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Abstract

Differential Power Analysis is commonly used to obtain information about the secret
key used in cryptographic devices. It requires power traces, which usually are high di-
mensional, but may leak key information at multiple time instances. Power traces may
be misaligned, which reduces the effectiveness of DPA. Principal Component Analysis is
a powerful tool which is used in different research areas to identify trends in a dataset.
Principal Components are introduced which describe the relationships within the data.
The largest principal components capture the data with the largest variance. These
Principal Components can be used to reduce the noise in a dataset or to transform the
dataset in terms of these components.
We propose the use of Principal Component Analysis to improve the correlation for the
correct key guess for Differential Power Analysis attacks on simulated DES traces, soft-
ware DES traces, hardware DES traces and hardware AES-256 traces. Since Principal
Component Analysis does not consider the time domain, but instead finds the maximum
variance within a dataset, we still find the correct key in the presence of countermeasures
like introducing random delays. We introduce a new way of determining key candidates
by calculating the absolute average value of the correlation traces after a DPA attack on
a PCA-transformed trace. A comparison between PCA and static alignment is made.
We conclude that Principal Component Analysis can successfully be used as a prepro-
cessing technique to reduce the noise in a traceset and improve the correlation for the
correct key guess for Differential Power Analysis attacks.
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Chapter 1

Introduction

Side-channel attacks are indirect methods which are used to find secret keys in crypto-
graphic devices. These devices include smartcards, set-top boxes and mobile phones. On
these devices, cryptographic algorithms are implemented to ensure encrypted communi-
cation. Smartcards can sometimes contain a software implementation of some algorithm
but they might also have a cryptographic co-processor, where the larger devices usu-
ally have a dedicated hardware implementation. In this thesis, the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES) algorithms are used as
target encryption algorithms. The secret keys used for the algorithms are usually well
protected within cryptographic devices. If the key of a device is found, the device is
considered broken. Depending on the scenario where the device is used, an adversary
can cause serious harm. If, for example, the cryptographic key of a smartcard which is
used in a Pay-TV application can be found, one can watch the channels for free. If this
happens at a large scale, this might have serious economic consequences. A widely used
method to recover secret keys is by making use of a side-channel.

Side-channel attacks make use of side-channel information, which is information that
can be acquired from a cryptographic device that is not the plaintext nor the ciphertext.
This information is leaked because of weaknesses in the physical implementation of the
algorithm.

An example of a widely used side-channel attack is Differential Power Analysis (DPA)
[KJJ99]. The power consumption of a cryptographic device is dependent on the data
which is being processed. The secret key is used during an encryption or a decryption.
This means that the power consumption of a cryptographic device is dependent on the
used key. This power consumption can be measured by creating power traces. DPA
analyses the statistics of the power measurements on a device in order to derive the
used cryptographic key. Depending on the amount of noise in the measurements, a lot
of power traces might be required in order for a DPA attack to be successful. Manu-
facturers of cryptographic devices usually implement countermeasures on their devices.
These countermeasures also complicate DPA substantially.

Principal Component Analysis (PCA) [Jol02] is a technique which is used to identify
trends in multidimensional datasets. It can be used to reduce the noise in a dataset or
transform the data in terms of lines that describe the relationships within the data the
best. It captures data with the same amount of variance in different, so-called, Principal
Components. The key leakage in power traces usually has a large amount of variance.
Power measurements usually also contain noise. PCA can be used to reduce the amount
of noise while keeping only the components which capture the key leakage.
DPA uses the measurement data to find the used secret key. Since these measurements
usually contain a lot of noise, we could potentially obtain better results if we could
reduce this noise in some way.

1



1. Introduction

In this thesis, the effects of PCA on DPA attacks are analysed.

In order to perform a successful DPA attack, one needs to be sure that the same
operation of the algorithm is executed at the same time within each power trace in order
to compare the values. This is called alignment. Power traces are easily misaligned since
it is very hard to time the recording of a trace. Furthermore, there are countermeasures
against side-channel attack which introduce random time delays in the execution of the
algorithm which causes power traces to be even more misaligned. Different methods
have been proposed to make aligning traces easier, e.g. static alignment [MOP07] and
elastic alignment [vWWB]. In this thesis, the effect of Principal Component Analysis
on misaligned traces is analysed. Also, a comparison is made between PCA and static
alignment in terms of their effect and the computation time.

We analyse power measurements which are taken from simulated DES encryptions,
software DES (smartcard), hardware DES (smartcard) and hardware AES-256 (SASEBO-
R).

Template attacks using Principal Component Attacks are described in [APSQ06].
Before they perform a normal template attack, they transform the traces in order to be
able to select relevant features. They use PCA to find the maximum variance. In this
thesis, we won’t touch the subject of template attacks. We make use of the same PCA
transformation, but dive more into noise reduction and look at the behaviour of PCA
in the presence of countermeasures.

[BNSQ03] also touches upon Principal Component Analysis as a method to improve
power attacks. They cover the effect of PCA on Simple Power Analysis, while we study
the effect of PCA on Differential Power Analysis.

This thesis is organized as follows. Chapter 2 describes the DES algorithm since
this is the algorithm which we use the most for our experiments. Chapter 3 describes
what side-channel attacks are. Since our focus is on power analysis, we discuss Simple
Power Analysis and Differential Power Analysis in particular. Countermeasures against
DPA are covered in Chapter 4 since we want to analyse the effect PCA has in the pres-
ence of one of these countermeasures. Chapter 5 describes the background of Principal
Component Analysis. Our measurement setup and the way we acquire traces can be
found in Chapter 6. Our experiments with PCA and noise reduction on the different
tracesets are described in Chapter 7. Chapter 8 contains the experiments with a PCA
transformation of power measurements. The alignment problem and the effect of PCA
on this problem is discussed in Chapter 9. In Chapter 10 our conclusion and further
research is described.

2



Chapter 2

Data Encryption Standard (DES)

2.1 Introduction

The Data Encryption Standard (DES) is a block cipher which was invented in 1970
by IBM. In 1976 it became a Federal Information Processing Standard (FIPS) in the
United States. After its initial publication, the standard has been revised 3 times. DES
can not be considered secure anymore, [Wie94] shows how to build an exhaustive DES
key search machine for 1 million dollar that can find a key in 3.5 hours on average. This
is the reason why the use of Triple-DES is advised [US 99]. Triple-DES is very widely
used in practice since it still is considered to be secure.
Since the Advanced Encryption Standard (AES) became the successor of Triple-DES,
US government agencies have until 2030 to switch to AES. After 2030, they are not
allowed to use Triple-DES anymore [Bar08].

For our experiments we mostly target DES since we have access to a DES simulator,
a software DES implementation and a hardware DES implementation.

2.2 DES

DES makes use of a 64-bit key, of which only 56 bits are actually used by the algorithm.
The other 8 bits are only used for error-detection.

The DES algorithm consists of 15 identical rounds. The 16th round uses the same
functions as the other 15, but does not swap the L and R block afterwards (irregular
swap). For an overview, see figure 2.1. DES takes blocks of 64 bits of plaintext as
input and returns an output of blocks of 64 bits of ciphertext. The first operation in
the algorithm is a permutation of the plaintext. This permutation is called the Initial
Permutation (IP ). In this step, the bits of the plaintext are switched in a fixed order.
Then the 64-bit block is split into two 32-bit blocks, a left (L) and a right (R) halve (L0

and R0 in figure 2.1).

After these initial steps, the round operations start. During each round, a 48 bit
block (Kn) of the key is derived by permuting a, depending on the round number (n),
selection of bits from the full key. Then the previous L and R block are used to derive
the next block using a cipher function (f) (2.1).

Ln = Rn−1

Rn = Ln−1 ⊕ f(Rn−1,Kn) (2.1)

The cipher function f takes the 32-bit block R, and expands it using an expansion
function E to a block of 48 bits. This expansion function is a fixed permutation where
the bits in some positions are copied to other positions in order to make a 48-bit block.

3



2. Data Encryption Standard (DES)

This result is then added bit-by-bit to the 48 bit key (modulo 2). This result is then
divided into 8 blocks of 6 bits (2.2). The function further contains 8 substitution boxes
(S1,...,S8) which are commonly called S-boxes. These boxes take a 6-bit input, and
result in a 4-bit output in order to get a result of 8 x 4 = 32 bits again. The S-boxes are
a lookup table where, depending on the input, the corresponding output can be found.
The principle is the same for all S-boxes but they use different tables. They are used to
reduce the relationship between the key and the ciphertext.

The final operation within this function f is a permutation operation which switches
the bits to obtain the final result (2.3).

B1, B2, ..., B8 = K ⊕ E(R) (2.2)
f(R,K) = P (S1(B1), S2(B2), ..., S8(B8)) (2.3)

For an overview of the cipher function f , see figure 2.2.

The final operation is a Final Permutation (FP) which switches the bits of the ci-
phertext in a fixed order. This operation is the inverse of the initial permutation to
facilitate easy decryption.

Decryption works by running the algorithm with inverted rounds and by making
sure that the right keys are used in subsequent rounds.

Modern equipment (e.g. the Cost-Optimized PArallel COde Breaker (COPACOBANA)1)
can relatively easy brute-force the 56-bit key which is used by DES. Also, DES is prone
to a Linear [Mat94] and Differential Cryptanalysis attack [BS93]. Because of these is-
sues, there became a need for a new, more secure, algorithm. 3-DES was proposed
[US 99].

2.3 3-DES

Triple DES (also 3-DES or Triple Data Encryption Algorithm (TDEA)) basically con-
sists of a DES encryption using one key, followed by a DES decryption using another
key. The resulting ciphertext is encrypted again (2.1).

ciphertext = Ek3(E−1
k2 (Ek1(plaintext))) (2.3)

The standard defines three ways how this key bundle (k1, k2, k3) can be chosen:

• k1, k2 and k3 are independent keys (168 bit key).

• k1 and k2 are independent keys and k1 = k3 (112 bit key).

• k1 = k2 = k3. This is basically the same as a single DES encryption since the
decryption cancels out the first encryption (56 bit key). Using this key bundle
makes the algorithm backwards compatible with DES.

For more information on DES or Triple-DES, the reader is referred to [US 99].

1http://www.copacobana.org
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2.3. 3-DES

Figure 2.1: An overview of the DES rounds [MVO96]
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2. Data Encryption Standard (DES)

Figure 2.2: An overview of the DES cipher function [MVO96]
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Chapter 3

Side-Channel Attacks and
Differential Power Analysis

3.1 Introduction

Cryptographic devices like smartcards, set-top boxes, mobile phones, PDA’s and RFID
tags are becoming a large part of modern society. Their private keys, which are used
for the cryptographic algorithms are usually kept safe in a secure way. Side-channel
attacks use weaknesses in the physical implementation of an algorithm in order to find
exploitable information other than the plaintext or ciphertext. Testing laboratories use
side-channel attacks to test the protection of a cryptographic device. Researchers apply
side-channel attacks to test new countermeasures or try to invent new attacks. Finally
there are the ’bad guys’ who actually use side-channel attacks to find the secret key
within a cryptographic device in order to break it.

The main advantage of side-channel attacks is that they are applicable to most
present circuit technologies. In most cryptographic devices, a secure cryptographic
algorithm is used, where secure means that performing a brute force attack on the al-
gorithm to find the secret key is infeasible. The main property which is exploited by
side-channel attacks, is that the physical implementation of these algorithms can leak
some amount of information.

If some information about the algorithm is known (either by general knowledge
or reverse engineering), it might be possible to measure some characteristics of the
system in order to exploit this information. There are two categories of side-channel
attacks, passive and active attacks. Examples of passive side-channels that may be
used are power [KJJ99], electromagnetic radiation [QS01], timing [Koc96] and sound
[ST04],[Bri91]. Active side-channel attacks are e.g. fault injection [BDL97] and cold-
boot attacks [HSH+09].

For many secure applications, side-channel testing is mandatory. There are multiple
testing laboratories who can evaluate these cryptographic devices, Riscure B.V. is one of
them. There are different frameworks which describe how a cryptographic device should
be protected. If the device is considered safe according to these frameworks, they can
be certified. An example of such a framework is the Common Criteria for Information
Technology Security Evaluation (Common Criteria or CC).

The subject of this thesis are power analysis attacks. There are two basic types
of attacks, Simple Power Analysis (SPA) and Differential Power Analysis (DPA). The
reason they work and their main differences will be discussed in the following sections.
It is important to note that power analysis attacks are usually non-invasive, which
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means that mounting an attack does not cause damage to the device and thus might be
unnoticed.

3.2 Power consumption

The power consumption of a cryptographic device can leak information about the secret
key used within the device since it is dependent on the data that the circuit processes.
This is caused by the low-level design of these devices. The basis of almost every elec-
tronic device are CMOS (Complementary Metal Oxide Semiconductor) circuits. This
technology has a characteristic power consumption which can be used in power analysis
attacks. A CMOS circuit consists of logic cells which contribute to the total power
usage of the circuit. The power consumption depends on the number of logic cells, the
connections between them and how the cells are built. A CMOS circuit is provided with
a constant supply voltage Vdd.

The simplest logic cell is the CMOS inverter, figure 3.1 shows its design. An inverters
power consumption is based on two parts, static power consumption (Pstat) and dynamic
power consumption (Pdyn) [MOP07].

Pinverter = Pstat + Pdyn

The static power consumption is the power that is consumed when there is no switch-
ing activity within the cell. The dynamic power consumption consists of the power which
is used when an internal signal or an output signal of a cell switches. The static power
consumption of CMOS circuits is typically very low. When you have small structure
sizes however, this consumption might be significant. The dynamic power consumption
is dependent on the input and the output of a cell. A cell can perform four transitions:
0 → 0, 1 → 1, 0 → 1 and 1 → 0. In the first two transitions, only static power is con-
sumed, while in the latter two transitions, also dynamic power is consumed. Dynamic
power is used because the load capacitance of a cell needs to be charged and there oc-
curs a short circuit for a short period of time if an output signal of a cell is switched.
We can measure the current flow on Vdd to see if there occurred a transition or not [AO].

Figure 3.1: A CMOS inverter
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3.3. Simple Power Analysis (SPA)

3.3 Simple Power Analysis (SPA)

Simple Power Analysis (SPA) was, together with Differential Power Analysis (DPA),
first introduced in 1999 by Paul Kocher et al. [KJJ99]. Even though the name suggests
otherwise, SPA is not that simple.

In order to mount an SPA attack, only one or several power traces of a cryptographic
device executing the encryption or decryption of a known input are needed. A prereq-
uisite for this attack is some knowledge of the implementation of the algorithm. Ideally,
these power traces only show the power consumption of the gates used in the encryp-
tion/decryption. This is however not the case, there always exists some amount of noise.

The total power consumption at some point in time consists of the constant power
consumption and the electronic noise, the switching noise and an exploitable part (3.1)
[MOP07].

Ptotal = Pconstant + Pswitchingnoise + Pelectricnoise + Pexp (3.1)

The more measurements one has, the easier it is to reduce the noise by taking the
mean of the traces. SPA attacks work for example on algorithms which have condi-
tional branches. This means that they execute different instructions depending on the
processed value. If one has have knowledge of the implementation of the algorithm,
one might be able to find which branch was taken, and what the value of a specific bit
must have been. The DES algorithm contains a lot of permutations. Software imple-
mentations of this algorithm might use a lot of conditional branches [KJJ99]. Without
countermeasures, these branches can easily be found in power traces when performing
SPA. Figure 3.2 shows two traces of a DES encryption, the difference is in clock cycle
6 where in the upper trace the microprocessor performs a jump instruction which is
not present in the lower trace [KJJ99]. Using this method it might be possible to find
different bit values and reconstruct parts of the used key.

Figure 3.2: Two traces of a DES encryption [KJJ99]

According to Kocher et al. [KJJ99], it is fairly easy to prevent SPA attacks by not
using conditional branches in software implementations. Also, most hardware imple-
mentations have very small power consumption variations which means that a single
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trace might not be enough to find the differences. In order to make power analysis more
successful, Differential Power Analysis was proposed.

3.4 Differential Power Analysis (DPA)

Differential Power Analysis is an advanced power analysis technique which uses sta-
tistical methods in order to define a relationship between power measurements and a
predicted power consumption of the device. This power consumption can be predicted
by different methods which will be explained below. In order to mount a DPA attack, no
detailed knowledge of the implementation of the cryptographic algorithm on the device
is needed. Since this usually is the case when attacking a device, this method is very
suitable. The main drawback is that DPA usually needs a lot of traces in order to find
the relation. Acquiring the necessary amount of traces might take a long time, or might
not be possible at all due to different countermeasures which, for example, only allow
the device to perform a limited number of encryptions in a fixed amount of time. The
influence of the processed data on the power is analysed at a fixed moment in time.
DPA attacks are typically done in 5 steps [MOP07], see figure 3.4 for an overview.

• First an intermediate result of the cryptographic algorithm is chosen where a non-
constant data value d is known. The value is usually the plaintext when attacking
the first round and the ciphertext when attacking the final round. The function
for this intermediate result is f(d, k) where k is a small part of the key.

• Then we take power measurements of encryption or decryption operations of the
device.
We choose a sufficiently large number D of plaintexts. Depending on the chosen
position in the algorithm in the first step, we can calculate beforehand what the
value of d should be for each encryption/decryption run D. We define a vector
d = (d1, ..., dD).
For each of these D runs, a power trace is created with T samples. Hence we can
create a matrix T of size D ∗ T which contains the power traces corresponding to
each data block.

• The third step is to calculate the hypothetical values of d for every possible subkey
k out of the key space K. In the case of DES, this key space has size 64 since there
are 64 different subkeys for each S-box. We choose a position to attack where the
used subkey is small. Since the subkey of an S-box is typically small enough to
do an exhaustive search, we can calculate the function f(d, k) for each data value
d and each subkey k. These results can be stored in a matrix V of size D ∗ K.
One of the keys we have tried here must correspond to the actual subkey used in
the device. The goal is to find the column in this matrix V which was processed
during the encryption/decryption runs.

• The fourth step is to map the hypothetical intermediate values to hypothetical
power consumption values using a power model. This way we can simulate the
power consumption the processed data is expected to have. This power model will
be explained later. These calculations result in a matrix H of size D ∗K which
contains these hypothetical power consumption values.

• The last step in a DPA attack is comparing the hypothetical power consumption
values to the measured power consumption values. The hypothetical power con-
sumption values of each key hypothesis are compared with the power traces at
each position. This results in a matrix R of size K ∗ T which contains the results
of the comparison. Depending on the used power model, there exists a relation
between the hypothetical power consumption and the real power consumption. We
can use statistical methods to derive this relation. If there are sufficient traces,
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a suitable power model, and a suitable statistical analysis algorithm is used, the
highest value in this matrix will correspond to the correct key guess.

By repeating these steps for each S-box within the algorithm, one can derive all
subkeys.

The power traces must be perfectly aligned in order to be sure that the measured
values at the same moment in time are caused by the same operation within the algo-
rithm. This alignment problem is explained in section 9.1.

3.5 Template attacks

The strongest kind of DPA attacks are template-based DPA attacks [AR03]. For a
template attack, one needs full access to and control over a training device. This device
is used to characterize the target device. Then a template is built for every possible key
using the training device, the signal and the noise needs to be modelled. A captured
trace of the target device is classified using these templates, the goal is to find the
template which fits best to the captured trace.

3.5.1 Number of traces

It is hard to estimate beforehand how many traces we need to acquire. On poorly
protected devices this may be tens, but on well-protected hardware devices this may be
millions. In case of using the correlation coefficient, one needs to find out how many
traces are necessary in order to find which column of H has the strongest correlation to
a column of T. [MOP07] provides a rule which is based on three assumptions:

• A DPA attack is successful if there is a significant peak in the row of the correct
key ck in the result matrix R.

• The power model fits the power consumption of the attacked device.

• The number of traces that are needed to see a peak only depends on the correlation
between the correct key ck and the correct moment of time ct. The attacked
intermediate result is processed in only a small number of samples as compared to
the whole power trace which means that many operations are executed that are
independent of this intermediate result. This means that most of the correlations
between ck and ct are zero. One needs to find if the correlation coefficient between
ck and ct is zero or not.

When we want to assess the number of traces which are needed for a DPA attack
with a confidence of 0.0001, the following formula can be used [MOP07]:

n = 3 + 8 3.719

ln2(
1+ρck,ct
1−ρck,ct

)

3.6 Power model

A DPA attack is most successful if the modelled power consumption is as close to the
real power consumption as possible. A basic netlist describes the cells of a circuit and
the connections between them. It could also include signal delays and rise and fall times
for the signals in the circuit [MOP07]. If one has such a netlist, one can simulate the
transitions within the circuit. Then one can map the simulated transitions to a power
trace using a power model. The more precise the netlist is, the easier it is to create
a correct power model. A generic model which can be used is the Hamming Distance
(HD) model.
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3.6.1 Hamming Distance model

Since the power consumption strongly depends on the number of flips done by the tran-
sistors within the circuit, it is possible to check how many of these had to be applied
to get from a value to another value. Depending on the device which is being attacked,
and the knowledge of an attacker, he can usually make some assumptions about the way
the device is built.
The Hamming Weight (HW) of a byte is the number of bits which are set to one in the
binary value. The Hamming Distance (HD) between two values is the number of zero
to one and one to zero transitions which have to occur in order to transform the first
value into the second value. This method uses a couple of assumptions while considering
CMOS. For example, it is assumed that zero to one and one to zero transitions have
the same power consumption. This is also assumed for zero to zero and one to one
transitions. Also, it is assumed that all cells contribute equally to the power consump-
tion. Since this is a fairly easy power model which can be used to calculate the rough
estimate of the power consumption relatively quickly, it is commonly used [MOP07]. If
an attacker knows which values are being processed by a part of the netlist, he can use
the Hamming Distance model to simulate the power consumption.

3.6.2 Hamming Weight model

If an attacker does not know consecutive data values or has no knowledge of the netlist,
the Hamming Weight model can be used. An attacker needs to know one value which
is processed. He assumes that the power consumption is proportional to the Hamming
Weight of the value. In CMOS circuits, the power consumption depends on the transi-
tions and not on the processed values [MOP07].

For this model, we assume that before processing the known value v1, another, un-
known value v0 is processed. There are multiple scenarios which can occur, depending
on the value of v0. If the bits of v0 are equal and constant, one gets that the simulated
power consumption is directly or inversely proportional to the actual power consump-
tion since if all bits of v0 are 0: HD(v0, v1) = HW (v0 ⊕ v1) = HW (v1). If all n bits of
v1 are 1: HD(v0, v1) = HW (v0 ⊕ v1) = n−HW (v1). This means that in this case the
HW and the HD model have equivalent results.

There are other scenarios which are more likely to occur, for an explanation of
these scenarios the interested reader is referred to section 3.3.2 of [MOP07]. The main
conclusion is that the HW model can be used instead of the HD model but it performs
much worse since the relation between the Hamming Weight of v1 and the actual power
consumption can become very weak.

3.6.3 Other models

If the power consumption of a specific device is known in more detail, a power model can
be created for that device in order to model the power consumption more effectively, and
thus make a DPA attack more effective. There are various methods which can be used
to derive such a model, two examples are toggle counts [TV05] and SPICE simulation
[Nag75].

3.7 Side Channel Analysis distinguishers

A side-channel analysis distinguisher is a statistical test which is used to determine
the relationship between the hypothetical power consumption and the measured power
traces. The difference of means and correlation are two of those distinguishers.
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3.7.1 Difference of means

The original, and first published, DPA attack makes use of the ”difference of means”
method [KJJ99]. This method is used to determine the relationship between the hy-
pothetical power consumption (matrix H mentioned above) and the measured power
consumption (matrix T mentioned above). In step 4 only a binary power model can be
used which means that hi,j can only be one or zero. This means that the power con-
sumption can not be described with a high accuracy. The power consumption in each
column of H is a function of the input data and the key hypothesis. If the key guess is
incorrect, the value of hi will be correct with a probability of 1

2 for each plaintext. An
attacker can split the matrix T in two rows, one where hi is zero and one where hi is
one. Then one can calculate the mean of both rows and subtract those from each other.
The result with the largest peak, which indicates a big difference between the two rows,
is the correct key since this indicates a relation between hck and some columns of T.

3.7.2 Correlation

Compared to the difference of means method, using the correlation uses more resources,
but it is less sensitive to noise which means that it produces better results in most cases.
Analysis using the correlation coefficient is also called Correlation Power Analysis (CPA)
[BCO04]. The correlation coefficient ρ(X,Y ) defines the linear relationship between two
points (X and Y ) of a trace and it can take values between plus and minus 1. The
correlation is defined as:

ρ(X,Y ) = Cov(X,Y )√
V ar(X)·V ar(Y )

The correlation coefficient is used to determine the linear relationship between the
hypothetical power consumption (H) and the measured power consumption (T ). As
shown before, in step 5 of a DPA attack, these estimated correlation coefficients are
stored in the matrix R. This correlation coefficient can be calculated as:

ri,j =

∑D

d=1
(Hd,i−H̄i)·(Td,j−t̄j)√∑D

d=1
(Hd,i−H̄i)2·

∑D

d=1
(Td,j−T̄j)2

Figure 3.3: The rows of matrix R that correspond to the wrong key guess 62 and the
correct key guess 63

Figure 3.3 shows two plotted rows of R, one for the wrong key guess (62) and one
for the correct key guess (63). The peak for key guess 63 can easily be spotted. Since
this is the largest peak in the correlation traces for all 64 sub keys, this means that this
key guess has the highest correlation coefficient and thus probably the correct key.
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3.8 Common measurement setup

Taking power traces of a device needs some hardware and some software components.
First of all, one needs access to the target device. This can for example be a smartcard.
A smartcard reader is used to communicate with this smart card since we want to send
some known plaintexts which it should encrypt. Then we need an oscilloscope in order
to create power measurements. If one sends these measurements back to a computer,
one can visualize them on the screen. Our specific measurement setup is discussed in
the next chapter.
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Figure 3.4: A block diagram which illustrates the steps of a DPA attack [MOP07]
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Chapter 4

Countermeasures against Differential
Power Analysis

4.1 Introduction

Manufacturers of the mentioned cryptographic devices are also keeping up with the
latest research in the area of side-channel attacks. They try to find countermeasures
against the known attacks, but also try to find new attacks before they are published by
someone else so they can come up with countermeasures in advance. Researchers also
invent new attacks followed by countermeasures against them. The goal of the counter-
measures is to avoid or reduce the dependencies between the power consumption and
the intermediate values of the executed algorithm. In this thesis we evaluate the effects
of Principal Component Analysis on Differential Power Analysis. Since a DPA attack is
less successful in the presence of countermeasures, we try and process the power traces
in such a way that the countermeasure becomes less effective.

There are several drawbacks of countermeasures:

• Countermeasures might be very expensive to implement. This could be a big issue
depending on the number of chips and the amount of money the manufacturer
wishes to spend.

• Countermeasures against for example DPA, might not be resistant to other side-
channel attacks as for example ElectroMagnetic Analysis (EMA) [QS01].

• Countermeasures can lengthen the execution time of the algorithm. This might
be an issue when the algorithm is used in time-sensitive applications.

There are different approaches in applying countermeasures [MOP07],[PMO07].

• The first method is hiding, in which the algorithm is processed normally, but
finding the hidden exploitable information is very hard.

• The second method is masking, in which the power consumption of a cryptographic
device is made independent of the intermediate values of the algorithm.

• The third method is on the protocol level where, for example, session keys can be
implemented. This obviously makes it much harder to break the used key since the
key changes each session. This method is in practice not always applicable, since
it requires the key to change frequently, this might be impracticable or impossible
in some protocols.

In this thesis, we focus on the first two methods, hiding and masking.
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4.2 Hiding

The main goal of hiding is to make the power consumption independent of the interme-
diate values and independent of the operations that are performed. [MOP07] mentions
two ways in which this can be achieved. The first is to make the power consumption
random so that a random amount of power is consumed each clock cycle. The second
way is to make sure that all operations and all data values consume the same power so
that each clock cycle the same amounts of power are consumed. These methods can be
applied in two ways.

The first way to implement these methods is to randomize the moments of time of
the operations of the cryptographic algorithm. This creates a change in the time dimen-
sion of the power consumption. This randomization can be created by inserting dummy
operations at randomized intervals at different locations when the cryptographic algo-
rithm is executed. In order for this method to work, there needs to be a random number
generator which supplies the seeds for the number and location of dummy operations.
Since DPA requires traces which are aligned, a DPA attack usually needs a lot more
traces in order to be successful when this method is applied.
Another way to create randomization is to shuffle the operations of the cryptographic
algorithm. Take for example a DES encryption, where S-box lookups do not have to be
performed in a fixed order. Random numbers could be used to create a new sequence for
S-box lookups for each encryption. This causes the power consumption to be random
for each run. In practice, both of these methods are combined.

The second way the methods can be applied is to change the power consumption
characteristics of the performed operations and thus cause a change in the amplitude.
If we lower the signal-to-noise ratio (SNR), performing a DPA attack becomes much
harder. The higher the signal-to-noise ratio is, the higher is the leakage.

SNR =
V ar(Pexp)

V ar(Psw.noise+Pel.noise)
[MOP07]

Where Pexp is the exploitable component of the power consumption, Psw.noise is the
switching noise and Pel.noise is the electronic noise.

This implies that if V ar(Psw.noise + Pel.noise) is raised, the signal-to-noise ratio de-
creases. This means we could either increase the noise or reduce the signal. We could
increase the noise by performing several operations in parallel, as, for example, hardware
implementations of cryptographic algorithms do.
Another way to decrease the SNR is to reduce the signal and thus make each operation
consume the same amount of power. If the power consumption of each cell is constant,
the power consumption of the whole device is constant.

Examples of several logic styles which implement hiding are Sense Amplifier Based
Logic (SABL) [TAV02], Wave Dynamic Differential Logic (WDDL) [TV04] and Dual-
rail Transition Logic (DTL) [MSS09].

Attacks on misaligned power traces are discussed in chapter 9.1. Our focus will
be on a countermeasure which introduces random delays. Since Principal Component
Analysis does not look at the time domain, but instead at the variance of samples, it
could potentially negate the effects of random delays.

4.3 Masking

Masking countermeasures can be implemented at the architecture level without chang-
ing the power consumption characteristics of the cryptographic device. Masking causes
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the power consumption to be independent of the intermediate values. Masking is basi-
cally done by creating a random value for each execution which is called a mask. This
mask is then used to conceal the intermediate value by performing an operation on the
two values, for example an exclusive-or (XOR) vm = v ⊕m or an arithmetic operation
vm = v + m (mod n) depending on the used cryptographic algorithm. Since vm and
v are uncorrelated, and only vm and m are processed, the power consumption remains
uncorrelated to v. One must be careful in defining the number of different masks. Us-
ing many different masks obviously decreases the performance. Using just one mask
however is also not advisable, since when two masked values are XOR’ed together, one
should be sure that the result is masked as well [MOP07].
It is important that each intermediate value needs to be masked. At the end of the
algorithm, there needs to be an unmask step in order to obtain the ciphertext.

It is also possible to perform masking at the cell level, which uses the same basic
principles as mentioned above. Examples of masked logic styles are Masked Dual-rail
Precharge Logic (MDPL) [PM05] and Random Switching Logic (RSL) [SSI04]. Since
masked implementations are not considered in this thesis, the interested reader is advised
to read [MOP07].
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Chapter 5

Principal Component Analysis
(PCA)

5.1 Introduction

Principal Component Analysis (PCA) is a technique which is widely used to reduce the
noise or the dimensionality in a data set, while retaining the most variance, by finding
patterns within it. The origin of PCA can be traced back to Pearson [Pea01], but the
modern instantiation was formed by Hotelling [Hot33].
PCA searches for linear combinations with the largest variances, and divides them into
Principal Components (PC) where the largest variance is captured by the highest com-
ponent in order to extract the most important information. PCA is used in many
different domains such as gene analysis and face recognition. An example of PCA and
the applications of PCA to side-channel analysis will be given.

Figure 5.1: A plotted data set with both
of its principal components [Jol02]

Figure 5.2: Plot of the transformed data
set of figure 5.1 with respect to both
principal components [Jol02]

In order to illustrate the workings of PCA, we give a small example for a two-
dimensional (x,y) data set with 50 observations [Jol02]. In figure 5.1 a plot of this data
set is given. The first principal component is required to have the largest variance. The
second component must be orthogonal to the first component while capturing the largest
variance within the dataset in that direction. These components are plotted in figure
5.1. This results in components sorted by variance, where the first component captures
the largest variance. If we transform the data set using these principal components, the
plot given in figure 5.2 will be obtained. This plot clearly shows that there is a larger
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variation in the direction of the first principal component.

When we apply this example to power measurements, we have a data set where the
dimensionality is equal to the number of samples and the number of observations is
equal to the number of traces. This means that the number of Principal Components
which can be deduced from a power trace is equal to the number of samples.

5.2 Mechanics

As mentioned before, PCA is mostly used when trying to extract interesting information
from data with large dimensions. Power traces usually have large dimensions, and one
would like to find the information of the key leakage within them. This could make them
an ideal target for Principal Component Analysis. In order to make such an analysis, a
few steps have to be performed [Smi02].

• First, the mean from each of the dimensions n of the traces Ti, is calculated in a
vector Mn.

Mn =

T∑
i=1

Ti,n

n

This mean Mn must be subtracted from each of the dimensions n for each trace Ti.

Ti,n = Ti,n −Mn

• Construct the covariance matrix Σ. A covariance matrix is a matrix whose (i, j)th
element is the covariance between the ith and jth dimension of each trace. This
matrix will be a n∗n matrix where n is equal to the number of samples (dimension)
of the power traces. This means that the calculation time increases quadratically
relative to the number of samples. This is also the main drawback of PCA.

The covariance for two dimensions X and Y is defined as follows:

Cov(X,Y ) =

∑n

i=1
(Xi−X̄)(Yi−Ȳ )

n−1

Using the formula for the covariance, the covariance matrix is defined as follows:

Σn∗n = (ci,j , ci,j = Cov(Dimi, Dimj))

Where Dimx is the xth dimension.

• Then calculate the eigenvectors and eigenvalues of the covariance matrix.

Σ = U ∗ Λ ∗ U−1
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Where the eigenvalue matrix Λ is diagonal and U is the eigenvector matrix of Σ.
These eigenvectors and eigenvalues provide information about the patterns in the
data.

The eigenvector corresponding to the largest eigenvalue is called the first principal
component, this component corresponds to the direction with the most variance.
Since n eigenvectors can be derived, there are n principal components. They have
to be ordered from high to low based on their eigenvalue. Afterwards, the first
principal component represents the largest amount of variance between the traces.

• Choose p components which one wishes to keep, and form a matrix with these
vectors in the columns. This matrix is called the feature vector.

With this feature vector of length p, two things can be done. The original data can
be transformed to retain only p dimensions, or the noise of the original data set can be
reduced using some components while keeping all n dimensions. These applications are
discussed in section 5.4.

5.3 Choosing the right number of principal components to keep

Choosing the right number of principal components to keep is essential in order to gain
optimal results. In chapter six of [Jol02] multiple ways are described in order to derive
the number of components which should be kept. A summary of two of these methods
will be given.

5.3.1 Cumulative percentage of total variation

For this method, a threshold is defined as the percentage of total variation one wishes to
keep. The amount of components which should be kept is then defined as the smallest
amount for which this threshold is exceeded.
By defining the percentage as e.g. 90%, the resulting data set contains only 90% of the
total variation, but the number of components has been reduced. Choosing the right
percentage is dependent on the application.

5.3.2 Scree test

The second method is to plot the eigenvalues according to their size. This is the so-called
scree test [Cat66]. The name is derived from the similarity of the typical shape of the
plot (see figure 5.3) to that of the accumulation of loose rubble, or scree, at the foot of
a mountain slope [Jol02].
Only the components which are before the point where the plot turns from a steep into
a flat line (elbow) are kept. This way you expect the components which are thrown
away not to contain much useful information with respect to the larger components.

Figure 5.3: A plot of some sample eigenvalues
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5. Principal Component Analysis (PCA)

5.4 Applications for side-channel attacks

Principal component analysis can be used in two ways, a PCA transformation (which
can also be used to reduce the dimensions) and a noise reduction of a dataset.

5.4.1 PCA transformation

Power traces used for DPA usually have large dimensions (a high number of samples)
which makes calculations computationally intensive. It would be a great improvement
if these dimensions can be reduced without removing much relevant data. This might
improve the computation time of DPA. PCA can be used to reduce the dimensionality
of the dataset by removing the samples which do not relate to the leakage of the secret
key after a transformation in terms of lines that describe the relationship between the
data the best. The feature vector U and the original data X can be used to derive this
reduction. If we transpose the feature vector, we get the eigenvectors in the columns.
By multiplying this vector with the transposed mean-adjusted data, we get the trans-
formed data set X̂. This is the original data in terms of the chosen principal components.

Y = UT ∗XT = (X ∗ U)T

X̂ = Y T = ((X ∗ U)T )T = X ∗ U

5.4.2 Noise reduction

If we do not want to remove dimensions, but instead would like to reduce the noise in the
traces in order to keep only the most relevant information, we can use the chosen Prin-
cipal Components to retain only the most important information. If we choose to retain
all principal components, this method returns the original data since no information is
discarded. Normally, one would remove the components which contribute to the noise.
The first step is the same as in a transformation, the feature vector U is transposed and
multiplied with the transposed mean-adjusted data X. Then, in order to get the original
data X̂ back, this matrix is multiplied by the feature vector. In order to get the rows and
columns correct, we transpose this final matrix Z. Because we want the original data
back, we have to add the mean, which was subtracted in the first step, to each dimension.

Y T = X ∗ U
Z = U ∗ (X ∗ U)T = U ∗ UT ∗XT = XT

X̂ = ZT = (XT )T = X
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Chapter 6

Experiments

6.1 Introduction

We would like to study the effect of PCA on DPA attacks. Since there are different ways
of implementing a cryptographic algorithm, we need power measurements from differ-
ent sources. In this thesis we use simulated power measurements, power measurements
taken from smartcards (a software DES and a hardware DES) and power measurements
taken from a SASEBO-R (hardware AES-256).

We created a measurement setup to take measurements from these different sources.
The following sections describe the setup and the used method of acquiring power traces.

6.2 Measurement setup

In order to measure power traces of a smartcard or a SASEBO, a few components are
necessary. This includes hardware and software components. Figure 6.1 shows our
measurement setup.

6.2.1 Hardware

Taking measurements requires the following hardware components.

• Power tracer Riscure B.V. developed an advanced smartcard reader which con-
tains e.g. a trigger for the oscilloscope and a software-controlled smart card supply
voltage. The power traces is used to measure the power consumption. It also en-
hances the signal to noise ratio of the output which can then be measured by an
oscilloscope.

• Picoscope A Picoscope is a PC-based digital oscilloscope which is used to record
the power measurement traces and send them to the PC for further processing. In
our setup, the Picoscope 52031 is used.

• Filters Two electronic filters were provided for use within this project. These
filters process the signal which is passing through in order to reduce noise, and
make it easier to analyze the measured traces. We make use of a 50 Ohm, 48
Mhz lowpass filter which passes low-frequency signals, reduces the amplitude of
high-frequency signals and reduces aliasing. Also we make use of an impedance
filter.

• Computer A computer is necessary to control the hardware and store and vi-
sualize the acquired measurements. It is important to have sufficient computing
power since analysing traces usually requires a lot of computations.

1http://www.picotech.com/picoscope5200.html
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6. Experiments

Figure 6.1: Our measurement setup, next to the laptop, one can see the oscilloscope
with the power tracer on top.

• Smartcards We need to have cryptographic devices to perform out measurements
on. We make use of two smartcards provided by Riscure B.V., which are Sample
Type 2 which contains a software implementation of DES and Sample Type 8
which contains a hardware implementation of DES.

• Side-channel Attack Standard Evaluation Board (SASEBO) A SASEBO
board is a device which is used to evaluate side-channel attacks. It is a pro-
grammable cryptographic hardware device which allows power and electromag-
netic measurements. The board can be programmed using a Field-Programmable
Gate Array (FPGA) in order to switch typical countermeasures on or off to test
side-channel attacks. In this project, power traces acquired from an AES encryp-
tion on the SASEBO-R are used [Res08].

6.2.2 Software

In order to process and analyse traces, we need to visualize them on the PC. Riscure
developed an application in order to process them.

• Inspector 4.1 Riscure B.V. developed an application named ”Inspector”. The
used version is 4.1. Inspector is designed as a side-channel analysis tool which can
be used to acquire, browse, inspect and analyse samples. These samples can be
e.g. power measurements or electromagnetic measurements. Inspector contains
modules which allow filtering, alignment and analysis of signals. There are quite a
few supported algorithms (e.g. DES, AES and ECC) for which DPA attacks can
be performed.
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6.3. Obtaining traces

Because of these properties, Inspector is used for the acquisition and analysis of
power traces within this project.

6.3 Obtaining traces

Obtaining power traces from a target device takes a couple of steps. This section de-
scribes how traces can be obtained from smartcards and from a SASEBO.

6.3.1 Smartcard

Obtaining a traceset of the DES encryption of a typical smartcard is done by using
Inspector. The module to acquire DES traces contains some adjustable options in order
to get traces of the best quality. The most important ones for the oscilloscope are the
sample frequency, the number of samples and the delay. The sample frequency defines
the number of samples per second. The resulting measurement will be more detailed
if this frequency is higher. Lower sample frequencies are for example used to create
an overview of a full encryption over a longer period of time. If a delay is given, the
oscilloscope will start measuring the given amount of time after the trigger signal.

Further, we can insert some parameters for the power tracer. These parameters in-
clude a delay, but also the number of traces one would like to obtain. Also we can add
a module which should be applied to each trace in a chain. In our acquisitions, we use
the ”resample” module to resample the power traces. The power traces we take from
sample card 2 are resampled to 4 Megahertz (MHz) which is equal to the external clock
frequency. We do this resampling step because we want to compress our measurements
in order to reduce the number of samples. The clock frequency is the lower limit since
we would like to have each key processed in a different sample. If we resample to a lower
frequency, the key information might not be in its own sample. Sample card 8 has an
internal clock frequency around 31 MHz. Further we can tweak the gain, the offset and
the voltage of the power tracer in order to get the best measurements.

The first step one has to take is to find the moment in time where the first round
of the DES encryption starts. In order to find this position, the first measurement we
take contains all DES rounds. Since we just need an overview to find the first round, we
use a low sampling rate (e.g. 67.5 Megasamples per second), obtain 3.5 million samples
and resample them to 4 MHz. The computer is then used to send a specific amount
of random plaintexts, depending on the amount of traces we need, to the card. The
card will encrypt each plaintext, and send the ciphertext back. The oscilloscope is used
to record the power consumption of these encryptions, and sends the data back to the
computer.

An example of such a trace is given in figure 6.2. In this trace, all three rounds
of the 3-DES encryption of the plaintext and the processing of the ciphertext can be
distinguished.

Figure 6.2: A full 3-DES encryption acquired from sample card 2
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6. Experiments

We only need measurements of the first round of the algorithm to do a DPA attack
on all S-boxes. Since we would like to keep the number of samples as small as possible
in order to keep the computational requirements as low as possible, we roughly need
to find the position where the first round starts, and record from there. The power
tracer can give a trigger signal to the oscilloscope after a specified delay so only the
relevant data will be measured. For the power measurements of the first round, we use
a higher sample frequency of 125 Megasamples per second in order to get more detailed
information. Also, we resample the obtained traces to 4 MHz.

Following these steps will provide us with usable power measurements for our exper-
iments.

6.3.2 SASEBO

Taking traces from a SASEBO is a bit different as compared to taking traces from a
smartcard. The first thing we need is a power supply in order to power the SASEBO.
Then we need to connect the SASEBO to a computer in order to send commands. Some
software to communicate with the SASEBO is also needed. This way one can send
commands and install software on the chip. Same as for the smartcards, one needs an
oscilloscope to visualize the power consumption.
One also needs two power probes in order to measure the power consumption. These
probes should be placed on two pins on the SASEBO.
When these initial steps are finished, one can use Inspector to send plaintexts to the
SASEBO which will then be processed. The power probes can measure the used power
and send this information to the oscilloscope which sends the measurements to the com-
puter.

We were not able to get a power supply on the Radboud University within time and
the power probes were in use at Riscure. This meant that we could not take our own
measurements.
Yang Li and Kazuo Sakiyama were so kind to provide us with measurements which were
taken from AES-256 encryptions on a SASEBO-R. We use these measurements in our
experiments.
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Chapter 7

Principal Component Analysis and
noise reduction - Experiments

7.1 Introduction

One of the properties of PCA is that it can be used to reduce the noise of a traceset.
We wish to investigate the effect PCA has on DPA. Since DPA inspects the relationship
between the measured power and the hypothetical power, reducing the noise in a trace-
set might have a positive or negative effect on finding the secret key by performing DPA.

The experiments were performed using a custom made Java implementation of PCA
in Inspector. See appendix A for a full listing. The code was verified by checking if the
results of a noise reduction on the dataset which is used in [Smi02] match their results.

In simulated DES encryption there is no simulation of things like the processing of
the plaintext. Also, there is no noise, which means that the measurements are perfect.
In order to evaluate how PCA performs on a noise-less traceset, we also consider sim-
ulated traces. We expect there will be differences between simulated DES encryption
traces and real DES encryption traces due to the difference in noise.

We suspect that some Principal Components capture the variance of the key leakage
of the different S-boxes. If we only keep those Principal Components, and do not use
the others, we should be able to reduce the noise in the original signal. Since the largest
variance is captured in the highest Principal Components, we suspect that, if there is no
noise in the measurements, the information of the key leakage should be in these largest
components. If there is a lot of noise with a high variance, according to the properties
of PCA, the information of the key leakage should be within the smaller components.

We implemented the PCA module in such a way that its output contains both the
original traces with their noise reduced, all of the Principal Components and a plot of
the eigenvalues in order to evaluate the Principal Components for interesting results.

7.2 Simulated traceset (DES)

The first traceset we consider is created by making use of a module in Inspector which
can simulate DES encryption traces using a known plaintext and a known key. The sim-
ulated tracesets which are used in the following experiments all have the artificial key
leakage in sample 0-7, 20-27 and 120-127. We create a traceset of 1000 traces of a sim-
ulated DES encryption with 256 samples per trace. This simulated traceset contains a
key leakage at a known position which makes it easy to measure the success of the attack.
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Inspector contains a module named ’DESAnalysis’ which performs a DPA attack on
a given traceset. It follows the same steps as explained in section 3.4. After performing
these steps, the module outputs correlation traces for each S-box and each candidate sub
key using Correlation Power Analysis. This results in 8 ∗ 64 = 512 output traces. These
correlation traces are scanned for the highest peak, which indicates the correctness of
the sub key. This module is used to measure the effectiveness of the PCA transformation
by looking at the correlation for the highest peak.

7.2.1 Experiments

Our first experiment is based on a simulation of power measurements of a DES encryp-
tion without any noise. Since there is no noise, we expect the DPA information to have
the largest variance. Since Principal Component Analysis captures the sample with the
largest variance in the same component, we expect the largest eight Principal Compo-
nents to capture the key information for each S-box.

Since we also would like to see how a traceset with noise compares, we added some
random noise to each sample of this traceset, and did some experiments with these.
If there is a lot of noise, we expect the key leakage to be present in smaller Principal
Components.

7.2.1.1 Simulated traces without noise

Our first experiment is based on a simulation of power measurements of a DES en-
cryption without any noise. Figure 7.1 shows a sample power measurement of this
simulation.

Figure 7.1: A simulated DES encryption trace without noise

Performing a noise reduction with PCA using all Principal Components on these
simulated traces shows some interesting results. The first thing we do is inspect the
Principal Components. Since we kept all of them, there was no noise reduced from the
original traceset. Inspecting the values of the Principal Components shows clearly that
the first eight Principal Components show a large variation at the spots where the key
leakage is in the traces. Since the key is leaked in three locations, three groups of peaks
can be spotted (0-7, 20-27 and 120-127). At all the other locations, much less variation
can be seen. Figure 7.2 shows the first Principal Component, all 7 following Principal
Components are visually roughly equal to this trace. It looks like each component shows
the variation of the key leakage of one S-box. All the other Principal Components rep-
resent more variance in different places. An example of such a component is component
9 which is shown in figure 7.3.

As we expected, since there is no noise, the samples with the largest variance capture
the variance of the key leakage. Since these samples have the largest variance, they are
captured by the first eight Principal Components. The 9th component captures the data
orthogonal to the 8th component with the largest variance left. Since the key leakage
has already been captured by the first eight components, this data will not be captured
by smaller components.
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7.2. Simulated traceset (DES)

Figure 7.2: First Principal Component of a simulated DES encryption trace without
noise

Figure 7.3: Ninth Principal Component of a simulated DES encryption trace without
noise

7.2.1.2 Simulated traces with artificially added noise

Since there is no noise in this simulation, and real measurements do contain noise, we
perform the same experiment on the same traceset where we add some random noise.
The simulation module allows one to provide a noise level, this level is the standard
deviation of the normal distributed noise. We create a traceset with noise level 10 to
simulate 1000 traces with 256 samples. The signal level is equal to the variance of the
signal. We calculate the distribution of the values for sample 0 (where the first key
leakage is). There are 57 traces with value 0, 249 traces with value 1, 383 traces with
value 2, 241 traces with value 3 and 70 traces with value 4. This means that the mean
value for this sample is 2.018. We now calculate the difference of the mean for each
value and square these. Adding these values and dividing by 1000 now gives us the vari-
ance, which is equal to 0,997676. Since the signal level is the variance of the signal, it
is roughly equal to 1. This means that a noise level of 10 lowers the SNR with a factor 10.

It is important to note that a DPA attack on this traceset does not rank the correct
key the highest due to too much noise.

We perform PCA using a noise reduction on this obtained traceset. Inspecting the
Principal Components clearly shows that, again, the first eight Principal Components
capture the variance of the samples which contain the key leakage.

The first Principal Component is plotted in figure 7.4. The peaks show the variance
on the positions where the key leakage is and not much variance for the other samples.
Since we are only interested in the samples where the leakage is, and wish to reduce the
noise as much as possible, it makes sense to try and reduce the noise by using only the
first eight Principal Components in the PCA calculation. The noise-reduced traceset
using only these eight components shows clear peaks at the locations which contain the
leakage, see figure 7.5. This was to be expected since we chose the components based
on the peaks for the samples which contain the key leakage and a small variance for the
other samples.

The right position of the key leakage can now easily be spotted in the traces, even
from simulated traces with a very high noise level. We are not able to find the correct
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key when performing a DPA attack on these 1000 traces. The correct key is not ranked
the highest, it is not distinguishable from the other key candidates in the correlation
traces. This means that there is too much noise as compared to the signal in some way.

Figure 7.4: First Principal Component of the simulated traceset with noise level 10

Figure 7.5: Simulated trace with noise level 10 and the same trace with its noise reduced

7.2.2 Discussion

Considering simulated traces, our expectations were correct. The variance of the sam-
ples with the key information was captured by the first eight principal components when
considering simulated traces without noise.

In the simulated traces where we added noise, the key leakage is again captured by
the first eight principal components. When we perform a noise reduction on the original
traceset using only the first eight principal components, we can easily spot the location
of the key leakage. Performing a DPA attack on this reduced traceset did not yield the
correct key. We are not quite sure why this is the case.

7.3 Real traceset (Software DES)

Applying a noise reduction on real tracesets might have a very different effect due to the
presence of noise. We have a software DES implementation installed on a smartcard.
This card, named Sample Type 2 was provided by Riscure. In order to perform our
experiments, we acquire a traceset containing 200 traces with 10.000 samples each from
Sample Type 2, see figure 7.6 for a sample trace.

This card contains a software implementation of DES and has configurable counter-
measures against DPA (random delays, random S-boxes, data masking, key masking and
EEPROM noise). For these experiments, we turn all countermeasures off. As opposed
to a simulation, one typically needs a lot more samples and traces in order to derive the
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Figure 7.6: An example trace acquired from Sample Type 2

secret key from a smart card. This means that the computations involved become very
large (the covariance matrix of size n ∗ n (where n is the number of samples) must be
computed).

Without countermeasures, the secret key of this card can be recovered by perform-
ing a DPA attack on the traceset. The correct key guess showed the largest peak in
its correlation trace. The location of this peak shows where the key is leaking in the
original traceset, this means that we found the samples which contain this particular
key leakage. Now that we know the right position of the key leakage, we can reduce the
size of the traceset to keep only the relevant samples in order to reduce the computation
time of PCA.

We create a new traceset which only contains the samples which leak the DPA in-
formation of the original traceset and some samples at random locations which do not
contain key leakage in order to retain 312 samples. See figure 7.7 for an example of one
of the traces.

We use this reduced traceset to perform different experiments. The first thing we
do, is inspect the Principal Components to see if we can find which components capture
the DPA information for each S-box. We then try if we can use only these components
to reduce the noise, and thus improve the correlation for a DPA attack.

Figure 7.7: A modified trace of the Sample Type 2 card where the sample size is de-
creased

7.3.1 Experiments

Since we now have a traceset with a small amount of samples, we can perform PCA to
do a noise reduction on this set. We can inspect the Principal Components. It appears
that different Principal Components seem to capture the variance of the key leakage for
different S-boxes.

Careful inspection of the PC’s show that the 15th component has a high peak for the
location of the key leakage of S-box 8. This means that if we perform a PCA transfor-
mation of the original traceset using all components except the 15th, the correlation of
the correct key guess for S-box 8 should be reduced significantly. When we test this, it
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appears to be the case. Where the correlation for the correct key for S-box 8 was 0.7191
in the original traceset, performing a PCA noise reduction using all Principal Compo-
nents except the 15th, yields a correlation for the correct key for S-box 8 of 0.5257. The
correlation for the correct key guess for all other S-boxes remained roughly the same.
This means that, in order to improve the correlation for the key guess of S-box 8, we
should keep all components which capture a part of the variance for the sample of the
key leakage.

We perform PCA by making use of different numbers of Principal Components in
order to reduce as much noise as possible to try to improve the correlation for the correct
key guess for all S-boxes.
Since the largest amounts of noise are captured by the largest Principal Components,
we perform a noise reduction without using some of these largest components. We try
different numbers. A PCA noise reduction using all components except the largest 25
seems to yield good results. When we perform a DPA attack on the noise-reduced traces,
the correlation for the correct key for most S-boxes, except S-box 4 and 8, improves when
comparing the results to a DPA attack on the original traceset. The correlation for S-box
4 and 8 becomes worse. The correlation for the correct key guess for S-box 1 improves
from 0.6592 before the noise reduction to 0.6738 after the noise reduction. This means
that the relevant DPA information for S-box 1, 2, 3, 5, 6 and 7 is not captured by the
largest 25 components.

7.3.1.1 S-box 4 and 8

Careful analysis shows that the variance for the key leakage for S-box 4 and 8 is present
in larger PC’s than for the other 6. In this case, for S-box 4 and 8, the largest variance
is present in some PC’s between the 6th and the 32th. Since we did not use the first
25 PC’s, this explains why the key distinction becomes worse. This also means that the
variance in the leakage of those S-boxes is larger than for the other six.
Since the information for S-box 4 and 8 is present in larger PC’s, this means that their
variation is larger. We can not explain this difference in behaviour for S-box 4 and 8 as
opposed to the other S-boxes. We inspected the source code of the DES implementation
on the card but could not find any difference between the implementation of the S-boxes.
Our best guess would be that the assembly code contains some differences which might
explain this behaviour.

7.3.1.2 Noise

The information for the other 6 S-boxes was captured somewhere after the 25th Princi-
pal Components. This means that the components from 1 until 25 capture information
with more variation than those S-boxes, which should be noise. In order to test this,
we add large amounts of random noise to a number of samples (30). If the variation of
this noise is larger than the variation of the key information, we expect that it should
be captured by some of the first Principal Components and thus that the relevant DPA
information will be captured by smaller Principal Components than before. We imple-
mented and used a module which does exactly this. We perform the same experiment
as before on this new traceset, and check in which components the information is now.
It appears that the information is now present in the Principal Components which are
larger than 55. This means that, as expected, adding noise with a large variation shifts
the DPA information to smaller components.

In our experiment with the simulated traces, this phenomenon did not appear, the
key information did not shift to smaller components. This was due to the case that we
added noise to each of the samples in those traces instead of only 30 of them. PCA
captures the components with the largest variance in the largest components. Since
the noise was added to each sample, the samples with the key leakage, which already
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contained the largest variance, still contain the largest variance. If noise with a large
variance is introduced to some samples, those samples gain a much larger variance than
the rest which is unaffected. This means that in this case, the samples to which the
noise was added will be captured in a larger component than before.

7.3.2 Discussion

Because not all information is present in the same components, it would be best if all
PC’s which have a high contribution to the variance of the key leakage of one single
S-box remain and the others are removed. The biggest problem is that if we remove
the rest of the Principal Components, the correlation of the right key guess for other
S-boxes becomes much lower. This leads to the conclusion that, in order to get the
optimal results, the PCA filter should be applied eight times on the original traceset,
once for each S-box and its most relevant components.

A prerequisite for this method is that the position of the key leakage should be ap-
proximately known in order to find which PC’s must be retained. The best results are
obtained when the position is precisely known since this will allow removing the largest
part of irrelevant Principal Components. An easy way to find the correct key leakage
sample is to obtain a card of the same type with a known key which might be possible
in lab situations. It is much easier to find the places of key leakage if the key is known,
since this can be checked. If we are able to derive this key, and know at which samples
the key is leaking, we know which components we should keep in order to improve the
DPA attack.

We can conclude that the largest Principal Components capture the largest part
of the noise for this traceset since adding noise with a large variance shifted the DPA
information to smaller Principal Components.

7.4 Real traceset (Hardware DES)

The main difference between a hardware and software DES implementation is that in
hardware, one DES round can be computed in one single clock cycle as opposed to
software where one round is computed in many clock cycles. This attribute makes the
impact of PCA possibly different as compared to the results before. Performing a suc-
cessful DPA attack on a hardware DES typically requires a lot more traces as opposed
to software DES since there is a lot more noise. A lot more switching is done in the
same amount of time as compared to software since all S-boxes are calculated in parallel.
Because of these larger amounts of noise, we expect the DPA information to be captured
in smaller Principal Components than with software DES.
We expect that the results of a noise reduction are the same as before but since the
S-boxes are used in the same clock cycle, keeping the correct PC’s should improve the
correlation for the key guess for each S-box.

To find if there is a difference between tracesets obtained from software and hardware
devices, the same experiments we performed before are performed on a traceset which
we obtain from a hardware device performing a DES encryption, see figure 7.8.

7.4.1 Experiments

We acquire a traceset of 48852 traces with 1232 samples each from Sample Type 8 which
contains a hardware DES implementation. A DPA attack can successfully recover the
key from this traceset and shows us the location where the key is leaked which is sample
518. Since we now know the location of the key leakage, we can reduce the amount of
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Figure 7.8: A power trace acquired from a hardware DES encryption by Sample Type 8

samples which we use for the PCA calculation.

We create a new traceset which only contains samples 400 until 712 in order to keep
312 samples which makes the calculations less time consuming.

We use this smaller traceset to perform a noise reduction using PCA retaining dif-
ferent numbers of principal components. It appears that the best results are obtained
when we remove the first 50 components. The correlation rises from 0.0782 for the
correct key guess for S-box 1 on the original traceset to 0.0842 on the noise-reduced
traceset. The correlation for the other S-boxes also improves. This means that these
first 50 components contain more noise than relevant data, and thus can be removed.

7.4.2 Discussion

We were able to improve the correlation for the correct key guess by removing some
large components which captured the noise. It must be noted that, we can only apply
this method if we know the location of the key leakage in order to reduce the amount
of samples since this traceset contains too many traces and samples.
We can conclude that the DPA information is captured by smaller Principal Components
as with software. This is in line with our expectations, since the measurements which
were taken from the hardware DES contain more noise than the measurements taken
from the software DES.

7.5 SASEBO-R (AES-256)

To see how another cryptographic device would withstand PCA, we acquired some
traces from a SASEBO-R. Since our own measurement setup failed to work, we ac-
quired a traceset from Yang Li and Kazuo Sakiyama of The University of Electro-
Communications in Tokyo, Japan. They measured 5000 power traces with 1000 samples
of an AES encryption on a SASEBO-R without any countermeasures. A sample trace
is shown in figure 7.9.

Figure 7.9: A power trace acquired from a SASEBO AES-256 encryption

Since we want to find out if noise reduction has any beneficial effects on this traceset,
we try the same experiment as with the other tracesets.
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7.6. How many and which components should be kept using power traces

The first thing we do is perform a DPA attack on the original traceset. We are able
to find the correct key for S-box 1 with a correlation of 0.1378. The second highest
correlation, for a wrong key guess, is 0.0716.

7.5.1 Experiments

We try PCA transformations whilst removing a different number of Principal Com-
ponents. For this traceset, if we remove 30 of the largest Principal Components, the
correlation drops and the correct key is not ranked the highest anymore after performing
a DPA attack. This means that the key information is present somewhere within these
components, which means that the variation of the noise in this traceset is very small.

By trial and error, we tried to find the best results of a noise reduction. We found
that removing the largest 2 Principal Components has the best results. This means
that the some of the key information is present within the 3rd Principal Component.
When we tried a noise reduction without the largest 2 components, the correlation for
the correct key guess increased to 0.1439 and the correlation for the wrong key guess
dropped to 0.0648.

Since the smallest components should also contain noise, we try and remove some
of these components which improved the correlation even more. When we use only the
3rd until the 50th component (so remove the 2 largest and 950 smallest components),
we can even increase the correlation to 0.1599. This means that the key information is
somewhere within the 3rd until the 50th component.

7.5.2 Discussion

Performing a noise reduction on the SASEBO traces using the 3rd until the 50th Princi-
pal Component shows an improvement for the correlation of the correct key guess. This
means that the noise was successfully reduced. The variation for the key leakage seems
to be fairly high compared to the variation of the noise since the DPA information is
captured somewhere between the 3rd and 50th Principal Component.

7.6 How many and which components should be kept using
power traces

As mentioned before there are multiple ways to select which components should be kept
and which can be discarded. These methods do however assume that the components
which should be kept are always the largest. However, as we have seen with the ex-
periments using power traces, it is not the case that the DPA information is present in
the largest Principal Components since this is usually noise. Since we need the DPA
information, we have to find another way to choose which components should be kept.

We decide if a component is relevant by checking how much of the variance is cap-
tured for the sample of the key leakage. We use the reduced traceset with 200 traces
with 312 samples taken from Sample Type 2 which we used in section 7.3 (figure 7.7)
for this experiment. We try different thresholds to see if we can improve the correlation
for the correct key guess for the first S-box. We find the best threshold by experimenting.

Figure 7.10 shows the correlation values for the correct key guess for S-box 1 when
different thresholds are used to keep relevant components. As can be seen in the peak,
the best threshold for this S-box is 0.07, which means that the Principal Components
which have a variance higher than 0.07 for the correct sample are kept. In this case, 35
Principal Components are used in the transformation and the correlation improves from
0.6592 to 0.7493. The figure also shows the correlation of the second key candidate.
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Figure 7.10: Graph showing the correlation after transformation of the original traceset
using only the components which have a value of at least the threshold for the DPA
information for S-box 1

This correlation also improves, but the correlation for the correct key guess improves
relatively more which means there is an overall improvement.

Since this value might be different for other S-boxes, we redo this experiment for
S-box 8 on the same traceset. Figure 7.11 shows this graph. As can be noted, there are
much fewer Principal Components used for the same threshold as with S-box 1. The
highest peak is around the value of 0.03. Here, 35 Principal Components are used for
the noise reduction. This is the same value as above which, by looking at the curve of
the graph, leads us to believe that the best number of components to be kept for this
sample card and for this number of samples is between 12 and 45 for each S-box.

In order to evaluate if this is the same for each traceset, we repeat this experiment
for a new traceset acquired from the same Sample Type 2 with a different key which also
contains 200 traces with 312 samples per trace, and try the same thresholds as before.
Figure 7.12 shows the results. The best result is a transformation which uses only the
components with a threshold of 0.1 for the correct sample for S-box 1. This resulted in a
transformation using only 20 Principal Components. The correlation of the correct key
guess went up from 0.7050 before the noise reduction to 0.9375 after the noise reduction
while the correlation for the second key guess only improved by a little.

7.6.1 Discussion

From these experiments, we can conclude that there is no ’magic’ threshold which we
can use to select the Principal Components which we would like to keep. It seems,
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Figure 7.11: Graph showing the correlation after transformation of the original traceset
using only the components which have a value of at least the threshold for the DPA
information for S-box 8

however, that keeping the 12 till 45 components which capture most of the variation for
the DPA information, yields the best results. Our experiments show that the correlation
for the correct key guess can improve significantly.
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Figure 7.12: Graph showing the correlation after transformation of the original traceset
using only the components which have a value of at least the threshold for the DPA
information for S-box 1
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Chapter 8

Principal Component Analysis and
transformation - Experiments

8.1 Introduction

As mentioned before, we can use PCA in two ways, apart from reducing the noise, we
can transform and/or reduce the dimension of the traceset. We can transform the origi-
nal data to create a new traceset in terms of the Principal Components. After applying
this transformation, the most variance is explained by the first part (the first Principal
Components) of the transformed traceset.

We expect that the DPA information has a large variance. Depending on the vari-
ance of the noise, this information should therefore be captured by some of the largest
Principal Components. This means that, depending on the variance of the noise, we
can disregard the smallest Principal Components since they should not contain the DPA
information.

In this chapter, we will discuss the effects a PCA transformation has on finding the
secret key in tracesets taken from Sample Type 2, Sample Type 8 and SASEBO. We
will also take a look at simulated traces since they are free of any noise.

8.2 Real traceset (Software DES)

In order to evaluate if transforming the original traceset yields any interesting results,
we use the reduced traceset of Sample Type 2 which we created in section 7.3. This
traceset contains 200 traces with 312 samples each. A DPA attack on this traceset yields
the correct subkey for S-box 1 with a correlation of 0.6592.

The result is shown in figure 8.1. This transformation is performed by using the
same Java code as before but now with a transformation as described in section 5.4.1.

Figure 8.1: A PCA-transformed trace of Sample Type 2

As shown in figure 8.1, the transformed trace of this sample card shows a big differ-
ence between the large (left side of the x-axis) and the small (right side of the x-axis)
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components.

8.2.1 Experiments

Since these traces should still contain the DPA information somewhere, since it has been
captured by some of the Principal Components, we try to perform a DPA attack on the
traceset using the same DESAnalysis module as before. The results of this DPA attack
are that the correct key is not ranked the highest for each S-box.

Even though this analysis does not reveal the whole correct key, carefully inspecting
the correlation traces does reveal an interesting thing. For the correct key candidates,
the correlation trace has a typical shape which distinguishes it from the other, wrong,
candidates. See figure 8.2 for the difference between a correlation trace for a wrong
(key candidate 0) and the correlation trace for the right (key candidate 1) key guess for
S-box 1. The correlation trace for the correct key guess shows a fairly high correlation
for the first 150 samples which correspond to the largest Principal Components with
the highest variation. For the other samples the correlation is much lower. This is in
line with the results of a normal DPA attack where the correlation for unrelated sam-
ples can also be lower for the correct key guess compared to the wrong key guess [Mes00].

Figure 8.2: Correlation trace for the wrong (upper) and the correct (lower) subkey guess

Even though the correct key candidate does not have the highest peak, visually
inspecting the traces might still allow the correct key to stand out which can be seen in
figure 8.2.

8.2.1.1 Absolute average value of the correlation traces

Since the traces are visually different, it makes sense to try and find if this difference
can also be quantified. Since it looks like the traces have a much lower correlation for
the smaller components, we create a module which, for all 512 correlation traces x, adds
all absolute values of the samples and divides the result by the total number of samples
n in order to create an average value avg.

avgx =

n∑
i=1

|xi|

n

Where xi denotes the value of the sample at index i in correlation trace x.
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We use this method to calculate the absolute average for samples 150 until 312 of
the correlation traces, since we noticed a difference in behavior here.
Figure 8.3 shows these average values for each correlation trace. The x-axis shows the
key guess for each S-box. This means the first 64 values correspond to the 64 subkeys
of S-box 1, the second 64 values to the 64 subkeys of S-box 2 and so on. One can
distinguish eight downward peaks, which correspond to the correct key guesses. This
means that the total correlation for all samples for the correct key guess is lower than
for the wrong key guesses. This was to be expected by inspecting figure 8.2.

Figure 8.3: Absolute average value of each correlation trace for Sample Type 2

8.2.2 Discussion

From this experiment, we can conclude that the correlation trace for the correct key guess
is different from the correlation trace for the wrong key guess. Where in a normal DPA
attack one is looking for the highest peak, we have found a different approach by looking
at the correlation trace which is different from the rest. We proposed a method to do this
by comparing the average value of parts of the correlation traces. The correlation for the
lower samples of the correct key guess was lower for the smaller Principal Components
in this traceset. This means that the smaller Principal Components do not seem to
capture the variance for the key leakage.

8.3 Real traceset (Hardware DES)

After looking at software, we wanted to see how a hardware DES compares by perform-
ing a PCA transformation.
For our experiments, we use the same reduced traceset, acquired from Sample Type 8,
as in section 7.4.1. This traceset contains 48852 traces and 312 samples. A DPA attack
on this traceset yields the correct key for S-box 1 with a correlation of 0.0782 for S-box 1.

We expect the results of a PCA transformation to be the same is with a software
DES. The DPA information will probably in some smaller principle components since
there is more noise. This is in line with the results we found with our noise reduction
experiment.

8.3.1 Experiments

The first thing we do is transform the traceset by performing a PCA transformation.
When we perform a DPA attack on this transformed traceset, the highest peak is not
the one for the correct key guess. This means the DPA attack failed. Visually inspect-
ing the traces does not yield any differences between the correct and the wrong key guess.

Since these differences might be subtle, we try and take the absolute value of each
sample for each correlation trace, and plot these.

Figure 8.4 shows the trace with the peaks marked. These peaks correspond to the
correct key guesses. The only S-box for which the key guess is not distinguishable is

43



8. Principal Component Analysis and transformation - Experiments

S-box 7. It is not clear why the correct subkey for S-box 7 is harder to find, but it is a
known ”feature” of this particular card.

Figure 8.4: Absolute average value for the correlation for each key guess for Sample
Type 8

8.3.2 Discussion

We were able to find the used key by calculating the absolute average value of the
correlation traces. The total correlation for the correct key guess for each S-box is,
on average, larger than for the wrong key guess. These results are the opposite of the
results we obtained with the software DES traces, where there was a downward peak.

8.4 SASEBO-R (AES-256)

We expect that the results for the SASEBO traces are in line with the other results since
the power measurements have the same properties. This means that we should be able
to find the used key by calculating the absolute average value of the correlation traces
after a DPA attack on the transformed traceset. The only difference is that AES-256 is
used instead of DES, but this should not make a difference since we still use CPA which
also works for AES.

We use the same traceset as used in section 7.5. A DPA attack on this traceset shows
the correct key with a correlation of 0.1378 for S-box 1.

8.4.1 Experiments

The first step we take is performing a PCA transformation on the SASEBO traceset.
On this transformed traceset, we perform a DPA attack. This results in finding the
correct key with a correlation of 0.1115 for S-box 1. This is a bit lower than on the orig-
inal traceset. The correct key bytes are found within the first 10 Principal Components
which means that there is not much noise. This means that if we look at the absolute
average for the correlation traces for the first 10 samples, it should produce clear peaks.

Figure 8.5 shows the plot for the absolute average for the first 10 samples from
the correlation traces. Since these power measurements are acquired from an AES-256
encryption, 16 key bytes are used. Each key byte can have 256 values. This means that
there are 16 ∗ 256 = 4096 correlation traces. One can clearly spot the 16 peaks which
correspond to each correct key guesses for each key byte.

8.4.2 Discussion

As expected, we were able to find the correct key in the transformed trace by looking at
the average value of the correlation traces. This is in line with the result for hardware
DES.
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Figure 8.5: Absolute average value for the correlation for each key byte for SASEBO
AES-256 measurements

8.5 Simulated traceset (DES)

The effect of PCA on the simulated traces might also reveal interesting details since
there is no noise within the traceset. We create a traceset of 1000 traces of 256 samples
without any noise. A DPA attack on this traceset finds the correct key with a correlation
of 1.000 for each S-box.

8.5.1 Experiments

A DPA attack on this transformed traceset is unsuccessful in finding the correct key for
S-box 1. For S-box 2 to 8, the correct key is ranked the highest although the correlation
decreased for each of them. The correlation decreased to 0.7763 for the correct key for
S-box 2. When we take a look at the Principal Components, we can see that the samples
where the key is leaked, are captured by the first 8 components. We have already found
this result when we performed the noise reduction in section 7.2.

We should now be able to find the correct key by using the method we have shown
before. We calculate the absolute average for the first 50 samples, since we expect the
information to be there somewhere. Figure 8.6 shows these averages. We can easily
identify the peaks for the correct key guesses for S-box 1 to 8.

Figure 8.6: Absolute average value for the correlation for each key guess for the simulated
traces without noise

8.5.2 Discussion

We can successfully apply our method to find the used secret key when using simulated
traces of a DES encryption without any noise. This was to be expected since we were
also able to find the key on real tracesets.
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Chapter 9

Alignment

9.1 Introduction

As we have seen before, DPA attacks try to find the correlation between the hypothet-
ical power consumption for the correct key hypothesis and the power consumption at
a specific moment in time (where the calculated intermediate result is processed). As
showed before, manufacturers have developed multiple countermeasures to make DPA
attacks less successful. One of these countermeasures, which is an example of hiding, is
to introduce random time delays during execution of the algorithm and thus misalign
the traces. Another source of misalignment is the start of the recording of the power
consumption [MOP07] which should be exactly at the same time for each trace. In
practice this is very hard to obtain. Also, the time interval between the trigger signal
and the clock signal might not be constant, this means the recording does not always
start at the same time. Figure 9.1 shows two traces which are misaligned.

As explained before, Principal Component Analysis looks at the variance within a
data set, and captures the largest variance within the largest principal components.
This means that PCA does not consider the time domain. The main requirement for
DPA is that the traces should be aligned, and thus capture the same operation in the
same sample. A PCA transformation can be used to capture the samples with the key
information in the same principal component. This means that a DPA attack on this
transformed traceset, where the key information is captured within the same component
for each trace, might be successful.

This means that one might be able to perform DPA on the transformed traceset and
use our absolute average method in order to find the correct key. In this chapter we
describe the experiments we did with misaligned traces and the obtained results. We
will also consider power measurements taken from a software DES encryption with a
countermeasure which causes more misalignment due to random delays.

Figure 9.1: Two misaligned traces

There are three ways to deal with misalignment:

• Perform DPA analysis on the misaligned traces.
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• Align the power traces before performing the attack.

• Preprocess the power traces in order to reduce misalignment.

9.1.1 DPA on misaligned traces

A DPA attack on misaligned traces will still work, provided that one has enough traces.
This usually requires much more traces than in the case when they are aligned. Obtain-
ing such an amount of traces might be infeasible since the key is processed in different
positions. It depends on the way the random delays are implemented how many extra
traces are needed. When, for example, a random number is used to define the number
of delays for each execution, it depends on the distribution from where this number is
chosen for how many traces are needed. If this random number is somewhere between
one and 10, roughly ten times more traces are needed to get the same correlation since
only one in ten traces captured the same instruction at the same location.

9.1.2 Alignment before attack

The best way to process a misaligned traceset is by aligning the traces before mounting
a DPA attack. Multiple methods have been proposed, of which three will be discussed.
All methods cause the traces to be aligned after performing them. After alignment, the
traces shown in figure 9.1 look like the traces shown in figure 9.2.

Figure 9.2: The two traces from figure 9.1 after an alignment step

There are multiple different alignment methods of which two, static and elastic
[vWWB] alignment, will be discussed here.

9.1.2.1 Static alignment

Static alignment is a process in which the power traces are aligned based on a reference
part in a trace [MOP07]. The first step is to select such a reference part in a trace. Then
one searches for that part in all other traces, and shifts the trace in such a way that these
parts overlap. Inspector includes a module in which static alignment is implemented. It
contains configurable options such as the maximum amount of shifts and the minimum
correlation threshold. The maximum amount of shifts defines how many samples the
algorithm is allowed to shift the traces. The minimum correlation threshold can be set
in order to only keep traces for which the correlation between the selected parts is above
the threshold. The reference trace should have some unique properties in order to get
a correct match. If a non-unique pattern is selected, the alignment will probably not
work properly.

9.1.2.2 Elastic alignment

Elastic Alignment (EA) is an algorithm which is based on Dynamic Time Warping
(DTW). DTW is a term for algorithms that match parts of several traces at different
offsets. Then Elastic Alignment can be used to perform linear resampling of the traces.
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Elastic Alignment requires a reference trace on which the alignment is based. For more
information, the interested reader is referred to [vWWB].

9.1.3 Preprocess power traces before attack

Another approach, when aligning is not possible due to, for example, too much noise,
is to preprocess the power traces. [MOP07] mentions the use of integration. Integra-
tion means that the power consumption per clock cycle (or multiple clock cycles) is
summed up before performing a DPA attack. In this way, depending on the amount of
misalignment, the DPA information will be captured in the same sum.

9.2 PCA and Misalignment - Experiments

Since a DPA attack can also be successful without transforming an aligned traceset, it
is interesting to evaluate how results on a misaligned traceset would compare. As shown
above, typically, taking power measurements of a card is influenced by some factors
which cause a small misalignment of the measurements.

The tracesets which we have used before were all statically aligned in order to make
sure that each sample contains the same information. Since PCA captures the same
levels of variance of the traceset in the same Principal Components, it may be tolerant
to misalignment. In order to test this hypothesis, we create 500 power measurement of
Sample Type 2 with 2081 samples. In the previous experiments we have aligned these
traces before performing a DPA attack. For our next experiments we do not align the
traceset. This makes the effectiveness of a DPA attack much worse, even to the point
that the correct key ranked very low for this misaligned traceset. As mentioned before
we could just obtain more traces to find the correct key, but this is very time intensive
and might not be possible due to different countermeasures.

9.2.1 Experiments

We use PCA to transform the traceset taken from Sample Type 2, and then perform a
DPA attack on the transformed traceset. It is important to note that the correct key
can not be found by looking for the highest peak in the correlation traces.
Visually inspecting the correlation traces does not reveal much this time, but it looks
like there is a minor difference in the traces for the correct key guess opposed to the
correlation trace for a wrong key guess. Figure 9.3 shows two correlation traces. The
lower one, for the correct key guess, seems to have more high peaks for the larger com-
ponents.

We use the same methods as used in the previous chapter to see if we can find the
correct key. We calculate and plot the average value for each sample of each correlation
trace (figure 9.4). In this figure, the correct key is distinguishable, although not very
clear, in downward peaks. This means that the total absolute correlation for the correct
key guess is smaller than for the wrong key guess. As mentioned before, it is a known
property that the correlation for samples which do not contain the key leakage might
be lower for the correct key guess than for the wrong key guess [Mes00]. This explains
the overall lower correlation.

In previous experiments, the DPA information was present somewhere in the first
Principal Components. We suspect that this is the same with misaligned traces since
the variance does not change. Therefore we recalculate the absolute average value for a
various number of Principal Components. Good results were obtained while looking at
the absolute average value for only the first 180 PC’s for each correlation trace. Figure
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Figure 9.3: Correlation trace for a wrong key guess (62) and for the correct key guess(63)

9.5 shows these averages. There are 7 clearly distinguishable upward peaks which cor-
respond to the correct key guesses. The 8th peak can not be distinguished very well,
but it is present in the final sample.

Figure 9.4: Absolute average value of each correlation trace

Figure 9.5: Selected components in the upper graph are used for analysis, the lower
graph shows the absolute average value of each correlation trace for those components

This method makes finding the correct key easier without using static alignment. It
does not rely on the highest peak in the differential trace, but instead on the highest
average correlation for the first couple of Principal Components. This suggests that the
key information is present in a couple of the first few Principal Components, and not in
just one.
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Table 9.1: Comparison between Static alignment and PCA

Static alignment Principal Com-
ponent Analysis
(first 100)

Principal Com-
ponent Analysis
(first 150)

Correct key guess 0.4035 0.0416 0.0450
First wrong key
guess

0.2869 0.0405 0.0393

Difference between
correct and wrong
key guess (%)

28,2 2,6 12,7

9.2.2 A comparison between PCA and static alignment

The traces which were used in the previous chapters were all statically aligned in order
to make a DPA attack successful with a relatively small amount of traces. In the pre-
vious experiment, we did not perform this alignment, but instead used PCA to capture
the samples with the same variance in the same component. Using this method, we were
also able to find the correct key, although not by finding the correlation trace with the
highest peak, but instead the correlation trace which had the largest absolute average
value for the first 70 components.

Since these two methods are totally different, we wanted to see how PCA compares
to static alignment. We compare these two methods by the height of the peak for the
correct key guess. For static alignment, we look at difference in the height of the peak
for the correct key guess as opposed to the one for the first wrong key guess. For PCA,
we look at the difference in the height of the average value of the correlation trace for
the correct key guess as opposed to the one for the wrong key guess.

For the values for static alignment, we use the misaligned traceset from sample card
2 and statically align them before doing a DPA attack. For the values for PCA, we
use the misaligned traceset, perform a PCA transformation, and calculate the absolute
average value for 100 and 150 samples of the correlation traces. The results can be found
in table 9.1.

We can conclude from these results that if static alignment is possible on a traceset,
it yields better results in that the correct key guess differs more from the first wrong
key guess. If static alignment is not possible for some reason, one can find the correct
key by using our method.

The main drawback of PCA is that there is a maximum to the number of samples
we can use for our calculations. Remember that the correlation matrix of n ∗ n has to
be computed. Static alignment does not have this problem. If a traceset has a large
sample size, static alignment would be preferred.

9.2.3 Random delays

In order to see if the method shown before also works with traces which are more
misaligned than only a couple of samples, we create power measurements of a DES
encryption on sample card 2 with random delays as a countermeasure. This counter-
measure introduces random delays within the execution of the DES algorithm. It uses
DES to derive random numbers which are used as a seed for the delays. This causes
misalignment since the S-boxes are now processed in different samples which lie more
apart than in the misaligned traces we have seen before.
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Normally we would use static alignment in order to align the traces as much as
possible. Since there are random delays, there will still be some misaligned parts even
afterwards. We use elastic alignment in order to align these parts. After these steps, we
are able to find the correct key on this card with a correlation of 0.7050 for correct key
guess for S-box 1.

Since we want to evaluate the effect of PCA on misaligned traces, we do not perform
any alignment steps. Our traceset was obtained by measuring 600 DES encryptions with
1500 samples.

9.2.3.1 Experiments

The first step we took was to do a PCA transformation of the traceset. Figure 9.6 shows
the transformed traceset.

Figure 9.6: Transformed traceset from Sample Type 2 with random delays

We first inspect the Principal Components of this traceset to see if we can find some
interesting properties. The first 40 components seem to capture some variation for each
sample, while the 41st until the 57th components show some pattern. The 40th and
41st component are plotted in figure 9.7.

Figure 9.7: The 40th and the 41 principal component of a PCA transformed traceset
with random delays

When we perform a DPA attack on this transformed traceset, it does show the cor-
rect key with a correlation of 0.4862. It is interesting to see that this key is found in
sample 46, which principal component shows the same pattern as can be seen in figure
9.7. We can conclude that the key information is somewhere within the 41st until the
57th component. We guess that the information captured by the first 40 components
contains noise.

When we calculate the average of each key guess as shown before, for a specific
number of samples, and we plot those values in a graph, we can easily distinguish the
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peaks again (see figure 9.8). Since we can not keep enough samples to include the
information for each S-box due to the computation issues with the size of the covariance
matrix, we can only distinguish five peaks which correspond to the right key guess for
the first five S-boxes. If we perform the same steps using the samples for the other three
S-boxes from the original traceset, we find a similar result. We found that including
only the first 70 PC’s in order to compute the average value shows the highest peaks
and thus makes finding the secret key easiest. This means that the DPA information is
captured by some components within these 70.

Figure 9.8: Absolute average value of the correlation graphs for the key guesses using
the transformed traceset

9.2.4 Other algorithms

Since we were wondering how other algorithms compare to DES when performing these
analysis’s, we also obtained a traceset of an AES encryption and an ECC encryption
and tried the same method. The same results as with DES were obtained which means
that this method does not only work for traces of a DES encryption but is usable in
general.

9.2.5 Discussion

We have seen that Principal Component Analysis can be used to successfully retrieve
the secret key from misaligned power traces using DPA. Also, inspecting the Principal
Components might allow one to find the ones which capture the key information.
Calculating the absolute average value of the correlation traces of a DPA attack on the
transformed traceset yields a peak for the correct key.
It appears that static alignment yields better results than PCA for preprocessing power
traces. However, it must be noted that the Sample Type 2 card does not have hardware
countermeasures which means that the power traces can be perfectly aligned. It would
be interesting to compare static alignment and PCA with a different traceset which is
harder to align.
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10.1 Conclusion

Differential Power Analysis is a widely used side-channel attack to find the secret key
used by a cryptographic device. By creating power measurements of a cryptographic
encryption using a known plaintext, one can derive which secret key must have been
used using statistical methods.

We introduce Principal Component Analysis as a suitable preprocessing technique on
the power traces to enhance the results of Differential Power Analysis attacks. The two
uses of PCA, noise reduction and a PCA transformation, were analysed for their effect
on DPA attacks using different power measurements. In order to see what effect PCA
has on power measurements without any noise, we did some experiments on simulated
traces. Since we also wanted to do some experiments on real-life traces, we obtained
power traces from a smartcard with a software DES implementation, a smartcard with
a hardware DES implementation and a SASEBO-R with an AES implementation.

Our experiments have shown that we were able to improve the signal to noise ratio
in various occasions when the location of the key leakage is known. We were able to
reduce the noise of a given traceset by retaining only the Principal Components which
capture the variance at the location of the key leakage. The effect of this noise reduction
was that the guessed, correct, subkeys had a higher correlation when a DPA attack was
performed on the noise-reduced traceset as opposed to the correlation on the original
traceset. This method works for each of the tracesets we used.

We tried to find a threshold to decide which components can best be kept, and
which components should be removed when performing a noise reduction using PCA.
Components which had a variance above this threshold for the sample where the key
leakage is, were retained. Our experiments showed that there was no ’magic’ value for
this threshold.

Using PCA as a transformation in particular seems to show some interesting results.
In our experiments, we transformed a traceset using PCA. On this transformed trace-
set, we perform a DPA attack. In most cases, this did not yield the correct key. We
noticed a visual difference in the correlation traces for the correct subkey and the wrong
subkeys. We introduced a method to find this difference in the correlation traces. After
a DPA attack on the transformed traces, we calculate the absolute average value for all
correlation traces for each subkey for a given number of components. We found that,
in most cases, if we do this for the right number of Principal Components, which we
found by trial and error, the absolute average value for the correct key guess was higher
than for the other key guesses and thus showed a peak. The traceset for the Sample
Type 2 card showed a different behaviour than the other tracesets, we could not find any
upward peaks. Calculating the absolute average for the smallest components did show
downward peaks, which means that the correlation for these samples for the correct key
guess is much smaller than for the other, wrong, key guesses.

In order to perform an optimal DPA attack, power traces need to be aligned. Since
the relation between the same samples of different traces is used, these samples need
to be the result of the same operation. Manufacturers and researchers are constantly
researching and implementing new countermeasures against side-channel attacks. We
have found that PCA can be used to derive the secret key even in the presence of one of
these countermeasures, the use of random delays. During the execution of the algorithm,
a random amount of delays are introduced. These delays are used to make alignment of
the power traces harder.
Since Principal Component Analysis looks at the variance within a traceset instead of
a specific moment in time, introducing random delays has less effect. This means that
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10.2. Further research

when we transform the original dataset using PCA, the samples with the same amount
of variance are all captured by the same Principal Component. Experiments showed
that a DPA attack does not yield the highest peak for the correct subkey on this trans-
formed traceset.
The correlation traces which were obtained from the DPA attack did show some visual
differences for the correct subkey as compared to the traces for the wrong subkey. It
was found that the key information is captured by a couple of Principal Components
instead of just one as in a normal DPA attack. This means that the correlation also is
high for a couple of Principal Components. We used our absolute average method to
find the peak for the correct subkey.

Since static alignment and PCA are both able to process misaligned power traces so
a DPA attack is successful, we compared them. Performing DPA after a static align-
ment showed a bigger difference between the correct and the first wrong key. It must
be noted that we compared these methods on a traceset from a device without any
hardware countermeasures which makes a perfect alignment possible.

The main drawback of PCA is that one has to work with a relatively small sample
size. Since we need to calculate the n ∗ n-covariance matrix, increasing the number of
samples causes the calculation time to increase quadratically. Our applet was able to
deal with 2500 samples before running out of memory. In real-life situations, this might
not be enough.

Our experiments were focussed on DES, but we obtained similar results when at-
tacking AES, as we did with the SASEBO measurements, or ECC.

We conclude that using Principal Component Analysis to preprocess power traces
has a positive effect on finding the correct key using DPA attacks.

10.2 Further research

Although researching Principal Component Analysis answered some interesting ques-
tions, diving into it also raised more questions. In this section we mention topics for
possible future research.

Our experiments only included tracesets with a small amount of samples due to
computation issues. In real life, these tracesets can contain millions of samples and/or
traces. Also, we might not know the location of the key leakage. How can we apply
PCA there?

We compared PCA with static alignment for a traceset taken from the Sample Type
2 card. This card has no hardware countermeasures which makes it possible to do a
perfect alignment. How does PCA compare with static alignment on a better protected
device?

We introduced a new distinguisher to find a peak for the correct key. We performed
a PCA transformation on a traceset. Then we did a DPA attack. We took the absolute
average value for each resulting correlation trace. Using different parts of these correla-
tion traces for this calculation showed different results. Further research could be into
the theory of this method.
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Appendix A. PCAFilter source code

package sandbox.jip;

/**

* Copyright (c) 2010 Riscure BV. All rights reserved.

* @author Jip Hogenboom <j.hogenboom@student.ru.nl>

* Based on PCATemplateAnalysis by Jasper Van Woudenberg

*/

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collection;

import java.util.Collections;

import java.util.List;

import java.util.Vector;

import java.awt.Dimension;

import javax.swing.ButtonGroup;

import javax.swing.JCheckBox;

import javax.swing.JPanel;

import javax.swing.JLabel;

import javax.swing.JRadioButton;

import javax.swing.JTextField;

import java.awt.BorderLayout;

import javax.swing.border.TitledBorder;

import sandbox.jasper.lib.IncrementalStatistics;

import Jama.EigenvalueDecomposition;

import Jama.Matrix;

import com.riscure.signalanalysis.Data;

import com.riscure.signalanalysis.Module;

import com.riscure.signalanalysis.Trace;

import com.riscure.signalanalysis.TraceSet;

@SuppressWarnings("serial")

public class PCAFilter extends Module {

private IncrementalStatistics[] targetMean;

private Matrix pcaVectors[];

private Vector<Trace> resultTraces;

private Matrix[] pcaCovInverse;

private double[] pcaCovDet;

private double[][] initialtraces;

private Matrix covMatrix[];

private Matrix testMatrix;

private double[] stdVector;

private byte[][] data;

private JTextField keepSmallTextField;

private JTextField keepLargeTextField;

private JTextField keepSpecificTextField;

private JTextField removeSmallTextField;

private JTextField removeLargeTextField;

private JCheckBox noiseSuppressionCheckBox;

private JCheckBox transformationCheckBox;

private boolean noiseSuppression = true;



private boolean transformation = false;

private String title = "";

int KEEPSMALL = 0;

int REMOVESMALL = 0;

int KEEPLARGE = 0;

int REMOVELARGE = 0;

int KEEPSPECIFIC = 0;

boolean NOISESUPPRESSION = true;

boolean TRANSFORMATION = false;

/** init module */

public void initModule() {

prefix = "PCA filter";

moduleDescription = "Perform Principal Component analysis on a traceset

for noise reduction or a transformation";

moduleVersion = "1.0";

titleSpace = 128;

}

public JPanel initDialog() {

noiseSuppressionCheckBox = new JCheckBox("Noise Reduction", noiseSuppression);

transformationCheckBox = new JCheckBox("Transformation", transformation);

JLabel keepSmallLabel = new JLabel(" Keep small PC’s:");

keepSmallTextField = new JTextField("0");

keepSmallTextField.setPreferredSize(new Dimension(30, 26));

JLabel keepSpecificLabel = new JLabel(" Keep only a specific sample with

threshold 0.1 in the PC’s");

keepSpecificTextField = new JTextField("-1");

keepSpecificTextField.setPreferredSize(new Dimension(100, 26));

JLabel keepLargeLabel = new JLabel(" Keep large PC’s:");

keepLargeTextField = new JTextField("0");

keepLargeTextField.setPreferredSize(new Dimension(30, 26));

JLabel removeSmallLabel = new JLabel(" Remove small PC’s:");

removeSmallTextField = new JTextField("0");

removeSmallTextField.setPreferredSize(new Dimension(30, 26));

JLabel removeLargeLabel = new JLabel(" Remove large PC’s:");

removeLargeTextField = new JTextField("0");

removeLargeTextField.setPreferredSize(new Dimension(30, 26));

JPanel centerPanel = new JPanel();

centerPanel.setBorder(new TitledBorder("Simulation options"));

centerPanel.add(removeLargeLabel);

centerPanel.add(removeLargeTextField);

centerPanel.add(removeSmallLabel);

centerPanel.add(removeSmallTextField);

centerPanel.add(keepLargeLabel);

centerPanel.add(keepLargeTextField);

centerPanel.add(keepSmallLabel);

centerPanel.add(keepSmallTextField);

centerPanel.add(keepSpecificLabel);

centerPanel.add(keepSpecificTextField);

centerPanel.add(noiseSuppressionCheckBox);

centerPanel.add(transformationCheckBox);

return centerPanel;

}

public boolean initProcess() {

if (!super.initProcess())

return false;



sampleCoding = TraceSet.FLOAT_CODING;

targetMean = new IncrementalStatistics[1];

covMatrix = new Matrix[numberOfSamples];

initialtraces = new double[numberOfTraces][numberOfSamples];

data = new byte[numberOfTraces][128];

targetMean[0] = new IncrementalStatistics(numberOfSamples, true);

return true;

}

/**

* Method for analyzing a single trace

*

* @parameter Trace t (c) trace to process

* @result int (c) index of next requested trace

*/

public int analyze(Trace t) {

// Add to running average

Matrix trs = new Matrix(t.getSampleData().getDoubleData(),1);

targetMean[0].add(trs);

initialtraces[currentTraceIndex] = t.getSampleData().getDoubleData();

data[currentTraceIndex] = t.data;

currentTraceIndex++;

if (currentTraceIndex == lastTraceIndex+1) {

calculatePCA();

currentTraceIndex = NO_TRACE;

}

// Advance to next trace

numberOfAnalyzedTraces++;

return currentTraceIndex;

}

/**

* Method to retrieve available traces

*

* @result Trace t (c) Trace resulting from processing

*/

public Trace generate(int index) {

return resultTraces.get(index);

}

//Get the values from dialog window

public void getDialogValues() {

KEEPSMALL = parseInt(keepSmallTextField);

KEEPLARGE = parseInt(keepLargeTextField);

REMOVESMALL = parseInt(removeSmallTextField);

REMOVELARGE = parseInt(removeLargeTextField);

KEEPSPECIFIC = parseInt(keepSpecificTextField);

NOISESUPPRESSION = noiseSuppressionCheckBox.isSelected();

TRANSFORMATION = !NOISESUPPRESSION;

}

public void calculatePCA() {

pcaVectors = new Matrix[1];

resultTraces = new Vector<Trace>();

pcaVectors[0] = processPCA(0);



numberOfResultTraces = resultTraces.size();

}

//Remove mean and divide by standard deviation if we do a noise reduction

//If we do a transformation, just remove the mean.

private Matrix centerMatrix(double[][] traces, IncrementalStatistics

targetMean, double[] stdVector, boolean noiseReduction) {

Matrix Mean = targetMean.getMean();

for(int i=0;i<numberOfTraces;i++) {

for(int j=0;j<numberOfSamples;j++) {

if(noiseReduction) {

traces[i][j] = ((traces[i][j] - Mean.get(0,j)) /

stdVector[j]);

} else {

traces[i][j] = ((traces[i][j] - Mean.get(0,j)));

}

}

}

return new Matrix(traces);

}

//multiply by standard deviation and add mean

private Matrix deCenterMatrix(double[][] traces, IncrementalStatistics

targetMean, double[] stdVector,

boolean removeZero, boolean noiseReduction) {

Matrix Mean = targetMean.getMean();

for(int i=0;i<numberOfTraces;i++) {

for(int j=0;j<traces[0].length;j++) {

//if value was removed, mean should not be added to prevent

weird calculations

if(traces[i][j] != 0 && !removeZero) {

if(noiseReduction) {

traces[i][j] = ((traces[i][j] * stdVector[j]) +

Mean.get(0,j));

} else {

traces[i][j] = ((traces[i][j]) + Mean.get(0,j));

}

}

}

}

return new Matrix(traces);

}

//Calculate the standard deviation

private double[] calcStd(Matrix Values, double[] MeanVector) {

//add all distances to mean, and divide by n-1

double[] totalPerColumn = new double[Values.getColumnDimension()];

for (int j=0;j<Values.getColumnDimension();j++) {

for(int i=0;i<Values.getRowDimension();i++) {

//std = sqrt((xi-x~)^2/n-1)

double a = ((Values.get(i,j) - MeanVector[j]) * (Values.get(i,j) -

MeanVector[j]));

totalPerColumn[j] += a;

}

totalPerColumn[j] /= Values.getRowDimension()-1;

totalPerColumn[j] = Math.sqrt(totalPerColumn[j]);

}

return totalPerColumn;

}



private Matrix createFeatureVector(Matrix V, int smallPCcutoff,

int largePCcutoff, double border,

int keeplargepc, int keepsmallpc,

int keepspecific) {

Matrix tmpMatrix =

new Matrix(V.getRowDimension(),V.getColumnDimension());

int numberOfPCs = 0;

//V: small PC -> large PC has to be flipped

if((largePCcutoff == 0) && (keepsmallpc != 0)) {

largePCcutoff = numberOfPCs - keepsmallpc;

}

if ((smallPCcutoff == 0) && (keeplargepc != 0)) {

smallPCcutoff = numberOfPCs - keeplargepc;

}

if(keeplargepc != 0 || keepsmallpc != 0) {

for (int i=V.getColumnDimension()-1;

i>V.getColumnDimension()-1-keeplargepc; i--) {

for(int row=0;row<V.getRowDimension();row++) {

tmpMatrix.set(row,V.getColumnDimension()-1-i,

V.get(row,i));

}

}

for(int i=0;i<keepsmallpc;i++) {

for (int row=0;row<V.getRowDimension();row++) {

tmpMatrix.set(row,V.getColumnDimension()-1-i,V.get(row,i));

}

}

} else {

for (int i=V.getColumnDimension()-largePCcutoff-1;

i>smallPCcutoff-1; i--) {

for(int row=0;row<V.getRowDimension();row++) {

if(((keepspecific == -1) ||

(Math.abs(V.get(keepspecific,i)) > 0.1))) {

tmpMatrix.set(

row,V.getColumnDimension()-1-i,

V.get(row,i)

);

if(row == 0) {

numberOfPCs++;

out(Integer.toString(

V.getColumnDimension()-i));

}

}

}

}

}

out("NUMBER OF PC’s USED: " + Integer.toString(numberOfPCs));

return tmpMatrix;

}

private Matrix processPCA(int t) {

// Get target mean

Matrix Tmean = targetMean[t].getMean();

testMatrix = new Matrix(initialtraces);

stdVector = calcStd(testMatrix,Tmean.getArray()[0]);

Matrix X = centerMatrix(initialtraces, targetMean[t],stdVector,NOISESUPPRESSION);



Matrix CovMatrix = targetMean[t].getCovariance();

EigenvalueDecomposition ed1 =

CovMatrix.times(numberOfTraces).

times((double)1/(numberOfTraces-1)).eig();

Matrix V = ed1.getV();

Matrix D = ed1.getD();

double cutoffValue = 0.00;

int removesmallpc = REMOVESMALL;

int removelargepc = REMOVELARGE;

int keeplargepc = KEEPLARGE;

int keepsmallpc = KEEPSMALL;

int keepspecific = KEEPSPECIFIC;

Matrix FeatureVector = createFeatureVector(

V,removesmallpc,

removelargepc, cutoffValue,

keeplargepc,keepsmallpc,

keepspecific

);

//W = V[]

//Y=X*U

Matrix FinalData = (X.times(FeatureVector));

Matrix origDeCenterMatrix = new Matrix(numberOfTraces,numberOfSamples);

if(NOISESUPPRESSION) {

//Z = U*(X*U)^T = U*U^T*X^T = X^T

Matrix RowDataAdjust2 = FeatureVector.times(FinalData.transpose());

//Z^T = X

origDeCenterMatrix = DeCenterMatrix(RowDataAdjust2.transpose().

getArray(), targetMean[t],

stdVector,false,NOISESUPPRESSION);

title = "Denoised trace ";

}

else if(TRANSFORMATION) {

origDeCenterMatrix = FinalData;

title = "Transformed trace ";

}

double [][] origarray = origDeCenterMatrix.getArray();

for(int i=0; i<origDeCenterMatrix.getRowDimension();i++) {

resultTraces.add(new Trace(title+i, data[i],

operation.createData(origarray[i])));

}

double[][] RowFeatureArray = V.transpose().getArray();

//Create plot for all Principal Components

for(int i=V.getColumnDimension()-1; i>-1;i--) {

double [] data = RowFeatureArray[i];

resultTraces.add(new Trace("PCA component "+

(V.getColumnDimension()-i), null, operation.createData(data)));

}



//Create plot of the eigenvalues

double[] vectors = new double[D.getColumnDimension()];

for(int i=D.getColumnDimension()-1;i>=0;i--) {

vectors[D.getColumnDimension()-1-i] = D.get(i,i);

}

resultTraces.add(new Trace("Eigenvalues ", null,

operation.createData(vectors)));

return V;

}

}
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