex. This lowest number is remembered in the currentLevel
variable. When the signalled thread is done with the lock, the unlock method
of QMutex is called. If threads with priority (previously signalled) are wait-
ing (as indicated by the transferWaiting variable), all threads waiting on the
transferWait condition variable are signalled. This is needed because of the
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#define waiters ((this.nextLevel - this.currentLevel + THREADS) % THREADS)

typedef QWaitCondition {
byte currentLevel = 0;

5 byte nextLevel = 0;
byte wakeups = 0;

};

inline QWaitCondition_wait(this, m) {
10 level = this.nextLevel;

this.nextLevel = (this.nextLevel + 1) % THREADS;
do
:: this.wakeups == 0 || level != this.currentLevel ->

QMutex_wakeNext(m);
15 pthread_cond_wait(m.transferWait, m.mutex);

:: else ->
break;

od;
level = 0;

20 mutex.transferWaiting--;
assert(m.transferWaiting >= 0);
this.wakeups--;
this.currentLevel = (this.currentLevel + 1) % THREADS;

}
25

inline QWaitCondition_wakeOne(this, m) {
if
:: this.wakeups < waiters ->

mutex.transferWaiting++;
30 this.wakeups = this.wakeups+1;

:: else
fi;
pthread_cond_broadcast(m.transferWait, m.mutex);

}
35

inline QWaitCondition_wakeAll(this, m) {
m.transferWaiting = m.transferWaiting + (waiters - this.wakeups);
this.wakeups = waiters;
pthread_cond_broadcast(m.transferWait, m.mutex);

40 }

Figure 7.2: Starvation-free Promela model of QWaitCondition.

spurious wake-ups. If no such threads are waiting, all threads waiting on the
normalWait condition variable are signalled. The signalled threads will obtain
the mutex in correct order, as the order is explicitly remembered.

Next a new model of the QWaitCondition class has to be constructed. The class
has three attributes, all integers. Using a similar construction as in QMutex,
each threads waiting on the condition generates an unique number for itself. The
number is generated from the attribute nextLevel. The thread with the unique
number currentLevel is the next one to continue execution. The third attribute
is called wakeups. The number of threads allowed to progress is contained
therein. This variable is absent from QMutex because if there are no signalled
thread waiting to reacquire the mutex, all threads are allowed to progress.

To construct a real implementation, the wakeOne and wakeAll methods of
QWaitCondition must have access to the correct QMutex. One can allow this
access by setting a pointer inside a QWaitCondition object to the QMutex object.
This pointer must be set in the wait method, and is cleared if no threads are
waiting anymore on the condition variable. This is according to the specification
of QWaitCondition, which states that all threads waiting on a QWaitCondition
must call the wait method with the same QMutex object. As pointers are ab-
sent from Promela, an extra argument containing the mutex is added to the
wakeOne and wakeAll methods of QWaitCondition.

The QMutex is listed in Figure 7.1, QWaitCondition is listed in Figure 7.2. A
couple of small remarks can be made about the model. The variable level
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must be added to the top of user process as listed in Figure 6.2. Strictly, the
statement level = 0 in both classes is not needed. But for our model it is
useful, as it reduces the number of values the variable can contain, so the state
space explored is also reduced. Adding these statements results in a significant
memory reduction, even approaching 80% in some test runs. All the integer
attributes are bound to the maximum number of threads, for the same reason
of state space reduction. Using modulo operations, one can still obtain a correct
result, but one has to perform some extra calculations. For reason of clarity an
extra define waiters is used in QWaitCondition. This indicates the number of
waiting threads. If program memory is at a premium one can adjust QMutex
to use only one condition variable. Performance will probably suffer slightly, as
too many threads are woken. But the resulting code is still starvation free, as
threads can suffer spurious wake-ups and the code checks for this case.

The algorithm uses two starvation-prone condition variables (Posix), even if no
starvation-free condition variables are used. But if there are many starvation-
free condition variables needed, this algorithm saves all but two condition vari-
ables. The performance of this new algorithm, compared with the old one, is
not measured due to time constrains.

7.3 Verifying the new condition variable

We can verify the new condition variables by constructing a special model in
Promela. We have to verify that a thread waiting on a condition is always
allowed to proceed if the condition is signalled. We also have to verify that the
situation detected in the previous chapter (another thread acquires the mutex
for the first time while a signalled thread is waiting) can not occur. For this
we need threads which locks the mutex and we need threads which wait on the
condition. We can merge these requirements into one inline definition called
usage. This definition needs a mutex and condition variable. These are declared
as m and c respectively. For verifying absence of starvation we create a process
called one which contain a progress state and repeatedly executes the usage
definition. The other processes of type usageProc repeatedly executes the same
definition, but without a progress label. In the model, one process has to signal
the waiting processes, otherwise the model would deadlock. To facilitate this

QMutex m;
QWaitCondition c;
byte waiting = 0;

5 inline usage() {
QMutex_lock(m);
waiting++;
QWaitCondition_wait(c, m);
QMutex_unlock(m);

10 }

active[1] proctype one() {
progress:
do

15 :: usage();
od;

}

active[1] proctype waker() {
20 do

:: atomic {
waiting > 0 ->
waiting--;

}
25 QMutex_lock(m);

QWaitCondition_wakeOne(c, m);
QMutex_unlock(m);

od;
}

30

active[THREADS-2] proctype usageProc() {
do
:: usage();
od;

35 }

Figure 7.3: Promela model simulating usage of a condition variable.
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another variable is introduced called waiting, depicting the number of waiting
processes. If this value is greater than zero, a special process called waker locks
the mutex and wakes signals on the condition variable. The model is listed in
Figure 7.3.

Absence of deadlock and starvation has been verified for this model for a max-
imum of 5 threads. Therefore our new condition variables satisfies our require-
ments for condition variables. We can now proceed with using them in the
readers-writers algorithm.

7.4 Verifying absence of starvation

Next we verify that the readers-writers implementation has no starvation issues,
if the new algorithm for the QWaitCondition class is used. As the implementation
of the QWaitCondition class is based on a new algorithm, we also have to reverify
the absence of deadlock result for the readers-writers algorithm. Results from
this verification concludes this section.

Memory usage in mebibytes if checking for starvation:

Max Locks 1 2 3 4 5 6

2 Threads 5.13 6.04 7.08 8.32 9.95 11.77
3 Threads 393.37 2997.60 6243.38 16424.23 42830.06 59323.46
4 Threads 54775.47 n/a n/a n/a n/a n/a

Reached depth if checking for starvation:

Max Locks 1 2 3 4 5 6

2 Threads 3387 6075 7659 9091 10523 11955
3 Threads 865975 2794713 5586802 8771577 12525376 16647916
4 Threads 42752566 n/a n/a n/a n/a n/a

Runtime in hours, minutes and seconds if checking for starvation3:

Max Locks 1 2 3 4 5 6

2 Threads 0:00:37 0:00:35 0:00:35 0:00:35 0:00:36 0:00:35
3 Threads 0:01:27 0:05:39 0:15:32 0:35:27 1:10:50 2:03:10
4 Threads 2:39:50 n/a n/a n/a n/a n/a

We also verified the adjust algorithm for absence for deadlock and assertion
violations. The result of these runs is listed below.

Memory usage in mebibytes if checking for deadlock and assertion violations:

Max Locks 1 2 3 4

2 Threads 4.93 7.10 12.94 24.34
3 Threads 380.15 5166.47 25768.86 94744.03
4 Threads 33193.62 n/a n/a n/a

3As other cores on the machine were used by other programs, the runtime measurement is
not entirely accurate across the different runs.
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Reached depth if checking for deadlock and assertion violations:

Max Locks 1 2 3 4

2 Threads 3259 12275 28827 51774
3 Threads 999667 9137812 37654838 110571350
4 Threads 52711112 n/a n/a n/a

Runtime in hours, minutes and seconds if checking for deadlock and assertion
violations4:

Max Locks 1 2 3 4

2 Threads 0:00:26 0:00:26 0:00:26 0:00:26
3 Threads 0:00:43 0:04:50 0:24:50 1:34:28
4 Threads 0:40:14 n/a n/a n/a

7.5 Verifying safety properties of readers-writers

To check the safety properties a couple of variables are introduced in the readers-
writers model to track the number of threads having write locks (called writers)
and having read locks (called readers). Matching code is added to the model
to keep track of these model variables. The code needed to keep track of these
variables is inserted at appropriates place in the methods of QReadWriteLock.
The readers and writers variables are only incremented on a non-reentrant
call of a thread, and therefore decremented only by the final unlock. The other
variables stated in the properties are attributes of QReadWriteLock.

We now continue with checking Linear Temporal Logic (LTL) safety proper-
ties of the algorithm. These properties are checked by querying Spin with a
LTL expression. At this stage the algorithm contains no deadlocks and no
writer starvation issues, but can still contain conceptually flawed behaviour, for
example allowing both a reader and a writer enter the critical section at the
same time. A test called outsideCS is introduced, true indicating no change
can occur inside the lock structure. In other words no thread has obtained
the mutex, as indicated by the boolean attribute mutex.mutex.locked of the
QReadWriteLock class, and no signalled thread is waiting to acquire the mutex,
as indicated by the attribute mutex.transferWaiting. The relevant properties
mentioned in Section 2.3 can now be easily formalised. These are listed below.
The readersWaiting and writersWaiting variables used are attributes from
the QReadWriteLock object.

• [ ] (readers = 0 ∨ writers = 0)

There are not simultaneously writers and readers allowed.

• [ ] (writers ≤ 1)

No more than one writer is allowed.

4As other cores on the machine were used by other programs, the runtime measurement is
not entirely accurate across the different runs.
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• [ ] (outsideCS→ (writersWaiting > 0→
(readers > 0 ∨ writers > 0)))

States that the only possibility of waiting writers is when there are readers
or writers busy, but only when there is no change to the lock.

• [ ] (outsideCS→ (readersWaiting > 0→
(writers > 0 ∨ writersWaiting > 0)))

States that the only possibility of waiting readers is when there are writers
waiting or writers busy, but only when there is no change to the lock.

We have verified each of the stated invariants for a different number of threads
and maximum lock operations. The results are listed below.

Memory usage in mebibytes if checking for safety properties:

Max Locks 1 2 3 4
2 Threads 5.28 8.60 16.46 31.23
3 Threads 512.95 6966.52 35119.27 127673.20
4 Threads 48244.48 n/a n/a n/a

Reached depth if checking for safety properties:

Max Locks 1 2 3 4
2 Threads 6679 23625 50368 87238
3 Threads 1861295 15973954 64586554 187270543
4 Threads 94333930 n/a n/a n/a

Runtime in hours, minutes and seconds if checking for safety properties5:

Max Locks 1 2 3 4
2 Threads 0:00:28 0:00:29 0:00:29 0:00:30
3 Threads 0:00:52 0:06:27 0:33:12 2:08:09
4 Threads 1:01:50 n/a n/a n/a

5As other cores on the machine were used by other programs, the runtime measurement is
not entirely accurate across the different runs.



Chapter 8

Related and future work

8.1 Related work

In [29] model checking and theorem proving are combined to verify a non-
reentrant readers-writers algorithm. A tabular specification of the systems is
used and can be automatically translated into Spin and PVS models. Safety and
clean completion properties are derived semi-automatically. If an error is found,
it is less easily fixed and reverified as with the method described in this thesis.
Also their proposed approach is exclusively for verifying concurrent programs,
yet the results of this thesis are part of a general approach for verifying any
program [17].

An interesting approaches to model checking concurrent programs is proposed in
[28]. This approach checks real assembly code produced by the GCC compiler
and model checks it with help of the GNU Debugger. This approach is not
especially useful for the algorithm in this thesis: as the algorithm locks a global
mutex while executing the three functions, no interleaving on instruction level
is possible. The use of the proposed method will likely increase the runtime
of model checking as the model contains an unneeded level of detail. Also for
each platform the model should be reverified. As Qt is supported on at least
four hardware architectures, the implementation should be reverified for each,
further increasing the verification time.

The method described in [33] is similar to the previous approach. This approach
checks the platform-independent LLVM intermediate language produced by the
LLVM compiler. It uses the Spin model checker and includes support for the
most used Posix primitives. This method can be applied to our problem, but
is not suitable because do not support liveness properties.

8.2 Future work

As the process of constructing the models consisted of a considerable time invest-
ment, automatic conversion methods are worth considering. Java PathFinder
can automatically convert Java to Promela models, although introducing ab-
stractions is more difficult as JPF works on a whole input program [22, 3, 32].
The previous mentioned approach of model checking LLVM Intermediate Lan-
guage is an interesting new approach as the model checker does not need to have
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knowledge about the source code language [33]. Another approach is used by
the tool Zing, as it uses program abstractions for modular model checking [4].
An overview of model checkers operating directly on C++ source code if found
[30]. A comparison between these automatic method and the approach of this
thesis could yield interesting results.

There are several options to explore more extensive models in Spin, including
a graph representation of the visited spaces and bitstate hashing [10, 25, 24].
Another approach is to use distributed model checking [9, 8]. Mainly because
of time constrains these methods were not applied.

Qt’s readers-writers including the corrected implementation of condition vari-
ables is not yet proven, as [18] proves Qt’s readers-writers with an abstract
version of the fixed condition variables.

The last couple of years concurrent mutual exclusion algorithms receive more
attention. These algorithms, such as [27, 11], provide readers-writers lock for
kernels. Key to their design is they minimise (cache) contention between cores
and processors, so higher efficiency is obtained. Concepts of the algorithm can
be transferred to the user space readers-writers lock, to increase efficiency. The
algorithms in the papers are not verified, which create an opportunity for future
work.

The number of concurrent threads which can be verified in our models can be
increased to gain more confidence in our models. A smaller model of a specific
component can be introduced with precisely the same behaviour as the original
component. As the component is more simple, the amount of memory needed
decreases. This process should be automatic, so no human errors can be intro-
duced. Also the simple version must contain enough detail so the verification
remains correct.
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Conclusion

In this thesis we started with a reentrant readers-writers algorithm used in
Qt 4.3. The model depends on condition variables. Qt’s implementation of
condition variables were modelled. A deadlock issue was found and corrected.
The deadlock was an error in the readers-writers algorithm, as it occurred even
with an abstract model of condition variables. The needed change to the algo-
rithm is discussed, and the models are subsequently adjusted. The corrected
algorithm was verified free of deadlocks, using Qt’s implementation and an
abstract model of condition variables.

Using the same abstract starvation-free model of condition variables, the ad-
justed readers-writers algorithm was also verified free of starvation. However,
if using Qt’s implementation of condition variables the algorithm suffers from
starvation issues. The source of the problem were the condition variables used.
Not only the implementation, but also the algorithm of Qt’s condition variables
was found to be prone to starvation. This affects the readers-writers implemen-
tation as it also becomes prone to starvation. A new algorithm for condition
variables had to be constructed because replacing Qt’s condition variables by
Posix variants was not valid, as on most Posix platforms, including Linux and
FreeBSD, Posix condition variables are prone to starvation. An algorithm for
constructing a starvation-free condition variable out of a starvation-prone con-
dition variable was presented and verified free of deadlock and starvation. By
using this algorithm instead of Qt’s condition variables, we were also able to
verify that the adjusted readers-writers is free of deadlock and starvation. Fur-
thermore to increase the confidence in the readers-writers algorithm, a number
of safety properties was successfully verified, even if using the new algorithm for
condition variables.

We improved the previous work in several ways. The Qt classes on which
the readers-writers implementation depends were modelled in a more accurate
way. The two classes implement mutexes and conditional variables. These are
implemented in distinct classes, QMutex and QWaitCondition, which depend on
operating system primitives. The previous work combined the two classes in
one model. The model used a separate process to serialise access and was based
on the specifications of the classes rather than their implementations. The new
model more closely resembles the execution of threaded programs and eliminates
the extra process. Also, instead of the specification, the actual implementation
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of the condition variable was modelled in this thesis. Using a model of this
implementation does not influence the observation of a deadlock. The previous
work did not consider starvation, which is, as mentioned above, extensively
explored in this thesis. Modelling Qt’s implementation of condition variables
made it possible to detect the starvation issue in the condition variable, which
also affecting the readers-writers algorithm. All these improvements increase
the confidence in the verification of the readers-writers algorithm.

The model contains many details, therefore verifying the model costs enormous
amounts of memory. A special machine must be used to verify these kind of
algorithms in detail. In these experiments to verify the algorithm we have
verified properties for a maximum of 3 threads, and for a maximum number of
lock operations of 4. The experiment runs in about 6 hours (two for deadlock
checking, two for the safety properties, and two for starvation checking). If we
increase these values slightly, the execution time worsens drastically and/or the
memory usage increases above 128 gibibyte, the memory limit for our machines.
It was not possible to use more abstractions, as the algorithm examined has a
starvation issue in a supporting class. If the source code of the supporting class
was not modelled, but an abstract version used instead, the starvation issue
was not found. The proper use of abstractions is therefore important to find all
problems in the source code.

The new algorithm for starvation-free condition variables presented in this the-
sis depends only on starvation-prone condition variables and starvation-free mu-
texes. Although the exact performance of this new algorithm is unknown but
probably (a little) slower due increased complexity, in situations were liveness
is more important than (extreme) performance this algorithm is an easy and
effective way to create starvation-free condition variables. This algorithm is
useful on most Posix platforms, like Linux and FreeBSD, as the condition
variable available on those platforms are prone to starvation.
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Promela models

A.1 Some standard functions

/**
* Handy stuff
* Written by Bernard van Gastel , <bvgastel@bitpowder.com >
* Including:
* - picking arbitrary numbers , ’pick ’
* - min/max
* - setting and getting bits
*/
# ifndef STD
#define STD

/*
inline arbitrary(n) {

atomic {
assert(n > 0);
n--;
do
:: n > 0 -> n--;
:: break;
od;

}
}
*/
/*
inline arbitrary(n) {

atomic {
assert(n > 0);
int retval = n / 2;
do
:: retval > 0 -> retval --;
:: retval < n-1 -> retval ++;
:: break;
od;
assert(0 <= retval && retval < n);
n = retval;

}
}
*/

// var = {x | lower >= x >= upper};
inline pick (var , lower , upper) {

atomic {
var = lower;
do
:: (var < (upper)) -> var++;
:: break
od

}
}
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/*
// c = min(a,b);
inline min(c, a, b) {

i f
:: a < b -> c = a;
:: a >= b -> c = b;
f i ;

}
*/
//#define min(a,b) (((a) > (b))*(b) + ((b) >= (a))*(a))
//#define max(a,b) (((a) > (b))*(a) + ((b) >= (a))*(b))
#define min(a,b) ((a) > (b) -> (b) : (a))
#define max(a,b) ((a) > (b) -> (a) : (b))

#define getBit(value , bit) ((( value) >> (bit)) & 1)
#define setBitTo(value , bit , to) value = ((( value) & ~(1 << (bit))) | ((to) << (bit )))

#endif

A.2 Queue Abstraction

/**
* To nativly use a queue in Promela.
* Written by Bernard van Gastel , <bvgastel@bitpowder.com >
* Usage:
* - decleration of a queue:
* queue([ queuename], [max size], [type of elements ]);
* e.g. queue(intqueue , 10, int);
* - enqueue
* enqueue ([ queuename], [item ]);
* e.g. enqueue(intqueue , 10);
* - dequeue
* dequeue ([ queuename], [variable name ]);
* e.g. dequeue(intqueue , x); (with the result in x)
*/
# ifndef QUEUE_H
#define QUEUE_H

#define queue(name , size , elements) chan name = [size] of {elements}

#define enqueue(que , elem) que!elem
//atomic { assert(nfull(que )); que!elem }

//#define enqueueFirst(que , elem) que!!elem

#define dequeue(que , elem) que?elem

#endif

A.3 Schedular Abstraction

# ifndef SCHEDULAR
#define SCHEDULAR
// scheduler
chan cont = [0] of {pid};

#define processSleep () cont?eval(_pid)
#define processWake(processid) cont!processid

//#define processSleep () cont!_pid
//#define processWake(processid) cont?eval(processid)

/*
inline processSleep () {

atomic {
printf ("%d: sleeping\n", _pid);
cont?eval(_pid);
printf ("%d: waked , continuing\n", _pid);

}
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}
*/

/*
inline processWake(processid) {

atomic {
printf ("%d: waking %d\n", _pid , processid );
cont!processid;
printf ("%d: waked %d\n", _pid , processid );

}
//assert (1);

}
*/

#endif

A.4 pthread mutex - opportunistic

# ifndef PTHREAD_MUTEX
#define PTHREAD_MUTEX

# ifndef NT
#define NT 255
#endif

#define pthread_mutex_busy(this) (this.locked)

typedef pthread_mutex_t {
byte locked = false; // i f this is a bool then it uses far more space for state space (I guess 32 or 64 bits and not just one byte)

};

inline pthread_mutex_lock(d) {
atomic {

//d.locked == false;
!d.locked;
d.locked = true;

}
}

inline pthread_mutex_unlock(d) {
atomic {

assert(d.locked );
d.locked = false;

}
}

#endif

A.5 pthread mutex - starvation free

# ifndef PTHREAD_MUTEX_BASIC_FAIR
#define PTHREAD_MUTEX_BASIC_FAIR

# ifndef NT
#define NT 255
#endif

#include SCHEDULAR_MODEL
#include "queue.pml"

#define pthread_mutex_busy(this) (this.locked)

typedef pthread_mutex_t {
byte locked = false; // i f this is a bool then it uses far more space for state space (I guess 32 or 64 bits and not just one byte)
queue(queue , THREADS , pid);

};

inline pthread_mutex_lock(this) {
atomic {

i f
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// locked , but not by itself
:: this.locked ->

// wait;
printf ("%d: pthread_mutex_lock waiting\n", _pid);
enqueue(this.queue , _pid);
processSleep ();
printf ("%d: pthread_mutex_lock continuing\n", _pid);

:: else //-> break;
f i ;
assert(!this.locked );
this.locked = true;
// printf (" locked: pid %d to nestlevel %d\n", _pid , this.count );
printf ("%d: pthread_mutex_lock done\n", _pid);

}
}

inline pthread_mutex_unlock(this) {
atomic {

assert(this.locked );
this.locked = false;
printf ("%d: pthread_mutex_unlock done\n", _pid);
i f
:: nempty(this.queue) ->

dequeue(this.queue , p1);
printf ("%d: pthread_mutex_unlock waking %d\n", _pid , p1);
processWake(p1);
p1 = NT;

:: empty(this.queue)
f i ;
// printf (" unlocked: pid %d to nestlevel %d\n", _pid , d.count);

}
}

/*
queue(pthread_mutex_reverse_queue , THREADS , pid); // for relock

inline pthread_mutex_relock(this) {
atomic {

do
// locked , but not by itself
:: this.locked ->

// wait;
printf ("%d: pthread_mutex_lock re waiting\n", _pid);
// enqueueFirst(this.queue , _pid);
assert(empty(pthread_mutex_reverse_queue ));
do
:: nempty(this.queue) ->

dequeue(this.queue , p1);
enqueue(pthread_mutex_reverse_queue , p1);

:: empty(this.queue) -> break;
od;
assert(empty(this.queue ));
enqueue(this.queue , _pid);
do
:: nempty(pthread_mutex_reverse_queue) ->

dequeue(pthread_mutex_reverse_queue , p1);
enqueue(this.queue , p1);

:: empty(pthread_mutex_reverse_queue) -> break;
od;
assert(empty(pthread_mutex_reverse_queue ));
processSleep ();
printf ("%d: pthread_mutex_lock continuing\n", _pid);

:: !this.locked -> break;
od;
assert(!this.locked );
this.locked = true;
// printf (" locked: pid %d to nestlevel %d\n", _pid , this.count );
printf ("%d: pthread_mutex_lock done\n", _pid);

}
}
*/
#endif
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A.6 pthread mutex - starvation free with support for starvation-
free pthread cond

# ifndef PTHREAD_MUTEX_BASIC_FAIR
#define PTHREAD_MUTEX_BASIC_FAIR

# ifndef NT
#define NT 255
#endif

#include SCHEDULAR_MODEL
#include "queue.pml"

#define pthread_mutex_busy(this) (this.locked)

typedef pthread_mutex_t {
byte locked = false; // i f this is a bool then it uses far more space for state space (I guess 32 or 64 bits and not just one byte)
queue(queue , THREADS , pid);
queue(requeue , THREADS , pid);

};

inline pthread_mutex_lock(this) {
atomic {

i f
// locked , but not by itself
:: this.locked ->

// wait;
printf ("%d: pthread_mutex_lock waiting\n", _pid);
enqueue(this.queue , _pid);
processSleep ();
printf ("%d: pthread_mutex_lock continuing\n", _pid);

:: else ->
this.locked = true;

f i ;
assert(this.locked );
// printf (" locked: pid %d to nestlevel %d\n", _pid , this.count);
printf ("%d: pthread_mutex_lock done\n", _pid);

}
}

inline pthread_mutex_unlock(this) {
atomic {

assert(this.locked );
//this.locked = false;
printf ("%d: pthread_mutex_unlock done\n", _pid);
i f
:: nempty(this.requeue) ->

dequeue(this.requeue , p1);
printf ("%d: pthread_mutex_unlock waking priority %d\n", _pid , p1);
processWake(p1);
p1 = NT;

:: empty(this.requeue) ->
i f
:: nempty(this.queue) ->

dequeue(this.queue , p1);
printf ("%d: pthread_mutex_unlock waking %d\n", _pid , p1);
processWake(p1);
p1 = NT;

:: empty(this.queue) ->
this.locked = false;

f i ;
f i ;
// printf (" unlocked: pid %d to nestlevel %d\n", _pid , d.count);

}
}

inline pthread_mutex_relock(this) {
atomic {

assert(this.locked );
//this.locked = true;
// printf (" locked: pid %d to nestlevel %d\n", _pid , this.count);
printf ("%d: pthread_mutex_relock done\n", _pid);
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}
}

// put first in new queue ,
inline pthread_mutex_requeue_one(this , process) {

atomic {
assert(this.locked );
enqueue(this.requeue , process );
assert(nempty(this.requeue ));

}
}

// put first in new queue ,
inline pthread_mutex_requeue_queue(this , toBeQueued) {

atomic {
assert(this.locked );
//assert(nempty(toBeQueued ));
do
:: nempty(toBeQueued) ->

dequeue(toBeQueued , p1);
enqueue(this.requeue , p1);

:: empty(toBeQueued) ->
break;

od;
p1 = NT;
assert(empty(toBeQueued ));
//assert(nempty(this.requeue ));

}
}

#endif

A.7 pthread cond - opportunistic

# ifndef PTHREAD_COND_ABS
#define PTHREAD_COND_ABS

#include PTHREAD_MUTEX_MODEL

typedef pthread_cond_t {
byte waiters = 0;
chan condcont = [0] of {bit};

};

inline pthread_cond_wait(this , _mutex) {
atomic {

this.waiters ++;
pthread_mutex_unlock(_mutex );
this.condcont !1;

}
pthread_mutex_lock(_mutex );

}

inline pthread_cond_signal(this , _mutex) {
// so each receive operation on cont is successful
atomic {

i f
:: this.waiters > 0 ->

this.waiters --;
this.condcont ?1;

:: else
f i ;

}
}

inline pthread_cond_broadcast(this , _mutex) {
// so each receive operation on cont is successful
atomic {

do
:: this.waiters > 0 ->

this.waiters --;
this.condcont ?1;
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:: else ->
break;

od;
}

}
#endif

A.8 pthread cond - starvation free

# ifndef PTHREAD_COND_FAIR
#define PTHREAD_COND_FAIR

# ifndef NT
#define NT 255
#endif

#include PTHREAD_MUTEX_MODEL
#include "queue.pml"
#include SCHEDULAR_MODEL

#define pthread_cond_busy(this) (rwlock.readerWait.cond.queue?[_])
//( nempty(this.queue ))

typedef pthread_cond_t {
queue(queue , THREADS , pid);

};

inline pthread_cond_wait(this , /* pthread_mutex_t */ _mutex) {
# i fdef SPURIOUS_WAKEUP
i f
::
#endif

// immediately tries to obtain mutex , so either one is waiting for the condition or one is waiting for the lock
atomic {

enqueue(this.queue , _pid);
pthread_mutex_unlock(_mutex );
processSleep ();
pthread_mutex_relock(_mutex );

}
# i fdef SPURIOUS_WAKEUP
:: pthread_mutex_unlock(_mutex );

pthread_mutex_lock(_mutex );
f i ;
#endif

}

inline pthread_cond_signal(this , _mutex) {
atomic {

i f
:: nempty(this.queue) ->

dequeue(this.queue , p1);
pthread_mutex_requeue_one(_mutex , p1);
p1 = NT;

:: empty(this.queue)
f i ;

}
}

inline pthread_cond_broadcast(this , _mutex) {
atomic {

pthread_mutex_requeue_queue(_mutex , this.queue );
assert(empty(this.queue ));

}
}
#endif

A.9 QMutex - wrapper around pthread mutex

# ifndef QMUTEX
#define QMUTEX
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#include PTHREAD_MUTEX_MODEL

#define qmutex_busy(this) (pthread_mutex_busy(this.mutex))

typedef QMutex {
pthread_mutex_t mutex;

};

inline QMutex_lock(this) {
pthread_mutex_lock(this.mutex);

}

inline QMutex_unlock(this) {
pthread_mutex_unlock(this.mutex);

}

#endif

A.10 QMutex - starvation-free version

# ifndef QMUTEX
#define QMUTEX

#include PTHREAD_MUTEX_MODEL
#include PTHREAD_COND_MODEL

#define qmutex_busy(x) (pthread_mutex_busy(x.mutex) || x.transferWaiting > 0)
#define waiters ((this.nextLevel - this.currentLevel + THREADS) % THREADS)

typedef QMutex {
pthread_mutex_t mutex;

pthread_cond_t normalWait;
pthread_cond_t transferWait;

byte transferWaiting = 0;

byte currentLevel = 0;
byte nextLevel = 0;

};

inline QMutex_lock(this) {
pthread_mutex_lock(this.mutex );
level = this.nextLevel;
this.nextLevel = (this.nextLevel + 1) % THREADS;
do
:: this.transferWaiting > 0 || level != this.currentLevel ->

printf ("%d: QMutex_lock: wait (level = %d)\n", _pid , level );
pthread_cond_wait(this.normalWait , this.mutex );
printf ("%d: QMutex_lock: woken (level = %d)\n", _pid , level );

:: else ->
break;

od;
level = 0;
this.currentLevel = (this.currentLevel + 1) % THREADS;

}

inline QMutex_wakeNext(this) {
i f
:: this.transferWaiting > 0 ->

pthread_cond_broadcast(this.transferWait , this.mutex);
:: else ->

pthread_cond_broadcast(this.normalWait , this.mutex);
f i ;

}

inline QMutex_unlock(this) {
QMutex_wakeNext(this);
pthread_mutex_unlock(this.mutex);

}
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inline QMutex_transferLock(this) {
pthread_cond_broadcast(this.transferWait , this.mutex);

}

inline QMutex_takeOverLock(this) {
QMutex_wakeNext(this);
pthread_cond_wait(this.transferWait , this.mutex);

}

#endif

A.11 QWaitCondition - Qt 4.3 & Qt 4.4

# ifndef QWAITCONDITION
#define QWAITCONDITION

#include "std.pml"
#include QMUTEX_MODEL
#include PTHREAD_COND_MODEL
#include PTHREAD_MUTEX_MODEL
# ifndef NT
#define NT 255
#endif
/*

Klein beetje versimpelt , vooral de wait
*/

#define QWaitCondition_busy(this) (this.busy > 0)

typedef QWaitCondition {
pthread_mutex_t mutex;
pthread_cond_t cond;
int waiters = 0;
int wakeups = 0;
byte busy = 0;

};

inline QWaitCondition_wait(this , _mutex) {
this.busy ++;
printf ("%d: begin qwait::wait\n", _pid);
pthread_mutex_lock(this.mutex );
this.waiters ++;
QMutex_unlock(_mutex );
do
:: this.wakeups == 0 -> pthread_cond_wait(this.cond , this.mutex );
:: this.wakeups > 0 -> break;
od;
this.waiters --;
this.wakeups --;
pthread_mutex_unlock(this.mutex);
QMutex_lock(_mutex );
printf ("%d: done qwait::wait\n", _pid);
this.busy --;

}

inline QWaitCondition_wakeOne(this , _mutex) {
pthread_mutex_lock(this.mutex );
assert(this.wakeups <= this.waiters );
this.wakeups = min(this.wakeups + 1, this.waiters );
assert(this.wakeups <= this.waiters );
pthread_cond_signal(this.cond , this.mutex);
pthread_mutex_unlock(this.mutex);

}

inline QWaitCondition_wakeAll(this , _mutex) {
pthread_mutex_lock(this.mutex );
this.wakeups = this.waiters;
pthread_cond_broadcast(this.cond , this.mutex);
pthread_mutex_unlock(this.mutex);

}
#endif
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A.12 QWaitCondition - starvation-free version

# ifndef QWAITCONDITION
#define QWAITCONDITION

#include QMUTEX_MODEL
#include "std.pml"

#define waiters ((this.nextLevel - this.currentLevel + THREADS) % THREADS)

typedef QWaitCondition {
byte currentLevel = 0;
byte nextLevel = 0;
byte wakeups = 0;

};

inline QWaitCondition_wait(this , mutex2) {
//this.waiters ++;
level = this.nextLevel;
this.nextLevel = (this.nextLevel + 1) % THREADS;
do
:: this.wakeups == 0 || level != this.currentLevel ->

QMutex_takeOverLock(mutex2 );
:: else ->

break;
od;
level = 0; // only to reduce state space , 450 mb of 2200 mob saved (3 threads , 1 maxlocks)
mutex2.transferWaiting --;
assert(mutex2.transferWaiting >= 0);
this.wakeups --;
this.currentLevel = (this.currentLevel + 1) % THREADS;
//this.waiters --;

}

inline QWaitCondition_wakeOne(this , mutex2) {
i f
:: this.wakeups < waiters ->

mutex2.transferWaiting ++;
this.wakeups = this.wakeups +1;

:: else
f i ;
QMutex_transferLock(mutex2 );

}

inline QWaitCondition_wakeAll(this , mutex2) {
mutex2.transferWaiting = mutex2.transferWaiting + (waiters - this.wakeups );
this.wakeups = waiters;
QMutex_transferLock(mutex2 );

}

#endif

A.13 Usage of QWaitCondition

#include QMUTEX_MODEL
#include QWAITCONDITION_MODEL

QMutex m;
QWaitCondition c;
byte waiting = 0;

active [1] proctype waker () {
byte level;
pid p1;
do
:: atomic {

waiting > 0 ->
waiting --;

}
QMutex_lock(m);
QWaitCondition_wakeOne(c, m);
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QMutex_unlock(m);
od;

}

inline usage() {
byte level;
pid p1;
QMutex_lock(m);
waiting ++;
QWaitCondition_wait(c, m);
QMutex_unlock(m);

}

# i fdef PROGRESS
active [1] proctype one() {

progress:
do
:: usage ();
od;

}
#endif

proctype usageProc () {
do
:: usage ();
od;

}

byte icopy = 0;
init {
# i fdef PROGRESS

int i = THREADS -2;
#else

int i = THREADS -1;
#endif

icopy = i;
assert(i >= 1);
do
:: i > 1 -> i--; run usageProc ();
:: i == 1 -> i--;

do
:: usage ();
od;

:: i <= 0 -> break;
od;

}

A.14 QReadWriteLock - with deadlock / Qt 4.3

# ifndef QREADWRITELOCK
#define QREADWRITELOCK

#include QWAITCONDITION_MODEL
#include QMUTEX_MODEL

typedef QReadWriteLock {
QMutex mutex;
QWaitCondition readerWait;
QWaitCondition writerWait;

// readers writers lock
int accessCount = 0;
pid currentWriter = NT;
int waitingReaders = 0;
int waitingWriters = 0;

}

inline QReadWriteLock_lockForRead(this) {
QMutex_lock(this.mutex);
printf ("%d: enter lockForRead (%d)\n", _pid , this.accessCount );
do
:: this.accessCount < 0 || this.waitingWriters > 0 ->
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this.waitingReaders ++;
printf ("%d: waiting\n", _pid);
QWaitCondition_wait(this.readerWait , this.mutex );
printf ("%d: continue\n", _pid);
this.waitingReaders --;

:: !(this.accessCount < 0 || this.waitingWriters > 0) ->
break;

od;
this.accessCount = this.accessCount + 1;
assert(this.accessCount > 0);
printf ("%d: leave lockForRead (%d)\n", _pid , this.accessCount );
QMutex_unlock(this.mutex);

}

inline QReadWriteLock_lockForWrite(this) {
QMutex_lock(this.mutex);
printf ("%d: enter lockForWrite (%d)\n", _pid , this.accessCount );
pid self = _pid;
do
:: this.accessCount != 0 ->

i f
:: this.accessCount < 0 && self == this.currentWriter ->

break;
:: else
f i ;
this.waitingWriters ++;
printf ("%d: waiting\n", _pid);
QWaitCondition_wait(this.writerWait , this.mutex );
printf ("%d: continue\n", _pid);
this.waitingWriters --;

:: !(this.accessCount != 0) -> break;
od;
this.currentWriter = self;
this.accessCount = this.accessCount - 1;
assert(this.accessCount < 0);
printf ("%d: leave lockForWrite (%d)\n", _pid , this.accessCount );
QMutex_unlock(this.mutex);

}

inline QReadWriteLock_unlock(this) {
QMutex_lock(this.mutex);
printf ("%d: enter unlock (%d)\n", _pid , this.accessCount );
assert(this.accessCount != 0);
i f
:: this.accessCount > 0 -> this.accessCount = this.accessCount - 1;
:: this.accessCount < 0 -> this.accessCount = this.accessCount + 1;
f i ;
i f
:: this.accessCount == 0 ->

this.currentWriter = NT;
i f
:: this.waitingWriters > 0 ->

QWaitCondition_wakeOne(this.writerWait , this.mutex);
:: else ->

i f
:: this.waitingReaders > 0 ->

QWaitCondition_wakeAll(this.readerWait , this.mutex);
:: else
f i ;

f i ;
:: else
f i ;
printf ("%d: leave lock (%d)\n", _pid , this.accessCount );
QMutex_unlock(this.mutex);

}

#endif

A.15 QReadWriteLock - deadlock free / Qt 4.4

# ifndef QREADWRITELOCK
#define QREADWRITELOCK
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#include QWAITCONDITION_MODEL
#include QMUTEX_MODEL

typedef QReadWriteLock {
QMutex mutex;
QWaitCondition readerWait;
QWaitCondition writerWait;

// readers writers lock
int threadCount = 0;
int waitingReaders = 0;
int waitingWriters = 0;

pid currentWriter = NT;
int count[THREADS] = 0;

}

inline QReadWriteLock_lockForRead(this) {
// atomic lock
QMutex_lock(this.mutex);
printf ("%d: want readlock (this thread nested %d deep). (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );
i f
:: this.count[_pid] == 0 ->

do
:: (this.currentWriter != NT || this.waitingWriters > 0) ->

this.waitingReaders ++;
printf ("%d: wait for readlock (this thread nested %d deep)\n", _pid , this.count[_pid ]);
QWaitCondition_wait(this.readerWait , this.mutex);
printf ("%d: continue for readlock (this thread nested %d deep)\n", _pid , this.count[_pid ]);
this.waitingReaders --;

:: !(this.currentWriter != NT || this.waitingWriters > 0) ->
break;

od;
this.threadCount ++;
assert(this.waitingWriters == 0);

:: else
f i ;
this.count[_pid ]++;
// atomic unlock
atomic {

readNest ++;
i f
:: readNest == 1 && writeNest == 0 -> readers ++;
:: else
f i ;
printf ("%d: has readlock (this thread nested %d deep). (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );

}
QMutex_unlock(this.mutex);

}

inline QReadWriteLock_lockForWrite(this) {
// atomic lock
QMutex_lock(this.mutex);
printf ("%d: want writelock (this thread nested %d deep). (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );
i f
:: this.currentWriter != _pid ->

do
:: (this.threadCount != 0) ->

this.waitingWriters ++;
printf ("%d: wait for writelock (this thread nested %d deep)\n", _pid , this.count[_pid ]);
QWaitCondition_wait(this.writerWait , this.mutex);
printf ("%d: continue for writelock (this thread nested %d deep)\n", _pid , this.count[_pid ]);
this.waitingWriters --;

:: this.threadCount == 0 ->
break;

od;
this.currentWriter = _pid;
this.threadCount ++;

:: else
f i ;
assert(this.threadCount == 1);
assert(this.currentWriter == _pid);
this.count[_pid ]++;
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// atomic unlock
atomic {

writeNest ++;
i f
:: writeNest == 1 -> writers ++;
:: else
f i ;
printf ("%d: has writelock (this thread nested %d deep) (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );

}
QMutex_unlock(this.mutex);

}

inline QReadWriteLock_unlock(this) {
// atomic lock
QMutex_lock(this.mutex);
printf ("%d: going to release lock (this thread nested %d deep) (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );
this.count[_pid]--;
i f
:: this.count[_pid] == 0 ->

this.threadCount --;
i f
:: this.threadCount == 0 ->

this.currentWriter = NT;
i f
:: this.waitingWriters > 0 ->

// wake one writer
printf ("%d: wake one writer\n", _pid);
QWaitCondition_wakeOne(this.writerWait , this.mutex);

:: else ->
i f
:: this.waitingReaders > 0 ->

// wake all readers
printf ("%d: wake all readers\n", _pid);
QWaitCondition_wakeAll(this.readerWait , this.mutex);

:: else
f i ;

f i ;
:: else
f i ;

:: else
f i ;

// atomic unlock
atomic {

i f
:: readNest > 0 ->

readNest --;
i f
:: readNest == 0 && writeNest == 0 ->

readers = readers - 1;
:: else
f i ;

:: readNest == 0 && writeNest > 0 ->
writeNest --;
i f
:: writeNest == 0 -> writers --;
:: else
f i ;

f i ;
printf ("%d: released lock (this thread nested %d deep) (%d/%d) (%d/%d)\n", _pid , this.count[_pid], readNest , writeNest , readers , writers );

}
QMutex_unlock(this.mutex);

}

#endif

A.16 Usage of QReadWriteLock - Qt 4.3

#include QREADWRITELOCK_MODEL

QReadWriteLock rwlock;
int readers = 0;
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int writers = 0;

active[THREADS] proctype user() {
pid p1;
byte maxLocks;
byte nest = 0;
do
:: maxLocks = MAXLOCKS;

i f
:: do

:: maxLocks > 0 ->
nest ++;
QReadWriteLock_lockForWrite(rwlock );

:: nest > 0 ->
nest --;
QReadWriteLock_unlock(rwlock );

:: maxLocks != MAXLOCKS && nest == 0 -> break;
od;

:: do
:: maxLocks > 0 ->

nest ++;
QReadWriteLock_lockForWrite(rwlock );

:: nest > 0 ->
nest --;
QReadWriteLock_unlock(rwlock );

:: maxLocks != MAXLOCKS && nest == 0 -> break;
od;

f i ;
od;

}

proctype compactUser () {
pid p1;
int readNest = 0;
int writeNest = 0;
do
:: writeNest + readNest < MAX_NEST ->

QReadWriteLock_lockForRead(rwlock );
readNest ++;

:: writeNest + readNest < MAX_NEST && readNest == 0 ->
QReadWriteLock_lockForWrite(rwlock );
writeNest ++;

:: writeNest + readNest > 0 ->
QReadWriteLock_unlock(rwlock );
i f
:: readNest > 0 -> readNest --;
:: else -> writeNest --;
f i ;

od;
}

A.17 Usage of QReadWriteLock - deadlock free / Qt 4.4

//# include MODEL

#include QREADWRITELOCK_MODEL

QReadWriteLock rwlock;
int readers = 0;
int writers = 0;

#define areReaders (readers > 0)
#define areWriters (writers > 0)
#define noReaders (readers == 0)
#define noWriters (writers == 0)
#define maxOneWriter (writers <= 1)
//#define active (rwlock.mutex.m.lockedBy != NT)
//#define notActive (rwlock.mutex.m.lockedBy == NT)
//#define isActive (pthread_mutex_locked(rwlock.mutex.mutex))
#define notActiveExtended (!( qmutex_busy(rwlock.mutex) || QWaitCondition_busy(rwlock.readerWait) || QWaitCondition_busy(rwlock.writerWait )))
//#define notActive (!( pthread_mutex_locked(rwlock.mutex.mutex )))
//#define notActive (!( QMutex_busy(rwlock.mutex )))
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#define notActive (!( qmutex_busy(rwlock.mutex )))
// || QWaitCondition_busy(rwlock.readerWait) || QWaitCondition_busy(rwlock.writerWait )))
#define readersWaiting (rwlock.waitingReaders > 0)
#define writersWaiting (rwlock.waitingWriters > 0)

#define threadCountCorrect (readers + writers == rwlock.threadCount)

# i fdef PROGRESS
active [1] proctype userWriter ()
{

byte level;
pid p1;
byte readNest = 0;
byte writeNest = 0;

progress:
QReadWriteLock_lockForWrite(rwlock );
QReadWriteLock_unlock(rwlock );
goto progress;

}
#endif

inline user() {
byte level;
pid p1;
byte readNest = 0;
byte writeNest = 0;
byte maxLocks;
do
:: maxLocks = MAXLOCKS;

do
:: maxLocks > 0 ->

maxLocks --;
i f
:: readNest == 0 -> QReadWriteLock_lockForWrite(rwlock );
:: QReadWriteLock_lockForRead(rwlock );
f i ;

:: writeNest + readNest > 0 ->
QReadWriteLock_unlock(rwlock );

:: MAXLOCKS != maxLocks && writeNest + readNest == 0 ->
break;

od;
od;

}

proctype userProc ()
{

user ();
}

init {
# i fdef PROGRESS

int i = THREADS -1;
#else

int i = THREADS;
#endif

assert(i >= 1);
do
:: i > 1 -> i--; run userProc ();
:: i == 1 -> i--; user ();
:: else -> break;
od;

}



Appendix B

Batch config files

The batch tool used in this thesis is specifically designed to support the work in
this thesis. The tool is available alongside the models. Yet the tool has a more
general application. The config files are easy understandable, and are listed
below.

B.1 Stack Example

iterate -int STACK_SIZE 1 12 3
iterate -int CONSUMERS 1 8 3
iterate -int PRODUCERS 1 8 3
#define PRODUCERS 2
#define CONSUMERS 2
#define THREADS 4
#define STACK_SIZE 2

define SCHEDULAR_MODEL \" schedular.abs\"
define PTHREAD_COND_MODEL \" pthread_cond.abs\"
define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.abs\"
#define SPURIOUS_WAKEUPS

model stack.spin

#iterative

#depth 200000000
depth 10000000
#depth 15000
#memory 129204
memory 3000
search depth -first
#multicore 16

automaton 20

basic

logfile batch -stack -log

B.2 Checking the Qt 4.3 version of QReadWriteLock

#define OTHERTHREADS 1
#int MAXLOCKS 1 10

# iterate -int THREADS 2 4
# iterate -int MAX_NEST 1 10 3

69
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define MAXLOCKS 2
define MAX_NEST 2
define THREADS 2

define QREADWRITELOCK_MODEL \" qreadwritelock43.spin\"
define QWAITCONDITION_MODEL \" qwaitcondition.pml\"
define PTHREAD_COND_MODEL \" pthread_cond.abs\"

define QMUTEX_MODEL \" qmutex.abs\"
define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.abs\"

define SCHEDULAR_MODEL \" schedular.abs\"

model qreadwritelock44.usage

iterative

#depth 200000000
#memory 129204
depth 1000
memory 3072
search depth -first

basic
#progress
#safety ([] (noReaders || noWriters )) && ([] maxOneWriter) && ([] notBusy -> threadCountCorrect)

B.3 Checking the Qt 4.4 version of QReadWriteLock

# iterate -int THREADS 2 4
#define OTHERTHREADS 1
#define MAXLOCKS 1
# iterate -int MAXLOCKS 1 9 2
#int MAX_NEST 1 10

#define THREADS 3
#define MAXLOCKS 1

iterate -int MAXLOCKS 1 7 2
iterate -int THREADS 2 4

define QREADWRITELOCK_MODEL \" qreadwritelock.spin\"
define QWAITCONDITION_MODEL \" qwaitcondition.spin\"
define QMUTEX_MODEL \" qmutex.abs\"

define PTHREAD_COND_MODEL \" pthread_cond.abs\"
define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.abs\"

#define PTHREAD_COND_MODEL \" pthread_cond.fair2.abs\"
#define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.fair3.abs\"
#define SCHEDULAR_MODEL \" schedular.abs\"

#define QSEMAPHORE_MODEL \" qsemaphore.abs\"

model qreadwritelock44.usage

#iterative

depth 200000000
memory 129204
#memory 3072
#depth 4000000
#depth 130
search depth -first
#multicore 16

basic
#safety ([] (noReaders || noWriters )) && ([] maxOneWriter) && ([] notActiveExtended -> threadCountCorrect) && ([] notActiveExtended -> (writersWaiting -> (areReaders || areWriters ))) && ([] notActiveExtended -> (readersWaiting -> (areWriters || writersWaiting )))
safety ([] (( noReaders || noWriters) && (maxOneWriter) && (notActiveExtended -> threadCountCorrect) && (notActiveExtended -> (writersWaiting -> (areReaders || areWriters )))) && (notActiveExtended -> (readersWaiting -> (areWriters || writersWaiting ))))
#progress

logfile batch44 -qwait -log
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B.4 Checking the starvation-free version of QReadWrite-
Lock

B.4.1 Verifying assertions, safety properties and absence of deadlocks

#define OTHERTHREADS 1
# iterate -int MAXLOCKS 1 7 2
iterate -int MAXLOCKS 1 2
iterate -int THREADS 2 4
#int MAX_NEST 1 10
#define THREADS 3
#define MAXLOCKS 1

define QREADWRITELOCK_MODEL \" qreadwritelock.spin\"
define QWAITCONDITION_MODEL \" qwaitcondition.fair.alt4.spin\"
define QMUTEX_MODEL \" qmutex.fair.alt4.spin\"

#define QWAITCONDITION_MODEL \" qwaitcondition.pml\"
#define QMUTEX_MODEL \" qmutex.pml\"

#define PTHREAD_COND_MODEL \" pthread_cond.fair2.abs\"
define PTHREAD_COND_MODEL \" pthread_cond.abs\"
#define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.fair3.abs\"
define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.fair.abs\"

define SCHEDULAR_MODEL \" schedular.abs\"

define QSEMAPHORE_MODEL \" qsemaphore.abs\"

#model fairreadwritelock.usage
model qreadwritelock44.usage

#iterative

#depth 200000000
depth 15000000
#depth 500
#memory 129204
memory 3072
search depth -first
#multicore 16

basic
#define PROGRESS
#progress
#safety ([] (noReaders || noWriters )) && ([] maxOneWriter) && ([] (notActive -> threadCountCorrect )) && ([] (notActive -> (writersWaiting -> (areReaders || areWriters )))) && ([] (notActive -> (readersWaiting -> (areWriters || writersWaiting ))))

## safety ([] (( noReaders || noWriters) && (maxOneWriter) && (notActive -> threadCountCorrect) && (notActive -> (writersWaiting -> (areReaders || areWriters )))) && (notActive -> (readersWaiting -> (areWriters || writersWaiting ))))

#safety ([] (noReaders || noWriters ))
#safety ([] (maxOneWriter ))
#safety ([] (notActive -> threadCountCorrect ))
#safety ([] (notActive -> (writersWaiting -> (areReaders || areWriters ))))
#safety ([] (notActive -> (readersWaiting -> (areWriters || writersWaiting ))))

logfile batch -fair -log

B.4.2 Verifying absence of starvation

#define OTHERTHREADS 1
# iterate -int MAXLOCKS 1 3
# iterate -int THREADS 2 4
#int MAX_NEST 1 10
define THREADS 3
define MAXLOCKS 1

define QREADWRITELOCK_MODEL \" qreadwritelock.spin\"
define QWAITCONDITION_MODEL \" qwaitcondition.fair.alt4.spin\"
define QMUTEX_MODEL \" qmutex.fair.alt4.spin\"
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QREADWRITELOCK

#define QWAITCONDITION_MODEL \" qwaitcondition.pml\"
#define QMUTEX_MODEL \" qmutex.pml\"

#define PTHREAD_COND_MODEL \" pthread_cond.fair2.abs\"
define PTHREAD_COND_MODEL \" pthread_cond.abs\"
#define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.fair3.abs\"
define PTHREAD_MUTEX_MODEL \" pthread_mutex.basic.fair.abs\"

define SCHEDULAR_MODEL \" schedular.abs\"

define QSEMAPHORE_MODEL \" qsemaphore.abs\"

#model fairreadwritelock.usage
model qreadwritelock44.usage

#iterative

#depth 200000000
depth 10000000
#depth 1250
#memory 129204
memory 3000
search depth -first
#multicore 16

#basic

#safety ([] (noReaders || noWriters )) && ([] maxOneWriter) && ([] (notActive -> threadCountCorrect )) && ([] (notActive -> (writersWaiting -> (areReaders || areWriters )))) && ([] (notActive -> (readersWaiting -> (areWriters || writersWaiting ))))
#safety ([] (( noReaders || noWriters) && (maxOneWriter) && (notActive -> threadCountCorrect) && (notActive -> (writersWaiting -> (areReaders || areWriters )))) && (notActive -> (readersWaiting -> (areWriters || writersWaiting ))))

define PROGRESS
progress

logfile batch -fair -progress -log
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