

2010

Mathijs Schuts

IMPROVING SOFTWARE
DEVELOPMENT
The introduction and implementation of ASD at Philips Healthcare

Master Thesis: Computer Science

Improving Software Development
The introduction and implementation of ASD at Philips Healthcare

1

Radboud University Nijmegen, 2010

Version: 1.0

Thesis number : 632

Company: Philips Healthcare, BU Interventional X-ray

 Embedded Systems Institute

Student: M.T.W. (Mathijs) Schuts

Supervisor: prof. dr. J.J.M. (Jozef) Hooman

Supervisor: dr. A. (Arjan) van Rooij

External Supervisor: dr. ir. R.J. (Robert) Huis in ’t Veld

1
 This work has been carried out as a part of the Darwin project at Philips Healthcare under the

responsibility of the Embedded Systems Institute. This project is partially supported by the Dutch

Ministry of Economic Affairs under the BSIK program.

Abstract

To improve the software development process, the business unit Interventional X-ray

of Philips Healthcare wants to reduce the test & integration phase by introducing

Analytic Software Design (ASD). ASD is a tool that can be used for designing

control-based software in a component-based way. In ASD, a system is specified in a

Sequence-Based Specification (SBS), which is a large table. The table describes for

all states of the system how it should respond to all possible stimuli. A complete

design specification can be verified formally. The Sequence-Based Specification can

be used to generate source code.

We have investigated the transition from the existing development approach to a new

situation where ASD will be used. In our analysis, we observed that currently ASD is

positioned as a tool and therefore requires only changes in the skills of the persons

that need to apply it. We also noticed that making a design following the current

practices did result in designs that could not be checked by the ASD tool. Moreover,

the engineers followed an ASD course that hardly explained how to create a design

that suits ASD. In general, a method to apply the ASD tool is missing.

The literature indicates that ASD and Cleanroom are related technologies. Cleanroom

Software Engineering describes a complete software development process and

method. We propose to introduce a Cleanroom-like method and refer to the

combination with ASD as Cleanroom/ASD. Cleanroom’s process model is adapted to

fit into the generic process model of the business unit. The Cleanroom method

describes the steps to obtain a global and a detailed design. In the final step of the

method, ASD can be applied for control-based software. For non-control-based

software a correctness proof could be made by hand. The benefit of using a

Cleanroom-like method is that there is one integral approach to design high quality

software.

Applying Cleanroom/ASD will only become a success if the organisation is prepared

to make concessions on the design. This is the most important hurdle that needs to be

taken. Applying ASD is not just a change of skills for the persons that need to apply

it, but rather a cultural change. Literature suggests that the required change in mindset

may take at least a year to accomplish.

Additionally, we have looked at some techniques that could increase the re-use of

system control behaviour in the ASD context. We implemented a proof-of-concept of

the following two techniques: template models and merging template models. We

propose that first an architecture is decomposed with Cleanroom. Secondly, common

and partial behaviour in interfaces should be identified and put into template models.

Lastly, the ASD models are implemented bottom-up to maximize re-using common

behaviour. Our implemented techniques can then be used to compose interfaces from

the template models.

Preface

This thesis is the result of conducting my master’s thesis project at Philips Healthcare.

In this preface, I would like to thank the persons without whom it would not be

possible to successfully conduct the research and write the thesis.

I would like to start with a special acknowledge of Jozef Hooman, who arranged the

assignment, for his involvement in the research, support, and his patience in guiding

the difficult process of writing the thesis. I would like to acknowledge my other

supervisors Arjan van Rooij and Robert Huis in ’t Veld for their guidance, tips and

help.

My research took place at a software development team at Philips Healthcare. Thanks

to the team members Ben Nijhuis, Johan Gielen, Hans van Wezep, André Postma and

Ammar Osaiweran for adopting me into the team, and for a pleasant time at Philips

Healthcare. Additionally, I would also like to thank the team members and managers I

have interviewed for their time.

Contents

1. Introduction .. 11
1.1 Problem Statement .. 11
1.2 Approach ... 12

1.3 Scope ... 12
1.4 Overview ... 13

I What is the state of the organisation that will incorporate the new technology? . 15
2. Philips Healthcare ... 17

2.1 Company ... 17
2.2 Allura ... 17
2.3 Decomposing Allura ... 19

2.4 Front-End Controller ... 20
3. Software Development Organisation .. 21

3.1 Matrix Organization .. 21
3.2 Roles Involved... 23

3.3 The Development Process and Method ... 24

I Concluding Remarks .. 27

II What is the nature of the technology? .. 29

4. Introduction to ASD ... 31
4.1 The Technology... 31

4.2 Model Checking .. 39
5. Cleanroom .. 45

5.1 The Characteristics .. 45

5.2 The Method ... 45
5.3 The Process ... 48

5.4 Drawbacks of Cleanroom .. 50
II Concluding Remarks .. 51

III What is the ultimate goal for acquiring and using the technology? 53
6. Expectations of ASD .. 55

6.1 Management .. 55

6.2 Software Designers ... 59
6.3 Observations .. 64

III Concluding Remarks .. 67

IV What are the steps to reach the desired goals given the state of the

organisation? .. 69
7. Implications of Introducing ASD ... 71

7.1 Analyse Desired Goals .. 71
7.2 Cleanroom/ASD .. 72
7.3 Analysis of the Expectations ... 75
7.4 The Transition ... 76

IV Concluding Remarks .. 83

V How can re-use and migration enhance the technology? 85

8. Re-Use .. 87
8.1 ASD Solutions ... 88
8.2 Proposed new ASD Solutions ... 89

9. Adapt Interface Models .. 93

9.1 Re-use Approach on an Architecture .. 93
9.2 Script ... 94
9.3 Examples ... 95

10. Migration of an Application ... 101
10.1 Old Architecture .. 101

10.2 New Architecture ... 102
10.3 Approach ... 102
10.4 Prerequisites... 103
10.5 Extending the Application ... 104

V Concluding Remarks .. 107

11. Conclusion .. 109

11.1 Answers to the Research Questions ... 109
11.2 Final Remarks .. 111

Bibliography .. 113
Appendix A .. 115

Appendix B .. 117

11 Introduction | Improving Software Development

1. Introduction

1.1 Problem Statement

Organisations are continuously searching for improvements of their software

development process. One can think of the improvements of software quality,

predictability of the process, and cost savings. The high-tech industry is not an

exception, since it increasingly uses software to build complex machines and

applications. Typically, products are extended with additional functionalities over

many years, through constant incremental innovations. Because of the extended

functionalities, the software architecture needs frequent rework in order to maintain

important software quality attributes, such as maintainability, efficiency, flexibility,

interoperability, security, performance, testability, and extendibility.

A software architecture usually consists of a number of software blocks which are

independently developed. When finished, these software blocks are integrated into

increasingly larger compositions and finally into a complete working product. The test

& integration phase is often hard to control and predict, because usually many

problems are found relatively late in the software development process. Sometimes

major problems have to be solved at this phase, which may even require architectural

changes.

To improve this situation, a tool called Analytical Software Design (ASD) has been

devised by a Dutch company called Verum. ASD is a tool to mathematically specify

interfaces and designs, to model check these, and to generate source code, and to

generate compliance tests from the models.

At Philips Healthcare the ASD tool will be used to redesign and to re-implement parts

of a new software architecture to be able to cope with new market and technical

developments for the coming decade. ASD should improve the development

efficiency, because of fewer problems during the test & integration phase. ASD is

intended for the design of control-based behaviour. Hence, only part of the

architecture will be implemented with ASD. Moreover, some aspects, such as (meta-)

data and real-time requirements, cannot be modelled and verified with the ASD tool.

This thesis will show that introducing the ASD tool into a development organisation

is not just a technical aspect but also involves changes in organisation, method, and

mindset of the engineers that need to use the tool. The managers and project leaders of

the team can use the thesis to read about the transition from a situation without ASD

to one with ASD. Henceforth, this is called the “transition situation” in which we

examined the current state of the organisation, the nature of the technology, the goals

of applying the new technology, and the steps necessary to reach the desired goals [8].

Additionally, team members can use the thesis to enhance their ASD knowledge. In

addition, we present a few techniques that are intended improve the ease of use of the

ASD tool during development.

The above leads to the following two research question:

o What is the transition situation?

o How can re-use and migration enhance the technology?

12 Introduction | Improving Software Development

1.2 Approach

In this section, we describe the approach used to answer the research questions. For

answering the first research question, the transition situation as described by [8] is

used. This paper describes questions for examining the transition situation. We

slightly adapted the questions for our purpose which resulted in the following sub-

questions.

1. What is the transition situation?

1.1 What is the state of the organisation that will incorporate the new technology?

1.2 What is the nature of the technology?

1.3 What is the ultimate goal for acquiring and using the technology?

1.4 What are the steps to reach the desired goals given the state of the

organisation?

Answering question 1.3 resulted in questions about the re-usability of models and the

migration to the new architecture. This led to the following sub-questions:

2. How can re-use and migration enhance the technology?

2.1 How can re-use enhance the technology?

2.2 How to migrate from the current situation to the new technology?

These questions have been investigated at Philips Healthcare and we describe for each

sub-question how it is answered:

o Question 1.1: analysing internal documents and interviews. Since internal

documents not always describe the real practices within an organisation,

additional information is gathered by interviewing the persons involved.

o Question 1.2: studying literature about the technology being transitioned and

hands-on experience with it by working on question 2.

o Question 1.3: interviewing the persons involved and observing the team’s first

steps in applying the new technology.

o Question 1.4: analysis of the answers to sub-questions 1.1-1.3 and relating the

outcome of the analysis to the literature.

o Question 2.1: implementing a proof-of-concept and applying it to a real case

to test its effectiveness.

o Question 2.2: applying another proof-of-concept onto a real case.

1.3 Scope

The research has been taken place during a preparation phase of a pilot project that

will implement a new reference architecture. The observations described here are only

valid for the time the research took place.

The thesis describes an analysis about the infusion of the technology into the

organisation and can be used to create an operational transition plan. It does not

describe operational details itself such as changes to the archive to support ASD, new

build procedures, validation of ASD generated source code, etc.

The research is a snapshot in time. The developments during the research were very

dynamic. Additionally, ASD itself is a moving target because it is frequently

improved. Our implemented re-use and migration techniques work with ASD:Suite

13 Introduction | Improving Software Development

version 3. It has not been tested with higher versions. On the other hand, it should be

possible to adapt the proof-of-concept relatively easy.

1.4 Overview

The thesis is organised according to the approach described in Section 1.2. The thesis

is split into five parts each will answer a (sub-) research question.

I Part I answers the question: What is the state of the organisation that will

incorporate the new technology? It contains Chapter 2 which describes the

company and the product, and Chapter 3 which describes the current state of

the software development organisation.

II Part II answers the question: What is the nature of the technology? It contains

Chapter 4 which describes the basics of ASD, and Chapter 5 which is about

ASD’s ancestor Cleanroom Software Engineering (CSE).

III Part III answers the question: What is the ultimate goal for acquiring and using

the technology? It contains Chapter 6 which describes the objectives and

expectations about ASD.

IV Part IV answers the question: What are the steps to reach the desired goals

given the state of the organisation? It contains Chapter 7 which analyses the

previous parts and proposes some recommendations about the transition.

V Part V answers the question: How can re-use and migration enhance the

technology? It contains Chapter 8 which describes some solutions for re-use,

Chapter 9 which describes a proof-of-concept for applying re-use, and Chapter

10 which describes a proof-of-concept for the migration of an application.

I What is the state of the organisation that will
incorporate the new technology?

Before we can analyse the transition situation, some important aspects of the situation

need to be examined. Every transition situation is unique. There are major differences

between organisations in general but also for software development organisations

specifically.

This part gives an overview of the context where the new technology is going to be

introduced. The context is outlined by a description of the company, the product, and

the current software development organisation with its involved roles, process and

method.

17 Philips Healthcare | Improving Software Development

2. Philips Healthcare
This chapter provides a global overview of the company involved and the product on

which ASD is going to be applied. Subsequently, the following is described in this

chapter: the company, the product Allura, the decomposition of Allura, and the FEC,

which is one of Allura’s components.

2.1 Company

Philips is an electronics company founded in 1891 by Gerard Philips in Eindhoven,

the Netherlands. Today, Philips is organized into three main branches: Philips

Customer Lifestyle, Philips Lighting, and Philips Healthcare (former Philips Medical

Systems). The Healthcare branch focuses on five businesses: Healthcare Informatics,

Diagnostic Monitoring, Patient Monitoring, Defibrillators, and Imaging Systems. The

research described here took place in business unit Interventional X-ray (formerly

called Cardio Vascular), which is part of the Imaging Systems business.

2.2 Allura

The business unit Interventional X-ray makes products for several medical segments.

Some of these segments are cardiology, radiology, neuro-radiology, electro-

physiology, and surgery. The general product name is Allura. There are multiple

variations of this product for the several medical segments depending on the chosen

(hardware) configuration and the (software) packages. In Figure 1 a possible

monoplane configuration of the Allura product is depicted. The common factor of the

product variations is that x-ray movies of a patient’s body can be made in real-time.

18 Philips Healthcare | Improving Software Development

Figure 1, Allura Monoplane

The patient lies on the table and is positioned on the table between the x-ray generator

and detector on the c-arc of the product. The table and c-arc of the product can be

manoeuvred by means of a software user interface. One end of the c-arc transmits an

x-ray beam through the patients’ body and the other end of the c-arc receives the

residual radiation. This received radiation is transformed into an image which can be

processed and viewed by the physician and other operating room personnel. The

variations of the product are for a large part determined by the software applications

needed for specific medical segments. If, for example, a physician wants to place a

stent into the aorta of a patient, then the product is used to navigate the stent through

the patient’s arteries to the target position. The arteries of the patient can be made

visible by injecting a contrast media. When the contrast media is injected, Allura can

be used to make the pictures.

19 Philips Healthcare | Improving Software Development

Figure 2, Allura Biplane

The product can consist of several hardware variations, for example, there is a product

variant with two c-arcs. Figure 2 is a picture of the biplane variant where x-ray images

from two sides can be made simultaneously.

2.3 Decomposing Allura

For creating the Allura product, many disciplines are involved such as mechanical

engineering, electrical engineering, and software engineering. For this research, we

are solely interested into the software of the product. Moreover, we concentrate on a

small part of Allura’s software.

Figure 3 shows that the software of the Allura product is decomposed into three

subsystems: the front-end controller (FEC), back-end (BE), and image processing

(IP). The FEC is responsible for interfacing with the devices, for example, movement

and positioning of the product’s arcs, activating and deactivating the x-ray beam,

focusing the x-ray beam, and control the detector that captures the x-rays. The devices

are depicted below the FEC in the picture. The IP subsystem processes the stream of

acquired x-ray images for visualisation, and the BE is the user interface for the

physician and other operating room personnel. The user interface is used to configure

the device and visualize the pictures.

20 Philips Healthcare | Improving Software Development

Figure 3, Allura’s Architecture

The system is decomposed in such a way that the functional parts of the system are

rather independent of each other. The Front-End (FE), which includes the hardware,

needs more time to get released because of all the safety constraints. The

decomposition accomplishes that FEC, BE and IP can be upgraded individually.

2.4 Front-End Controller

The FEC is the software that manages and controls the FE’s hardware. ASD will be

introduced in this FEC. The interfaces of FEC with BE and IP are already modelled

with ASD. The FEC’s architecture consists of three layers. From top to bottom these

layers are:

- user-interaction layer,

- application layer, and

- technical-services layer.

The next chapter explains software development regarding the Front-End Controller:

the organisation, the roles involved, and the software development process and

method.

21 Software Development Organisation | Improving Software Development

3. Software Development Organisation
The business unit Interventional X-ray makes products in multidisciplinary teams

where the main disciplines are software, electronics, and mechanics. All disciplines

need to work together in order to successfully develop Interventional X-ray products.

Making the Front-End Controller (FEC) is a small but essential part of the whole

development effort. This chapter starts large with describing the overall development

organisation. Next the focus will be more on the FEC part of the development

organisation. This chapter is based on internal documents and interviews with persons

that work on FEC.

The chapter is organized as follows. Firstly, the matrix organisation is described in

Section 3.1. Secondly, the roles involved in making the FEC are explained in Section

3.2. And, finally, the software development process and method is described in

Section 3.3.

3.1 Matrix Organization

In this section, we describe the development organisation. A partial organisational

chart of the development organisation is given by Figure 4.

Figure 4, Organisational Chart

As can be seen in Figure 4, the development organisation is headed by the R&D

director. Within the business unit Intervention X-ray, the business architect is

responsible for aligning the different products technically. Additionally, the business

architect is responsible that future products will incorporate visions of the future made

by market forecasts.

The business unit Interventional X-ray has several organisational units, for example:

innovation, R&D, marketing, customer service, etc. The organisation where the FEC

is developed is part of the Research & Development (R&D) organisation. Figure 5

shows that the R&D organisation consists of a matrix. On one axis there are

Component Development Groups (CDG), which are headed by Component

Development Managers (CDM), and on the other axis there are the departments.

22 Software Development Organisation | Improving Software Development

Figure 5, Matrix Organization

In Figure 6, the matrix organisation is mapped onto the hardware decomposition of

Allura. In the following subsections, we give a description of the CDGs and

departments relevant for this research.

Figure 6, Front-End Organisation

3.1.1 Component Development Groups

The Allura device consists of several component, such as FEC, Positioning, BE, and

IP. These are explained in a previous chapter about the Allura’s decomposition, but

there are also other components.

The component development group FEC is responsible for the generation of the x-ray

pictures. Making x-ray pictures involves the hardware to generate an x-ray beam and

to acquire the residual x-rays which will be turned into a picture. The component

development group FEC’s task is to build and maintain software that manages and

controls the devices. Additionally, the component development group FEC’s task is to

build and maintain the devices required to make the x-ray pictures. As can be seen in

Figure 6, these devices are: Generator & Tube and Image Detector.

The component development group Positioning is responsible for positioning the

patient with respect to the x-ray beam in a proper way to acquire pictures from the

exact location needed. As depicted in Figure 6, the task of CDG Positioning is to

build and maintain the devices Patient Support, Stand, and Collimator. These devices

also incorporate software.

To accomplish its objectives, a component development group gets its needed

resources, in terms of personnel, from the departments.

23 Software Development Organisation | Improving Software Development

3.1.2 Departments

The R&D organisation consists of several departments. The departments are grouped

by discipline. Examples of departments are SW-Front End (SW-FE), Project

Management, System Design, and Integration & Verification. The software

department (SW) is split into several departments. SW-Front End is the software

department that, for example, provides resources for the component development

groups FEC and Positioning. The resources that can be provided by the department

SW-Front End are software architects, software designers, and software engineers.

Inherently, working with a matrix organisation implies that the work on existing or

new products will be done in projects. Projects can be used, for example, to develop a

new product or to upgrade an existing product. The component development

managers will initiate projects. Depending on the projects’ needs for the coming year,

the component development groups request the departments for resources on an

annual basis. For example, a number of software designers from the SW-Front End

department and a few testers from the Validation & Release department. The roles of

the software department front end are explained in Section 3.2.

Summarizing, the organisational component development group FEC and the

Positioning component development group will work on the technical FEC with

personnel from SW-FE. Every person working on the FEC has two managers: a

component development manager and a department manager.

3.2 Roles Involved

A software development organisation for creating and maintaining the FEC can

distinguish several roles for the different activities needed to develop software. We

concentrate on the roles involved in the creation and maintenance of the FEC, and

omit others such as certain management roles.

3.2.1 System Architect

The system architect develops a conceptual view on the system. This basic view

involves arranging the functionality into subsystems and to describe the relation

between those subsystems. This view is cross functional and will involve multiple

disciplines.

Among others, the system architect makes the conceptual view of the software

architecture. The software of a subsystem is not isolated. It should work and interact

with other software parts and with hardware devices; therefore negotiation about the

interfaces with other parts of the system is also part of the role. How the interface will

look like and what the responsibilities are have to be discussed by the software

architect and possibly others such as an architect or designer from the electronics

department. The activities of the system architect are done within a study. Studies are

explained in Section 3.3. After studies, projects start to implement the architecture.

Usually, the system architect will not be involved in the project activity but stays

technically responsible for the end result.

Every component development group has a system architect who is the owner of the

architecture and is technically responsible. This means that the architect should keep a

24 Software Development Organisation | Improving Software Development

long-term vision on how the product will evolve in the foreseeable future. The system

architect has to be sure that current work on the architecture will not undermine the

vision of the future.

3.2.2 Software Architect

The role of the software architect is to make a global design of the complete software

architecture of a subsystem or a part of the system. The software architect develops

the most high level, abstract, view of the software architecture. In this case a part of

the whole software architecture is done by a software architect. The other parts of the

architecture have their own software architects.

3.2.3 Software Designer

When the software architect has decomposed the system into units, and has defined

the responsibilities of these units and how they should interact with each other, then

for every module a detailed design is made by the software designer. Such a detailed

design can be seen as a refinement of the conceptual view made by the software

architect. The refinement will decompose a unit into even smaller entities called

modules, which describe more details. When it is not feasible to decompose the

entities further, then these modules need to be implemented by the software engineer.

3.2.4 Software Engineer

The software engineer implements the unit, or a part of the unit, made by the software

designer. The activity starts by making the units that build the unit. The software

engineer is responsible to test the modules with so-called module tests. In practice, the

software designer and software engineering role are often combined. Hence, one

person can have multiple roles.

3.2.5 Project Leader

A project consists of a group of persons that should accomplish a certain objective.

The activities of the software designer and software engineer are done in a project.

Project objectives are short-term objectives. In contrast, the system architect should

keep the long-term objectives to mind. The project leader’s main responsibility is the

on-time delivery of the planned work. The estimates on how long it should

approximately take to build or change an architectural module come from the system

architect and software architects.

3.3 The Development Process and Method

This section roughly describes the development process. Before a project starts, an

advanced development study is done to prepare the start of the project. For example,

the work to design the new reference architecture is done in a study, but the actual

building of the new architecture will be done as project work.

The business unit has a generic meta process model for developing components. The

generic process model is used by all disciplines. The software discipline has mapped

the V-model as a reference to guide the process on the business unit’s generic process

25 Software Development Organisation | Improving Software Development

model. The V-model defines some clear phases, see Figure 7. For every phase on the

left side of the V there is an associated test activity on the right side of the V.

Figure 7, V-Model

During a study, the global design of the newly or adapted system is developed. The

system architect builds a conceptual view of the whole system including all

disciplines necessary. For a software architecture, the system architect and software

architects refine the conceptual view further into units. This is the global design and it

describes the responsibilities per unit. At the end of a study, the system architect

together with the software architects make a work breakdown estimate for the work

necessary to implement the global design. After the work of the study is finished, the

project can start.

The software designers first make per unit a detailed design. Later the software

designer or software engineer implements the unit and creates tests for testing the

unit. When the unit is implemented, the unit tests are used to test it. The integration

and Integration testing of the units is done by persons of the Integration &

Verification department during the test & integration phase. Verification is very

important for medical products because the products have to comply with all kinds of

standards such as that of the Food and Drug Administration (FDA) from the United

States.

For the FEC, the phases Architectural design, Unit design, Coding, Module testing,

and Unit testing of Figure 7 will be done by SW-FE staff. Currently, the Object

Oriented Analysis and Design (OOAD) method is used to make the designs. Object

oriented designs are described by means of Unified Modelling Language (UML). The

implementation of the source code of a unit is done with the object oriented

programming language C++.

In the remainder of this thesis, we distinguish the following three major phases: global

design, detailed design, and test & integration. In Figure 8, we have depicted the three

major phases into the V-model.

26 Software Development Organisation | Improving Software Development

Figure 8, V-Model (Three Phases)

The system and software architects are responsible for the global design, and the

software designers and software engineers are responsible for the detailed design. Test

& integration is done by staff of the Integration & Validation department.

I Concluding Remarks

An important aspect of the transition situation is the current state of the organisation

that will incorporate the new technology. Therefore, Part I of the thesis sketched the

global outline of the organisation while answering the question: What is the state of

the organisation that will incorporate the new technology?

The business unit Interventional X-ray has a generic process model used for all

development activities, regardless of the engineering discipline. Hence, mechanical

engineering, electrical engineering and software engineering all use the same meta

process model. The software development organisation currently uses the V-model

which fits into the generic process model. In this thesis, we distinguish the following

three main phases: global design, detailed design, and test & integration.

Components of products are made in projects. For each project, the required persons

are claimed from the departments, which are organized by discipline. The software

departments can offer software architects, software designers, and software engineers.

These persons are trained and used to develop software with an Object Oriented

Analysis and Design (OOAD) method. Moreover, for the Front End component

considered in this thesis, the software is developed using the Object Oriented

programming language C++.

II What is the nature of the technology?

Part I described a global overview of the organisation, in which the new technology

should be infused. Besides the current state of the software organisation, the nature of

the technology is relevant for the transition situation. Not only organisations differ,

technologies are also different. Therefore, in Part II, we explore the nature of the new

technology.

Part II provides a global description of the new technology Analytic Software Design

(ASD). We also describe the Cleanroom methodology, because it provides an

historical perspective and methodological context. The aim is not to provide an in-

depth introduction into the technology; this can be found in user manuals and course

material. This part only describes the technology’s basics and the aspect of the

technology relevant to the transition situation.

31 Introduction to ASD | Improving Software Development

4. Introduction to ASD
Traditionally, in industry, software is specified and designed informally. The use of

natural language will result in ambiguous and unclear specifications. This leads to

errors which are usually removed during testing. This is fairly late in the software

development process. The earlier errors are eliminated, the lower the costs and the

more predictable, effective and efficient the software development process becomes.

In academia formal methods are usually applied to formally verify the correctness of

(“toy-”) programs or program fragments. However, this is a very time consuming

non-trivial task. The ASD method, from a company called Verum Consultants B.V.,

tries to bridge the gap between the formal methods from academia and the current

informal practices in industry. [4][5]

ASD is based on the process algebra CSP. CSP is a modelling language that can be

used to describe the behaviour of a system. Verum’s main contribution is the

development of a compositional approach and tool support to make it suitable for

industrial use. When a model has been built, properties of the model can be checked

such as absence of livelock, deadlock, and race conditions. In addition, the Verum

tool can be used to generate source code and tests from the models. The latter can be

used for testing handwritten source code. [2]

In Section 4.1, we provide a description of ASD’s main concepts, and in Section 4.2

we describe the properties that the model checker verifies. For more details about

ASD, we refer to the user manual [27] and the course material [28]. This material was

also used to write this chapter.

4.1 The Technology

This section provides a description of ASD’s main concepts. The objective of the

description is to provide a global overview of the technology. We use a digital camera

example to illustrate the basic concepts of ASD. It is used because of the similarity

with the Allura product. As shown in Figure 9, the camera consists of three groups of

buttons that the user can push: Power, MainMenu, and ChooseTheme. Furthermore,

the camera has the ReturnAction group of events which are used to inform the user.

The camera uses the interfaces of four devices: Aperture, Film Speed, Shutter Speed,

and Battery.

32 Introduction to ASD | Improving Software Development

The settings of the devices are different for each theme. According to the application

theme, the configuration settings are loaded to the devices. Of course, a digital camera

does not have a film but the film speed device sets the sensitivity of the acquisition

element. This has a similar effect as changing the film speed of an analogue camera.

The aperture device of a camera controls the amount of light that reaches the

acquisition element. When making a photo, the shutters open and light falls on the

acquisition element.

4.1.1 Components

ASD is component-based which means that a design consists of components. Figure

10 depicts five components. Each component consists of an implemented interface

(ellipse) and a design (box).

Figure 10, Components of Camera

Figure 9, Camera

33 Introduction to ASD | Improving Software Development

In ASD the interface and the design are described in different models. A design model

implements an implemented interface and uses used interfaces. The Camera (Design)

implements the ICamera interface and uses the interfaces IAperture, IFilmSpeed,

IShutterSpeed, and IBattery.

ASD can only describe control-based behaviour. To describe non-control-based

behaviour, foreign components can be used. Additionally, foreign components can be

used to glue ASD code to the rest of a system. A foreign component is handwritten

code which conforms to an ASD interface model. For instance, some of the dashed-

lined boxes in Figure 10 might be implemented as foreign components.

4.1.2 Decomposition

The used interface of one design model can be the implemented interface of another

design model. Figure 11 is an extended version of Figure 10 which illustrates the

decomposition of the camera example. The IServo’s are added interfaces. The

Aperture design implements the IAperture implemented interface and uses the

IServo’s used interfaces.

Figure 11, Decomposition of Camera

The ASD tool contains a model checker which can be used to verify that an

implementation conforms to the specification. The specification refers to an

implemented interface and the implementation refers to the composition of a design

and its used interfaces. The composition of the implementation is depicted by the blue

and red ellipses in Figure 11. ASD verifies a system in a compositional way. Recall

that a used interface of one design can be the implemented interface of another

design. For example, the model checker can be used to verify if the Camera design

and its used interfaces IFilmSpeed, IAperture, IShutterSpeed and IBattery are

conform the ICamera interface. Independently, the model checker can be used to

verify if the Aperture design and its IServo used interfaces are conform the IAperture

34 Introduction to ASD | Improving Software Development

interface. Verifying a system in a compositional way makes model checking scalable.

More details of the model checker are described in Section 4.2.

4.1.3 Communication

ASD is used to describe control-based behaviour in terms of function calls and

callbacks. In an architecture, calls travel top-down and callbacks travel bottom-up as

depicted by Figure 12.

Figure 12, Communication

The Servo component acts as a server for client component Aperture. A call

represents synchronous communication that travels top-down. A call is invoked on a

server by a client. After completion, a call may provide the client with a return value.

This communication is called synchronous because the client waits until the server

has completed processing the call. During the waiting period, the client is unable to

process requests in its server role for its clients. Figure 13 depicts synchronous

communication.

A callback represents asynchronous communication that travels bottom-up. A

callback is a communication from a server to a client. Received callbacks are

decoupled at the client side by placing them into a First-In-First-Out (FIFO) queue.

To prevent the queue from overflowing and to avoid race-conditions, the queue is

always emptied before new calls on the implemented interface can be processed.

35 Introduction to ASD | Improving Software Development

Figure 13, Call

Figure 14, Callback

A call has either a void or valued return. Depending on the perspective, client or

server, ASD terminology talks about responses and stimuli. A call may be invoked by

a response at the client side. At the server side, the call is viewed as a stimulus. After

the server has completed processing the call, it returns to the client. Optionally, a

return value may be returned; this is called a response on the server side and a

stimulus on the client side. Recall that actions are synchronous communication so the

client waits until the call returns with or without return value.

A server can asynchronously send a callback to the client. At the server side, the

callback is viewed as a response, whereas at the client side the callback is viewed as

an asynchronous stimulus.

4.1.4 Channels

In a component’s interface, it is possible to group related calls or callbacks into

channels. Per interface, multiple channels are allowed. A Client API consists of a set

of function calls. A Client CB consists of a set of callbacks.

Each Client API has a unique name and also all elements of a channel must have a

unique name. However, elements of one Client API may have the same name as an

element in another Client API. This also applies for Client CBs.

4.1.5 Sequence-Based Specification

As described before, each component consists of an interface model and a design

model. A model describes the relation between stimuli and responses in a tabular

form called a Sequence-Based Specification (SBS). A complete Sequence-Based

Specification describes for all stimuli what its corresponding responses are and what

the next state is. A SBS begins at the start state. If a stimulus is applied responses are

instantiated and the state is changed to the next state. Figure 15 shows an example of

the SBS of an interface model and Figure 16 represents the SBS as a Finite State

Machine (FSM).

36 Introduction to ASD | Improving Software Development

Figure 15, IAperture Interface Model (SBS)

Figure 16, SBS as FSM

The most elementary columns of a Sequence-Based Specification are Channel,

Stimulus event, Response, and Next state. The example SBS has one channel called

Settings which consists of the three Stimulus events: Large, Default, and Small.

Settings is a Client API and therefore Large, Default, and Small are calls. NullRet is a

void return explained in the next subsection and the Next state defines the transition to

the next state. Lines 1, 6, and 11 define the state names Default, Large, Small which –

in this case - have the same names as the Stimuli events. Lines 3-5, 8-10, and 13-15

are called rules.

The SBS of a component’s design model relates the implemented interface to the used

interfaces. The camera design of Figure 18 relates the implemented interface of

Figure 17 with the used interface of Figure 15 and the other used interfaces mentioned

before. The ReturnAction channel will be explained in Subsection 4.1.8.

Figure 17, ICamera Interface Model Snapshot

Figure 18, Camera Design Model Snapshot

Line 63 of the implemented interface describes that when a Stimulus event Landscape

is invoked, the Next state is Change. On line 136, the design invokes as a response -

37 Introduction to ASD | Improving Software Development

among others - the call Small on the used interface and goes to the Change state via

the WaitForShutterReady state. Subsection 4.1.8 explains why the Next state after the

Stimulus event Landscape is WaitForShutterReady and not Change.

Line 136 of Figure 18 depicts that a call Aperture:Settings.Small, which is a response

on the server side and a stimulus on the client side (lines 5, 10 and 15 of Figure 15).

4.1.6 Responses

Remember that calls can have either void or valued return. A call in a SBS can have a

void return which is presented by a NullRet Response (Figure 15). In case of a valued

return, in the Client API defines the values that can be returned.

Figure 19 shows a snapshot of the IBattery interface model. The model describes that

if in the state BatteryOff a call BatteryOn is invoked, the return value indicates

whether the battery is full or empty. Line 3 describes that if a BatteryOn call is

provided, the response may be Battery_Full and the next state is BatteryOn. Likewise,

line 4 describes that if a BatteryOn call is provided, the response may be

Battery_Empty and the next state is BatteryOff. Hence, in the interface model the

result of the call BatteryOn is non-deterministic. As described, the return values

Battery_Full and Battery_Empty are defined the Client API.

In Figure 20, the camera design model invokes BatteryOn when PowerOn is invoked

and the Next state is CheckBattery (line 11). On lines 34 and 35, the Battery_Full and

Battery_Empty call return values are responses of the IBattery interface and stimuli to

the camera design.

Figure 19, IBattery Interface Model Snapshot

Figure 20, Camera Design Model Snapshot

We have described void and valued returns of actions; however, there are more

response possibilities. A response can indicate that a call is:

1. Not allowed, by the keyword Illegal. In Figure 19, line 5 describes that in state

BatteryOff the Stimulus event BatterOff is not allowed.

2. Blocked, this is indicated by the keyword Blocked. When blocked should be

used, is explained in Subsection 4.1.8.

3. Null, meaning that no response is given.

In the ASD tool rules with an illegal or blocked response can be hided to condense the

tabular view.

38 Introduction to ASD | Improving Software Development

4.1.7 State variable

To reduce the number of states, state variables can be used. If two states do more or

less the same or are in another way related, they can be combined into one state by

means of state variables. State variables are defined by a name and an initial value. In

a state, for one stimulus multiple rules can be created with a different predicate. The

predicate is a Boolean expression containing state variables. In the state update part of

a rule, the value of a state variable can be updated. In Figure 20, a snapshot of a SBS

with a Boolean state variable enteredInActive is shown. As an example, we explain

line 19. If in the state InActive, enteredInActive is false, and a Stimulus event

checkForEmptyOff is invoked, then a void return is given, enteredInActive is updated

to true, and the next state is also InActive. Note that the Illegal and Blocked responses

are hidden.

4.1.8 Durative vs. Non-Durative

In Section 4.1.3, we have explained that calls are synchronous and that clients wait

while a call is processed by the server. When the server has completed processing, the

client is released by a void or valued return of the call. This communication scheme is

called non-durative.

The durative communication scheme is used to release the client before the processing

of a call is completed. When the server has completed processing the call, the client is

notified by the server with a callback. Figure 21 is the IShutterSpeed interface model.

Setting the shutter speed takes time. Figure 18 shows a snapshot of a design that uses

IShutterSpeed as used interface.

Figure 21, IShutterSpeed Interface Model

IShutterSpeed has Client CB channel Return with a callback response Ready. The

Ready callback is used to notify the client that the shutter speed is set. When the user

of the camera changes the application theme of the camera into Action mode (line 135

of Figure 18), the configuration of the devices shutter speed, film speed, and aperture

is set and the state is changed to WaitForShutterReady. In the state

WaitForShutterReady all Stimuli events except Ready are blocked. When the Ready

callback is received, the Next state is Change (line 168 of Figure 18).

39 Introduction to ASD | Improving Software Development

4.1.9 Solicited vs. Unsolicited

Callbacks can either be solicited or unsolicited. The callback that is sent in a durative

communication scheme is solicited. The word “solicited” indicates that the client who

invokes a call expects a callback when a durative action has been finished.

A callback can be unsolicited, meaning that it can be received at a random moment in

time. If a component can receive unsolicited events, the design model has to define

for each state what to do when such a callback is received.

4.1.10 Modelling Event

A modelling event is used in an interface specification to model an internal event,

such as a callback sent by a foreign component. A modelling event may or may not

happen, and may happen once or multiple times. Hence, such an event is unsolicited.

Figure 22 shows the IBattery interface model. Note that Illegal and Blocked responses

are hidden.

Figure 22, IBattery Interface Model

Line 22 describes a modelling event that notifies the camera when the battery is

empty. Because a modelling event may happen multiple times, a state variable is used

to send only one notification.

4.1.11 Sub-State

To manage the complexity of a design model ASD provides the possibility to use sub-

states. The main state can change control to a sub-state which can implement partial

behaviour. The sub-state gives control back to the main state when finished with its

job. For more explanation about the described ASD concepts, we refer to the user

manuals and course material. [27][28].

4.2 Model Checking

Model checking can be used to provide evidence about the correctness of a design.

The model checker verifies whether certain properties hold for the design. When the

property does not hold, the sequence of stimuli with leads to the failure is provided so

that the failure can be analysed and solved. In the remainder of this section, we call a

sequence of stimuli a trace. Figure 23 presents the model checker’s output for the

camera design which satisfies all properties.

40 Introduction to ASD | Improving Software Development

Subsection 4.2.1 describes line eight of Figure 23, which checks whether the design is

deadlock free. Subsection 4.2.2 describes the first five lines and the line nine,

concerning livelock freedom. Subsection 4.2.3 describes line six which checks

whether the design is deterministic. Subsection 4.2.4 describes line seven. Line ten is

described by Subsection 4.2.5 about failures refinement. Finally, Subsection 4.2.6

describes the last line of the model checker about failures-divergences refinement.

The explanations come from the model checkers manual [9] and [13].

4.2.1 Deadlock

The deadlock verifies whether there is a state in which no new call is possible. If such

a state is present, then the model checker will give a trace leading to the deadlock. In

the Figure 24 a state machine is depicted that will lead to deadlock after the first

transition from state S0 to S1. Once in S1 it can never do a new call.

4.2.2 Livelock

A model has a so-called livelock if there is a trace from which there is an infinite loop

of internal actions that lock up the process. Hence, after this trace external actions are

impossible.

Figure 23, Model Checker

Figure 24, Deadlock

41 Introduction to ASD | Improving Software Development

Figure 25, Livelock

In Figure 25, Input.In is an external call. The external call can become blocked by the

modelling event INT.event which might lead to an infinite loop of internal events.

Then, the system will no longer respond to external actions.

4.2.3 Deterministic

The model checker will verify whether a design model is deterministic. Deterministic

means that, after a trace, at most one transition can be taken when a certain stimulus is

provided to the system. In Figure 26, it is possible to take two different transitions.

The first possibility is that the response Output.Out0 is given when Input.In is applied.

The second possibility is that the response Output.Out1 is given when Input.In is

applied.

Figure 26, Deterministic

4.2.4 Illegal and Full Queue

For the “Illegal” property, shown on line seven of Figure 23, the model checker

verifies whether the design calls the used interface correctly. Figure 27 is an example

of a used interface with two states. S0 is the initial state. When applying an “On” on

the interface of Figure 27, a transition to S1 will be made. From S1 there can only be

made a transition to S0 when “Off” is applied on the interface. Hence, in state S1

“On” is an illegal call. Figure 28 and Figure 29 are the interface and design of a

component that uses the used interface in Figure 27. In Figure 29, the design applies

two sequential “On” actions on the used interface which is not allowed by the used

interface description and therefore this property does not hold.

42 Introduction to ASD | Improving Software Development

Figure 27, Used

Interface

Figure 28,

Interface

Figure 29, Design

For the “QUEUE_FULL” part of the property, the model checker verifies whether the

design allows the queue to become full. In Figure 30, an example with the use of a

modelling event is given. The used interface can always generate a callback event

Out.Output. When the queue is not emptied fast enough, the queue is full.

Figure 30, Used Interface

Figure 31, Interface

Figure 32, Design

4.2.5 Failures Refinement

Failures Refinement or “Specification [F= Implementation” in the picture of the

model checker, verifies if the implementation only has specified behaviour. Note that

the specification refers to the implemented interface and that the implementation

refers to the design and its used interfaces, see the ellipses of Figure 11. The specified

behaviour expresses that no other actions than those specified are allowed by the

caller and only the specified output than is given.

43 Introduction to ASD | Improving Software Development

Whether the implementation only has the specified behaviour is verified by two

checks:

o the traces of the implementation are a subset of the specification, and

o the failures (i.e., the refused calls) of the implementation are a subset of those

of the specification.

Figure 33 and Figure 34 are an implementation and specification, respectively, for

which the traces of the implementation are not a subset of the specification. The

implementation has a trace with Ouput.Out1 while the specification does not. Failures

are actions that refused after a trace. Figure 35 and Figure 36 are an implementation

and specification respectively for which the failures of the implementation are not a

subset of the specification. The implementation has the trace Input.In followed by

Output.Out0 after which Output.Out1 is refused while the specification does not has

this trace.

Figure 33, Implementation

Figure 34, Specification

Figure 35, Implementation

Figure 36, Specification

4.2.6 Failures-Divergences Refinement

“Specification [FD= Implementation” or failures-divergences refinement checks:

o failures refinement, and

o whether there is no trace leading to a livelock.

In Figure 37, is an example of state that produces a livelock. When the first call is

applied, the super-state machine and the sub-state machine will infinitely loop and no

external actions are accepted; this results in a livelock.

44 Introduction to ASD | Improving Software Development

Figure 37, Divergences

45 Cleanroom | Improving Software Development

5. Cleanroom
Whereas Chapter 4 described the main techniques of ASD and the tool support, this

chapter describes a process and method. ASD fits into Cleanroom Software

Engineering’s development process and method. The following references are used

Section 5.1 [18], Section 5.2 [20] and [24], and Section 5.3 [17].

5.1 The Characteristics

Cleanroom Software Engineering (CSE) is a software development method that, in

analogy with the semiconductor industry, will focus on error prevention. The

semiconductor industry makes integrated circuits. When making this hardware, the

focus of the development process lies in error prevention through engineering

discipline. The reason for the focus on error prevention is that it is very costly and

time consuming to build prototypes. Therefore, they want to be sure that all errors are

eliminated when the prototypes are built and thereby reducing development costs.

Because of this analogy with the semiconductor industry, the method is called

Cleanroom.

In fact, most engineering industries focus on error prevention whereas current

methods in software industry mainly concentrate on error removal. In the software

engineering industry, typically, the errors are removed in the last stage of

development during test & integration. The general idea is that in this final stage of

development, quality can be tested into the final product. However, errors identified

in this final stage are very costly to remove. Depending on the error, it is even

possible that at this stage it is necessary to change the architecture of the product

which will further increase cost and development time. Cleanroom concentrates on

error prevention to make the development process more predictable. The Cleanroom’s

philosophy is: why make erroneous code, if it is possible to make it right the first

time? Cleanroom has been developed in the late 1970s by Harlan Mills and colleagues

at IBM.

Cleanroom does not depend on tooling and is language independent; it has been used

for C, Ada, and object oriented languages. It can be used for all software types such as

control-based, algorithms, and data-centred. Legacy code can also be incorporated

into the CSE.

5.2 The Method

A functional specification is made with boxes which are obtained by a process of

stepwise refinement. This leads to a hierarchy of boxes which describe the needed

system behaviour. Figure 38 is an example of such a box structure.

46 Cleanroom | Improving Software Development

Figure 38, Box Structure

Cleanroom distinguishes three levels of data abstractions: Black Boxes (BB), State

Boxes (SB), and Clear Boxes (CB). The black box describes the intended external

behaviour the system should implement. The clear boxes are at the lowest level of

abstraction describing structured programming constructs. While the state boxes are

used as an intermediate step from external behaviour to programming constructs.

State box specifications are a refinement of a black box specification, because both

are specified formally state box specifications can formally be verified against its

black box specification to ensure that the behaviour conforms to the specification.

Similarly, clear box specifications can be formally verified against the specification of

its corresponding state box specification.

A black box describes system or partial system behaviour in terms of stimuli and

responses.

BB: S* -> R

S is a sequence of successive stimuli that are transformed by function BB into an

observerable response R. A black box can be refined into new black boxes. The

refinement builds a tree structured hierarchy of black boxes. This function can be

given in a formal or informal language, or a mixture of both.

A state box refines a black box by adding a state machine; states are used to

remember the history of previous applied stimuli. The state machine will take a

transition from the current state to the next state when an allowed stimulus is applied.

During this transition it may invoke a response, possibly a stimulus of another state

box.

SB: S* x T* -> R x T

T represents the internal state of a box which is in fact an internal black box inside the

state box. A state box can be further refined into clear boxes. For clear boxes

structured programming constructs are used. Making clear boxes is done in the design

activity.

The CSE approach scales because how large a system is, the top-level clear box will

only be verified against its invoked clear boxes. The invoked clear boxes can

represent large subsystems, but for the verification this does not matter. The

47 Cleanroom | Improving Software Development

verification will be recursively done until the clear boxes at the bottom of the

hierarchy are verified. Also, the top-level clear box must be a refinement of its calling

state box. Next this state box must be a refinement of its calling black box. This black

box must be a refinement of its calling black box, etc.

To obtain a structure such as that of Figure 38, an 11-step box-structure process is

described by [20]. For more detailed information, we refer to this paper.

Define the black box

1. Define black-box stimuli

Determine all possible stimuli for the black box.

2. Define black-box behaviour

For each possible stimulus, determine its complete response in terms of its

stimulus history.

Design the state box

3. Discover state data requirements

For each response to be calculated, encapsulate its stimulus history into a

state data discontinuity without a lot of engineering requirement.

4. Define the state

Select a subset of the required state data items to encapsulate stimulus

histories.

5. Design the state box

For the selected state, determine the internal black box required for the

state box.

6. Verify the state box

Verify the correctness of the state box with respect to the required black-

box behavior.

Design the clear box

7. Discover state data accesses

For each item of state data and each possible stimulus, determine all

possible accesses of the item.

8. Define data abstractions

Organize state data into data abstractions for effective access.

9. Design the clear box

Define sequential or concurrent uses of the data abstractions defined to

replace the internal black box of the state box.

10. Verify the clear box

Verify the correctness of the clear box with respect to the state-box

behavior.

Continue the process

11. Repeat stepwise expansion until design completion

For each new data abstraction, repeat steps l-10 until suitable data and

program specifications are reached.

48 Cleanroom | Improving Software Development

5.3 The Process

In this section, the CSE process, as shown in Figure 39, is used to explain the

technology. The process can be described by the following activities: specification,

incremental planning, box structure specification and design, usage modelling and test

case generation, and statistical testing. These activities are explained in the following

subsections.

Figure 39, The CSE Process [17]

5.3.1 Specification

The Cleanroom process starts with a specification activity. During the specification

activity, the system is decomposed into black boxes, see Figure 38.

Depending on the size of the project this is done by a separate team, or this is done by

the development team and the certification team. Two specifications are made: a

functional specification and a usage specification. The functional specification

describes the external behaviour of a system or subsystem. The usage specification is

used by the certification team, and defines usage scenarios and the probability of these

scenarios for test case generation.

5.3.2 Incremental Planning

From a historical perspective, the idea of incremental development was radically new.

Today most software methodologies advocate incremental development. Based on the

specification of the external needed behaviour of a system, an incremental

development plan is made. The plan describes the schedule, the resources, and what

should be in each increment. In Cleanroom, the needed system behaviour is

49 Cleanroom | Improving Software Development

implemented top-down; consequently, for the first increment(s) stubs are made in

order to be able to execute the source code. These stubs are replaced by later

increments until all behaviour has been implemented. Figure 40 and Figure 41 are

examples of the incremental implementation of a system by stubbing. The figures also

show (with the A) that it is possible that clear boxes can be reused at different leaves

of the tree.

Figure 40, First Increment

Figure 41, Second Increment

Each increment is integrated and tested. For feedback, the result of each increment is

shown to the customer to validate requirements and behaviour. This feedback can be

incorporated in subsequent increments, as can be seen in Figure 39.

5.3.3 Design

During specification the black boxes are made. Figure 38 shows that then the state

and clear boxes need to be created. This is done during the design activity. First the

state boxes and then the clear boxes are refined into elementary boxes by the

development team. The idea behind this refinement is that these small, elementary

clear boxes can easily be formally or informally verified by a proof. The correctness

verification checks if the derived function of a clear box is equal to the intended

function. The verification is done by the complete software team in the form of team

reviews. All team members should agree that a certain proof is correct. Therefore,

most present faults will not be spotted during the verification activity.

Figure 38 illustrates how a box structure developed with Cleanroom Software

Engineering could look like. The final box structure is developed during the

specification and design activities. Figure 42 illustrates which part of the box structure

of Figure 38 is developed during the specification activity and design activity.

50 Cleanroom | Improving Software Development

Figure 42, Box Structure during Specification and Design

5.3.4 Test Case Generation

While the development team develops the source code, concurrently the certification

team develops usage scenarios from the usage specification. The usage scenarios and

the probability of these scenarios are used to generate test cases. When generating test

cases, the focus on external behaviour of the system for a certain increment. This

concerns the behaviour of how the user of the system will experience interaction with

the system.

5.3.5 Statistical Testing

The development team will not execute the source code. This is done for the first time

by the certification team. Every increment, the certification team will integrate the

developed system and run the test cases against the system. From the tested behaviour

of the system, it is possible to statistically say something about the quality of the

whole system. If it is not the last increment, this information is used for subsequent

increments.

5.4 Drawbacks of Cleanroom

According to [12] there are three reasons why Cleanroom is not widely adopted by the

industry: it “is too theoretical, too mathematical, and too radical”. Traditionally,

software is developed with software engineers that test their own source code with

unit testing. Instead of unit tests, Cleanroom advocates that correctness verification

and statistical quality control should be used. These two activities are radically

different than how software is developed traditionally.

II Concluding Remarks

Part II provided an answer to the question: What is the nature of the technology?

Below are the part’s concluding remarks.

Verum’s Analytic Software Design (ASD) is a new tool that can be used for designing

control-based software in a component-based way. In ASD, a system is specified in a

Sequence-Based Specification (SBS), which is a large table. The table describes for

all states of the system how it should respond to all possible stimuli. A complete

design specification can be verified formally. The Sequence-Based Specification can

be used to generate source code. The source code can then be integrated into the final

product. As said before, the tool is relatively new and therefore, during the research,

new releases have further matured ASD.

The literature indicates that ASD is related to Cleanroom Software Engineering

(CSE). Specifically, the component-based aspect of ASD originates from CSE. CSE

has been developed in the late 1970s by IBM and describes the process and method

that could be used to develop high quality software. The philosophy of CSE is error

prevention instead of error removal during the test & integration phase of the software

development process. The error prevention of CSE is accomplished by formally

verifying designs by hand.

CSE is not widely used in the software industry because formal verification had to be

done by hand. Verum's ASD tool eliminates this drawback by hiding the theoretical

and mathematical processing. The user of the ASD tool is not bothered too much with

the formal foundations the tool relies on.

Part III describes the ultimate goal of introducing and using the new technology in the

organisation described by Part I.

III What is the ultimate goal for acquiring and using
the technology?

In Part I and Part II the context of the software development organisation and the new

technology are described. Part III explores the goal for acquiring and using the

technology. The objectives and expectations of the introduction of the technology and

the organisation’s knowledge about the technology are described in this part of the

thesis.

Part III investigates the following questions:

o What is the objective of introducing the new technology?

o What are the expectations of the new technology?

o What is the current knowledge of the managers and designers about the new

technology?

55 Expectations of ASD | Improving Software Development

6. Expectations of ASD
This chapter explores the expectations and objectives of introducing ASD into the

FEC. To acquire the expectations and objectives, interviews with managers and

software designers have been taken place. Additionally, the team’s first steps in

thinking about and applying ASD are observed. For both techniques [25] is used as

reference. As described in Section 1.3, the research took place during the preparation

phase of a pilot project; therefore, none of the interviewed software designers has

made production software with ASD at the time of interviewing. The software

designers are split into software designers responsible for the global design and

software designers responsible for the detailed design of Allura’s FEC because the

implications of ASD for both groups differ. For the interviews, question lists are made

for the designers (Appendix A) and managers (Appendix B). This chapter is a

summary of the results of the interviews and reflects the relevant thoughts and

opinions of the interviewees regarding their expectations about ASD.

6.1 Management

This section provides an overview of what management’s objectives for introducing

ASD are, their knowledge about ASD, what they expect from the introduction of ASD

for the software development organisation and the technology, and how they prepared

the transfer of technology. The business architect, component development manager,

and department manager have been interviewed; Chapter 3 provides a description of

these roles.

6.1.1 Objective

According to the managers, the software development process has become

increasingly expensive. As shown in Figure 43, the effort needed for test &

integration, drawn as a function of the time will look like an exponential curve.

Figure 43, Test & Integration Effort

ASD should bend the curve, as depicted in Figure 43, and bring the test & integration

time in proportion to the global design and detailed design effort.

Another driver for using ASD is composition (see Figure 45) instead of

decomposition (see Figure 44). Decomposition is an activity when one product is built

and decomposed in several subsystems. However, if multiple product variations can

make use of the same software architecture, one of many variations can be composed

56 Expectations of ASD | Improving Software Development

of existing subsystems. Hence, not every product needs its own software architecture

anymore. This will allow for maximal reuse of subsystems.

Figure 44, Decomposition of System

Figure 45, Composition of System

The business unit Interventional X-ray has numerous product variations and also

many products in the field that need bug fixes and upgrades. If the composition of

software is possible, only subsystems of the software can be updated or made that

should work flawlessly with other (existing) components. When using subsystems, the

interfaces between them are very important. ASD can be used to correctly describe

the control behaviour of the interfaces.

6.1.2 Knowledge

According to the managers, ASD is a mathematical method. A software designer

builds a model of the state behaviour of a component or subsystem with Verum’s

ASD tool. The model can then be tested on consistency and feasibility. From the

behaviour of this correct model, source code can be generated. Components with

clearly described interfaces can be used to compose products. ASD can clearly

describe interfaces and the behaviour of these interfaces. This will help build higher

quality software and there are less reparation cycles needed to acquire the needed

quality.

ASD helps to ask questions about the requirements in an early stage of development

instead of, as is current practice, in a later stage. This is less expensive then solving

problems at a later stage. Another benefit is that if an existing component or

subsystem needs to change, then only the design and not the source code needs to be

refactored. This means that over time the design remains maintainable. With the

current practice it is extremely difficult to let the design be or remain equivalent with

the source code. It is always a question what should and what should not be included

into the design document. Of course, the source code describes everything but the

design document describes the source code at a higher level of abstraction.

The consequences of ASD are:

o ASD forces software designers need to think in another paradigm.

o The software designers need to describe behaviour more explicit in ASD.

o The current practice of software development needs to be adapted to ASD.

o Certain design concepts which are currently used are unsupported by ASD.

6.1.3 Software Development Organisation

According to the managers, the software industry is searching for means to go as

quickly through the V-model as possible, so the software can be tested. Going quickly

through the V-model is the currently used alternative of ASD. Software organisations

57 Expectations of ASD | Improving Software Development

are searching for methods where software can be composed into testable parts. Today,

one can only test software when it is coded. Designing software is done on paper.

When a design document is finished, the design document can be checked with a

review. However, there are no support tools to check a design more formally.

Additionally, it is impossible to know if the design is consistent and conforms to the

requirements. The managers think that with ASD the organisation no longer need to

spent resources on small or trivial software faults. With ASD, the organisation can

focus and spent resources on essential system challenges.

During the current software development practice about 50 to 60 percent of the state

behaviour is thought of by the designer and written down in a design document. The

other half of the state behaviour is incrementally developed during engineering. In

this phase, the software engineers need to make decisions for which the software

engineer cannot see the implications on a larger scale then for the involved module

the engineer is working on. It is difficult to predict what the impact and consequences

of such decision are. Consequently, it is challenging to keep a consistent architecture.

Today it is often the case that the behaviour of modules or subsystems is unintended

or inconsistent with other parts of the system. All kinds of introduced race conditions

and erroneous behaviour make that a lot of time is needed to find and restore the

faults, especially with complex behaviour. ASD should solve this. ASD should help

identify such issues in the design phase. One could say that with ASD, the behaviour

that has been specified is the behaviour one gets. The generated source code is

correct. Consequently, ASD is a method to manage complexity resulting in software

with a better quality. As stated before, the design phases will take longer while the

test & integration phase will take less time. The prediction is that during integration

fewer faults will be found and also the validation on system level will reveal fewer

faults which results in fewer Problem Reports (PRs).

Management thinks that in the future they need software designers that can think

more abstractly and do not want to start coding immediately. This is in contrast with

the current pragmatic approach many designers take. There will be a shift to more

abstract and out-of-the-box thinking which should be challenged and supported by the

organisation. When this is done, applying ASD is relatively easy. In the future the

ASD tool will be used more frequently. All important control interfaces will be

modelled by ASD. The future population of the software departments will change;

there are more architects and designers needed and less engineers. However, this

process will go gradually. For a very long period, if not forever, legacy or current

code will be used which is not generated by ASD for data handling.

The managers have prior experience with changing processes but despite their

experience they had expected it to be more smoothly. One of the managers said:

“Changes in software development are difficult, but this is hard.” The different pilots

and projects with ASD are a process of learning by doing. From its experience,

management has seen that if you invest in an ASD team you see that it works. For a

number of people this becomes a pleasant surprise. First they are sceptical but later

when working with ASD they see that it works. Management is convinced that if they

proceed and more and more groups are adopting ASD and share knowledge, then at a

certain moment this will be enough to cross the critical mass. People will then think it

is naturally, but there is a long way to go.

58 Expectations of ASD | Improving Software Development

The expectations about ASD are based on pilot projects at, for example, BE. In small

scale projects the managers have seen that the biggest advocate of ASD will become

the project leader. When using ASD the relationships between the development

phases shift. Requirement & global design takes more time, detailed design stays the

same, and the test & integration takes less time.

Management has experienced that many software designers are unsure that the

software development process becomes more effective with ASD. However, the

software designers do think that there are fewer faults present in the source code. The

managers have noticed that most designers expect little from ASD. The managers are

unsure why they are unable to capture the big picture. Management has told designers

the expectations they have about ASD on previous pilots, but management does not

get the feedback from the designers that they agree with the benefits. The managers

think that the designers need to get used to the idea.

6.1.4 Technology

There are some frequently used design concepts which are not (yet) supported by

ASD. Despite the solved tool problems, management observes that it is very difficult

to get started with the ASD tools. This is because the developers have to think in

another paradigm to make a design. When designing a component in ASD the

designer must have a complete idea about the component before the ASD tool can be

used. The way that problems are made explicit changes radically. A software designer

has to learn something new. The pilots learn that for most software designers this not

a problem, but for some this is undoable. Additionally, the interface of the ASD tool

could be improved.

6.1.5 Technology Transfer

The preparation to make the transition to ASD has gone stepwise. On the management

level this has been done by the business architect. During the past three years

management, together with Verum, has organized extra information days and courses.

This includes refreshment courses because the tool has changed a lot during the past

three years. Additionally, there have been user information days which are used to

exchange experiences with other companies.

At the moment of writing this thesis, the organisation regarding the FEC team is in the

preparation phase for making the transition to ASD. People are sent to the ASD

course. At the same moment, there is an activity to build a new reference architecture

for which ASD will be applied. Next, the parts of the reference architecture that will

be made with ASD have to be chosen. Some parts of the architecture are suitable for

using ASD, others are unsuitable. ASD is a means, not a goal. The new reference

architecture is the goal and where it is useful ASD will be applied. The work on the

reference architecture is done by architects. Although, the introduction of ASD for the

designers and engineers has more consequences, also architects have to approach

problems in a different way. FEC is a stable group, people work there relatively long,

so ASD can be a major change for them.

Only a limited number of people are working on establishing the reference

architecture. The communication of the introduction of ASD to the rest of the SW-FE

people can be improved; they are not officially informed about ASD. Only a few talks

59 Expectations of ASD | Improving Software Development

have taken place. This is because, at this moment, management does not know the

implications of ASD. According to management the communication can be improved

by giving more talks about what ASD is and what its accomplishments are. These

should not be management talks, but talks by software designers. Management thinks

that this works better within the organisation and that peers are more open for each

other and should create critical mass. The critical mass should then pull the others

over the line. Management can inform the software designer about ASD’s benefits but

it would be better if peers make other peers enthusiastic. Therefore, there is a need for

an ASD core team that propagates the benefits, and understands and addresses the

difficulties. Furthermore, train people and give them assignments to work with ASD.

Let them learn how it works and guide them when necessary. Preferably with more

experienced people. People with more experience from prior projects can be assigned

to new projects with people with less or zero ASD experience. Management has to

think about the introduction for the large group. For example, with a key user group

that makes a presentation and training material. Management wants to build

knowledge about ASD. It is possible to hire Verum consultants for every new group

that makes the transition but building knowledge about ASD this way costs a lot of

money. So share the experiences there are within the organisation regarding ASD. Let

other software designers show where it can be used for, how it works, and where it is

infeasible.

Some managers expect that they will encounter difficulties with ASD during the first

years of the transition. They think it is a large change in terms of the required mindset

and the new practices. Every change brings a lot of resistance. This step is comparable

with the transition from C to Object Oriented and therefore asks a very big change.

People like to hold on to their old values. At first management has to talk and

convince. Later people start working with it.

6.2 Software Designers

The software designers are split into two groups: global designers, and detailed

designers. For the global design two software architects are interviewed and a system

architect. For the detailed design, software designers which also have the software

engineering role are interviewed.

This section contains three subsections; these are: common view, global designers,

and detailed designers. In the common view section, the shared view of the detailed

software designers and the global software designers is discussed.

6.2.1 Common View

6.2.1.1 Software Development Organisation

With the introduction of ASD, the software designers are forced to make complete

specifications in an early stage of the software development process. This will result

in a more efficient process because some faults can be found in an early stage and no

longer only at the test and integration phase.

The software designers see how the business unit Interventional X-ray invests in

ASD. So they think it is wise to go with this flow, and they think that there will be a

bright future for this methodology within the business unit. They expect that in a few

60 Expectations of ASD | Improving Software Development

years everybody will apply ASD. So if someone cannot, or will not use, ASD, he or

she has a problem.

6.2.1.2 Technology

The software designers expect that there is some learning curve before ASD can be

applied successfully. During the first steps of applying ASD, the software

development process will take longer because it is new. The design phase will take

longer than before but this time will be gained back during the implementation and

validation. When generating source code with ASD, the tip of the V-model

disappears. There will always be acceptation tests because the customer needs the see

what functionality is implemented.

All software designers think that the right method should be used to address a certain

problem. In other words, use different methods for different problems. Hence, use

ASD only for problems for which it is beneficial.

6.2.1.3 Technology Transfer

Most software designers have followed Verum’s ASD course. The general perception

is that the course is an introduction to the tool, but not to a method. Also, the timing

between following the course and using the tool in practice is something to take into

account. Both groups agree that this period should be at most one month because

otherwise the momentum is gone.

6.2.2 Global Designers

6.2.2.1 Software Development Organisation

The architects know something about the architectural units up to a certain level of

detail. They will decompose the system and assign the responsibilities for certain

functions or features to units. The architects will not build ASD models themselves.

The designer gets an assignment to build the detailed design of a unit, the architect

tells in the assignment what the architect expects from the unit in terms of dynamic

behaviour. When the designer has finished the interface description, the designer will

present it and the architect has the ability to comment on it.

Today, when making a global design, the requirements are used to design an interface

of a component on a certain level of abstraction. With ASD this is no longer possible

because the interface needs to be complete. Therefore, the architect needs to approach

an interface in a different way. The interface needs to be viewed from different angles

to make it complete. This will take more time than currently and it is something

people have to learn. ASD needs to be applied on interfaces which are control-based

and not on interfaces which are data-centred. Also, the benefits of ASD are unclear

for interfaces which are made once and which are not expected to be any change on

the interface for the lifespan of the reference architecture. However, for interfaces for

which it is expected that they will change frequently the benefits of ASD are clear.

Also, the benefits of describing interfaces with the environment of architecture are

clear. For example, some devices are made in other plants. Describing interfaces with

the environment can help to abstract from the used components. Furthermore, it helps

testing these components. What the suppliers of components do internally does not

matter for the FEC as long as they adhere to the interface.

61 Expectations of ASD | Improving Software Development

In the current global design practice the interfaces are not leading, the architectural

units are. The feeling is that this will shift with the introduction of ASD. The

architects think that they must shift their paradigm from decomposition to interfaces.

Every architectural unit, which can consist of multiple ASD components, has a

requirements document and design document but not its own designer. The allocation

of the units is done on the basis of experience, knowledge and availability. In the

current architecture some units are stable for 5 years, but others have to be modified

with every change. The same people have worked on these units, but currently there

have been some shifts in the allocation to distribute the knowledge about these units

among more persons. The organisation will always have some domain specialists and

some people know a lot about the system because they work on FEC for a long time.

ASD could make some units more accessible for others. The FEC group is a stable

group; most people work on it for a long time and know the difficulties with the

current architecture. With the new reference architecture it should be more

understandable and accessible for newcomers. Some information is burden; therefore,

there is always a balance between what should be documented and what not. The

global design contains the requirements and the overall design concepts. In some way

one has to make the translation from the overall concepts to the details of a unit.

6.2.2.2 Technology

Some of the architects have prior experience with formal methods in industry. These

formal methods failed because the specifications became too formal; therefore, they

could no longer be communicated with the customer and therefore could no longer be

validated with the requirements. This was a major problem at the time but this should

not be the case with ASD.

Currently, state machines are used but they are hidden in if-statements or case-

statements. In the future the notion of state machines will increase and all designers

will have a representation of a Sequence Based Specification (SBS) on their desks.

The interface description will give insight in the essence of the unit. So the

terminology will change. But on the conceptual level of abstraction the functionality

or interaction of the system will stay unchanged. Therefore, the work of the architects

will not change much.

Depending on how much of the reference architecture will be realized with ASD,

legacy or current code will become an issue. The legacy code will, for example, be

used to make calculations because in ASD it is impossible to do this. ASD generated

source code and legacy code will become intertwined; ASD generated code will

invoke functions of the legacy code. Normally, it will not be the case that a designer

will only do a part of a unit, for example, the part with ASD. It is possible that some

units are made without ASD. For the parts for which no code will be generated with

ASD, there should still be an interface model made. How far ASD will be integrated

into the architecture is currently unknown. It will depend on early experiences. Also,

some parts are non-control-based and ASD is therefore unable to cope with it. There

will always be large parts of the architecture solely consisting of handwritten source

code.

62 Expectations of ASD | Improving Software Development

Concluding, the architects do not think that ASD is the silver bullet that will solve all

the problems. The architects think they should be open for the change. They have seen

that with previous changes people raised a blockade. They want to try it at several

places in the architecture and use this experience to apply ASD where it is beneficial

and not apply ASD where this is not the case.

6.2.2.3 Technology Transfer

Persons with the architect role do not need to know all details; they can and need to

use experiences from others. For them it is impossible to know everything in the field.

Therefore, following the ASD course is not perceived as a necessity for this group.

They need to know the ASD’s concepts, but they do not have to use the tooling

themselves. However, they need to be able to read a SBS either in tabular or graphical

form in order to communicate with the software designers which make the detailed

designs. It should be possible to read a SBS without following the ASD course.

6.2.3 Detailed Designers

6.2.3.1 Software Development Organisation

ASD is a tool. The ideas have to come from the interaction with peers. The

development starts with an idea of what will be built and then a model of this idea is

made. Currently, this is done with UML and in the future with ASD. The main shift

when using ASD will be the reviewing of the model. With ASD, the reviewing will

only address if the model is conform the requirements while today reviewing also

addresses the consistency and correctness of the model.

Some designers think requirements engineering could be improved. They think it is

hazy and hope that ASD will solve this because the interfaces need to be complete.

Currently, interfaces are very generic, data-driven and stateless such that it is always

possible to make tiny adjustments. This is one of the reasons test & integration takes

relatively long, because the tiny adjustments could break interaction between

architectural units. With ASD, the consequences of tiny adjustments of the interface

can be checked automatically by means of the model checker. This is considered as a

benefit of ASD.

Currently, the specifications are regarded to be brief. This is caused by postponing

choices and decisions until the engineering phase which results into an unclear design

document. With ASD the designer is forced to make a 100 percent clear and complete

specification of the control behaviour. There will no longer be a discrepancy between

an implementation and a design. The assurance of knowledge is considered the

biggest plus of using ASD. The design phase will take longer but the lost time will be

gained back during the test & integration phase. Test & integration is considered to be

a major problem, especially for units which depend on lots of other units. Regression

testing is used to see of changes in a unit does not break other units. If it does break,

then it is a Problem Report, PR. These faults make the development process

unpredictable because it is unknown what will be encountered. If ASD is used,

changes on a unit will not break other units. Therefore, the process becomes more

predictable and there will be far less PRs regarding test & integration. However, the

software designers expect that there will always be a lot of PRs in the legacy code.

Less PRs will be very welcome because PRs are experienced as very unpleasant to

solve especially when the next project is already started. A large group of PRs can be

63 Expectations of ASD | Improving Software Development

prevented by using ASD between the interfaces of units. Of course, ASD will not

avoid all PRs.

Whether the interaction with peers will change, depends on the portion of the

architecture that will be done in ASD. When a large part of the architecture will be

done in ASD, peers will no longer talk about the source code but about the ASD

model. It will also depend on where peers are comfortable with; some will rather talk

about source code and others about ASD models. Some source code will be generated

by the ASD tool; sometimes the generated code might be more readable than the

model itself. The design model is relatively abstract. There will be a separation

between designers that can cope with the abstract model and designers that unable to

do so. The introduction of ASD could improve the interaction between designers and

testers because there are lots of testers that make models of specifications. There

could be earlier discussions about testing. The tester can more quickly see where to

focus on while testing because the tester will get a formal ASD description.

The software designers have no idea how to communicate an ASD specification

(SBS) with their client. An SBS is not considered very readable. It is possible to make

a graphical representation of it, but they do not know if this is better.

A fear among the designers is that the organisation becomes too ASD-centric in the

sense that all problems can only be solved with ASD. They fear that this could limit

their creativity to choose for certain solutions. However, creativity will also be

determined by the possible solutions the ASD tool provides. A designer could think

that an ASD solution is too difficult and therefore decides to create a design without

ASD for a particular solution. If the designer presents the problem clearly enough, it

may be possible that a workaround will be proposed. Eventually, the use of ASD is a

decision of the CDG or software architect. When this proposed solution is not in the

current tooling, Verum can maybe adapt the tool. The ASD tool is in development and

it would be wise if Verum should listen to such change requests.

There will be resistance against the introduction of ASD. Resistance to the unknown,

because it is different from the current practices. People in this organisation are used

to work in a certain way for years and this will be a major change for them. The

software designers think they should start working with ASD and learn from there.

They also think that it should be used where it is beneficial, otherwise it should not be

used.

Often the designers get a new tool from the organisation, and need to learn how it

works themselves. For example, everybody uses the include structure of Rational

Rose in a different way. Some years ago there was a group responsible for how a tool

should be used within the organisation. Also, for example, how a C++ project file

should look like. In those days, there was a lot of standardisation which is now gone.

The designers would like to see standardisation of the use of ASD within the

organisation.

6.2.3.2 Technology

The interfacing between the ASD generated code and the legacy or current code is a

big question mark. It is impossible to rebuild a new architecture at once from scratch;

64 Expectations of ASD | Improving Software Development

therefore, at some point it has to interface with the legacy code. To combine the

activity of making a new architecture and introducing ASD is considered a good

combination because a new architecture implies large software changes. Everything

that is data-centred will be done with handwritten code, or maybe legacy code.

When using the model checker, the danger is that the software designer will hunt the

“green ticks” which are the pass or fail of certain properties. The danger of satisfying

the model checker is that the user solves problems that have nothing to do with

functionality. The software designer needs to be careful because the design can suffer

from it. The user of the tool is busy solving problems the tool finds but with solving

the problems the user could forget the original requirements. For example, deadlocks

can be checked when the user of the tool has a complete design; however, the

deadlock can already be introduced in the interface. The first question should be: are

the requirements for the interface correct? Then the user needs to iterate between the

interface and design. If the user hunts for green ticks, the requirements are erroneous.

Using ASD, the designer needs to think in a component-based way; this implies a

change. It does not matter if ASD looks like OO as long as it provides enough

possibilities to do the things needed to solve a problem.

Some basic things in the tool do not work. Very simple copy and pasting does not

work. It will help the satisfaction of the user using the tool if such basic things will be

fixed.

6.2.3.3 Technology Transfer

Before a software designer can start, the software designer has to be prepared by an

introduction to ASD. This can be done by following a course or reading some tutorial.

This material is considered to be essential for the acceptance of the tool. Most ASD

documentation is in the course material. However, it is possible that someone within

the organization has to start using ASD without following the course. For such

persons, a book describing ASD would be useful. Also, knowledge sharing within the

organisation should be used for teams that start working with ASD. Currently,

information is available on request basis.

The course is considered to be useful; however, there were some missing aspects. In

the course examples are used and modified. However, building a model from scratch

is not explained while this is perceived as very important. Some explanation about

design patterns is missing. According to the detailed designers, it would be a plus if

the course provide the theory behind the tool. The tool tries to shield the mathematical

foundation on which it is build, but some knowledge about the mathematical

foundation will be useful for understanding the output of the model checker. Without

this knowledge the output of the model checker is very hard to interpret. The model

checker is believed to be the hardest part of understanding ASD.

6.3 Observations

Besides interviews, the researcher also used participant observation to acquire data on

the pilot project’s preparations. Here a description of the most important observations.

65 Expectations of ASD | Improving Software Development

To interpret the interviews, one has to realise that the aim of the work on FEC has

changed during this research project. First, the assignment was to develop a new

reference architecture. Just before the research started, the assignment was changed to

include the use of ASD for describing the interfaces between the different software

units. Later, positive results became available of another pilot project. In this project,

complete designs were made by ASD and code has been generated. Because of these

positive results, the assignment for FEC has been changed to fully apply ASD

wherever possible, so including design and code generation. Therefore, in the

interviews described in the first two sections of this chapter the designers talk about

applying ASD on interfaces. At that time it was unknown that ASD should also be

applied on complete designs including code generation.

 According to Verum consultants, ASD can be used for every control-based design.

However, on several occasions problems with the application of ASD were

encountered. Designers had made a design and wanted to apply ASD to verify the

design. However, the tool did not support the intended design solution. The general

idea within the organisation was that Verum should adapt the tool in order to make it

possible to verify such designs. However, support for such designs does not fit into

the overall concept of ASD. By developing design solutions that are not supported by

the ASD tool, it is easy to point out the incapabilities of the tool.

Another observation is that at some point in time there were two teams. One team was

responsible for building a reference architecture. The architecture was built in a way

common to the members of the team. The second team was responsible for

developing new ASD design concepts such that the developed architecture by the

other team could be built by applying the extended version of ASD. Hence, a team

was responsible for developing concepts that should extend the ASD tool in order to

be able to build an architecture in the way that was common to build an architecture

within FEC.

III Concluding Remarks

We summarize the results of the interviews and observations which answer the

question: What is the ultimate goal of acquiring and using the technology?

The objective of introducing ASD is to improve software development. Currently, the

test & integration phase, compared with the other phases, takes too long and makes

the process difficult to manage. The quality of the software in products that leave the

factory is unprecedented but according to some of the interviewed persons the reason

for the long test & integration phase is the quality of the software which is supplied to

this phase. An important part of the problem is that independently developed software

units do not work together seamlessly.

The current approach to manage test & integration problems is to go quickly through

the V-model. In this way there is sooner something that can be tested, which gives

management the perception of control. By going fast through the V-model, the focus

is on testing the quality into the software during the test & integration phase.

As a new approach, management puts an effort into improving the software quality by

providing software designers with a new tool, namely ASD. The tool should be used

to make designs, but the introduction of a new tool is not the objective. By improving

the software quality, the test & integration phase should become shorter and thereby

improve the whole software development process.

The ASD tool can be applied for designing control-based software. Of course, not all

software is control-based. Additionally, not all software will be instantaneously made

with ASD. Hence, there will be large portions of handwritten legacy code during

migrating to the new reference architecture. However, the objective for improving the

software development also applies for the non-control-based software.

Everybody that has been interviewed and has followed the ASD course agrees that the

ASD course is an introduction to the ASD tool. During the course some prefabricated

models are adapted, but none of the developers has an idea on how to start building a

model. The required method to apply the tool is not addressed.

The perception of the software designers is that, a software architecture can be

designed in the way architects and designers are used to make designs. Hence, the

current practice does not need to be changed for applying ASD. When such a design

has been made, units can be chosen to apply ASD.

In Part IV, we further analyse the data from Part I, Part II, and Part III. This results in

a complete picture of the transition situation with all relevant aspects.

IV What are the steps to reach the desired goals given
the state of the organisation?

Given the previous parts, describing the current state of the organisation, the nature of

the technology, and the goal for using and acquiring the new technology, Part IV

describes how the software development process can be improved. The improvement

should lead to a reduction of the test & integration phase. Given the results of the

previous parts and the literature we formulate recommendations regarding the

transition to ASD.

71 Implications of Introducing ASD | Improving Software Development

7. Implications of Introducing ASD
In this chapter, we combine all the data of the previous chapters to describe the

implications of the introduction of ASD into the organisation. In Section 7.1, we start

with the desired goals by analysing the interviews and observations. From this

analysis, we conclude that a method to apply ASD is missing and that a Cleanroom-

like method might solve the method problem. Therefore, in Section 7.2, we explore

how the combination of Cleanroom and ASD would look like. In Section 7.3, we

further describe the implications of introducing ASD by analysing the interviews

under the assumption Cleanroom/ASD. Then, we globally describe some important

aspects regarding the transition from the current state of the organisation to a possible

new state with Cleanroom/ASD in Section 7.4.

7.1 Analyse Desired Goals

During the past three years the organisation has experimented with ASD during

several pilot projects. The objective is to improve the software development process

by reducing the time necessary for test & integration. In Section 6.3 some

observations are described on how the technology is applied during the research. An

important observation is that some solutions that have been designed do not work

with ASD. The tool is blamed that something is impossible and Verum is called to

make a particular solution work with the tool. In Figure 46, we try to capture the

current state of the organisation into a model about adopting a new technology.

Figure 46, Success Factor

Figure 46 describes an organisation’s state regarding a new technology. The outcome

of a decision process to introduce a new technology depends on the following:

B) If an organisation foresees benefits in applying a new technology and

is prepared to make concessions to be able to fully benefit from the

technology, then it can successfully apply the new technology.

A,C,D) Otherwise, do not apply the new technology.

We apply the model on the business unit Interventional X-ray and ASD. The

managers and designers indicate in the interviews that both foresee the benefits ASD

could bring. However, the organisation is not (yet) prepared to make concessions

regarding the design. Therefore, during the research described here, the organisation

was in state A.

72 Implications of Introducing ASD | Improving Software Development

We want to emphasize that the new technology is more than just a tool. Therefore, in

the following, we make a distinction between the tool and a method that may be used

to apply the tool. How an architectural decomposition should be made, in terms of

method and process, is not addressed by ASD. When combining the insights of the

interviews and observation, the method to organize the software development process,

with or without ASD, is missing. Therefore, the first step to reach the objective of

reducing the test & integration phase is to choose a method for applying ASD.

From the interviews, we have retrieved the following technical constraints for the

required method. The method:

1. should work with ASD, which is:

 control-based, and

 component-based;

2. should work with legacy or current code, which could be:

 control-based, and/or

 non-control-based;

3. should work with new non-control-based software, which could be:

 data-centred, such as algorithms; and,

4. should improve test & integration.

The published literature about ASD [2][3], as mentioned in Chapter 4, describes that

ASD is a combination of CSP and Cleanroom. Additionally, Cleanroom satisfies the

technical constraints for the required method as described above. Therefore, as a

hypothesis, in this thesis, the use of Cleanroom is investigated such that an integral

approach for the software development process with Cleanroom is possible. We will

call the combination Cleanroom/ASD.

The business unit was during the research in the process of learning the technology.

Because the lack of knowledge about the method that should be applied, the solutions

that the designers develop for problems do not fit with ASD. The gap in knowledge

about the method should first be filled before sustainable solutions can be developed.

For a successful transition, the organisation needs to realize that it cannot continue to

design systems with the current practices. It makes no sense to apply ASD to an

architecture that is not developed with a component-based methodology like

Cleanroom. The designers, as the managers correctly noted, need to undergo a

paradigm change. The gap between the current practices and, for example,

Cleanroom/ASD makes the transition nontrivial. To successfully adapt ASD, the

current state of the organisation should shift from state A to state B. If the decision is

made that the organisation is not prepared to make concessions on the design, then the

transition will fail on the long-term. The next section describes how the combination

Cleanroom/ASD could look like.

7.2 Cleanroom/ASD

As described in Chapter 5, Cleanroom describes a software engineering method and

process. In this section, we describe how the Cleanroom/ASD combination could look

like an software development organisation.

73 Implications of Introducing ASD | Improving Software Development

7.2.1 The Method

In this subsection, we describe how the software development organisation with ASD

combined with a Cleanroom-like method could look like. We use the technical

constraints of the previous section as a guideline.

1. The method should work with ASD.

Cleanroom, as can be read in Chapter 5, describes a method on how an architecture

should be decomposed into components. ASD uses this principle from Cleanroom in

order to scale ASD to industrial sized applications. Therefore, a component-based

method, like Cleanroom, is required to create an architecture suitable for applying

ASD. Architectural components that solely contain control-based behaviour can then

be made with ASD. The behaviour described by the ASD components will be used to

automatically generate code.

2. The method should work with legacy or current code.

Because the size of the code base, it cannot be altered all in a limited amount of time.

Therefore, during migration the legacy or current code should be used in combination

with the new reference architecture and the new technology. With a Cleanroom-like

method it is possible to isolate legacy or current code into separate components. In

ASD terminology, as described in Chapter 4, the legacy or current code can be placed

in foreign components. For foreign components, ASD interface models can be built to

describe the control-based behaviour. This behaviour can tested (not certified) by the

Compliance Test Framework (CTF).

3. The method should work with new non-control-based software.

We define non-control-based components as components that not solely contain

control-based behaviour. Using new non-control-based software is similar to the

previous technical constraint. But instead of using it for legacy or current code, it can

be used for data-centred software. Data-centred and algorithmic software is isolated

and placed into foreign components. These components will be implemented

manually by handwritten source code. When using Cleanroom, the handwritten

components are developed with error prevention in mind.

The implemented interface ASD model for a non-control-based component is needed

to model-check a component that uses the non-control-based component as a used

component. Therefore, the limited control-based behaviour the component does have

should, according to Cleanroom, be statistically tested. An ASD interface model for

the control-behaviour can be built and, possibly, the Compliance Test Framework

(CTF) could be used to certify the handwritten parts.

4. The method should improve test & integration.

The method should improve test & integration for the previous three technical

constraints. In order to improve test & integration, we propose to use ASD combined

with a Cleanroom-like method as an integral software development approach. When a

Cleanroom-like method is used, the last step of the design will be done with the ASD

tool for control-based software, or an informal or formal proof is made for the data-

centred and algorithmic software. In Figure 47, the development with Cleanroom is

depicted while in Figure 48, the development with the combination of ASD and a

Cleanroom-like method is depicted.

74 Implications of Introducing ASD | Improving Software Development

Figure 47, Design

with Cleanroom

Figure 48, Design with Cleanroom/ASD

All components are created with quality in mind and therefore test & integration will

be improved. With Cleanroom/ASD, the test & integration phase will no longer be

used to test the quality into the software, but to certify the quality of the software.

7.2.2 The Process

As described in Chapter 3, the business unit has a generic process model which is

used for all development disciplines. This process model is essentially the Waterfall

model. For the software development organisation the V-model is fit into the generic

process model.

In Chapter 5 the process model of Cleanroom is described. The Cleanroom process

describes that the activities design and test case generation occur concurrently. The

organisation adopting Cleanroom can choose to execute these activities concurrently

or sequential. For sequential execution, we propose to adapt the Cleanroom process

model to fit into the generic process model. In the thesis, we have used the following

three phases for software development: global design, software design, and test &

integration. We map the Cleanroom activities onto the generic phases. Cleanroom’s

specification activity can be mapped onto the global design phase. The design activity

onto the detailed design phase, and the activities test case generation and statistical

testing can be mapped onto the test & integration phase. This exactly corresponds to

the three teams required for the Cleanroom process. Figure 49 depicts how this

mapping corresponds to the box structure.

75 Implications of Introducing ASD | Improving Software Development

Figure 49, Box Structure

In the remainder of the chapter, we refer to Cleanroom’s method when describing

about Cleanroom.

7.3 Analysis of the Expectations

In the following two subsections, we continue to analyse the interviews under the

assumption of using Cleanroom/ASD.

7.3.1 Managers

Managers indicated that it is currently very difficult to keep the design document and

source code consistent. We think that with the introduction of Cleanroom/ASD there

still is a need for design documents especially when large and complex models are

built. However, if a system is decomposed sufficiently with the Cleanroom method,

then models should not be too complex. For the global design there will always be a

need of a document. In Cleanroom this should describe the Black Boxes (BB) and the

refinements of black boxes.

The assignment by management was to make a new reference architecture and then

choose which parts could be done with ASD. We propose to make future reference

architectures with a Cleanroom-like method and then apply ASD on components

which solely describe control-based behaviour.

7.3.2 Designers

Remember that when the designers where interviewed they thought that ASD should

only be used for interfaces. The global designers indicated that the benefits of using

ASD for interfaces that frequently change are clear. However, for interfaces that are

made once and for which changes are not expected the benefits are unclear. We think

that there are still benefits because it is unknown in advance if an interface will

change. The detailed designers indicated that with regression testing an interface

between two components can be stable but when one of the components changes there

could be new problems found during test & integration. This should be solved by

76 Implications of Introducing ASD | Improving Software Development

ASD. The major benefit for the designers when applying ASD is therefore that they

have to solve less Problem Reports (PR) during the test & integration phase.

In the current global design practice, the interfaces are not leading, the architectural

units are. The feeling is that this will shift with the introduction of ASD. The

architects say that they must shift their paradigm from decomposition to interfaces.

We think that the paradigm needs to change but not in this way. With a Cleanroom-

like method, an architecture is decomposed differently. The Cleanroom

decomposition, however, is less ad hoc and formally verifiable.

According to the designers depending on how much of the architecture will be

realized with ASD legacy or current code will become an issue. This will become an

issue because at some level in the architecture, ASD has to interface with legacy or

current code. This is addressed by the proof-of-concept of Chapter 10 about the

migration of an application. Additionally, legacy or current code can be used in a

Cleanroom-like architecture as is described in the previous section.

The detailed designers fear that the organisation becomes too ASD-centric in the

sense that all problems can only be solved with ASD. We already indicated that ASD

can only be applied successfully if a Cleanroom-like method is used to create a

solution in terms of an architecture. Because solutions have to be obtained with a

different method, it is possible to perceive this as an ASD-centric organisation. Being

ASD-centric has benefits which the detailed designers also subscribe. However, they

also think that ASD will limit their creativity. It is true that elegant certain solutions

are impossible with ASD because when using a Cleanroom-like method creating an

architecture is more or less a stepwise undertaking, as is explained in Section 5.2. The

idea is that the structure that is created can be verified relatively easy.

In summary, some ASD related challenges that are raised by the managers and

designers during the interviews, and observations can be solved by applying a suitable

method. We have reasoned that Cleanroom might be a suitable candidate.

7.4 The Transition

In this section, we explore the transition from the current situation to

Cleanroom/ASD.

During the interviews managers indicated that they thought that the change process to

ASD would be easier. We start this section with an exploration about the magnitude

of the change. In Figure 50, [8] describes a model that, given the magnitude of

technological change, more or less learning is required. Depending on the learning

that is required for the technological change, the approximated time needed for an

organisation to adjust is short or long.

77 Implications of Introducing ASD | Improving Software Development

Figure 50, Dimensions of Change [8]

For the adaptation of Cleanroom/ASD within the organisation designers should

acquire new skills; they should be able to use the new ASD tool. The procedures will

change, for example, because with ASD it is possible to generate code. The structure

of the software development organization will need to change because of the new

Cleanroom-like method that is required to design solutions. The change is strategic

because the strategy changes from trying to improve test & integration time by going

through the V-model as quickly as possible to improving test & integration time by

applying Cleanroom/ASD. Moreover, the adaptation of ASD imposes a cultural

change. The new culture should be to make software that is the first time right. A shift

in culture: from error removal to error prevention. Consequently, the model in Figure

50 approximates that the transition to Cleanroom/ASD will take years to accomplish.

7.4.1 Literature Model

In the past there have been software development organisations that have made a

transition to Cleanroom. However, these transitions had a different starting point. The

organisation that made the transition to Cleanroom in the past came from a used

Structured Analysis/Structured Design (SA/SD) as a method.

Because ASD and Cleanroom are closely related, the change of the software

development organisation to one of them will have comparable implications. In order

to say something about the current transition and learn something from past

transitions the model shown in Figure 51 has been built.

Figure 51, Literature Model

78 Implications of Introducing ASD | Improving Software Development

The model in Figure 51 is used as follows:

1. The objective is to say something about the transition from an Object Oriented

Analysis and Design (OOAD) method to ASD/Cleanroom’s method.

2. In order to say something about (1), the literature that describes the transition

from a SA/SD method to Cleanroom’s method is used.

3. For (2), the literature that describes the difference between SA/SD and OOAD

is used.

In the following three subsections, we first describe the (3). Secondly, we describe (2)

and, lastly, we describe (1).

7.4.2 SA/SD vs. OOAD

The transition from Structured Analysis (SA) and Structured Design (SD) to Object

Oriented Analysis and Design (OOAD) is written in literature.

The main difference between the two methods is their objective. SA/SD works

towards a design that can be used for a structured programming language and OOAD

aims at a design that can be developed with an object oriented programming language.

The main difference between them is that SA/SD considers processes as the main

driver of system decomposition while OOAD considers data as the main driver of

system decomposition. SA/SD makes a distinction between data, control and

processes. However, OOAD tries to encapsulate data, control and processes into

objects. [16][19]

According to [6] the transition from SA/SD to OOAD will take at least one year. The

transition time does not depend on the project size, the size of the team, or the used

tools and techniques. The transition time takes at least a year because the team

members need to change their paradigm in developing software in another way. Every

step of the software development process needs to be changed in order to infuse OO

in the software development organisation.

7.4.3 Transition from SA/SD to Cleanroom

The past transition from SA/SD to Cleanroom is described in this subsection. In Table

1 a description by [10] of the differences between the traditional approach and

Cleanroom's approach for software development is shown.

From To

Informal specification Black box specification

Informal design Box structure refinement

Defect correction Defect prevention

Individual unit testing Team correctness verification

Path-based inspection Function-based verification

Coverage testing Statistical usage testing

Indeterminate reliability Certified reliability

Table 1, From Traditional Software Development to Cleanroom

79 Implications of Introducing ASD | Improving Software Development

Of course, SA/SD and Cleanroom also have some similarities because both use

decomposition to analyze a system. The techniques from both methods are

comparable, for example, context diagram versus black box, state transition diagram

versus state box, and data flow diagram versus clear box. [16]

In the literature, the transition from SA/SD to Cleanroom is exhaustively described by

several case-studies at, for example, HP, IBM and U.S. Army, Texas Instruments

(TI), and NASA. We list the aspects described [21][22][23][29]:

o Duration, how long it takes to adopt Cleanroom;

o Education, how engineers are prepared to use Cleanroom;

o Process support, for example books which describe the process;

o Creativity, how the method limits the creativity of engineers;

o Diffusion, how Cleanroom is spread among different project groups; and

o Phased Approach, how Cleanroom can be adopted in three phases. [10]

In the remainder of this section, we describe the aspects duration and education.

Duration and education a chosen, because these provide a good insight on the

technological change sought.

7.4.3.1 Duration

The research at NASA describes an understanding stage of 26 months. Almost half of

this time is spent on training. The other half is spent on the first pilot project. Before

the end of the first pilot project, additional pilot projects were started and by this they

started with the transition stage. The transition stage took a little bit more than 46

months. The project at the US Army ran from the end of 1992 till 1994.

7.4.3.2 Education

Education is a required activity that is used to support engineers that make the

transition. Before transition engineers are trained into the new technology and during

the transition coaching help them to adapt to the new technology. Therefore, in this

subsection training and coaching are described.

7.4.3.2.1 Training

The pilot project at the US army used formal classroom training together with

workshops to educate the engineers. During the classroom training three topics were

addressed: specification, development, and certification. The education also involved

training about the support tools.

IBM’s technology transfer program used four courses to transfer Cleanroom

knowledge:

o Cleanroom Software Engineering for Zero Defect Software,

o Cleanroom Software Specification,

o Cleanroom Software Verification, and

o Cleanroom Software Quality Certification.

The first course was a one-day course; the other courses took three days. So, in total

the duration of the courses was two weeks. They preferred not to give the courses full-

time but spread the courses over, for example, four weeks in order for the engineers to

digest the material. At TI they experienced that it is beneficial to train the engineers

just before the need to apply Cleanroom.

80 Implications of Introducing ASD | Improving Software Development

7.4.3.2.2 Coaching

At the US Army coaching was used to help with planning and executing the project.

Educating the engineers continued throughout the project execution. The experts

visited the team on-side and helped to apply Cleanroom on their specific domain. The

aim of the training and coaching was to adapt the engineers’ mindset which was

necessary for implementing Cleanroom. The paradigm needed to change to making

software the first time right. This aim was reinforced by the involvement by of

management.

The IBM Cleanroom technology transfer program appointed a consultant to a

Cleanroom project. All documentation, at each stage of that documentation, the team

produced was send to the consultant for feedback. The feedback and coaching of the

consultant only addressed Cleanroom, not the technical aspects.

At TI the team that made the transition to Cleanroom made extensive use of an

experienced Cleanroom consultant. The use of a consultant complemented the

training. The consultant was also used for mentoring.

7.4.4 Transition OOAD to Cleanroom/ASD

In this subsection, we explore the current transition from OOAD to Cleanroom/ASD.

7.4.4.1 Duration

Previously, the transition from Structured Analysis (SA) and Structured Design (SD)

to Object Oriented Analysis and Design (OOAD) is described. The hypothesis is that

the transition from OOAD to SA/SD is the other way around and should therefore be

comparable in terms of the time needed for the organisation to adjust. Hence, the time

to adjust will take at least a year regardless of the project size, the size of the team, or

the used tools and techniques.

From literature, in the past software developers were used to use SA/SD which has a

small gap with Cleanroom because structured programming constructs are used by

Cleanroom, as the explanation of clear boxes in Chapter 5 describes. The current

transition imposes a larger gap; the transition from SA/SD to Cleanroom is smaller

than the current transition from OOAD to Cleanroom/ASD. [1]

The model in Figure 50 and the case studies described in this subsection provides

evidence that the transition to Cleanroom/ASD will take years to accomplish.

7.4.4.2 Education

7.4.4.2.1 Training

Literature describes that many courses and books were used in the past and that much

training is required for a team to acquire Cleanroom. Additionally, in the interviews

the designers indicated that the course they followed did not addressed a method to

use the tool. Also, as described before, the current transition is more difficult than past

transitions. Therefore, the organisation could gain in training the engineers that need

to use ASD. Because ASD is a tool that supports the Cleanroom-like method, the

81 Implications of Introducing ASD | Improving Software Development

focus of the first course should be about a Cleanroom-like method. An additional,

second, course could train the engineers in the use of ASD, in combination with

Cleanroom. Applying the tool should not be too difficult when trained for a

Cleanroom-like method.

The global designers indicate that they do not think it is essential for them to follow

an ASD course. We agree; however, a course about the method is a must. The detailed

designers should follow both courses.

7.4.4.2.2 Coaching

Coaching can be a good supplement for education. As in the past, a coach can educate

and provide feedback during project execution. An important aspect of coaching

should be to apply a method correctly without going into the technical details of the

domain.

Management wants to limit the use of ASD consultants and build the knowledge

about ASD within the organisation. It sounds reasonable to assign people with ASD

experience to new ASD project in order to transfer knowledge; however, these people

are not consultants or coaches or facilitators. Nor do they master a much needed

method to successfully apply ASD. Therefore, we propose to use (external)

consultants which focus on correctly applying a Cleanroom-like method, without

going into the domain.

IV Concluding Remarks

In this part, we sought answers to the question: What are the steps to reach the desired

goals given the state of the organisation?

In our analysis, we noticed that currently ASD is positioned as a tool and therefore

requires only changes in the skills of the persons who need to apply it. However, we

also noticed that making a design following the current practices did result in designs

that could not be checked by the ASD tool. This observation, combined with the fact

that the ASD course did not explain how to create a new design with ASD, implies

that a method to apply the ASD tool is missing. From Part II we know that ASD and

Cleanroom are related technologies. Cleanroom Software Engineering describes a

complete software development process and method. Consequently, we propose to

introduce a Cleanroom-like method and call the combination Cleanroom/ASD.

Cleanroom’s process model is adapted to fit into the generic process model of the

business unit. The process model of Cleanroom can be rewritten to the currently used

phases. The Cleanroom method describes the steps to obtain a global and detailed

design. In the final step of the method, ASD can be applied for control-based

software. For non-control-based software a correctness proof could be made by hand.

Of course, this will only be necessary for a fraction of the design. The benefit of using

Cleanroom is that there is one integral approach to design high quality software.

Applying ASD will only become a success if the organisation is prepared to make

concessions on the design. This is the most important hurdle that needs to be taken.

Applying ASD is not just a change of skills for the persons that need to apply it, but

rather a cultural change. Literature suggests that the change in mindset that is required

may take at least a year to accomplish.

In summary, the first step is to acknowledge that a method is missing. The second

step is to choose a candidate method. The third step is to adapt the method to the

current situation. The last step is to infuse the technology, including the method, into

the organisation.

Finally, we have described some guidelines for creating a transition plan. Creating an

operational plan would be the final step with the insights given by part IV.

V How can re-use and migration enhance the
technology?

Part II describes the new technology. From this part, we know that ASD is a relatively

new tool which is under constant development and improvement. Among other

aspects, Part III provides two aspects which are of concern for introducing the new

technology to the organisation. These two aspects are:

o How can re-use enhance the technology? For instance, what can be done to

avoid copy/pasting?

o How to migrate from the current situation to the new technology?

87 Re-Use | Improving Software Development

8. Re-Use
All software development methodologies emphasise the importance of re-use. ASD

has some implicit mechanisms that addresses re-use which are described in this

chapter, but we also propose a few new mechanisms to enhance re-use in the context

of ASD.

The need for re-use can be encountered at different stages in the lifecycle of a

software product. In the following, re-use during the design and the maintenance

stages is distinguished.

During design the following aspects of re-use apply:

o common behaviour:

 extending behaviour, and

 merging partial behaviour; and,

o avoid copy/pasting.

Common behaviour is behaviour that will be used at several places. If the developer

encounters common behaviour, the developer wants to describe it at a single place and

re-use the behaviour from then on to avoid copy/pasting. Moreover, it is possible that

for building an architectural unit, common behaviour described at different places

need to be composed. This is called merging of partial behaviour. Separation of

concern by splitting behaviour in a set of partial behaviours can help a designer to

manage complexity. With incremental development, architectural units can be

extended in each increment by new partial behaviour until the unit is complete.

When implementing a design, the developer does not want to redo previous work.

Additionally, the developer does not want to copy/paste previous work into new work

to avoid maintainability problems. If, for example, algorithms or requirements

change, then at all places where that behaviour is implemented these changes have to

be made by hand.

During the maintenance stage the following aspects of re-use apply:

o reallocation of responsibilities, and

o extending behaviour.

During the lifecycle of a software architecture it is possible that the responsibilities of

a unit, represented by an interface or design model, change. It would be convenient if

the current interface or design model is composed of other elementary interface or

design models because when the responsibilities of a unit change, a new interface or

design model can be recreated with minimal effort. Technically, extending behaviour

is similar to merging partial behaviour explained above but then applied in the

maintenance stage of the software product’s lifecycle.

The ASD tool has incorporated some re-use aspects described above. These re-use

aspects involve the re-use of complete interface and design models. This is explained

in Section 8.1. To improve the tooling environment some additional techniques are

described in Section 8.2. These techniques involve the re-use of partial interface and

design models.

88 Re-Use | Improving Software Development

8.1 ASD Solutions

For some of the re-use aspects described above it is necessary to re-use complete

interface and design models. The following solutions are described in this section:

o re-use interfaces for different designs;

o multiple instances of a component; and,

o interface refinement.

8.1.1 Re-Use Interfaces

Consider the case where one wants to use one interface model for two different design

models. For instance, when two different devices that implements the same interface,

such as the interface models used to drive the devices of the camera in Chapter 4. The

interfaces of IAperture and IFilmSpeed are conceptually the same. They both have a

Default state and the Fast state from the one can be transformed into the Large state of

the other. This is also the case for the Slow state and Small state. Hence, the design

model of these devices can make use of the same interface model. The camera design

model then has to use two instances of the same interface to drive the two devices.

8.1.2 Multiple Instances

The second ASD solution regarding re-use is about multiple instances. For example, if

a developer wants to drive two similar devices, then the developer can create a single

interface model and design model, and instantiate the interface model twice; once for

every device. The benefit of this possibility is that one interface and design model can

be reused for multiple instances instead of making for each instance a separate

interface and design model.

8.1.3 Interface Refinement

The example described in the previous subsection can be applied if the interfaces of

both devices are equal. Equal interfaces can be grouped by ASD such that a

mechanism can be used to invoke the same stimulus on all group members at once.

However, if the interfaces of both devices are unequal, then grouping cannot be used.

A solution for this is depicted in Figure 52.

Figure 52, Interface Refinement

89 Re-Use | Improving Software Development

This solution uses an additional design model to glue the desired interface with the

interface of the devices in order to be able to use the interface grouping mechanism.

8.2 Proposed new ASD Solutions

The solutions in the previous section focus on the re-use of complete interface models

and design models. In this section the focus is on creating interface models or design

models by re-using parts of the behaviour of other interface or design models. Here

“behaviour” is not limited to states, but also includes the stimuli, responses, and rules

for the corresponding states. The technologies described here make it possible to

compose an interface model or a design model from other interface or design models

which describe partial behaviour.

In the next subsections we discuss three techniques:

o template models;

o merge template models; and,

o expand template models.

8.2.1 Template Models

If a developer has to build several units which have common behaviour, then it is

convenient to have a template model. This model template can then be extended with

the specific behaviour such that the developer does not have to implement the

common behaviour into a model for every unit separately.

Therefore, a library of template models can be used when building a system. If a

developer wishes to build a unit, then the developer takes the unit template model

from the library and starts adding extra functionality, particular for that unit, to the

model.

Template models describe the common behaviour between interface or design

models. Drawbacks of this solution are:

o poor maintainability; and

o difficult to combine two template models.

With respect to maintainability, it is possible that in the future, for example, by new

requirements, a template model needs to be altered. A consequence of this is that

every unit that has been build with the template model needs to be changed manually.

Currently, the use of template models is not supported by the ASD tool. In Chapter 9,

a solution is presented to allow the use of template models.

In addition, it is not possible to build a model that needs behaviour of two or more

template models. These two drawbacks could be solved by merging models, as

described in Subsection 8.2.2.

90 Re-Use | Improving Software Development

8.2.2 Merge Template Models

Merging template models means that the partial behaviour of a certain template model

A is merged into a model B to form a new model C. When working with template

models, the following actions could be possible:

o Creation. Take a model A and a model B. Copy the behaviour of model A into

the model B, this leads to model C

o Removal. Given model C, remove the behaviour of model A. The result is

model B.

o Altering. There are two options:

 Altering can be accomplished by first removing the old behaviour by the

removal action described above. When the old behaviour is removed, the

new behaviour can be added by the creation action.

 A similar result can be obtained by merging new versions of model A and

model B to get model C.

The altering action is needed for the maintainability of derived models. For instance,

if model A changes, then all the derived models should be easily modified too.

In a software architecture, there can be all kinds of relations between units and their

common behaviour. As a concrete example of creation with template models, assume

that unit 1 can has some common behaviour with unit 2, and unit 1 has some common

behaviour with unit 3. The common behaviour between unit 1 and unit 2 can be put in

a template, for example, in Figure 53. Similarly, the common behaviour between unit

1 and unit 3 can be put into a template, for example, in Figure 54. When we start

building unit 1, the model A and model B should be merged, see Figure 55.

Figure 53, Model A

Figure 54, Model B

Figure 55, Model C

When the behaviour in terms of states are added, the derived model essentially

consists of two separate state machines, see for example in Figure 55 without the

dashed-lines. To obtain the combined behaviour, there are three ways to interconnect

the two state machines:

o by hand;

o in an automated way; and,

o by merging states.

For all three solutions, it is possible that for different compositions of the models the

connections differ. Connecting the two state machines by hand has the benefit that the

developer has to think about the combined behaviour. The other two could be done

automatically. The automated way is to somehow tell the merge mechanism or tool

how to make the dashed-lined transitions. This can be done in a separate file,

command-line or a popup window. The automated way would help the developer

from redoing the same action multiple times. In [7][26] there are algorithms described

that can be used to automatically merge partial behaviour. Merging states means that

both model A and model B have some states with the same name. When merging

91 Re-Use | Improving Software Development

model A and model B into model C the transitions of the states which have the same

name in model A and model B, are merged.

To obtain combined behaviour, two state machines are interconnected. If one of the

state machines is removed from the model, then the interconnect transitions, depicted

by the dashed-lines of Figure 55, are unconnected on one side. Therefore, the

previously described removal action should also delete the transitions that

interconnect the two state machines. Although the example above uses two models,

the number of models to be merged is not limited by the concept.

The merging functionality is currently not possible with the ASD tool, but a technical

solution to include it is presented in Chapter 9.

8.2.3 Expand Template Models

Inspired by the macro-like operation described by [14][15], we describe an approach

for expanding template models. Expanding template models involves the following

actions:

o Creation. Make a model A with a “super” state. Replace the super state of

model A by the states of model B, this leads to model C.

o Removal. Remove from model C the states of model B and replace these by a

super state.

o Altering. Altering can be accomplished by first removing the old states by the

removal action described above. When the old states are removed, the new

states can be created by the creation action.

An example of the expanding template models solution is depicted in Figure 57 and

Figure 59. Special state S2 of Figure 56 is expanded by the states of Figure 58; the

dashed-lined state is replaced by multiple states from another model. Expanding

models have the same benefits as merging models. There are two possibilities for

applying the expand template models mechanism:

1. Figure 56 is the generic component and Figure 58 is the specific functionality

for a unit. Hence, Figure 56 can be used for several applications.

2. Figure 58 is generic and Figure 56 has specific functionality for a unit. Here

Figure 58 is used for multiple applications.

The states of Figure 58 replace the dashed-lined state of Figure 56 to form a new

Figure 57. The three ways to connect the dashed-lined transitions of merging template

models also apply for expanding template models. However, it is possible that

transition labels for transitions to or from multiple states are the same. Therefore,

there are several possibilities to connect the dangling transitions that leaving state S3

and S4. These two possibilities are depicted by Figure 58 and Figure 59.

92 Re-Use | Improving Software Development

Figure 56, Model A

Figure 57, Model C

Figure 58, Model B

Figure 59, Model D

The expansion can be applied in two ways:

o Expand immediately. The states will be expanded, and are visible and

accessible through the ASD tool.

o Expand just-in-time. This would involve a macro kind of operation that

expands the states just before model checking, code generation, or test

generation.

In the next chapter, we describe a script that implements the template models and the

merge of template models.

93 Adapt Interface Models | Improving Software Development

9. Adapt Interface Models
As a proof-of-concept, we wrote a script that implements the usage of template

models and the merge of template models, from the previous chapter, for ASD

interface models. The first section of this chapter describes an approach on how to

effectively apply the script on an architecture with the objective to maximize the

possible re-use of ASD interface models. The second section describes the

functionality of the script. The third section illustrates the functionality of the script

with examples.

9.1 Re-use Approach on an Architecture

In this section, we present an approach to maximize re-use of ASD interface models.

The approach consists of the following steps:

o step 1, decompose the architecture;

o step 2, identify common behaviour; and,

o step 3, compose the interfaces.

Figure 60, Step 1

Figure 61, Step 2

Figure 62, Step 3

9.1.1 Decompose Architecture

Chapter 5 explains that an architecture in Cleanroom/ASD should be decomposed

top-down. This is done in the first step of the approach.

9.1.2 Identify Common Behaviour

The second step is to identify common behaviour among interfaces. In an architecture,

typically some partial behaviour will occur in several interfaces. As mentioned before,

it would be beneficial to re-use such pieces of partial behaviour by merging models.

For example, in Figure 61 take the partial behaviour presented by the blue ellipses.

The blue ellipse occurs twice in the same layer. The left interface of the middle layer

can be composed by merging the blue and green partial behaviours.

9.1.3 Compose Interfaces

As a third step, we propose to implement architectures in ASD bottom-up layer-by-

layer to maximize the possibility for re-use.

94 Adapt Interface Models | Improving Software Development

9.2 Script

The proof-of-concept is a Perl script that can be used to maximize the re-use of

interface models. The script supports the usage of template models and the merging of

template models as described in Chapter 8. The usage of the script is restricted to

ASD interface models, ASD design models cannot be used by the script.

The script takes as an argument two files ASD interface models:

o an extendfile, which gets extended with new behaviour, and

o an inputfile, from which the behaviour serves as input to the process.

Resulting, the script can produce two files:

o an outputfile, which is the union of the extendfile and the inputfile, and

o a difffile, which is the difference between extendfile and the inputfile. The

difffile cannot be read by the ASD tool.

Below the possible arguments and switches that can be applied to the script are

summarised:

concept.pl

--extendfile <filename>

--inputfile <filename>

--outputfile <filename>

--difffile <filename>

--add

--del

--verbose [level]

--fill

--guid

--channel <to>=<from>,<to>=<from>,...

--state <to>=<from>,<to>=<from>,...

The contents of the <from> channel will be placed into the <to> channel

Add and del implement the previously described create and removal actions for the

merging of template models. Verbose, fill, guid, channel, and state are optional

arguments.

 The verbose switch prints some internal processing information of the script

 fill fills the unused stimuli with illegal rule cases for every state.

 The guid switch renumbers the model’s internal ids. Renumbering is necessary

each time a template model is used.

 The channel and state arguments are strings containing a sequence of channels

or states that needs to be renamed. In this context, rename means that the name

of a channel or state in the inputfile is changed before it is combined with the

extendfile, which results in the outputfile. The rename will also be visible in

the difffile.

Note that from the outputfile and the difffile it should be possible to delete the added

behaviour, but this is not (yet) implemented in the script. In Chapter 8, we describe

that the template models need to be adapted when the requirements change. From

these updated template models, a new interface model can be composed instead of

removing the old behaviour and replace it with the new behaviour.

95 Adapt Interface Models | Improving Software Development

The script can be used for template models and the merging of template models and

therefore has two basic execution scenarios. The first is renumbering unique ids for

template models, depicted in Figure 63, and the other is merging interface models, as

shown in Figure 64. The next section is devoted to some execution examples of the

script.

Figure 63, Renumber

Unique IDs

Figure 64, Merge Interface

Models

9.3 Examples

In this section, we describe the basic operations the script can take in order to use

template models or merge template models.

9.3.1 Template Interface Models

It is impossible to re-use an interface model file in a design, as is described in

subparagraph 8.2.1. If one tries to do this, the tool will complain about duplication of

unique ids. Figure 63 shows the execution scenario of the script to renumber ids. The

script can be used to renumber ids in ASD interface model “in.im” leading to ASD

model “out.im”, by the command:

concept.pl -inputfile in.im -outputfile out.im -guid

9.3.2 Merge Interface Models

Merging of interface models can be used to compose an interface model out of, for

example, multiple template models. The script can extend one interface model with an

input interface model, see Figure 64. It is possible to merge more than two models but

then the script has to be executed multiple times.

The merging of two interface models involves two activities: copying and merging of

channels, and copying and merging of states. Besides these two activities, some pre-

processing activities such as renaming of channel and state names are optional.

Renumber the unique ids (subparagraph 9.3.1) and filling empty rules with illegals are

optional post-processing steps.

For merging interface models the add switch of the script is used, see:

concept.pl -add -extendfile ext.im -inputfile in.im -outputfile out.im

96 Adapt Interface Models | Improving Software Development

9.3.3 Copy Channels

The merging of interface models consists of some elementary actions. One of these

actions is copying channels. Copying of channels needs two interface models to

generate a new interface model. One of these models is the extendfile which is used as

a base file. If a channel name in the inputfile does not exist in the extendfile, then the

channel is copied after the channels of the extendfile to form a new outputfile.

9.3.3.1 Copy API

If the inputfile contains API channels, which are a set of stimuli, then these are placed

after the API channels of the extendfile in the outputfile; this can be seen in Figure 65,

Figure 66 and Figure 67. The stimuli inside the channel api1 are also copied to the

outputfile. Note that the channel api0 and api1 can have stimuli with the same name.

Figure 65, Extendfile

Figure 66, Inputfile

Figure 67,

Outputfile

9.3.3.2 Copy CB

If the inputfile contains CallBack (CB) channels, which are a set of callbacks, then

these are placed after the CB channels of the extendfile in the outputfile; this can be

seen in Figure 68, Figure 69 and Figure 70. The callbacks inside the channel cb1 are

copied to the outputfile. Note that the channel cb0 and cb1 can have callbacks with

the same name.

Figure 68, Extendfile

Figure 69, Inputfile

Figure 70, Outputfile

9.3.4 Merge Channels

Merging of channels needs two interface models to generate a new interface model. If

a channel in the inputfile and the extendfile has the same name, then the channel is

merged in the outputfile. As explained before, channel consists of a set of stimuli or

callbacks. When merging two channels, the resulting channel will be the union of the

two. Hence, without duplication of stimuli or callbacks.

9.3.4.1 Merge Stimuli

If the inputfile contains an API channel, which is a set of stimuli, with the same name

as the extendfile, then the API channel will be merged in the outputfile; this can be

seen in Figure 71, Figure 72 and Figure 73. Note that if a stimulus occurs in both

channel api0 and api1, then in the outputfile this stimulus occurs only once. In the

difffile can be seen that such a stimulus is removed and therefore not copied to the

outputfile.

97 Adapt Interface Models | Improving Software Development

Figure 71, Extendfile

Figure 72, Inputfile

Figure 73, Outputfile

9.3.4.2 Merge CBs

If the inputfile contains a CB channel, which is a set of callbacks, with the same name

as the extendfile, then the CB channel will be merged in the outputfile; this can be

seen in Figure 74, Figure 75 and Figure 76. Note that if a callbacks occurs in both

channel cb0 and cb1, then in the outputfile this callbacks occurs only once. In the

difffile can be seen that such a callback is removed and therefore not copied to the

outputfile.

Figure 74, Extendfile

Figure 75, Inputfile

Figure 76, Outputfile

9.3.5 Rename Channels

If a template model with certain names for channels but for the composed interface

model other names are required, then as a pre-processing step it is possible to rename

API and CB channels. After renaming the resulting channels will either be copied or

merged. Renaming channels works as follows:

concept.pl -add -extendfile ext.im -inputfile in.im -outputfile out.im

-channel api2=api1,cb2=cb1

Execution of the script on the models in Figure 77 and Figure 78 will result in a

model depicted by Figure 79.

Figure 77, Extendfile

Figure 78, Inputfile

Figure 79, Outputfile

9.3.6 Copy States

The copying of states works similar as the copying of channels. If the inputfile

contains states, which has a set of rule cases, then these are placed after the states of

the extendfile in the outputfile; this can be seen in Figure 80, Figure 81 and Figure 82.

Note that the channel api1 is also copied to the outputfile. The rule cases

corresponding state S1 are copied to the outputfile. In Figure 83 the Sequence Based

Specification (SBS) is depicted of the outputfile. Lines 5, 6, 9, and 10 are empty rule

cases and should be filled in by hand.

98 Adapt Interface Models | Improving Software Development

Figure 80, Extendfile

Figure 81, Inputfile

Figure 82, Outputfile

Figure 83, Outputfile (SBS)

9.3.7 Merge States

If the inputfile contains a state, which has a set of rule cases, with the same state name

as the extendfile, then the rule cases of the states will be merged in the outputfile; this

can be seen in Figure 84, Figure 85, Figure 86, and Figure 87.

Figure 84, Extendfile

Figure 85, Inputfile

Figure 86, Outputfile

Figure 87, Outputfile (SBS)

9.3.8 Rename States

If a template model with certain names for channels but for the composed interface

model other names are required, then as a pre-processing step it is possible to rename

states. After renaming the resulting states will either be copied or merged. Renaming

states works as follows:

 concept.pl -add -extendfile ext.im -inputfile in.im -outputfile out.im -state S2=S1

99 Adapt Interface Models | Improving Software Development

Execution of the script on the models in Figure 88 and Figure 89 will result in a

model depicted by Figure 90.

Figure 88, Extendfile

Figure 89, Inputfile

Figure 90, Outputfile

9.3.9 Fill with Illegals

In Figure 83 a SBS is depicted with empty rule cases. The empty rule cases that occur

after the merging of interface models can be filled with illegals by the fill switch; this

can be done as follows:

concept.pl -add -extendfile ext.im -inputfile in.im -outputfile out.im -fill

The models extendfile (Figure 91) and inputfile (Figure 92) are merged to form an

outputfile (Figure 93). In Figure 94 the resulting SBS of the outputfile is depicted.

Because of the fill switch, the script has added an illegal on line 4 and 7 of the SBS.

Figure 91, Extendfile

Figure 92, Inputfile

Figure 93, Outputfile

Figure 94, Outputfile (SBS)

101 Migration of an Application | Improving Software Development

10. Migration of an Application
In Chapter 7 both managers and software designers pointed out that it is unclear how

ASD generated source code should be intertwined with the legacy or current source

code in a software architecture. To answer this question, one of the architectural units,

at the application-layer, is adapted to provide an additional ASD interface. The main

goal of our approach is that an application can be used during the migration from the

current architecture to the new reference architecture with ASD, as indicated by

Figure 95.

Figure 95, Migration of an Application

As a proof-of-concept, the Beam Limitation application is adapted such that ASD

clients can use it. The Beam Limitation application is introduced in Section 10.1. In

the desired situation of the new architecture, the application’s interface will be

implemented in ASD. In the new reference architecture Beam Limitation has a

different name, namely Beam Limitation Controller. Beam Limitation Controller with

an ASD interface incorporated is explained in Section 10.2. Because there are

multiple architectural units (applications) at the application-layer of the FEC’s

reference architecture, Sections 10.3, 10.4, and 10.5 describe a general incremental

approach to adapt applications.

10.1 Old Architecture

Beam Limitation is an application which is responsible for shaping and filtering the x-

ray beam. The objectives are to reduce the area exposed with radiation and in the

same time shape the beam such that the image quality is improved. To accomplish

these two objectives the Beam Limitation has shutters and wedges. Shutters are used

to reduce the area exposed with radiation and wedges filter the beam to improve the

image quality. The monoplane product variant can produce one x-ray beam, and has

one set of shutters and one set of wedges. The biplane variant has two sets of shutters

and two sets of wedges.

The application acts as a server for architectural units in the user-interaction layer

which is positioned above the application layer. Additionally, the application acts as a

client to the architectural units in the technical-services layer. Architectural units in

the technical-services layer are hardware abstractions and therefore responsible for

driving the hardware. Note that each architectural unit is implemented as a single

binary. So, every architectural unit has a interface which it provides to architectural

units in an upper layer.

102 Migration of an Application | Improving Software Development

10.2 New Architecture

In the new reference architecture, the application Beam Limitation Controller will

have comparable responsibilities as the old Beam Limitation application.

Architectural control units at higher-levels than the applications will be developed in

ASD. Architectural units at lower levels use proven concepts that will remain the

same. Hence, the architecture is split in two parts, an ASD part and a non-ASD part,

which meet at the application layer. Consequently, at the top – in their server role -

applications need to interact with ASD units and at the bottom – in their client role -

they need to interact to units in the old way. As indicated in Figure 95, the

application’s interface will be specified in ASD, whereas the bottom of the

application will remain the same. Figure 96 depicts how ASD will be incorporated

into the upper half of the application. The foreign components are responsible for

interacting with the current lower half of the application and are implemented by

hand. The other interfaces in the picture and the design are made by ASD. From this

design and interfaces, source code is generated and incorporated into the application.

As indicated by Figure 95, the application has an interface which provides the current

commands and the new commands in ASD form during migration. After migration,

the current commands can be removed. Henceforth, commands in the ASD interface

are called “ASD commands”.

Figure 96, ASD in Beam Limitation

10.3 Approach

In order to manage complexity, we propose to change the application and its test

client incrementally. The test client is used to test the new functionality of the

application. In this section, we list the steps used to adapt the Beam Limitation

application. These steps are generic and can also be used to adapt other architectural

units at the application layer. The following steps have been taken and are explained

in the next sections:

o create an ASD environment;

o create a build environment;

o create a test environment;

o extend the application with one ASD command of a group of commands;

o extend the application with all related ASD commands in the same group;

103 Migration of an Application | Improving Software Development

o incrementally extend the application with new groups of ASD commands;

and,

o optionally, remove the old commands from the application.

10.4 Prerequisites

Before the application can be changed, an appropriate environment needs to be set up.

Setting up the environment involves setting up the ASD environment, the build

environment, and the test environment. In the following subsections these

environments are explained shortly.

10.4.1 Create an ASD Environment

To get familiar with ASD, the approach starts with a small ASD design which

consists of a implemented interface model, a design model, and a used interface

model. After model checking these models, the tool can be used to create source code.

10.4.2 Create an Build Environment

Microsoft Visual Studio is used by SW-FE; therefore, C++ source code needs to be

generated by the ASD tool and added to a test project. Also, the ASD:Runtime files

need to be added to the Microsoft Visual Studio project. Besides the generated and

runtime files, the project consists of two additional files:

o A file with the main function that invokes functions provided by the source

code file of the ASD implemented interface.

o A file that implements the functions that can be called with the used interface.

By using these two files the whole path through the ASD generated code can be

tested.

10.4.3 Create an Test Environment

The following step is to setup an environment to compile the Beam Limitation

application and the test client, and to install a VMware image that can execute both

the application and the test client. The ASD:Runtime was also added to the Beam

Limitation project.

10.4.4 Extend Application with One ASD Command

If it is possible to compile the application and the test client and to execute these in

the VMware image successfully, then ASD can be incorporated. To test the complete

path of ASD from test client to application, an ASD model with one command is built

and source code is generated. The ASD command is added to the implemented

interface of the application. The used component of the generated source code can, for

example, toggle a Boolean value. The test client is extended with an additional button

that executes the ASD command on the application when the button is pushed and

notifies the user with the return value. Because the toggling of the Boolean, the test

client should give another message than the prior message when pushing the button.

This way the whole path from test client to applications can be tested. The next step is

to integrate the ASD generated code with the application’s functionality. The toggling

of the Boolean value is removed and replaced by, for example, executing a shutter

command on the lateral shutter manager. To this end, the shutter manager has to be

extended and changed as well.

104 Migration of an Application | Improving Software Development

10.5 Extending the Application

Next, the application can be extended. As can be seen in Figure 96, the application

has a implemented interface (IBLCASD) which should contain ASD commands from

the used interfaces (IBLASDShutterManager and IBLASDWedgeManager). For both

used interfaces there is a lateral and frontal instance. It is possible to create a generic

channel in the IBLCASD interface with, for example, the following commands for the

shutter managers (SM) and the wedge managers (WM):

o BLASDLateralSMCommand,

o BLASDFrontalSMCommand,

o BLASDLateralWMCommand, and

o BLASDFrontalWMCommand.

The consequence of this choice would be that the designer of the IBLCASD interface

model has to type them all in by hand. In the light of re-use it is more convenient to

generate the IBLCASD interface model from the used interfaces and used channels to

establish differences between the commands, especially when there are a large

number of commands. For the same commands described before this leads to four

channels:

o ASDSMLateral channel with command

 BLASDCommand

o ASDSMFrontal channel with command

 BLASDCommand

o ASDWMLateral channel with command

 BLASDCommand

o ASDWMFrontal channel with command

 BLASDCommand

Where ASDSMLateral, ASDSMFrontal, ASDWMLateral and ASDWMFrontal are

channel names.

For extending the application, we follow an incremental approach and the proposal of

Section 9.1 to use a bottom-up approach to construct ASD interfaces for maximal re-

use. To extend the application, we re-use the used interfaces to generate the

implemented interface with a script.

10.5.1 Extend Application with All Related ASD Commands

When the execution of one shutter command is working, the same recipe can be used

for the complete group of shutter commands with, of course, an also extended ASD

model and generated code. This should result in a working ASD interface on top of

Beam Limitation that can invoke lateral shutter commands.

From the IBLASDShutterManager interface, the IBLCASDv1 interface is generated

by executing the script as follows:

concept.pl -inputfile IBLASDShutterManager.im -outputfile IBLCASDv1.im -guid

The guid switch of the script is used because it is not allowed by the tool to use two

interface models with duplication of ids for a design model. When IBLCASD is

generated, a design model needs to be build that uses IBLASDShutterManager as

105 Migration of an Application | Improving Software Development

used interface, see Figure 96. With the ASD tool the channel name

ASDSMCommands has to be renamed to ASDSMLateral in IBLCASDv1 by hand.

10.5.2 Incrementally Extend the Application

Subsection 10.5.1 describes the first increment (see Figure 97) of adding the lateral

shutter ASD commands. Figure 98, Figure 99 and Figure 100 depict an approach to

incrementally extend the implemented ASD interface with new functionality.

Figure 97, First Increment

Figure 98, Second Increment

Figure 99, Third Increment

Figure 100, Fourth Increment

In the second increment, the frontal shutter manager is added, see Figure 98. This can

be done by creating a second instance of the used component in the design model. The

only difference between the two used components is that they get a different pointer

from either the frontal or lateral shutter manager.

The IBLCASDv1 interface model is extended with the frontal shutter commands by

executing the script as follows:

concept.pl -add -extendfile IBLCASDv1.im -inputfile IBLASDShutterManager.im

-outputfile IBLCASDv2.im -channel ASDSMFrontal=ASDSMCommands -guid

After execution of the script, the IBLCASDv2 interface model will have two sets with

the same shutter manager commands but these sets are grouped by different channel

names, ASDSMLateral and ASDSMFrontal respectively.

The third increment is used to add the lateral wedge commands, see Figure 99. To

accomplish this, the IBLASDWedgeManager interface model is built. The foreign

component that implements this interface is build and the wedge manager is adapted

to execute the commands.

The IBLCASDv2 interface model is extended with the lateral wedge commands in the

following way:

concept.pl -add -extendfile IBLCASDv2.im -inputfile IBLASDWedgeManager.im

-outputfile IBLCASDv3.im -channel ASDWMLateral=ASDWMCommands -guid

106 Migration of an Application | Improving Software Development

After execution of the script, the IBLCASDv3 interface model will have a set of

wedge manager commands. Next the design model has to be adapted to correlate the

wedge commands on the top and bottom interface.

In the fourth increment, the frontal wedge manager is added, see Figure 100, similar

to the addition of the second shutter manager in the second step. The script can be

used as follows to extend the IBLCASDv3 interface model with the frontal wedge

commands:

concept.pl -add -extendfile IBLCASDv3.im -inputfile IBLASDWedgeManager.im

-outputfile IBLCASDv4.im -channel ASDWMFrontal=ASDWMCommands -guid

After execution of the script, the IBLCASDv4 interface model will have two sets with

the same wedge manager commands but these sets are grouped by different channel

names, ASDWMLateral and ASDWMFrontal respectively.

When all ASD commands are added to the application, the test client can be adapted

to execute all shutter and wedge ASD commands and the application can be tested.

10.5.3 Remove the Old Commands

When the above described actions are taken, the result is an application that can

execute both commands in the old way and the new ASD commands. Figure 95

depicts that after migration, the commands from the prior architecture may be

removed. Hence, these non-ASD commands are unnecessary for the new reference

architecture.

V Concluding Remarks

In Part V, we sought answers to the question: How can re-use and migration enhance

the technology?

We have described techniques to re-use partial behaviour in models. The aim of re-

using behaviour is to avoid redoing previous work and to avoid copy/pasting

behaviour. A script implements the following two techniques: template models and

merging template models. We propose that the script is used in the following manner.

Firstly, decompose an architecture with a Cleanroom-like method. Secondly, identify

common behaviour on the interfaces. Thirdly, place common behaviour in template

models and compose interfaces, by merging template models, bottom-up.

Applying both techniques of the script on a real case provides evidence about the

usefulness of re-use when implementing a design in Cleanroom/ASD. This real case

was also used to investigate how to intertwine the new technology with the current

technology. Therefore, an architectural unit was adapted to be able to act as a server

for the new technology and as a client for the current technology.

To answer the question: both re-use and migration as is described by this part can

enhance the technology.

109 Conclusion | Improving Software Development

11. Conclusion

11.1 Answers to the Research Questions

In this thesis, we have analyzed the transition situation of a software development

organisation that wants to introduce and implement a new tool called ASD. By the

transition situation we mean from the current situation without ASD to the desired

situation with ASD. We have done a case study at Philips Healthcare, but the

conclusions are generic enough to be useful for other software development

organisation that wants to introduce and implement ASD into their organisation.

Additionally, we have created some techniques that could improve ASD and its use.

We use the structure of the thesis also in the conclusions.

Part I: What is the state of the organisation that will incorporate the new technology?

The business unit Interventional X-ray has a generic process model used for all

development activities, regardless of the engineering discipline. Hence, mechanical

engineering, electrical engineering and software engineering all use the same meta

process model. The software development organisation currently uses the V-model

which fits into the generic process model. In this thesis, we distinguish the following

three main phases: global design, detailed design, and test & integration.

Components of products are made in projects. For each project, the required persons

are claimed from the departments, which are organized by discipline. The software

departments can offer software architects, software designers, and software engineers.

These persons are trained and used to develop software with an Object Oriented

Analysis and Design (OOAD) method.

Part II: What is the nature of the technology?

Verum’s Analytic Software Design (ASD) is a new tool that can be used for designing

control-based software in a component-based way. In ASD, a system is specified in a

Sequence-Based Specification (SBS), which is a large table. The table describes for

all states of the system how it should respond to all possible stimuli. A complete

design specification can be verified formally. The Sequence-Based Specification can

be used to generate source code. The source code can then be integrated into the final

product. As said before, the tool is relatively new and therefore, during the research,

new releases have further matured ASD.

The literature indicates that ASD is related to Cleanroom Software Engineering

(CSE). Specifically, the component-based aspect of ASD originates from CSE. CSE

has been developed in the late 1970s by IBM and describes the process and method

that could be used to develop high quality software. The philosophy of CSE is error

prevention instead of error removal during the test & integration phase of the software

development process. The error prevention of CSE is accomplished by formally

verifying designs by hand.

Part III: What is the ultimate goal for acquiring and using the technology?

The objective of introducing ASD is to improve software development. Currently, the

test & integration phase, compared with the other phases, takes too long and makes

the process difficult to manage. The quality of the software in products that leave the

factory is unprecedented but according to some of the interviewed persons the reason

110 Conclusion | Improving Software Development

for the long test & integration phase is the quality of the software which is supplied to

this phase. An important part of the problem is that independently developed software

units do not work together seamlessly.

The current approach to manage test & integration problems is to go quickly through

the V-model. In this way there is sooner something that can be tested, which gives

management the perception of control. By going fast through the V-model, the focus

is on testing the quality into the software during the test & integration phase.

As a new approach, management puts an effort into improving the software quality by

providing software designers with a new tool, namely ASD. The tool should be used

to make designs, but the introduction of a new tool is not the objective. By improving

the software quality, the test & integration phase should become shorter and thereby

improve the whole software development process.

The ASD tool can be applied for designing control-based software. Of course, not all

software is control-based. Additionally, not all software will be instantaneously made

with ASD. Hence, there will be large portions of handwritten legacy code during

migrating to the new reference architecture. However, the objective for improving the

software development also applies for the non-control-based software.

Everybody that has been interviewed and has followed the ASD course agrees that the

ASD course is an introduction to the ASD tool. During the course some prefabricated

models are adapted, but none of the developers has an idea on how to start building a

model. The required method to apply the tool is not addressed.

According to Verum, a software architecture can be designed in the way architects

and designers are used to make designs. Hence, the current practice does not need to

be changed for applying ASD. When such a design has been made, units can be

chosen to apply ASD.

Part IV: What are the steps to reach the desired goals given the state of the

organisation?

In our analysis, we noticed that currently ASD is positioned as a tool and therefore

requires only changes in the skills of the persons who need to apply it. However, we

also noticed that making a design following the current practices did result in designs

that could not be checked by the ASD tool. This observation, combined with the fact

that the ASD course did not explain how to create a new design with ASD, implies

that a method to apply the ASD tool is missing. From Part II we know that ASD and

Cleanroom are related technologies. Cleanroom Software Engineering describes a

complete software development process and method. Consequently, we propose to

introduce a Cleanroom-like method and call the combination Cleanroom/ASD.

Cleanroom’s process model is adapted to fit into the generic process model of the

business unit. The process model of Cleanroom can be rewritten to the currently used

phases. The Cleanroom method describes the steps to obtain a global and detailed

design. In the final step of the method, ASD can be applied for control-based

software. For non-control-based software a correctness proof could be made by hand.

Of course, this will only be necessary for a fraction of the design. The benefit of using

Cleanroom is that there is one integral approach to design high quality software.

111 Conclusion | Improving Software Development

Applying ASD will only become a success if the organisation is prepared to make

concessions on the design. This is the most important hurdle that needs to be taken.

Applying ASD is not just a change of skills for the persons that need to apply it, but

rather a cultural change. Literature suggests that the change in mindset that is required

may take at least a year to accomplish.

In summary, the first step is to acknowledge that a method is missing. The second

step is to choose a candidate method. The third step is to adapt the method to the

current situation. The last step is to infuse the technology, including the method, into

the organisation.

Part V: How can re-use and migration enhance the technology?

We have described techniques to re-use partial behaviour in models. The aim of re-

using behaviour is to avoid redoing previous work and to avoid copy/pasting

behaviour. A script implements the following two techniques: template models and

merging template models. We propose that the script is used in the following manner.

Firstly, decompose an architecture with a Cleanroom-like method. Secondly, identify

common behaviour on the interfaces. Thirdly, place common behaviour in template

models and compose interfaces, by merging template models, bottom-up.

Applying both techniques of the script on a real case provides evidence about the

usefulness of re-use when implementing a design in Cleanroom/ASD. This real case

was also used to investigate how to intertwine the new technology with the current

technology. Therefore, an architectural unit was adapted to be able to act as a server

for the new technology and as a client for the current technology.

11.2 Final Remarks

This research was conducted during the preparation phase of a pilot project that will

implement a new reference architecture. At the time of writing these final remarks the

project is started and ASD will be applied on a substantial part of the architecture. The

research contributed to the awareness process of the new technology and helped the

software development organisation of the business unit interventional X-ray to make

the transition to ASD.

Most of the lessons learned during the research have an impact on the current

application of ASD, including:

o OO and ASD need different paradigms,

o ASD components should be relatively small,

o create a design that suits ASD, and

o there needs to be a method to apply the tool.

In the interviews management has described the intent to organise presentations to

make designers enthusiastic about ASD by their peers. Shortly after the interviews

took place management has successfully organized a day where such talks were

given.

Verum’s ASD course has been changed. Previously, the students only adapted models

during the course; whereas the current course asks students to build models from

112 Conclusion | Improving Software Development

scratch. Additionally, there is a tendency at Verum to incorporate re-use mechanisms

into the tool. The template models technique -described in this thesis- which makes it

possible to re-use interface models, is recently adopted into the ASD tool.

113 Bibliography | Improving Software Development

Bibliography
[1] Ananthpadmanabhan, H., Kale, C., Khambatti, M., Jin, Y., Usman, S. &

Zhang, S. Cleanroom Software Development. Arizona State University.

[2] Broadfoot, G. (2005). Introducing Formal Methods into Industry using

Cleanroom and CSP. Dedicated Systems Magazine, Q1 2005.

[3] Broadfoot, G. & Broadfoot, P. White Paper An Introduction to (ASD)

Analytic Software Design.

[4] Broadfoot, G. & Broadfoot, P. (2003). Academia and industry meet: Some

experiences of formal methods in practice. IEEE Computer Society, Tenth

Asia-Pacific Software Engineering Conference.

[5] Graham, D., Veenendaal, van E., Evans, I. & Black, R. (2008). Foundations of

Software Testing: ISTQB Certification. Course Technology. ISBN: 978-1-

84480-989-9.

[6] Fayad, M., Tsai, W. & Fulghum, M. (1996). Transition To Object-Oriented

Software Development. Communications of the ACM, Vol. 39, No. 2,

February 1996.

[7] Fischbein, D. & Uchitel, S. (2008). On correct and complete strong merging

of partial behaviour models. Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software engineering, 2008.

[8] Fowler, P. & Levine, L. (1993). A Conceptual Framework for Software

Technology Transition. Software Engineering Institute; Carnegie Mellon

University.

[9] FDR2 Manual. Retrieved on 14-9-’09 from the Internet:

http://www.fsel.com/fdr2_manual.html

[10] Hausler, P., Linger, R. & Trammell, C. (1994). Adopting Cleanroom software

engineering with a phased approach. IBM Systems Journal, Vol. 33, No. 1,

1994.

[11] Head, G. (1994). Six-Sigma Software Using Cleanroom Software Engineering

Techniques. Hewlett-Packard Journal, June 1994.

[12] Henderson, J. Why Isn’t Cleanroom the Universal Software Development

Methodology? Loral Space Information Systems.

[13] Hoare, C. (2004). Communicating Sequential Processes. Prentice Hall

International.

[14] Itabashi, G., Takahashi, K., Kato,Y., Suganuma T. & Shiratori N. (2004).

State Machine Specification with Reusability. IEICE Trans. Fundamentals,

Vol. E87-A, No. 11 November 2004.

[15] Itabashi, G., Takahashi, K., Kato,Y., Suganuma T. & Shiratori N. (2005)

Incremental Design of a State Machine Specification for Mobile and Real-time

Systems. Tohoku University.

[16] Jadalowen, I. (2010). SENG 613 lecture notes: Structured Analysis and

Structured Design. Retrieved on 28-3-’10 from the Internet:

http://pages.cpsc.ucalgary.ca/~jadalow/seng613/sasd_summary.html

[17] Linger, C. (1993). Cleanroom Process Model. Proceedings of the 15
th

International Conference on Software Engineering. IEEE Los Alamitos, CA.,

Computer Society Press, 1993.

[18] Linger, R. & Spangler, R. The IBM Cleanroom Software Engineering

Technology Transfer Program.

[19] Meyer, B. (1989). The new Culture of Software Development: Reflections on

the practice of object-oriented design. Proceedings of TOOLS 1989.

http://www.fsel.com/fdr2_manual.html
http://pages.cpsc.ucalgary.ca/~jadalow/seng613/sasd_summary.html

114 Bibliography | Improving Software Development

[20] Mills, H. (1988). Stepwise Refinement and Verification in Box-Structured

Systems. University of Florida, Computer, June 1988.

[21] Oshana R. (1998) An industrial Application of Cleanroom Software

Engineering – Benefits Through Tailoring.

[22] Oshana, R. & Coyle, F. (1997) Implementing Cleanroom Software

Engineering into a Mature CMM-Based Software Organisation.

[23] Oshana, R. & Linger, R. (1999). Capability Maturity Model Software

Development Using Cleanroom Software Engineering Principles – Results of

an Industry Project. Proceedings of the 32
nd

 Hawaii International Conference

on System Sciences, 1999.

[24] Pressman, R. (2005). Software Engineering: A Practitioner’s Approach. Sixth

Edition. McGraw-Hill. ISBN: 007-123840-9.

[25] Reulink, N. & Lindeman, L. (2005) Dictaat kwalitatief onderzoek. College 23

november 2005.

[26] Uchitel, S & Chechik, M. (2004). Merging partial behavioural models. ACM

SIGSOFT Software Engineering Notes. Vol. 29, Is. 6, November 2004.

[27] Verum Consultants B.V. Verum ASD:Suite 3.0.0 Version 4.0. User Manual

(2009).

[28] Verum Consultants B.V. Verum ASD:Suite. Course Material (2009).

[29] Zelkowitz, M. (1996). Software Engineering Technology Infusion within

NASA. University of Maryland.

115 Appendix A | Improving Software Development

Appendix A
Doel van dit onderzoek is het doen van aanbevelingen m.b.t. de introductie van een

nieuwe tool in een team. Meer specifiek: de introductie van Analytical Software

Design (ASD) in het Front-End Controller (FEC) team. Omdat voor een gedeelte van

het team de overgang op korte termijn gaat plaatsvinden is het niet mogelijk om

vooraf aanbevelingen te doen hoe dit het beste te begeleiden. Daarom zal de

introductie van ASD voor een selecte groep van het FEC team worden gevolgd of

gemonitord om de overgang van de grotere groep op een later tijdstip meer

gestructureerd te laten verlopen. Hiervoor worden de aanbevelingen opgesteld.

De vragen moeten antwoord geven op de volgende aspecten: de achtergrond van de

betrokken personen, het verloop van de omschakeling naar ASD, de implicaties voor

de werkzaamheden en organisatie, en hoe de omschakeling een volgende keer beter

kan verlopen.

De vragen over wat het voor personen persoonlijk en voor de organisatie betekent zijn

nogal vaag. Afhankelijk van hoe het interview verloopt kunnen deze begrippen als

volgt worden opgesplitst om deelvragen te stellen.

Persoonlijk:

- moeilijk om te leren,

- vast in een Object Oriented Programming (OOP) manier van denken,

- veranderende interactie met collega’s.

Organisatie:

- de huidige manier van werken,

- wat kan beter,

- wat ga je nodig hebben,

- betere software,

- snellere ontwikkeltijden.

116 Appendix A | Improving Software Development

<Inleiding: voorstellen en vertellen wat er met de antwoorden gebeurt.>

Achtergrond (voor deze ronde vragen

Wat voor opleiding heeft u genoten?

Waar hebt u gewerkt voordat u bij Philips begon?

Hoelang werkt u op deze afdeling?

Hebt u de pre-OOP tijd meegemaakt?

Bent u bekend met formele methoden?

 Zoja: welke formele methoden?

Bent u bekend met model-checkers?

 Zoja: welke model-checkers?

Hoe zien uw huidige werkzaamheden eruit?

Verwachtingen over ASD (terugkerende vragen)

Wat verwacht u van ASD voor u persoonlijk?

Wat verwacht u van ASD voor de organisatie?

Wat verwacht u van de invoering van ASD voor u persoonlijk?

Wat verwacht u van de invoering van ASD voor de organisatie?

Gaan uw dagelijkse werkzaamheden veranderen door de invoering van ASD?

Hoe staat u daar tegenover?

Voor alle bovenstaande vragen: waar zijn deze verwachtingen op gebaseerd?

Voorbereiding op ASD (voor deze ronde vragen)

Hoe heeft “de organisatie” u voorbereid op het gebruik van ASD?

Wie heeft u verteld dat ASD ingevoerd gaat worden?

Hoe is dat verteld?

Wat waren de argumenten voor het invoeren van ASD?

Hoe staat u tegenover deze argumenten?

Hoe zou u het liefst zijn voorbereid?

Kennis over ASD (terugkerende vragen)

Wat is de begeleiding die u hebt gekregen?

Hebt u een cursus gevolgd?

Wat hebt u opgestoken tijdens de cursus?

Sluit deze cursus aan bij de praktijk?

Hoe zou u het liefst zijn begeleid?

Overig (terugkerende vraag)

Ben ik nog iets vergeten te vragen wat u in dit verband toch aan mij kwijt wilt?

117 Appendix B | Improving Software Development

Appendix B
Doel van dit onderzoek is het doen van aanbevelingen m.b.t. de introductie van een

nieuwe tool in een team. Meer specifiek: de introductie van Analytical Software

Design (ASD) in het Front-End Controller (FEC) team. Omdat voor een gedeelte van

het team de overgang op korte termijn gaat plaatsvinden is het niet mogelijk om

vooraf aanbevelingen te doen hoe dit het beste te begeleiden. Daarom zal de

introductie van ASD voor een selecte groep van het FEC team worden gevolgd of

gemonitord om de overgang van de grotere groep op een later tijdstip meer

gestructureerd te laten verlopen. Hiervoor worden de aanbevelingen opgesteld.

Naast dat ik de teamleden ga volgen, ben ik ook geïnteresseerd in wat de

verwachtingen van het management zijn m.b.t. ASD en de invoering hiervan.

De vragen moeten antwoord geven op de volgende aspecten: het verloop van de

omschakeling naar ASD, de implicaties voor de organisatie, en hoe de omschakeling

een volgende keer beter kan verlopen.

De vraag over wat het voor de organisatie betekend is nogal vaag. Afhankelijk van

hoe het interview verloopt, kan dit begrip als volgt worden opgesplitst om deelvragen

te stellen.

Organisatie:

- de huidige manier van werken,

- de nieuwe manier van werken,

- voordelen ASD,

- nadelen ASD,

- wat kan beter,

- wat er is voor nodig,

- kwalitatief betere software,

- snellere ontwikkeltijden,

- beter stuurbaar,

- beter voorspelbaar.

118 Appendix B | Improving Software Development

<Inleiding: voorstellen en vertellen wat er met de antwoorden gebeurt.>

Globaal

Wat is uw rol binnen de organisatie?

Wat is uw achtergrond qua opleiding?

Kennis over ASD

Wat is volgens u ASD?

Wat zijn volgens u de voor- en nadelen van ASD?

Wat waren de argumenten voor en tegen het invoeren van ASD?

Hoe staat u tegenover deze argumenten?

Wie heeft besloten dat ASD ingevoerd gaat worden?

Zijn er alternatieve tools overwogen (zoals I-Mathic Studio van Imtech)?

 Zoja: waarom prefereert de ASD tool?

Wat zijn tot nu toe de ervaringen met ASD?

Verum

Hoe staat u tegenover Verum (het bedrijf dat de ASD levert)?

 Wordt de organisatie niet erg afhankelijk van Verum?

 Slechte onderhandelingspositie voor nieuwe licenties e.d.

 Wat als Siemens Verum inlijft?

 Wat als Verum failliet gaat wat hebben de modellen dan nog voor waarde?

Verwachtingen over ASD

Wat verwacht u van ASD voor de organisatie?

Wat verwacht u van de invoering van ASD voor de organisatie?

Hoe denkt u het overgangsproces te gaan begeleiden?

Gaan alle software developers over op ASD?

 Blijft er nog legacy code?

Wat als een software developer het conceptueel niet aan kan?

Voor alle bovenstaande vragen: waar zijn deze verwachtingen op gebaseerd?

Voorbereiding op ASD

Hoe hebt u “de organisatie” voorbereid op het gebruik van ASD?

Wie heeft besloten dat ASD ingevoerd gaat worden?

Hoe is dat gecommuniceerd?

Wat waren de argumenten voor/tegen het invoeren van ASD?

Hoe staat u tegenover deze argumenten?

Overig

Ben ik nog iets vergeten te vragen wat u in dit verband toch aan mij kwijt wilt?

