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Chapter 1

Introduction

This chapter summarises the initial background and motivation that led to the
research being performed for this master thesis. The goals of the research project
are listed and explained, and the contributions of this research are summarised.
An overview is also given for the potential use cases that are relevant for this
research, such as how a customer of a bank might use an Internet banking appli-
cation.

1.1 Background and motivation

Magnetic stripes have long been used by banks on bank cards to store and de-
liver information about the card owners so it can be easily used in transactions.
However, due to the nature of the magnetic stripes, criminals could copy cards
by simply reading the information from those magnetic stripes at modified ter-
minals, also called skimming. The costs for this type of fraud in the UK alone are
non-negligible [3, 12], and has caused countries in Europe (as well as a few other
countries) to move from bank cards containing magnetic stripes to bank cards
with integrated tamper-resistant chips. These cards are also known as smart
cards.

Banks in the Netherlands have the intention to do that as well, and have opted
for implementations that follow the EMV standard. Many European countries
including all countries that are a member of the EU have done the same, and this
decision should help reduce the costs associated with having to support multiple
transaction systems being used in different countries.

The EMV standard is a standard that was initially developed by Europay,
Mastercard and Visa (hence EMV), and has been released to the general public*

* Available at http://www.emvco.com/
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[7, 8,9, 10]. Several weaknesses [12, 4] have been discovered by researchers at the
University of Cambridge, and even though the move in the UK from magnetic
stripes to EMV chips (also called Chip and PIN) initially seemed to help with
the reduction of bank card fraud, it seems to be on the rise again [12] due a shift
to other types of fraud.

The EMV standard is known to be extremely lengthy, and it offers a wide
variety of different options that can be chosen to be implemented or not. This
means that results that have been found at the University of Cambridge might
not apply to the banks in the Netherlands, as it is likely they have chosen to

implement it in a different way.

Apart from the EMV standard there is another standard that deals specifically
with EMV in the context of Internet banking called the Chip Authentication
Program (CAP). Even though this standard is not publicly available, much of it
has been reverse engineered [5].

Internet banking

Apart from this shift of magnetic stripes towards tamper-resistant chips, many
banks also offer its client the possibility of performing transactions on the Internet
through their computer. The PIN-protected chip offers many more possibilities
for banks to properly authenticate the client, for example by having the chip
perform certain mathematical operations to demonstrate the authenticity of the
card and the intention of the user to perform a particular transaction. Banks
often use special devices for this, that issue challenges based on the transaction
that needs to be performed.

Several Dutch banks already provide these devices, and because there are not
many limits to what a customer can do using Internet banking (compared to, for
example, the daily withdrawal limit of a cash machine) it will be an interesting

target for criminals.

Liability

A serious consequence of the move from magnetic strips to tamper-resistant chips
with PIN protection is that banks can shift a big part of the liability from them-
selves to the customer. It will be much easier to claim for a bank that a customer
was not careful with her PIN when fraud is suspected by a customer. This lia-
bility shift makes it extremely important that the implementations of the EMV
chips are correct, since it is much harder for an individual to prove a transaction
was fraudulent than it is for a bank.
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Use cases

Two important use cases can be identified for this research project: paying for
an item in a store using a smart card, and using a smart card log in to an
Internet banking application and confirming that certain transactions need to be
performed. Note that these use cases assume that a bank card is used, and in
the case of Internet banking that a challenge/response device is used that allows
for the generation of signatures by the bank card.

1) Paying in a store

A customer wants to be able to go to a store and purchase an item by inserting his
or her bank card in a terminal, seeing which transaction is about to be performed
and confirm this transaction by providing a PIN which is verified by the card.
The customer does not want someone who stole the card to be able to make
purchases with it, and also does not want a terminal to provide certain transaction
information while in reality another transaction is confirmed.

A store owner wants to provide its customer with the ability to pay with his or
her bank card. The store owner wants to be sure that the customer is the owner of
the card by having him or her verify it by entering the PIN. The store owner does
not want it to be possible that a fake card can be used to perform transactions,

and also wants to make sure the correct transaction data is confirmed.

What usually happens in practice is that the first step taken by the terminal
is to determine that the card is authentic. This is done by the card through
certificates.

After it has been established that the card is authentic, the customer has to
prove that he or she is the owner of the card. This is usually done by providing the
PIN, which is either verified by the card or sent to the bank in an encrypted form
for verification, but can also be done through other means such as by providing
a signature. This is negotiated by the terminal and the card and is bound by
several restrictions, such as only allowing no verification required for transactions
up to a certain (low) amount.

When finalising a payment the card signs the transaction data, which can
then be verified for its authenticity. By having the card do this, the owner of the
card authorises the transaction to occur. The resulting signature can be used by

the bank of the terminal to prove a certain transaction needs to be completed.

2) Internet banking

A customer of a bank wants to be able to perform financial transactions from
his own home by using the Internet. The customer wants to be sure he or she
is the only one able to both access the Internet banking website and authorise
transactions.
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The bank wants to provide a customer the possibility of performing financial
transactions from home. The bank always wants to make sure that the customer
really wishes to perform a certain transaction (it wants to capture intent), as well
as make sure the customer is the one performing the transaction and not another
(unauthorised) individual.

The steps that are needed here are slightly less complicated. A big difference
with paying in a store is that there is one less party involved, namely the bank of
the merchant. This relative simplicity is shown in the fact that the card initially
does not need to prove that card is authentic. Instead this is done at the end of
the transaction, by verifying whether the expected response is correct. Since the
bank knows the keys that are used by the card, it can determine whether or not
the data on the card is authentic.

What is still important (and possibly even more important) is that the person
using the Internet banking application is actually the owner of the card. Because
there are nearly no restrictions on what can be done on most Internet banking
applications, PIN verification should essential when a bank card is used as a form
of authentication, as there is often no limit to kinds of transactions that can be
performed.

After the card has authorised a ”transaction”, the user provides (a part) of
the signature to the Internet banking website, which can then be used to check
whether or not it corresponds to what the bank has generated. This (partial)
signature is shown on the challenge/response device. If it is correct, it will be
used as a confirmation of the customer’s intent to perform a transaction.

1.2 Research goals

The goal of this research is to get an insight into the implementation of electronic
chips on bank cards as they are being used by Dutch banks and their customers.
The main focus point will be on how the card interacts with the devices that
are used during Internet banking, and how this corresponds to the existing EMV
electronic payment specifications. These results from the Dutch situation will be
compared to some of the results as they have been published in the UK [1, 4, 12, 5],
of which [5] is especially important as it relates to the devices used for Internet
banking.

In order to reach these goals, the following main research question has been
defined:

How do Dutch banks use the EMV specifications in their bank cards, in
particular when using Internet banking, and what are the consequences
and limitations on the security of the system as a whole?
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In order to be able to successfully answer this question, the following sub
research questions have been defined:

Sub-question 1. How are the EMV specifications used to design an implemen-
tation of bank cards usable for Internet banking in terms of protocols and capa-
bilities?

Sub-question 2. Which options did the Dutch banks choose to implement of the
EMYV standard in terms of protocols and data authentication (SDA, DDA or even
CDA) when using Internet banking?

Sub-question 3. Do the Dutch EMV bank cards suffer from the same problems
that have been found [4, 5, 12] in the U.K.?

At the third sub-question the most important paper to look at is [5], as it
relates directly to the devices used when using Internet banking.

1.3 Contributions

The contributions made by this research project are mainly in the area of the
security of the Internet banking devices (challenge/response devices as well as
bank cards) used by a customer of a Dutch bank. It looks at what is needed for
the user to use those devices, as well as how they work and if any issues that
might affect the security of those devices exist. To do this, several applications
have been developed that can help with both the process of reverse engineering,
as well as interpret the information exposed by these devices.

Because comparable research has already been done in the U.K., the findings
of those research projects have been compared to the results of this research.

1.4 Organisation of this thesis

This document is mostly structured in a manner that helps answer the three sub-
research questions in the order of which they are listed. Chapter 2 looks at the
EMV specifications in detail, and how this should lead to a model that can be
used by banks to develop EMV applications applicable to this research projects.

Chapter 3 looks at how the Dutch banks (and in particular the ABN-AMRO)
have actually implemented their Internet banking devices, which often use the
EMV specifications. This allows a comparison to be made with the previous
chapter that looked at the EMV specifications themselves.

The next Chapter, Chapter 4, looks at the weaknesses that have been reported
in the U.K. [5, 12, 4] and reports on whether or not those are applicable to the
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situations as it was found in the Netherlands. It also looks at new vulnerabilities,
and lists those as well.

Of course not everything that has been discovered during this research project
could be investigated fully, which is why Chapter 5 lists the possibilities for future
work based on this research.

Chapter 6 is the final chapter and deals with the conclusions that can be
made based on this research. After this several Appendices are added, as well as
a list of tables, figures and abbreviations.



Chapter 2

The EMV specifications

In this Chapter a thorough look is given at the EMV specifications. This is
done by giving an overview of the content of the different books, but also by
giving an indication of the target audiences per section, how information from
these specifications were interpreted during this research project and by listing
alternative literature that gives insight into the EMV specifications.

The overview of the different books of the EMV specifications are given in
Section 2.1.1 to Section 2.1.4, while Section 2.2 lists the different aspects of the
EMV specifications that were relevant to this research project.

Because of the size and complexity of the EMV specifications it is recom-
mended that readers who are interested in learning more about EMV look at
the literature in Section 2.3 first, as that is academic literature about the EMV
specifications. It can likely give a much better impression of the different aspects
of the EMV specifications.

2.1 EMV unravelled

The EMYV specifications is a standard for electronic tamper-resistant chip cards,
and was developed by Europay, MasterCard and Visa before being released as an
open standard. It consists of four different books [7, 8, 9, 10] and contains a lot
of information on many aspects that are necessary to create electronic payment
systems using an electronic chip.

Even though the size and complexity of the EMV specifications itself is al-
ready quite large (four books with a total of over 750 pages), it builds upon many
different standards, such as the ISO 7816 standard that defines physical charac-
teristics of an Integrated Circuit Card(ICC). It is even stated in section 1.3 of
every book of the EMV specifications that ”it is based on the ISO 7816 series of

9



10 CHAPTER 2. THE EMV SPECIFICATIONS

standards and should be read in conjunction with those standards”. This means
that apart from the bulky and complex EMV specifications, those referenced
standards also apply, which make it even more complex to analyse and under-
stand. To top it off, the EMV specifications leave a lot of implementation details
and options open to the implementer, which makes the analysis even harder.

This chapter will attempt to give a clear overview of the contents of the
EMYV standard. Apart from listing the contents of the chapters of each book and
different sections of those chapters, an indication will be given on the intended
audience of the different books and chapters. For example, manufacturers of
the physical smart cards themselves will be more interested in book 1, while
programmers interested in creating payment applications on those smart cards
will generally use book 3 the most often. Each book has a general audience,
while an additional audience might apply to individual chapters. The general
audience is stated at the introduction of a chapter, while additional audiences (if
applicable) will be mentioned at the chapters themselves.

The audiences are by no means to be used as a definitive lists, merely as an
indication of who might benefit the most from the information contained within
a specific book or chapter. These audiences have been defined as part of this
research project, and have not been taken from the standards themselves.

Note that all four books start in the same manner; the first four chapters define
the scope, the normative references, the definitions, abbreviations, notations,
conventions and terminology. For this reason the first four chapters of each book
are not listed in the overview of this document.

2.1.1 Book 1: Application independent ICC to terminal interface re-
quirements

General audience: Manufacturers of smart cards, electrical engineers.

Book 1 [7] contains information on the physical and logical characteristics
of the EMV specifications for both the ICC and the terminal. The physical
characteristics are defined as things such as the position of the contacts of the
ICC and the voltages used for communication, while the logical characteristics
define the structure of the files on an ICC and the structure of the commands
used to allow communication between an ICC and a terminal.

Section 5: Electromechanical interface

Additional audience: None.
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In this section the electrical and mechanical characteristics of both the ter-

minal and the ICC are listed. It starts off with the requirements for a move to
lower voltage ICC, which implies that it builds on the standards that have been
set in other (ISO/IEC) standards for ICCs.
It continues with mechanical characteristics, such as the maximum height and
width of the ICC and the location of the contacts, before continuing with electri-
cal characteristics. This section finishes with the same mechanical and electrical
characteristics for terminals.

Section 6: Card session
Additional audience: None.

The different phases of a (normal) card session are listed here, from insertion
of the ICC and activation of the contacts to execution of the transactions and
the subsequent deactivation of the contacts. For each phase the states of the
different contacts are listed, as well as the steps that need to be taken to allow
a normal card session to be performed (which contact has to be activated using
which signal at which point in time, how does a cold/warm reset need to be
performed, et cetera).

Section 7: Physical transportation of characters
Additional audience: None.

Since it needs to be possible for ICCs and terminals to exchange data, a
convention needs to be set on how this data is transmitted. In this section the
conventions for this exchange are listed in the form of bit and character exchange.
It contains information such as the bit duration and the character frame (such
as which bit is transported first), allowing the exchange of information.

Section 8: Answer to reset
Additional audience: Low-level protocol implementers.

After the terminal has sent a reset signal, the ICC needs to respond with
information on how to communicate from that point onwards. This information
is defined in this section. It contains the characters that should be returned at
an Answer to Reset for both the T=0 and T=1 protocol (explained in detail in
Section 9), as well as their meaning and the behaviour of the terminal during
the ATR. It concludes with a flow chart demonstrating an example flow at the
terminal.

Apart from the general audience, the information in this section would be
interesting for someone who would have to implement this, which is a very low-
level protocol.
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Section 9: Transmission protocols

Additional audience: Low-level protocol implementers.

In this section two transmission control protocols are defined: T=0 and T=1.
One of these protocols is to be used for further communication, and the require-
ments for these protocols are listed in this section. The protocols are described
in a layered manner:

e Physical layer; references section 7 as that section handles this layer.

e Data link layer; describes the timing requirements, the different options and
the error handling needed for both protocols.

e Terminal transport layer; defines the layer that is responsible for the trans-
port of the command and response APDUs described in the application
layer.

e Application layer; defines the structure of command and response APDUs.

As with section 8, someone who has to implement T=0 or T=1 will be interested
in this specific section, while more generic ICC application programmers might
be interested in the details of T=0 and T=1 as well. The general structure of
command and response APDUs are also mentioned and might be interesting for
an ICC application programmer, but Section 11 of this Book and more specif-
ically Book 3 (which is much more suitable in general for the ICC application
programmer anyway) go into much more detail.

Section 10: Files

Additional audience: 1CC operating system developers.

This section elaborates on how an application on an ICC should store in-
formation and how this information should be structured on the ICC itself. It
references the ISO/IEC 7816-4 standard, which implies much more information
can be gathered from that standard. Apart from the structure it also specifies
how files can be referenced.

Apart from the general audience, an ICC operating system developer would
most likely be interested in the information in this section, as well as the infor-
mation referenced in ISO/IEC 7816-4.

Section 11: Commands

Additional audience: General ICC application and terminal programmers.
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Messages that are sent from the terminal and the ICC are sent in a specific
format called the Application Protocol Data Unit (APDU) format. However, this
Book only lists the commands that are necessary to select an application on the
ICC. Additional commands are defined in Book 3.

This section lists the structure of the READ RECORD and SELECT com-
mand and response APDUs.

The additional audience listed here might be interested in these commands,
but will generally be much more interested in the contents of Book 3.

Section 12: Application selection

Additional audience: ICC operating system developers, general ICC applica-
tion and terminal programmers.

This section describes how a terminal and an ICC can agree on which appli-
cation should be used to perform transactions. This is the first step that needs
to be taken after contact activation and the card reset. It describes the use and
structure of Application Identifiers(AID) and how a list of candidate AIDs is used
to allow selection of a particular application.

Annex A: Examples of exchanges using T=0

Additional audience: Low-level protocol implementers.

This section is exactly what its name implies: examples illustrating the ex-
changes of data between the terminal and the ICC.

Annex B: Data Elements Table

Additional audience: General ICC application and terminal programmers.

In this section the data elements that may be used for application selection
are listed, as well as how they map to files and other data objects.

Annex C: Examples of directory structures

Additional audience: ICC operating system developers.

Examples of directory structures as they are specified in section 10 are listed
in this annex.
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2.1.2 Book 2: Security and key management

General audience: Cryptographers (analysts and implementers), certification
authorities.

In book 2 [8] the policies, functionality and requirements for security and key
management are described. It describes the minimum level of security required
for both ICCs and terminals in order to guarantee proper interoperability and
correct operation. Apart from the requirements between the ICC and the ter-
minal, requirements and recommendations are also made with respect to on-line
communication between ICCs, terminals and the payment system in place at the
issuer.

Examples of information that can be found in this book are authentication of
ICCs and how messages should be sent that allow for confidentiality and integrity
of those messages.

Section 5: Static Data Authentication(SDA)

Additional audience: None.

The EMV standard allows for offline authentication of the data that is present
on the ICC, and offers static and dynamic methods of verifying that unautho-
rised alterations to the data after personalisation have not occurred. Static Data
Authentication(SDA) is described in this section, and as the name implies it only
uses static means of verifying the authenticity of the data referenced by the Ap-
plication File Locator (AFL) and the (optional) Static Data Authentication Tag
List. What this means in practice is that after personalisation of the card, a
digital signature is created for the static data on that card, so its authenticity
can be verified.

The section describes how SDA works in many different aspects, such as the
data elements that are required to support SDA and how the different elements
need to be signed and verified.

Figure 2.1 shows a diagram on how the relationship between cryptographic
keys and data to be authenticated is established, and is taken directly from the
EMYV standard|[8].

Section 6: Offline Dynamic Data Authentication
Additional audience: None.
This section of book 2 describes two different forms of dynamic data au-

thentication in an offline environment: Dynamic Data Authentication(DDA) and
Combined Dynamic Data Authentication/Application Cryptogram Generation
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Issuer Certification Authority Acquirer
Distributed o Acquirer
Private Key| | Public Key Private Key| | Public Key (Resides in Terminal)
Static (Issuer) (Issuer) (CA) (CA)
application 5 P, Sca Pea
data
EEE———
. ) v
Signed Static
——| Application [—— - Issuer PK
r Issuer PK ssuer
Data (SSAD) Certificate 4+ Certificate
Y
[—
IC Card [ IC Terminal
Issuer PK Certificate and SSAD f
Card provides to Terminal: Terminal:
* Issuer PK Certificate (P signed by CA using S¢,) * Uses Pcato verify that the Issuer’s P, was signed by the CA

* Signed Static Application Data (SSAD) * Uses B to verify that the Card’s SSAD was signed

(signed by the Issuer using S;) by the Issuer

Figure 2.1: Diagram of SDA, taken directly from [8]

(CDA). Initially this led to some confusion during this research project, as Dy-
namic Data Authentication seemed to be the same as Offline Dynamic Data
Authentication. However, it is good to distinguish between the two, as Dynamic
Data Authentication is a subset (one of the two possibilities described in the
EMV standard) of Offline Dynamic Data Authentication. From this point for-
ward, when DDA is mentioned it refers to Dynamic Data Authentication and not
Offline Dynamic Data Authentication.

The difference between SDA and DDA is that DDA allows for authentication
of data that was generated during its lifetime, and not just data that was gener-
ated at its issuance. In practice this means that ICCs supporting DDA can create
new authentication tokens when needed, while ICCs supporting SDA always use
the same token to authenticate.

Both methods are described in this section in terms of requirements, the
steps that are needed to create and verify such authentication tokens, et cetera.
CDA can do everything that DDA can do, but can also create signatures on an
Application Cryptogram (AC). This means transaction related data can also be
signed, while normal DDA only provides the possibility of validating card data in
a dynamic fashion. The section concludes with a flowchart depicting an overview
of a sample flow of a CDA transaction.

Figure 2.2 shows how the cryptographic keys and card data relate to each
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other, and is directly taken from [8].

lssuer Certification Authority Acquirer
Distributed to Acquirer
Private Key Public Key | | Private Key| | Public Key Private Key| | Public Key (Resides in Terminal)
(ICC) Static (ICC) [lSSL_ler] (Issuer) [C_'A] (CA)
Sic application Pic 5, P, Sca Pey
data
y I—.
v
ICC PK
Ll . - Issuer PK Issuer PK
Certificate Certificate 4 Corifioae

Y |
-]

IC Card IC Terminal
4

Communication between IC card and terminal

Card provides to Terminal: Terminal:
* lssuer PK Certificate (P signed by the CA S¢a) * Uses Peato verfy that the Issuer’s P, was signed by CA
« ICC PK Cerificate (P, and static application * Uses Pyto verify that Card Py and static application
data signed by Issuer /) data were signed by Issuer
« Card and terminal dynamic data and digital signature + Uses Py¢ to verify the card’s signature on the dynamic data

{dynamic data signed by Card 5¢)

Figure 2.2: Diagram of DDA, taken directly from [8]

Section 7: PIN encipherment

Additional audience: Terminal application developers

When a PIN is entered into a PIN pad, it is possible to insist on the secure
transfer of this PIN to the ICC to prevent sniffing of this sensitive information.
The EMV standard provides a solution for this in the form of PIN encipherment,
and this section goes into the details of this solution.

Apart from referencing the appropriate book and section(section 6.5.12 of
book 3) that describes the data structure in which a PIN should be stored, it
states the necessary keys and certificates to allow for PIN encipherment. It is
possible to use the same keys and certificates that are used in Offline Dynamic
Data Authentication (as specified in section 6 of book 2), but the EMV standard
prefers the use of a specific public and private key pair for PIN encipherment.
The certificate that contains the public key is stored in exactly the same way
as described in section 6: offline dynamic data authentication. This section also
lists the steps necessary to retrieve the PIN encipherment public key, how the
PIN entered into the PIN-pad should be enciphered using the PIN encipherment
public key and how the ICC should extract and verify both the complete message
and the PIN.
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As a final note on this subject concerning the additional audience specified
for this section it is important to realise that for the e-dentifier and the devices
listed in [5] this section was not relevant, since the PIN it sent to the card in a
plaintext format.

Section 8: Application cryptogram and issuer authentication

Additional audience: Application developers.

This section describes the different methods that can be used to generate
Application Cryptograms. These cryptograms are used during a transaction to
confirm that a transaction is legitimate, and are generated by the ICC. Three
types of ACs are defined in this section:

1. Application Authentication Cryptogram (AAC) - Used when a transaction
is declined.

2. Authorisation Request Cryptogram (ARQC) - Used when a terminal wishes
to perform online authentication.

3. Transaction Certificate (TC) - Used when a transaction is accepted.

The structure of the application cryptograms is the same for every time; they
are simply a Message Authentication Code (MAC) generated over certain data
elements. The recommended minimum amount of data elements that should be
included in this MAC (such as the amount, terminal country code, an unpre-
dictable number, a transaction counter, et cetera) are described in this section,
as well as how the key for the MAC algorithm should be determined. The sources
for this data are also listed, such as that the transaction counter of the data el-
ements to be signed is provided by the ICC while the terminal provides values
such as the transaction amount, transaction date and an unpredictable number.
Figure 2.3 gives an overview of the generation of an application cryptogram (note
that not all possible fields have been included for brevity).

SKD(key) = Session Key Derivation function

MAC(data, key) = Message Authentication Code function
MK 4o = ICC Application Cryptogram Master Key
SKac = SKD(MK sc)

AC = MAC((amount, date, nonce, transaction counter, ...), SKa¢c)

Figure 2.3: Application Cryptogram generation

Note that this section in itself does not formally define the differences between
the different ACs. Instead it refers to section 10.8 of book 3, but more relevant
information is also available in section 6.5.5 and section 9 of book 3. More
information on this shortcoming and the formal meanings of these cryptograms
see section 2.2.2 of this document.
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Apart from these AC, this section also explains the Authorisation Response
Cryptogram (ARPC), which can be used for issuer authentication. ARPC con-
sists of two possible methods, and the steps needed for both methods (algorithms,
data elements to be used in those algorithms and where the keys used in those
algorithms should be taken from) are listed in this section.

This section concludes with some words on key management and involves a
reference to Annex Al.4 of this book with respect to key derivation techniques
based on the Primary Account Number (PAN) and the PAN sequence number.

Section 9: Secure messaging

Additional audience: Custom application developers.

Being able to send messages that are confidential, being able to guarantee the
integrity of such messages and having the possibility of authenticating the sender
of the message is obviously essential in an application such as an electronic bank
card. This section describes how secure messages with these properties can be
sent.

This section starts with explaining how secure messages can be formatted and
lists two possibilities:

1. A format according to ISO 7816-4 which uses Basic Encoding Rules-Tag
Length Value (BER-TLV) data field encoding, with strict enforcement of
ASN.1/ISO 8825-1 encoding rules.

2. A format in which commands that use secure messaging do not use BER-
TLV encoding, but may use it for other purposes. In this format the data
objects and their lengths need to be known by the sender and currently
selected application.

The rest of this section deals with how the secure message needs to be con-
structed for integrity and authentication (explained in a shared sub-section) and
confidentiality (explained in a separate sub-section) per possible format. It deals
with how the division of the response should be handled, as well as determin-
ing the required keys (such as the key for the MAC algorithm in case of in-
tegrity /authentication) and key management. For both sub-sections a reference
is made to Annex D2, in which an example is provided.

Section 10: Certification authority public key management principles and
policies

Additional audience: None.
Payment systems that follow the EMV standard and that want to use either
SDA or offline DDA will inevitably run into the need to set up a public key
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infrastructure. This section defines the principles (”concepts identified as the
basis for implementing Certification Authority Public Key management”) and
policies derived from those principles that should apply to all payment systems.

A public/private key pair usually follows the following five consecutive phases:
1. Planning
2. Generation
3. Distribution
4. Key usage
5. (Scheduled) revocation

Each phase is described, along with steps that need to be taken to preserve the
integrity of the keys. For example, in the distribution phase it is extremely im-
portant that keys that are sent from the certification authority to issuers (such
as banks issuing EMV cards) and acquirers (such as suppliers of merchant ter-
minals) are only sent over a channel that preserves the integrity of the messages.
If this is not the case, corrupt keys could be distributed.

Apart from the normal life cycle of a public key it is also possible that a key
is comprised. When this occurs, this section adds four new phases to the normal
life cycle:

1. Detection

2. Assessment

3. Decision

4. (Accelerated) revocation

As with the normal phases, every phase is once again listed in this section. For
example, in the detection phase it is not needed that a key has actually been
compromised. If factorisation techniques have evolved in such a manner that it
is possible to break keys, even if it has not happened yet, it might be necessary
to take action.

The next part of this section goes into the actual principles and the policies
that are derived from these principles, such as the principle that support for
key revocation is mandatory for all payment systems. It lists the principles for
each phase, and the policies that should apply for all payment systems. In some
cases the EMV standard only provides the principles, as policies that apply to
all payment systems cannot be established.

The final part of this section (section 10.3) gives sample overviews of the time
lines based on the principles and policies that have been given.



20 CHAPTER 2. THE EMV SPECIFICATIONS

Section 11: Terminal security and key management requirements

Additional audience: Terminal developers (physical terminals and applica-
tions).

Since terminals have to handle sensitive data such as cryptographic keys, and
those terminals are often placed in untrusted locations, it is extremely impor-
tant to set requirements on the handling of this data in terminals. This section
elaborates on this aspect of the system, but only in terms of key management
requirements for public keys. Security requirements for PIN pads are not listed
here, but are instead delegated to be the responsibility of individual payment
systems. However, they are referred to ISO 9564 for general PIN management
and security principles.

As with the previous section, requirements for key management are divides

into four phases:

1. Introduction of a certification authority public key in a terminal

[\V)

. Storage of a certification authority public key in a terminal
3. Usage of a certification authority public key in a terminal
4. Withdrawal of a certification authority public key in a terminal

For each phase the principles are listed, such as the need for a terminal to be
able to verify that the key(s) it has received is error-free and originated from the
proper authority. Apart from these principles, requirements are also listed. For
example, terminals supporting SDA or offline DDA must support six public keys
per application.

Annex A: Security mechanisms

Additional audience: None.

This annex gives an overview of the different cryptographic techniques and its
settings that are used in the EMV standard. It explains how padding should be
done if a message is not a correct multiple for encryption, which modes of opera-
tion are allowed (Electronic codebook (ECB) and cipher block chaining (CBC))
and how they work, and how essential aspects such as session key derivation and
master key derivation should be implemented. It does this for both symmetric
schemes (such as how to compute a MAC) and asymmetric schemes (such as
signature generation and verification).

Annex B: Approved cryptographic algorithms

Additional audience: None.
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The algorithms that are allowed to be used in EMV compliant applications
are listed in this Annex. The algorithms that are approved as hashing algorithms
are the following;:

e Triple DES; approved for encipherment and MAC.
e RSA; approved for encipherment and digital signature generation.

e Secure hash algorithm (SHA-1); approved as a hashing algorithm. s

Annex C: Informative references

Additional audience: None.
Contains references to documents that can give more information on the sub-
ject of security and key management.

Annex D: Implementation considerations

Additional audience: None.

Considerations that need to be made when implementing a payment system
according to the EMV standard are made in this annex, such as the notion that
there is a maximum of 256 data bytes in a response. Public keys might be longer
than this maximum response, meaning that this is something that should be
considered.

A very interesting part of this annex is the part that illustrates how a format
1 (see section 9 of book 2) secure message can be constructed.
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2.1.3 Book 3: Application specification

General audience: Application developers, operating system developers, re-

verse engineers.

This book specifies the necessary building blocks required to develop applica-
tions according to the EMV standard. It specifies the structures of the commands
that can be used, the types of information sets that can be stored on a card and
how the general flow of an application works. This book is the most important
book for someone developing or reverse engineering EMV compliant applications,
such as what has been done for this research project.

Section 5: Data elements and files

Additional audience: None.

Applications obviously need data to work with in almost all situations, and
this section defines how applications can store and use data. This section heavily
references both annex A and B, which contain a dictionary of data elements and
how those data elements are encoded.

Data elements are raw pieces of data and can be considered the smallest data
containers. It contains information such as the PAN or the Application Identifier.

Data objects are pieces of data that consist of a tag, length and value, and
can contain other data objects or a data element. The tag is unique in the
environment of the application and can be used by the application to reference
a data object. It is possible for data objects to be present but not used. When
this happens there is no data in the value field, and the length field of the data
object is '00’. Terminals must be able to correctly interpret this situation!

It is possible to store one or more data objects as a template, and these
templates are called records. How the different data objects are mapped into
records is left to the issuer.

Physically storing those pieces of data on an ICC occurs in so called Files,
and these files are available to the ICC as records. The files themselves can be
referenced through a name (which somehow contains a reference to the application
it belongs to through the Application Identifier) or through a Short File Identifier
(SFI).

During an EMV transaction it is likely that the terminal will need to construct
a dynamic list of data elements, for example to have the card create a signature for
a transaction. Since the card only has limited processing power, those dynamic
data lists are not encoded as normal data objects, but instead are constructed
by concatenating different data elements together. Since normal encoding is
not used, the ICC contains Data Object Lists (DOL) which specifies the format
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of the data. An example of when this is used is when the terminal sends a
Generate Application Cryptogram command to the ICC. Card Risk Management
Data Object Lists (CDOL) are used to indicate which elements are included in
a signature.

Section 6: Commands for financial transaction

Additional audience: None.

This section contains the commands that can be sent from a terminal to
an ICC during a financial transaction, and what an ICC can send back to the
terminal as a response. Commands are sent in a so called Application Protocol
Data Unit (APDU) format, and come in two flavours: command and response
APDUs. This information is taken from the ISO 7816 standards, and should
be known to anyone who has ever worked on developing an application that
corresponds to this standard (which will most likely be anyone who has recently
worked on a smart card application).

The only information that can be considered new in the first part of this
section is the fact that commands that are proprietary to the EMV specifications
are coded to have a class byte (CLA) starting with an ’8’.

The final part of this section contains a very interesting list: an overview
of the relevant command/response APDU pairs in terms of what it should do,
which values should be set in the command header (such as the instruction (INS)
byte), and what should be returned. Since this information was essential for this
research project when attempting to get insight into the protocols that have been
used, an overview has been made available in appendix A of this document with
the different class and instruction bytes along with which command it corresponds
to.

Section 7: Files for financial transaction interchange

Additional audience: Implementation verifiers.

Part IIT (Section 10 to 12) of Book 1 of the EMV standard [7] has already
given specifications for files, but this has mainly been done for high level file types
such as applications, directories and commands. This section defines files that
should be present (Section 7.2) and how they should be mapped (Section 7.1). A
prime example of two files that should be present for every financial application
are the Card Risk Management Object Data List 1 and 2. These files should be
readable through the READ RECORD command, and should be available in a
linear file available within the SFI range of 1 and 10.

Apart from the data objects available through the READ RECORD com-
mand, some data objects are only available through the GET DATA or GET
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PROCESSING OPTIONS command. Section 7.3 and 7.4 list these data objects,
and whether or not they are mandatory.

The final section (7.5) specifies how a terminal should react if mandatory
data (whether it’s mandatory by default or made mandatory in order to support
optional functions) is missing or incorrect. If a terminal discovers this, it is very
important for it to set the ICC data missing indicator bit to 1 in the terminal
verification results. Another important piece of information is that it is the duty
of the issuer of the ICC to make sure the data is in the proper format. For
example, data objects that do not parse correctly should lead to the terminal
terminating the transaction, even if it can deduce the information it needs from
it. This section concludes with a table of conditions in which the ICC data

missing indicator bit should be set to 1.

Section 8: Transaction flow

Additional audience: None.

As the name implies, this section gives an overflow of the flow of a transaction.
However, this section only looks at the transaction flow inside the application
layer, as Book 1 has already specified the functionality outside the application
layer (such as application selection). 8.1 states that if an exception is thrown this
is signified through the SW1 and SW2 status words. Any other value than 9000,
63Cx, or 6283 shall cause the terminal to terminate the transaction.

Section 8.2 gives a useful flowchart, which has been used during this research
project and has been copied in this document as figure 3.1. The final part of this
section allows for additional functionality not specified by the EMV standard (or
future additions made to the EMV standard), but states that may not interfere
with terminals and ICCs not implementing these features.

Section 9: GENERATE AC command coding

Additional audience: None.

In this section focusses heavily on the GENERATE AC command, and gives
an overview on what should be possible with this command. It is an important
part of the EMV standard in terms of defining the semantics of the different
types of cryptograms (see section 2.2.2 for its relevance for this research) and
the flowchart it starts with gives a good impression of what is possible with the
cryptograms.

Apart from the flowchart, it also defines that the CDOL 1 and CDOL 2 data
object lists are extremely important (as they provide most of the transaction data
to be used as input to the final cryptogram), and that the format of the data
sent to an ICC is not in its usual TLV format, but instead in a concatenated
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format defined by the CDOLs. This section concludes with an overview of how
the command should be used, as it can be used twice during a single transaction.
For example, the ICC may only respond with an ARQC at the first request of
the terminal. It may never respond with an ARQC to the second request.

Section 10: Functions used in transaction processing

Additional audience: Implementation verifiers.

This relatively large section starts off by referencing part II (Section 5 to 7)
of Book 4 of the EMV standard, as it may define additional terminal-specific
requirements. In this section a (chronological) list steps is given for a transaction
in a textual format, and can be seen as a very informal description of the possible
protocol used during an EMV transaction. It never actually gives a clear high-
level overview of the protocol, which would have been useful as it is much easier
to read than the wall of text that is used here. Note that the perspective of this
section is entirely from the viewpoint of the terminal.

It defines the ”phases” of a transaction, the conditions that apply to this
phase having to be executed (for example reading application data is mandatory,
while cardholder verification depends on whether the ICC supports it), when the
particular phase may be performed and what the details are of the phase. This
section defines the following phases:

e Initiate application processing
e Read application data

e Offline data authentication

e Processing restrictions

e Cardholder verification

e Terminal risk management

e Terminal action analysis

e Card action analysis

e Online processing

e [ssuer-to-Card script processing

e Completion
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Annex A: Data elements dictionary

Additional audience: None.

This annex defines all the data elements that may be used for financial trans-
actions. It contains two tables with the same information, except that one table
is sorted by the name of the data element, while the other is sorted by the tag.
It is an extremely useful appendix, as it not only defines the data elements, but
also describes them. This appendix was used often during this research project.

Annex B: Rules for BER-TLV data objects

Additional audience: None.

Defines how BER-TLV encoded objects should be created and interpreted. It
(obviously) references ISO 8825, as it is taken from this standard. It describes
how the tag, length and value parts of these objects should be encoded and gives
an overview of the meaning of different parts of these objects at the bit level.

Annex C: Coding of data elements used in transaction processing

Additional audience: None.

The EMV standard defines a lot different data elements, such as the applica-
tion interchange profile which tells a terminal the capabilities of an ICC. Since
an ICC can have many different capabilities (such as supporting SDA, DDA or
CDA), being able to interpreting these values is important, as most of these data
elements are only a few bytes in size. This section lists how these values should
be interpreted by listing what it means when a particular bit is flipped or when
a byte has a particular value.

Annex D: Transaction log information

Additional audience: Log extraction device creators.

Defines a method for special devices to extract transaction log information
from an ICC. It should be interpreted as an additional phase to those defined
in Section 10 of this book. It describes the Log Entry and Log Format data
elements, and additional information such as the range of the SFIs in which they
can be found.

Annex E: TVR and TSI bit settings following script processing

Additional audience: None.
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This annex lists which bits should be set n which values when processing
a script. It gives four scenarios and describes what should be done in those
scenarios. It also references Book 4 Annex A5 for the definitions of Issuer Script
Results.

Annex F: Status words returned in EXTERNAL AUTHENTICATE

Additional audience: None.

The EXTERNAL AUTHENTICATE command is a command used to provide
a cryptogram to the ICC which then has to verify this cryptogram. This annex
defines the possible responses the ICC can give to this request, explains why and
when a particular response should be given and what a terminal should do when
such a response occurs.

Annex G: Account type

Additional audience: None.

Gives the possible values for the Account Type data element.
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2.1.4 Book 4: Cardholder, attendant, and acquirer interface require-
ments

General audience: Terminal/point of sale/host devices developers (both phys-
ical and applications), software architects.

As the title of the book suggests, a lot of the information in this book relates
to the requirements imposed on the devices used to communicate with EMV
compliant ICCs. This includes Interface Devices (IFD), which are the devices that
connect to an ICC and perform the physical communication, but also Point of Sale
(POS) devices and merchant/acquirer host devices that manage the transactions.

Section 5: Terminal types and capabilities

Additional audience: None.

The different types of terminals, as well as their capabilities are briefly listed
in this section. A division is made between the following aspects of terminals:

e Environment: Attended and unattended terminals (unattended terminals
do not require participation from an attendant to provide transaction data,
he or she may still be present).

e Communication: Online only, offline with online capability and offline
only terminals.

e Operational control: Financial institution, merchant or cardholder; who
bears the responsibility of the operation of a terminal.

As the terminal type needs to be made clear to the card somehow, an coding
of this information is needed. This encoding is not listed in this section, but is
instead listed in Annex A.

Apart from the types of terminals, the capabilities of such terminal are also
listed in this section. These capabilities are elements such as which methods
it has to verify the cardholder and which types of transactions it can do. The
encoding of these capabilities are once again listed in Annex A, and not in this
section.

This section concludes with three examples of possible configurations of the
terminals, such as one being connected to a POS device without online capabili-
ties.
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Section 6: Functional requirements

Additional audience: None.

This section makes it very clear that it does not want to replicate the other
books of the EMV standard, but still references all three of them in what an
implementation should conform to. This section looks specifically at implemen-
tation issues and how the other books might impact the development of an EMV
compliant terminal. This section does expand on some additional requirements
to Book 3, and does so in terms of the phases as they have been defined in Section
10 of Book 3.

These additional requirements relating to Book 3 are mostly about setting
which bit in which case, for example that you have to set the cardholder verifi-
cation method results bit to 'unknown’ if a paper signature was used, but also
includes information such as what should be done if a card initially requests an
amount field in the PDOL and it is not available (the terminal should display an
ENTER AMOUNT message and forward the requested amount to the ICC).

After expanding on the additional requirements to Book 3, Section 6.4 gives
the conditions for support of function. As an example, a terminal that supports
DDA or CDA must also support SDA. Section 6.5 specifies other functional re-
quirements for terminals, such as those relating to amount entry (what should
be done if the amount is not known yet at the time of a transaction, like when at
a night terminal of a petrol station) and the transaction counter present on the
terminal.

Additional requirements for card reading have been specified in Section 6.6.
During a transition phase, card owners may still use the old magnetic stripe of a
card, and when the magnetic stripe indicates an ICC is present, terminals must
prompt the card owner to insert the card into the IC reader. This is one of the
requirements specified in Section 6.6.

The final part of this section, Section 6.7, gives terminal requirements for date
management.

Section 7: Physical characteristics

Additional audience: None.

In this section physical characteristics for terminals are given, such as what
types of keys a keypad can contain, how the (command) keys should be coloured
and located on the keypad, and that the ’5’ key should have a tactile identifier.
Displays are also mentioned, but more broad notions of physical characteristics
are also mentioned, like how a terminal should provide memory protection (so
data does not get lost) and the existence of an internal clock.
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The two final sub-sections deal with the printer (mandatory for all non-
cardholder controlled terminals) and the requirement for a terminal to have a
magnetic stripe reader if payment system rules indicate this.

Section 8: Terminal software architecture

Additional audience: Terminal operating system developers.

Section 8 is the first section of Part III, Book 4 of the EMV standard, and this
part is labelled as the Software Architecture part. What this particular section
mainly deals with is the future, as it tries to provide insight into how the move
from magnetic stripe cards to tamper-resistant chips also has consequences for
terminals. With magnetic stripes the terminal has to do little more than interpret
the limited amount of information, and send it on when needed. However, much
more interaction is expected from a terminal that communicates with a chip, and
making sure that the terminal can keep up with a changing environment over a
long period of time is essential.

The need for terminals to accept new applications without having to modify
and/or certify existing applications is made very clear in this section. In or-
der to help with this need, this section suggests two approaches to the software
architecture:

e Application Program Interface (API) approach
e Interpreter approach

The API approach is a software architecture in which all applications are made us-
ing a set of essential and frequently used functions. These functions are available
through a standard interface called the API. This approach has the advantage of
allowing code reuse through different applications, offering an abstraction layer
for the hardware on which it runs, and by providing easier certification of new
applications as they use an already certified API library.

The interpreter approach is an intermediate layer that defines a single kernel
for multiple terminal types. The kernel exposes a virtual machine that can be
implemented across different CPU types, and can expose drivers for I/O and low-
level functions. This provides the advantages of having a single kernel that only
has to be verified once for multiple platforms, that has generalised ICC support
functions and only has to be installed once during the lifetime of a terminal
(approx. T7-10 years). It also gives the advantage of allowing CPU-dependant
plugs that can enhance a terminal’s behaviour.

For both approaches the software architecture should have the ability to main-
tain an application library of modules or routines that may be invoked during
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the processing of a given transaction. These may be available to all applications,
or may be restricted to particular applications or payment systems.

This section concludes with a suggestion of so called plugs and sockets, which
allow a terminal to be enhanced by its acquirer /payment system owner. Necessary
changes to the existing code or behaviour of a terminal can be added in this
manner.

Section 9: Software management

Additional audience: Terminal operating system developers.

This extremely short section deals with the necessity of being able to upgrade
software once it has been deployed in a terminal, for example to fix a bug. It
does not specify much in terms of requirements, except for the need to verify
the identity of the party loading the software and verifying the integrity of the
software that is loaded.

Section 10: Data management

Additional audience: Terminal operating system developers.

This section deals with the management of data specifically during terminal
initialisation or data that is needed during transactions. For example, when a
data element is initialised or updated its integrity needs to be assured by the
terminal. Different data elements should be controlled by a particular party, like
how the IFD serial number should controlled by the terminal manufacturer and
how the local date and time should be controlled by the merchant.

The section continues with listing the data elements that are application in-
dependent (such as the local date and time), as well as the data elements that are
application dependant (such as the Application Identifier (AID)). The application
dependant data elements are specified by individual payment systems.

Section 11: Cardholder and attendant interface

Additional audience: None.

Since attendants and cardholders will need to operate the devices specified in
the previous sections, requirements and suggestions have to be made from that
perspective as well. This section looks at these aspects, such as the language
that needs to be used when operating a terminal. Not only does it list the
requirements for support of the languages that need to be available for cardholders
and attendants, it also gives a list of standard messages and the values of the
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message identifiers belonging to those standard messages. As an example, a
message identifier of ’09’ means the ENTER PIN message needs to be displayed.

Another aspect of cardholder/attendant interfacing lies in the selection of an
application. When inserting a card into a terminal, multiple applications might
be usable for the terminal, and a terminal might be able to offer the cardholder
the possibility of selecting one of those applications. How this should be done, as
well as what should be done if a terminal can not offer this possibility is described
in Section 11.3. The final section, Section 11.4 briefly mentions the need for the
AID of the application to be printed on the receipt.

Section 12: Acquirer interface

Additional audience: Data exchange system developers.

So far the EMV standard has focussed on the transactions themselves, but
when they are complete (or even during a transaction) the data resulting from
that transaction needs to be communicated to the acquirer and issuer in order
to process them. This section looks at messages sent from the terminal to the
acquirer, mostly by establishing which data needs to be sent in those messages.
For example, in an authorisation request message the application interchange
profile, application transaction counter and the ARQC needs to be sent (among
others, as well as some optional data elements). These data elements are both
related to the ones defined specifically for ICCs as well as the data elements as
they were used in existing systems (such as magnetic stripe systems).

Of course something can go wrong during an exchange of data (such as when
the network is unavailable and going online is impossible, or a request/response
might get lost or arrive too late), and Section 12.2 describes how the exception
handling process should be implemented.

Annex A: Coding of terminal data elements

Additional audience: ICC application developers, reverse engineers.

This annex lists the encoding for the terminal types, (additional) terminal ca-
pabilities, cardholder verification method results, issuer script results and autho-
risation response code. It would most likely be useful to include this information
in Book 3 as well, as it is extremely related to the information presented in that
book.

The encoding is either given through direct values (a terminal type value
of 34’ means an unattended, online only terminal that has to be operated by
the cardholder) or through a capabilities scheme in which each bit in a value

represents some form of capability.
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Annex B: Common character set

Additional audience: ICC application developers, reverse engineers.

In this annex a chart is given on how characters should be represented in an
EMV compliant application. It uses a single byte to represent these characters,
and the chart shows the values the bits need to have to represent a certain
character.

Annex C: Example data element conversion

Additional audience: Data exchange system developers.

An example table of how the data elements mentioned in Section 12.1 relate
to the ICC-related data elements listed in Book 3 of the EMV standard. This
is done by listing the tag of the data element and its corresponding name, and
relating them to the data elements from Section 12.1.

Annex D: Informative terminal guidelines

Additional audience: None.

Due to the wide variety of environments and location in which terminals can
be installed, this annex provides guidelines on how this can best be approached.
An outdoor terminal in the heart of Africa needs to be able to withstand different
(environmental) influences than a terminal located in a northern part of Sweden.

This annex contains guidelines on the power supply, keypad (the lettering
should be wear-resistant) and display. It also gives a useful list of informative
references.

Annex E: Examples of terminals

Additional audience: None.

This annex does not provide requirements, but instead gives examples of
different types of terminals. It gives a physical and functional description of
those terminals, but also provides a list of how the coding of the terminal-related
data would have to be. It gives an example of a POS terminal, an ATM and a
vending machine.
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2.2 Relevant aspects of the EMV specifications

Since the EMV specifications are extremely broad, and cover many different
aspects that are relevant for the development of financial applications on an
ICC it is obvious that some aspects were more important than others during
this research project. For example, the physical characteristics of an ICC were
not important compared to the structure of the commands that can be used for
financial transactions. This section looks at which parts of the EMV standard
have been the most important, and tries to collect and summarise the information
that is relevant for comparable research projects, as some important aspects of
the EMV specifications are scattered across different parts of the specifications
and have to be pieced together.

2.2.1 Important EMV specification sections for this research

For this research project all four books have been studied, but book 2 [8] and
book 3 [9] were the most relevant for this research. More specifically, the following
list is an overview of the chapters that have been important during this research
project and why they were relevant:

e Book 1, chapter 8: Answer to Reset. Used to help establish whether or not
the baud rate was the problem when using the sniffing device (see 3.2.)

e Book 1, chapter 9: Transmission protocols. Used primarily to establish
what went wrong when certain commands gave an incorrect response, and
led to discovering a weakness in the EMV standard (see 3.3.)

e Book 2, chapters 5 and 6: Static Data Authentication and Offline Dynamic
Data Authentication. Defines what is needed for both SDA and offline DDA.

e Book 2, chapter 8: Application Cryptogram and Issuer Authentication. De-
fines the different Application Cryptograms that can be generated and what
they represent.

e Book 3, chapter 6: Commands for Financial Transaction. Defines the
structure of the different commands that can be used according to the
EMYV standard. This is not a complete list of all possible commands, as
some of those are defined in book 1 (such as application selection).

e Book 3, chapter 9: GENERATE AC Command Coding. Primarily used for
its overview of the different steps that are needed to get an Application
Cryptogram.

e Book 3, annex A: Data Elements Dictionary. Used for the overview of the
possible TLV elements.
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2.2.2 Information gathered from multiple parts of the specifications

Some aspects of the specification that were necessary for this research project
were not fully described in a single section of the EMV standard. They had to
be gathered from different sections of the different books, which makes it hard to
figure out how certain parts of the specifications should be interpreted. In this
subsection an overview will be given of how different parts relating to a particular
subject of the EMV standard were interpreted during this research project.

Cryptogram types and their meaning

Cryptograms are first described in book 2 section 6.6, in which several require-
ments (including elements such as which bit needs to be set in which situation)
for CDA and a description of transaction flow when using CDA are given. Several
terms are introduced here such as ARQC, TC and AAC. These terms are not
introduced properly and their meanings remain unclear until they are properly
listed in book 3 section 6.5.5. This section lists the GENERATE APPLICATION
CRYPTOGRAM definitions, and includes a simple overview on the meanings of
the different cryptogram types. Combined with the sample CDA flow diagrams
available in section 6.6.3 of book 2 and the flow chart in section 9 of book 3
(which gives an overview of the various options and use of data elements during
transaction processing) it becomes clear how the different cryptograms relate to
each other and what their semantics are.

What does not become clear is that cryptograms are not exclusive to cards
supporting CDA, but that CDA makes it possible to create digital signatures
over these cryptograms as well. It is possible to generate cryptograms on cards
that support just SDA or DDA and not CDA as well. Cryptograms come in three
different flavours: ARQC, TC and AAC.

It is interesting that the semantics of the cryptograms can quite easily be
explained, as it is not extremely complicated, but this is not clearly done so in
the EMV specifications. A terminal has to decide on how it wishes to verify that
a transaction is authentic, and has several means at its disposal of doing this.
It can do so offline (in which the data collected can be verified to be authentic
immediately and will at a later point be sent to the issuer for processing) and
online (in which it will send the data generated by a card in real-time to its issuer
for verification).

Online request: When requesting online verification, the terminal will re-
quest an ARQC to let the card know it will verify the transaction online. The
card either accepts this and generates the ARQC, or will reject it and generate
an AAC. If the card accepts the online verification and the remote verification by
the issuer succeeds, the terminal will request a TC from the ICC, which will then
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generate the TC. If the online verification fails, the terminal will not request a
TC but will instead request an AAC.

Offline request: In case the terminal wishes to perform offline transaction
verification, it will request a TC. If the card approves, it will generate the TC
and the transaction will be complete. If the card rejects this, it can generate
an ARQC to see if online processing can be performed, or reject the transaction
completely by generating an AAC.

Termination request: Finally, the terminal can also reject a transaction
(immediately or at a later stage as described earlier), after which it will request
an AAC from the card.

The general format of the messages that are returned by an ICC are always
the same:

e Cryptogram Information Data (CID) that indicates which type of cryp-
togram it is.

e An Application Transaction Counter (ATC) which indicates the current
number of the transaction.

e An Application Cryptogram (AC), which is a MAC over data (referenced by
the ICC’s data objects lists and data available internally to the ICC) when
it is an ARQC or a TC. If it is an AAC this field will contain information
relating to the rejected transaction.

e Issuer Application Data (IAD), an optional field that contains information
about the current transaction.

With this information it should be clear what the semantics are for the differ-
ent cryptogram types, but also the importance of the optional IAD data. These
semantics are listed in table 2.1.

AC type | Semantics

AAC Used to provide proof that a transaction failed, why it has failed
and the values relevant to this transaction.

TC Used to provide proof that a transaction succeeded along with the
values relevant to this transaction.

ARQC Used to provide intermediate transaction information by having

the card sign the transaction data to be authorised by the issuer,
after which a TC or AAC will be requested by the terminal.

Table 2.1: Cryptogram semantics according to the EMV standard
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Data that is signed in an ARQC or TC cryptogram

While it is clear from Book 3 Section 6.5.5 that the GENERATE AC command
sent by a terminal should contain transaction-related data, it is not clear what
this data actually is. Section 6.5.5.3 references Section 5.4 of Book 3 (Rules for
using a Data Object List), but this section only elaborates on what a data object
list is and how it should be used (it is not a TLV encoded data object, but instead
a single field that consists of the concatenation of several data elements). This is
used to make sure the ICC can minimise processing, and the ICC uses the data
object lists to specify which data elements should be sent by the terminal to the
card.

So from Book 3 alone it is not possible to deduce which transaction infor-
mation is used as input to the MAC algorithm when requesting a cryptogram.
However, when looking at Book 2 Section 8.1 (Application Cryptogram Gener-
ation) it becomes clear which recommended data elements are specified in the
EMYV specifications. Table 2.2 lists these minimum recommended data elements.

Value Source
Amount, authorised (Numeric) Terminal
Amount, other (Numeric) Terminal
Terminal country code Terminal
Terminal verification results Terminal
Transaction currency code Terminal
Transaction date Terminal
Transaction type Terminal
Unpredictable number Terminal
Application interchange profile 1CC

Application transaction counter 1CC

Table 2.2: Recommended minimum set of data elements for Application Cryptogram
generation, taken from [8] Section 8.1

However, these data elements are recommended, and it is not mandatory to
use these particular data elements. From this part and the previous part it is not
even clear yet which data object list should be used to know which elements to
send in the data field of the GENERATE AC command. For this information
one has to look at Book 3 of the EMV specifications again, and look at table 33
in particular. This table is part of Annex A of Book 3, which is the data elements
dictionary. When looking at the Card Risk Management Data Object List 1 and
2 (CDOL 1/2) entries, it states that this data element is used in the first and
second GENERATE AC commands respectively.

To conclude, in order to determine which data elements are used in the gen-
eration of cryptograms in a particular payment application, it is a good idea
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to immediately look at the application itself, and to skip looking at the EMV
specifications as they cannot give a definitive answer.

2.3 Alternative EMV literature

Apart from the EMV specifications themselves, there is also alternative literature
that can give an overview of the capabilities of EMV. A good example of this is
a book called Implementing electronic card payment systems by Christian Radu
[13], which takes a deep look into implementing payment applications on smart
cards using the EMV specifications, and also looks at aspects such as why one
would migrate to smart cards from magnetic strips. For this research, Chapter 6
was the most useful, as it gives a less formal overview on how the EMYV specifica-
tions define transactions and its possibilities. The biggest weakness of this book
is that it is a bit outdated, and does not include newer aspects such as CDA.

In [2] a set of privacy and non-repudiation enhancing solutions are proposed,
and whenever a real-world example is needed as a payment system it uses EMV
as the example. It contains brief overviews of the capabilities, that can also be
very useful. For example, Section 3.2.2.2 lists EMV capabilities in terms of data
authentication, and manages to explain the difference between SDA, DDA and
CDA in a single page.

SDA is the cheapest solution to data authentication, and the (signed) data
and its certificates are statically available to a terminal.

DDA cards also have the possibility to create additional signatures on addi-
tional terminal provided data, further proving that the data on a card is legitimate
and help with the prevention of making copies of a card and its statically signed
data and its certificates. However, for a card it is only possible to do this with
the validation of the card’s resident data, and not (for example) for transaction
data.

CDA is very similar to DDA, and the only difference is that CDA makes it
possible for cards to also provide a digital signature for transaction-related data
such as the cryptogram, instead of just the card’s static data and some additional
terminal provided data. This makes it possible to detect alterations made to this
data as it is sent from the card to the terminal and/or issuer.

Since the EMV specifications don’t give extremely formal definitions of the
protocols that should be used, it is useful to look at literature that does have
an overview of the protocols. There are several [5, 12, 14, 11] papers on this
at varying levels of abstraction, and they all look at other aspects of the EMV
specifications as well (such as potential weaknesses, consequences for card users
and possible extensions to the current uses of EMV), making them an interesting
read.



Chapter 3

Looking at Dutch Internet
banking

Since one of the goals of this research project is to find out how Dutch banks use
EMYV for their Internet banking applications, both the bank card and the chal-
lenge/response device (called the e-dentifier) distributed by ABN AMRO have
been researched during this research project. The main focus lied on the ABN-
AMRO banks cards and the e-dentifier, but other cards and devices from some of
the other bigger Dutch banks have also been looked at. The Rabobank and SNS
bank also provide their own challenge/response devices, and these devices along
with their bank cards have been looked at. The ING bank does not provide a
challenge /response device to its customers, but what an ING bank card exposes
in terms of applets and applet data has been investigated.

The basic idea of the e-dentifier is simple: by inserting the bank card into the
device and verifying ownership of the card by entering the PIN, challenges posed
by the Internet banking application can be signed by the bank card’s chip. The
response from the device can be used to authorise a transaction by transmitting
a part of this signature back to the Internet banking application by converting
it to a decimal representation, allowing it to be easily typed into the appropriate
field.

Even though the EMV standard itself does not specify anything in terms of
Internet banking transactions, Section 3.1 attempts to give an insight on how the
EMV standard is being used for Internet banking. This is done by looking at
research that has previously been done [5], and how those results relate to the
EMYV standard.

39
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In order to understand the situation in the Netherlands, what protocol is used
by the e-dentifier when communicating with a bank card, and how this protocol
relates to the EMV standard, the following steps have been made in order to
reverse engineer the e-dentifier:

1. Using a passive traffic sniffer to see which data is exchanged by the e-
dentifier and a bank card. Section 3.2 goes into detail on the setup, and
why this (presumably) failed.

2. Developing a relatively easy terminal application that extracts information
from a bank card. This was done to become familiar with the different
programming libraries, as well as discover how the applets and data on
bank cards relate to the EMV specifications. Section 3.3 describes the
problems that were encountered during development.

3. Using a programmable smart card to log the commands an e-dentifier sends,
and developing a home-brew e-dentifier application that mimics these com-
mands. This custom made e-dentifier can then be used to extract responses
from an actual bank card that are used by a real e-dentifier. Section 3.4
elaborates on this process and its results.

The final part of this chapter (briefly) looks at how other Dutch banks use a
challenge /response device and an (EMV) applet for Internet banking. However,
the main object of study during this research project was the e-dentifier 2 provided
by the ABN-AMRO bank, and section 3.5 looks at the differences between the
e-dentifier 2 and the corresponding application on the bank card to see how other
banks have implemented/configured this.

3.1 Using EMV for Internet banking

The EMV standard itself does not mention Internet banking as one of the (possi-
ble) goals of the specifications, but instead focuses on providing specifications for
payment systems on ICCs. However, a specification has been developed for In-
ternet banking under the name Chip Authentication Program (CAP). The CAP
specifications are not freely available, but since they build upon the EMV speci-
fications it should be possible reverse engineer many aspects of this specification.

This reverse engineering has already been done in [5] for Internet banking
devices in the U.K., and part of this thesis project was to see if the situation for
Dutch Internet banking devices is comparable.

What was found in [5] is that a CAP implementation follows a normal EMV
session in which online transaction verification is done by entering a challenge
that is sent in a GENERATE AC command that requests an ARQC, followed
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by the rejection of the transaction by requesting an AAC to make sure the card
does not lock up due to too many (consecutive) failed attempts. A transaction
flow diagram for a normal EMV transaction was included in Book 3 of the EMV
standard in Section 8.2. This diagram has been copied as Figure 3.1 in this

document.

Initiate
Application

I

Read
Application
Data

|
—T— y

Data 'R”i;'"kiié’;:”g‘é’r‘;:firsmm‘ Terminal Risk
Authentication | performed in parallel with Management

other functions.

Processing
Restrictions

!

Cardholder
Verification

-

Terminal
Action Analysis

A

Card Action
Analysis

Online
Processing &
Issuer
Authentication

L 4

Cnline

h 4

Script
Processing

Completion |«

Figure 3.1: EMV program flow, taken directly from [9] section 8.2

The next chapter in the same book (Chapter 9 of Book 3) zooms in on the
online/offline decision step, which happens to be very relevant for this research
project as well as it focuses on the GENERATE AC command possibilities. In or-
der to compare the possibilities with the actual implementation in the e-dentifier,
the original diagram is included here in figure 3.2. This shows how a terminal and
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a card proceed with verifying a transaction and the steps that can be performed
to do this. The end result is the acceptance or rejection of a transaction.
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Figure 3.2: Online/offline decision - original, taken directly from [9] section 9

3.2 Sniffing reader and card traffic

The first attempt to get an insight into the protocols used by the e-dentifier was
made through the use of a passive interface device that can sniff traffic passing
between a card and a reader attached to the device. A season 2 passive interface™

*Very similar to the device available at http://www.interesting-devices.com/asp/
product.asp?product=160
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was used. This device has been successfully used at a previous research project
conducted at the Radboud University, in which the Dutch ChipKnip application
was reverse engineered.

3.2.1 Setup of the passive interface

The setup of the passive interface, the e-dentifier and the card was as follows:

e The passive interface was inserted into the e-dentifier.
e A bank card was inserted into the passive interface.
e The passive interface was connected to a PC on a COM port.

e The same custom software was used to collect data from the COM port as
was used for the ChipKnip project.

With this setup, the passive interface will relay all the commands sent by
the e-dentifier to the bank card, while simultaneously sending the data that
was relayed to the COM port it is connected to. This data can then be read
from the COM port by the custom software. This software uses the RXTX serial
communication package! and is implemented in Java. This device had worked well
for the ChipKnip project, and it was assumed that it could also be successfully
used for the e-dentifier.

3.2.2 Results of using the passive interface

When trying to use this setup with the e-dentifier, it turned out to be not as easy
as when it was used with the ChipKnip project. The traffic that was reported
by the passive interface looked nothing like the traffic that should be used (ISO
7816 compliant traffic). Instead it looked like garbage, which indicated a problem
existed in the setup.

In order to see where this problem originated from, a small test was set up to
see whether the ChipKnip results could be reproduced. Instead of attaching the
passive interface to the e-dentifier, it was attached to an OmniKey card reader to
see if the passive interface would properly report traffic when used as a ChipKnip
application sniffer. Note that the bank card used in both situations is the same
ABN AMRO bank card.

The results from this test were only slightly better: the passive interface prop-
erly reported the ATR initially, but traffic after the ATR was once again not ISO
7816 compliant traffic. This raised some more questions, which led to a meeting
with Engelbert Hubbers, who was involved in the ChipKnip project and knew
how the passive interface was used during that project. In that meeting it was

Thttp://www.rxtx.org/
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confirmed that both the e-dentifier and the Omnikey reader both mostly pro-
duced garbage. However, when attaching it to a slightly older Towitoko reader,
the passive interface reported all (ChipKnip) traffic without any errors.

With these results, it is a likely conclusion that the newer readers (the Om-
nikey card reader and the e-dentifier) are capable of operating at higher speeds.
According to the ISO 7816 standard cards initially operate at a baud rate of 9600,
but in the ATR it can indicate it can operate at higher baud rates. Readers ca-
pable of operating at this higher speed can then communicate with the card at
this speed.

Since the RXTX package allows a programmer to set the baud rate the serial
port uses, it was possible to try and communicate at the higher baud rate that
the reader and the card negotiate in order to get the results that were expected.
However, this also did not seem to help. Values under 9600 baud (naturally)
did not give the expected values, while rates above 9600 baud rarely changed its
outcome. Whether this is because the passive interface does not support higher
baud rates, and thus cannot sniff the traffic because it is too fast for the device
to report is currently unknown. An alternative theory could be that a problem
in the operating system or the RXTX package prevents the data from being
collected at the proper baud rate.

In a comparable personal research project done by Stan Hegt and Pieter
Ceelen at KPMG?, who used similar setup with newer versions of the same passive
interface, the same results were found. It was not possible for them to use the
passive interface to sniff the traffic between different bank cards and Internet
banking devices and get meaningful results.

As a final remark: the baud rates that were tested were all multiples of 1200
baud up to 19200 for both the e-dentifier and the Omnikey card reader, and all
multiples of 4800 up to the maximum that is supported by the RXTX package
(115200) for the Omnikey reader.

3.3 Extracting application information

Before developing the bank card simulator and the software-based e-dentifier, an-
other application was first developed that reads out the different (EMV) applets
present on a bank card and the information these applets initially expose, such
as the account numbers and public key certificates. This is a relatively straight-
forward process, which not only helped with familiarising oneself with different
elements of the Java Card frameworks, but also helped shed light on how the in-
formation presented in the different EMV specifications should be interpreted by
using real data present on bank cards. An example of data that EMV compliant

http://www.kpng.nl/
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applets expose are the two Card risk management Data Object Lists (CDOL)
that should be used by terminals during a transaction.

Since this type of information is also needed in the process of reverse engi-
neering the e-dentifier, it was deemed useful to start off with something relatively
easy in order to get the feeling of how EMV applets expose their data. It also
provided an opportunity to work with the different libraries that are needed when
programming and get a feeling for how they work.

In retrospect this has been a good idea, since two major problems were en-
countered when developing this particular application. These problems could
then be avoided when developing the applications that helped reverse engineer
the e-dentifier.

3.3.1 TLV structures

A prime example of why it is good to start with such a relatively easy project
came through the use of the javacardx.framework library provided by Sun. This
library is an extension to the Java Card 2.2.2 APIS, and provides a library that
allows support in creating Java Card applets. This library contains the javac-
ardx.framework.tlv package, which is a package that provides help with inter-
preting raw data that is stored on a Java Card. This data is stored in a Tag-
Length-Value (TLV) format, in which the tag part indicates what data can be
found in that particular structure, and where the length part indicates the size
of the value part. Both the tag and length part of this structure can vary in size,
and how this should be interpreted is described in both the EMV specifications
[9] as well as the standard it was taken from (ISO 8825). Apart from this compli-
cation, a TLV data element can contain other TLV elements, which means using
an existing library is favoured over hand-writing a parser.

Sadly, the javacardx.framework.tlv package is meant to be used on a java card
applet, and not a terminal application. It did not seem to work properly at all
for a terminal application. Every time a TLV or Tag object was to be created
(for both the Constructed and Primitive kinds), it would always return null, even
if it was 100% sure that the data was in a proper TLV format. Even if it had
worked, the library is extremely limited, as it does not look for TLV structures
within a given TLV object and mandates the use of a find/findnext method in
order to determine whether a given TLV exists within another TLV.

Luckily there are other libraries available for smart cards, such as the Open-
Card FrameworkY. This framework also provides a series of objects that help
with parsing TLV structures, and it is much more powerful than the Java Card
TLV support. For example, it does not provide two different objects for primi-
tive TLVs (a TLV that does not contain other TLVs) and constructed TLVs, but

Shttp://java.sun.com/javacard/
Thttp://www.openscdp.org/oct/
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instead has a collection of children and a flag that indicates whether or not a
particular TLV is a constructed or primitive TLV.

3.3.2 Incompatible Java card T=0 library

Another example of why starting with the relatively easy project was a good
idea came from a strange design decision in the EMV specifications, namely the
definition of the GET RESPONSE command which can be found in book 1
section 9.3.1.3 of the EMV specifications [7]. As has previously been established,
the EMV specifications build upon the ISO 7816 standard, which means a lot
of elements of that standard have been used in the EMV specifications. Among
others, EMV specifies two possible protocols for the data link layer: T=0 and
T=1. The GET RESPONSE command is used in the T=0 protocol, and leads
to the following sequence of events when the APDUs are correct:

1. The terminal sends the APDU to the card.
2. The card responds with a procedure byte and possibly a second byte.

3. The terminal sends another APDU to the card. The content of this APDU
depends on the procedure byte.

4. The card returns the final response.

Since this is done on the data link layer, many libraries (including the one pro-
vided by Sun in the javax.smartcardio library) provide an abstraction layer for
these exchanges, so someone using such a library does not have to worry whether
the ICC uses the T=0 or T=1 protocol. This leads to programmers only seeing
exchange 1 and 4: you tell the library to send an APDU and you get the response.
A programmer using such a library will never see step 2 and 3 occurring unless
looking for it in the implementation.

The strange design decision of EMV lies in the interpretation of the procedure
byte that is returned in step 2. In most cases it does not expose any problems, but
when the procedure byte is equal to a hexadecimal value of ’61’, the terminal is
supposed to send a GET RESPONSE command. A GET RESPONSE command
is defined statically in the EMV standard with a CLA of '00’, an INS of 'C0’,
P1 == P2 == 00" and an expected length byte as indicated by the card in the
second possible byte. However, in ISO 7816, the GET RESPONSE command is
defined as to use the CLA of the previous command, and not the static value of
"00°.

Since most libraries (including the javax.smartcardio library provided by Sun)
follow the ISO 7816 standard, this can lead to problems. Since many of the com-
mands in the EMV standard have a CLA byte of 00’ this is usually not a problem.
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However, when one of the other commands (such as the GET PROCESSING OP-
TIONS command that uses a CLA byte of ’80”) is used, this can (and will!) lead
to problems: the CLA byte is copied from the previous command APDU, and
since this CLA was '80’ the resulting APDU will be ’80C000XX’, where XX is the
expected length specified after the procedure byte. Since the card expects a GET
RESPONSE instruction to be of the form ’00C000XX’, it will not understand
this APDU and respond with a ’6D00’ error message: INS not supported.

Luckily this problem could be solved because the source code of the JDK is
available. The fix could be applied, and since the JDK makes it possible to load
this fixed class instead of the normal class, it could be used for the development
of this application information program and the software-based e-dentifier.

3.4 The software-based e-dentifier

Since the passive interface did not work properly, reverse engineering the protocol
used by the e-dentifier had to be done in an alternative manner. Two applica-
tions were developed: one to simulate the e-dentifier (called the software-based
e-dentifier) and one to simulate an ABN-AMRO bank card called the bank card
simulator.

The bank card simulator was developed for a JCOP 41 card with 72k EEP-
ROM memory, and was developed using the JCOP tool set. This application
simply responds to known requests using predefined responses, and logs the com-
mands (in a raw APDU format) it does not recognise that are sent before giving
an error message. The unknown requests can be retrieved from the card using a
single command, allowing an overview of what the e-dentifier sends to real bank
cards.

The software-based e-dentifier is a Java application that acts as a terminal,
and was integrated into the earlier developed application that extracts application
information from EMV-compatible bank cards. It can generate most of the e-
dentifier responses that can be used on the ABN-AMRO Internet banking website,
and thus can emulate the e-dentifier device.

3.4.1 How the protocol was reverse engineered

Reverse engineering the protocol was quite easy, even though it was a bit tedious.
It starts with getting a command from the e-dentifier by inserting the bank card
simulator into the e-dentifier. Initially the bank card simulator had no responses
available to any commands, so the first command sent by the e-dentifier will be
logged, after which the bank card simulator gives an error and the communication
will stop. This command was then extracted from the bank card and added to
the software-based e-dentifier.
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The next step was to see how a real bank card responds to this command
of the e-dentifier, so a real bank card was inserted into a card reader and the
software-based e-dentifier executed the currently known sequence of commands.
The responses of the bank card were then extracted and added to the bank card
simulator, which would then be used to collect the next command sent by the
e-dentifier. This process was repeated until the complete protocol was known.

The bank card that was used for this operation was an ABN-AMRO Wereld-
pas, which is a bank card that is usable in nearly all countries because of the
affiliation it has with MasterCard. Because of this affiliation it contains the
MAESTRO logo. The bank card is not very new, and is scheduled to expire in
April 2012.

3.4.2 Analysing the protocols used by the e-dentifier

Figure 3.3 is a detailed description of the protocol as it is used by the e-dentifier.
Note that it first tries to select a variety of applications (most of these were found
by searching for the AID on Google, others were present on a bank card and thus
provided an application label):

e 2FFD (unknown)

A0000000032010 (VISA Electron)

A0000000031010 (VISA credit)

A0000000043060 (MAESTRO)

A0000000041010 (Mastercard Credit)

D5280050218002 (unknown )

A0000000038002 (unknown)
e A0000000048002 (SecureCode Aut)

This sequence of application/file selection commands is always executed, even
if one of the earlier applications (such as the MAESTRO application which is
present on the ABN-AMRO bank card used to extract meaningful responses) is
successfully selected. Since the SecureCode Aut application is always the last one
to be selected, the e-dentifier will use that application to perform its Internet
banking steps if it is present on the card. Since this application was present on
the ABN-AMRO bank card, all the experiments listed in this document have
been done using the SecureCode Aut application unless otherwise specified.

When it has tried to select these applications, it will display the selection
menu. The selection menu contains the following items:
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1. Log on

2. Send transaction

3. Check account number

4. Check input

5. SecureCode

6. Chip balance

7. Choose Dutch/English language

The first four options are the interesting ones, as they are the ones that are used
during Internet banking transactions. However, when looking at the APDUs that
will be sent when either of those four selections has received its required input,
it will always have the same structure. What this means in practice will not be
explained here, but will be explained in subsection 4.2.3.

The e-dentifier has been abbreviated as F, while the card has been abbrevi-
ated as C' in the protocol overview of figure 3.3. Note that as previously has
been stated, the protocol is the same for every option that is selected. The only
difference exists in the value of the data field in step 13.
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E => C: SELECT A0000000048002
C => E: Selection data.
E => C: GET PROCESSING OPTIONS

C => E: A template containing at least the Application Interchange
Profile (AIP) and Application File Locator (AFL).

E => C: READ RECORD based on the AFL response. Might be done for
multiple records.

C => E: A record containing the data elements. For the e-dentifier
only the CDOL1/2 and CAP bit filter are of interest.

E => C: GET DATA 9F17, which is a request for the PIN try counter.
C => E: The PIN try counter.

At this point the e-dentifier requests a PIN entry.

E => C: VERIFY command with the entered PIN code.

C => E: 63Cx, where x is the number of PIN tries left, or 9000.

At this point the e-dentifier will request a challenge given by the
Internet banking application. In case option 1: log-in has been
selected, it will use a challenge value of 0000 0000. In case

another option is selected, the challenge will be encoded.

E => C: GENERATE APPLICATION CRYPTOGRAM, requesting an ARQC with
the (encoded) challenge in the data field.

C => E: ARQC: cryptogram type (CID), transaction counter (ATC),
the cryptogram (AC) (which is a MAC over the transaction data)
and the issuer application data (IAD).

At this point the e-dentifier can calculate the final response with
the bit filter from step 06 and the ARQC from step 14.

E => C: Another GENERATE APPLICATION CRYPTOGRAM, this time requesting
an AAC.

C => E: AAC: same structure as the ARQC.

Figure 3.3: The e-dentifier protocol

This protocol contains three steps that are particularly interesting: step 12,

step 15 and step 16.



3.4. THE SOFTWARE-BASED E-DENTIFIER 51

Step 12 - transaction data

Step 12 is normally used to provide transaction data that a card will use in the
generation of the cryptograms. The e-dentifier provides a challenge that is gen-
erated by the bank and communicated to the user through the Internet banking
website. It is likely that this challenge is somehow based on the current trans-
action, such as the amount of money involved, the target bank account number
and a transaction counter, but this is currently unknown. What is interesting is
that for the log-in procedure the user does not need to enter a random challenge
displayed by the Internet banking website. This was the case with the old version
of the e-dentifier and with the CAP readers described in [5], and because of this
change it will be much easier for a user to distinguish between logging in to the
ABN-AMRO Internet banking website and actually authorising a transaction.

Step 15 - Applying the bit filter

The second interesting step is also the most technical one. In this step the e-
dentifier will calculate the response it will show on the display. It does by selecting
the bits defined by the bit filter (which was returned by the card in step 06) from
the ARQC. As an example, take the bit filter and the ARQC from an actual trace
taken from a real bank card and e-dentifier as shown in figure 3.4:

CID ATC AC IAD
ARQC: 80 0042 C14D71DBAFA79FED 0012A50003020000000000000000000000FF
Bitfilter: 00 OO7F FFFFE00000000000 00

CID ATC AC
Binary ARQC: 10000000 0000000001000010 1100000101001101011100. ..
Binary bit filter: 00000000 0000000001111111 1111111111111111111000...

Figure 3.4: Applying the bit filter (additional trailing zeroes have been removed)

In this example the bit filter is shorter than the ARQC, and in order to make
them the same size it is padded with zeroes at the end. In order to extract the
response, the bit filter is applied to each individual bit of the ARQC by looking
at the corresponding bit in the bit filter:

e If the bit in the bit filter is a 0, remove the bit in the ARQC.
e If the bit in the bit filter is a 1, preserve the bit in the ARQC.

Applying this filter leads to the following bits being preserved (note that trail-
ing zeroes and ARQC values have been removed for brevity in figure 3.4):
10000101100000101001101011. Converting this binary value to a decimal value
leads to the value displayed on the e-dentifier as the response: 34998891.
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Even though this example was taken from a session with an ABN-AMRO
bank card, cards from other banks that have been examined have shown to use
a different bit filter. An important question that remains is whether or not the
chosen bit filter is a good choice.

Of course the best course of action would be to have the user fill in the
complete response to the GENERATE AC command, as the bank can then verify
with 100% certainty that a transaction is correct. However, for user interface
considerations this is not a good idea, as a lot of characters would have to be
entered by a user even if the binary result is transformed into a hexadecimal
representation. In order to accommodate this, a selection has to be made, and
this is done through the bit filter.

A good bit filter should select a large part of the AC, as this is the result
of the MAC algorithm being applied to the provided transaction data and card
data. If enough bits of the AC are selected it would be very hard for an attacker
that doesn’t know the key to the MAC algorithm to find a different input that
leads to the same output for the part that is selected by the bit filter (and thus
find a collision that might be usable in an attack).

However, even though the bank knows most of the input provided to the
MAC algorithm, not everything is known. The card also provides some input in
the form of a transaction counter, which means the bank has to know this input
as well in order to verify that the input specified by the user is correct. In the
case of the ABN-AMRO, the bit filter selects 7 bits of the transaction counter,
meaning it will know the transaction counter up to the value of 128. Due to
the fact that it is not possible to use older responses that have not been entered
during an Internet banking transaction, it seems obvious that the bank stores
the last known transaction counter for a particular card. Since the transaction
counter can only go up, the bank should be able to guess whether or not the
transaction counter has ”overflown” past 128 (and if needed past the next bit as
well), and can thus simply add this bit to its own internal MAC algorithm to see
if the (partially) provided cryptogram is correct.

To conclude, the bit filter chosen by the ABN-AMRO seems very sensible,
as it selects plenty of information from what it does not know (the transaction
counter) and what it should know to authorise the transaction (a large part of
the generated cryptogram). However, it will be interesting to look at how a
new bank card behaves when its transaction counter is raised past 128 without
actually logging in to its Internet banking application, as the Internet banking
application then has not yet stored a transaction counter. It will be interesting
to see whether or not codes that have been generated earlier can then be used,
even if only for log in purposes. This question is sadly out of the scope of the
research project, and is suggested as a possibility for future work in Section 5.
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Step 16 - Finishing the EMV transaction

Step 16 is only interesting because of its meaning: why does this step occur if the
final output can already be determined, and any subsequent data that is received
will be discarded? Generating this AAC should occur according to the EMV
specifications, but is not needed in the context of the e-dentifier. The theory
posed by Drimer et. al. in [5] is likely: to remain compatible with EMV, and to
prevent cards from locking up due to too many failed (consecutive) attempts the
transaction is "aborted” and the card can reset its security parameters.

Comparing EMV definitions and the actual protocol

Now that the different steps of the protocol are known, it can be compared to
how the EMV standard has defined the possible steps and what the e-dentifier
has actually implemented. In section 3.1 the definitions have been given by the
EMV standard, and figure 3.2 is relevant in particular. Removing the unneeded

steps from the original image leads to the image as shown in figure 3.5.
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Figure 3.5: Online/offline e-dentifier
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3.4.3 APDU data values in the GENERATE AC command

Step 12 of figure 3.3 has already been described in the previous subsection, but
what has not been described is what happens to the challenge entered into the
e-dentifier. When not using the log-in procedure, a challenge must be entered
and while in [5] the challenge was literally copied into a particular section of the
data field, something else occurs when using the e-dentifier.

Instead of copying the challenge directly, it is encoded before being used in
the appropriate data field. When using the send transaction option, this leads
to the APDU contents as shown in figure 3.6.

Challenge entered with send transaction: 2466 1140

Header: 80AE80002B

Data: 00000000000000000000000000008000000000000000000000
Data (cont.): 661D7D593400000000000000000000010002

Le: 00

Challenge entered with send transaction: 1234 5678

Header: 80AE80002B

Data: 00000000000000000000000000008000000000000000000000
Data (cont.): EFD22EDB3400000000000000000000010002

Le: 00

Figure 3.6: Two APDUs for the GENERATE AC command - send transaction

When comparing the APDU structures in figure 3.6 to the one in [5], four
differences can be found:

1. The challenge is encoded somehow.
2. The (encoded) challenge is somewhere near the middle, and not at the end.
3. The challenge is followed by the (static) value of '34’.

4. The static value of 010002’ can always be found at the end of the data
field.

In order to determine what this means, one should look at what should be in the
data field by looking at the CDOL 1 value sent earlier by the card. This object
list determines what the terminal should send to the card in a GENERATE AC
command’s data field (see section 2.2.2 for the details on this). Table 3.1 lists
the CDOL1 value of the card used in the same session, and how it relates to the
values provided by the e-dentifier in the GENFERATE AC command.

With this information a proper comparison can be made with [5]. Even though
the position has changed, the unpredictable number field is still used to hold the
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CDOL 1: 9F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403

Tag Meaning Length | Value in transaction
9F02 | Amount, Authorised (Numeric) 06 000000000000
9F03 | Amount, Other (Numeric) 06 000000000000
9F1A | Terminal Country Code 02 0000

95 Terminal Verification Results 05 8000000000

5F2A | Transaction Currency Code 02 0000

9A Transaction Date 03 000000

9C Transaction Type 01 00

9F37 | Unpredictable Number 04 661D7D59

9F35 | Terminal Type 01 34

9F45 | Data Authentication Code 02 0000

9F4C | ICC Dynamic Number 08 0000000000000000
9F34 | Cardholder Verification Method Results 03 010002

Table 3.1: CDOL 1 value and corresponding data in GENERATE AC command

challenge. Dutch bank cards also request a terminal type and the e-dentifier
sets this to the value of '34’, which signifies an unattended online-only terminal
according to Annex A of Book 4 of the EMV specifications. The final difference
lies in the card requesting the Cardholder Verification Method (CVM) results,
and Annex A4 of Book 4 of the EMV specifications [10] (which references Annex
C3 of Book 3 [9]) specify how this should be interpreted.

The first byte signifies which CVM has been performed, and according to table
39 in Book 3 of the EMV specifications, the value of ’01’ value means Plaintext
PIN wverification performed by ICC.

The second byte indicates the condition codes that were applicable during
cardholder verification (such as a minimum transaction value before CVM has to
be performed). A value of '00” signifies that CVM always has to be performed.

The third and last byte is not clearly specified in Book 3, but Book 4 Annex
A4 defines three possible values:

e 0 = Unknown, for example when using a signature
e 1 = Failed, for example for offline PIN

e 2 = Successful, for example for offline PIN

3.4.4 Encoding of the challenge

Since three out of four differences listed between the APDU values found during
this research and the ones found in [5] have already been explained in section
4.2.3, there is only one difference remaining that needs to be explained: how and
why are they encoded?
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How is it encoded?

Even though the size of the encoded challenges are always the same due to fact
that they are placed in the unpredictable number field (which has a static length
of 4 bytes), the input entered into the e-dentifier leading to those encoded chal-
lenges can differ. For example, when selecting the send transaction option, the
e-dentifier expects a challenge of up to 8 different numbers. When selecting the
Verify account or Check input option, an input can be entered of up to 36 num-
bers. Entering the same value for different options leads to different encodings.

Due to this variety, the fact that entering the same value for different options
leads to different values, and the fixed length output it is likely that some sort of
hash function is applied, and that the selected option is somehow concatenated
to the input of this hash function to make sure it can be distinguished from the
other options. It is also likely that the output of this hash function is not 4
bytes, which means a selection of bits is made from the output to be used in the
unpredictable number field. How this is done is currently unknown, and is one
of the suggestions made for future work in chapter 5.

Without knowing the details, figure 3.7 gives an abstract overview on how this
is likely done. Note that it is likely that an existing cryptographic hash function
has been used such as SHA-1. The bit filter also has no influence on the selection
function S, as changing this bit filter does not change the encoded values. An
example overview of some of the encodings can be found in appendix B.

E = Encoded challenge

x = challenge entered into e-dentifier

H = hash function

y = unique identifier of the option selected in the e-dentifier menu
| = symbol representing concatenation

S = selection function that selects 4 bytes of the output

E = S(H(ylx))

Figure 3.7: How the challenge might be encoded

Why is it encoded?

Why the challenge is encoded is more easily answered than how it is encoded.
One of the vulnerabilities found in [5] was the fact that the unpredictable number
field is overloaded with the challenge, and that in different modes (called sign and
respond mode in [5], here it is called a log-in, send transaction, check account nr.
or check input selection) you could select the input in such a way that it would
be valid for another mode. This is no longer possible, as the log-in procedure
should be the only one that sends an encoded challenge of 00000000’ and the
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same input for different options leading to different encoded challenges. With
this method the only concern a bank has in terms of being able to use input from
one option for another option is when collisions occur, but the chances of this
being an exploitable vulnerability are low since the bank chooses the challenge.

3.4.5 The semantics of the ACs in the e-dentifier

Figure 2.1 contains the semantic definitions of the different Application Cryp-
tograms in the EMV specification, but in the e-dentifier their definitions are
different. This is because they are no longer used as proofs that a transaction
is accepted or rejected, but instead are used to provide proof of ownership of
the proper bank card to an Internet banking application, as well as intent of
performing a transaction. This is especially apparent in the fact that an ARQC
cannot be generated if the PIN verification step has been skipped. This is pos-
sible according to the EMV standard, but when this is tried on the SecureCode
Aut application (which is the one used for Internet banking) the card will instead
reject this request and generate an AAC instead.

Knowing this, the semantics for the e-dentifier can be defined for the different
application cryptogram types as they are defined in table 3.2.

AC type | Semantics

TC Not used, and therefore does not have any meaning any more.
AAC Primarily used to make sure the card does not lock up to complete
the EMV compliant transaction, but can also indicate the PIN
verification step has not been performed and the transaction is
rejected by the card.

ARQC Used to prove ownership of the card and transaction intent to an
Internet banking application, who can deduce the relevant ARQC
information based on response shown by the e-dentifier.

Table 3.2: Cryptogram semantics for the e-dentifier

3.4.6 Usefulness of the simulators

Now that the protocols used by the e-dentifier are known, it can be debated on
how useful the final resulting applications are. Obviously the software-based e-
dentifier is currently more useful than the bank card simulator, as it can be used
to get correct responses for Internet banking applications from real bank cards.

In its current state the bank card simulator can be used, but it can only
simulate a single instance of the protocol. What this means in practice is that
even though it can successfully convince an e-dentifier that it is a real bank card,
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it will always produce the same responses, as the responses are based on the
ARQC that is produced by the card. Since this ARQC includes a MAC over a
transaction counter, and the secret key used by real bank cards to generate this
MAC is not known, it can only repeat the correct responses it does know. Until
it is possible to extract the secret keys from a real bank card the usefulness of
the bank card simulator is limited.

3.5 Overview of Dutch banks

Since the ABN-AMRO bank is only one of the major banks in the Netherlands,
it is interesting to see how other Dutch banks have implemented their chal-
lenge/response devices and applets on their bank cards. Figure 3.8 gives an
overview of what this research considers the most interesting: what a bank card
requests from a terminal through its CDOL 1 data object list, and which data is
selected from a generated cryptogram through the bit filter.

CDOL 1:

ABN: 9F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403
ING: 9F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403
RABO: 9F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403
SNS: 9F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403

Bit filters:
CID ATC AC IAD
ARQC: 80 0042 C14D71DBAFA79FED 0012A50003020000000000000000000000FF
ABN: 00 OO7F FFFFE00000000000 00
ING: OF 0000 7FFFFFEO00000000 00
RABO: 07 0000 7FFFFF0000000000 00
SNS: 07 0000 7FFFFF0000000000 00

Figure 3.8: CDOL 1 and bit filters for different Dutch cards

3.5.1 ING bank

What is interesting about the ING is that while the ING bank provides the
possibility for Internet banking, it does not use a challenge/response device in
combination with a bank card to do this. Instead it has a user name/password
combination to log in to the web site, and offers its customers two possibilities
when performing a transaction:

1. Use a predetermined sheet of response codes (so called TAN codes) which
have to be entered to confirm a transaction. Each code is only usable once.
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2. Have the ING bank send the TAN code through an SMS to the mobile
phone numbers specified by the customer when a transaction needs to be
confirmed.

Even though the ING does not use EMV for Internet banking, bank cards from
the ING still contain EMV applets such as MAESTRO and even the SecureCode
Aut applet which is an EMV CAP applet that can be used in Internet banking
applications. Both the MAESTRO and SecureCode Aut applet have the same
CDOL 1 as the ABN-AMRO card, which means they request the cardholder
verification method results as input to the cryptogram generation. Because they
do this, the man-in-the-middle attack as described in [12] to perform transaction
without PIN verification should not be possible (assuming the back-end of the
ING bank properly verifies the transaction data, see Section 4.1 for details on
this analysis).

CDOL and bit filter

What is different for ING banks, is the bit filter exposed by the SecureCode
Aut applet. This bit filter does not select anything from the transaction counter,
which means that a theoretical ING Internet banking application will have to
brute force the transaction counter in order to be able to calculate the cryp-
togram. It also selects the four least significant bits of the CID, which in all
EMV cases will be four zeroes making it quite useless information to select.

3.5.2 Rabobank

The Rabobank has an Internet banking application that uses a challenge /response
device called the random reader. The protocol that the Rabobank random reader
uses is identical to the one used by ABN-AMRO (see figure 3.3). However, there
are some differences in the applications it tries to select, and also in the way the
challenge that has to be input from the Internet banking application is processed.

How the Rabobank random reader works

The Rabobank random reader is slightly different from the ABN-AMRO e-dentifier.
Instead of providing a menu on a large display, it uses a small single-line display.
There is a button labelled [ to start the log-in procedure, and a button labelled
s to start the send transaction procedure. Both prompt the user for a PIN, and
if the PIN verification is successful for the log-in procedure the display will show
the response that needs to be entered into the Internet banking application. If
the send transaction procedure has been selected the display will request up to
two challenges, of which the second challenge can usually be skipped by pressing
the OK button.
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Challenges entered into the Rabobank random reader are usually 10 digits
in size, which is more than the 8 digits usually requested by the ABN-AMRO
e-dentifier.

Application selection

The Rabobank random reader first executes the following commands:
e BCA40000022901 (?)
e 00A4040007A0000000031010 (select VISA credit)
e 00A4040007A0000000032010 (select VISA electron)
e 00A4040007A0000000043060 (select MAESTRO)
e 00A4040007A0000000041010 (select MasterCard Credit)
e BCA40000022F00 (?)
o BCA40000022FFD (?)
e 00A4040007A0000000038002 (select VisaRem Authen)
e 00A4040007A0000000048002 (select SecureCode Aut)

Apart from the obvious application selection commands, it tries to have the
card execute several strange, unknown commands. While the e-dentifier tries to
select a strange application or file (2FFD) the Rabobank random reader tries to
execute a completely other type of command. What this command should do is
currently unknown, as bank cards give error codes when attempting to execute
these commands.

Alternative challenge processing

The biggest difference between the e-dentifier and the Rabobank random reader
can be found in how they process the challenges given by the Internet banking
website. The previous sections have established that the ABN-AMRO uses the
static value of 0000 0000 as the challenge code when logging in, while the challenge
entered to, for example, send a transaction is encoded and is transmitted to the
card in the unpredictable number field for the card to be included in the MAC.

The Rabobank random reader always sends a static value of 0000 0000 in the
unpredictable number field, even when selecting the send transaction option. This
is because the GENERATE AC command that is sent to the card to generate
an ARQC is sent before the challenge is entered. When using the bank card
simulator to make sure the response to the Rabobank random reader is always
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the same, it was discovered that entering a different challenge leads to a different
response.

What this means in practice is that the challenge that is entered is somehow
used to scramble the bit-filtered result. How this is done is currently unknown,
but given that similar inputs lead to such similar outputs (see appendix C for
some sample challenges and its given output for the bank card simulator) it is
likely that it is not extremely hard to reverse engineer.

Another consequence of this choice is that the problem of type confusion
introduced in [5] is even more obvious for the Rabobank random reader. Since
the challenge is not used in the generation of the cryptogram at all by the bank
card, proper responses collected through the log in procedure of the Rabobank
random reader can also be used to perform transactions once it is clear how the
challenge influences the output of the Rabobank random reader. See Chapter 4
for the detailed analysis of this problem.

Getting the PIN try counter

As a final note, if the GET DATA for the PIN try counter gives an error code,
the Rabobank random reader just continues anyway. It is likely that the result
of this command is completely disregarded, since the amount of PIN tries that
are left will be returned by the card if an invalid PIN is entered anyway.

Different bit filter for different Rabo cards

Figure 3.8 has two entries for the Rabo bank. This is because one particular card
specified the second bit filter, while other cards exposed the first one. The card
with the second bit filter was an extremely new card, and had never been used
yet for both Internet banking transactions or payments at regular terminals.

3.5.3 SNS bank

The SNS bank also uses a challenge/response device called the Digipas, but
this device is fundamentally different to the one used by the ABN-AMRO and
Rabobank.

The first major difference is that every individual device is linked to the bank
account of the owner, making it impossible for the device to be lent to another
customer. This device contains a code that is unique for every customer, and is
linked to the bank account customer. This is signified at the log-in process, in
which the customer can choose to use a user name and password combination to
log in to the Internet banking application, but can also choose to log in using this
unique code found on the challenge/response device. When entering this code the



62 CHAPTER 3. LOOKING AT DUTCH INTERNET BANKING

customer still has to verify ownership of the device through PIN verification, by
entering a challenge and typing in the response on the Internet banking website.

The second major difference is that the SNS Digipas does not allow a bank
card to be inserted. Instead, the customer has to enter the challenges posed
by the Internet banking website into the device, which will then generate the
correct response assuming the PIN verification was successful. This means that
the customer’s bank card is not used to sign transactions, which consequently
means that investigating the SNS Digipas falls out of the scope of this research
project.

Whether or not the SNS Digipas does use elements from the EMV specifica-
tions internally is unknown. What can be deduced is that it is extremely likely
that the Digipas contains some sort of secret tied to the account of the customer.
It is therefore suggested that the SNS Digipas is investigated in a future research
project, as stated in Section 5.

3.5.4 ABN-AMRO - the old e-dentifier

As a final comparison, the old e-dentifier was also looked at to see if there were
any noticeable differences in the protocol. However, problems were encountered
when trying to reverse engineer this device, as even though it first tries to select
the SecureCode Aut application, a correct response to this selection causes the
old e-dentifier to lock up and stop sending commands. However, this was because
the JCOP 41 programmable smart card that was used during the project to log
instructions sent by the different devices uses the T=1 protocol, and the old ABN-
AMRO e-dentifier expects cards to use T=0. Because of this the old e-dentifier
could not understand the response sent by the card and would lock up.

Luckily there was also a JCOP 31 programmable smart card available, which
still uses the T=0 protocol. However, even though initially the suspicion that
it was caused by a difference in the protocols used was confirmed, the card only
managed to send one other instruction (a strange BCA4000002000000 instruc-
tion) before locking up once more. A bank card that can be used in the old
e-dentifier responds with 6E00 (CLA not supported), but when this response is
sent by the programmable smart card it will lock up again and stop sending
commands.

This new problem could not be solved in the time span of this research project.
The only noticeable difference that was found between an actual ABN-AMRO
bank card and the programmable JCOP 31 smart card was that the ATR of the
JCOP card sets a parameter of N=-1 whereas the bank card has a value of N=0.
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3.5.5 Data authentication

So far, sub-research question 2 has only been addressed in terms of protocols.
One issue that has not been addressed is the issue of data authentication.

Data authentication deals with the security issue of validating whether or not
the data on a specific card is authentic; i.e. whether or not the card was actually
issued by its issuer. Without this it would be possible for attackers to create
cards themselves with its own data to be used during valid transactions.

The EMYV specifications define three different possibilities when dealing with
data authentication: Static Data Authentication (SDA), Dynamic Data Authen-
tication (DDA) or Combined DDA /Application Cryptogram Generation (CDA).
Chapter 2 deals with the details of the different types of data authentication,
while a simple overview of the main differences between the different types of
data authentication can be found in Section 2.3 of this document.

Determining which form of data authentication a card supports is easy: the
card specifies this through the AIP which is returned in the GET PROCESSING
OPTIONS command. Annex C1 of Book 3 of the EMV specifications specify how
the AIP should be interpreted. Figure 3.9 gives an overview of the AIP values
that have been found for the different bank cards that have been investigated. An
important note, however, is that all these values were taken from other applets
than the SecureCode Aut applet, since this applet always exposes an AIP with
the value 1000’

ABN: 3800 == 0011100000000000
ING: 3800 == 0011100000000000

RABO: 3800 == 0011100000000000
SNS: 3800 == 0011100000000000

Figure 3.9: Application Interchange Profile for different Dutch bank cards
As can be seen in Figure 3.9 all bank cards that were investigated during

this research project have the same AIP, and thus provide the same capabilities.
When looking up what those capabilities are the following is found:

e SDA is not supported (bit 7 of the leftmost AIP byte)

e DDA is supported (bit 6 of the leftmost AIP byte)

Cardholder verification is supported (bit 5 of the leftmost AIP byte)

Terminal risk management should be performed (bit 4 of the leftmost AIP
byte)

Issuer authentication is not supported (bit 3 of the leftmost AIP byte)
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e CDA is not supported (bit 1 of the leftmost AIP byte)



Chapter 4

Exploring potential weaknesses

Now that it is clear how at least the ABN-AMRO has implemented its Internet
banking application and how this relates to the EMV specifications, it will be
interesting to see if any (exploitable) flaws or weaknesses can be found. This can
be related in particular to the situation in the U.K. as it has been described in
[4, 5, 12] (of which [5] is the most important one) in order to answer research
sub-question 3.

This Chapter looks at these reported vulnerabilities and relates them to the
situation for Dutch banks as described in this document, but also elaborates on
(new) flaws that have been discovered during this research project.

4.1 Weaknesses reported in the U.K.

There has already been a fair amount of research on the use of EMV in gen-
eral and its application in Internet banking, and currently published works have
mainly focussed on its application in the U.K. Three papers [4, 5, 12] in particular
list various vulnerabilities of not only the EMV specifications and implementa-
tions, but also the devices used for Internet banking. For each of these papers
the situation in the U.K. will be compared to the one described here in previ-
ous sections, and an analysis will be made to see if the implementations in the
Netherlands suffer from the same listed vulnerabilities and flaws.

This Section is divided into three Subsections, one relating to each paper.
Every section contains a description of the flaws/weaknesses (labelled as Attack
description), the defences proposed in that particular paper (labelled as Proposed
defences) and how this particular weakness relates to the situation found in the
Netherlands as described in the rest of this document (labelled as Comparing the
U.K. with the Netherlands).

65



66 CHAPTER 4. EXPLORING POTENTIAL WEAKNESSES

4.1.1 Relay attack [4]

This flaw does not directly relate to Internet banking, but is instead an attack
on EMV applications in general. In Internet banking applications the landscape
is drastically different compared to "normal” EMV applications, which usually
occurs in a store at a terminal that is not controlled by the owner of the bank
card. Internet banking is usually done in a more controlled environment, since
the device used for Internet banking is owned and controlled by the owner of the
bank card.

Since this research project focussed mainly on EMV in the context of Internet
banking and not EMV applications in general, the scope of this research and
the paper describing the relay attack is different. However, due to nature of the
vulnerability and the knowledge on the subject matter hat has been gained during
this research project an educated opinion can be formed on how this relates to
the situation in the Netherlands.

Attack description

Instead of performing a regular EMV transaction at a terminal, an attacker in-
stead uses a fake terminal that interacts with the card of the victim. This fake
terminal relays the communication to a second attacker that has a counterfeit
card, and this counterfeit card is used at a real terminal. The fake terminal is
in a shop that sells low-value goods (such as a terminal for a diner or a flower
shop), while the second attacker to which the communication is relayed attempts
to buy something more expensive (such as a new TV or jewelry). By relaying
the signal from the fake terminal to the counterfeit card, and by relaying the
responses from the real terminal back to the real card through the counterfeit
card and fake terminal, an unsuspecting victim will think he or she is paying for
something he or she is not. Instead of buying a cheap bouquet of flowers, the
victim will actually buy an expensive diamond ring without being able to tell the
difference.

Proposed defences

In [4] several proposed defences have already been elaborated upon, along with
why they will most likely not be a cost-effective measure of defence. Instead
they propose to implement a distance bounding protocol, which is an additional
step into the existing protocols during which a terminal attempts to estimate
the physical distance between the card and the terminal itself. When adding
this estimation, cards that do not respond fast enough or make too many errors
during this response time will be rejected, as they are likely being used in a relay
attack.
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Even though this distance bounding protocol is relatively simple to both un-
derstand and implement, it would still require an addition to the EMV specifica-
tions, as well as alterations to all existing card implementations and terminals.
While most existing terminals will allow for this addition to be made with a
software update, it is inevitable that cards will have to be replaced, as their
tamper-resistant nature makes it easier to replace them than to update them.
As they seem to have a lot of focus at the costs of the hardware that is needed,
and disregard the need for changes to be made to the specifications as well as
the need to replace existing cards, we believe it to be infeasible as a short-term
solution.

As along term solution, however, it can be feasible as it provides a solution on
the technical level, which means nothing has to change in the existing procedures
for a customer who wishes to make a purchase and the merchant operating the

terminal.

One thing that is disregarded is that the proposed solution is that it is a
solution to a symptom of the underlying problem. The actual problem lies in
the fact that the customer has no foolproof way of verifying that the transaction
displayed at the terminal is the actual transaction that is being authorised by
the card. Other solutions, such as providing customer-owned trusted devices
(called the electronic attorney) that can mediate between a card and a terminal
to display the actual transaction data are disregarded as being too expensive, too
complex and perhaps not approved by banks.

As an example that this is merely the solution to a symptom of the problem
consider a fake terminal that is connected to a nearby laptop. This laptop runs
a special program that automatically logs in to a victim’s Internet banking web-
site and transfers all the money from the victim’s account to an account of the
attacker. The distance bounding protocol will not help in this case, as the laptop
is extremely close to the victim’s card.

Comparing the U.K. with the Netherlands

Relay attacks are hard to counter, and since this particular attack does not
depend on a particular setting or mode in which EMV is used it is likely that
this attack can be used in the Netherlands. In fact, the authors of the paper
describing this attack have been in the Netherlands to demonstrate it for a TV
program called Goudzoekers *. This attack was performed less than a year ago at
the time of writing this document, and it is unlikely that this problem has been
(temporarily) fixed in the meantime.

*Footage available at http://weblogs.vpro.nl/goudzoekers/2009/12/14/
afl-5-het-nieuwe-pinnen/
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4.1.2 Bypassing PIN verification [12]

Out of the three papers this section focusses on this weakness appears to be most
critical one, as it allows for an attacker to freely use a bank card to which he
does not know the PIN. Being able to steal a bank card and use it freely without
having to know the PIN code would be considered the jackpot for criminals. In
the light of Internet banking, it would be especially bad as it allows for a much
larger amount of control of the attacker.

Attack description

The proposed attack is extremely simple, especially when looking at figure 3.3.
It would also be the "holy grail” for criminals, as it allows them to simply steal
a bank card and use it freely without having to know the PIN belonging to that
bank card.

By using a man-in-the-middle (MitM) attack message number 10 can be sup-
pressed, thus skipping the PIN verification step. The MitM would simply in-
tercept this message, discard it and return status code 9000’ to pretend that
the card accepted the PIN. Every other message in the protocol is still sent,
and since the EMV specifications allow for this to happen (some terminals do
not have a PIN pad, or allow for a transaction to be performed by verifying a
physical signature) the card does not sound any alarm bells.

The EMYV specifications accounted for this possibility by keeping track of the
transaction through several lists maintained by the card and the terminal, such as
the Terminal Verification Results (TVR) and the Issuer Application Data (IAD).
However, when combining these two data lists it does not provide a complete
overview of what has occurred during the transaction. For example, the TVR
does not specify that PIN verification has occurred, but merely it has failed at
one point for what reason. Even though the IAD often does specify whether PIN
verification has occurred or not it is usually not in a public format, which means
that the terminal cannot verify it by itself.

Proposed defences

One obvious solution in [12] would be to provide terminals with the ability to
parse the TAD. Since this specifies whether or not PIN verification has occurred,
the terminal can immediately verify both parties have the same idea on what
happened during this transaction. However, the IAD is usually in a propriety
format, and equipping all the terminals with this ability would require banks and
terminal vendors to establish a common format. Even if this has happened, the
IAD can still be changed by the MitM, and only if CDA was used (in which a
signature would be added over the IAD (among other data) to help detect this
change) would help prevent this in offline situations.
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Another, much more feasible solution that has been proposed was to add the
Cardholder Verification Method Results (CVRM) be added to the card’s CDOL.
Doing this, the card would receive what the terminal believed to be the cardholder
verification method as input to the MAC algorithm, thus allowing both the card
and the issuer to detect the MitM attack. Of course the issuer still needs to verify
both the data it gets from the card and terminal, and reject the transaction if
the terminal believes PIN verification was performed while the card reports it
has not done so.

Comparing the U.K. with the Netherlands - Internet banking

As previously indicated, this particular attack would be a powerful tool to a
criminal if it could work with Internet banking. Especially for banks such as the
ABN-AMRO and the Rabobank, which rely exclusively on the card-reader devices
to provide the log-in and transaction tokens this would be a nightmare. Having
a user name/password to prevent an attacker from logging in to the Internet
banking application is an option, but that can be considered a very weak line of
defence as they can relatively easily be extracted through other means. However,
this would mean attacks would have to be targeted at individuals (in particular
those of which the log in name and password are known), and could not be
massively exploited through, for example, fake terminals.

Since the Dutch banks all seems to use SecureCode Aut as the application of
choice for Internet banking, attempting to perform this attack on this application
should be enough to see if it works. Luckily it does not work, at least not for the
cards that have been used during this research project. If the PIN verification
step has not been performed when the first GENERATE AC command is used
(step 13 in figure 3.3) the card will not return an ARQC, but will instead return
an ACC indicating it has rejected the transaction.

Comparing the U.K. with the Netherlands - regular terminals

Since the attack does not seem to work with the SecureCode Aut application
which is used for Internet banking, it is interesting to see what happens with
other EMV applications present on Dutch bank cards, such as the MAESTRO
application.

Even though these applications do allow the request of an ARQC if the PIN
verification step has been bypassed, the attack is still detectable through the value
requested in the CDOL 1. Table 3.1 gives an overview of the CDOL 1 values that
have been found in all Dutch bank cards that have been investigated (see Figure
3.8 for the complete overview), and this indicates the card requests the CVRM of
the terminal as transaction data input to the MAC algorithm. If a MitM would
change this value, the MAC would be incorrect, and if the values are correct it
will allow both the card and the issuer to verify that the attack has occurred.
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Of course if the banks do not properly verify these results the attack might still
be possible, but should such an attack occur it is at least possible to look at
the "paper trail” and confirm that it has occurred. In terms of liability this is
extremely positive for a victim, which is one of the more important warnings

given in [12].

As a final note on this, the IADs that have been returned by cards during this
research project were in a propriety format that could not be parsed. However,
the TAD would be consistent during different transactions, and bypassing the PIN
verification step would always return a different IAD, indicating that the card
does send this value to the terminal.

4.1.3 Optimised to fail [5]

The third paper that illustrated weaknesses in the situation in the U.K. relates to
the devices used for Internet banking. In [5] these devices are called CAP devices,
as they are based on a (closed) standard that builds upon the EMV specifications
called the Chip Authentication Program, or CAP in short. Several weaknesses
have been found with these devices, and because the Dutch situation in terms of
protocols is almost identical, a comparison can easily be made.

Another aspect that makes these devices easier to analyse and compare is
that you are not as dependant on the back-end systems of banks as you are with
the flaws described in the two other papers. Because of this you can run tests in
a much more controlled environment with fewer risks.

Attack descriptions

The paper does not specify a single attack, but instead lists a whole range of
different attacks. Some of these attacks are not technical in nature, but instead
are an attack on a broader scale. For example, the first vulnerability is one
concerned with mugging: in the past when muggers wanted to make sure the
PIN provided by a victim was correct they would take them to an ATM and
force them to demonstrate it works. With a CAP device they will run less of a
risk of getting caught, as they can simply use the device to verify it is correct in
an environment that does not pose such a big risk to them.

However, many of these vulnerabilities will be considered to be out of scope
for this research project, mainly because some of the suggestions offered in [5] are
already applicable to the situation in the Netherlands. Instead only the technical
vulnerabilities, such as protocol weaknesses will be covered in this subsection.
They will be numbered so references can be made to them.
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Attack 1: No server freshness. There is no server freshness for CAP
responses, which means responses can be requested a (long) time before they will
actually be used.

Attack 2: Overloading of the Unpredictable Number (UN) field.
Because the UN field is used to hold the challenge, the same number might
semantically mean something different in a different mode. In [5] an example is
given with respond and sign mode. Because the respond mode always loads the
UN field with a value of all zeroes, a zero value transaction created in sign mode
can be used as a correct token in respond mode.

Attack 3: Collisions on nonces. NatWest uses a nonce as the first four
digits of the respond-mode challenge. However, a malicious terminal can request
a large amount of responses from the card with random nonces, and eventually
a collision will occur.

Proposed defences

Attack 1: A server provided nonce, even when logging in will help prove the
freshness of CAP generated response codes. Doing this, the codes cannot be
requested a long time before they are used.

Attack 2: The type confusion create by loading the challenge into the UN
field can be prevented by including a response-type flag in the GENERATE AC
command. This will cause the card to also sign this flag, and thus prevent at-
tackers from being able to use one response in another mode. An alternative is
to use an equivalent as used in Germany, in which a prefix is added for the rele-
vant selection, for example the prefix Account number when signing an account
number.

Attack 3: Because CAP tries to limit the number of characters a user has
to type, possibly important information concerning the context of a transaction
is omitted in a CAP transaction. A reader that has a bigger display and can be
connected to a computer to display the full transaction data can help with this.

Comparing the U.K. with the Netherlands

Luckily, the situation in the Netherlands is better than in the U.K. Even though
some issues remain, others are resolved in manner that does not influence the
way users interact with the Internet banking website.

Attack 1: This is one issue of the issues that remains in the Dutch versions
of CAP devises, but this only applies to the log-in step. It is possible to collect
multiple log-in response codes in advance and use them at a later point. How-
ever, at least for the ABN AMRO bank the sequence in which they are used is
important, as the selection of a part of the transaction counter allows the bank
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to estimate the current transaction counter of the card. It has been checked and
confirmed that correct responses that have a lower transaction counter of the cur-
rently last known transaction counter are rejected by the ABN AMRO Internet
banking application.

Attack 2: The type confusion present in the U.K. is no longer present when
using the ABN-AMRO e-dentifier, as they have developed an encoding scheme
that makes sure challenges from different modes (such as logging in and verifying
a bank account number) no longer can be used for other modes. Of course the
chance of a collision still exists, both for different challenges for the same mode
and challenges that can be used for another mode. It seems unlikely that an
attacker can exploit this in practice, as it would require the attacker to find a
collision for a given challenge.

However, the Rabobank uses a different scheme that is worse than the scheme
described in the U.K., as it does not send the challenge from the bank to the card
to be signed. Instead it always uses the same value of 0000 0000 in the Unpre-
dictable Number field for both the log-in procedure and the send transaction
procedure. Even though the challenge somehow scrambles the final output, an
attacker who knows how this scrambling is done can use log-in responses to make
payments. When combined with the first attack that is specified here (collecting
multiple log-in response codes beforehand) it can lead to an attacker having a
wide range of usable responses.

Attack 3: This particular attack is not relevant for the ABN-AMRO, as they
use a different scheme than NatWest. It is, however, unknown what the semantics
are of the challenges posed by the ABN-AMRO Internet banking website, and
thus it cannot be determined whether or not this includes a nonce.

4.2 New and open issues

Even though the Dutch banks generally seem to have created better implemen-
tations compared to the implementations in the U.K., there are still some issues
that raise questions or can be improved. It is important to know that whenever
a test was done on a Dutch Internet banking website this has always been the
ABN-AMRO website using the e-dentifier 2.0, as that was the main focus of this
research project. Due to time constraints not all Internet banking websites could
be investigated.

4.2.1 Collecting valid log-in tokens ahead of time

Logging in to the ABN and Rabobank Internet banking websites does not require
the use of a challenge, but instead a single option (log in) has to be selected. The
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needed response code is immediately shown on the display, and can be used to
log in. However, when collecting multiple of these codes, they can be used in
sequence after one another, making it possible to collect them before hand.

Even though [5] lists this as a vulnerability, the possibilities of exploiting
this are limited, as performing a transaction will already send a new transaction
counter to the bank, and thus render the harvested log in responses useless.
However, this particular issue is more of a problem for the Rabobank than it is
for banks in the U.K.. This is because the Rabobank does not send any challenges
to the card for the card to sign. Instead, it always uses the same static value
of 0000 0000, which means valid log-in tokens can also be used as valid confirm-
transaction tokens assuming it is known how the entered challenge affects the
bit-filtered output.

4.2.2 Unknown semantics of challenges

When receiving a challenge to enter into the e-dentifier from the ABN-AMRO
Internet banking website, it is currently unknown what those challenges represent.
It is likely that they are related to the transaction that is about to occur, but no
correlation could be found so far.

It is also currently unknown if sequential challenges are (slightly) correlated
to each other. If they are correlated, it might be possible to collect the correct
responses beforehand, just like what is possible with the log in procedure. This
is of course extremely far-fetched, as it is likely that the bank somehow includes
transaction data and nonces. Nonetheless it is important to consider these as-
pects.

4.2.3 Possibility of collisions in challenges

One of the biggest suggestions that is made for future work based on this research
project lies in the encoding of the challenge into the value that is actually sent
to the card. Section has elaborated on this, and it is currently the reason why it
is only possible to log in to the ABN AMRO Internet banking website using the
software base e-dentifier, while it is not possible to perform transactions.

Even though encoding the challenge is a good idea, especially when combined
with the fact that different options lead to different encodings thereby fixing the
type confusion vulnerability found in [5], it will inevitably lead to collisions for
some values as the input size can be much greater than the output size (since,
for example, the e-dentifier allows for an input of up to 32 digits when verifying
a bank account number). While it is doubtful that this can lead to an easily
exploitable vulnerability (for example through once again introducing type con-
fusion), not knowing how this encoding is done leaves this as an open issue.
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4.2.4 Not rejecting a PIN-less transaction

Even though Dutch bank cards request the CVMR, through its CDOL, cards that
have been investigated so far do not seem to parse and validate this information.

If, for example, the MAESTRO application is used on an ABN AMRO card
and the man-in-the-middle attack described in [12] is applied to bypass the PIN
verification, the card will still receive data from the terminal that indicates PIN
verification has been attempted and has been successful. The card should know
that this has not been performed (the MitM suppressed that command so the
card would not receive this), and instead of returning an ARQC it should return
an AAC, rejecting the transaction. While the back-end of the bank would still
be able to detect this and reject the transaction (due to the card including the
CVMR in the MAC over the transaction data), it would be much safer if the
card immediately rejects the transaction instead of doing what it currently does:
generate the ARQC and let the bank verify it. If the card immediately detects it
and rejects the transaction it would not have to rely on a proper implementation
of the back-end system of a bank.

4.2.5 Rabobank: Not having the card sign the challenge

As has already been mentioned in the Subsection on collecting log-in tokens
beforehand, the Rabobank has a potentially worse situation than the situation
it was compared with in the U.K. in [5]. The type confusion mentioned in this
paper is even more obvious for the Rabobank, as it does not send challenges
entered into the challenge/response device to the card to be signed. Instead it
always uses a static value of 0000 0000, which is the same for the log-in procedure,
and if a transaction has to be confirmed through entering a challenge the entered
challenge is somehow used to scramble the output received from the card.

This means valid log-in tokens can potentially be used as valid confirm-
transaction tokens and the other way around. While this still relies on knowing
how the challenge is used to scramble the output from the card, this is relying
on a scheme that provides security through obscurity, which is a violation of
Kerckhoffs’ principle.



Chapter 5

Future work

Not every element that was uncovered during this research project could be in-
vestigated. Sometimes it was out of the scope of this research project, while it is
also possible it would take too much time to complete along with the rest of the
research. This Chapter therefore gives recommendations for future research that
can be done based on the research that is presented in this document.

ABN-AMRO challenge encoding

When entering a challenge into the ABN-AMRO e-dentifier the device sends the
challenge to the card to be included in the MAC as transaction data. However,
the challenge that is entered is not copied directly into the APDU that is used to
transmit the challenge. Instead, it is encoded before being transmitted, obviously
in an attempt to make it harder to create a software-based e-dentifier that can
(for example) be used in a fake terminal.

It is interesting to know that when selecting a different option (such as Verify
account or Check input) the same input will lead to a different encoding. This
fact, along with the fact that the encoded output seems to be relatively unrelated
to the challenge that was entered into the device suggests that some sort of
hashing function is used, in which the selected option is included as input to the
hash function.

Appendix B contains a few samples of the selected option, the given input,
and their corresponding encoded challenges. For a more detailed description on
this particular suggestion for future work, see Section 4.2.3.
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Rabobank challenge scrambling

Contrary to what the e-dentifier does, the Rabobank random reader does not
send the challenge entered by the user to the card to be used as transaction
data. Instead it always sends a static value of 0000 0000, leading to a strong
possibility of type confusion as described in Section 4.2. However, the entered
challenge is still used in some manner to scramble the output received from the
card, which means that without knowing how this scrambling is done the type
confusion cannot be exploited.

Figuring out how this is done would allow an attacker to collect valid log-in
tokens, and then use those tokens to perform transactions. Since it is unlikely
that the random reader contains some sort of secret (like an encryption key),
as well as the fact that the output is so similar to what the card outputs (see
Appendix C for some sample outputs) it is likely that the scrambling process
is a violation of Kerckhoff’s Principle by being a measure of security through
obscurity.

See Section 3.5 for more details on this suggestion for future work.

ABN-AMRO: Connecting an e-dentifier 2 to the PC

It is possible to connect an e-dentifier to the PC through a USB interface. This
allows the ABN-AMRO Internet banking website to send data to, and receive
data from the e-dentifier through a special software package. While this helps
the user with verifying the transaction (the display will show transaction related
data such as the amount and the account number of the target of the transaction),
it might be possible to manipulate this information as well.

Investigating this USB connection to see the protocol, as well as the data that
is sent would be very interesting. Will it still send EMV-compliant commands,
or will it send its own set of commands which will be translated by the e-dentifier
into commands that can be sent to the card? Of course it is even more interesting
to see how this protocol can be influenced to see if wrong data can be sent, for
example through a man-in-the-browser attack which targets the software used to
communicate with the e-dentifier.

ABN-AMRO: Possibilities with a new bank card

Since the ABN-AMRO bank is the only bank investigated during this research
project to select a portion of the transaction counter through the bit filter, it will
be interesting to see what happens if the transaction counter is overflown past
the maximum selection point of the bit filter (e.g. 128), while the bank card has
never been used for Internet banking.
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Since the bit filter will then select only a portion of the transaction counter,
the ABN-AMRO Internet banking application might think the transaction counter
is at a lower value. For example, if the current transaction counter is 130, the
bank will only receive the value of 2, since the bit that represents the value 128
is not selected by the bit filter. If someone would collect a lot of different cryp-
tograms with a lower transaction counter, it will be interesting to see if those
values can be used because the Internet banking website thinks the transaction
counter is lower than it actually is.

Whether or not this can be exploited for anything useful is of course debatable,
but it can at least give an insight into the inner workings of the Internet banking
website itself. It might give an answer to the question whether or not selecting a
portion of the transaction counter is useful, or whether the ABN-AMRO would
have been better off to guess it like the other Dutch banks investigated during
this research project seem to do.

Multiple cards for the same bank account

It is possible to get multiple bank cards for the same bank account, for example
when it is an account shared by multiple individuals or when receiving a new
bank card after the old one has (nearly) expired. This is indicated on the card
through a card number. For the ABN-AMRO Internet banking website it is a
field that needs to be entered to log in, along with the account number of the
bank account.

How this affects the generation of cryptograms is currently unknown, and
it would be interesting to see how this influences the process. From what is
currently known it is likely that when using Internet banking the only unknown
for the Internet banking website is the transaction counter, and that the card
number is not used as transaction data in the generation of the cryptograms.

Should this be true it is possible that a card with a particular card number
but tied to the same bank account can be used to log in and perform transactions
for a different card number, as long as the transaction counter is higher than the
one currently set at the other bank card.

This could lead to several problems. Take, for example, a married couple that
is going through a divorce. One of the two individuals could pretend to log in
and transfer money from their shared account using the card number of the other
person. The bank records would indicate that the wrong person has done this,
which might lead to wrong decisions during settlement decisions.

Another example might be that a corrupt bank employee that somehow has
access to the card creation process can create a fake card with a new card number
and a PIN that is under his or her control. The card might not be usable for
normal EMV transactions, as the card will officially not exist, but should the
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corrupt employee simply raise the transaction counter high enough he or she
would be able to access an Internet banking account of the victim.

Of course it is likely that the cards share an account number, but still have
different cryptographic keys. This would make it unlikely that such a situation
can be exploited as it is explained in this particular section. However, it will still
be interesting to verify whether or not this is the case.

SNS: Reverse engineering the DigiPas

The SNS bank uses a radically different device to log in to their Internet banking
website: a device that is tied to a single bank account and which does not use a
bank card at all. This has several consequences, one of which is that the device
will obviously contain some sort of secret.

It would be interesting to see how this device works internally. For example,
does the device contain a tamper-resistant chip as well and if not, how does it
store its information internally? Once this is know the next logical step would be
to see if information can (easily) be extracted from the device and see how this
affects the overall security of the Internet banking system of the SNS as a whole.

ABN-AMRO: Reverse engineering the e-dentifier 1

The final suggestion for future work that is made is to take another look at the
old version of the e-dentifier that was used during this research project: the e-
dentifier 1. This e-dentifier can still be used, and even though an attempt was
made to also reverse engineer this device it failed for an unknown reason (see
Section 3.5.4 for the details).

Even though it should not have much of an effect, it is possible that the e-
dentifier cannot communicate properly with the blank card that was used due
to a difference in the ATR. However, because the old version of the e-dentifier
can still be used, it is interesting to figure out how that particular device works,
especially compared to the newer version. It might not use EMV, which will give
all sorts of interesting possibilities in terms of attacks and vulnerabilities.



Chapter 6

Conclusions

With the completion of this research project, it is possible to answer the research
questions as they have been posed in Section 1.2. The questions will once again
be listed here, and instead of individually answering these questions (which would
lead to having to repeat large sections of what has already been written) they
will be answered by addressing them throughout the rest of the conclusions.

How do Dutch banks use the EMV specifications in their bank cards, in
particular when using Internet banking, and what are the consequences
and limitations on the security of the system as a whole?

Sub-question 1. How are the EMV specifications used to design an implemen-
tation of bank cards usable for Internet banking in terms of protocols and capa-
bilities?

Sub-question 2. Which options did the Dutch banks choose to implement of the
EMYV standard in terms of protocols and data authentication (SDA, DDA or even
CDA) when using Internet banking?

Sub-question 3. Do the Dutch EMV bank cards suffer from the same problems
that have been found [4, 5, 12] in the U.K.?

This section begins by discussing the experience of trying to understand the
EMYV specifications and reverse engineering the protocols. Actually answering
the research questions is done after listing these experiences.

Size and complexity of the EMV specifications

One of the most important conclusions that can be made after completing this
research project should be obvious when looking at Chapter 2 of this document:
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the size and complexity of the EMV specifications can be called daunting at the
very least. Not only are the specifications themselves very length, allowing for
a wide variety of different options and different interpretations to be used, it is
also based on various other standards. However, minor variations in interpreting
those standards leads to possible incompatibilities, such as the problem described
in Section 3.3.2 in which the procedure byte returned in a T=0 protocol session is
statically defined as having a CLA byte of ’00’, as opposed to using the procedure
byte of the previous command.

The process of reverse engineering

Reverse engineering was done to figure out which protocols are used in chal-
lenge/response devices such as the e-dentifier, as well as finding out which options
of the EMV specifications Dutch banks have chosen to implement.

Even though initially it was planned to use a traffic sniffing device to reverse
engineer the protocol used by the e-dentifier, the device was unable to properly
interface with the card and the e-dentifier because of differences in baud rates.

Even though it would have been easier to use a traffic sniffing device, as
it would provide an immediate overview of the complete protocols used by the
e-dentifier, the alternative turned out to be relatively easy as well. Instead of
sniffing the traffic, a programmable smart card was used that logs commands
sent to it by the e-dentifier, while using a terminal application to simulate those
commands sent to collect real responses from an actual bank card. The pro-
grammable smart card would then be able to give a proper response, which lead
to the possibility of logging the next command sent by the e-dentifier.

Although it was more tedious to reverse engineer the protocol in this way, the
nature of communication with a smart card reader and a smart card (an unex-
pected response usually leads to the termination of communications altogether)

still made it a fairly straightforward process.

EMV in the Netherlands

Three papers [5, 12, 4] listing several flaws and weaknesses of EMV implementa-
tions in the U.K. were one of the biggest reasons this research has been done. The
paper [5] that lists problems with the challenge/response devices used for Internet
banking was of interest in particular, as the focus of this research was primarily
on Internet banking because it provides a successful attacker with nearly limitless
capabilities relating to the compromised bank account of the victim.
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Internet banking

By having the bank card sign certain transaction data, the bank can verify that
the owner of the card wants to perform certain actions, such as logging in to the
Internet banking website or allowing a transaction to occur. Part of this trans-
action data is a special code that is displayed by the Internet banking website,
which the user has to enter into a special device. However, the banks investi-
gated in [5] simply have the card sign the code displayed on the website, and give
the card (and more importantly: the cardholder) no method of verifying what it
signs. Actions that should be different (such as verifying the account number of
a transaction vs. authorising the transaction to occur) are treated in the same
manner by the card, which means that an attacker could exploit this by having
the card sign something which might be usable for something else.

Type confusion

In [5] the problem of type confusion is introduced. This problem is caused by
using the unpredictable number field to store the challenge that is entered by
the user into the challenge/response device. Because the device can be used
in different modes (say: logging in and verifying a bank account number) it is
possible to have the device get responses from the card for one mode that can be
used in another mode. Section 4.1 of this document discusses all the details of
this weakness.

ABN-AMRO Internet banking

After having reverse engineered the protocol used by the e-dentifier (see Figure
3.3) it was discovered that while the ABN-AMRO uses the same steps in the
protocols as those reported in [5], the bank has taken several steps in order to
prevent the possibility of type confusion.

This is solved by the ABN-AMRO by encoding the challenge that is entered
into the e-dentifier. Instead of simply putting an entered code straight into the
unpredictable number field, it somehow modifies it to allow at least the back-
end of the ABN-AMRO Internet banking application to differentiate between the
different options. Of course since the same protocol steps are still used, the bank
card is still not able to determine what it signs. However, this countermeasure
makes sure an attacker does not have an easy method of exploiting the potential
type confusion. Of course it might still be possible due to the possibility of
collisions (the potential size of the input is greater than the size of the output)
but it has been made harder up to the point where it can be considered unlikely.



82 CHAPTER 6. CONCLUSIONS

Rabobank Internet banking

The Rabobank also uses a challenge/response device called the random reader,
and while this also uses the same protocol steps as the ABN-AMRO, it still suffers
from the type confusion. What is worse, the random reader suffers from a worse
version of this type confusion, since it never has the card sign the code that is
displayed on their Internet banking website. Instead, they always sets the value of
the unpredictable number field to 0000 0000’, and then use the challenge entered
into the device to somehow scramble the result.

Because this static value of 0000 0000’ is used for the log in procedure, and
since they chose to use this data for all transactions instead, it is possible to collect
valid log in tokens and use those to perform transactions. Of course the attacker
still needs to know how the scrambling is done, but this can easily be bypassed
by using a relay attack to an actual random reader. A good social engineer could
likely convince Rabobank customers to divulge these tokens in order to perform
transactions ("I can only log in with this data so there is nothing to worry about.
As a bank employee I can already log in to your account”), making this a big
potential risk.

ING bank and SNS bank EMV cards

While these two banks do not use EMV cards for their Internet banking, they
all distribute bank cards which contain EMV applications, as they will switch to
EMV for payments before the end of 2011. Because of this certain data could be
extracted from these cards (even data that should only be relevant for Internet
banking as they seem to be introduced by the CAP standard such as the bit
filters). These values can be found in Figure 3.8.

PIN-less transactions at a Point of Sale

In [12] an attack is described that allows an attacker to complete transactions
without having to know the PIN of the card. This is possible because when an
issuer is given the transaction data, it is not able to determine what verification
methods have been performed by the terminal and see if this corresponds with
what the card has specified. By using a man-in-the-middle attack an attacker
can suppress the PIN verification step request to the card and simply pretend it
was successful by sending a ’9000’ result to the terminal.

Luckily, the Dutch banks seem to have chosen better options in their imple-
mentation of the same system. By including the Cardholder Verification Method
Results in the transaction data to be signed by the card (see Figure 3.8) an issuing
bank gets the ability to compare this with the data given by the card, and detect
corresponding mismatches in what the card and terminal believe has occurred.
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All Dutch banks request this information, which means they should all be able
to detect it when this attack occurs. Since verifying whether this is also done in
practice was out of the scope of this research project, it is currently not yet known
if Dutch banks are vulnerable to this attack. However, due to the fact that it
should be detectable is already good news for customers of these Dutch banks, as
it should be possible to reconstruct the scenario in case of disputes. Fortunately
it seems unlikely that this will become an issue, as Dutch banks claim to have
verified this attack is detected, leading to a rejection of the transaction in case
this happens.

Data authentication

All cards that have been looked at during this research project indicated they
supported DDA, and not SDA or CDA. This corresponds with what has been
revealed by Dutch banks during private communications, during which they in-
dicated they are in the process of phasing out SDA cards.

Overall

The major Dutch banks seem to have chosen better options of their implementa-
tions of the EMV specifications for both their Internet banking devices and cards,
as well as their EMV payment cards when compared to the U.K. Of course there
are still some open issues, but that is to be expected. For example, it is currently
unclear whether Dutch banks actually verify the cardholder verification method
results correspond with what the bank card reports on a particular transaction.
It is also currently unknown whether the encoding used by the ABN-AMRO is
done through a cryptographically secure manner such as a cryptographic hash
function.

Suggestions for improvement

There is always room for improvement. For example, due to the huge potential
of abuse when an attacker gains access to an Internet banking application of a
victim, it should be made extremely hard for an attacker to be successful in this.

Extra step in the log-in procedure

Currently, both the ABN-AMRO and the Rabobank rely exclusively on a cus-
tomer using their PIN and bank card in order to log in to their Internet banking
and authorise transactions. An attacker with a fake terminal could therefore
potentially attack every customer of this bank, without having to know more
information than the victim provides through the fake terminal.
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As an additional security measure it is possible to require a user name and
password to log in. This would prevent attackers being able to use a fake terminal
on a massive scale. They would have to target individuals of which they knew
the log in credentials before being able to abuse it.

Of course it would also have various other security implications, but these
(and possible alternatives) are out of the scope of this research. It is however a
measure that should be considered for the potential gain it provides.

Rabobank: Loading transaction data in the unpredictable number field

The biggest suggestion for improvement that can be made is aimed at the Rabobank,
which uses a static value of 0000 0000’ in the unpredictable number field to be
signed by the card. Why this choice was made is unknown, but if an attacker
can figure out how the encoding scheme works (or how to create a relay to get
proper responses from the random reader itself, which is not hard to do) it can
lead to unwanted situations. An attacker only needs knowledge of the encoding
scheme and two valid log-in tokens from a victim to be able to log-in and perform

a transaction.

Having bank cards check the CVMR themselves

The final suggestion that is made is to have cards themselves compare the card-
holder verification method results to what the card believes has occurred, al-
lowing a card to reject a transaction if a terminal believes PIN verification was
attempted while the card knows it was not attempted. When doing this, fraud-
ulent transactions can be stopped by the card, and the possibility of verification
errors occurring at the issuing bank becomes irrelevant for these situations.
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Appendix A

EMV commands overview

This appendix contains an overview of the commands that have been defined for

financial transaction in the EMV standard. This overview is meant to be used as

a reference guide when trying to get an overview of the protocols that are used in

an EMV application in terms of commands and responses that are sent in order

to be able to quickly determine which command has been sent by the card.

Table A.1: EMV commands overview

CLA byte INS byte Command name Summary

00 20 VERIFY Instructs to ICC to verify the PIN spec-
ified in the data field to the PIN data
associated with the application

00 82 EXTERNAL AUTHENTI- | Requests the currently selected applica-

CATE tion to verify a cryptogram

00 84 GET CHALLENGE Used to obtain an unpredictable number
from the ICC

00 88 INTERNAL AUTHENTICATE | Initiates computation of the Signed Dy-
namic Application Data

00 A4 SELECT Selects a file, directory or application on
the ICC

00 B2 READ RECORD Instructs the ICC to read and return a
file record

00 Co GET RESPONSE Used in the T=0 protocol to get a re-
sponse from the ICC

80 A8 GET PROCESSING OPTIONS | Initiates the transaction within the ICC

80 AE GENERATE APPLICATION | Sends transaction data to the ICC to be

CRYPTOGRAM involved in creating a cryptogram
80 CA GET DATA Request a primitive data object that is

not within a record on the ICC
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APPENDIX A. EMV COMMANDS OVERVIEW

Table A.1: Continued: EMV commands overview

CLA byte INS byte Command name Summary

8Cor8 | 16 CARD BLOCK Permanently disable all applications on
the ICC

8Cor8 |18 APPLICATION UNBLOCK Reactivates the currently selected appli-
cation

8C or 84 1E APPLICATION BLOCK Invalidates the currently selected appli-
cation

8Cor8 | 24 PIN CHANGE/UNBLOCK Allows issuers to change and unblock the

PIN




Appendix B

Sample challenge encodings

This appendix contains sample challenge encodings for the ABN-AMRO e-dentifier
2 device. The selected option column means the option that was selected in the

menu of the e-dentifier 2. Challenge means the challenge as it was entered into

the e-dentifier 2, while the encoded challenge is the value of the challenge as it is

sent in its APDU format by the e-dentifier 2 to the card.

Selected option

Challenge

Encoded challenge

Verify account 5609 0403 2B8B E1AA
Verify account 0000 0000 BESF 936B
Verify account 000000000000000000000000000000000000 | 2616 BE93
Check input 1234 5678 C436 CEED
Check input 000000000000000000000000000000000000 | 7808 S5E9F
Check input 0000 0000 A3D8 C36C
Send transaction | 2466 1140 661D 7D59
Send transaction | 1234 5678 EFD2 2EDB
Send transaction | 9876 5432 542A 2C16
Send transaction | 1111 2222 8C88 5B29
Send transaction | 0000 0000 FOBA 6928
Send transaction | 0000 0001 54F6 D1E7
Send transaction | 0000 0002 C128 9A44

Table B.1: Challenge encoding examples
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Appendix C

Sample challenges and their
outputs for the Rabobank
random reader

This appendix contains a table with some of the outputs from the Rabobank
random reader for a given challenge. These responses were collected from the
bank card simulator (a programmable bank card that was used to simulate a
single session of a valid bank card), which always returns the same response to
the GENERATE AC command requesting an ARQC. Because it always returns
the same response, it is possible to see the effect of the challenge onto the final
result.

The input column specifies the challenge that is entered into the random
reader, while the result column lists the corresponding response that is shown on
the display of the random reader. The result (binary) column is the result in its
binary format, which is the same as the previous column which is in a decimal
format.

When applying the bit-filter that is specified by the bank card simulator to the
standard response, it will lead to a value of 3499 8891 (10000101100000101001101011
in binary). As can already be seen this value is extremely similar to the output
presented by the random reader.

Input Result Result (binary)
00000 00000 | 3478 1624 | 10000100101011100110111000
00000 00001 | 3460 7710 | 10000100000001001001011110
00000 00002 | 3502 1539 | 10000101100110001011100011
00000 00003 | 3500 6820 | 10000101100010100101100100

Table C.1: Sample challenges and their outputs for the Rabobank random reader
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Table C.1: Continued: Sample challenges and their outputs for the Rabobank random
reader

Input Result Result (binary)
TUTT T ‘ 3461 1458 | 10000100000010000100000010

Table C.1: Sample challenges and their outputs for the Rabobank random reader



Appendix D

Applets on Dutch bank cards

This appendix contains a list of applets that have been found during this re-
search project, either through a challenge/response device attempting to select
this applet or through a bank card exposing this applets in its 1PAY.SYS.DDF01
directory.

The names of the AIDs that were not found on a bank card (and thus were
not known) have been searched for online.

e A0000000032010 (VISA Electron)

e A0000000031010 (VISA credit)

e A0000000043060 (MAESTRO)

e A0000000041010 (Mastercard Credit)
e D5280050218002 (unknown)

e A0000000038002 (unknown)

e A0000000048002 (SecureCode Aut)

e A0000003156020 (ChipKnip)

e A00000031510100528 (PIN)
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Appendix E

Trace of an Internet banking
session

This Appendix contains a trace of an Internet banking session in its raw APDU
format. It lists the command, the P1 and P2 values and the data that is sent,
followed by the response sent by the card. Sensitive information (such as the
PIN) has been replaced with an X for each character that is replaced.

This trace was made using the e-dentifier 2 of the ABN-AMRO and an ABN-
AMRO bank card. Application selection as it has been specified in Section 3.4 is
omitted, except for the selection of the SecureCode Aut application that is done
in the final step.

User enters the card into the e-dentifier 2. It attempts to
select several applets that might or might not be present
SELECT APPLICATION (SecureCode Aut)

Command: 00A4

P1+P2: 0400

Data: 07A000000004800200

Response: 6F258407A0000000048002A51A500E536563757265436F646520417574
8701005F2D046E6C656E9000

GET PROCESSING OPTIONS

Command: 80A8

P1+P2: 0000

Data: 02830000

Response: 770A820210009404080101009000
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READ RECORD
Command: 00B2
P1+P2: 010C
Data: -

Response: 70608C219F02069F03069F1A0295055F2A029A039C019F37049F35019F45029F4C089F3403
8D0C910A8A0295059F37049F4CO85A0 AXX XXX XXX XXXXXXXXXXXX
5F3401018E0A000000000000000001009F5501809F560C00007FFFFFE00000000000009000

GET DATA (PIN try counter)
Command: 80CA

P1+P2: 9F17

Data: -

Response: 9F1701039000

VERIFY

Command: 0020

P1+P2: 0080

Data: 0824XXXXFFFFFFFFFF

Response: 9000 if the PIN is correct.
63Cx otherwise, where x is the remaining # of PIN tries

GENERATE APPLICATION CRYPTOGRAM (ARQC)

Command: 80AE

P1+P2: 8000

Data: 00000000000000000000000000008000000000000000000000661D7D5934000000000000000
00000010002

Response: 77299F2701809F360200429F2608C14D71DBAFA79FED
9F10120012A50003020000000000000000000000FF9000

GENERATE APPLICATION CRYPTOGRAM (AAC)

Command: 80AE

P1+P2: 0000

Data: 000000000000000000005A338000000000000000000000000000000000
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Response: 77299F2701009F3602004E9F260896F166E11152A46B
9F10120012250003420000000000000000000000FF9000






Appendix F

Overview of produced code

Code has been written during this research project in order to help with the
reverse engineering of the different challenge/response devices. This appendix
gives a global overview of the different code projects, listing both their names
and contents to help others understand it should they wish to look at or tinker
with the code.

Three different code solutions have been made during this research project:
1. CardChannelBugFix
2. EMV-Bankcard

3. EMV-Bankcard-Terminal

CardChannelBugFix

The code that has been produced is Java code. However, because of the EMV
specifications the Channellmpl class that can be found in sun.security.smartcardio
does not work properly when used with EMV cards (see 3.3.2 for the details of
this problem). For this reason the class has been edited to properly work with
EMV cards by copying the source code of the particular Java class and fixing the
bug manually. This class has to be loaded before the Java runtime environment
in order for the EMV-Bankcard-Terminal to work properly with EMV cards!
This can be done in Eclipse by adding the project to the bootstrap entries in the
Classpath tab of the debug/run configurations of the EMV-Bankcard-Terminal
project and making sure it is higher in the priority chain than the Java runtime
environment. Alternatively it is also possible to load this manually using the
Xbootclasspath option in the Java application launcher.
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EMV-Bankcard

This project contains the code that has to be loaded on a programmable smart
card. This allows the card to log unknown responses from a terminal in order to
help with the reverse engineering of the protocols used by these terminals.

The code for this applet contains a lot of static information in terms of data
and responses, and could be used as a bank card that simulate a single session of
an EMV Internet banking session. This is because a real bank card was used to
extract actual responses to be used by the bank card simulator.

In order to have the card report the latest instruction it did not understand
(i.e. no response was programmed for that particular command) one should send
it a 0050000000 command.

EMV-Bankcard-Terminal

This application contains both the terminal application that can simulate an e-
dentifier Internet banking session, as well as the code that allows EMV bank
card information (such as the bank account number and AIP) to be read. If a
card is entered into a card reader the application will automatically attempt to
see which applications are present on the card, and will extract the information
exposed by the applications that support EMV.
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