Broader Perception For
Local Community Identification

Master Thesis Information Science
May 2010

Institute for Computing and Information Sciences
Radboud University
Nijmegen, The Netherlands

Author: Frank Koopmans

Email: ftwkoopmans@gmail.com
Thesis Number: 111 IK

Supervisor: Theo van der Weide

Second Corrector: Elena Marchiori




Abstract. The local identification of communities in a network can be much more effective than partitioning the
entire network when only a small portion of a large network is of interest. A local approach is also favored when
it is difficult to obtain information about the entire network, the world wide web is a prime example. Such local
identification algorithms typically evaluate nodes outside the local community that are directly connected to the local
community as potential community members without the need for knowledge about the entire network. But while
being a recognized and relevant technique in community identification, the quality of local community identification
lags behind their global counterparts that use the entire network. In order to improve the evaluation of community
candidates in local algorithms we propose the use of contextual information beyond direct neighbors. This will
decrease the gap between relevant network knowledge of global and local methods while remaining a local approach.
Benchmarks on synthetic networks show our approach increases the quality of locally identified communities in general
and a decrease of the dependency on specific source nodes.

I. INTRODUCTION

The science of complex systems is a popular interdis-
ciplinary field of research. Using a network to represent
the elements and interactions in a complex network is a
commonly used tool to study complex system phenom-
ena [1, 2]. Such analysis is done (among many others)
on protein networks, social networks and (parts of) the
internet [3, 4].

Complex systems, and thus their representation as
a network, often exhibit a priori unknown structure of
building blocks which have a (distinct) function. These
are expressed in the network as sets of nodes that are
among each other densely connected and have relatively
few connections to the rest of the network. Depending
on the type of the complex system and the scientific dis-
cipline, such building blocks are referred to as modules,
communities or clusters. Identifying and observing such
communities may lead to a greater understanding of the
structure and functioning of a complex system.

The effort of identifying communities in a network is
known to be NP-complete [5, 6]. And some networks
may be very large, the internet is a prime example with
over 20 billion potential nodes [7]. Many different tech-
niques for community identification have been developed,
with varying computational costs and accuracy [8, 9]. A
widely used measure for evaluating community structure
is modularity. Basically, it measures the fraction of edges
within communities for a given partition of a network
[10]. Optimizing the modularity measure for a network
results in a partition of sparsely connected communities.
This has proven to be a fast and quite effective method
for finding communities (and thus revealing the modular
structure of a network) [11]. However, there are some
downsides to maximizing modularity in practise [12] just
like every approach to community identification has its
flaws.

Modularity considers a partition of a network and sep-
arated communities, whereas many real networks are
made of highly overlapping cohesive nodes [13]. So a
node can be a member of more than one community in
some network. Communities become more difficult to

FIG. 1. Left: A dendrogram that reveals hierarchial commu-
nity structure. Right: Overlap between two communities.

distinguish as overlap increases. If an algorithm tries to
partition the network in Figure 1b then the outcome
seems quite random since there will be no structural dif-
ference when placing the overlap node in either commu-
nity. Placing the node in both communities seems to
be the only sensible option. The approach of regular
modularity maximization as mentioned earlier is unable
to detect heterogeneities in node memberships [14], but
there are extensions to modularity that will take overlap
into account [15].

In addition to community structure a network can also
exhibit a hierarchical structure in which communities fur-
ther divide into subcommunities, possibly over multiple
scales [16, 17]. In each hierarchy level the number of
(sub)communities and their structure may vary. Figure
la illustrates the commonly used dendrogram represen-
tation of subcommunity structure.

In some cases one would rather identify a specific com-
munity instead of all communities in the entire network
in order to reduce the amount of information that needs
to be processed or acquired. For example, finding the
community around a given website on the internet or
finding all friends of a specific person in a social net-
work. In such cases there should be no need to process
the entire network. A local community is a community
in the network identified by starting from a source node
while using only information from the context of the lo-
cal community, thus no knowledge of the entire network
is required.

Not having knowledge of the entire network is a strong



advantage for the efficiency of a local identification al-
gorithm, but it can be a handicap for its quality. A lot
of work has been done on local identification algorithms
[18—20] and even though their quality seems lacking com-
pared to global methods we think the concept has great
potential, especially in large networks.

A third class of community identification methods is
a mixture of global and local approaches [21, 22]. Tt de-
tects communities at a global level(throughout the en-
tire network) and uses local optimization of some fitness
function. The performance of such an approach can be
highly effective at detecting both overlap and hierarchi-
cal community structure [23, 24], any improvement made
to local community identification techniques will benefit
such approaches too.

In section two we review the process of local com-
munity identification, compare the concept of local and
global identification, discuss the ideal community and re-
view how it is usually approximated. We propose an
improvement that can be applied to local identification
algorithms in general in section three. In section four we
present the results of several benchmarks used to test the
improvements coined in section three followed by discus-
sion thereof.

II. LOCAL COMMUNITY IDENTIFICATION

In this section we will first discuss some key properties
of local communities and their identification algorithms.
Then we compare local and global approaches to commu-
nity identification, discuss the definition of the ideal local
community and finally review existing local algorithms.

We define the universe of a community C', denoted as
U(C), as all nodes that are outside of C' and adjacent to
any node within C.

UIC)={veC—N |3ueclu—1]}

The boundary of C, denoted as B(C), are all nodes within
C that have at least one neighbor outside of C' (thus
within U(C)).

B(C) = {u eC ’ EIveU(C) [u — U]}

Figure 2 illustrates these different areas in a network
from a local perspective.

In a local approach we start with a specific node, com-
monly referred to as the source node, as the only mem-
ber of the local community. Knowledge of the network
is then expanded by crawling all nodes in the universe.
The local community is built by evaluating these yet un-
known nodes adjacent to the community and adding the
best candidate to the local community and updating the
universe at each step. This is repeated until no suitable
candidates are left.

The community definition determines the quality of a
given community within a network, we will denote it as
. For example, a basic measure could be the fraction

FIG. 2. An example network illustrating the Community,
Boundary and Universe.

of internal edges, internaledges(C)/degree(C). We will
discuss several community definitions from current work
later in this section.

The selection criteria determine what node(s) are
added to the community at each algorithm step. This is
dependent on the community definition and determines
the strategy for building the community. For example:
at each algorithm step, add candidate member v € U(C)
that complies with max(u(C Uwv)) to C.

The stopping criteria tell the algorithm when to stop
building the community. A straight forward stopping
criterium could be; stop adding nodes to the community
when even the best possible addition does not further
improve the quality of the community. In this example,
let v € U(C) be the best addition to C' as determined
by the selection criteria. Then the selection criterium
w(C) > p(C Uw) tells the algorithm when the job is
done.

A local community is constructed around a given
source node. We emphasize this fundamental property
of a local community because it actually defines the local
community; the set of nodes that are considered related
by the source node.

In a social network one could find all friends of person
u. This will yield a list of nodes that are directly, or
indirectly, connected to person w and are considered a
friend by u. If we would set out to find the friends of
any friend of u, for instance person v, this might yield
the exact same community but it does not have to be.
Just because v thinks of v as his friend does not imply v
thinks w is his friend.

In conclusion, we consider a local community around a
source node as the relation between all nodes in the set,
starting from the source node, from the perspective of
the source node. The quality of such a local community
is quantified by community definition pu.

A. Global versus Local

A major difference in philosophy between global and
local methods of identifying communities is in their goal.
The goal of a global approach is to partition the network



such that the community definition is optimized over all
communities. A local approach aims to find the ideal
community around a given source node without paying
any attention to (consequences for) the rest of the net-
work.

In a traditional global partition no overlap is allowed
so we think there is no use for comparison with a lo-
cal approach at all. In such a case, the local approach
is supposed to approximate a community that was con-
structed based on considerations of the impact on other
communities by the global algorithm. A local commu-
nity cannot do that because it has no knowledge of other
communities, only the local community currently under
construction is known.

If one is interested in identifying all communities in
a network a local approach could be applied to every
node in the network, though less efficient than a global
approach it will yield all communities.

As we have seen earlier in this section, a local approach
acknowledges overlap in community structure. If we scale
a local approach to a global approach it will still acknowl-
edge overlap. Therefor, we can only compare a global
and a local approach properly if we require the global
approach to recognize overlapping communities too.

When identifying all communities in a network and any
two communities are overlapping, there are more nodes
within the set of communities than the total amount of
nodes in the network. Another consequence of allowing
overlap in a global approach is the potential to create
a community for each individual node in the network.
Thus, we can theoretically construct a local community
C, around every node v € N and a set of communities Z
by a global approach that allows overlap such that every
Cy, € Z.

In the previous section we discussed community hier-
archy and its presence in many networks, while other
networks may have a flat community structure. When a
local algorithm agglomerates nodes to construct a com-
munity it may, or may not, detect the different levels
of hierarchy in community structure as the community
grows. This may be hard to observe since all the local
algorithm knows is the set of nodes agglomerated so far
and some contextual information around that local com-
munity. As opposed to a global approach that may access
all network information at all times. A global approach
can start from the largest community and work its way
down internally, assuring that whatever it finds is a part
of the community it started with.

So locally, we can hardly tell if we are crossing a hier-
archy level while agglomerating nor can we tell at which
hierarchy level we are (as seen from the top level). On
the other hand, once the algorithm is done one could as-
sume the top hierarchial level community has been iden-
tified, equal to that of a global method. Then from there
on work back down and find the subcommunities like a
global approach would.

B. What is the Ideal Local Community?

Previously we formulated a local community as a set of
related nodes from the perspective of the source node. So
each node in the local community has a relation with the
source node. Furthermore the quality of a community as
a whole is quantified by community definition .

Let us denote an edge from node u to node v, (u,v) €
E, as u — v. We introduce node relation ¢ to indicate
if two nodes are related, where related implies there is a
path. Because we want to express the relation between
nodes within the community we require the entire path
to be within the community.

o(Ciu,v) =u— vV eeo [u = 2 A o(C, z,0)]

A set of nodes is a proper community if all nodes are
related from the perspective of the source node. We in-
troduce ® as a valid community measure for a given com-
munity C' and its source node v.

@(O,U) =V E C /\Vzec—v [@(Ca U,Z‘)]

Note that ® does not tell us how good the quality of the
community is. In order to find the ideal local community
we consider all possible communities and the ones with
maximum g scores are the ideal communities. We speak
of multitudes here because it is possible that there is
more than one community we can construct that yield
the same p score.

Let ¢ be the set of all possible communities around a
source node. We obtain ¢ by filtering all communities
from the powerset of the network that are found valid by
.

C(v)={CCN|o(C,v)}

Now we can find the set of ideal communities around
source node v using maz(u({(v))).

In practise, we are unable to compute the ideal com-
munities because of the time complexity of this measure.
The amount of elements in the powerset of a set with
n elements equals 2. So we cannot use this measure
as a reference for community identification algorithms in
practise, but we can use it as a goal to approximate in
any local identification algorithm implementation.

C. Current Work

Local greedy agglomeration algorithms that iterate
universe nodes are widely used for local community iden-
tification. What varies most in different approaches to
local community identification is the community defini-
tion and the stopping criteria. Such an algorithm starts
of with the source node as the only member of the com-
munity and then for each iteration all universe nodes are
evaluated and the best node is added to the community,
until the stopping criteria are met. Some algorithms add



the twist of randomly removing nodes during agglomera-
tion to allow algorithms to reevaluate past additions and
prevent ever growing communities.

Using this concept there is only limited knowledge of
the network. After the algorithm halts only the nodes
in C UU(C) have been evaluated. The time complexity
is significantly lower than the ideal community computa-
tion suggested earlier because for each iteration we only
need to evaluate nodes in the universe that were affected
by mutations from the previous algorithm step.

Now that we have seen the basic approach of a local
algorithm we will discuss a variety of local community
definitions. The intuitive notion of a community, many
internal and few external connections, can be found in
most definitions. As illustrated by the following defini-
tions, the intuitive notion leaves room for many (subtle)
differences in approach.

1. Various Definitions

Clauset coined local modularity as a community size
independent quality measure for local communities based
on modularity [18]. It considers the fraction of edges from
the boundary that are internal to the community:

%, Al € B(C),i € C]
R(C) = > Aij [j € B(O)]

where A;; is the adjacency matrix indicating edges from
node j to node i in the network. Agglomerating candi-
date nodes is done by efficiently computing and compar-
ing AR for all members of the universe. In each algo-
rithm step the node with the highest AR, say node v,
is added to the community and then the boundary and
universe are updated only where v was of influence. R
lies on the interval 0 < R <1 (R = 0 when C is totally
disconnected or the entire network), where its value is
directly proportional to the sharpness of the boundary
given by B(C).

Schaeffer introduced a community quality measure as
the product of local and relative density [19]. The de-
sired properties of many internal connections is mea-
sured by local density and few external connections by
relative density. Let dine(C) = [{u—wv | u,veC}|
be the internal degree of C and let de.t(C) =
|[{u—v|ueCwveU(C)}| be the external degree of
C. Then local density [25] compares the internal degree
of C' with a clique of the same size:

2d;nt (C)

2O = Eer-

And relative density is defined as the fraction of edges
that are completely internal to C"

dint (C)
dznt(c) + demt (C)

6:(C) =

The community quality measure coined by Schaeffer
amounts to f(C) = §;(C).6,(C). Note that only 4, (C) is
widely used as a simple and intuitive quality measure.

Evaluating a node v for addition to C' is done by effi-
ciently calculating the influence of v on the quality of C,
C’ = CUv, as follows. Let k= |[{v = u |u e C}|be be
the amount of edges from v to C' and | = d(v)—k the other
edges from v. Then the internal and external degree of C’
can be incrementally computed by d;n: (C') = dint (C) +k
and deyt (C') = degt (C) — k + 1.

Chen, Zaane and Goebel coined local community qual-
ity ratio L using the average internal degree of the com-
munity and the average external degree of the boundary
[20]. Internal connections are evaluated by L;, as the
average internal degree of the community:

Lint =
]|

And the external connections are evaluated by L., as the
average external degree of the boundary:

dezt(c)

Lex =
" BO)

Combining these leads to L:

Lint

L =
Le;ct

Efficiently evaluating the addition of a node v to C' can
be done analogous to the method proposed by Scha-
effer. The algorithm proposed for using L [20] adds
post processing, the examination phase, to the standard
greedy agglomeration algorithm where past additions to
the community are evaluated again.

2. Observations

During our benchmarks of various community defini-
tions we found that local modularity seems to optimize
the boundary of the community instead of the local com-
munity as defined by the intuitive notion. In some cases
this measure is reluctant to add a node that causes a
change in the boundary while it should do so to further
improve, according to the intuitive notion of a commu-
nity.

Let dint(C,v) = [ {v = u | u e C}| be the amount of
edges from node v to community C' and let de.+(C,v) =
|[{v = u|ugC}| be the amount of edges from node
v to nodes outside of community C. Let z(C,n) =
dint(Cym)/dert(Cyn) be the fraction of edges towards C
for node n.

Local modularity will only accept a node v that moves
boundary node b to C' — B(C') in two cases:

1) dext(C,v) > 0 A 2(C,v) > z(C,b), which makes sense.
2) v only has edges toward C, de.;(C,v) = 0, and
2(C,b) < R(C).
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FIG. 3. The grey node, u, is currently not a member of C
but intuitively it should be in both cases. However, not all
community definitions seem to agree.

In the latter case v should always be added, the z ratio
of b should not matter at all because adding a node that
increases internal and decreases external edges is always a
good thing. An example is illustrated in Figure 3a where
node u is not added because it will remove a boundary
node with a z ratio larger than R(C), R(C) = & vs
R(CUw) = 3.

Theoretically, L suffers similar problems to local mod-
ularity when nodes are added to C' that move boundary
nodes to C' — B(C). Because Le,; evaluates the average
degree of the boundary it may optimize the boundary in-
stead of the external connections of the community as a
whole, the example in 3a applies to L as well. Currently
L(C) = % and adding the node u causes the quality to go
down because L., still yields 1 and the average internal
degree decreases, L(C' Uu) = §.

Another example where L behaves counter intuitive
is illustrated in Figure 3b. Intuitively, node u be-
longs to the community because it is well connected and
adding it causes a decrease in de;t(C). Lin:(C) = %
and Ley(C) = 3 thus L(C) = {. Adding the node
u causes the average outdegree of the boundary, L.,
to double while we intuitively feel the boundary is im-
proving. L (C Uu) = 1 and Leye(C Uu) = 2 thus
L(CUw) =2 and L(C Uu) < L(C).

The f(C) quality measure is troubled by the example
in 3a as well because the loss of local density outweighs
the gain in relative density. We observe the shift in lo-

cal and relative density before adding u, §,(C') = 1 and
5-(C) = 4, and after adding u, 6,(C Uu) = 55 and
6-(C Uu) = 3. The source of this problem is clearly

distinct from the local modularity and L issues where we
think the quality function is not weighing the right prop-
erties (too much focus on the boundary instead of the
community as a whole). For the f(C) measure the bal-
ance of weighing internal and external community quality
seems a bit off which is a common problem for any quality
measure that needs to take two factors into account.
Besides boundary mutations there is another common

problem with community definitions we would like to
mention. In sparse networks there may be paths that
consist of nodes with only one other neighbor each, a
chain of nodes. If such a chain starts in the universe of a
community some definitions are tempted to agglomerate
the entire chain because it increases internal edges and
does not worsen the external connections of the commu-
nity. This example stresses the importance of balance
between internal and external community strength.

We conclude that a community definition should be
based on the intuitive concept of a community. And
since the intuitive notion is twofold it feels natural that
a community definition takes both the internal and the
external aspects of community quality into account. As
we have seen with f(C), balance between the weight of
multiple quality measures may have large influence on
the outcome of the evaluation of a community.

We have elaborated various community definitions in
theory and shown subtle differences in interpretation of
the intuitive community definition. As they all have
their niche and perform well on specific networks or de-
sired community characteristics, choosing to use either
depends on the problem at hand.

IIT. BROADENING THE LOCAL SCOPE

A strong advantage of global community identification
algorithms over their local counterparts is knowledge of
the entire network. The limited knowledge of the network
is a handicap for local algorithms because that makes it
hard to judge the consequences of adding a node to the
community. For a local algorithm, there is no way of
telling what lies beyond the universe of a community.
For example, even though a node u in the universe may
seem like a bad addition to the local community it may
be a good addition after adding nodes beyond u as well.
But how could the local algorithm know this when all it
can evaluate are universe nodes?

A typical problem for local algorithms is their depen-
dance on the right source node. If the algorithm starts
agglomerating from a position such that it will only have
connections to high outdegree nodes right at the start,
it will usually terminate. Figure 4 illustrates such a sit-
uation. The cause is straight forward, local algorithms
select the best candidate from the universe until the com-
munity can no longer improve. And if the algorithm sees
no more improvements it will terminate, thus in this ex-
ample the algorithm is likely to stop with |C| = 2 as a
result.

A commonly applied band-aid solution is to make the
algorithm ignore its stopping criteria until hitting a pre-
determined size or quality. However, this will only solve
the problem with starting nodes up to a given predeter-
mined threshold. Suppose we find a local community C,,
with n nodes and some p score that cannot improve by
directly adding any universe node. Perhaps adding a uni-
verse node and the node after will lead to a community



FIG. 4. Suppose a local algorithm starts at the grey node,
how can the community evolve beyond two nodes?

Cptm such that u(Cpim) > p(Cr). A local approach
could not have seen this improvement beyond the uni-
verse while a global approach can because it has more
contextual information. Such shortsightedness causes lo-
cal algorithms to halt at every minor barrier they face.

We suggest the improvement of local identification al-
gorithms in general by adding more contextual informa-
tion to the selection criteria. Instead of evaluating each
node in the universe by its edges one could check its
neighbors as well. Perhaps adding a node from the uni-
verse and some of its neighbors combined yields a better
result than only adding the universe node. By making a
local algorithm look ahead further than one step we de-
crease the shortsightedness and allow for a more informed
and balanced judgement on community membership, at
the cost of computational and situational crawling com-
plexity.

And if there are multiple nodes outside of a commu-
nity that could be a member of that community it may
be worthwhile to check the combination of these exter-
nal nodes. The reason for combining universe nodes and
nodes beyond them is the expectance that nearby nodes
may have connections among each other. After all, two
universe nodes u and v are both just one edge away from
a tightly connected community C' so there is a chance
that u and v are related as well. If v and v are con-
nected, adding both of them to C' may result in more
internal and less external edges than only adding either
of them.

We propose the following example application of
adding more contextual information to the selection cri-
teria. For each universe node u € U(C') we could check all
possible combinations of adding that node and its neigh-
bors to verify the potential improvement on short term
by u. We then find the best candidates as follows:

nb(u) ={veN |u—v}
cand(C) = {powerset(nb(u)) Uu |ue U(C)}

where the best candidate is the node set from cand(C)
that yields the highest u(C) increase upon agglomera-
tion. This extension can be applied to most commonly
used greedy local agglomeration algorithms.

Figure 5 illustrates an example graph where a local al-

o

FIG. 5. A local identification algorithm will halt at the cur-
rently identified community because it cannot see the benefit
of adding nodes beyond the universe.

gorithm identified a community of four nodes so far. By
only looking at the universe the algorithm will decide the
community is fine as it is, there is no room for improve-
ment. However, if we look at the network we observe
that the grey nodes are a welcome addition because they
are well connected to the current community and that
will result in less external connections. By making the
algorithm look ahead as suggested above it will come to
the same conclusion.

If algorithm speed, thus time complexity, is less of an
issue we could further extend the usage of contextual
information. Following the above algorithm one could
consider all possible combinations of candidates from the
universe and beyond to find the optimal additions to a
community at a given agglomeration step. However, the
time complexity will increase rapidly so we might limit
the scope by considering only the best two neighbors for
each universe node combined with all universe nodes. So
this example approach would add each universe node and
its best two sets from cand(C) to a stack and then com-
pute the powerset of this stack to generate all commu-
nity candidate sets. The set with the best p influence is
added.

We only consider extra node information one step be-
yond the universe because of the time complexity in-
volved. Especially with dense networks and high node
degrees the time complexity of the greedy agglomeration
algorithm extensions suggested here can increase rapidly.
Also, the further away a node is from the community, the
less likely it is (at that time) to be a member of that com-
munity so it does not seem useful to look very far ahead.
Further research should consider different distances for
the lookahead approach and determine an optimum (if
any).

We gave two examples of adding more contextual infor-
mation to the selection criteria of local community iden-
tification algorithms here to illustrate the concept, many
more (effective and efficient) varieties are possible.

In conclusion, we suggest the usage of more contex-
tual information than the universe when evaluating can-
didates for a local community. We proposed two example
additions to local identification algorithms following this
paradigm. Using additional contextual information is a
broad concept with its roots in the comparison between
local and global algorithm advantages that can be applied
to many existing and future local community identifica-



tion algorithms. We aim at eliminating shortsightedness
and decreasing the gap between relevant network knowl-
edge of global and local methods. Thus we can make a
more informed decision about community candidates.

IV. VALIDATION

Many networks have a varying density and we think
the addition to local identification algorithms suggested
in section three can be a major improvement in situations
where nodes are sparsely connected. If there are only few
universe nodes or the neighbors of the universe nodes are
sparsely connected it can be hard to judge whether the
local community has been correctly identified or if fur-
ther improvement lies beyond. Another common problem
for local community identification is the dependance on
a well connected source node, local algorithms tend to
struggle when starting with a low degree node. The aim
of our experiment is to verify an increase in community
quality for both problems when the improved algorithm
is applied.

A. Experiment setup

We implement a basic local identification algorithm
that may optionally use our suggested lookahead strategy
proposed in section three and we test the commonly used
local modularity and relative density community defini-
tions. Because our aim is to consider if we can identify
a stronger community with the lookahead strategy than
without we generate synthetic networks with a flat com-
munity structure.

There are several methods for generating synthetic net-
works that can be used to benchmark community identi-
fication algorithms [26-29]. For our test we will generate
a network according to the Barabsi-Albert model [2] and
rewire it to create a flat community structure as proposed
by Bagrow [26]. We simplify the network generated by
the Barabsi—Albert model by removing multiple edges be-
tween nodes. The rewiring is done by creating k sets of
nodes (representing the communities) in the network and
then rewiring inter-community edges to intra-community
edges while preserving the degree distribution. The re-
sulting benchmark networks contain 128 nodes equally
divided among 4 communities.

Since we aim to verify the improvement of local identi-
fication algorithms in the area where these often struggle
we will generate graphs with an average degree of 4, 5
and 8. This will result in networks that contain a lot of
potentially troublesome source nodes. We run four tests:
a standard local algorithm and the lookahead algorithm
with both LM and RD as quality measures. These tests
are applied to every node in the network.

B. Quantifying Community Similarity

The quality of a community identification algorithm
is commonly evaluated by measuring the similarity be-
tween the algorithm output and some reference set of
communities. These reference communities are the sup-
posed "real” communities and a higher similarity with
the reference set indicates better algorithm quality.

A widely used measure for such similarity is mutual in-
formation which originates from information theory. The
symmetric mutual information measure for two discrete
random variables X and Y, denoted as I(X,Y), indicates
how much information they share. In other words, mu-
tual information measures how much we know about X
when Y is known and vice versa [30].

1X,Y) = 3 % pla,y).dog (P(f”y))

zEX yey pm(x).pm(y)

where p,,, is the marginal probability distribution func-
tion (Pr(X = z)). There is no upper bound and therefor
this measure is commonly normalized to the interval [0..1]
for practical comparison as follows.

Let the Shannon entropy be defined as:

H(X) = Y pla)dog—

reX ( )

From the observation that I(X,Y) <
min(H(X),H(Y)) and H(X) = I(X,X) follows
that the mutual information measure may be normalized
by the arithmetic or geometric mean of H(X) and H(Y)
[31].

When used to compare two sets of communities we
observe that every element of X and Y is a community
which consist of unique nodes. Let N be the amount of
nodes in the entire network. Then due to the homoge-
nous probability distribution within these communities
the mutual information is defined as [31]:

[zNy]
xy)=>% |x;y.log< N >

=5 |z ]y]

and then the normalized mutual information using the
geometric mean of the Shannon entropy is defined as:

jenl ;. ( lenwl-N
Yeex Lyey N 109 ( Tl T )

\/(ZzGX %'109%) (ZyGY %.log%)

However, we do not intend to compare two sets of com-
munities as is customary for evaluating global commu-
nity identification algorithms. Instead, we are interested
in the similarity between a single community, the one
identified by a local algorithm, and some reference com-
munity. When the similarity between two single local
communities is desired, we do not consider the rest of

NMI(X,Y) =
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the network relevant. In some cases there may even be a
lack of knowledge about the entire domain, for instance
when considering the similarity between a manually con-
structed community in the web graph and the result of
a local algorithm. We observe that using (normalized)
mutual information for comparing two single local com-
munities can bring an undesired side effect and is therefor
not a suitable measure for our experiment.

Let X and Y only contain a single community. In
case we find a single community which is equal to the
reference community and the entire graph then X =Y
and | X|=1|Y|=N thus I(X,Y) =0and NMI(X,Y) =
0. However, when the same X and Y would have been
situated in a network where N > |X| (and X = Y)
then NMI(X,Y) > 0. Another example where using
mutual information to compare two single communities
yields undesired results: Let | X| = N and X C Y. Then
|XNY|.N =|X|.]Y|thus I(X,Y) =0and NMI(X,Y) =
0.

So for the purpose of quantifying the similarity be-
tween two communities we will adopt the Jaccard Sim-
ilarity Coefficient (JSC) instead of the mutual informa-
tion measure that we deem more suited for evaluating
global approaches to community identification. The Jac-
card Similarity Coeflicient is defined as the generality of
both sets divided by their commonality:

X NY|

JX,)Y)= ——

XY) = %07
C. Results

Running these tests on 50 generated networks yields
the plot of the JSC score frequency shown in Figure 6.
In the networks with an average degree of 4 and 5 we
observe a significant increase in high similarity for both

the local modularity and the relative density community
quality measure when the lookahead algorithm is applied.
Networks with a larger average degree have a relatively
low gain of the lookahead algorithm as illustrated by the
similarity plot on a network with an average degree of 8.
The plot confirms our theory of the lookahead algorithm
improving community quality and decreasing the depen-
dance on a specific source node. This is indicated in the
plot by a higher frequency in high JSC scores and a lower
amount of outliers.

We do observe a few outliers still remaining when ap-
plying the lookahead algorithm, it is not the final solution
to local algorithm effectiveness. There are a couple of
reasons why even the lookahead algorithm is struggling
for some source nodes.

First of all, when the boundaries of two communities
are not very sharp and the source node is a boundary
node (as defined by the synthetic graph structure) the
algorithm may start of in the wrong direction and iden-
tify the wrong community. Suppose we start with node
v that is a member of community C' according to the
synthetic structure and the algorithm identifies commu-
nity C’ U v where C’ is another community defined by
the synthetic structure. Then the result of the algorithm
may be a quite strong community but according to the
similarity measure it is really bad because there is very
little overlap between the reference community and the
found community.

The local algorithm may also find a strong community
that is a subset of the community it is supposed to find.
The gap between the found community and agglomerat-
ing until the algorithm identifies the larger and stronger
community may be too large for the lookahead algorithm
to recognize. There lies a tradeoff between the time com-
plexity of the lookahead algorithm and the effectiveness
of identifying improvement beyond the universe candi-
dates.
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Since the ideal community is hard to compute due to
time complexity constraints the quality of a community
(as identified by an algorithm) is usually measured by
comparison to the community structure as created in the
synthetic benchmark network. However, when the goal of
a local algorithm is to identify the strongest community
around a source node (as is the case in this paper) that
synthetic reference community may not be the strongest
community. For instance, there may be some community
definition p that considers a reference community plus
some nodes from a neighboring reference community as a
better community. The cause is the nature of algorithms
that construct synthetic graph structure. They take a set
of nodes and rewire up to a certain ratio of internal and
external connections without any regard of nodes outside
of that synthetic community, nor is there any regard for
the presence of a stronger subcommunity. We note that
the measured quality of any algorithm as compared to
some reference community is dependant on the quality
of the reference community as well.

While running our tests we observed this phenomenon
as the algorithm identified local communities that are
stronger than the synthetic community we used as a ref-
erence in a few cases. While this is intuitively interpreted
as a desirable outcome because goal is to identify the
strongest community, this is shown as a bad JSC score
in the plot since it only considers the similarity between
two given sets. In our experiment we assume the refer-
ence community is the best community out there so an
improved p score is not taken into account.

The plot in Figure 7 shows the u scores for all tests.
When comparing these results with the similarity plot of
Figure 6 we observe that the amount of outliers in the
JSC score are larger than the amount of outliers in the p
score. This supports the suggestion that some similarity
measure outliers can be explained by the algorithm iden-
tifying a strong community that is quite different than

the synthetic reference community. So the algorithm may
behave as desired in that case and the problem could lie
with the reference community being far from the ideal
community. If this is the case, the results presented here
would be even more positive. Further research on the
structure and quality of the reference community as gen-
erated by synthetic graph construction algorithms could
provide more insight.

V. CONCLUSIONS

In this paper we have reviewed problems of widely used
local community identification methods and propose an
improvement that can be applied to local community
identification algorithms in general.

We suggest adding contextual information beyond the
universe of a local community when evaluating local com-
munity candidates in order to eliminate the shortsight-
edness of a local algorithm and thereby allowing more
informed evaluation of community candidates. This im-
provement to local algorithms will increase the quality of
locally identified communities in general and decrease the
dependency on specific source nodes, which is a common
problem for local algorithms.

We provided an example approach for this concept and
ran benchmark tests on local algorithms with and with-
out the suggested improvement. The results of superior
quality of local communities identified by the improved
local algorithm look promising, especially in situations
where the algorithm is exploring low degree nodes. The
results also show a decreased amount of outliers in the
quality of the local communities yielded by the improved
local algorithm, this indicates the decreased dependency
on specific source nodes.

We intend to perform further research on the appli-
cation, effectiveness and computational cost of (different



variations of ) adding more contextual information to se-
lection criteria for local algorithms. Other areas of inter-
est for improving local identification algorithms include
synthetic benchmark networks with guaranteed proper-
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ties (such as optimal clusters), dynamic stopping criteria
and removal strategies for local community members in
order to improve a local community.
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