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Abstract

A work�ow is a series of tasks that comprise a business process. In conventional information
systems, the process structure is often implicitly encoded in the system. In contrast, work�ow
management systems (WFMSs) separate the process structure from the rest of the system. A
WFMS is a software system which supports the enactment of business processes, based on a
work�ow model : a formalism which describes the work�ow. Work�ow models are traditionally
expressed in graphical work�ow de�nition languages.

iTask is a WFMS, developed at Radboud University Nijmegen. iTask uses a textual domain speci�c
embedded language to express work�ow models. The language is embedded in the functional
programming language Clean. This approach enables to use all expressive power of the Clean
language in work�ow models. However, to understand an iTask work�ow, one needs to be trained
in functional programming.

This thesis presents a Graphical iTask notation, in order to make iTask modeling more accessible for
a larger group of users. We demonstrate how common iTask modeling constructs can be mapped to
a graphical notation. As a proof of concept, we implement a graphical editor, which is integrated
into the iTask system.

Keywords: work�ow modeling, domain speci�c language, functional programming, Clean
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Chapter 1

Introduction

1.1 Work�ow modeling

A business proces can be de�ned as �a collection of interrelated work tasks, initiated in response
to an event, that achieves a speci�c result for the customer of the process.�[43]. In this de�nition,
we can see a number of key criteria. First, a business process produces a speci�c result, which can
be identi�ed as such. Thus, �Logistics� is not a process, but �deliver order� is. Second, the result
should be useful to a customer - this may be either an internal or external person or entity. Third,
all tasks that constitute a process should be related and all contribute to the end result.

Work�ows involve the automation of business processes. The Work�ow Management Coalition de-
�nes work�ow as �The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according to a set of
procedural rules.�[23]. Work�ows are case-oriented: each task is enacted within the context of a
particular case. A case represents a single execution of a work�ow, in onder to produce a specifc
result. Cases are domain-dependent. For instance, a case may represent a trip booking in a travel
agency, an insurance claim in an insurance company, or an order in an online store.

During information systems development, the structure of the business processes is used as a basis
for system design. In tailor-made systems, this causes parts of the process structure to become
embedded - �hard coded� - in the implementation. However, business processes are subject to
changes. Adapting an existing tailor-made system to re�ect changes in business processes often
takes a signi�cant investment in time and money. In contrast, work�ow management systems
(WFMSs) separate the process structure from the rest of the system. A WFMS typically consists
of two parts. First, a formalism to specify a work�ow model and second, a work�ow engine. The
work�ow model is usually expressed in a graphical modeling language. The work�ow engine is a
generic software component which takes the work�ow model as input, and supports the end users
in in the enactment of the modeled business processes.

Besides business process management, work�ow modeling techniques are also being used in the
area of scienti�c computations, for managing data sets on grid computing systems[3]. This thesis
focuses on work�ow modeling in business processes.

1.2 The iTask system

The iTask system, is a prototype WMFS, developed at Radboud University Nijmegen[33]. The core
of iTask is a combinator library, written in the general-purpose functional programming language
Clean. Combinator programming is a way to create an embedded domain speci�c language (EDSL)
within a functional programming language. In iTask, work�ow models are speci�ed as Clean
functions, using a set of monadic task combinators to create and compose tasks. These combinators
express both control �ow and data �ow.
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The advantage of the embedded DSL-approach is that the expressive power of the host language
can be used. Thus, work�ows modeled in iTask can use all the power of the Clean language like
recursion, functional abstraction, lazy evaluation and a strong type system[35]. Further, the end-
user can extend the functionality of iTask by de�ning new combinators or higher-order tasks - in
contrast to many contemporary WFMSs, which cannot be extended with new work�ow patterns
by end users.

1.3 Problem statement

All the �exibility of iTask comes with a price: in order to understand iTask work�ow models, one
needs to be familiar with functional programming.

Work�ow models are usually constructed by work�ow engineers in collaboration with domain
experts. Domain experts often do not have a background in (functional) programming. Having
to learn functional programming �rst in order to understand iTask models would be a too steep
learning curve.

Our assumption is that for non-programmers, like most domain experts, a graphical notation is
easier to use than a textual notation. Furthermore, domain experts may already be familiar with
contemporary graphical work�ow notations. A graphical notation may ease the communication
between work�ow engineers and domain experts in the development process of iTask work�ow
models. Therefore, our goal is to investigate the feasibility of a graphical notation for iTask.

In order to substantiate this assumption, an empirical study which compares the comprehensibility
of the graphical and textual iTask notation would be necessary. Such an empirical study is outside
the scope of this thesis.

1.4 Research questions

Our main research question is

In which way can work�ow models in iTask be expressed in a graphical notation?

The intent is to make iTask work�ow modeling more accessible for domain experts without pro-
gramming experience. The following sub questions will guide our research:

1. Which contemporary graphical languages are used for modeling business processes and work-
�ows?

2. How can common graphical work�ow modeling notations be mapped to iTask expressions?

3. To what extent can concepts that are unique to iTask, be expressed in a graphical notation?

4. How should a graphical editor be constructed, to enable integration in the iTask system?

1.5 Thesis structure

This thesis is structed as follows. In chapter 2, we investigate principles of work�ow modeling.
Chapter 3 describes related work: among others, we analyze graphical notations for expressing
work�ows. Next, we focus on the relation between graphical languages and iTask in chapter 4.
We use the work�ow patterns to examine this relation in a structured way. Chapter 5 introduces
our Graphical iTask Notation. The subsequent chapters discuss the implementation of a proof-
of-concept editor. Chapter 6 deals with the architecture and front-end implementation. The
compilation of graphical work�ows is described in chapter 7, error handling in chapter 8. Chapter
9 presents conclusions and future work.
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Chapter 2

Work�ow modeling

Work�ow models are formal descriptions of business processes. A work�ow model consists in
principle of a set of tasks, their ordering and their data dependencies. Work�ow models are
expressed in work�ow de�nition languages (WDLs). Work�ow management systems use a wide
variety of WDLs. There is still few consensus about the way business process should be speci�ed.

2.1 Representation paradigms

The control �ow of a work�ow model de�nes the ordering of tasks. WDLs can use di�erent
paradigms to express control �ow relations. We distinguish graph-oriented and block-oriented
WDLs. Note that these terms do not imply any particular visual representation; they merely
indicate the underlying control �ow structure.

Graph-oriented WDLs use directed graphs as their underlying structure, consisting of a set of nodes
and a set of directed edges. Tasks are represented as nodes, and the control �ow is expressed by
the directed edges. In addition, control �ow primitives may introduce additional types of nodes.
Graph-oriented WDLs usually impose few restrictions on the graph structure; edges are generally
allowed to connect arbitrary pairs of nodes. Examples of graph-oriented WDLs are Event-driven
Process Chains (EPCs), UML Activity Diagrams and Yet Another Work�ow Language (YAWL).
These languages are discussed in the next section.

In contrast, block-oriented WDLs can express control �ow constructs only by use of nested blocks.
For each construct, a separate block is used. Tasks are modeled as elementary blocks, while control-
�ow is expressed by nestable, composite blocks. The work�ow models expressed in block-oriented
WDLs are also known as structured work�ow models[18]. Notable examples of block-oriented
WDLs are ADEPT[38] and process algebras like Pi calculus[45].

The graph-oriented and block-oriented paradigms are each others opposites concerning structuring:
while an unconstrained graph-oriented WDL can express arbitrary control �ows, a block-oriented
WDL can only express structured control �ows.

Intermediate forms of structuring are also possible. For instance, BPEL4WS[59] is mostly block-
oriented, although it includes a <bpel:link> construct which allows jumps to other places out
of the block structure. Another example is XPDL (XML Process De�nition Language)[48]. In
XPDL, models can be assigned a graph conformance class. Its non-blocked class allows arbitrary
unstructured models. The loop-blocked class inhibits arbitrary cycles, while the full-blocked class
enforces one-to-one correspondence between splits and joins of the same type, e�ectively creating
a structured model.

Within the work�ow community, it has been debated whether structured models should be pre-
ferred over unstructured ones. Unstructured models provide more freedom to the modeler. On
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the other hand, structured work�ow models have attractive properties like the fact that they are
guaranteed deadlock-free.

The structuring of work�ows shows parallels with imperative programming. Unstructured work�ow
models resemble unstructured programming using goto-statements. Structured work�ow models
only allow control �ow to have single entry points and single exit points, like structured imper-
ative programming composed of nestable block-statements. Since the emergence of structured
programming initiated by Dijkstra[6] writing unstructured programs is generally considered as bad
practice, since it may lead to hard to understand �spaghetti code�. Holl and Valentin[14] applied
this argument to work�ow modeling and advocates that structured work�ows models are easier
to understand. Gruhn and Laue[12] follow this approach, but discusses reasons to deviate from
structuring.

Kopp et al.[21] argue that the choice for a particular WDL should depend on its intended use, and
introduce a spectrum between intended for documentation and intended for execution. If work�ow
models are merely used for documentation purposes, one may use a unstructured, more �exible
WDL; if the models should be executed by a WFMS one is better o� by using a more structured
WDL. Graph-oriented WDLs are placed more towards the documentation side; block-oriented
WDLs towards the execution side of this spectrum.

2.2 Work�ow patterns

Given the variety of WDLs, the question arises whether di�erences exist in expressive power be-
tween these languages. One could compare WDLs pair-wise and try to map concepts expressed in
one notation to another and vice versa. However, if this approach was used to evaluate a larger
set of languages, the number of comparisons one has to make would grow quadratic, which would
soon be impractical.

A reference framework which describes concepts commonly found in process modeling notations
would be more useful. Such a framework is not a WDL by itself, but merely a collection of modeling
concepts. The framework could then be used to evaluate the expressive power of a particular
notation. This kind of approach is used by van der Aalst, ter Hofstede et al. starting the work�ow
patterns initiative. They originally de�ned a set of 20 control-�ow work�ow patterns [54].

An individual pattern captures a business requirement. The work�ow patterns have been used
to evaluate the expressive power of particular notations. The patterns can also be used for other
purposes, such as selecting WFMS tools to be used in particular domain. One could analyse the
necessary work�ow patterns for the particular domain, then select the tools based on their support
for necessary patterns.

In the context of work�ow modeling, the meaning of the term �expressive power� should not be
restricted to its formal de�nition. Since many process modeling languages are Turing-complete,
any process model could in principle be expressed in any Turing-complete modeling language.
If a pattern is not supported in the particular language, one may resort to explicitly model all
possible behaviors of the pattern. This does not imply that such a construct is straightforward,
or easy to understand: that particular language would not be suitable to express the pattern.
Therefore, a comparison of only formal expressiveness would not be useful in practice. Instead,
work�ow patterns are not a set of formal primitives, but are created based on occurrence in practical
situations. In [17] the relation between expressive power and suitability is investigated.

Nowadays, the work�ow patterns can be regarded as a standard in work�ow modeling. Many
contemporary WFMSs are inspired by the work�ow patterns. The YAWL work�ow language[51]
was the �rst language whose design is based on the work�ow patterns. Later, commercial vendors
of WFMSs started to advertise their products as supporting �all major work�ow patterns�.

An individual pattern consists of a name, a description, one or more examples of situations where
the pattern is used and implementation remarks how the pattern is implemented in existing mod-
eling notations.
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The work�ow patterns are categorized in di�erent perspectives to structurally describe di�erent
aspects of modeling. The control �ow perspective (also known as the process perspective) focuses
on the order in which tasks are executed. The data �ow (or information) perspective describes the
data involved in the execution of the tasks. The resource perspective (or organizational perspective)
involves the allocation of tasks to resources within an organization.

2.3 Control �ow perspective

The control-�ow perspective focuses on the execution order of tasks. Tasks can be arranged in
various ways: they may have to be executed sequentially, they can be executed in parallel, or the
execution may be subject to a particular condition.

This section gives an overview of the original set of control �ow patterns published by van der Aalst
et al. [54]. This set of patterns has been used to structurally evaluate a wide range of WDLs like
work�ow nets[53], EPCs[26], UML Activity diagrams[58, 41] and product-speci�c notations[53, 60].

Since the publication of the original work�ow patterns in 2002, van der Aalst et al. identi�ed
a set of 23 additional control �ow patterns and evaluated a range of contemporary WDLs for
support of these patterns[52]. The support for these new patterns in WDLs is still limited, with
the exception of the graphical Business Process Modeling Notation (BPMN) and the textual XML
Process De�nition Language (XPDL). NewYAWL[40] is an extension of YAWL, of which the design
is entirely based on these new patterns.

Our primary reason for using the work�ow patterns is to identify common graphical notations in
WDLs. Discussing control �ow patterns which are only supported by few or even no WDLs would
not contribute to this goal. Therefore, we decided to focus primarily on the widely supported
original control �ow patterns.

2.3.1 Basic control �ow and synchronization patterns

Sequential routing The sequence pattern executes tasks one-after-another: when task A com-
pletes, tasks B starts.

Parallel routing Parallel routing is expressed by the parallel split and synchronization patterns:
The work�ow is split in multiple threads which can be executed concurrently. A parallel split is
also known as an and-split. Multiple threads can be merged into a single thread of control, which
will start executing as soon as all parallel threads have completed. This is known as an and-join.
Alternative join conditions are described as separate patterns. The multiple merge pattern will
instantiate the activity after the merge for each parallel thread again. The discriminator pattern
waits until the �rst thread completes and ignores the completion of the other threads.

Conditional routing Conditional routing can take two forms, whether multiple choices are
allowed or not.

1. In the exclusive choice and simple merge paterns, the decision of a single branch will exclude
the execution of the others. Because no branches can be executed in parallel, there is no
concurrency involved, so merging multiple split branches is simple: continue with the only
executed branch. Splitting and merging multiple mutual-exclusive branches are known as
respectively xor-split and xor-join.

2. The multi-choice and (synchronizing merge patterns allow the execution of one or more
branches, which are all executed in parallel. Typically, a condition is placed on each branch,
and the branch is executed if the condition evaluates to true. This kind of branching is also
known as or-split. Similar to the synchronization in parallel routing, the branches that are
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executed can be synchronized and be merged into a single thread, which is known as an or-
join. In many WDLs, the or-split and or-join are separate operations. The or-join operation
needs to know which threads were executed, in order to wait only for them to complete.
However, this information is available only in the earlier or-split. Because of this information
need, the or-join is said to have non-local semantics.

2.3.2 Structural patterns

Iteration Work�ows may contain repetitive elements. A task or set of tasks may be repeated
until a particular condition is met. Iteration can be expressed in several ways. Arbitrary cycles
(arbitrary cycles pattern) are loops that have multiple entry points and/or multiple exit points.
These unstructured loops can only be expressed in graph-oriented WDLs. Block-oriented WDLs
do not support unstructured loops, since multiple entry points or exit points cannot be expressed
in terms of a nested block structure. Structured loops are loops with a single entry point and a
single exit point. These constructs repeat a task or set of tasks until a condition is met. Depending
on the type of loop, the condition is evaluated before or after the execution of a single iteration.

Implicit termination Implicit termination is a property of a WFL which states that subpro-
cesses will terminate if they have no work to do.

2.3.3 Multiple instances

Within a work�ow, an individual task may have to be executed multiple times, each time with
di�erent data. Such a task is said to have multiple instances. For example, a conference paper may
have to be reviewed by several reviewers. There is a single task de�nition�review paper�, which
is instantiated for each review performed by a particular reviewer. The number of instances may
be determined in di�erent ways: it may be constant (e.g. each paper is reviewed by 2 reviewers),
determined at run-time (e.g. depending on the size of the conference), or also change at run-time
(e.g. if the reviewers disagree, then additional reviewers will be involved). A work�ow model may
support the creation of multiple instances of a task and, after execution, the synchronization of
their results.

The creation of multiple instances is described by the multiple instances without synchronization
pattern. The synchronization is described by multiple patterns. The later the number of instances
is determined, the more di�cult it is to know if the synchronization may complete. Van der Aalst
et al. de�ne di�erent synchronization patterns, depending on whether the number of instances is
constant (multiple instances with a priori design time knowledge pattern), determined at run time
before execution of the instances (multiple instances with a priori run-time knowledge pattern), or
also changeable during execution (multiple instances without a priori run-time knowledge pattern).

2.3.4 State based patterns

In the exclusive choice pattern discussed earlier, the choice of a branch is based on an explicit
condition. In the deferred choice pattern the chosen branch is not conditional. Instead, multiple
branches are o�ered to the environment. As soon as one of the branches starts, the other branches
are cancelled. The interleaved parallel routing pattern describes the execution of an unordered set
of tasks, with the constraint that no two tasks can be executed at the same time. So, all tasks
executions are interleaved. This pattern is used if multiple tasks need mutual exclusive access to
a resource. The milestone pattern de�nes that a task is only available for execution after reaching
a particular milestone, but before that milestone has expired.
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2.3.5 Cancellation patterns

The cancel activity pattern de�nes the removal of a single activity (task) waiting for execution.
The cancel case pattern describes the removal of an entire case (process instance) including all its
running tasks.

2.4 Data �ow perspective

A structured approach to investigate the data �ow perspective has been performed by Russell
et al. They identi�ed a set of data patterns: recurring situations regarding data processing in
work�ows[39]. The data patterns cover four areas: data visibility, data interaction, data transfer
and data-based routing.

2.4.1 Data visibility

Data visibility refers to the availability of data during the enactment of a work�ow. Within the
context of data patterns, data is stored in named variables. The data visibility is expressed in the
scope of these variables.

Variables whose scope is limited to a single case, would be called case attributes. The scope can
be further limited to either a single execution of a task (task data pattern), a composite block of
tasks (block data pattern), a custom set of tasks (scope data pattern), multiple instances of the
same task (multiple instance data pattern), or the entire case (case data pattern).

Alternatively, variables can be available to an entire work�ow and shared to all tasks (work�ow
data pattern) or can imported from the external environment (environment data pattern).

2.4.2 Data interaction

Data interaction between tasks Within work�ow processes, data created by tasks is often
necessary for executing other tasks. Passing data from one task to another is an essential feature
in WFMSs and described by the Data interaction � task to task pattern. The passing of data
may coincide with the control �ow, but it need not be: data-�ow and control �ow can be di�erent.

Three approaches are used to describe data �ows in graphical work�ow models:

1. Implicit data passing. If both tasks have access to shared variables, they can pass data
without describing the data �ow explicitly. This requires tasks to know each others variable
naming. The advantage of this approach is that the visual notation remains clean, since
only the control �ow is drawn explicitly. The drawback is that concurrency issues may arise:
variables may be read and written by multiple concurrent tasks.

2. Integration of data in the control �ow. Tasks can only pass data to each other via existing
control �ow relations. The data is passed at the moment the control is transferred. Although
this approach reduces concurrency issues, one may be forced to route data via tasks that do
not need the data, only because the data is needed later in the control �ow.

3. Explicit modeling of separate data �ows. If both the control �ow and the data �ow are
modeled explicitly, data �ow can be routed separately from control �ow. Using this approach
has several consequences. First, the visual notation becomes more cluttered, since both data
�ows and control �ows need to be drawn. Second, the evaluation order is now in�uenced by
both the control �ow and the data �ow. If an eager evaluation order is used at the task level,
a task can only start when all of its incoming data is available.
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Sub-work�ows Work�ow models should support composition: a work�ow may be composed of
several sub-work�ows, each of them specify a speci�c part of a work�ow model. In order to make
composition possible, a sub-work�ow should avoid to make assumptions about the environment
in which the sub-work�ow is used. In particular, a sub-work�ow should not make assumptions of
variable names from its environment.

The data patterns block Task to sub-work�ow decomposition and sub-work�ow decomposition to
block task de�ne three approaches for data-passing with sub-work�ows. If data is passed implicitly,
the sub-work�ow and its callers share their address space, which can hinder the re-use of sub-
work�ows. Alternatively, data passing can be made explicit by means of parameters or data
channels.

Multiple instances In a multiple-instance task, each of the individual instances may need indi-
vidual data. The data patterns data interaction � to multiple instance task and data interaction
� from multiple instance task discuss three approaches. Either each instance gets speci�c data,
passed by reference or by value, or all instances have access to shared variables. In the latter case,
the individual instances have to deal with concurrency.

Case, work�ow and environment data The case data pattern describes to data which is
available for all tasks which are part of a case. The work�ow data pattern refers to data which
is shared between cases. For instance, in an order processing work�ow a single case refers to the
handling of a single order. The total number of processed orders is data which is shared between
cases. A set of external data interaction patterns describe data interaction between a WFMS
and its operating environment. This requires a structured communication facility, such as remote
procedure calls (RPC).

2.4.3 Data transfer

Data transfer patterns data transfer patterns describe data transfer styles used in work�ow
modeling languages. These patterns are conceptually equivalent to parameter passing mechanisms
found in imperative programming languages: call-by-value (data transfer by Value � incoming
pattern, data transfer by value � outgoing pattern and data transfer by value � outgoing pat-
tern), call-by-copy-restore (data transfer � copy in/ copy out pattern), and call-by-reference (data
transfer by reference � unlocked pattern and data transfer by reference � with lock pattern,
respectively without and with synchronization).

Data transformation patterns The application of functions on passed data is captured by
data transformation patterns. Functions can be applied to a task's input parameters (data trans-
formation � input pattern) or its output parameters (data transformation � output pattern).

2.4.4 Data-based routing

Four patterns are de�ned for the speci�cation of pre- and postconditions on tasks, based on either
the existence or the value of task data: task precondition � data existence, task precondition �
data value, task postcondition � data existence, task postcondition � data value. These patterns
are supported by a WDL if action can be taken if the condition does not hold, or � in case of the
existence patterns � the either the WDL ensures the data is always present.

Triggers allow action to be taken if an external event takes place (event-based task trigger) pattern)
or an condition based on work�ow data evaluates to true (data-based task trigger).

The data-based Routing pattern allow decisions in the control �ow to be taken based on data values.
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Chapter 3

Related work

Our goal is to make iTask modeling more accessible for non-technical users, by designing a graph-
ical notation for iTask. This choice is based on the assumption that for non-technical users, a
graphical notation is easier to comprehend than a textual one. We do not have evidence to sup-
port this assumption. Therefore, we �rst study available literature to either support or refute this
assumption.

The comprehensibility of a notation may also depend on the experience a user has with similar
notations. For this reason, we investigate notational conventions commonly found in contemporary
WDLs.

Since the iTask WDL is embedded in the functional language Clean, it is possible � and even
common practice � to use typical functional programming features in iTask models, such as
recursion and higher-order functions. These features are commonly not available in graphical
work�ow languages. Graphical notations are also being used in the area of functional programming.
These notations may provide us insight in how functional programming concepts can be expressed
graphically. However, we focus primarily on graphical WDLs, since our graphical notation is
intended for work�ow modeling, and not for functional programming in general.

3.1 Graphical versus textual modeling

Our assumption is that for non-programmers, a graphical WDL is easier to comprehend than a tex-
tual notation. This may sound plausible, but we have no evidence to support this claim: there are
no empirical studies which compare the comprehensibility of textual and graphical WDLs. There
exists empirical evidence on the comparison of visual and textual programming languages, but
there is no unambiguous conclusion. A survey by Whitley[57] lists studies for and against visual
notations. An experiment by Green and Petre [10] shows that for experienced users, graphics were
slower than text, a result later con�rmed by Moher et al.[28]. Based on a series of experiments,
Petre concludes that �overall, graphics was signi�cantly slower than text� [30], but notices di�er-
ences in strategy between novices and expert users. An experiment by Kiper et al.[20] distinguishes
between programmers and non-programmers with a technical background. In the experiment, both
groups read graphical and textual decision diagrams. They conclude that �graphics may be better
for technical, non-programmers than they are for programmers because of the great amount of
experience that programmers have with textual notations in programming languages�.

3.2 Graphical work�ow modeling languages

In this section, we give an overview of the notations used in a number of graphical WDLs, namely
Work�ow nets, YAWL, Event-driven Process Chains and UML Activity Diagrams. We chose to
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analyse these WDL for several reasons. First, the chosen WDLs are well studied in the literature.
There are work�ow pattern analysis available on each of these languages, which enables us to
compare these languages in a structured way. Second, these WDLs are standards and not tied
to a particular WFMS. YAWL is an exception, but is speci�cally added because of its extensive
support for work�ow patterns.

3.2.1 Work�ow nets

Standard Petri nets allow to express the basic control �ow of work�ow models and have a formal
foundation. Petri nets have a static structure which cannot change during execution. However,
the execution state of a work�ow, by means of tokens can be shown in the same kind of diagram.
Work�ow concepts can be mapped straight-forward onto Petri nets: a transition indicates a task,
a place is a condition and a token indicates a case.

(a)
task

(b)
place

(c) sequence (d) parallel split (e) synchronization

(f) exclusive choice (g) simple merge

Figure 3.1: basic control �ow expressed in Petri nets

Sequential routing Sequential execution is denoted as a concatenation of transitions, with
places between them (�g. 3.1(c)).

Parallel routing Parallel routing is modeled by an AND-split: a transition with a single incom-
ing arc and multiple outgoing arcs (�g. 3.1(d)). Although the AND-split is modeled as a transition,
it does not represent work in the real world, but is merely added for control purposes. If there
is a token in the input place, the AND-split transition can �re: the token is removed from the
input place, and tokens in the output places are created. The tasks (transitions) connected to
these places can be executed in parallel. Synchronization is modeled by an AND-join: a transition
with multiple incoming arcs, and a single outgoing arc (�g. 3.1(e)). Such a transition enforces
synchronization, because the transition can only �re if tokens are present in all input places.

Conditional routing Conditional routing is modeled by an OR-split: a place with a single
incoming arc and multiple outgoing arcs (�g. 3.1(f)). Each arc may have a condition attached,
which depends on the case attributes. If a transition attached to the one of the outgoing arcs �res,
the token is removed from the place, preventing the transitions attached to the other arcs from
�ring � e�ectively creating a XOR. Merging exclusive branches is modeled by an OR-join: a place
with multiple incoming arcs and one outgoing arc (�g. 3.1(g)).

Iteration Iteration is modeled by cycles in the Petri net model. Arbitrary cycles are supported,
these are loops with one or more entry points, and one or more exit points.

Work�ow nets[46, 55] are based on Petri nets. Work�ow nets must have a single entry point, i.e.
a source place with no incoming transitions. They have a single exit point, i.e. a sink place with
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no outgoing transitions. If the sink-place is connected to the source place, the resulting net would
be strongly connected.

In the standard petri net notation, it is not clear which tasks represent real work, and which tasks
are merely used for routing. Therefore, work�ow nets employs a shorthand notation for parallel
and conditional routing, shown in �gure 3.2(a). . .(d).

Further, work�ow nets add three extensions to Petri nets: a color extension to distinguish di�erent
tokens (cases), a time extension to model temporal behavior and a hierarchy extension. The hier-
archy extension allows to make abstractions by means of subprocesses. A subprocess is represented
by a single symbol (�gure 3.2(e)) that represents a separate work�ow net de�ned elsewhere.

(a) parallel split (b) synchronization (c) exclusive choice (d) simple merge

(e) subprocess

Figure 3.2: Work�ow net extensions to petri-nets

3.2.2 YAWL: Yet Another Work�ow Language

Many work�ow management systems have a limited support for work�ow paterns. YAWL, which
stands for Yet Another Work�ow Language, is a WDL explicitly designed with support for control
�ow work�ow patterns[51]. It does not explicitly address data �ow.

Because many work�ow patterns can be expressed in high-level petri-nets, YAWL is based on
high-level petri-nets. However, high-level petri nets cannot properly express situations in which
a case involves multiple instances, synchronization of optional tasks and cancellation of running
tasks. We will now give an overview of the YAWL notation. For the complete semantics, we refer
to [51].

A YAWL work�ow speci�cation consists of an Extended Work�ow Net (EWF-Net). Each EWF-
net has exactly one entry condition where the net starts and one output condition where it ends.
Further, EWF-nets may use conditions in other places, which act similar to places in work�ow
nets.

(a) condition (b) input condition (c) output condition

(d) atomic task (e) composite task (f) multiple in-
stances of atomic
task

(g) multiple in-
stances of composite
task

. . .

(h) cancellation

Figure 3.3: Extended Work�ow Net notation used in YAWL
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(a) function (b) event

∧
(c) and-
connector

∨
(d) or-
connector

×
(e) xor-
connector

Figure 3.4: EPC notation

Figure 3.5: EPC sequential routing

EWF-nets consist of tasks, conditions and connector symbols. A simple, atomic task is indicated
by a box symbol. EWF-nets can be nested; a double-box symbol indicates a composite task, which
is a separate EWF-net lower in the hierarchy. Sequence is modeled by arcs between tasks; in
contradiction to petri nets there is no need to model places in between. However, it is allowed,
which will act as conditions. Both atomic and composite tasks can have multiple instances, which
is indicated by overlapping boxes. A number of parameters can be speci�ed. The number of
instances can be bounded. Further, a threshold can be speci�ed, which causes a multiple-instance
task to complete if the number of completed instances exceeds the threshold keyword dynamic
is speci�ed, the number of instances may be increased during execution. These parameters are
denoted as [min, max, threshold, static|dynamic].

Parallelism and decisions are taken directly from the work�ow nets. This includes their connector
symbols (AND-split, XOR-split, OR-split, AND-join, XOR-join, OR-join). A new construct is
introduced for modeling cancellation. If the task attached to the dashed line is executed, all tasks
in the are dashed rounded rectangle are cancelled.

Timing and events are not explicitly part of the language, but modeled as separate task types.
Timers (tasks that wait for a particular time before completing) are modeled as tasks marked with
a �T�, and events (which wait for an external event) are modeled as tasks marked with an �E�.

3.2.3 Event-driven process chains

The event-driven process chain (EPC)[16] is a language to model business processes. Initially,
EPCs were used to document business processes. Since this does not require a strictly formal
approach, no formal semantics for EPCs exist. Formalizations of EPCs have been researched, by
means of a mathematical foundation[19] or mapping EPCs directly onto Petri nets[47]. Today,
the use of EPCs is widespread in work�ow modeling and in Enterprise Resource Planning (ERP).
EPCs focus primarily on control �ow.

An event-driven process chain diagram uses a graph-based notation, which is shown in �gure 3.4. A
function is a single task or activity, and is indicated by a round rectangle. An event is the activation
of a particular state. Events can be regarded as the pre- and postconditions of functions: before a
function can be executed, all its preceding events have to be activated. After execution of a function,
all it following events will be activated. Directed edges are used to indicate the relationship between
functions and events. Functions and events must have an indegree and outdegree of exactly 1.
Further, functions cannot be connected directly to other functions, but always have events between
them. To enable more complex routing, logical connectors are used. These connectors are denoted
as small circles. Three kinds of connectors are used: AND, XOR, and OR. Connectors can be
used as split connectors (outdegree > 1), join connectors (indegree > 1) or both.

Sequential routing Sequencing is expressed by an successive series of events and functions, as
shown in �gure 3.5

Parallel routing Parallel routing is expressed using the AND-connector, which is both used
for splitting the control �ow in multiple parallel branches, as well as synchronizing the parallel
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a ∧
b

c
∧ d

Figure 3.6: Example of parallel routing in EPC

(a) action (b) activity edge (c) initial node (d) �nal node (e) synchronization bar

(f) decision node

Figure 3.7: UML activity diagram notation

branches into a single branch. Figure 3.6 shows an example of two functions b and c executed in
parallel.

Conditional routing An exclusive choice between two branches is expressed by the XOR-
connector. A XOR-connector with multiple outgoing branches is a XOR-split. As soon as the
preceding function is completed, one of the succeeding events is activated. Merging multiple ex-
clusive branches is done by a XOR-join, which will cause the succeeding function to be executed
as soon as one of its preceding events is activated.

Non-exclusive choice is expressed by the OR-connector. An OR-connector with multiple outgoing
branches is an OR-split. When the preceding function completes, one or more succeeding events
can be activated. Merging multiple exclusive branches is done by an OR-join, which will cause the
succeeding function to be executed as soon as all events of activated branches after the preceding
OR split have completed. Since this requires knowledge of the earlier OR-split, the semantics of
the OR-join are non-local. Moreover, it is not required for OR-joins to be preceded by OR-splits,
which leads to confusion about the formal semantics[49, 19].

Iteration The EPC is a graph-oriented WDL, which allows to express cycles in the graph struc-
ture without imposing additional constraints. Therefore, arbitrary loops with multiple entry points
and multiple exit points can be expressed.

Standard EPCs lack support for composite task and multiple instances. In [26], Mendling et
al. introduce an extension of EPCs called yEPCs. This extension added support for hierarchical
functions, multiple instances and cancellation of functions, using the YAWL notation.

3.2.4 UML Activity diagrams

The Uni�ed Modeling Language (UML)[11] is a general-purpose modeling language primarily used
in object-oriented software engineering. The UML is a visual language, de�ned by the Object
Management Group (OMG) and has seen a number of revisions. As of august, 2010 the actual
version is version 2.3. A number of diagram types are used to model various aspects of object-
oriented software. Activity diagrams are being used to describe control-�ow aspects of work�ows[7,
8]. The semantics of UML 2.x activity diagrams is based on token �ow, which is conceptually similar
to Petri nets.

In UML activity diagrams, the tasks that comprise a work�ow are called activities. These are
indicated by rounded-edged rectangles. Each work�ow starts with an initial node and ends with a
�nal node.
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Figure 3.8: Example of sequence in UML activity diagram

a

b

c

d

e

f

Figure 3.9: Example of parallel routing in UML activity diagram

Sequential routing In contrast to Work�ow nets, UML activity diagrams do not explicit model
states or events. Sequence can be expressed by merely an successive series of actions, connected
by activity edges.

Parallel routing Parallellism and synchronization are modeled by thick bars called synchroniza-
tion bars. Parallellism is indicated by a fork node: a synchronization bar with multiple outgoing
edges. This is comparable to the and-split in work�ow nets. Synchronization is indicated by a
join node, which is a synchronization bar with multiple incoming edges. The join node is compa-
rable to the and-join in work�ow nets. Fork and join nodes can be combined, which is denoted
as a synchronization bar with multiple incoming and multiple outgoing edges. Figure 3.9 shows
an example involving parallel routing. After execution of activity a, activity b and c are run in
parallel. After they both completed, activities d and e are run in parallel. After completion of d
and e, activity f starts.

Conditional routing Conditional routing is modeled by decision nodes, which have two or more
outgoing edges. Edges may be annotated by guards, which are boolean expressions between square
brackets in the Object Constraint Language (OCL)[29]. The nodes attached to an edge may only
be executed if the guard expression is true. After a decision node, only a single outgoing branch
is selected, which is comparable to the xor-split in work�ow nets. Merging multiple alternate
edges is done by merge nodes, which have multiple incoming edges. Decision and merge nodes are
denoted by diamond symbols. Analog to synchronization bars, they can be combined to a single
decision/merge node. Figure 3.10 shows an example of conditional routing.

Iteration The UML activity diagram is a graph-oriented language. Arbitrary cycles can be
expressed; a conditional loop can be expressed by a cycle and an XOR-split.

3.3 Graphical notations in functional languages

3.3.1 Vital

Vital[13] is a document-centered environment for Haskell. The goal of Vital is making a functional
language accessible to broad range of end users. Vital presents Haskell modules as documents,

a

b

c

d

[x < 3]

[else]

Figure 3.10: Example of conditional routing in UML activity diagram
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which are displayed in a textual or graphical editor. By interacting with these editors, the under-
lying expressions in the Haskell program can be modi�ed.

Our research shows similarities to Vital, in the sense that our research also intends to introduce a
new, graphical notation for existing expressions in a functional language. However, Vital is intended
as a general approach for visualizing functional data structures, while our research concentrates
on visualizing expressions within a speci�c domain, namely work�ow modeling.

3.3.2 Nets in Motion

Nets in Motion (NiMo)[4] is a visual environment for programming in data-�ow style. it is a lan-
guage in itself and is not based on an existing textual notation. However, NiMo incorporates typical
functional language concepts like higher-order functions, partial application and laziness. Although
the NiMo language may provide us insight how functional language constructs like higher-order
functions can be expressed graphically, the use is limited for our goals. The work�ow paradigm
heavily relies on control �ow, while NiMo is entirely data�ow based. However, NiMo may be
suitable to visualize complete (non-work�ow related) Clean expressions. An investigation of these
possibilities is outside the scope of this thesis.

3.4 Summary

There is no unambigous evidence whether graphical work�ow modeling is easier to comprehend
than textual work�ow modeling. However, having experience with a particular notation may make
similar notations easier to comprehend. Hence, we investigated graphical WDLs. The WDLs which
we analysed all used similar notations. Tasks are generally described by rectangles and control
�ow is modeled by directed edges. Branching and merging is indicated by connectors. In most
cases, di�erent split and merge connectors are used. A notable di�erence are whether work�ow
states are implicit (in UML) or explicit (in work�ow nets, YAWL, EPCs).
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Chapter 4

iTask

4.1 Introduction

iTask is a work�ow management system, written in the general-purpose functional programming
language Clean. In contrast to many conventional work�ow systems, iTask uses a domain-speci�c
embedded language (DSEL) approach: the formalism used to express work�ow models is a com-
binator library. The advantage of this DSEL approach is that the expressive power of the host
language can be used. Thus, work�ows modeled in the iTask language can use all the power of the
Clean language like recursion, higher order functions, lazy evaluation and a strong type system[35].
Further, the functionality of iTask can be extended by de�ning new combinators � in contrast to
many contemporary WFMSs, in which user-de�ned constructs are not supported.

4.2 Architecture

iTask work�ow models are speci�ed at a very high level of abstraction. From this high-level model,
the iTask WFMS is able to generate a user interface and a structured data storage.

An iTask work�ow model is speci�ed in a Clean implementation module (an .icl �le). The work�ow
model and the iTask base library are compiled to an executable, which contains the iTask server
application (�gure 4.1).

During work�ow enactment, iTask uses a multi-user, client/server web architecture. The compiled
iTask server application is launched either from a standard web server via CGI, or can run stand-
alone via its built-in web server. The server uses a data store on disk to save the current work�ow
state.

End users use a standard web browser to access the WFMS. Upon accessing the web server, the
end-user's web browser downloads a Javascript client application and executes it locally. The client
application is based on the ExtJS library[42] and communicates with the web server using JSON
data over HTTP, as shown in �gure 4.2. A discussion of the iTask implementation can be found
in [25].

Textual
work�ow model

iTask library

Clean compiler

Executable
with

iTask server
application

Figure 4.1: Compilation of an iTask work�ow
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Javascript
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Network Web server

iTask server
application

HTTP HTTP

CGI

Figure 4.2: iTask runtime environment

4.3 The iTask work�ow de�nition language

iTask has a strong integration of control �ow and data �ow. In the iTask WDL, the basic control
�ow �building block� is a task. However, a task also determines data �ow: each task yields a result
upon completion. iTask work�ows are strongly typed. Each task has a type Task a | iTask a, in
which a is the type of the value the task yields upon completion. For instance, a task that return
a boolean has the type Task Bool. Even a task which returns no useful value has a type, namely
Task Void, where Void is de�ned as a nullary constructor.

The type class restriction iTask a ensures that instances of generic functions are available for gen-
eration of user interfaces and serialization of type a. These functions can be derived automatically
by the Clean compiler. To use a type t in a work�ow speci�cation, an application programmer
only has to declare derive class iTask t. A discussion of the generic implementation can be found
in [25].

The Task data type is a monad. Application programmers do not deal with the task states directly,
but only use its monadic interface.

return :: a → Task a | iTask a

( �= ) infixl 1 :: !(Task a) !(a → Task b) → Task b | iTask a & iTask b

Besides the monadic unit and bind operators, the iTask library contains a set of additional task
combinators, which allow the user to create complex work�ows by combining individual tasks. We
discuss these combinators in the next sections.

Representation paradigm In section 2.1, we analyzed the di�erence in control �ow between
the graph-oriented and block-oriented representation paradigm. The iTask WDL is primarily a
block-oriented WDL. The only way to combine basic tasks to make complex tasks, is to pass
the basic tasks as arguments to task combinators. The obtained expression can be used as an
argument for another combinator, and so on. This results in a well-nested and non-overlapping
composition. However, it is possible to deviate from this block structuring by means of process
combinators, a class of task combinators. A process is the iTask term for a separate execution of
a task speci�cation; in other work�ow terminology this would be called a case. Using the process
combinator spawnProcess, a task can be started as a separate process, which runs separately from
the original process. Other processes can obtain a tasks' result using the waitForProcess combinator.
Using these two combinators, it is possible to make arbitrary, non-structured jumps between tasks.
However, this style of modeling is advised against, because it may lead to deadlocks and makes
the model more di�cult to comprehend.

4.4 Work�ow pattern analysis

The previous chapter presented an overview of the work�ow patterns: a set of patterns describing
frequently occurring situations in work�ow models. Now, we shall discuss the current iTask WDL
within the context of the work�ow patterns. There are several reasons to do so.
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First, the work�ow patterns may serve as a benchmark to assess the expressive power of iTask, in
comparison to existing tools. In [34], Plasmeijer et al. state that iTask �covers all known work �ow
patterns that are found in contemporary commercial work �ows tools, and is thus suited to describe
real-world applications.�. However, it does not explicitly identify the support of all individual
work�ow patterns in iTask. By discussing iTask on a per-pattern basis, we can substantiate this
coverage claim, or possibly uncover work�ow patterns which are not supported by iTask.

Second, we use the work�ow patterns as a framework to develop a new graphical notation for
iTask. The new notation should at least be able to express common work�ow patterns.

4.4.1 Basic control �ow and synchronization patterns

Work�ow pattern 1: sequence Sequencing in iTask is expressed by the �| operator. Given
that a and b are tasks, the expression a �| b yields a new composed task. After task a completes,
task b is started. The result of task a is discarded.

( �| ) infixl 1 :: !(Task a) (Task b) → Task b | iTask a & iTask b

In order to maintain the result of task a, the monadic bind combinator �= should be used. It
is similar to the �| combinator, but expects a function as its second argument, which receives
the result of task a and produces a task of type b. The function may yield any Task b, possibly
dependent on the result of task a. This allows for dynamic construction of work�ows at runtime.

( �= ) infixl 1 :: !(Task a) !(a → Task b) → Task b | iTask a & iTask b

While the binary �| combinator only combines two tasks, a related combinator named sequence

operates on lists of tasks. The sequence operator executes all tasks in the list sequentially, yielding
a list of results. Its de�nition is:

sequence :: !String ![Task a] → Task [a]

Work�ow patterns 2: parallel split and 3: synchronization In contradiction to many
graphical work�ow languages, iTask expresses parallel split and synchronization in a single combi-
nator.

Parallelism is expressed by the AND-combinator, denoted as -&&-. This operator expresses both
the splitting the �ow into two concurrent branches, and synchronizing the results.

(-&&-) infixr 4 :: !(Task a) !(Task b) → Task (a,b) | iTask a & iTask b

Given that a and b are tasks, the expression a -&&- b will yield a composed task, in which a and b

can be executed simultaneously. The results of both task a and b are kept, and the composed task
does not complete before both tasks are �nished.

While the AND-combinator allows the execution of two tasks, there is also a version which accepts
any number of tasks. The allTasks combinator takes a list of tasks as input, and executes all tasks
in parallel. The allTasks combinator is de�ned as:

allTasks :: ![Task a] → Task [a] | iTask a

Work�ow patterns 4: exclusive choice and 5: simple merge An exclusive choice (XOR)
based on a condition can be expressed straightforward, even without special support in the iTask
library. Because the iTask WDL uses Clean as a host language, if and case-expressions, and
functions with multiple alternatives can be used to choose between tasks.

For instance, to execute a task named askPermission only if a variable price is greater than 1000,
and otherwise execute task purchaseItem, one could simply write:

if (price > 1000) askPermission purchaseItem
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Work�ow patterns 6: multi-choice and 7: synchronizing merge Multi-choice or OR-split,
the concurrent execution of multiple branches based on criteria, is not available as a combinator
in iTask. However, it can be de�ned easily. Assuming that a list of alternatives is available with a
boolean condition for each alternative, tasks :: [(Bool, Task)], we can execute only the tasks which
match the conditions with the expression (allTasks o map snd o filter fst) tasks. The list of tasks
is �ltered �rst and subsequently executed. As soon as all selected tasks are executed, their results
are combined. Due to the block-structuring of iTask, semantics problems related to OR-join do
simply not exist.

Work�ow pattern 8: multi-merge Expressing multi-merge in token-based work�ow languages
is straightforward: it involves the passing of all tokens from multiple incoming branches to a single
outgoing branch � there is no synchronization of control �ow.

Due to the iTask integration of control �ow and data �ow, all standard task combinators have built-
in support for synchronization. It is not possible to specify directly that the entire subwork�ow
after a particular merge should be instantiated for each task preceding the merge.

For instance, given that a, b and c are tasks, we want to execute a and b in parallel, without
synchronization, then execute task c. The expression a -&&- b �| c will �rst execute task a and b

in parallel. When both a and b have completed, c is executed only once � which is not correct
for multi-merge. In this particular case, we can combine task c with both a and b sequentially:
(a �| c) -&&- (b �| c). This will yield the desired result: both a and b are executed in parallel, and
c is executed twice, after both a and after b. Although this approach works, it becomes unwieldy
if multiple paths lead to the sub-work�ow c after a multi-merge.

iTask support an alternative approach, by means of process combinators. The spawnProcess task
can start a task as an asynchronous sub-process.

spawnProcess :: !UserId !Bool !(Task a) → Task (ProcessReference a) | iTask a

The spawnProcess task takes three parameters: a UserId of the user who should execute the task,
a boolean which indicates if the task will start immediately and of course the task to execute.
The ProcessReference result can be used to manipulate the newly started process. If for each
branch a process is created via spawnProcess, the branches run concurrently without any kind of
synchronization:

spawnProcess getCurrentUser True (a �| c) �| (b �| c)

However, the modeling issue remains: it is still necessary to adapt the work�ow structure by
moving the tasks after the multiple-instance task within the multiple-instance task. Therefore,
abstracing the expression above to a new combinator would not be useful.

Work�ow pattern 9: Discriminator The iTask library contains a XOR-combinator, denoted
as -||-. However, its semantics are di�erent from the XOR found in many conventional work�ow
languages. Instead, it corresponds to the discriminator work�ow pattern, which waits for the �rst
activity to complete. As soon as this happens, the other task is cancelled. The combinator yields
the result of the �rst task which completes; the result of the other task is ignored.

(-||-) infixr 3 :: !(Task a) !(Task a) → Task a | iTask a

Just as with parallel composition, a list version of the XOR-combinator also exists, called anyTask.
It takes a list of tasks as argument. The task which completes �rst is, all other tasks in the list
are cancelled as soon as the �rst task completes. The de�nition is

anyTask :: ![Task a] → Task a | iTask a
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4.4.2 Structural patterns

Work�ow pattern 10: arbitrary cycles Due to the block structure of iTask, arbitrary cycles
� i.e. loops with multiple points of entry or multiple points of exit � are not supported by the nor-
mal task combinators. It is possible, but advised against, to use the spawnProcess and waitForProcess

combinators to make arbitrary jumps, as discussed above in section �block structuring�.

However, structured loops can be expressed by the forever and repeatTask combinators. An in�nite
loop is expressed by forever. The repeatTask combinator executes a task until the predicate is valid
(like a repeat-until loop in imperative programming languages).

forever :: !(Task a)→ Task a | iTask a

repeatTask :: !(a → Task a) !(a → Bool) a → Task a | iTask a

Work�ow pattern 11: implicit termination Implicit termination is supported by iTask. A
task terminates at the moment that it yields it value. Implicit termination is also supported for
processes: they terminate at the moment that their top-level task completes.

4.4.3 Multiple instances

As discussed in 2.3, the handling of multiple instances of a task involves two kinds of requirements.
First, one needs to be able to create multiple instances of the same task. Second, the results of
the individual tasks may need to be synchronized.

The typical way to instantiate multiple tasks in iTask is to create a list of tasks, then execute all
tasks in the list in parallel using the allTasks combinator. This combinator will wait until all tasks
in the list have completed, then yield a list of results of the individual tasks in the list.

Work�ow pattern 12: Multiple instances without synchronization The multiple in-
stances without synchronization pattern involves the creation of multiple instances of the same
task, then executing them without any kind of synchronization. The subwork�ow succeeding the
multiple-instance task should be executed for each instance of the multiple-instance task. The
multiple instantiation of the succeeding subwork�ow is di�cult to express in iTask. The problem
is very akin to the multi-merge pattern discussed above; a possible solution is to make the tasks
that would succeed the multiple-instance task, part of the multiple-instance task itself.

Work�ow pattern 13: multiple instances with a priori design time knowledge Because
the iTask combinators have built-in support for synchronization, specifying synchronization of
multiple instances is straightforward. First, one de�nes a list of task instances. If the same task
t has to be executed a constant number n times, one would write repeatn n t. If each instance has
di�erent parameters, one would use an expression like a list comprehension to create the list. The
list is passed to the allTasks combinator, which will execute all tasks in the list in parallel.

Work�ow pattern 14: multiple instances with a priori run time knowledge iTask
realizes this work�ow pattern exactly the same as #13, with the only di�erence that n is not a
constant, but an expression containing results obtained earlier in the work�ow.

Work�ow pattern 15: multiple instances without a priori runtime knowledge Accord-
ing to the work�ow patterns web site [50], this work�ow pattern is supported by only one WFMSs.
However, it can be expressed in iTask as well by means of the parallel combinator. This combinator
has a complex de�nition, for which we refer to the iTask source code. The parallel combinator
keeps track of an internal state. Using a user-speci�ed accumulator function, the state can be
updated, new tasks can be added, or the entire parallel action can be stopped. The accumulator
function is de�ned by:
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((taskResult,Int) pState → (pState,PAction (Task taskResult) tag))
| iTask taskResult & iTask pState

After completion of each task, the accumulator function gets the result of the completed task
(taskResult), the number of completed tasks and the current state (pState). Using this information,
the accumulator should produce a new state, and an action (PAction) how to continue:

:: PAction x t = Stop // stop the entire parallel/grouped execution
| Continue // continue execution without change
| Extend .[x] // dynamically extend list of tasks in parallel/group
| Focus (Tag t) // focus child-tasks with given tag

The work�ow pattern requires that all instances are synchronized before the next task starts. The
parallel combinator satis�es this criterium, since completion of the individual instances is required
for determining the next action (in PAction). Hence, multiple instances without a priori knowledge
is fully supported by iTask.

4.4.4 State-based patterns

Work�ow pattern 16: deferred choice The deferred choice describes a point in the work�ow
where a choice is o�ered between two branches. As soon as one of the branches starts executing,
the other branch is excluded. On a �rst glance, this behavior is similar to the XOR-combinator
-||- in iTask. There is an major distinction though. The deferred choice pattern prescribes that
�. . . the choice is delayed until the processing in one of the alternative branches is actually started,
i.e. the moment of choice is as late as possible� [54]. When using the XOR-combinator in iTask, the
choice is made when one of the branches completes, which is too late to match the deferred choice
pattern. If it would match, the deferred choice pattern would be equivalent to the discriminator
pattern, which is not the case. Currently, iTask does not support another way to exclude a branch
when another branch starts.

Work�ow pattern 17: interleaved parallel routing If a shared resource has to be used by
multiple tasks, but cannot be used by multiple tasks simultaneously, the tasks have to be executed
interleaved. Support for the interleaved parallel routing pattern ensures that no two tasks can
be executed simultaneously. Additionally, a partial ordering in tasks can be speci�ed. Currently,
iTask does have direct support for interleaved parallel routing.

Work�ow pattern 18: Milestone The milestone pattern allows execution of a task only, if
the work�ow is in a given state. iTask directly supports this pattern if the concerning task is
stand-alone. Suppose we have a sequence of tasks a �| b �| c, and another task d may only be
executed between b and c. This can be expressed by a �| (b -|| d) �| d. The execution of d
does not in�uence the original sequence, since the -|| operator discards the result of its right task
and waits for the result of its left. If the left task completes, the right can no longer be started.
However, if task d is part of another sequence, it is not possible to synchronize task d with b.

4.4.5 Cancellation patterns

Work�ow pattern 19: cancel task iTask does not have a direct primitive to cancel tasks, but
it is possible to cancel an already started branch by using the XOR-combinator -||- to describe
an alternative branch, which is executed if the task should be canceled. As soon as the alternative
branch completes, the original branch will no longer yield a result, and iTask will abandon this
branch. Cancellation of tasks by end users can easily be de�ned as a new cancel combinator.

cancel :: Task a → Task (Maybe a)
cancel task = (task �= λx = return (Just x))

-||- (showMessage "cancel task" �| return Nothing)

A form with a �Cancel task� button is shown to the user. If the button is clicked,
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Work�ow pattern 20: cancel case A case � or process in iTask terms � is called a process in
iTask. Running processes can be manipulated via process combinators. The deleteCurrentProcess
combinator will abort the currently running process, and is de�ned as

deleteCurrentProcess :: Task Bool

4.4.6 Conclusion

The above work�ow pattern analysis demonstrates that iTask supports the vast majority of the
original control �ow patterns, even patterns which are hardly supported in contemporary graphical
WDLs like the multiple instances without a priori run time knowledge. Due to its combinatory
basis, synchronization is present in all standard combinators. Therefore, the patterns which are
not supported by iTask are mainly the ones who assume a lack of synchronization, like the multiple
instances without synchronization pattern.
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Chapter 5

Gin: Graphical iTask notation

5.1 Design principles

Expressiveness Ideally, a graphical notation for iTask should be powerful enough to express all
iTask work�ows. However, the iTask WDL is embedded in the host language Clean, so any valid
Clean expression can be used in an iTask work�ow. Hence, being able to graphically denote all
possible iTask work�ows would imply having a complete graphical notation for Clean. Developing
such an extensive graphical functional programming language is out of the scope of this project.
The reason is that for non-programmers, such a notation would be as hard to learn as a regular
functional language.

We deliberately choose to restrict the graphical language to a subset of constructs, namely those
which are common in graphical WDLs. We use the work�ow patterns as a guideline to determine
these constructs. These correspond largely with the set of iTask task combinators, but some
work�ow concepts like conditionals are already part of Clean itself. This choice inevitably means
that certain parts of iTask work�ows cannot be expressed graphically. Therefore, the graphical
notation should be hybrid by allowing the embedding of textual Clean expressions. Concepts which
cannot be expressed grapically, can be embedded as textual expressions.

Familiarity Users who have experience with work�ow modeling in contemporary graphical
WDLs, should be able to use their prior knowledge in the construction of graphical iTask models.
Therefore, we employ notations commonly found in existing graphical WDLs.

iTask semantics The semantics of the graphical notation must be expressible in terms of textual
iTask expressions. Each graphical construct must have a mapping to an iTask expression. The
other way round does not hold: since the graphical notation covers a subset of the iTask WDL,
not every iTask expression will be graphically representable.

5.2 Graphical mapping

In this section, we present the syntax of Gin: a Graphical iTask notation. We describe the
semantics in an semi-formal way, by means of a mapping from textual iTask expressions to Gin
diagrams.

We use the following notational conventions. Variables which are not part of the literal syntax,
but merely serve as a placeholder, are written in italics. The map from a Clean expression e to its
corresponding Gin representation is denoted as [[e]].

The Gin language is based on a directed graph, consisting of nodes and directed edges. There are
two types of nodes: tasks and connectors. Edges can optionally have a textual pattern.
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Tasks Functions f:: Task α are mapped to tasks in Gin and have a graphical representation.
Both application and de�nition of these task functions is supported. Lists of tasks [Task α ] also
have a graphical representation, these are used to express multiple instances. Expressions of other
data types cannot be represented graphically and are denoted textually.

As seen in chapter 2, it is common in graphical WDLs to denote the application of a task by a
rectangle containing its name. We adopt this notational convention: task functions are denoted as
rounded rectangles; the function name is written in the rectangle. Optionally, an task can have a
custom icon, shown at the left of the function name. Such an icon provides an additional visual
cue of the meaning of the task.

iTask Gin

Given that f :: Task α:
f

f

Figure 5.1: Application of a task

Tasks with arguments Functions f :: α1 . . . αn → Task α are mapped to parameterized tasks.
Actual parameters are depicted as name-value pairs below each other. Values are textual Clean
expressions (see �gure 5.2). In case of higher-order tasks, the higher order argument is denoted as
a directed graph.

iTask Gin

Given that f :: α1 . . . αn → Task α
de�ned as f a1 . . . an:
f e1 . . . en

f

a1: [[e1]]

...
...

an: [[en]]

Figure 5.2: Application of a task with arguments

Task de�nition Function de�nition f :: α1 . . . αn → Task α, de�ned as f a1 . . . an = e can be
mapped to Gin, as shown in �gure 5.3. Each formal parameter a1 . . . an must be a single variable
name. The variables a1 . . . an are in scope of e. Pattern matching in function de�nitions and
functions having multiple alternatives are not supported.

iTask Gin

f :: α1 . . . αn → Task α
f a1 . . . an = e

f :: α
a1 :: α1

...
...

an:: αn

[[e]]

Figure 5.3: Task de�nition

Recursion From the de�nitions of tasks and task de�nition, it follows that recursive tasks can
be expressed in Gin. When de�ning a task f , the task f may occur in the de�nition, as shown in
�gure 5.4.
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iTask Gin

f :: α1 . . . αn → Task α
f a1 . . . an = . . . (f e1 . . . en ) . . .

f :: α
a1 :: α1

...
...

an:: αn

. . .

f

e1: [[e1]]

...
...

en: [[en]] . . .

Figure 5.4: Recursive tasks

Monadic return The monadic return combinator lifts a value to the task domain. The return
is indicated by an ellipse containing an expression (�gure 5.5).

iTask Gin

return e
[[e]]

Figure 5.5: Monadic return

Sequential routing Sequencing of tasks is indicated by an arrow between two tasks: upon
completion of the �rst task, the second task will start (�gure 5.6). The results of the �rst task are
discarded.

iTask Gin

Given that a :: Task α
and b :: Task β:
a �| b

[[a]]

[[b]]

Figure 5.6: Sequential routing, discard result

The monadic bind operator �= preserves the result of the �rst task. Expressions of the form a
�= λ p → b, where a ::Task α, b :: Task β are depicted by an arrow between two tasks having a
label attached with pattern p.

The lambda abstraction λp is only in scope within task b. However, b can be a composite task
consisting of a sequential, parallel, or conditional block, or any (nested) combination thereof. In
order to keep Gin visually concise, the scopes of these lambda abstractions are not visualized.

iTask Gin

Given that a :: Task α
and b :: Task β:
a �= λ p → b

[[a]]

[[b]]

p

Figure 5.7: Sequential routing, monadic bind
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If the second argument of the monadic bind is not a lambda abstraction, but a function de�ned
elsewhere, a direct mapping is not possible. However, there is a simple solution. In Lambda
calculus, one can apply η-abstraction, that is, replacing a lambda term m by λx.mx, in which x
is a free variable in m. This principle can be used as a transformation rule in expressing existing
iTask work�ows in Gin: if the second argument of the monadic bind operator does not have the
form λx→ y, one should apply η-abstraction on the second argument, obtaining the form λx→ y,
which is supported.

For instance, the following work�ow cannot be expressed directly:

taskA :: Task Int

fTaskB :: Int → Task Void

workflow= taskA �= fTaskB

(We assume that x is free in fTaskB). After applying η-abstraction, we obtain

workflow= taskA �= λx → fTaskB x

which can be expressed graphically as in �gure 5.8.

iTask Gin

given that taskA :: Task Int

and fTaskB :: Int → Task Void,
de�ned as fTaskB nr = . . .
workflow= taskA �= fTaskB

taskA

taskB

nr: x

x

Figure 5.8: Example of monadic bind

Parallel routing Graphical WDLs commonly denote parallel routing by a parallel split connec-
tor, a set of branches, and a parallel merge connector. We adopt this approach. However, the iTask
WDL has two combinators for parallel composition, namely a binary operator and a combinator
which operates on lists of tasks:

(-&&-) infixr 4 :: !(Task a) !(Task b) → Task (a,b) | iTask a & iTask b

allTasks :: ![Task a] → Task [a] | iTask b

Conceptually, the behavior of these combinators is similar. They di�er only di�er by their argu-
ments (two parameters or a list) and the way the results of the individual tasks are merged (in a
tuple or a list, respectively).

We introduce a single parallel split connector and two parallel merge connectors, one for tuples and
one for lists (�gure 5.9). The mapping is shown in �gure 5.10 and �gure 5.11.

Note that this mapping in �gure 5.11 can only be used if the argument of allTasks is a list of
explicit enumerated tasks. If the list is constructed by means of a list comprehension, a di�erent
graphical notation is used, described below in the multiple instances section.

∧
(a) Parallel split

∧(,)
(b) Parallel merge
(tuple)

∧[]
(c) Parallel merge
(list)

Figure 5.9: Parallel split and merge connectors
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iTask Gin

Given that a :: Task α:
and b :: Task β:
a -&&- b

∧

[[a]] [[b]]

∧(,)

Figure 5.10: Parallel routing (result in tuple)

iTask Gin

Given that a1 . . . an :: Task α:
allTasks [a1, . . . , an ]

∧

. . .[[a1]] [[an]]

∧[]

Figure 5.11: Parallel routing (result in list)

Conditional routing The Gin language supports exclusive choice by means of case-distinction.

A case distinction is denoted by a case split connector, one or more branches, and a case merge
connector. In the case split connector, any Clean expression can be entered. Each case alternative
is denoted as a separate branch. The incoming edge of each branch may contain a Clean pattern. If
the pattern is omitted, the alternative is considered to be the default alternative. A case distinction
can have at most one default alternative (�gure 5.12).

iTask Gin

Given that e1 . . . en, o :: Task α:
case e of

p1 → e1
... pn → en
otherwise→ o

e

[[e1]]

. . .

. . . [[en]] [[o]]

p1 pn

Figure 5.12: Case distinction

if-expressions are treated as a special case of case expressions. The expression if p a b, where a
:: Task α, b :: Task α is rewritten to case p of True →a ; False →b which is visualized in �gure 5.13.

Iteration An in�nite loop is expressed by the forever higher-order task. The task parameter
contains the task to be executed (�gure 5.14).

A conditional loop is expressed by the repeat-until task. The execution of task a is repeated until
its result satis�es p (�gure 5.15).

Multiple instances Multiple instances in iTask are expressed by combinators which operate on
lists of tasks. Lists in Clean can be composed in many ways: either by explicit enumeration, using
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iTask Gin

Given that p :: Bool,
a, b :: Task α:
if p a b

p

[[a]] [[b]]

True False

Figure 5.13: If expression

iTask Gin

Given that a :: Task α:
forever a

forever

task: [[a]]

Figure 5.14: In�nite loop

iTask Gin

Given that a :: Task α
and p :: α → Bool :
a <! p

repeat

task: [[a]]

until: p

Figure 5.15: Conditional loop

list comprehensions, dot-dot expressions or functions and operators which yield lists, like the (++)

operator for list concatenation.

Gin supports a visualization of two types of lists: explicitly enumerated lists and simple list com-
prehensions, with a single generator and �lter. Other types of lists composition are not graphically
supported and can only be entered by means of textual Clean expressions.

Lists are indicated by double-edged rectangles. Enumerated lists show their elements below each
other, like in �gure 5.16. Simple list comprehensions are denoted as shown in �gure 5.17.

iTask Gin

Given that a1, . . . , an :: Task α
[a1 ,. . . ,an ]

[[a1]]
...

[[an]]

Figure 5.16: Enumerated list

List combinators for sequential composition (sequence), parallel composition (allTasks), and dis-
criminator (anyTask) are expressed like normal higher order tasks, see �gure 5.18.

sequence :: !String ![Task a] → Task [a] | iTask a

allTasks :: ![Task a] → Task [a] | iTask a

anyTask :: ![Task a] → Task a | iTask a
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iTask Gin

Given that e :: Task α
l :: :: [β ] and p :: Bool :
(x is in scope of p)

[e \\ x←l | p ]

foreach x in l given p
[[e]]

Figure 5.17: List comprehension

iTask Gin

Given that l :: [Task α ]

sequence l
sequence

tasks: [[l]]

Given that l :: [Task α ]

allTasks l
allTasks

tasks: [[l]]

Given that l :: [Task α ]

anyTask l
anyTask

tasks: [[l]]

Figure 5.18: Examples of list combinators

5.3 Meta model

Models are abstractions of reality. For instance, a work�ow model is an abstract description of a
real-world business process. A modeling notation itself can also be described in an abstract way
by means of a model. Such a �model of a model� is called a meta model.

Above, we have explained a number of concrete expressions in Gin. The Gin meta model, shown in
�gure 5.19 is an abstract representation of the Gin concepts, their attributes and mutual relations.
We use the UML class diagram notation to denote the meta model.

Overview iTask makes a distinction between basic tasks, task combinators and combined tasks.
The basic tasks and task combinators which are part of the iTask library are atomic units. The
implementation of these tasks is considered a black box; we only know their type declaration, avail-
able in a de�nition module (.dcl �le). This declaration and its formal parameters are represented
in the meta model. In order to display tasks in a diagram, we add three properties: (1) the name
of each formal parameter, (2) an optional icon indicating the meaning of the task, and (3) the task
shape. Split and merge connectors, used in parallel and conditional branching are also modeled as
a declaration.

Combined tasks modeled by the user have an accessible de�nition. This de�nition includes a
declaration as well, which is indicated by the relation in the meta model. A work�ow consists of
a single de�nition at top-level. The de�nition body consists of an expression.

Gin is a hybrid notation, which allows graphical as well as textual notation. Every expression can
be denoted as a textual Clean expression, like in the iTask WDL. Expressions of type :: Task α
can be denoted as a graph (graph expression). Lists of tasks, i.e. expressions of type :: [Taskα ],
have a graphical representation as well and are therefore explictly modeled.

A graph expression consists of a set of nodes and a set of edges. A node is the instantiation of a
declaration; the appearance of a node is determined by the shape attribute of its declaration. A
directed edge connects two nodes. An edge can optionally be labeled with a pattern.
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Type

Declaration
name
icon
shape

FormalParameter
name

De�nition

Expression

CleanExpression

expressionText

ListExpression GraphExpression

Node

position

ActualParameter

Edge

Pattern

patternText

*

0..1

items

1

0..1

body

*1

*

1

*

1

2 *

*

1

0..1

1

1

*

1

0..1

value

*

0..1

return *

0..1

Figure 5.19: Gin meta model

Textual constraints Since function and parameter names, patterns and textual expressions
in the Gin notation are one to one mapped to Clean, syntactic requirements in Clean are also
applicable to Gin. These requirements follow from the Clean language report[36]:

1. The name of a Declaration must be be unique within a work�ow model.

2. The name of a Declaration must be a valid FunctionName, as stated in section 2.1.1 of the Clean
language report.

3. The name of a FormalParameter must be a valid Variable, as stated in section 2.1.1 of the
Clean language report.

4. The text of a CleanExpression must be a valid GraphExpr, as stated in section 3.4 of the Clean
language report.

5. The text of a Pattern must be a valid Pattern, as stated in appendix A.3.2 of the Clean
language report.

Block structure In the previous chapter, we saw that iTask is essentially a block oriented
language, but it allows graph structuring by means of process combinators. In order to keep the
mapping between Gin and iTask comprehensible, we decide not to use the process combinators,
but restrict ourselves to structured iTask modeling. As a consequence, we have to constrain Gin to
only allow well-structured graphs, consisting of well-nested, non-overlapping blocks. The allowed
graph structure is de�ned recursively:

1. A graph consisting of a single node is well-structured.

2. A sequential composition of two well-structured graphs yields a well-structured graph

3. A parallel composition of a split node, one or more branches, and a merge node yields a
well-structured graph.
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The consequence of this graph structure is that the graph has a unique start node (a source). This
start node can either be a task or a split connector and has no incoming edges. The graph must
have one unique end node (a sink), which can be either a task or a merge connector and has no
outgoing edges.

More formally: Let G = (N,E, s, t) be a Gin graph with a set of nodes N , a set of directed edges
E ∈ (N ×N), source s ∈ N , sink t ∈ N .

1. if N contains a single task node, then N is a well-structured graph.

2. Given that G1 = (N1, E1, s1, t1) and G2 = (N2, E2, s2, t2) are well-structured work�ow
graphs, then G = (N = N1 ∪N2, E = E1 ∪ E2 ∪ (t1, s2), s = s1, t = t2) is a well-structured
graph (sequential composition).

3. Given that n ≥ 1, G1 = (N1, E1, s1, t1) . . . Gn = (Nn, En, sn, tn) are well-structured graphs,
s is a split node and t is a merge node, then G = (

⋃n
i=1Ni ∪ {s, t}, (

⋃n
i=1Ei) ∪ {(s, s1),

. . . , (s, sn), (t1, t), . . . , (tn, t)}, s, t) is a well-structured graph (parallel composition).

5.4 Example: Bug reporting

The following example describes a bug reporting work�ow. The example is adapted from [25].
Figure 5.20 shows the bug report expressed in Gin.

reportBug :: Task Void

reportBug

= enterInitialReport

�= λ report →
fileBugReport report

�= λ bugnr →
case report.severity of

Critical

= selectAssessor report.application report.version

�= λ assessor →
assessor @:

("Bug report assessment" ,
requestConfirmationAbout

"Is this bug really critical?" report)
�= λconfirmed → selectDeveloper

report.application report.version

�= λdeveloper → if confirmed

developer @: (resolveCriticalBug bugnr)
developer @: (resolveBug bugnr)

_

= selectDeveloper report.application report.version

�= λdeveloper → developer @: resolveBug bugnr
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enterInitialReport

�leBugReport

report: report

report.severity

selectDeveloper

application: report.application

version: report.version

assign

user: assessor

task:

requestCon�rmation

question: "Is this bug really critical?"

about: report

selectDeveloper

application: report.application

version: report.version

con�rmed

assign

user: developer

task:

resolveCriticalBug

bugnr: bugnr

assign

user: developer

task:

resolveBug

bugnr: bugnr

selectDeveloper

application: report.application

version: report.version

assign

user: developer

task:

resolveBug

bugnr: bugnr

report

bugnr

Critical

assessor

con�rmed

developer

True False

developer

Figure 5.20: Example of bug reporting work�ow
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Chapter 6

Graphical editor

In order to demonstrate that work�ows expressed in Gin are executable, we have implemented
a proof of concept editor for Gin diagrams. A compilation process compiles these diagrams into
executable tasks. This chapter describes the editor; chapter 7 deals with the compilation process.

6.1 Introduction

An editor is an interactive user interface component for entering and updating of a value. A single
value can be a primitive value like an integer or boolean, but a value can also have an arbitrarily
complex structure. An editor consists of an internal state, which keeps track of the value, and a
front-end, which is shown to the user. An editor has two duties. First, the editor visualizes its
internal value in the front-end. Second, the editor responds to user actions and updates its internal
value. This principle is shown in �gure 6.1 and is applicable to any editor.

A work�ow editor is an editor designed for editing work�ow models. We can think of the entire
work�ow model as a single value being edited.

6.2 Design principles

iTask integration Preferible, the editor should be integrated in the iTask system. By integrat-
ing, we mean that the end user can use the iTask web client not only to enact tasks, but also to
design graphical work�ow models.
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Figure 6.1: General principle of an editor
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Editing style Graphical editors can be divided in Structured editors and Free-hand editors. A
structured editor shows a correct diagram, and o�ers the user a set of operations to transform the
diagram to another correct diagram. On the other hand, a free-hand editor leaves the user free
in the placements of elements. The consequence is that the user can perform operations which
lead to incorrect diagrams. The disadvantage of many structured editors is that they enforce a
top-down modeling style. For instance, to model a sequential execution of task a and b, one �rst
has to place a sequence-element, then place the tasks a and b in the sequence element. In contrast,
a free-hand editor also allows a bottom-up modeling style, by placing all individual tasks �rst, and
model the order later. We choose to use a free-hand editor, because it o�ers more freedom in the
way of modeling.

Direct feedback A free-hand editor does not prevent the user from making modeling errors.
Therefore, the editor has to support error handling: if the user is noti�ed of errors in an early
stage, �xing an incorrect model is easier. Error messages have to comprehensible and indicate the
speci�c source of the error.

6.3 Approach

We may choose between several approaches for implementing the editor. We discuss three ap-
proaches with their pros and contras:

1. Using iEditors Jansen et al.[15] describe an iTask extension to integrate plugins named
iEditors in the iTask system. Plug-ins are speci�ed entirely in Clean, so they can use a
high abstraction level. The plug-ins can be executed on the server side or in the client web
browser, using a SAPL interpreter Java applet.

The iEditors architecture allows the embedding of interactive graphical editor plugins. There-
fore, it is in principle possible to implement a Gin editor using iEditors. However, there is a
pragmatic reason not to do so. Since the publication of iEditors, the iTask system has un-
dergone a major revision[25]. As of August, 2010 the new iTask v2 does not yet support the
iEditors extension. Implementing the graphical editor by means of iEditor technology would
require having to re-integrate the iEditors from iTask v1, which is � given time constraints
� not a feasible option.

2. Using a visual language toolkit A visual language toolkit is a system which can generate
a graphical editor and parser, based on a formal speci�cation of a visual language. An
example of a visual language toolkit is VLDesk [5], which uses eXtended Positional Grammars
to specify a visual language. Other examples are DSL toolkits like the Eclipse Graphical
Modeling Framework (GMF) [9] and the Microsoft Visual Studio Visualization and Modeling
SDK (formerly: Visual Studio DSL tools)[27]. The advantage of using a visual language
toolkit is that a graphical editor can be generated with few e�ort. Nevertheless, such an
editor runs either standalone (VLDesk) or is tied to a particular IDE (Eclipse or Visual
Studio, respectively). It is di�cult to integrate such an editor in iTask.

3. Building a custom editor Building a custom editor provides the �exibility to integrate the
editor in the iTask web client. The downside of building a custom editor is the programming
e�ort required.

Out of these options, we chose to build a custom editor. We drop the iEditors approach purely for
pragmatic reasons, given the time constraints of the project. A visual language toolkit may save
us time in development, but can hardly be integrated in iTask. Besides, error handling is easier
to implement in a custom editor. The syntax of Gin diagrams is dependent on Clean, by means
of the type system and embedding of Clean expressions. Hence, we may need to integrate tools
which perform syntax and type checking. This is easier to realize in a custom editor.
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Figure 6.2: Architecture of editors in iTask

6.4 Editors in iTask

An important aspect of the enactment of work�ows is the entering and editing of data. Therefore,
editors are part of virtually any WFMS, including iTask.

In relation to the general editor principle shown in �gure 6.1, the editors in iTask have the following
characteristics:

1. The internal value of every editor has a type. In iTask, the value of an editor is represented
by a Clean expression. Clean is strongly typed, so every expression has a type.

2. iTask is a client/server system. The storage of the internal value takes place on the server
system, while the frontend runs on the client system. The client and server communicate via
JSON data structures sent over an HTTP connection. The server sends a representation of
the value to the client. As soon as the user has entered data, the update is sent to the server,
which updates its internal value.

3. The iTask client is web based, so the visualization and user input takes places at the client
web browser.

These characteristics are visualized in �gure 6.2.

Generating editors In conventional systems, implementing an editor is manual work. iTask can
automatically generate an editor for any data type. iTask �looks� at the data type and generates
a form based editor based on the structure of this data type. For instance, a String data type is
visualized as a text box, an algebraic type with multiple data constructors is shown as a set of
radio buttons or a combo box, and a record is shown as a form.

iTask implements the generation of editors using generic programming techniques. Two generic
functions are used: gVisualize visualizes a value, which is rendered by the client. and gUpdate maps
an updated visualization from the client back to the internal value. For implementation details of
these functions, we refer to [25].

generic gVisualize a :: (VisualizationValue a) (VisualizationValue a)
*VSt → ([Visualization] , *VSt)

generic gUpdate a :: a *USt → (a, *USt)

The generic implementation of these functions generates the form-based editor. In order to allow
the automated generation of an editor for a user-de�ned type t, we have to ask the compiler to
derive the generic instances of gVisualize and gUpdate for type t. These generic functions are part
of the iTask class, so we derive the instances as follows:

derive class iTask t

Generated form-based editors are not always the most practical editors. For instance, entering a
location is easier by clicking on a map than typing in its coordinates. In those cases, we do not
derive an instance, but specialize the generic functions for a particular type.
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Figure 6.3: Integration of the Gin editor in iTask

Using editors in work�ow models iTask work�ow models can use the derived or manually
specialized editors by means of a set of interaction tasks.

The enterInformation and updateInformation tasks model the entry of a new value and the editing of
an existing value respectively:

enterInformation :: question → Task a | html question & iTask a

updateInformation :: question a → Task a | html question & iTask a

Upon enacting the work�ow, these tasks will cause the iTask WFMS to generate an editor for the
inferred type of the enterInformation or updateInformation expression.

6.5 Integrating the graphical work�ow editor in iTask

If we want to integrate a graphical work�ow editor in the iTask system, we have to satisfy the
iTask editor architecture, as discussed above.

We stated earlier that we can think of a work�ow model as a value being edited. Since every value
in iTask has a type, we need to de�ne a type which can represent an entire work�ow model. We
will call this type a GinWorkflow.

As soon as we have the GinWorkflow type, we can implement the work�ow editor: this is an editor
for values of type GinWorkflow.

A very fast way to implement the editor would be simply by stating

derive class iTask GinWorkflow

This would enable the generation of a form-based editor for values of type GinWorkflow. Although
such a generated editor can be used to edit values of type GinWorkflow, it is by no means a graphical
editor.

If we want to have a graphical editor, we should not use derive. Instead, we should specialize
the gVisualize and gUpdate functions for the type GinWorkflow. We should implement a specialized
gVisualize{|GinWorkflow|} function in such a way, that it generates a GinWorkflow representation which
is rendered as a graphical front-end in the client web browser. The specialized gUpdate{|GinWorkflow|}
function should handle the updates from the client-side editor and map them back to the internal
GinWorkflow value.

The standard iTask client does not contain a graphical front-end. Therefore, we implement the
front-end of the Gin editor using a plug-in, which integrates in the iTask client.

Figure 6.3 shows the integration of the Gin editor schematically. In the next sections, we elaborate
on the individual parts: the GinWorkflow data type (section 6.6) and the client plugin (section 6.7).
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6.6 Data type for graphical work�ows

Based on the meta model introduced in the previous chapter, we de�ne a data structure to represent
Gin diagrams. Each of the concepts in the meta model is mapped to a record structure. The nesting
of records is based on the composition relation. Inheritance relations are expressed by algebraic
types with multiple constructors.

Because iTask work�ow models are usually expressed in separate implementation modules, we
adopt a module structure by introducing a type GModulewhich represents an implementation module.
The GImport type represents importing a declaration module. The implementation module contains
task de�nitions, while an import only contains declarations. The top level GinWorkflow type is a
wrapper for a GModule.

Below, the signi�cant parts of the GinWorkflow structure are listed. To be concise, we brie�y mention
the other de�ntions here. The gTypeExpression is an algebraic, recursive data type which represents a
Clean type. gShape and gIcon de�ne the shape and icon of a task declaration, respectively. gPosition
indicates the coordinates of a node in a graph.

:: GinWorkflow= GinWorkflow GModule

:: GModule= { name :: GIdentifier

, types :: [GTypeDefinition]
, definitions :: [GDefinition]
, imports :: [GImport]
}

:: GImport= { name :: GIdentifier

, types :: [GTypeDefinition]
, declarations :: [GDeclaration]
}

:: GTypeDefinition= { name :: GIdentifier

, expression :: GTypeExpression

}

:: GDefinition= { declaration :: GDeclaration

, body :: GExpression

, locals :: [GDefinition]
}

:: GDeclaration= { name :: GIdentifier

, formalParams :: [GFormalParameter]
, returnType :: GTypeExpression

, icon :: GIcon

, shape :: GShape

}

:: GFormalParameter= { name :: GIdentifier

, type :: GTypeExpression

}

:: GExpression= GGraphExpression GGraph

| GListExpression [GExpression]
| GListComprehensionExpression GListComprehension

| GCleanExpression String

:: GListComprehension= { output :: GExpression

, guard :: Maybe GExpression

, selector :: GPattern

, input :: GExpression

}
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Figure 6.4: Screenshot of Gin frontend

:: GGraph = { edges :: [GEdge]
, nodes :: [GNode]
}

:: GNode = { actualParams :: [GExpression]
, name :: GIdentifier

, position :: GPosition

}

:: GEdge = { fromNode :: Int //index of node in GGraph.nodes
, pattern :: Maybe GPattern

, toNode :: Int //index of node in GGraph.nodes
}

:: GIdentifier :== String

:: GPattern :== String
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Figure 6.5: declaration area of Gin frontend

Figure 6.6: toolbar of Gin frontend

6.7 Front-end

6.7.1 User interface

The front-end of the Gin editor (�gure 6.4) shows a drawing canvas, a repository, a declaration area
and a toolbar. The drawing canvas shows the Gin diagram being edited. The repository shows
a list of all available nodes: both tasks and connectors. Tasks in the repository and user-de�ned
subtasks are shown. A user-de�ned task can be opened by double clicking on its name.

Tasks can be added to the diagram by dragging their icons from the repository to the canvas.
A recursive task is modeled in the same way: just drag the icon of the current task from the
repository to the diagram. In order to pass a task as argument to a higher-order task, drag the
task icon to the parameter value rectangle of the higher-order task. Tasks can be moved by drag
and drop operations. The actual parameters of tasks can be edited in the diagram itself.

The declaration area (�gure 6.5) allows editing the declaration of the current task. The task name,
formal parameters names and types, and return type can be speci�ed.

The toolbar (�gure 6.6) allows to switch between selection mode (allows moving nodes by dragging
them) and connector mode (allows drawing edges between nodes). Further, the toolbar contains
buttons for adding a pattern to an edge, adding a new subwork�ow and adding a new function.

6.7.2 Design choices

Several platforms are conceivable to implement a web-based front-end. The platform needs at least
support for composition and interactive manipulation of graph structures or vector graphics. We
considered the following options:

1. SVG + Javascript: SVG[61] is an XML-based standard to express vector graphics on the
web. SVG can be used in interactive applications, by manipulating the XML DOM tree via
Javascript. Alas, SVG has limited support for editing embedded text, and is not supported
in all major web browsers, Microsoft's Internet Explorer the most notable exception.

2. Adobe Flash: Flash, with the Adobe Flex SDK, is a platform for the development of
rich internet applications. Flash supports interaction and composition of vector graphics;
application logic is developed in the ActionScript scripting language.

3. Java applets: Java applets are a proven technology for integrating interactive applications
in web pages. Java AWT supports basic vector graphics, which capabilities can be extended
with several third party libraries:

• JGraph[1] is an open source library for manipulating graph structures like work�ow
diagrams. The editor for YAWL is JGraph based. JGraph is not compositional: it is
not possible to embed graphs or other object in nodes, which complicates implementing
Gin higher-order tasks using JGraph.
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• Piccolo2D [31] is a 2D vector library for Java. It is based on a hierarchical �scene graph�
based model, which is commonly found in 3D graphics. This is advantegeous, since the
compositional behavior of the iTask work�ow model can be mapped straightforward to
a hierarchical structure of nodes � one can create nodes for task combinators, for tasks
and task arguments.

We consider both Adobe Flash and Java applets to be equally viable options to implement the
editor front-end. Given earlier experience with Java applets in both iTask as well as other projects,
we choose to implement the editor front-end as a Java applet, using the Piccolo2D library for
displaying graphics.

6.7.3 Implementation

The Gin front-end is implemented as a Java applet. We use the model-view-controller design
pattern[22] to separate domain classes from visualization. The domain class structure is based on
the Gin meta model. For each class from the domain model, a corresponding view class implements
the view in terms of a Java Swing component or Piccolo2D graphical node.

When the applet is started, it receives a value of type GinWorkflow, encoded in JSON format. This
value is visualized in the applet. As soon as the user makes a change, the new value is encoded as
JSON and sent back to the server.
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Chapter 7

Compiling work�ow diagrams

Gin work�ow diagrams are executable. In order to prove this, we implement a compilation process,
which transforms Gin work�ow diagrams into executable tasks.

7.1 Approach

We have seen in chapter 4 that in the current iTask implementation, work�ow models are com-
bined with the iTask libraries and compiled to a stand-alone server executable. This executable is
launched. The usual procedure of adding a new work�ow model is stopping the server process, re-
compiling the server executable and restarting the server process � which causes server downtime,
unfortunately.

Preferibly, one would have a continuously running server process and the possibility of adding
work�ow models at runtime. Since an iTask work�ow model is essentially a Clean expression of
type Task α, adding a work�ow model at runtime boils down to loading this expression at runtime.
This is possible through the use of dynamics[32]. A recent extension of the Clean compiler allows
overloaded types like Task α to be stored in a dynamic. The iTask implementation is able to load
and execute a task stored in a dynamic.

Hence, we can add a new Gin work�ow model to a running iTask system by creating a dynamic
which contains an Task expression based on the Gin model. There are several ways to create such
a dynamic:

1. Composition of dynamics. Two dynamics can be applied onto each other. If run-time
uni�cation of their types is possible, the result is a new dynamic. We can use this compo-
sitionality in the creation of a dynamic containing a Task. Each basic task and connector
de�ned in Gin is mapped to an iTask expression, which is put in a dynamic. When compiling
a Gin diagram, the corresponding dynamic for each task and connector in the diagram is
looked up. These dynamics are applied onto each other, yielding a dynamic which represents
the entire diagram.

In a Gin diagram, task parameters may be speci�ed as Clean expressions. These expressions
need to be converted to dynamics as well in order to use them, which requires a parser and
compiler. An option would be to use Esther[37], which provides a basic functional language
and a parser for this language. However, Esther solves overloading in its own way, di�erent
from the overloading now supported in dynamics themselves. This would prohibit the use of
overloaded iTask combinators in textual Gin task parameters.

2. Using the Clean compiler. If the dynamic linker is enabled, dynamics can be read from
and written to disk by means of the functions readDynamic and writeDynamic:
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Stage 1 Stage 2

Gin diagram

Block detection

Intermediate tree

AST mapping

Abstract syntax tree

Pretty printing

Clean source �le

Clean source �le

Clean compiler

Executable

Launch executable

Dynamic on disk

readDynamic

Task dynamic in iTask

Figure 7.1: Compilation steps

writeDynamic :: String Dynamic *World → (Bool, *World)
readDynamic :: String *World → (Bool, Dynamic, *World)

This allows the sharing of dynamics between applications. We can exploit this facility: from
a Gin diagram, we generate the source code of its corresponding expression of type Task.
This expression is written to an .icl �le, together with a Start function which writes the Task
expression as a dynamic to disk. Next, we use the Clean compiler to compile a simple project
containing the .icl �le. This results in an executable. We run this executable, so the Task

expression is written as a dynamic to disk. Now, iTask only has to load this dynamic from
disk by means of the readDynamic function. The Task in the dynamic can then be executed.

The advantage of the latter approach is that the full expressive power of Clean can be used in
textual parameters, and there are no further issues with overloading. Therefore, we choose to use
the latter approach to implement the compilation process.

7.2 Architecture

We can divide the compilation process in two main stages: 1) the generation of Clean source
code from a Gin diagram and 2) the compilation and loading of the generated code. A schematic
overview of the compilation steps is shown in �gure 7.1.

In the next sections, we elaborate on the individual steps. A Gin work�ow model is stored in
a value of the GinWorklfow data type introduced in the previous chapter (section 6.6). This data
structure may contains graphs, which cannot be mapped directly to iTask expressions. Section
7.3 describes a block detection function to transform these graphs to intermediate tree structures.
Next, the Gin data structure is mapped to an abstract tree, using the block detection algorithm to
transform the graph structures. mapped to an abstract syntax tree (AST). The AST is introduced
in section 7.4, the mapping to AST is described in section 7.5. The AST is pretty-printed (section
7.6) and written to a �le. The Clean compiler is called (section 7.7) to compile the �le. By means
of writing and reading dynamics, the expression is loaded into iTask (section 7.8).
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Figure 7.2: Example of a Gin diagram and its corresponding SP-tree

7.3 Block detection

A Gin work�ow model is represented by a GModule data structure, which contain a set of task
de�nitions. This data structure should be transformed to an abstract syntax tree. We have to
realize that the structure may contain graphs (GGraph de�nition), with sets of nodes and edges,
while the abstract syntax tree is only a tree. Ergo, we need a way to represent the graph structure
as a tree.

A well-structured Gin graph has a block-oriented structure: it may only consist of a single task
node (GNode), a sequential composition of two well-structured Gin graphs or a parallel composition
of (split connector, series of well-structured Gin graphs, merge connector). We use this property
to parse the graph structure and procuce an intermediate tree structure, named SP-tree. This
tree has leaves with unmodi�ed task nodes from the Gin graph, and nodes for the sequential and
parallel compositions. The sequential node contains the two graphs of the sequence and (if present)
the edge pattern. The parallel node contains the split and merge connector and a list of branches
with their patterns. This SP-tree is de�ned as follows1:

:: SPTree = SPNode GNode

| SPSequence SPTree SPTree (Maybe GPattern)
| SPParallel (GNode,GNode) [(Maybe GPattern,SPTree)]

:: GPattern :== String

Figure 7.2 shows an example of a Gin diagram and a depiction of its corresponding SP-tree.

1The actual implementation contains additional information for error handling, discussed in chapter 8
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Transforming well-structured work�ow graphs to trees has been studied before. In [2], Bae et
al. describe an imperative block detection algorithm to reduce structured work�ow graphs to a
single node, yielding a tree structure. The algorithm repeatedly identi�es the innermost block and
reduces it.

We present a di�erent approach here. We de�ne an algorithm which �rst identi�es unique source
and sink nodes, then traverses the graph structure from source to sink. Our contribution is that
we can present error messages if an incorrect structure is detected. The algorithm is implemented
by the function graphToSPTree:

graphToSPTree :: GGraph → GParseResult SPTree

This function takes a value of type GGraph as input, and should produce an SPTree as output.
However, it is possible that the input is not a structured graph. In that case, it cannot be
represented as an SPTree. We use an error monad named GParseResult to abort parsing if an incorrect
structure is detected. The de�nition of this monad is shown below2. The parseMap combinator is a
monadic map function. The parseError function yields an error. The orElse combinator yields its
�rst argument if it succeeds, otherwise its second.

:: GParseResult a = GSuccess a | GError String

instance Monad GParseResult where

ret :: a → GParseResult a

ret a = GSuccess a

(>>>) infixr 5 :: (GParseResult a) (a → GParseResult b) → GParseResult b

(>>>) (GSuccess a) k = k a

(>>>) (GError e) _ = GError e

parseMap :: (a → GParseResult b) [a] → GParseResult [b]
parseMap _ [ ] = ret [ ]
parseMap f [x:xs] = f x >>>λx` = parseMap f xs >>>λxs` =

ret [x`:xs` ]
parseError :: String → GParseResult a

parseError e = GError e

orElse :: (GParseResult a) (GParseResult a) → GParseResult a

orElse (GSuccess a) _ = GSuccess a

orElse (GError e) b = b

Let G = (N,E) be a Gin graph G with a set of nodes N and a set of directed edges E ∈ (N ×N).
We de�ne the following helper functions:

• pred :: GGraph GNode → [GNode]

returns the list of direct predecessors of a node n, i.e. {n′|(n′, n) ∈ E}.

• succ :: GGraph GNode → [GNode]

returns the list of direct successors of a node n, i.e. {n′|(n, n′) ∈ E}.

• branchtype :: GNode → BranchType

BranchType :: BTTask | BTSplit | BTMerge

returns the branch type of a node: task, split connector or merge connector.

• patternBefore :: GGraph GNode → Maybe String

returns the optional pattern on the (only) incoming edge of a node.

• patternAfter :: GGraph GNode → Maybe String

returns the optional pattern on the (only) outgoing edge of a node.

2The monad operators are named ret and>>> to avoid naming con�icts with the return function from StdFunc
and the iTask sequence combinator �=
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Identify unique source and sink nodes The �rst step is to �nd a unique source (start node)
and a unique sink (end node). If one of these cannot be found, parsing is aborted with an error
message:

graphToSPTree :: GGraph → GParseResult SPTree

graphToSPTree graph

# sources= [ n \\ n←graph.nodes | isEmpty (pred graph n) ]
# sinks = [ n \\ n←graph.nodes | isEmpty (succ graph n) ]
= case sources of

[source] = case sinks of

[sink] = subgraphToTree graph source sink

[ ] = parseError "No end node found"

_ = parseError "End node is ambiguous"

[ ] = parseError "No start node found"

_ = parseError "Start node is ambiguous"

Transform a subgraph to an SP-Tree A subgraph, with a source and sink node, is trans-
formed to an SP-tree. We try to detect a single task or a sequential composition of tasks. If the
subgraph starts with a split node, we search for a parallel composition. First, the findmerge func-
tion �nds the merge node corresponding to the split node; the findbranches function identi�es the
parallel branches. If none of these structures could be identi�ed, the graph is not well-structured
and parsing is aborted.

subgraphToTree :: GGraph GNode GNode → GParseResult SPTree

subgraphToTree graph source sink

= case branchtype source of

//Detect single task node
BTTask | source==sink = ret (SPNode source)

//Detect sequential composition
BTTask | length (succ graph source)==1 =
subgraphToTree graph (hd (succ graph source) sink >>>λtree =

ret (SPSeries source tree (patternAfter source)

//Detect parallel composition
BTSplit | length (succ graph source)==0 =

parseError "Missing outgoing connections"

BTSplit= parseMap (λbranch = findMerge branch 0) (succ graph source) >>>λtrees
if (hd (succ graph trees)==sink) //subgraph ends with parallel composition?

(SPParallel (source,sink) trees)) //Yes: �nished
(case length (succ graph parsink) of //No: �nd sequence
1 = subgraphToTree graph (hd (succ graph parsink)) sink >>>λtree =

//Sequence after merge node found
ret (SPSeries (SPParallel (source,parsink) trees) tree (patternAfter graph parsink))

_ = parseError "Merge connector cannot have multiple outgoing connections"

BTTask = parseError "Task cannot have multiple outgoing connections"

BTMerge= parseError "Merge unexpected"

Finding a matching merge node Given a subgraph which starts with a split node, the findMerge
function tries to �nd a matching merge node, by counting the nesting level. Conceptually, this
is a similar kind of issue as �nding a matching parenthesis in a string containing an expression
with nested parenthesis. However, in a parallel composition there are multiple paths leading to
the same merge node. We traverse the �rst path and keep track of the nesting level. A split node
increases the level, a merge node decreases the level, and a sequential composition keeps the level
equal. As soon as we �nd a merge node and the level is zero, we're done.
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findMerge :: GGraph GNode Int → GParseResult GNode

findMerge graph source level = findMerge` (branchtype source) where
aftersource :: [GNode]
aftersource= succ graph source

findMerge` :: BranchType → GParseResult GNode

findMerge` BTMerge | level==0 = ret source

findMerge` _ | length aftersource==0 =
parseError "Could not find matching merge connector"

findMerge` BTSplit= findMerge graph (hd aftersource) (inc level)
findMerge` BTMerge= findMerge graph (hd aftersource) (dec level)
findMerge` BTTask | length aftersource==1 = findMerge graph (hd aftersource) level

findMerge` BTTask = parseError "A task cannot have multiple outgoing connections"

7.4 Abstract syntax tree

We de�ne a simple AST as a set of record and algebraic data types which represent an imple-
mentation module. The AST contains only the elements needed for expressing Gin work�ows,
namely modules, type de�nitions, function de�nitions and expressions. Expressions can be literals,
variables, pre- and in�x applications, lambda abstraction, case expressions, tuples, lists and simple
(one-generator) list comprehensions. Most of the de�nitions will be self-explanatory. The de�nition
of types (GTypeDefinition) and formal parameters (GFormalParameter) is shared with the GinWorkflow

data structure, as de�ned in section 6.6. The Unparsed data constructor of AExpression is used to
embed unparsed literal strings of Clean code, which are entered by the user. AExpression is a higher
order type and includes an Extension data constructor, which is explained in the next section.

:: AModule= { name :: AIdentifier

, definitions :: [ADefinition]
, types :: [GTypeDefinition]
, imports :: [AImport]
}

:: AImport :== String

:: ADefinition= { name :: AIdentifier

, formalParams :: [GFormalParameter]
, returnType :: GTypeExpression

, body :: AExpression Void

, locals :: [ADefinition]
}

:: AExpression ex =
Unparsed String

| Lit String

| Var AIdentifier

| App [AExpression ex]
| AppInfix AIdentifier AFix APrecedence (AExpression ex) (AExpression ex)
| Lambda APattern (AExpression ex)
| Case (AExpression ex) [ACaseAlt ex]
| Tuple [AExpression ex]
| List [AExpression ex]
| ListComprehension (AListComprehension ex)
| Extension ex

:: ACaseAlt ex = CaseAlt APattern (AExpression ex)

:: AListComprehension ex = { output :: AExpression ex

, generator :: AGenerator ex
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, guard :: AExpression ex

}

:: AGenerator ex = Generator APattern (AExpression ex)

:: APattern :== String

:: AIdentifier :== String

:: AFix = Infixl | Infixr | Infix

:: APrecedence :== Int

7.5 Mapping to abstract syntax tree

Mapping modules The mapping from a top-level GinWorkflow, containing a GModule type to the
abstract syntax tree is simple: the module name and type de�nitions are mapped one-to-one. From
the imported modules, only the name is stored. Each GDefinition is mapped to an an ADefinition

in the AST: name and type are mapped one-to-one. The GDe�nitions' body has type GExpression,
which mapping is described below.

Mapping expressions A Gin GExpression is mapped to an AExpression in the abstract syntax
tree. A GExpression consists of a textual Clean expression, a static list, a list comprehension or a
graph.

• Textual Clean expressions (GCleanExpression) are not parsed. Rather, these are literally
embedded as Unparsed nodes in the AST.

• Lists and list comprehensions contain other GExpressions, which are mapped recursively. A
GListExpression is mapped to a List in the AST, a GListComprehensionExpression to a ListComprehension.

• Graphs are mapped in two steps. First, the GGraph is transformed to an intermediate SPTree,
as earlier described in section 7.3. The mapping of this SPTree is to an AExpression is presented
below.

Mapping SP-trees The SPTree structure contains the same nodes as in an original GGraph, how-
ever more conveniently arranged as a tree. The mapping spTreeToAExpression :: SPTree → AExpression Void

is de�ned as follows:

• Sequential compositions without a pattern are always mapped to in�x application of
the �| combinator:
SPSequence a b Nothing⇒
AppInfix "�|" Infixl 1 (spTreeToAExpression a) (spTreeToAExpression b)

• Sequential compositions with a pattern are always mapped to in�x application of the
�= operator with a lambda abstraction:
SPSequence a b (Just p) ⇒
AppInfix "�=" Infixl 1 (spTreeToAExpression a) (Lambda p (spTreeToAExpression b))

• Task nodes are mapped according to a node binding

• Parallel compositions are mapped according to a parallel binding. The node binding and
parallel bindings are explained below.
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Bindings The mapping of Task nodes and parallel compositions to AExpressions is de�ned in a
set of bindings. For each task node, and for each pair of split and merge connectors, a binding is
de�ned.

The mapping of task nodes (GNode) is de�ned by a NodeBinding structure, which contains a GGeclaration
of the node (section 6.6) and a parameter map, which de�nes how the node parameters are mapped
to an expression:

:: NodeBinding= { declaration :: GDeclaration

, parameterMap :: NBParameterMap

}
:: NBParameterMap= NBPrefixApp

| NBInfixApp AFix APrecedence

| NBCustom (AExpression ParameterPosition)
:: ParameterPosition :== Int

A node parameter map can be de�ned in three ways.

• A NBPrefixAppmapping results in de task name being applied to all its parameters in succession.
Given a task node named t with parameters a1 . . . an, the NBPrefixApp mapping results in the
expression App [Var t : [a1, . . ., an ] ] .

• A NBInfixAppmapping is used to map a node with two parameters to an in�x task combinator.
Given a task node named t with parameters a and b, the NBInfixApp fix prio mapping results
in the expression AppInfix t fix prio a b.

• In a NBCustom mapping, a custom AExpression can be speci�ed. This allows a single task node
to map to a complex iTask expression. The Extension constructor of an AExpression is used to
indicate a parameter position. If this mapping is applied, the parameter position is replaced
by the actual value of the parameter at the indicated position.

For parallel compositions, pairs of split and merge connectors map to a single AExpression. This
mapping is de�ned by a ParallelBinding structure:

:: ParallelBinding= { split :: GDeclaration

, merge :: GDeclaration

, type :: GTypeExpression

, fixedNrBranches :: Maybe Int

, parameterMap :: AExpression PBParameter

}

:: PBParameter= PBSplitParameter ParameterPosition

| PBMergeParameter ParameterPosition

| PBBranch BranchPosition

| PBBranchList

| PBApply ([AExpression Void] [AExpression Void]
[(Maybe APattern, AExpression Void)] → AExpression Void)

:: ParameterPosition :== Int

:: BranchPosition :== Int

The ParallelBinding structure contains the declarations of the split and merge connector and type of
the parallel expression. The fixedNrBranches parameter may limit a parallel composition to a �xed
number of branches. The parameterMap allows to specify an AExpression. The Extension constructor of
the AExpression is used to embed parameters found in the split connector, the merge connector, a
speci�ed branch number or a list of all branches. When the mapping is applied, these parameters
are replaced by their actual values.
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7.6 Pretty printer

The abstract syntax tree should be pretty printed to Clean source code.

A pretty printer has to apply the same amount of indentation to de�nitions on the same level.
Preferibly, it can also break long lines to make the output human-readable as well. A concise way
to implement such a pretty printer is by means of a pretty printing combinator library. Such a
library contains combinators for horizontal and vertical composition and indentation. Regrettably,
there is no such library available for Clean.

We decided to make a port of Leijens' PPrint library[24] to Clean. PPrint is a Haskell implemen-
tation of the pretty printing combinators described by Wadler[56]. The basic building block in
PPrint is a document, indicated by the Doc type. The<-> combinator concatenates documents hor-
izontally,<+> is similar but adds a space in between,<//>does vertical concatenation, and the indent
function indents a document with a speci�ed amount of spaces. hsep and vsep are the list-versions
of<-> and<//>, respectively.

Using PPrint, the implementation of the pretty printer is straightforward. To illustrate the prin-
ciple, the pretty-printing of a ADefinition is shown below. The pretty-printing of expressions is
implemented in an analogous way. An expression Unparsed s is put in parenthesis and inserted
literally in the output.

printADefinition :: ADefinition -> Doc

printADefinition def =: { ADefinition | name, formalParams, body, locals }
= printADefinitionType def

</> text name

<+> if (isEmpty formalParams) empty

(hsep (map (λfp = text fp.GFormalParameter.name) formalParams) <-> space)
<-> char '='
<+> printAExpression body

<//> if (isEmpty locals) empty

(text "where" <//> indent 4 (vsep (map printADefinition locals)))

In addition to the abstract syntax tree, the pretty printer also adds a Start function to the generated
document. This Start function writes the top-level Task de�nition def to a dynamic on disk:

Start :: *World -> *World

Start world

#(_, world) = writeDynamic "def" dynamic def world

= world

The entire document is written to an .icl �le on disk.

7.7 Clean compiler

The next phase involves compiling the generated .icl �le. We write a minimal project �le (.prj) to
disk, with the main module set to the generated .icl �le, and with the environment paths containing
the iTask libraries. Since the generated .icl makes use of writing dynamics, the dynamic linker is
enabled in the project settings.

The project �le is compiled by running the Clean IDE with the batch option:

CleanIDE.exe --batch-build myworkflow.prj

Because of the dynamic linker option, the output is a batch �le which launches the dynamic linker.
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7.8 Dynamics communication

After compilation, we launch the batch �le generated in the compilation process. This will result
in the task de�nition being written to a dynamic: a .dyn �le on disk.

Assuming that the iTask system is also compiled with the dynamic linker option enabled, the task
in the dynamic can be loaded and executed in another work�ow, by means of a combinator named
readDynamicTask:

readDynamicTask :: !String → Task (Bool,Task a) | iTask a

The readDynamicTask combinator has a simple implementation which uses the readDynamic function. It
takes the �lename of the dynamic and yields a task with a tuple: a Boolean indicating whether the
loading succeeded and the loaded task itself. The example below shows how to use readDynamicTask
to load and execute a Task Void from a dynamic:

runDynamicTask :: !String → Task Void

runDynamicTask s = readDynamicTask s �= λ(success, t) =
if success t (showMessage "loading dynamic "+++s

+++"failed")
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Chapter 8

Error handling

User interfaces should help users to reach their goals. During interaction, users may make mistakes.
A user interface should

�o�er error prevention and simple error handling so that, ideally, users are prevented
from making mistakes and, if they do, they are o�ered clear and informative instructions
to enable them to recover�[44]

The Gin editor cannot, by design, prevent the user from making any modeling mistakes (see chapter
6, design principles). Hence, the editor should o�er feedback if the user makes modeling errors.
The feedback should be speci�c, clear and understanable for the user. This helps the user to �nd
the cause of the error and recover from it.

This chapter discusses the architecture and implementation of error handling in the Gin editor.

8.1 Kinds of errors

In the compilation process of Gin diagrams, di�erent kinds of errors may occur:

1. Parse errors. The �rst compilation stage involves transforming the Gin diagram to Clean
source code. This fails if the diagram does not have a well-formed structure: either there is
no unique source- or sink node, split and merge connectors are not matched correctly, or no
path exists between a particular node and the source- and sink nodes.

2. Compiler errors. In the second compilation stage, the generated source code is compiled
by the Clean compiler. Compilation may fail for several reasons. The editor does not prevent
the user from making type errors, so the generated code may fail to typecheck. Furthermore,
embedded textual Clean expressions may contain syntax errors. Since these expressions are
put literally in the generated source code, an incorrect expression will cause the compilation
to fail.

8.2 Error handling

The implementation of this error handling can be divided into a number of subproblems. In case of
an error, the Gin applet in the users' web browser needs to highlight the location of the error and
show an appropriate message. However, the whole compilation process is performed server side.
We need to send the error location and message back to the client in a data structure. Besides, we
have to translate the errors, originating in both the parsing and Clean compilation stage, back to
the diagram.
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Figure 8.1: Gin editor with erroneous nodes highlighted

Figure 8.2: Gin editor showing error message pop-up window

8.3 Error paths

A Gin diagram is represented by the GinWorkflow data structure described in section 6.6. After each
editing operation, the front-end applet sends a new GinWorkflow value to the server. The compilation
of graphical work�ows is implemented server side. If compilation errors occur, the error message
and location of the error should be sent back to the client. In order to indicate the location of the
error, a method is needed to uniquely identify a position within the GinWorkflow structure. Since
this structure is essentially a tree structure composed of records and lists of records, we can use a
path to uniquely identify elements within this tree. The path starts at top level with a GModule.
A record �eld name is identi�ed by its name, an item in a list of records can be identi�ed by its
zero-based index.

A path in the GinWorkflow type is de�ned by:

:: GPath = GRoot

| GChildNode String GPath

| GChildNodeNr String Int GPath

For example, the following path indicates the third node in the body of the �rst de�nition:

GChildNodeNr "nodes" 2
(GChildNode "body" (GChildNodeNr "definitions" 0 GRoot))

The path is printed to a string in an XPath-like notation: elements are separated by slashes, list in-
dexes are written in square brackets. The above example is printed as "/definitions[0]/body/nodes[2]/"

8.4 Visualization of errors

In case of errors, a list of (error path, message) is sent back from the server to the front-end applet.
The front-end reads these messages and highlights the corresponding nodes by a red rectangle in
the diagram. An example is shown in �gure 8.1, which shows a screen shot of the editor. The
diagram has no unique end node, so both end nodes are highlighted in red.

If the mouse is moved over the highlighted node, a pop-up window appears which displays the
error message, as visible in �gure 8.2.
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8.5 Handling block detection errors

The block detection algorithm from section 7.3 uses the GParseResult error monad to report parse
errors. This monad can report an error message, but does not know the path to the erroneous
node if an error occurs.

In order to report both full path of an erroneous node, we change the de�nition of GParseResult to
return both paths and error messages. Furthermore, we de�ne a new monad named GParseState,
which combines a state and error monad. This monad keeps track of the current path and aborts
the current computation in case of an error.

:: GParseResult a = GSuccess a | GError [(GPath, String)]
:: GParseState a :== GPath → GParseResult a

For each monadic expression which traverses deeper in the hierarchy of the GinWorkflow, the path in
the GParseState state monad has to be updated. For this reason, we de�ne a set of combinators to
update the path during traversal of child nodes, and in case of an error, to report an error message
together with the current path. Similar combinators are de�ned for parsing lists of child nodes
and reporting errors in child nodes.

//add GChildNode to path, then performs GParseState a
parseChild :: String (GParseState a) → GParseState a

//aborts computation, report current path and error message
parseError :: String → GParseState a

We alter the implementation of the block detection function graphToSPTree and its helper functions to
use the above GParseStatemonad instead of the original GParseResultmonad. At the traversal of each
child node, we apply the parseChild combinator, or to map a list of child nodes, the parseChildMap

combinator. To demonstrate this adjustment, we show the new implementation of graphToSPTree
here. Its helper functions are adapted in an analogous way.

graphToSPTree :: GGraph → GParseState SPTree

graphToSPTree graph

# sources= [ n \\ n←graph.nodes | isEmpty (pred graph n) ]
# sinks = [ n \\ n←graph.nodes | isEmpty (succ graph n) ]
= case sources of

[source] = case sinks of

[sink] = subgraphToTree graph source sink

[ ] = parseError "No end node found"

sinks = parseErrorInChildren "nodes" sinks "End node is ambiguous"

[ ] = parseError "No start node found"

sources = parseErrorInChildren "nodes" sources "Start node is ambiguous"

8.6 Handling compiler errors

The error messages outputted by the Clean compiler are not meaningful for the Gin user, since
these messages relate to the generated source code, and not to the Gin diagram. We will illustrate
this by means of an example. Figure 8.3 shows an erroneous Gin diagram. The generated code is
shown below.

flow :: Task Void

flow = enterInformation ("Enter amount") �= λ amount = showMessage ("Amount is" + amount)

If we compile the �le containing this work�ow, we get the following error message:

Overloading error [flow.icl,11,\;11;53]:

"+" no instance available of type {#Char}

Overloading error [flow.icl,10,flow]:

internal overloading of "showMessage" could not be solved
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Figure 8.3: Work�ow containing overloading error

We need a way to relate the line numbers in the error message back to nodes in the Gin diagram.
The problem is that the node locations get lost in the compilation process, during the block
detection phase. As soon as a node is put in the SPTree structure, we have lost its position in the
diagram. Our solution is to keep track of the original node location throughout the compilation
process. In order to realize this, we make several changes in the compilation process:

1. We alter the SPTree de�nition to also store the path to each original node in the diagram.
The new de�nition of SPTree becomes:

:: SPPathNode= SPPathNode GNode GPath

:: SPTree = SPNode SPPathNode

| SPSeries SPTree SPTree SPPattern GPath

| SPParallel (SPPathNode,SPPathNode) [(SPPattern,SPTree)]

The block detection function graphToSPTree function is updated to include the GPath of every
node.

2. We add a PathContext constructor to the AExpression de�nition in the abstract syntax tree:

:: AExpression ex =
...

| PathContext GPath (AExpression ex)

The mapping process to the abstract syntax tree is changed as well: For each mapping of an
SPTree, the resulting AExpression is wrapped by the PathContext constructor, together with the
path.

3. We alter the pretty printer to keep track of a map from line numbers to GPaths. Each time a
PathContext has to be printed, the current line number and GPath is added to the map, Next,
the expression in the AExpression parameter is printed.

4. If the compilation process fails, we parse the error messages from the compiler by means of
a simple parser.

We extract the line numbers from the error messages. Using the map constructed in the
previous step, we can relate the line numbers back to the GPaths of nodes in the diagram. The
GPaths and error messages are sent back to client.

Although this approach works in principle, it still has a problem. The compilation process may
cause a complex Gin diagram to be translated to a very long expression on a single line. Therefore,
a single line number may map to a larger set of nodes, many of which may actually be correct!

We tackled this problem by putting each subexpression in a separatewhere clause. We implement
a transformation on abstract syntax trees which expands all subexpressions in the abstract syntax
tree to separate local de�nitions in a where clause. This makes the code look more cluttered, but
it is actually useful: now each subexpression is denoted on a separate line. Therefore, a single
line number in a compiler error maps just to a single node, so we can uniquely identify incorrect
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nodes in the diagram. The transformation is de�ned by a function named expandModule. We will
not elaborate on the details of the algorithm, but illustrate its operation by means of an example.
We show the code corresponding to �gure 8.3 before and after the transformation.

Before expanding subexpressions, the generated code looks as follows. Note that the arguments
of enterInformation and showMessage are on the same line. Hence, we cannot derive from the line
number which node in the Gin diagram is incorrect.

flow :: Task Void

flow = enterInformation ("Enter amount") �= λ amount = showMessage ("Amount is" + amount)

After expanding subexpressions, the same work�ow looks like this:

flow :: Task Void

flow = v2 �= λ amount = v4 amount

where

v1 = ("Enter amount")
v2 = enterInformation v1

v3 amount = ("Amount is" + amount)
v4 amount = showMessage (v3 amount)

The compiler reports an error in the line which starts with v3. This line maps to a unique node,
namely the parameter of the showMessage argument. By means of the subexpression expansion,
we are able to transform error messages back to individual nodes in the diagram.
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Chapter 9

Conclusions

9.1 Conclusions

Work�ow management systems (WFMSs) are systems for coordinating business processes, based
on a work�ow model. Work�ow models are expressed in a work�ow de�nition language (WDL).
Most WDLs have a graphical nature. iTask is a WFMS which uses an embedded domain speci�c
language as its WDL. This language is based on a combinator library, embedded in the Clean
functional programming language. While this approach brings the expressive power of the Clean
to work�ow models, it simultaneously puts up a barrier for users not familiar with functional
programming.

We assumed that fon non-technical users, a graphical WDL may be easier to use than a textual
one. Although there is no unambiguous evidence to support this claim, this user group may be
familiar with existing, mostly graphical, WDLs. Therefore, our research intended to investigate
the expression of iTask work�ows in a graphical notation.

First, we studied the �eld of existing graphical WDLs. A structured way of comparing WDLs
is by means of work�ow patterns. A work�ow pattern describes a business requirement. Most
work�ow patterns are implemented by speci�c graphical elements. We analyzed four WDLs, namely
work�ow nets, YAWL, EPCs and UML activity diagrams. Broadly speaking, these WDLs use
similar notations.

Using the same set of work�ow patterns, we made an analysis of the iTask WDL. This served
two purposes. First, it substantiated the claim in earlier work on iTask that it supports almost
all original work�ow patterns. Apart from patterns that assume a lack of synchronization, this
claim turned out to be true. Second, it provided us a handle to structurally compare the graphical
WDLs to iTask.

Starting from the iTask combinators, we de�ned a new notation named Gin: Graphical iTask
Notation. Gin resembles the existing graphical WDLs where possible.

For common iTask constructs which do not have a direct equivalent in graphical WDLs, we in-
troduced a new notation. However, we chose to limit these constructs to what is necessary for
expressing work�ows: Gin is not intended as a general purpose visual programming language.

In order to prove that work�ows expressed in Gin are executable, we have implemented a proof
of concept editor for Gin diagrams. The editor is integrated in the iTask system. This is realized
by means of specialization of the generic functions which generate the iTask user interface. A
compilation process transforms correct Gin diagrams into executable tasks.
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9.2 Future work

The research on the graphical notation for iTask opens up a range of new questions, of which we
hope they will be answered in the future.

Given that the Gin notation and implementation is now available, it would be useful to perform
an empirical study on the usability of Gin. Only in this way, we can substantiate our assumption
that a graphical WDL is easier to use for non-technical users than a textual one.

Gin currently supports only structured work�ows. Given the debate on structured versus unstruc-
tured modeling in the work�ow literature, it would be interesting to research if Gin can be extended
to support unstructured work�ows as well.

Graphical front-ends like Gin make good use cases for accessing the compiler via an API. An
API for the Clean compiler would enable a much simpler implementation of the iTask compilation
process: we could pass generated abstract syntax tree directly to the compiler, instead of having
to print the ASTs, write source �les which are read and parsed again by the compiler. Besides,
compiler errors can be passed in type-safe way.

Finally, a graphical tool like Gin could be extended to assist in handling running work�ows. Once
a modeled work�ow has started, it would be useful to monitor its current status in a diagram, and
make changes in a graphical and type-safe way.
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