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Cover

We observe actions of other humans all the
time and we are able to figure out those peoples
goals quickly. But when you think about it, it is not
that easy. Consider the actions on the cover from
upper-right to bottom-left:

1. Will he shoot the ball left or right?

2. Is she feeding or catching the duck?

3. Is she stretching or dancing?

4. Is she resting or waiting for someone?

5. Is he warning us or happy he won the race?

6. Does he want to correct her or is he flirting?

7. Are they dancing or fighting?

8. Is he helping the child walk or is he punishing
him?

9. Is he trying to clean the dishes or bring drinks?

1, 2, 4, 5, 6, 7, 8 and 9 by Michal Zacharzewski
3 by Kymberly Vohsen
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My thesis could not have been possible without the help and collabo-
ration of my colleagues. A big thanks goes to Johan for his hard work and
extremely quick e-mail responses. I also wish to thank my fellow interns
at the Donders Institute, for their interest in me and my research. A spe-
cial thanks goes to Jop and Max: your comments, willingness to listen and
motivational insights were very helpful and dear to me.

Next I wish to thank the people who helped shape me as a scientist.
Franc, for nurturing my curiosity and spirit throughout my study. You saw
a scientist in me years before I realized it myself. Theo, for his supervision:
your guidance not only got the best out of me but also helped me decide
what career to chose. And last but certainly not least, Iris. Your unparal-
leled enthusiasm, interest and pride in both our research and me personally
were really contagious and made me feel part of the community.

Finally I wish to thank my friends and family for believing in me and
their unconditional support. Mom, dad, Erwin: You never gave me the
feeling I needed to make you feel proud, because you are proud of me no
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1
Introduction

Imagine a mother and her son, sitting in the same room, when she hears
his stomach rumble. She sees her son get up, walk to the kitchen and start
searching for something. At first he finds a sour apple, which he discards in
search of something else. Then the mother sees her son finding a delicious
candy bar. When he starts to eat it she realizes her son is trying to still
his hunger and at the same time wants to eat something sweet. In this
scenario, the son goes through a process of planning, choosing his actions
to achieve his goals. The mother observes the actions of her son and based
on her observations infers the goals she thinks her son is trying to achieve.
This process is called goal inference.

In line with a long tradition of explaining the human ability to under-
stand actions as goal-oriented (Baker, Tenenbaum, & Saxe, 2007; Bald-
win & Baird, 2001; Cuijpers, Schie, Koppen, Erlhagen, & Bekkering,
2006; Hassin, Aarts, & Ferguson, 2005; Király, Jovanovic, & Prinz, 2003;
van Rooij & Wareham, 2008), Baker, Saxe, and Tenenbaum (2009) have
proposed that goal inference can be seen as a form of inverse planning,
just as vision is believed to be a form of inverse graphics. Baker et al. go
beyond existing psychological approaches by providing a precise formal-
ization of ‘inverse planning’ in the form of a Bayesian inference model.
We will refer to this model as the BIP model of goal inference (where BIP
stands for Bayesian Inverse Planning). The BIP model has been tested in
several experiments, and Baker et al. (2007, 2009) observed that it can ac-
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CHAPTER 1. INTRODUCTION

count for the dynamics of goal inferences made by human participants in
several different experimental settings.

According to the BIP model, observers assume that actors are ‘ratio-
nal’ in the sense that they tend to adopt those actions that best achieve their
goals. Given the assumption of rationality, and (probabilistic) knowledge
of the world and how actions are effected by it, one can compute the prob-
ability that an agent performs an action given its goals, denoted

Pr(action | goal, environment)
✄✂ �✁1.1

When observing a given action, the probability in Equation 1.1 can be
inverted using Bayes’ rule to compute the probability of a given goal:

Pr(goal | action, environment) ∝

Pr(action | goal, environment)Pr(goal | environment)
✄✂ �✁1.2

Of all the possible goals that an observer can (or does) entertain, the goal
that maximizes the probability in Equation 1.2 best explains why the ob-
served action was performed and is the goal that is inferred. In other words,
in the BIP model, goal inference is conceptualized as a form of probabilis-
tic inference to the best explanation, also known as abduction (e.g. Char-
niak and Shimony (1990)).

Given that the BIP model belongs to the class of (rational) Bayesian
inference models – and Bayesian inference is known to be intractable if
no additional constraints are imposed (e.g. Chater, Tenenbaum, and Yuille
(2006); see also J. H. P. Kwisthout (2009)) – the question arises if the com-
putations that it postulates can scale to situations of everyday complexity.
As Gigerenzer and colleagues put it:

The computations postulated by a model of cognition need to
be tractable in the real world in which people live, not only
in the small world of an experiment with only a few cues.
This eliminates NP-hard models that lead to computational ex-
plosion, such as probabilistic inference using Bayesian belief
networks . . . including its approximations. (Gigerenzer, Hof-
frage, and Goldstein (2008) p. 236)
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Although we share the stance of Gigerenzer et al. (2008) towards in-
tractable (NP-hard) models of cognition, we are not as pessimistic about
the viability of Bayesian models. In our view, the key to understanding
the computational feasibility of a Bayesian (or any cognitive) model lies
in studying domain-specific constraints that hold in the model’s domain of
application (e.g., action understanding or vision) and investigating if and
how such constraints may render the computations postulated by the model
tractable for its domain, despite the intractability of those models in gen-
eral. In this thesis we set out to perform such an investigation for the BIP
model of goal inference.

The methodology we use allows us to identify domain-specific con-
strains that render otherwise intractable models tractable (van Rooij &
Wareham, 2008). We depart from the standard view that approximabil-
ity of Bayesian inferences (or other models) can overcome the intractabil-
ity of models for two reasons. First, the claims of approximability seem at
worst incorrect and at best unfounded; for instance it is known that approx-
imating the most probable explanation in a Bayesian network is itself also
intractable (Abdelbar & Hedetniemi, 1998). Second, when tractability of
a model is claimed through approximation, then a more accurate model of
the cognitive process is the approximation model, not the original model.
The approximation model should then be explicated and is still subject to
the tractability issue.

The remainder of this thesis is organized as follows. First, Chapter 2
are priliminaries to introduce the topics of Bayesian models and Compu-
tational complexity theory. Second, in Chapter 3 we introduce specific
versions of the BIP model Baker et al. (2007, 2009) formulated to account
for their experimental data and observe that these versions are tractable
but also too specific. We also propose a generalized model that breaks
an implausible constraint in the original models. After this, in Chapter 4,
we introduce a method that allows us to analyze the computational (in-
)tractability of the generalized BIP model, we use this method to analyze
the model and present the (in-)tractability results. Finally, in Chapter 5, we
discuss their implications for Bayesian models of goal inference and for
dealing with the intractability of Bayesian models in general.
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2
Preliminaries

In this chapter we review basic concepts from Bayesian modeling, compu-
tational complexity theory and the inverse planning framework. Readers
unfamiliar with these concepts are advised to study this chapter as they are
necessary for a good understanding of the following chapters.

2.1 Bayesian modeling

For readers unfamiliar with basic notations from Bayesian modeling we re-
view some of the basics relevant for our purpose. In our notation capital let-
ters (A,B,C, . . .) denote variables, small letters (a,b,c, . . .) denote values,
bold letters (A,a,B,b, . . .) denote sets and normal letters (A,a,B,b, . . .)
denote singletons. For details we refer the reader to the sources in the text.

A Bayesian network (BN) (Pearl, 1988; Ghahramani, 1998; Jensen &
Nielsen, 2007) is a tuple denoted by B = (G,Γ), where G is a directed
acyclic graph G = (V,A) that models the stochastic variables and their
dependencies and Γ = {PrX |X ∈ V} is the set of conditional probability
distributions Pr(X | y) for each joint value assignment y to the parents of
X ∈ G. For clarity a BN is usualy depicted by a graph, where directed
edges (X ,Y ) ∈ A represent dependencies Pr(Y | X) �= Pr(Y ).

Let W be a set of variables. In a BN a joint value assignment w for
W is an adjustment to the prior probabilities for each variable W ∈W and
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CHAPTER 2. PRELIMINARIES

each associated value w ∈w such that Pr(W = w) = 1 and Pr(W �= w) = 0.
When a joint value assignment is observed or known, it is often called
evidence e for a particular set of variables E⊆ V.

A joint probability distribution for a set of variables W defines all the
probabilities of all combinations of values for the variables in W. Formally
let ξ denote a Boolean algebra of propositions spanned by V. The func-
tion Pr : ξ → [0,1] is a joint probability distribution on V if the following
conditions hold:

• 0≤ Pr(a)≤ 1, for all a ∈ ξ;

• Pr(T RUE) = 1;

• Pr(FALSE) = 0;

• for all a,b ∈ ξ, if a∧b≡ FALSE then Pr(a∨b) = Pr(a)+Pr(b).

Dynamic BNs (dBN) (Ghahramani, 1998) are BNs that represent se-
quences of variables (called a slice), often related to time. Each slice is a
BN Bt = (G,Γ) with an index t ∈N. Let I ⊆V be the set of input variables
and O ⊆ V be the set of output variables such that ∀t,t � [It = It � ∧Ot = Ot � ]
and ∀t,i∈I∃o∈O[Pr(it+1 | ot) ∈ Γ].

A common problem in Bayesian modeling is finding the MOST PROB-
ABLE EXPLANATION (MPE) for certain variables, denoted as the evidence

set, given certain evidence. In fact, inverse Bayesian planning (as defined
in Chapter 3) is a special case of MPE.

MOST PROBABLE EXPLANATION
Input: A probabilistic network B = (G,Γ), where V is partitioned
into a set of evidence nodes E with a joint value assignment e and
an explanation set M, such that E∪M = V.
Output: What is the most probable joint value assignment m to the
nodes in M given evidence e?

Finally a tree-decomposition of a graph G = (V,E) is based on a set
of tree-nodes (called bags) X ⊆ P (V ) and a set of tree-edges F ⊆ X ×X ,
such that:
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2.2. COMPUTATIONAL COMPLEXITY

1. X is a cover of V , ∪X = V ;

2. each edge in E is part of a set in X , ∀(x,y)∈E∃X∈X [v ∈ X ∧w ∈ X ];

3. and each bag on a path between two bags contains the disjunction of
those two bags, ∀(X ,Y )∈F+∧(Y,Z)∈F+[X ∪Z ⊆ Y ].

The treewidth (Robertson & Seymour, 1986) of a BN B is defined as the
minimum width over all tree-decompositions of the moralized graph of B ,
where the width of a tree-decomposition (X ,F) is equal to the size of a
largest bag in X minus 1, tw(B) = maxX∈X |X |−1.

2.2 Computational complexity

In the following chapters we also assume the reading is familiar with ba-
sic notions from computational complexity theory – this includes concepts
such as Big-Oh O(.), (in-)tractability, polynomial time reductions and NP-
hardness – and parameterized complexity theory – including concepts such
as fp-(in-)tractability and parameter. This section is a short introduction to
complexity theory, such that readers unfamiliar with the theory are able to
read the remainder of the thesis. For full details on the theories we refer to
textbooks (Garey & Johnson, 1979; Downey & Fellows, 1998).

Cognitive scientists try to model as best as possible an existing system
capacity (namely the observed cognitive phenomenon). They often do this
at the computational level (see (Marr, 1982)) by specifying the relation
between the input and output domain of the phenomenon. In this thesis
we use computational model – a term from cognitive psychology – and
problem – a term from computer science – to denote the same concept: a
function of some input to some output Π : I → O.

2.2.1 Traditional computational complexity

In a computational complexity analysis we study the amount of compu-
tational resources – in our case time – required to compute the output of
a problem Π. We express the complexity of a problem in terms of the
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CHAPTER 2. PRELIMINARIES

required resources as a function of the size of the input. We first define
the Big-Oh notation used to express complexity. Big-Oh is an asymptotic
upper-bound and we say a function f (x) is O(g(x)), if there are constants
c≥ 0 and x0 ≥ 1 such that f (x)≤ cg(x) for all x≥ x0. The Big-Oh notation
ignores constants and low-order polynomials which is why it is also called
the order of magnitude. For example x

3 + x
2 + x + 4 is on the order of x

3

or O(x3) and 1+2+ . . .+ x = x(x+1)
2 is O(x2).

We are interested in the time complexity of models in terms of the size
of the input. The input i of a problem, model or function has size n = |i|
which is the number of symbols used in a typical encoding (usually the in-
put tape of a Turing Machine). A problem Π can be solved in time O(g(n))
if there exists an algorithm that solves Π in time O(g(n)). The time com-
plexity of Π is measured by the fastest known algorithm that solves Π.

Problems can be classified according to their nature and complexity
into complexity classes such as P and NP. The class P contains all deci-
sion problems – problems that output only yes or no – that are solvable in
polynomial time. A problem is solvable in polynomial time if there exists
an algorithm that solves it in O(nα) for some constant α. Class NP contains
all problems that can be verified in polynomial time. Trivially P⊆NP and
it is generally believed that P�=NP (Sipser, 1992). A problem is hard for
a certain complexity class C if it at least as hard as all other problems in
C. For example a problem Π is NP-hard if all other problems in NP are at
least as hard as Π.

A problem Π is at least as hard as Θ if there exists a polynomial time
reduction from Θ to Π. We say Π reduces to Θ if there exists a function τ
that transforms any input iΠ of Π to input τ(iΠ) of Θ such that iΠ is a yes-
instance for Π if and only if τ(iΠ) is a yes-instance for Θ. A reduction is
a polynomial time reduction if τ is polynomial time computable. We write
Π ≤τ Θ if Θ polynomial time reduces to Π, i.e. if Π is at least as hard as
Θ. Polynomial time reductions are very powerful and can be used to prove
problem is NP-hard or in P. If a problem Θ is known NP-hard then Π is
NP-hard if Π ≤τ Θ. Vice-versa, if a problem Π is in P, then Θ is also in
P if and only if Π≤τ Θ.

16



2.2. COMPUTATIONAL COMPLEXITY

2.2.2 Parameterized complexity

While traditional complexity theory provides a methodology to formal-
ize the amount of required resources to solve a problem, it fails to detail
what makes a problem (in-)tractable. In the 90s Downey and Fellows de-
veloped a variant on complexity theory called parameterized complexity
theory (Downey & Fellows, 1998). Their framework expresses the com-
plexity of a problem Π in terms of sets of parameters (or properties) κ of
the input. If some set of these parameters has an exponential (or worse)
contribution to the complexity of the problem, then the problem tractable
if we assume the parameters in that particular set are upper-bounded by
small values.

Let Π : I → O be a problem, K be the set of all parameters of the input
I and κ ⊆ K. We say κ-Π is fixed parameter tractable (fp-tractable) if
there exists at least one algorithm that computes O for all I in O( f (κ)nα),
where f is an arbitrary function of order exponential (or worse) and α is a
constant. If no such algorithm exists then κ-Π is said to be fixed parameter

intractable (fp-intractable). Alternatively when κ-Π is fp-(in)tractable we
can say Π is fp-(in)tractable for κ.

Observe that if a parameter set κ is found for which Π is fp-tractable
then the problem Π can be solved quite efficiently, even for large inputs,
provided only that the members of κ are relatively small. In this sense
the “unbounded” nature of parameters in κ can be seen as a reason for the
intractability of Π. Therefore we call κ a source of intractability of Π.

The following lemmas in parameterized complexity are used in the
proofs in this thesis.

Lemma 2.1. Let Π be a sub-problem of Θ, where both Π and Θ can be
parameterized by κ. Then if κ-Θ is fp-tractable, κ-Π is also fp-tractable.

Lemma 2.2. If a problem Π is fp-intractable for a parameter set κ, than Π
is fp-intractable for any subset κ� ⊆ κ.

Confusion exists over related parameters such as a and 1/a. Both pa-
rameters require separate tractability proofs as explained by the following
lemma.
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CHAPTER 2. PRELIMINARIES

Lemma 2.3. Let {a}-Π be computable in time O( f (a)nα), where n is the
size of the input, α a constant and f (a) an exponential (or worse) growing
function as a grows. Thus if a is upper-bounded, Π is tractable. Now let
{1/a}-Π be computable in time O( f (1/a)nα), then f (1/a) is decaying
as a grows and thus O( f (1/a)nα) cannot upper-bound the complexity of
{1/a}-Π. We need a function g(1/a) that grows as 1/a grows to express
the complexity of {1/a}-Π as O(g(1/a)nα).
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3
Computational Models

Baker et al. (2009) propose three different versions of Bayesian Inverse
Planning (M1, M2 and M3) to account for data gathered in several maze
experiments. These two-dimensional maze experiments, based on earlier
work (Gergely, Nádasdy, Csibra, & Biró, 1995; Schultz et al., 2003), were
designed to assess subjects’ inferences about the goals of a planning agent.
Subjects were shown videos of agents moving in a maze, such as those
in Fig. 3.1, and under different timing and information conditions had to
infer the goal of the agent. In these experiments changes in location were
considered actions and the location of the agent is considered its state.
Specific locations (A, B and C) were possible goals. Figure 3.1(c) illus-
trates an example BIP model where NE and E are actions of stepping in that
particular cardinal direction and (x,y) represent the location of the agent in
the maze.

A BIP-Bayesian network (BIPBN) is a BN framework that we can use
to define special cases such as M1, M2 and M3 by Baker et al. A BIPBN
is a dynamic BN D where each slice consists of a state variable St ∈ S

and action variable At ∈ A. Additionally there is a set G that contains an
arbitrary number of variables that encode the goal(s). In this framework At

depends on St and on (at least one) goal variable in G. State variables St+1
depend on the previous state St and action variable At . This means that for
D , It = St and Ot = {St ,At}.

In the original BIP models (M1, M2 and M3) Baker et al. used addi-
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C A

B

(a)

C A

B

(b)

G

0,0 2,2

NE NE

1,1 3,2

E

(c)

Figure 3.1: An illustration of the types of stimuli used in the maze exper-
iments of Baker et al. (2009). Participants observe an agent (and the trail
history as memory aid) move inside the maze, and are asked to judge which
of the three possible goals (A, B or C) is most likely the agent’s goal. Here
(a) depicts an early judgement point where both human participants and
the model infer B as most likely goal. (b) depicts a later judgment point
where both human participants and the model infer A as most likely goal.
(c) A possible BIP model for the early judgement point.

tional parameters to model the effect of noise (β), prior probabilities based
on world knowledge (w), the probability of changing a goal in M2 (γ) and
the probability of having sub-goals in M3 (κ) to fit the model to the ex-
perimental data. As these parameters are assumed constants, they can be
safely ignored for the purposes of our analyses.

All three models M1–3 can be seen as special cases of a more general
BIP model, as depicted in Fig. 3.2, in which there is a goal structure tem-
plate G that can encode different types of goal structures. The simplest
goal structure is present in M1 where the observer assumes that the agent
has one single goal that does not change over time (Fig. 3.3(a)). In M2
the model allows the observer to infer the agent has a different goal at any
given time (Fig. 3.3(b)). This models the ability of people to infer changes
in an agent’s goal over time. For instance, if someone is inspecting the
contents of her fridge, you may infer she wishes to cook dinner, but when
she closes the fridge, puts on her coat, and leaves the house, you may infer
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3.1. M1, M2 AND M3 ARE TRACTABLE

S1 S2 ST

A1 AT-1...

...S3

A2

G

Figure 3.2: A graphical representation of the dynamic Bayesian network
that describes the general form of BIP. States and actions are observed
(depicted as shaded nodes), i.e. the values of the states and action variables
are given as input to the model. Given these observations the most prob-
able combination of values for the goal variables in G must be inferred.
Examples of the possible contents of G are illustrated in Fig. 3.3

she is going to eat out. Finally, in M3 the goal structure encodes hierar-
chical goals (Fig. 3.3(c)), such that the observer can infer changes in the
agent’s sub-goals, which are sub-serving a common high-level goal. For
instance, when you see someone gather kitchen utensils, picking up a bowl
and finding a spoon can be seen as sub-goals but the high-level goal is to
cook dinner.

3.1 M1, M2 and M3 are tractable

Even though inference in Bayesian networks is hard in general, the BIP
models proposed by Baker et al. are tractable. To prove M1–3 are tractable,
we first define them as input/output-problems. In this definition we assume
the model’s output is the most likely joint value assignment to the variables
in G. Under this assumption M1, M2 and M3 are special cases – namely
cases with restricted topology – of MPE. Figure 3.3 contains graphical

21



CHAPTER 3. COMPUTATIONAL MODELS

G

S1 ST

A1 AT-1

G

S2 ...

...

(a) M1

S1 ST

A1 AT-1

G1 GT-1
G

...

...G2

A2

S2

...

S3

(b) M2

S1 ST

A1 AT-1

G1 GT-1

G
G

...

...G2

A2

S2

...

S3

(c) M3

Figure 3.3: Graphical representation of G for M1, M2 and M3. In M1
(a) goals are modeled by a single static goal. All actions are dependent
on this goal. In M2 (b) goals can change over time. Actions at time t

are dependent on goals at time t. In M3 (c) goals can consist of multiple
subgoals. Actions at time t are dependent on subgoals at time t.

representations of M1, M2 and M3.

M1, M2 AND M3
Input: A BIPBN B = (G,D) and a joint value assignment (obser-
vations) s for S and a for A. For M1, G contains one goal variable
G and all actions are dependent on G; in M2 G contains a series of
dependent goals G1, . . . ,GT−1 where Gt is dependent on Gt−1 and
each action At is dependent on Gt ; in M3 G contains a series of
dependent sub-goals G1, . . . ,GT−1 and a super-goal G where each
sub-goal Gt is dependent on G and on Gt−1 and each action At is
dependent on Gt .
Output: The most likely joint value assignment to G given the
evidence s and a.

There are several algorithms (e.g. by Sy (1992) and Seroussi and Gol-
mard (1994); see J. Kwisthout (2010) for an overview) that solve MPE in
polynomial time when the treewidth of the moralized graph of B is small
(i.e. they proved MPE is fp-tractable for treewidth). More in particular, the
running-time is O( f (tw)g(p)), where f is an exponential function based
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3.2. MULTIPLE GOALS BIP

St,St+1
At, G

St+1,St+2
At+1, G

(a) M1 tree-decomposition

St,St+1
At

Gt,Gt+1

St+1,St+2
At+1

Gt+1,Gt+2

(b) M2 tree-decomposition

St,St+1
G, At
Gt,Gt+1

St+1,St+2
G, At+1
Gt+1,Gt+2

(c) M3 tree-decomposition

Figure 3.4: The tree-decompositions of M1–3.

on the treewidth of B (tw) and g is a polynomial based on the number of
cliques in B (p ≤ |V|). Furthermore the following results of treewidth of
M1–3 are known, based on the tree-decompositions in Figure 3.4.

BIP model treewidth

M1 3
M2 4
M3 5

These are not minimal but they are small and thus suffice to prove M1,
M2 and M3 tractable, because M1–3 are special cases of MPE. Note that
including the removed parameters β, γ, κ and w would increase the tree-
width, but it would still be constant so the tractability result is also valid
for the original model.

Corollary 3.1. Because M1, M2 and M3 have treewidth ≤ 5, M1, M2
and M3 are tractable.

3.2 MULTIPLE GOALS BIP

The tractability of M1–3 is in some sense an artifact of the simplified ex-
periments for which these models were designed. Baker et al. (2009)
criticize their own model by explaining their assumption of complete ob-
servability is unrealistic. One could propose to break that assumption, in-
troduction believe variables, less observed variables or both. This general-
ization can impact the scalability and tractability of the model.
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CHAPTER 3. COMPUTATIONAL MODELS

Another assumtion in the BIP model are simplistic state and action
representations. Complex states and actions require many values to be
encoded, this is psychologically implausible and complexity analysis does
not allow exponentially growing encodings. Breaking this assumtion would
introduce more state and action variables per time step, including their de-
pendencies.

A third assumtion is that, under the BIP model an observer can not
assume an agent has more than one goal at any given time. This property
does not seem to hold in general, however. Reconsider, for instance, the
scenario in our opening paragraph. There the mother infers that the son
wants to satisfy his hunger and he wants to eat something sweet. This
type of goal inference where multiple goals are inferred at the same time
cannot be modelled by M1, M2 or M3, unless they are encoded in the
goal values. Doing so would require an exponentional number of values,
exponentially increasing the size of the encoding which is both unrealistic
from a cognitive perspective and forbidden in complexity analysis.

Other extensions are possible as well. In (Ullman, Baker, Macindoe,
Goodman, & Tenenbaum, 2009) the authors extend the original BIP model
to describe goal inference in situations where the observer tries to help the
agent.

In this thesis the third assumtion is broken to demonstrate how com-
plexity analysis can be used to analyse (intractable) cognitive models. To
accommodate for goal inferences where multiple goals are inferred, we
propose an extension called MULTIPLE GOALS BIP or MGBIP. Fig. 3.5
illustrates the dynamic Bayesian network of MGBIP. There are mulitple
sets of goal variables G1 . . .Gk, each action At depends in some way on
any of the variables in the sets. In the MGBIP model we call a set of goal
variables a multiple goal.

3.3 MGBIP is intractable

Because it is more general, MGBIP has wider range of applicability than
M1–3 but the introduced generality also comes at a cost. Whereas M1,
M2 and M3 are tractable MGBIP is intractable: there are no tractable –
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S1 S2 ST

A1 AT-1...

...S3

A2

G1

Gk

Figure 3.5: Graphical representation of the dynamic Bayesian network that
describes MULTIPLE GOALS BIP (MGBIP).

polynomial time – algorithms that can implement this model.
Shimony (1994) proved finding MPE is NP-hard in general BNs. We

show that, even while it is a special case of MPE with restricted topology,
MULTIPLE GOALS BIP (MGBIP) is also NP-hard. To prove MGBIP is in-
tractable, we provide a polynomial time reduction from DECISION-3SAT
to DECISION-MGBIP and we argue that because DECISION-MGBIP is NP-
hard, MGBIP is intractable. First we need to define the decision variants
of 3SAT and MGBIP.

DECISION 3SAT (D-3SAT)
Input: A tuple (U,C), where C is a set of clauses on Boolean vari-
ables in U . Each clause is a disjunction of at most three variables.
Output: Does there exists a truth assignment to the variables in U

that satisfies the conjunction of all clauses in C?

DECISION-MULTIPLE GOALS BIP (D-MGBIP)
Input: A BIPBN (see Figure 3.5) B = (G1, . . . ,Gk,D) where ,
k > 0, and two sets of a joint value assignments (observations) s for
S and a for A. Furthermore, let q ∈ [0,1].
Output: Does there exist a joint value assignment g for G given
evidence s and a such that Pr(G = g)≥ q?
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To rewrite a D-3SAT instance to a D-MGBIP instance we represent a
clause as an action variable in the BN. The conditional probability of the
clause variable is constructed as:

Definition 3.1. Clause variable probability distribution. A clause variable
is a node, that can model any clause of a 3SAT formula. A clause in 3SAT
is the disjunction of at most three variables from the set {X1, . . . ,Xk}, where
each of the variables can be negated. The negations are encoded in the
conditional probability of the clause. Let ¬p be true if and only if the p

th

position of the clause is negated. We define the conditional probability of
the clause variable as:

Pr(C
�� Xh,Xi,Xj) =

�
1 (Xh⊗¬1)∨ (Xi⊗¬2)∨ (Xj⊗¬3)
0 otherwise

Clause variable probability distributions for clauses with less variables can
be defined analogous.

Lemma 3.1. D-MGBIP is NP-hard.

In the proof we degrade dependencies in the BIPBN. To define a de-
graded dependency let C depend on A and B. Suppose we have to pro-
vide the conditional probabilities for the BN and each variable can assume
either true or false. Then we need to provide the following conditional
probabilities:

Pr(C = true | A = true,B = true) = α
Pr(C = true | A = true,B = f alse) = β
Pr(C = true | A = f alse,B = true) = γ
Pr(C = true | A = f alse,B = f alse) = δ

If we set α = β and γ = δ, then it does not matter what evidence we
have for B. The conditional probability of Pr(C | B) is the same, regardless
of the value of B. In other words, C is not dependent on B. We will use this
construction in the proof to degrade dependencies. Degraded dependencies
will be denoted by dotted arrows in figures.
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Proof. To reduce an instance of 3SAT ϕ to an instance of MGBIP B ,
we create a multiple goal Gi containing one goal variable Gi for each
variable in ϕ. For each clause in ϕ an action with the corresponding
clause probability distribution is created in B and for each conjunction
in ϕ we create a conjunction node at state St+1, its conditional probability
Pr(St+1 | St ,At) = 1 if St = true and At = true and 0 otherwise. Further-
more we set S0 = true in B .

We degrade excess dependencies such that if there exists a valid truth
assignment for the 3SAT-formula then there exists a joint value assign-
ment g for G1, . . . ,Gk for which Pr(g) ≥ q. All dependencies between a
goal node and a action node for which the variable the goal node repre-

sents is not present in the clause the action node represents are degraded.
Furthermore, all dependencies between At and St are degraded. Figure 3.6
displays an example reduction with the degraded dependencies denoted as
dotted arrows.

In B all state variables and actions variables are observed to be true and
the prior probability distribution for each goal variable is normal.

The following conditions are met, satisfying the criteria for a polyno-
mial time reduction:

1. If ϕ is a yes-instance, then B is a yes-instance: For a 3SAT-formula
to be satisfied, each clause must be satisfied. Per Definition 3.1 each
action variable in B is true if and only if its corresponding clause is
true. The probability of any joint value assignment g for G1, . . . ,Gk

is 0 if it does not satisfy all clauses, or 1 if it does.

2. If B is a yes-instance, then ϕ is a yes-instance: Given the condi-
tional probability Pr(St+1 | St , At), G1, . . . ,Gk need to be consis-
tent with each clause variable in the BN. If B is a yes-instance then
Pr(g) = 1 and the joint value assignment g for G1, . . . ,Gk is consis-
tent with each clause variable. Per definition of the clause variable’s
conditional probability distribution value assignment g satisfies each
clause in ϕ.

3. The reduction runs in polynomial time: For each element in the
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3SAT-formula only one node is created and a number of dependen-
cies linear to the number of operators.

Lemma 3.2. If D-MGBIP is NP-hard then MGBIP is intractable.

Proof. Assume there exists a polynomial time algorithm that solves MG-
BIP (viz. it returns the most probable explanation g for G1, . . . ,Gk). Then
together with the observations s for S and a for A we can compute Pr(g | s,a)
in polynomial time, and check if it is ≥ q. With a polynomial time algo-
rithm for mgBIP we can solve d-mgBIP in polynomial time. We proved
that d-mgBIP is NP-hard, thus we have an inconsistency and we reject that
mgBIP is solvable in polynomial time.

Corollary 3.2. MGBIP is intractable, because D-MGBIP is NP-hard.

true ∧

C1

∧

C2

G1
G1 G2

G2 G3
G3 G4

G4 G5
G5

Figure 3.6: An example reduction from 3SAT to D-MGBIP. The
clause (G1 ∨ ¬G2 ∨ ¬G3) ∧ (G3 ∨ G4 ∨ ¬G5) is rewritten as a BN
in mBIP. The conditional probabilities of clause0 and clause1 are:
Pr(C0 = true | G1 = true∨G2 = f alse∨G3 = f alse) = 1 and 0 other-
wise, Pr(C1 = true | G1 = true∨G2 = true∨G3 = f alse) = 1 and 0 oth-
erwise.

Proving MGBIP is intractable contradicts the fact that in real-world sit-
uations humans are often able to quickly infer an agent is pursuing multiple
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simultaneous goals. This suggests that, if MGBIP is to be psychologically
plausible, we need to assume that some domain-specific constraints apply
in those situations that render the goal inferences tractable under the MG-
BIP model (despite the model being intractable without such additional
constraints). The next chapter describes how we set out to identify such
possible constraints.
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4
Identifying Sources of Intractability

In order to find constraints on the input domain of MGBIP that render the
(restricted) model tractable, we adopt a method for identifying sources of
intractability as described in (van Rooij, Evans, Müller, Gedge, & Ware-
ham, 2008) (see also van Rooij and Wareham (2008)). The method works
as follows. One starts by identifying a set of model parameters κ in the
model M under study (for us, MGBIP), that are possible sources of in-
tractability. Then one tests if it is possible to solve M in a time that can
grow excessively fast (more precisely: exponential or worse) as a function
of the elements in κ yet slowly (polynomial) in the size of the input, i.e. if
κ-M is fp-tractable.

The MGBIP model has several parameters, each of them a candidate
source of intractability. In this paper we consider five such parameters that
– on intuitive grounds – may be considered candidate sources of intractabil-
ity in the MGBIP model (see Table 4.2 for an overview and Fig. 4.1 for an
illustration).
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stomach 
rumbles

finds 
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finds 
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the bar

search search eat

satisfy 
Hunger

good 
taste

big hunger
medium hunger
little hunger

yes
no

T=4

k=2

g=
3

G1 G2

Figure 4.1: Illustration of the Bayesian network and different parameters
of the MGBIP model applied to the “mother observes son”-example.

Table 4.1: Example probability distribution over the combinations of goal
values. In this example p = 0.6 and 1− p = 0.4.

satisfy hunger desire sweet Pr
big hunger yes 0.05
medium hunger yes 0.05
little hunger yes 0.6
big hunger no 0.3
medium hunger no 0.0
little hunger no 0.0
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Table 4.2: A list of parameters with short descriptions and their values
based on the running example.

parameter description value

T maximum observations 6
1/T maximum observation poverty 1/6

k maximum # multiple goals 2
s maximum # state values 4
a maximum # action values 2
g maximum # goal values 3

1− p distance from certainty 0.4

4.1 MGBIP fp-intractability

First consider parameters T , denoting the maximum number of observa-
tions the observer makes, and 1/T , denoting the poverty of observations.
Note that T is small if few observations are made, and 1/T is small if many
observations are made. Based on intuition one might think, the less infor-
mation we have, the harder it is to understand actions. This makes 1/T a
candidate source of intractability. However as T grows, so does the size of
the network and the necessary number of calculations and this also makes
T a likely candidate source of intractability.

Second, the parameters s, a and g are the maximum number of values
per – respectively– each state, action and goal variable. As the number of
possible values that a variable can take increases the necessary number of
calculations, also s, a and g is a candidate source of intractability.

Based on these parameters we prove MGBIP is fp-intractable for every
subset of parameters κ⊆{T,1/T,g}, contradicting the intuition about their
role in the tractability of the model. Note that based on Lemma 2.3 it is
required to proof MGBIP intractable both for T and 1/T .

Proposition 4.1. MGBIP is not fixed-parameter tractable for {s,a,g}.
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Proof. The NP-hardness proof of MGBIP (Section 3.3) only uses a maxi-
mum of two values per variable (true or false), thus MGBIP is fp-intractable
even when the number of values per variable is small.

Proposition 4.2. MGBIP is fp-intractable for {T}.

Proof. Even when the length of the observation is 1, with any number of
multiple goals we can encode the entire 3SAT-formula in one action vari-
able and a reduction from D-3SAT to D-MGBIP would be possible. Thus
MGBIP is fp-intractable even when the maximum number of available ob-
servations is small.

Proposition 4.3. MGBIP is fp-intractable for {1/T}.

Proof. If the reduction from D-3SAT to D-MGBIP does not produce an
instance with a large number of states such that 1/T is small, then we
can add dummy state S

�
t and action A

�
t nodes. The conditional probability

Pr(S�t | St−1 = true,At−1 = true) = 1 or 0 otherwise and the conditional
probability Pr(A�t

�� Gi = gi, . . . ,G j = g j,St−1 = true) = 1 or 0 otherwise,
where gi . . .g j can be any value (i.e. A

�
t is independent of all goals). This

means we can reduce any D-3SAT instance to D-MGBIP even when 1/T

is small.

Proposition 4.4. MGBIP is fp-intractable for {T,1/T}.

Proof. Assume there exists an algorithm A that solves MGBIP in polyno-
mial time, given T and 1/T are constant. This means we can solve MGBIP
in polynomial time, given either T or 1/T is constant. This contradicts
Proposition 4.2 and Proposition 4.3, thus we can conclude that such an
algorithm does not exist.

Because the proofs of propositions 4.1-4.4 do not assume more than
two values for each variable and because lemma 2.2 we observe:

Result 4.1. MGBIP is fp-intractable for every subset of parameters κ ⊆
{T,1/T,g}.
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Result 4.1 shows – contrary to the intuitions – that none of the parameters
T , 1/T and g, nor any combination of them is a source of intractability
for MGBIP. This means that even if we assume that one or more of these
parameters is small for the domain of application, goal inference under the
MGBIP model is still intractable.

4.2 MGBIP fp-tractability

Now consider parameter k, the maximum number of multiple goals that
(the observer assumes) the agent can pursue. This parameter is also an
excellent candidate source of intractability, because large k’s introduce an
exponential number of combinations of possible multiple goals leading to
a combinatorial explosion.

Proposition 4.5. MGBIP is fp-tractable for {k}.

Proof. We know that MPE is fixed-parameter tractable for treewidth (J.
Kwisthout, 2010) and MGBIP is a special case of MPE (Section 3.3). Thus
MGBIP is fixed-parameter tractable for treewidth. The treewidth of the
BN underlying MGBIP grows as the number of goals increase (i.e. as
the size of the input increases). Because treewidth is the only source of
intractability for MGBIP and the number of goals is the only source that
increases the treewidth we postulate MGBIP is fixed-parameter tractable
for the number of multiple goals.

Result 4.2. MGBIP is fp-tractable for parameter {k}.

Result 4.2 confirms parameter k is a source of intractability. This means
that goal inference is tractable under the MGBIP model provided only that
we impose the constraint that (the observer assumes that) the agent can
pursue only a handful of goals simultaneously. Importantly, this is true
regardless the size of T , 1/T , g or 1− p. This is quite a powerful result,
with great potential for explaining the speed of real-world goal inferences
within the confines of a BIP model. After all, it seems to be a plausible
constraint that real-world observers can only (quickly) infer multiple goals
if agents they observe pursue only a small number of goals. This seems
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realistic because either agents do not (typically) pursue a large number of
goals in parallel at the same time (possibly also to keep their own planning
tractable).

Finally, the parameter 1− p measures how far the most likely goal in-
ference is from being completely certain (here p is the probability of the
most likely explanation). If 1− p is small, this means that the most likely
explanation is much more likely than any competitor explanation. See e.g.
Table 4.1, where 1− p = 0.4 is relatively small and the most likely expla-
nation satisfy hunger=little hunger, desire sweet=yes has lit-
tle competition. If the value is large, it means that the most likely expla-
nation has many competitor explanations of non-negligible probability. It
seems intuitive that finding the most likely explanation is easier in the for-
mer case than in the latter case, and therefore also 1− p can be considered
a candidate source of intractability.

Proposition 4.6. MGBIP is fp-tractable {1− p}.

Proof. It is known that MPE is fixed-parameter tractable for probabil-
ity of the most probable explanation (Bodlaender, van den Eijkhof, &
van der Gaag, 2002), in the sense that MPE can be solved efficiently if the
probability of the most probable explanation is high. Given that MGBIP is
a special case of MPE, MGBIP is fixed-parameter tractable for probability
of the most probable explanation.

Result 4.3. MGBIP is fp-tractable for parameter {1− p}.

Result 4.3 confirms parameter 1− p is a source of intractability. This
means that goal inference is tractable under the MGBIP model for those
inputs where the most probable goal explanation is quite probable. Again,
this is true regardless the size of T , 1/T , g or k. Also, this result has poten-
tial for explaining the speed of real-world goal inferences within the con-
fines of a BIP model, at least for certain situations—viz., those situations
where the actions of the observed agents unambiguously suggest a partic-
ular combination of goals. For all we know, real world cases of speedy
goal inference may very well match exactly these situations. Whether or
not this is indeed the case is an empirical question which can be addressed
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by testing the speed of human goal inference for different degrees of goal
ambiguity.
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5
Discussion

We have analyzed the computational resource requirements of the Inverse
Bayesian Planning (BIP) model of goal inference in order to study its vi-
ability as a model of inferences made by resource-bounded minds as our
own. We generated several interesting theoretical findings. First, we ob-
served that the three specialized models—M1, M2, and M3—that were
developed by Baker et al. (2007, 2009) to account for their experimental
data in maze experiments are in fact computationally tractable. This means
that these specialized Bayesian models do not seem to make unrealistic as-
sumptions about the computational powers of human minds/brains, even
when operating on large networks of beliefs and observations. That being
said, these models do seem to be theoretically problematic for a different
reason: they are too specialized to count as models of goal inference in
general.

The over-specialization of M1, M2 and M3 is revealed when ponder-
ing the assumptions that these models make about the agent and the ob-
server. For instance, all three models assume that (the observer assumes
that) the agent can pursue at most one goal at a time. In the real-world,
however, people often can and do act in ways so as to try and achieve two or
more goals at the same time, and observers can also often understand what
these simultaneous goals are from observing the actors systematic behav-
ior. Recall, for example, the scenario from the Introduction where the son
searches the kitchen for a candy bar. Under different circumstances, the
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mother may understand that her son has even more goals at a single point
in time, for example: to still his hunger, to satisfy his craving for sweet,
to see how many bars are left, to pretend that he did not hear his mom’s
request to clean up his room, to bring back a candy bar for his mom, etc.,
or any combination of these goals.

To accommodate the fact that real-world goal inference is not restricted
to one goal at a time, we defined a more general BIP model – having M1,
M2 and M3 as special cases – which we refer to as MULTIPLE GOALS
BIP, or MGBIP for short. Complexity Analysis of the MGBIP model re-
vealed that it is computationally intractable (i.e., NP-hard), meaning that
this model, in all its generality, does indeed make unrealistic assumptions
about the computational powers of human minds/brains. We took this neg-
ative theoretical result to mean that – if the BIP model is to account for
human goal inference at all – it must be the case that in those situations
where humans are able to infer multiple simultaneous goals quickly and
effortlessly, specific constraints apply that render the inferences under the
MGBIP model tractable.

To investigate which types of constraints could render the MGBIP model
tractable, we used a methodology for identifying sources of intractability in
NP-hard computational models (see e.g. van Rooij and Wareham (2008))
and derived several theoretical results. For instance, we ruled out the possi-
bility of explaining speedy real-world (multiple) goal inferences by an ap-
peal to small values of T (modeling situations when goals can be inferred
using only few observations) or an appeal to large values of T (modelling
situations where a lot of information is available on which to base a goal
inference). Similarly, we ruled out that the speed of such inferences could
be explained by an appeal to a small number of values per goal, action or
state node. Besides these negative theoretical results, we also had two im-
portant positive results. For one, we established that as long as the number
of goals that can be simultaneously pursued, k, is not too large then goal
inference is tractable under the MGBIP. Secondly we have shown that goal
inference is tractable under the MGBIP model whenever the probability of
the most likely combination of simultaneous goals, p, is not too far from 1.

Whereas our negative theoretical results are useful to clarify that tractabil-
ity is not a property that is trivially achieved – and often our intuitions
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about what constraints would render a model tractable can be wrong; cf.
van Rooij et al. (2008) –, our positive results show that a model of ac-
tion understanding can nevertheless be rational, Bayesian, and tractable.
Moreover, the nature of the constraints that need to be introduced to render
the Bayesian Inverse Planning model of goal inference tractable yield new
empirically testable predictions.

For instance, based on our results, we predict that human participants
will be able to make quick and accurate goal inferences in the types of
experimental set-ups such as used by Baker et al. (2007) (but see also
Csibra, Gergely, Biró, Koós, and Brockbank (1999)), but only if the num-
ber of simultaneous goals that the observed agents are pursuing is not too
large, or the probability of the most likely combination of goals is not too
small, or both. If both of these constraints were to be alleviated at the same
time, we would predict that human performance on the goal inference task
would deteriorate significantly: meaning subjects will perform either slow
or make bad inferences. If our prediction were to be confirmed then this
would provide corroborative support for the BIP model of goal inference,
and validate that our theoretical results help explain the tractability of hu-
man goal inferences. If, on the other hand, the prediction were to be dis-
confirmed, then this would suggest that either the BIP model fails as an
account of human goal inferences, or some constraint other than the ones
we considered also suffices to render the BIP model tractable. The latter
option may then be one that BIP modelers may be interested in pursuing
further.

In closing, we remark that our approach can be seen as exemplary of
a general strategy for dealing with intractability in any Bayesian model,
whether of action understanding or otherwise. The approach reveals that
– contrary to popular belief in cognitive psychology – Bayesian mod-
els can possibly scale to complex, real-world domains. To achieve this,
Bayesian modelers need only identify constraints that apply in the real-
world and suffice to render their models’ computations tractable. By re-
stricting Bayesian models in this way these models also become better
testable: the constraints required to guarantee tractability of the models
yield new predictions (specifically, about the speed of inferences) that can
be used to perform more stringent tests of such models.
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