
Towards a modeling tool evaluation
method

A Radboud University Master Thesis - Information Science

Thesis number: 123 IK

Supervisor: Stijn Hoppenbrouwers

Author: Richard Willems - 0413410

19-03-2010

Abstract

In this thesis I will describe a new evaluation method, designed to evaluation the
quality of a modeling tool, based on how well it supports the user's interactions.
These interactions are based on the modeling language the tool is based on and
the heuristics developed in human computer interaction. The research in this
thesis was done using an extensive literature investigation using multiple books
and articles, and interviews conducted at the Data Architectures & Metadata
Management Group; a research group at the HAN applied sciences university.
The resulting evaluation method was then tested using a case study conducted
at the HAN applied sciences university during which several modeling sessions
were observed and evaluated using TAP sessions. According to the research
results, the evaluation method is promising, but there are still a few issues
which need to be resolved.

2

Contents

1 Introduction 5

1.1 General introduction . 5
1.2 Information on the Data Architectures & Metadata Management

Group . 5
1.3 Introduction to the thesis . 6
1.4 Relevance . 7
1.5 Research questions . 8
1.6 Research method . 9

2 FCO-IM and CaseTalk 10

2.1 Introduction to FCO-IM . 10
2.2 modeling in FCO-IM . 13

2.2.1 General Information modeling 13
2.2.2 Applying the Frederiks/van der Weide model to FCO-IM 16
2.2.3 . 17
2.2.4 Constraints in FCO-IM 22
2.2.5 Extra modeling aspects: Specialization and Generalization 25
2.2.6 Beyond FCO-IM . 26
2.2.7 FCO-IM versus ORM . 26

2.3 FCO-IM in CaseTalk . 27
2.3.1 General analysis of CaseTalk 27
2.3.2 CaseTalk from a HCI perspective 28

2.4 Analyzing CaseTalk . 38
2.4.1 Evaluating the heuristics 38
2.4.2 Conclusion based on the heuristics 43

2.5 Chapter conclusions . 46

3 General Evaluation Method 47

3.1 Introduction to the Problem . 47
3.2 Evaluation Method . 48

3.2.1 Evaluation Criteria . 48
3.2.2 Scoring . 51

3.3 Getting the Scores . 53
3.3.1 Performing a Survey . 53

3

CONTENTS 4

3.3.2 Performing a Think Aloud Session 54
3.3.3 Comparing the Survey and TAP methods 55

4 Case Study De�nition 57

4.1 Case Study Goals . 57
4.2 Case Study 1 - TAP Session . 57

4.2.1 TAP session description 57
4.2.2 Assigning the heuristics to use cases 59
4.2.3 TAP Session assignment 62

4.3 Case Study Population . 65

5 Case-Study Results 67

5.1 General impressions . 67
5.2 Experiment results . 69
5.3 Final score FCO-IM . 80

6 Conclusions & Future work 82

6.1 General conclusion . 82
6.2 Answering the research questions 83

Bibliography 84

Chapter 1

Introduction

1.1 General introduction

As a student of Information Science on the Radboud University Nijmegen you
are required to write a �nal master thesis to �nish your o�cial master program.
This report will be my master thesis which is supervised by Stijn Hoppenbrouw-
ers, an assistant professor at the Radboud University Nijmegen. I am grateful
to him for his assistance in �nding an appropreate topic for this thesis and pro-
viding invaluable insights on the subject matter. I am also grateful to lector
Guido Bakema from the Applied Sciences University of Arnhem and Nijmegen
(HAN) who has kindly allowed me to work at his research department and con-
sult him on various technical and organizatorial matters. All other members
and employees from the Data Architectures & Metadata Management group
were also very forthcoming in helping me complete this thesis.

1.2 Information on the Data Architectures &Meta-

data Management Group

The Data Architectures & Metadata Management group is a research group at-
tached to the HAN University of Applied Sciences located in the Dutch city of
Arnhem. For the last 15 years the HAN has played a major role in the research
area of information system development based on conceptual modeling, auto-
mated model transformations and fully meta-driven tool support. (as described
in [1]). To create one platform for these topics of research, the Data Architec-
tures & Metadata Management group was created. Its research is to be used
mainly in the world of higher education such as universities and organizations
in both the Netherlands and abroad.

The Data Architectures & Metadata Management group also o�ers courses
on various levels (as listed in [1]). First, there are the bachelor courses being
given in the HAN computer science program having to do with information

5

CHAPTER 1. INTRODUCTION 6

system design and domain modeling. Second, they teach a complete Master
program (in English) which is aimed at bachelor graduates from around the
world. This Master program aims at developing advanced modeling techniques
and skills. Third, evening courses are o�ered for employees from various com-
panies. These courses also focus on modeling techniques and strategies but
have more emphasis on skills rather then theory. Finally, the Data Architec-
tures & Metadata Management group o�er a minor (in English) called 'behind
the screens' and are working on developing a minor called 'information systems
development'.

The head of the group (called lector) is drs. Guido Bakema who is assisted
by associate lector ir. Eddy Luursema. Chris Scholten MSc is responsible for the
Master program and Jan-Pieter Zwart is head of promotion research into (and
using) the FCO-IM modeling language. More information on the group may be
found on www.han.nl/start/graduateschool/ onderzoek/lectoraten-kenniskringen/data-
architectures-metadata-management. To contact the Data Architectures &Meta-
data Management group, mail may be sent to the group's secretary at lia.venhof@han.nl
or at phone number 0031-(0)26-3658152.

1.3 Introduction to the thesis

In the world of system- and information modelling we see an enormous amount
of tools and modelling techniques. One of these modelling techniques is FCO-
IM, and the number one tool to work with FCO-IM is called CaseTalk. This
tool has been developed in conjunction with Guido Bakema who is also one
of the leading developers of FCO-IM. As a result of this cooperation we can
clearly see that the way CaseTalk works is very similar to the way FCO-IM
was actually designed, and that Bakema's way of thinking and modelling is
re�ected in both the interface and the work�ow of CaseTalk. While at �rst this
is seemingly a very good thing (after all, who would know better how to use
FCO-IM then its developers) but from a HCI and modeling point of view I do
not �nd this so obvious. No research has been done on how people actually
think about modelling and how this way of thinking is re�ected in the interface
and (more importantly) the work�ow of the program they are modelling with.
This opinion is shared by Guido Bakema and Stijn Hoppenbrouwers who have
decided to let me try and conceive a way of verifying to what extent a given
modeling tool re�ects the way people think about modeling in the way the tool
allows the user to create models.

The end result of this thesis will be a (very early and primitive) model on
how to measure a tool's ability to re�ect the way people actually think about
modelling while they are doing it and a trial investigation to verify the model and
provide a proof-of-concept. The model itself will be developed from the FCO-
IM/CaseTalk example. This means I will be using FCO-IM/CaseTalk as an
instance of a modelling approach and try to generalize from FCO-IM/CaseTalk
to modelling in general. However, the focus will be on FCO-IM/CaseTalk.

The evaluation model itself will be based on a combination of my own work

CHAPTER 1. INTRODUCTION 7

and insights, and the work done by [12] in the �eld of human-computer in-
teraction. More speci�cally: I will use the heuristics developed by [12] and
determine their e�ects on the modeling process itself. Then these heuristics will
be analyzed and a method will be given which will allow the user to perform
an evaluation of any modeling tool available and determine a grade (on a scale
from 0-to-10) for this method. The resulting grade can later be used to perform
a more extensive survey on the chosen tool, or to evaluate a number of tools to
determine which one is the best for a chosen modeling language.

Finally, in order to demonstrate the use and e�ectiveness of the evaluation
method I have developed, I will provide a case study in which I will use the
method to perform a more extensive validation of CaseTalk. This case study will
serve two goals. Firstly, it will allow me to perform a test run of the evaluation
method. It will serve as a test to determine if it is possible to get results for
the criteria I have devised given the fact that we are investigating modelers
who may not have the required knowledge and expertise when it comes to the
human computer interaction heuristics. Secondly, it will serve as an indication
for the people from the Data Architectures & Metadata Management Group on
how well CaseTalk is performing from a (for them) entirely new perspective:
human computer interaction. An investigation from this perspective has not
yet been performed on any version of CaseTalk (or its spiritual predecessors)
which makes it an interesting take for the developers to re�ect upon.

The general layout of this thesis is as follows: In chapter 2 I will provide an
introduction to FCO-IM and CaseTalk, and provide an evaluation of CaseTalk
from my perspective to introduce the evaluation method. In chapter 3 I will
describe the method I have developed for tool-veri�cation in a more general
context. Then, in chapters 4 and 5 I will �rst describe the case-study done to
verify the method and then provide the case study's results. Finally, in chapter
6 I will summarize my results and provide reference for possible future research
to improve on my results.

1.4 Relevance

Recently, literature regarding modeling has focused more on the modeling pro-
cess itself then it is still focusing on the end model. A good example is [14].
Even more recently, the concept of modeling through games is being explored in
literature. Examples of this include [10] and [9]. These articles mostly suggest
that the modeling process itself must be changed into a 'game' of some sorts
to improve the ease-of-use, and make it more entertaining for the modeler to
participate in the modeling process. Furthermore, two master thesis ([13] and
[16]) have also explored the use of an actual game to assist in an organization's
modeling problems and have actually provided a prototype of a modeling game.

Because of this, the question of evaluation a modeling process has become
much more important. Without a valid evaluation method, it is hard to ascer-
tain whether or not a certain modeling approach is better then the other. The
work actually done in this area is extremely sparse. While looking for valid

CHAPTER 1. INTRODUCTION 8

literature about the subject I found some articles discussing the modeling pro-
cess in general (such as [3]) but no work on evaluating the modeling process,
or an actual study on the modeling process. The lack of proper research on
this matter is especially strange if one looks on the vast number of modeling
approaches available, a situation which is referred as the YAMA syndrome in
[10]. Basically, the YAMA syndrome (Yet Another Modeling Approach) is a
pun on the YAWL (Yet Another Work�ow Language) acronym; which in turn
is just a joke as well. The two subjects are related, but the joke is a general one.
The authors in [10] are concerned by this YAMA syndrome from an operational
perspective as it appears that everyone who is doing some modeling will design
his or her own approach to it, and the lack of proper evaluation methods mean
that those approached cannot be judged better or worse then the ones they want
to replace.

Investigating the modeling process itself cannot be done without �rst looking
at the tool with which the actual modeling takes place. Of course, there may
still be some people who are doing most of their modeling using pen and paper,
but if a model is to be used in a real context one is almost forced to digitalize
the model in such a way that it may be interpreted by a computer. If the tool
with which this is done does not suit the user's needs, then it would have a
detrimental e�ect on the modeling process as a whole. To give an example: Let
us assume that a certain modeling tool has an interface which forces the user to
perform lots of interactions (such as clicking with a mouse, or typing) to even
complete the simplest task. This may lead to the user skipping certain parts of
the modeling process, or choosing a minimalist approach where this may have
not been the most e�cient course of action. The results on the actual model
are obvious: it will not be as good as it might have been, purely due to the fact
that the modeling tool used was not e�ective.

The lack of a proper evaluation method for such tools combined with the
development of game modeling and the YAMA syndrome indicate that this
thesis is relevant for the chosen �eld. Even if the method described in this
paper is only in a very early stage it could still serve as the basis for more
research into modeling process evaluation. Also, the case study will provide
some examples of how people go about the modeling process which might serve
as future reference when thinking about modeling process quality.

1.5 Research questions

To summarize what I have stated earlier, I have devised a two distinct research
questions and related sub-questions. Those are:

1. How can we analyze a modeling tool from an HCI perspective?

• What HCI perspective could be best used for analyzing a modeling
tool?

• What aspects from this perspective are relevant to the modeling pro-
cess itself?

CHAPTER 1. INTRODUCTION 9

• How can we adapt this perspective and perform an evaluation of a
modeling tool so that it results in a numerical value which may be
further used in statistical research?

• How does the proposed evaluation method perform in a case study?

2. How can we use the evaluation method devised in question 1 to analyse
CaseTalk?

• How does modeling in FCO-IM work?

• How is this modeling approach inplemented in CaseTalk?

• What sort of case study on CaseTalk would yield the best results to
use the evaluation method?

Please note that the research questions will be answered more or less in the
order they are presented here, but to improve the readability of this thesis I
have to discuss some of the sections dealing with the various research questions
in another order. In chapter 6 I will list all the questions again and refer to the
section that answers them.

1.6 Research method

To answer the questions posed in the previous section, I have used a two-fold
research approach. First of all, I conducted a thorough a literature research to
try and get an overview of the state-of-the-art, and to develop a deeper insight
in the way the �eld of HCI looks at interactions. This research was conducted by
reading literature from acknowledged scienti�c sources, and talking to experts
on the �elds relevant for this paper.

The second part of this thesis will be about a case study. I have conducted
this research myself, by �rst setting up the experiment based on the conclusions
of my literature research. A more complete overview may be found in chapter
4 The evaluation of the case study results was done from two perspectives:
The �rst perspective was the one posed in the chapter 4 and had to do with
the actual performance of CaseTalk. However, the second perspective (which
is more relevant in this case) had to do with how well the case study itself
performed. These conclusions may be found in chapter 6.

Chapter 2

FCO-IM and CaseTalk

In this chapter I will provide an extensive literature analysis on FCO-IM, CaseTalk
and modeling in general. I will also provide an introduction on the evaluation
method developed by myself which is based on the work of Nielsen [12]. FCO-
IM will be explained step by step and all these steps will then be explained in
the context of CaseTalk. This will provide an overview of how CaseTalk can be
used to perform FCO-IM modeling. The evaluation of CaseTalk will be done
(in this chapter) by myself to provide an introduction to the evaluation method.
This method will be generalized in chapter 3 and will be used to further evaluate
CaseTalk in chapters 4 and 5.

One note of caution: Both FCO-IM and its direct predecessor NIAM are
Dutch research projects, and therefore a lot of documentation is originally in
Dutch. This means that some of my sources are written in Dutch and direct
citations from these sources will be in Dutch as well. All translations provided
in this document are done by me and checked by Stijn Hoppenbrouwers. We
are solely responsible for any errors in translation leading to misintepretation
of the facts.

2.1 Introduction to FCO-IM

FCO-IM (or: Fully Communication Oriented Information Modeling) is best
summarized by the authors themselves in [2], where they state their main prin-
ciple to be: "FCO-IM beoogt niet de werklijkheid zelf te modelleren, maar de
communicatie over de werkelijkheid." Or, to translate into English: "FCO-IM
does not try to model reality itself, but rather communication about reality".
This means that it tries to distantiate itself from the more traditional modeling
languages which try to model reality based on 'raw' data such as fact types or
object types (ORM, or UML) and instead focus on modeling the "ideas about
reality". These ideas about reality will then lead back to the more traditional
elements as mentioned earlier.

The �rst attempt to create such a modeling approach was done in the Nether-

10

CHAPTER 2. FCO-IM AND CASETALK 11

lands and was called NIAM which stands for Natural language Information
Analysis Method. This method was originally developed by G.M. Nijssen. In
[4] the author explores NIAM in more detail and concludes that it is better to
investigate facts about reality and derive reality itself from those facts. This
was also concluded in [2]. One of the main conclusion from NIAM was that
in order to facilitate 'representing reality through facts' it was necessary to de-
velop 'representative examples' for reality and simply use natural language to
represent them. Basically: sentence representation for facts. This is still what
FCO-IM is based on.

But FCO-IM itself goes much further than NIAM did. NIAM simply col-
lected the natural language sentences, distilled some fact-, object- and related
types from it, and we were back at ORM with a di�erent source. FCO-IM on
the other hand also works on the sentences themselves. In fact, FCO-IM allows
for the creation of a fully �edged information grammar which is modelled into
the resulting end model.

The end model itself in FCO-IM is very similar to an ORM model, and
anyone familiar with ORM will be able to recognize the FCO-IM model imme-
diately and start interpreting what it shows. However, FCO-IM people decided
to call the resulting diagram an 'information grammar diagram', or IGD for
short. An example is shown in �gure 2.1. In this illustration we can see both
the similarity with ORM and the main di�erences. The biggest di�erence is
noticable in the lettering near the object- and facttypes. Instead of simply
showing the (possible) content of those types, they show the sentence (in plain
English) which led to the creation of that type. These are called the 'factual
sentences' and denoted by F*. Beneath those sentences you can see the exam-
ple instances which lead to those sentences becoming fact types. Finally, the
O* denote the objecttype-expressions which have been identi�ed through the
modeling process. More information on how this works can be found in section
2.2. .

As a �nal note I would like to point out another advantage of FCO-IM over
most other modeling languages. One of the great challenges faced by anyone
making models is the fact that the persons you are usually building them for
(i.e. business people) don't have a clue on how to intepret models. Therefore, a
lot of information regarding the model may be lost in translation, and therefore
your customer (who is also your domain expert) has no way to validate the
model you designed. With FCO-IM on the other hand, this problem is reduced.
Since in your actual IGD the factual sentences are still represented, it is easier
to understand for someone with no modeling experience. This means that the
domain expert will be more capable in pointing out any factual errors you may
have left in your model which leads in the end to a better model overall. This
can be done with other modeling approaches as well, but these tend to come
up with semi-formal sentences which might still be di�cult to understand by
your domain experts. FCO-IM still uses completely natural language sentences
so this problem does not occur.

To summarize this section it is worthwhile to quote [2] who have come up
with the principles of FCO-IM, and list them as follows: (translated from Dutch

CHAPTER 2. FCO-IM AND CASETALK 12

Figure 2.1: An example IGD

CHAPTER 2. FCO-IM AND CASETALK 13

by myself)

• FCO-IM does not try to model reality itself, but rather the communication
about reality

• FCO-IM has to model all aspects of communication which have to support
the information system, but nothing more than that

• The domain expert has to be able to validate that all his communication
is actually modelled in and FCO-IM information grammar

• FCO-IM information grammars and relational schemas have to be viewed
with one and the same FCO-IM diagram technique. (the IGD standard)

2.2 modeling in FCO-IM

2.2.1 General Information modeling

To develop a method for evaluation the quality of an operational modeling
process, we must �rst gain a deeper understanding of the modeling process itself.
A general framework to describe the modeling process has been developed in
Frederiks and van der Weide [3] which I will use as a basis. However, I will
change the model in some aspects as I will explain in this section. This is due
to the focus on FCO-IM for my method.

Basically, Frederiks and van der Weide [3] break the modeling process down
into three distinct steps: elicitation, modeling and validation. These steps to-
gether form the modeling cycle. The �rst step, elicitation, is about gathering
information from the domain. During this step, the domain experts and stake-
holders have to be consulted to �nd all the relevant information. This step also
involves identifying the universe of discourse and thereby narrowing down your
domain as much as possible. Using the domain experts and stakeholders, the
modellers have to summarize this information using natural language as much as
possible. This is of course due to the fact that using natural language it is very
easy to verify the information with the domain experts and stakeholder who are
generally not very �uent in any formal language. A downside of course is that
natural language tends to be ambiguous which might result in a situation where
the domain experts and the modellers think they have come to an agreement,
but are instead thinking about two entirely di�erent implementations of what
has been written down.

In Frederiks and van der Weide [3] this step has been identi�ed as being
singular. In other words: Once this step is completed it is not repeated in
their model. This is due to the assumption that domain experts cannot speak
the formal language used in the actual modeling process, and that therefore
the domain experts can simply not play any signi�cant role in verifying the
model. However, given what we will see on FCO-IM in section 2.2 this does not
necessarily hold true anymore. As modeling methods evolve and include natural
language in the actual model, I propose that the elicitation step is included in

CHAPTER 2. FCO-IM AND CASETALK 14

the entire cycle as even domain experts should be able to assist in validating
the model itself. The end result may be seen in my modi�ed overview in �gure
2.2. As for the product of this step, this is not changed: The elicitation step
should still end with a speci�cation in natural language of the problem area.

To further make things clear, Frederiks and van der Weide [3] have de�ned
three sub-steps within the elicitation process which should be followed in order.
Those steps are: Collect signi�cant information objects from the application
domain, verbalize these information objects in a common language and refor-
mulate the initial speci�cation into a unifying format. I believe these steps are
still valid, but another one should be added when the elicitation step is done in
the modeling cycle: Verifying the model. I will place this step in �gure 2.2 and
with this step I mean that the stakeholder should (with the assistance of the
modeler) examine the formal model and give comments on it which might (or
might not) change the speci�cation made in natural language.

The second step is called modeling. As the name suggests this is the main
step of the modeling process. The de�nition given in Frederiks and van der
Weide [3] is: "the intention of the modeling phase is to transform an informal
speci�cation into a formal speci�cation". To be more precise: In the modeling
step we try to transform the informal speci�cation in natural language gained
in the �rst step into a formal speci�cation which adheres to the rules and reg-
ulations set for the chosen modeling method. During this process, the domain
experts and stakeholders are of course not involved in any way. They simply
lack the skills and training required for this step.

Again, Frederiks and van der Weide [3] have given us two sub steps to further
de�ne the modeling step: Discover signi�cant modeling concepts (syntactical
categories) and their relationships and match sentence structure on modeling
concepts. Basically this mean the modeler has to Analise the information he
is presented with and try and �nd categories in them under which a lot of the
instances can be grouped. If we use FCO-IM as an example, we are looking for
the elements in our sentences which are categories. It is in this step that the
natural language ambiguity becomes dangerous: Concepts have to be found and
given a meaning. If the informal speci�cation was unclear or misunderstood by
the stakeholders and domain experts we can end up with a model that does no
longer re�ect reality in such a way that the domain experts and stakeholders
can agree with it.

The third step is validation. In Frederiks and van der Weide [3] this step
is de�ned as being done completely by the modeler. He or she should generate
phrases from the model and then verify these phrases using the informal spec-
i�cation, and then analyzing if the model still represents the reality as de�ned
in the informal speci�cation. However, as I have stated before I do not believe
in this approach, and a modeling method like FCO-IM gives us the possibility
to involve the stakeholders in the validation process as well. Therefore, I pro-
pose that as part of the validation step the domain experts and stakeholders
should be involved in the validation process on two levels: First to see if the
model re�ects the reality of the informal speci�cation. This should help to re-
duce ambiguity because of the natural language as well, since both parties are

CHAPTER 2. FCO-IM AND CASETALK 15

Figure 2.2: The modeling process, based on Frederiks and van der Weide [3]

involved. Second, the stakeholders and domain experts might have gained some
new insights on what they want and do not want (because they were working
on the model) which might lead them to change the informal speci�cation as
well. Again, this will be further clari�ed in �gure 2.2.

Finally, after step three we can decide if the model is �nished or not. If not,
then the sequence should be repeated following the patterns laid out in �gure
2.2. If so, then the model is in compliance with both the stakeholders and the
modelers and it can be considered a �nished product.

In �gure 2.2 the modeling process is graphically explained. Please note that
I have adapted the work of Frederiks and van der Weide [3] and changed it to
meet my own criteria. As we can see, the process still starts at the elicitation
step. This step results in the informal speci�cation written in natural language.
The second step is also still the modeling step, resulting in the formal model.
Finally, the third step has been changed. I have called it the validation step (as
explained earlier). During this step the modeler, together with the stakeholders
and domain experts, analyzes the model and the informal speci�cation to �nd
out if the two are still in conjunction. If so, then the �nal model is delivered. If
not, we go back to the elicitation step and start from there again.

CHAPTER 2. FCO-IM AND CASETALK 16

2.2.2 Applying the Frederiks/van derWeide model to FCO-
IM

As I have stated earlier, the main basis for the modeling process evaluation
method will be the FCO-IM modeling approach. Therefore I will �rst apply the
FCO-IM modeling approach, which will be described in great detail in section
2.2.3, to the adapted Frederiks/van der Weide model described in section 2.2.1.
Please note that for people who are unfamilair with FCO-IM and even ORM
in general, I advise to read section 2.2.3 �rst as it will discuss some of the ter-
minology used in this modeling approach which is also relevant for this section.
To continue, I will take the three steps identi�ed in the adapted Frederiks/van
der Weide model (AFW) and list the FCO-IM steps related to them. This will
result in a clearer de�nition of the modeling process advocated in FCO-IM. In
chapter 4 I will use these results to develop the evaluation method for the case
study.

The �rst step in the AFW model is the elicitation phase. To reiterate: In
this step we take the information from the domain (by using domain experts,
stakeholders or literature research) and form a de�nition of the universe of dis-
course (the valid domain) in natural language. This we have called the 'informal
model' in �gure 2.2. In FCO-IM this step is exactly the same. Through discus-
sions with the relevant people, the 'starting document' (see Bakema et al. [2]
and section 2.2.3 for more information) is to be generated: A sort of informal
model in natural language which is to be understood by both the domain ex-
perts and stakeholders, and the modelers who are going to develop the formal
model. In FCO-IM this step can be considered even more important as it will
also form the basis for the fact sentences and eventually the constraints.

The second AFW model step is the actual creation of the formal FCO-IM
model. By this we mean everything from generating the LTL-fact-type expres-
sions to applying constraints on the IGD. The methods for this process will be
further de�ned in section 2.2.3, but I have summarized these steps in �gure 2.3
. The parts where the domain experts and/or stakeholders can o�er their input
are de�ned in step three, as this is part of the validation and evaluation process.
FCO-IM's end model is considered to be the actual IGD (with constraints), but
the formal natural language model (containing the OTL-FTEs, the LTL-FTEs)
can be considered a very important intermediary result and therefore I consider
it to be an actual product of the FCO-IM modeling process. The fact sentences
are not usually considered part of the FCO-IM model, as de�ned by Bakema
et al. [2] and ?].

The third and �nal AFW model step is the validation phase. In this phase
the model is veri�ed in two ways: Internaly and externaly. The internal valida-
tion is done by the modelers themselves. For FCO-IM this means that they go
back to the informal speci�ciation and compare it to the formal language model
and the IGD. They will �rst have to decide for themselves if the �nal IGD meets
the speci�cations of the formal language model, and then in turn if the formal
language model meets the speci�cations of the informal speci�cation. When this
is con�rmed the domain experts and stakeholders will (together with the mod-

CHAPTER 2. FCO-IM AND CASETALK 17

Figure 2.3: The FCO-IM modeling process and resulting data

elers) verify the same things, a step which we call the external validation. This
means that again the IGD is discussed with them (and explained where needed)
and compared to the formal natural language model. Because of FCO-IM's use
of natural language, external validation is possible at all. In a fully technical or
abstract model, external validation of the model itself is impossible due to the
lack of understanding (generaly) by stakeholders and domain experts. Finally,
the domain experts are once again asked to verify the informal speci�cation as
well.

When the �nal step is completed, the modelers will have to decide (in con-
junction with the domain experts and/or stakeholders) if the model can be
considered complete. If so, then the most recent model can be called the end
result. If not, we go back to the elicitation step again and try to improve the
model were necessary. Please note that in subsequent runs of the model, certain
steps may be skipped if agreed upon by the modelers and domain experts.

2.2.3

Modeling in FCO-IM is not so much about modeling data (although in the
end you will end up with it) but much more about modeling communication,
as has also been made clear in section 2.1. The process of modeling in this
fashion was �rst made (more or less) explicit with the work in [6], although
this early method focussed more on actually modeling the facts which resulted
from communication rather then the communication itself. So, communication

CHAPTER 2. FCO-IM AND CASETALK 18

was a tool, not yet a goal. [6] were however very optimistic about the way
interfaces and computer interaction would be modelled. In their work they
claim that by the end of the 1990s computers which worked with formal natural
language (what they call 'the �fth generation') would be comercially available.
This has not come to pass, unfortunately, but their work was taken over and
improved upon by the FCO-IM group. Using FCO-IM to model, you still are
not able to use actual natural language as machine input, but it does give you
the tools to strictly translate the natural language into a formal model which
the computer can understand. Basically, an intermediary between the human
and the machine.

Now before I explain the modeling method used in FCO-IM I would like
to put forward a disclaimer: Everything explained from here on downward is
actually the current view held by the designers of FCO-IM and the people who
develop CaseTalk. This may or may not be the actual optimal method to model
communication; that problem will explored in chapter 5 and 6. However, it is
the basis from which I developed the research method presented in chapter 3,
so it will be explained in some depth.

The �rst step to model communication through FCO-IM is obtaining a 'start-
ing document' from your domain expert(s). This document should contain all
relevant information and information processing processes. This document is
written in natural language. The next step is to obtain instances for all the
objects and lists mentioned in the starting document. These instances will later
be used to develop the factual sentences so it is important to be thorough here.

The next step in the modeling process is the so-called classi�cation/quali�cation
phase (which may be abbreviated to ClaQua). The purpose of this phase is to
�nd all the object-type level fact-type expressions, which is abbreviated to OTL-
FTEs. From these OTL-FTEs we can derive the label-type level fact-fact type
expressions which we shall abbreviate to LTL-FTEs. The combination of these
two groups of expressions can be considered an intermediary result for the FCO-
IM modeling process. The authors have not named this intermediary result so
in the future I will refer to it as the 'formal natural language model'.

To start the ClaQua procedure we �rst have to go back to the fact sentences.
The �rst step in the ClaQua procedure is to classify your facts. By classifying
facts we mean identifying the fact sentences which refer to the same fact and
grouping them together. For example, let us assume that we have four fact
sentences:

• There is a criminal Jan Janssen

• There is a criminal Piet Pietersen

• There is a crime assault

• There is a crime murder

If we wanted to classify these four sentences we could identify two distinct
categories. The �rst two sentences all refer to some criminal, while the third
and fourth sentence refer to some crime. This means that these two groups

CHAPTER 2. FCO-IM AND CASETALK 19

of sentences seem to indicate two distinct facts. Identifying these facts is the
essence of this �rst quali�ciation step. Notice however, that �nding these fact
categories might not be as easy as my example. The domain expert will most
likely not provide the information so rigidly as I did. It is up to the modelers
to �nd groupings which are both relevant and real.

Next, we need to identify our label type level fact type expressions or LTL-
FTEs. LTL-FTEs are sentences stating facts in which the variables are identi�ed
and named. This is the quali�cation phase of the ClaQua approach. Bakema
et al. [2] advise to use instances, remove the actuall instances and name the
remaining open spots, but there is no real clearly de�ned method for getting
from the instances to the LTL fact-type expressions. A LTL fact-type expression
could look like this: "F1: '<�rst name><last name> has been found guilty of
<crime>'". We see that the �rst- and last name of the person in question is
a variable and so if the crime this person has committed. This fact-type is
therefore about a committed crime. To skip ahead: This sentence is actually
just a database structure which states that a certain crime event is identi�ed by
the person who did it and the crime which has been committed. Some concrete
rules apply to what exactly the sentences should look like and what rules apply
to writing them down, but it is beyond the scope of this thesis to discuss them
in any great detail. For further information I would advise to read Bakema et al.
[2] and ?] (both in Dutch), both of which contain details and examples.

After the LTL fact type expressions are de�ned the ClaQua approach enters
it's second phase. In this second phase we again classify and qualify, but this
time we focus on �nding any possible object-type expressions (OTEs) and label-
types (LTs). These object-type expressions are speci�c parts of sentences which
always identify the same object, and may consist of any combination of �xed
parts and variables. It would be prudent however to only identify object-type
expressions which occur more then once otherwise everything could be identi�ed
as objects. For example, it is logical to assume that a person will occur more
then once. Therefore, we could write an object-type expression to say this. We
would write it as: "O1: '<�rst name><last name>'". Now using this, we could
re-write our F1 as: "F1: '<Person:O1> has been found guilty of <crime>'".
Again, more rules apply here and I again refer you to the aforementioned liter-
ature.

Finaly, label-types (LTs) are where we keep the actual instances which were
used in the fact sentences. So if we consider the example of a person, the label
types which would make up a person could be called '�rst name' and 'last name'.
To summarize: Finding the OTEs and LTs is the classi�cation phase, naming
them is the quali�cation phase.

In order to illustrate the method mentioned above, consider the following
example regarding criminals and their sentences. First we 'ask' the domain
expert to provide some statements. That �rst phase has been left out. Next we
summarize the statements according to their fact type and derive the �rst LTL
fact-type expressions from them:

• Fact sentence

CHAPTER 2. FCO-IM AND CASETALK 20

� 'there is a criminal Jan Janssen'

� 'there is a criminal Piet Pietersen'

� 'there is a crime assault'

� 'there is a crime murder'

� 'Jan Janssen has been found guilty of the crime assault'

� 'Piet Pietersen has been found guilty of the crime murder'

� 'crime assault warrants 10 years in prison'

� 'crime murder warrants 40 years in prison'

• First LTL fact-type expressions

� F1: 'there is a criminal <�rst name> <last name>'

� F2: 'there is a crime <crime category>'

� F3: '<�rst name> <last name> has been found guilty of crime
<crime category>'

� F4: 'crime <crime category> warrants <prison time>'

Now from those �rst LTL fact-type expressions we derive the object-type ex-
pressions and then substitute them in the �rst set of LTL fact-type expressions.
This will get us the object-type level fact-type expressions, or OTL-FTEs:

• OTL-FTEs

� OTEs

∗ O1: 'criminal <�rst name> <last name>'

∗ O2: 'crime <crime category>'

� LTL fact-type expressions

∗ F1: 'there is a criminal <�rst name> <last name>'

∗ F2: 'there is a crime <crime category>'

∗ F3: '<Criminal:O1> has been found guilty of <Crime:O2>'

∗ F4: '<Crime:O2> warrants <prison time>'

Once this step is completed and agree upon, the next step is to create an infor-
mation grammar diagram (IGD). As stated and illustrated before, this diagram
looks a lot like a regular ORM diagram, with the main di�erence that the infor-
mation grammar is represented through the use of sentences. These sentences
are positioned near the fact- and object-types for which they are relevant. The
following example and its supporting illustrations assume that some knowledge
of ORM is available. I will not discuss the details of ORM in this thesis. A very
basic guide to ORM may be found at http://www.orm.net/pdf/orm-emm98.pdf.

To design the IGD a few things have to be considered. All OTEs become
object-types. These circles are populated by the elements which are contained

CHAPTER 2. FCO-IM AND CASETALK 21

Figure 2.4: IGD from the 'crime' example

within the object-role type. In my example we can see that a 'criminal' is
identi�ed by his �rst- and last name. This means that the 'criminal' object-
type will be created by joining a �rst- and last name as well. A 'crime' is
constituted of just a crime category and therefore the object-type will also be
built by just a crime category. The LTL fact-type expressions will become fact-
types which are constituted by all the elements contained in the sentence. For
example, F3 (the sentence concerning a judgment) will become a fact-type made
by joining a criminal with a crime. All variables which are not speci�c object-
types become label-types which contain the actual instances. The IGD derived
from my example can be seen in �gure 2.4.

CHAPTER 2. FCO-IM AND CASETALK 22

2.2.4 Constraints in FCO-IM

The �nal step in creating a simple FCO-IM model is to identify and apply the
constraints which are to be put on the IGD. Again; constraints used in a FCO-IM
IGD are very similar to the constraints used by ORM. Constraints are generally
needed to satisfy two demands: Make sure to model what the domain expert
wants and prevent redundancy in your data. Without constraints, neither of
those requirements may be ful�lled. For example, let us look at the 'criminal'
example again. What is to prevent us from from creating another tuple like:
'crime assaults warrants 20 years in prison'. In the model, this means that
we add 'assault' to label-type <4>, creating redundancy because it is already
there and '20 years in prison' to label-type <5>. Now we have violated both
the non-redundancy requirement and a domain requirement; the crime 'assault'
now has two sentences! This must be prevented and it is there that we start to
use constraints.

Constraints in FCO-IM are of course derived from domain expert. To �nd
them we have to go back to the original design document again and analyze it
again. Constraints are sentences in which conditions and rules are described.
It is necessary for the modeller to gain some experience in actually �nding the
constraints as they may be hidden in the domain expert's information. FCO-IM
o�ers little formal help to �nd constraints, and the procedures handed down by
the designers also o�er little information on how to actually �nd the constraints
given the domain expert's design document. Discussions I had with FCO-IM's
designers indicate that they consider this a separate �eld of requirements gath-
ering and have therefore not invested a lot of time in �nding a general approach
that works well for FCO-IM. They have however, developed some procedures
per constraint which I will refer to when discussion the constraint in question.

All constraints in FCO-IM are modelled onto the IGD, so the LTL fact-type
expressions and the OTEs are not changed. The �rst commonly used constraint
in FCO-IM IGD models is the so-called value constraint (VC). These constraints
are applied to label-types and de�ne the values which may be entered into this
speci�c label type. For example, if we look at my example again we can see the
label-type 'prison time'. It is logical to assume that this label type may not just
contain anything. Prison sentences are probably in years (in my example, that
is) and therefore we must re�ect this fact in the IGD as well. In FCO-IM this
constraint is applied by providing the set of available instances and putting it
between brackets. To illustrate the 'prison-time' example (assuming all prison
sentences are handed out in years and may range from 1 to 100 years in prison):
{1...100}. The graphical representation can be found in �gure 2.6. Please note
that the number (1 in the example) just indicates the index of that constraint
and has no bearing on the constraint itself.

The second constraint used in FCO-IM is the uniqueness constraint (UC).
This constraint is applied to roles as opposed to the value constraint which is
applied to label-types. The main purpose of this constraint is, as the name
suggests, to force uniqueness on one or a combination of roles. For example, in
the criminal example we can now have a crime with two or even more sentences

CHAPTER 2. FCO-IM AND CASETALK 23

Figure 2.5: Graphical representation of a value constraints

Figure 2.6: Graphical representation of a uniqueness constraint

attached to them. The domain expert will tell us that this is wrong, as a crime
can only have one sentence. Therefore we could use the uniqueness constraint
over role <4> which would force the user to only use every crime once. Now the
fact statements 'crime murder warrants 40 years in prison' and 'crime murder
warrants 50 years in prison' would be in violation of the constraint and made
illegal in the model. On a side note: It is up to the actual implementation
of course to further decide what to do with the illegal facts. FCO-IM has no
clear guidelines on this. To visually denote this constraint in the IGD we put
an arrow over the role (or roles) the UC concerns. Our example constraint in
the IGD would look as depicted in �gure 2.6. Again: The number is simply to
label the constraint and means nothing for the constraint itself. To force a UC
on a combination of roles one can simply draw an arrow over the multiple roles
it is concerned with, or use the inter fact-type UC which is denoted as a line
connecting the two roles with in the middle a circle containing the letter U for
uniqueness. FCO-IM demands that each fact type has at least one uniqueness
constraint present to prevent redundancy, as stated in Bakema et al. [2]. This is
in line with the FCO-IM principle listed in section 2.1. FCO-IM's designers did
put some procedures together to �nd and deploy the UCs for a given domain.

CHAPTER 2. FCO-IM AND CASETALK 24

Figure 2.7: Graphical representation of a totality constraint

These can be found in Bakema et al. [2] sections 3.2 and 3.3..
I would like to introduce a critical remark here. FCO-IM's policy to force

uniqueness constraints on at least one role in every fact type is based on imple-
mentation. In a database you want to have a unique identi�er in every table
to base the indexing on (primary key). This seems to be what FCO-IM does
by demanding at least one UC. However, if we look at the model itself we can
see that some fact types should not have a UC at all. The criminal fact-type
for example. Why is a combination of �rst- and last name not allowed to occur
more than once? Or just the �rst name? Or the last name? It is entirely con-
ceivable to have two criminals with the same name. In that case, a non domain
identi�er (like a criminal identi�cation number) could be introduced to solve
the problem of identi�cation, but the model should in my opinion not force it
onto the modeller.

The next constraint I will discuss is the totality constraint (TC). This con-
straint is to indicate that all values in a given object-type have to appear in the
fact-type they are connected to. For example, it is logical to assume that, unless
you are living in some dictatorship, all crimes should have a sentence attached
to it. To model this in the IGD we simply put a black dot at the line going
from the object-type to the fact-type we want to put the totality constraint on.
Figure 2.7 shows how this constraint is added to the IGD. TCs may be added to
a role, but also to multiple roles. In that case we get a multiple role TC which
is represented by a line between the roles with a circle in the middle which
contains a black dot. In Bakema et al. [2] and ?]you can �nd the procedures
for systematically �nding and de�ning TCs.

Finally, there are a number of smaller constraints in FCO-IM IGDs that I will

CHAPTER 2. FCO-IM AND CASETALK 25

discuss only brie�y, and will not illustrate with examples. The �rst constraint
of this type if the subset constraint (SC). This constraint is used to indicate
that the instances of a role (or set of roles) must be a subset of another role (or
set of roles). In the diagram this is denoted as an arrow pointing from the role
(or set of roles) which is to be the subset to the role (or set of roles) which has
to contain the full set. The arrow branches when referring to more then one
role. I �nd the use of this constraint to be debatable as it does not really seem
to force anything at all. It merely illustrates a fact that just happens to be in
the domain but this opinion is of course open to debate.

The second smaller constraint I will discuss is the equality constraint (EC).
As the name suggests, an EC means that two roles (or set of roles) have to have
the exact same set of values. In an IGD this can be denoted as a SC with a
double arrowhead, or as a two TCs which would mean the same thing. ECs
which are redundant are not drawn at all.

Finally, the last minor constraint is the cardinality constraint (CC). This
constraint may be applied to a role or set of roles and indicates how many times
a given value (or set of values) has to occur. This overrides the uniqueness
constraint which may be seen as a CC with a value of one. In the IGD a CC
is denoted as drawing a line from the role (or set of roles) it is relevant for and
having this line and in a circle which contains '=n' where n is the value you
wish to give to the CC.

All the aforementioned constraints ful�ll the principles described in section
2.1 and allow for a clear and complete IGD to be formed out of the information
presented by the domain experts. More information on techniques to verify this
IGD and how to present it to the domain experts and stakeholders can be found
in Bakema et al. [2] where a larger example and a complete overview of all the
material discussed in sections 2.1 and 2.2 can be found as well.

2.2.5 Extra modeling aspects: Specialization and Gener-
alization

One �nal aspect of FCO-IM modeling I wish to discuss is the matter of special-
ization and generalization. Although these two tools are not really needed to
create a complete and functional IGD, they can be used to greatly clarify the
IGD and even make it easier to work with it. Let us consider the example of a
person to illustrate the issue. A person may be of gender male or female. By
just putting this into a fact-type we can illustrate this fact, but if we want to
continue working with this fact (so male or female only) it requires us to write
a lot of constraints and derived fact- and object-types. It is easier to create a
subtype which contains a subset of its supertype. In this case, the supertype
would be 'persons' and the subtype could be 'male'. In this subtype you could
put the population of 'persons' who are male, and continue working from this
subtype as if it were an object-type itself. The population of this subtype could
be derived by stating a fact-type 'male' and using that population to �ll the
subtype. The greatest advantage of this is that you can build an entire IGD
for the male population without having to consider how you got it. This sim-

CHAPTER 2. FCO-IM AND CASETALK 26

pli�es everything from constraints to data gathering to eventually creating the
relational schema out of it.

The second aspect, generalization, is of course the exact opposite of special-
ization. You take a couple of fact-types and create a '�ctional' object-type out of
it. With �ctional I mean that you just take a combination of facts which are not
explicit in the universe of discourse, and generalize them into one object-type
which can then be connected to other elements in the IGD. Again, generalization
is to assist in making the resulting model as clean and clear as possible.

Specialization and generalization can always be avoided if so desired. This is
stated in Bakema et al. [2], ?] and Halpin and Nijssen [6]. They simply provide
a way to help the modeller to make his or her model as clear as possible by pro-
viding tools to simplify the diagram. For FCO-IM, using specialization and gen-
eralization is recommended, but the resulting relational schema (and therefore,
the resulting database) will be the same, whether specialization/generalization
is used or not.

2.2.6 Beyond FCO-IM

When the IGD is complete in terms of domain information, there is another
step which is recommended by the developers: Carry out tests to make sure the
IGD only contains elementary fact-types. The resulting IGD will then be called
an elementary IGD. From this IGD one can derive a relational database scheme
which in turn is used to develop an actual database implementing the domain
rules described in the IGD. The method used to do this is called the GLR
algorithm which stands for grouping, lexicalizing and reducing. Describing this
method is, however, beyond the scope of this thesis since I want to focus purely
on the modeling itself. However, the GLR algorithm is a valuable component
of the FCO-IM methodology since it allows the theoretical models to be put
into practice, thereby greatly increasing the actual usefulness of FCO-IM in an
organization. The relational database schema may in turn be converted into an
actual database using SQL. This is also beyond the scope of this thesis. For now
it is su�cient to know that this functionality exists and that it may be used to
make FCO-IM useful in a real, organizational context.

2.2.7 FCO-IM versus ORM

In this �nal section on FCO-IM itself I would like to clarify a few di�erences
between normal ORM and FCO-IM IGDs and why the two are not completely
interchangeable. The biggest di�erence is in the use of object-types. In ORM
pretty much anything can be an object-type, but more importantly: An object-
type may exist by itself. In FCO-IM on the other hand, an object-type can
only exist as an objecti�cation (in ORM terminology) of fact-type. All other
things are label-types. This means of course that an object-type in FCO-IM is
guaranteed to actually mean something, and that it is much clearer what the
object-type means. On the other hand, it forces the modeller to specify each
and every object-type as a combination of facts which may make the model too

CHAPTER 2. FCO-IM AND CASETALK 27

Figure 2.8: An example LTL expression in CaseTalk

complex. In Halpin [5] this is stated as well, but it goes on to say that ORM
roles are relatively free and may be used throughout your diagram. However, we
know that in FCO-IM all roles are indexed and are therefore rigidly maintained
throughout the model. Again, this makes FCO-IM much clearer and allows
for fewer mistakes, but it also makes modeling in FCO-IM harder since you
constantly need to make sure you are using the right roles.

2.3 FCO-IM in CaseTalk

2.3.1 General analysis of CaseTalk

As I have already stated several times before, FCO-IM is implemented in the
tool CaseTalk. CaseTalk itself was developed in conjunction with the developers
of FCO-IM, and as such implements (nearly to the letter) the exact standards
and speci�cations as laid out by those developers. This can be seen as both
a blessing and a curse. As a blessing because this guarantees that FCO-IM is
correctly implemented, and the theoretical literature may be applied perfectly
when doing the modeling. However, it may also be seen as a curse since it
means that there is little room for �exibility. Both the developers of CaseTalk
and the modellers working with the tool are forced to follow the guidelines of
the FCO-IM developers and are unable to put in any innovations of their own.

So let us now see how CaseTalk mirrors the modeling procedures laid out in
sections 2.1 and 2.2. First of all, the program gets all its input from 'expressions'.
Basically, these are the fact sentences we saw earlier. We can see that this �ts
the intentions of FCO-IM perfectly. Instead of using di�cult wizards with a lot
of 'technobabble', we can simply put in a sentence in natural language. Once
the sentence is entered you are to identify what fact-type the sentence relates
to. This can be done by either choosing that it is a new fact-type and typing the
name or by selecting an already existing fact type from your model. The next
step is to identify all elements in your expression. By doing this, you actually
identify the LTL fact type expressions. These elements may be actual instances
(label-types) or a role from another fact type. An example of how such an
identi�cation works can be found in �gure 2.8.

When you enter the expressions, CaseTalk will automatically start identify-
ing any possible objecti�cation and separate them from the label-types which it

CHAPTER 2. FCO-IM AND CASETALK 28

identi�es as well. After you have �nished entering the expressions, the next step
is to draw the IGD. CaseTalk allows the user to select which parts of the IGD
to draw by providing a drag-and-drop interface. Elements (such as fact-types,
object-types and label-types) may be selected and drawn to the desired place on
the canvas. CaseTalk automatically puts the elements which have connections
together if so desired. This allows for the modeller to focus on speci�c parts of
the model without the screen being cluttered by unnecessary elements. Also,
the interface will try to present all elements as separate as possible to avoid
cluttering and allow the user to line up everything as he or she sees �t.

It is also of interest to note that CaseTalk learns from patterns it sees.
When an expression is entered based on a FTL which it has already learned
it will automatically assign the correct labels to all the sentence elements and
generate the appropriate LTL fact type expression. This allows the modeller to
quickly add many expressions to the database which can later be used for model
analysis as described in section 2.2 and in Bakema et al. [2].

The IGD viewing interface is also where constraints are applied in CaseTalk.
As we have already seen in section 2.2.4 the constraints are put on the graphical
representation of the IGD which is why it is represented in this fashion as well.
Constraints may be applied in a number of ways, but the easiest way is to use
the selection tool and select the constraint you want to put on your selected
roles. Please note that CaseTalk follows the speci�c FCO-IM approach with
regards to object-types and this is followed in the IGD viewer as well: Object-
types cannot be selected at all. Instead, the roles making up the object will
have to be selected. Only roles, fact-types and label-types may be selected and
modi�ed in the IGD viewer.

Once this step is completed CaseTalk is able to validate your model; and if so
desired generate another model from it such as a relational schema. Validation
is very accurate as it checks not only the constraints put on the model by FCO-
IM's developers, but will also actually check if the population of the model
matches the constraints put onto it by the user. This tool can help people to
�nd the last bugs or errors in their model and help them correct those errors.
Unfortunately, the error checker does not yet o�er any suggestions on how the �x
the errors, it merely states that they are there. When the validation is complete,
the GLR algorithm may be called (explained earlier) to generate the relational
schema which in turn can be turned into a variety of models; including an SQL
generated database structure.

2.3.2 CaseTalk from a HCI perspective

In the previous section I have described the general outline of CaseTalk and
how it works together with FCO-IM to form a modeling tool which is perfectly
suited to the modeling language it is supposed to support. However, the above
description was based on what we might call a work�ow perspective. In this
section, I will analyze CaseTalk again, but this time from an HCI perspective.
This means I will look at the interactions the system o�ers to the user by way
of use cases and provide an evaluation of those interactions based on a number

CHAPTER 2. FCO-IM AND CASETALK 29

of criteria. The criteria I will use (for the HCI evaluation) are the heuristics
de�ned by Nielsen [12]. These heuristics will be discussed later in this chapter.

I will start by de�ning use cases for CaseTalk. These use cases will not
cover the entire application (since this would be too complex and certainly not
entirely relevant) but they will focus on the modeling process itself. Also, some
terminology used in the use cases is derived from FCO-IM standards. Therefore,
in order to fully understand the use cases it is recommended to �rst read section
2.1. The use case de�nition I will use is based on Kulak and Guiney [11], and the
resulting use cases will later be judged on the HCI criteria I mentioned earlier.
Finally, the use cases will also form the basis for the case study interactions that
I will observe. Please keep in mind, however, that I will change some use case
elements with respect to Kulak and Guiney [11] to better suit my needs. The
use case template I will use is explained later in this section.

Use cases are usually used for the requirements phase of a system that is
still to be built. Therefore, it might be considered odd that I will use use cases
to model the interactions of a system that already exists. However, I have very
good reasons for this. First of all, use cases (in my opinion) are an easy way
to convey information about interactions without having the completely specify
them. If I would simply list all the possible interactions with the system and
evaluate those based on the HCI criteria I would get a rather long list and
might very well get lost in all the details. However, with use cases groups of
interactions which are related to each other will be in one place (one use case)
and I can easily evaluate those groups of interactions.

Secondly, the use cases will provide me with a good starting point to perform
the case study. Since the use cases will describe a speci�c set of interactions
with the system leading to one goal, I can assume that all of the user's actions
during the case study will all be part of one or more use cases. So instead of
having to classify each and every user interaction during the case study I can
simply classify every group of interactions. This will lead to less overhead for
me, and will allow the end results to be clearer and better de�ned.

The use case template I will use is the following:

• name: The name of the use case

� goal : The goal which is to be achieved by this use case

� summary : A short summary of the use case

� actor : The actor who is performs this use case

� preconditions: The conditions which have to be met before the use
case may be run

� triggers: The main event(s) that lead to the start of this use case

� BCOE : The basic course of events; the interaction steps taken in this
use case

� alternative paths: If, why and how the use case may deviate from the
BCOE

CHAPTER 2. FCO-IM AND CASETALK 30

� postconditions: The changes in system state that have occurred as a
result of the execution of the use case

The use cases de�ned for CaseTalk are as follows:

• name: enter expression

� goal : enter a new expression into the repository and store it

� summary :

� actors: modeler

� preconditions:

∗ a project must be open

� triggers:

∗ a new project is created

∗ OR

∗ modeler selects "new expression"

� BCOE :

∗ 1 - system prompts user for new expression

∗ 2 - user enters expression

∗ 3 - user quali�es the expression by giving either an object- or
fact type name

∗ OR

∗ - user selects an already existing fact - or object type name

∗ 4 - user presses the "qualify" button

∗ 5 - system stores the expression

� alternative path:

� postconditions:

∗ a new expression is entered into the repository

• name: qualify part of expression

� goal : to qualify a certain part of a certain expression and store it

� summary :

� actors: modeler

� preconditions:

∗ an expression must have been entered into the system

� triggers:

∗ an expression is entered into the system

CHAPTER 2. FCO-IM AND CASETALK 31

� BCOE :

∗ 1 - user selects part of the expression

∗ 2 - user gives a name for this part

∗ OR

∗ - user selects an already existing fact- or object type name

∗ 3 - user presses the "qualify" button

∗ 4 - system stores the quali�ed part of the expression

� alternative path:

� postconditions:

∗ part of an expression has been quali�ed

• name: con�rm expression is quali�ed/quanti�ed

� goal : to inform the system an expression is completely quali�ed/quanti�ed
and store it

� summary :

� actors: modeler

� preconditions:

∗ an expression has at least one part quali�ed/quanti�ed

� trigger :

∗ one part of an expression has been quali�ed/quanti�ed

∗ AND

∗ user presses the "ready" button

� BCOE :

∗ 1 - system derives IGD elements from the quali�cation/quanti�cation

� alternative path:

� postconditions:

∗ IGD elements have been generated by the system

• name: con�rm expression

� goal : to con�rm an expression has been correctly quali�ed/quanti�ed

� summary :

� actors: modeler

� preconditions:

CHAPTER 2. FCO-IM AND CASETALK 32

∗ an expression must have been quali�ed/quanti�ed on all level

� triggers:

∗ an entire expression has been quali�ed/quanti�ed on all levels

∗ AND

∗ user presses the "ok" button

� BCOE :

∗ 1 - the system stores both the expression and the generated IGD
elements

� alternative path:

� postconditions:

∗ the expression is stored

∗ the IGD elements are stored

• name: undo ClaQua step

� goal : to undo one step taken in the ClaQua process

� summary :

� actors: modeler

� preconditions:

∗ the user must have taken at least one step in the ClaQua process

� triggers:

∗ user presses the "undo" button during the expression session

� BCOE :

∗ 1 - the system undos the last step taken in the ClaQua process

� alternative path:

� postconditions:

∗ the system is back at the situation it was in before the last
ClaQua step was taken

• name: cancel expression

� goal : to cancel the entire expression process

� summary :

� actors: modeler

� preconditions:

CHAPTER 2. FCO-IM AND CASETALK 33

∗ an expression session must be opened

� triggers:

∗ user presses the "cancel" button during the expression session

� BCOE :

∗ 1 - the system cancels the expression operation and deletes all
data

� alternative path:

� postconditions:

∗ the system is back to the main screen

• name: delete repository item

� goal : to delete one speci�c item from the respository

� summary :

� actors: modeler

� preconditions:

∗ at least one repository item has been previously generated

� triggers:

∗ user selects a repository item

∗ AND

∗ user presses CTRL+DEL

� BCOE :

∗ 1 - user selects a repository item

∗ 2 - uses presses CTRL+DEL on the keyboard

∗ 3 - system prompts for a con�rmation and displays which asso-
ciated repository items will be deleted with it

∗ 4 - the user con�rms the delete operation

∗ 5 - the system deletes the respository item and its associated
repository items

� alternative path:

∗ 4 - the user cancels the delete operation

� postconditions:

∗ one repository item and its associated respository items are deleted
from the repository

CHAPTER 2. FCO-IM AND CASETALK 34

• name: generate new IGD

� goal : to generate a new (and blank) IGD

� summary :

� actors: modeler

� preconditions:

� triggers:

∗ user selects "new diagram"

� BCOE :

∗ 1 - system generates a new IGD diagram

∗ 2 - system displays new IGD diagram

� alternative path:

� postconditions:

∗ a new IGD diagram is stored into the system

• name: add respository item to IGD

� goal : to add one speci�c repository item to the currently active and
opened IGD

� summary :

� actors: modeler

� preconditions:

∗ at least one repository item has been previously generated

� triggers:

∗ user drags a repository item

� BCOE :

∗ 1 - user selects a repository item

∗ 2 - user drags the selected repository item to the IGD currently
in view

∗ 3 - the system adds the repository item to the IGD

∗ 4 - the system identi�es all possible connections to already ex-
isting items in the IGD and displays these

∗ 5 - the system will store the diagram

� alternative path:

� postconditions:

∗ a new repository item is now added to the IGD

CHAPTER 2. FCO-IM AND CASETALK 35

• name: delete respository item from IGD

� goal : to delete one or more repository items from the IGD

� summary :

� actors: modeler

� preconditions:

∗ at least one repository item has been previously added to the
IGD

� triggers:

∗ user selects one or more IGD items

∗ AND

∗ user presses DEL

� BCOE :

∗ 1 - user selects one or more IGD items

∗ 2 - user presses the DEL button on the keyboard

∗ 3 - the system deletes the item(s) from the IGD

∗ 4 - the system identi�ed all possible connections to the deleted
items and deletes these as well

� alternative path:

� postconditions:

∗ one or more repository items are now deleted from the IGD

• name: add unicity constraint

� goal : to add a unicity constraint to one role, or a combination of
roles

� summary :

� actors: modeler

� preconditions:

∗ at least one fact type has been generated in the IGD

� triggers:

∗ user selects one or more roles

∗ AND

∗ user presses the 'add unicity constraint' button

� BCOE :

CHAPTER 2. FCO-IM AND CASETALK 36

∗ 1 - user selects one or more roles

∗ 2 - user presses the 'add unicity constraint' button

∗ 3 - the system adds the unicity constraint to the repository

∗ 4 - the system adds the unicity constraint to the IGD

� alternative path:

� postconditions:

∗ a new unicity constraint is added to the model

• name: delete unicity constraint

� goal : to delete a unicity constraint to one role, or a combination of
roles

� summary :

� actors: modeler

� preconditions:

∗ at least one fact type has been generated in the IGD

∗ AND

∗ one fact type has at least one unicity constraint

� triggers:

∗ user selects a unicity constraint

∗ AND

∗ user selects the 'delete constraint' option from the menu

� BCOE :

∗ 1 - user selects one unicity constraint

∗ 2 - user selects the 'delete constraint' option from the context
menu

∗ 3 - the system deletes the unicity constraint

∗ 4 - the systemremoves the unicity constraint from the IGD

� alternative path:

� postconditions:

∗ one unicity constraint is removed from the model

• name: add totality constraint

� goal : to add a totality constraint to a role / object type combination

� summary :

CHAPTER 2. FCO-IM AND CASETALK 37

� actors: modeler

� preconditions:

∗ at least one fact type has been generated in the IGD

∗ AND

∗ this fact type is connected to an object type

� triggers:

∗ user selects one or more roles

∗ AND

∗ user presses the 'add totality constraint' button

� BCOE :

∗ 1 - user selects one or more roles which are connected to an object
type

∗ 2 - user presses the 'add totality constraint' button

∗ 3 - the system adds the totality constraint to the repository

∗ 4 - the system adds the totality constraint to the IGD

� alternative path:

� postconditions:

∗ a new totality constraint is added to the model

• name: delete totality constraint

� goal : to delete a totality constraint from one role

� summary :

� actors: modeler

� preconditions:

∗ at least one fact type has been generated in the IGD

∗ AND

∗ one fact type has at least one totality constraint

� triggers:

∗ user selects a totality constraint

∗ AND

∗ user selects the 'delete constraint' option from the menu

� BCOE :

∗ 1 - user selects one totality constraint

∗ 2 - user selects the 'delete constraint' option from the context
menu

CHAPTER 2. FCO-IM AND CASETALK 38

∗ 3 - the system deletes the totality constraint

∗ 4 - the systemremoves the totality constraint from the IGD

� alternative path:

� postconditions:

∗ one totality constraint is removed from the model

2.4 Analyzing CaseTalk

In the previous session I identi�ed all of CaseTalk's main interactions (with
respect to the modeling process) by way of use cases. In this section I will
perform a heuristics evaluation of CaseTalk based on those interactions. The
basis of this evaluation will be the work done by Jakob Nielsen; who is considered
to be an expert in the �eld of usability. His heuristics are listed in Nielsen [12],
and I will start by taking those heuristics and applying them to CaseTalk where
applicable. Not all of his heuristics will be usable because of the distinct focus
of my work. Others may not be relevant. This is why not all the heuristics
in Nielsen [12] are used in this research. The reasoning behind exclusion or
inclusion of a particular heuristic will be explained in later in this section.

This speci�c heuristics evaluation will be not be supported by any statistical
data. Rather, it is my opinion on these heuristics backed by arguments and
illustrated by examples from CaseTalk itself. It is not the main goal of this
thesis to perform a heuristic evaluation of CaseTalk (it will serve as a �eld test
of the evaluation method), but the data gathered here will help in evaluating
the modeling process as will be explained in chapter 3.

2.4.1 Evaluating the heuristics

Heuristic 1 - Visibility of system status

This heuristic is de�ned by Nielsen [12] as 'The system should always keep users
informed about what is going on, through appropriate feedback within reasonable
time'. This �rst heuristic is a very interesting one straight away. Let us �rst
take a look at the de�nition of system status. In the article, this de�nition is
not made clear and subsequent research in related articles have not provided me
with a very clear and unambiguous de�nition. After some discussion with Stijn
Hoppenbrouwers I have decided that this heuristic is probably best applied to
the status of what the user is trying to achieve with the application. In this
case, this is related to creating the model. So the system status would be some
sort of indicator on how far the modeling process has proceeded. A similar
system is being used for modeling in the world of 'modeling as games' which I
brie�y referred to earlier, and which is discussed in the works of Schotten [13],
Hoppenbrouwers et al. [10] and Wilmont [16]. If we look at the modeling process
then, the relevance of this heuristic becomes very obvious. If the system can
evaluate the progress of the user's work, and actually provide feedback on the

CHAPTER 2. FCO-IM AND CASETALK 39

quality and progress of that work it would be a tremendous help for the user to
ascertain the quality and correctness of his work.

However, because this heuristic is only derived from a very new �eld, it is
not surprising to see that CaseTalk does not have this feature at all. However,
it is a very safe bet to assume that practically no other commercially available
modeling tool will have any such functionality, since it is still something that is
still merely being explored academically, and has not yet been seen in any main
stream applications. Therefore, I have to conclude that although this heuristic
is certainly very relevant to the modeling process, I will not yet consider it to be
a criterium for the evaluation model because of the fact that its implementation
has not yet been attempted in any real main stream modeling tool. In the
future however, this decision may be changed depending on whether or not the
idea of objective based program design advocated in the 'modeling as a game'
literature gains a real foothold.

Heuristic 2 - Match between system and the real world

The de�nition of this heuristic is given in Nielsen [12] as 'The system should speak
the user's language, with words, phrases and concepts familiar to the user, rather
than system-oriented terms. Follow real-world conventions, making information
appear in natural and logical order'. This heuristic is of course very important
to investigate in the context of the modeling process. It allows us to examine
how well the modeling process is translated into the online tool at the modeler's
disposal (in this case: CaseTalk).

As I have already described in section 2.3 the tool was developed in con-
junction with the people who actually designed FCO-IM. Because of this, the
terminology in CaseTalk is not just similar to the terminology used in FCO-IM
but is exactly the same. The same goes for all other criteria set out in this
heuristic. If one is able to create a FCO-IM model using pen-and-paper, one is
also able to create this model using CaseTalk. All methods, terms and graph-
ical representations are exactly the same and therefore this heuristic has been
followed perfectly.

Heuristic 3 - User control and freedom

Nielsen [12] describes this heuristic as 'Users often choose system functions by
mistake and will need a clearly marked "emergency exit" to leave the unwanted
state without having to go through an extended dialogue. Support undo and redo'.
The relation between this heuristic and the modeling process is very clear. To
make it easier for the modelers to correct mistakes an extended undo and redo
functionality should be available. If for example the modeler made a mistake
in classifying an expression CaseTalk should not force him to completely repeat
the process for classifying all over again. Therefore, the extent to which this
heuristic is followed has a profound impact on the modeling process.

If we look at CaseTalk we can see that this heuristic has in fact been clearly
followed. Especially when looking at the classi�cation/quali�cation process we

CHAPTER 2. FCO-IM AND CASETALK 40

can see that there is always an option to undo one of your previous actions
without having to cancel and start all over again. When we look at the process of
drawing the IGD and applying constraints on it we also see a lot of functionality
in this area. Actions, or parts of actions, can always be undone without losing
any other work. You will only lose the work you actually want to undo.

Heuristic 4 - Consistency and standards

In Nielsen [12] the de�nition of this heuristic states: 'Users should not have to
wonder whether di�erent words, situations or actions mean the same thing. Fol-
low platform conventions'. Again, this heuristic is important for the modeling
process. Consistency of the program will help in creating consistent models. If
the program itself was inconsistent it could result in models being inconsistent
because of the modeler being unsure on how to model his ideas into CaseTalk.

CaseTalk follows this heuristic perfectly. The program remains consistent
throughout the modeling process and all operations and actions continue to yield
the same sort of results. Also, the program is laid out according to a standard
'Windows-based' layout which is familiar to anyone who has ever worked with
a graphical operating system.

Heuristic 5 - Error prevention

This heuristic is de�ned by Nielsen [12] as: 'Even better than good error messages
is a careful design which prevents a problem from occurring in the �rst place.
Either eliminate error-prone conditions or check for them and present users with
a real con�rmation option before they commit to the action'. This heuristic is
relevant to investigate because of the fact that when in CaseTalk you are looking
at an error, you are in fact also looking at an error in the actual modeling process
itself (if we disregard actual system errors for the moment). If CaseTalk allows
for good error prevention and detection, the modeling process itself would also
bene�t.

Unfortunately, this heuristic is not completely adhered to in CaseTalk. There
are instances in which the modeler is allowed to classify/qualify expressions with
spelling errors. Because CaseTalk does not understand the syntax of natural
language it will simply assume that the expression means something else entirely
and therefore create a new fact type expression. In no way does CaseTalk inform
the user that the expression is extremely similar to another one, yet slightly
di�erent. This means that errors can be made when the modeler translates his
own mental modeling process into CaseTalk which in the long term might lead
to faulty models.

Heuristic 6 - Recognition rather than recall

In Nielsen [12] this heuristic is de�ned as: 'Minimize the user's memory load
by making objects, actions and options visible. The user should not have to
remember information from one part of the dialog to another. Instructions for

CHAPTER 2. FCO-IM AND CASETALK 41

use of the system should be visible or easily retrievable whenever appropriate'.
I consider this heuristic to be important, but not very important. This speci�c
heuristic is more about interface design, and the speed with which the user can
accomplish certain tasks within the interface. If we look at the impact this
heuristic can have on the modeling process itself I can only conclude that the
only impact it will have is on the speed of translating the mental model in the
modeler's head to an actual digital model on the computer. So it has no impact
on the quality of the model, but rather on the speed at which the modeler can
actually deliver the model.

CaseTalk has followed this heuristic quite nicely. The most relevant source
of information and details is the repository in which all elements are located
(such as object types, fact types, label types, etc). This repository is (unless
changed by the user) always visible in the bottom-left corner of the screen. All
other views are also easily accessed through the project-manager in the top-
left corner. So all data is made available throughout the program where-ever
possible.

The second part of this heuristic (about the system instructions) is poorly
followed. There is little to no help except for a tutorial and the actual online tool
tips are not very helpful and in some cases even placed near the wrong items.
Furthermore, the manual itself assumes a lot of knowledge about CaseTalk. This
is probably a deliberate decision made by the developers, but in terms of making
the program itself accessible this might not have been the perfect choice.

Heuristic 7 - Flexibility and e�ciency of use

Nielsen [12] de�nes this heuristic as: 'Accelerators - unseen by the novice user
- may often speed up the interaction for the expert user such that the system
can cater to both the inexperienced and experienced users. Allows user to tailor
frequent actions'. For this heuristic I can pretty much conclude the same thing
as I did for heuristic 6: Following it may increase the speed with which the
modeler can produce his models, but has very little in�uence on the quality of
the model itself.

As far as CaseTalk is concerned: this heuristic is not very well followed. All
the wizards are just that: wizards. There is no way for an experienced user
to shorten or improve those wizards as they are laid out by the programmers.
Furthermore, aside from positioning the various windows, CaseTalk's interface
can not be changed at all in terms of functionality. Therefore, the CaseTalk
tool is a bit rigid and in�exible.

Heuristic 8 - Aesthetic and minimalist design

This heuristic is de�ned by Nielsen [12] as: 'Dialogues should not contain infor-
mation which is irrelevant or rarely needed. Every extra unit of information in
dialogue competes with the relevant units of information and diminishes their
relative visibility'. Again a rather important heuristic. In order for the modeler
to focus on the modeling process, it is important that there is not too much

CHAPTER 2. FCO-IM AND CASETALK 42

clutter on the screen. If this heuristic is followed then this will be the case. If
there is too much information on the screen the modeler's train of thought might
run the risk of being derailed and the mental model not adequately translated
to an actual digital model in CaseTalk.

CaseTalk is in many ways very minimalistic when it comes to providing in-
formation. From that we seem to be able to conclude that this heuristic was
followed. However, the context menus used in CaseTalk tend to hold too much
information and can cause confusion for the modeler working with the program
which can be confusing. Especially when working with constraints, CaseTalk
o�ers information which may not be completely relevant or even understand-
able to the average user. Therefore, the conclusion would have to be that this
heuristic is not very well followed which might cause confusion for the modeler.

Heuristic 9 - Help users recognize, diagnose and recover
from errors

The de�nition of this heuristic according to 12is: 'Error messages should be
expressed in plain language (no codes), precisely indicate the problem and con-
structively suggest a solution'. This heuristic is a bit ambiguous. What is meant
by 'error messages'? Is the author referring to errors in the program, or does
he mean errors with respect to the functionality of the program? If we assume
the �rst possible answer, then this heuristic is not very relevant for a modeler.
If the program crashes, it crashes, and no amount of error messages will help
the modeler to recover his lost model or help him in any way to get it back
faster. However, if we assume the second answer then we do see some relevance.
Error messages might indicate actual problems in the model itself such as an
inconsistency in the instances. Since this is more relevant for this thesis I will
for now assume the second meaning: error messages with respect to the actual
content.

In CaseTalk we do not see a lot of error messages concerning the actual
modeling. As I have already mentioned before, CaseTalk will just about accept
anything when it comes to instances and expressions. Only when you transform
the IGD into some sort of relational model (which is outside the scope of this
thesis) will it start checking instances and such. So in terms of the heuristic,
CaseTalk does very little to help users recognize errors, and virtually nothing
to help them recover from the errors they made. To summarize: This heuristic
(using my interpretation of it) is not followed in CaseTalk.

Heuristic 10 - Help and documentation

12 de�nes this heuristic as: 'Even though it is better if the system can be used
without documentation, it may be necessary to provide help and documentation.
Any such information should be easy to search, focused on the user's task, list
concrete steps to be carried out, and not be too large'. This heuristic does not
seem relevant here. The documentation on how to work with CaseTalk is not
done by the programmers, but consists of all the literature regarding FCO-IM.

CHAPTER 2. FCO-IM AND CASETALK 43

All that is left for the programmers of CaseTalk is to provide short instructions
on how to translate the FCO-IM modeling principles into the program. This
has been done fairly well through the use of some tutorials, but it is not strictly
relevant to evaluate CaseTalk.

That being said, it is perhaps interesting to mention that the documentation
in CaseTalk which is actually ABOUT CaseTalk (and how to work with it) is
rather minimal. The help �le contains nothing more than a few tutorials and
does not cover all functionality. There is more help available online, but that
means it is not readily available and is also not easily accessible from the point
in the program where you are working (i.e. you can not simply press F1 to get
relevant help).

2.4.2 Conclusion based on the heuristics

From the 10 heuristics de�ned in 12 I have identi�ed 8 which are relevant to
the modeling process itself. This has been explained in the previous section. In
this section I will perform a �nal evaluation of CaseTalk based on the separate
conclusions drawn on the relevant heuristics. This conclusion will help me in
mapping and evaluating the modeling process of FCO-IM as a whole. If the
tool used to create a model is found to be lacking, then we can already assume
that the modeling process as a whole might be lacking in this area too. If for
example the tool does not support the modeler through feedback, error checking
and the like the quality of the model would probably decrease as well. Please
bear in mind that this is an assumption. I have not been able to �nd previous
research which relates the quality of the tool to the quality of the model, but 9
and 14 seem to suggest that there is a positive relation between the two as well.

To summarize things, I have �rst created a short overview of the heuristic
evaluation done in the previous section. This can be found in table 2.1. The
evaluation is done in a 5-step scale: {- -, -, o, +, + +}. Ranging from very poorly
(- -) to very good (+ +). To perform the �nal evaluation I need to quantify these
results, so I have decided to assign numerical values to the evaluation marks.
A (- -) will deduce 2 points, a (-) will deduce 1 point, a (o) will not yield any
points, a (+) will gain 1 point, and �nally the (++) will gain 2 points. This
means that in theory, the program could (provided there are 8 scored heuristics)
gain anything from negative 16 to 16 points. To further make the assessment
more clear I will change this to a 0-to-10 scale by adding 16 points to the total;
dividing the result by 32 and multiplying it by 10. The results of this calculation
can be seen in table 2.2.

However, the scores we have just calculated are still based on usability heuris-
tics, whereas we are much more interested in facilitating the modeling process.
As we can see in table 2.2, CaseTalk does not score very high in terms of us-
ability. However, some heuristics are more important for the modeling process
than others, so let us start by identifying which of the 8 selected heuristics are
extra important when it comes to facilitating the modeling process.

Looking at the list of heuristics I have selected four which I feel are strongly
related to facilitating the modeling process when looking at CaseTalk. These

CHAPTER 2. FCO-IM AND CASETALK 44

Heuristic name Evaluation

2. Match between system and the real world + +
3. User control and freedom + +
4. Consistency and standards + +
5. Error prevention -
6. Recognition rather than recall o
7. Flexibility and e�ciency of use - -
8. Aesthetic and minimalist design -
9. Help users recognize, diagnose and recover from errors -

Table 2.1: Summary of heuristic analysis

Total score Absolute score Corrected score

+1 17 5,3125

Table 2.2: Heuristic scores - 0-to-10

heuristics are 2, 3, 4 and 5. Heuristic 2 is about matching the real world. The
importance of this heuristic is obvious: If the program does not adhere to the
rules and regulations which apply to the modeling language it tries to facilitate,
then the models created with this tool will not be of any good quality since they
will not adhere to the rules and regulations as well.

Heuristic 3 is about user control and freedom. This is also important because
it allows for the modeler to quickly change things or correct mistakes. If this
heuristic is followed, then the modeler will be able to correct mistakes with only
very little e�ort which is not only very pleasant for the modeler, but it will also
prevent mistakes! If for example the modeler would have to retrace many steps
to correct one single mistake there is always the chance that in the process of
correcting the mistake, new mistakes will be made which will further reduce the
quality of the modeling process and therefore: the model itself.

The next heuristic is number 4. This heuristic is about being consistent and
following standards. Especially the �rst part makes this very important for the
modeling process. If the modeling tool is consistent throughout the modeling
process then all modeling steps will be very clear to the modeler. If on the other
hand the tool is not consistent then there is a probability that the modeler will
not recognize this completely and start making mistakes in the modeling process
which in turn lead to bad models. A consistent tool means the modeler is always
clear on what he is doing which in turn leads to fewer mistakes and in the end:
a better model.

The �nal heuristic is number 5, which has to do with error prevention. Error
prevention of course is crucial when doing modeling work. If you are trying to
model something which is inconsistent, illogical or just plain wrong you would
like the tool you are using to provide some feedback and ask you if that last
action was truly what you wanted to do. With this feature present in your tool,
the modeling process will become less error prone, and in the end lead to a

CHAPTER 2. FCO-IM AND CASETALK 45

Heuristic name Weight Score

2. Match between system and the real world h + + + +
3. User control and freedom h + + + +
4. Consistency and standards h + + + +
5. Error prevention h - -
6. Recognition rather than recall n o
7. Flexibility and e�ciency of use n - -
8. Aesthetic and minimalist design n -
9. Help users recognize, diagnose and recover from errors n -

Table 2.3: Modi�ed heuristics analysis

Total score Absolute score Corrected score

+6 30 6,25

Table 2.4: Modi�ed heuristic score - 0-to-10

better overall model. When it is not present, there is the chance of the modeler
making mistakes he did not intend to make (i.e. just made an error inputting
the model) increases, and the overall quality of the �nal model decreases because
of this.

To implement those high priority heuristics into my scoring model, I have
decided to double the weight of scoring on those four items. For the scoring
chart, this means that there are 8 extra points to gain, and 8 extra points to
lose. The scoring table has been changed to re�ect this, and the result is shown
in table 2.3. Again we translate these scores to a 0-to-10 scale. This time we
add 24 to the �nal score, divide all results by 48 and we multiply the answer by
10 again. The �nal result of this calculation is shown in table 2.4.

From these scores we can conclude that if we put some emphasis on the
heuristics which are important to the modeling process, CaseTalk seems to be
doing a fairly good job. Therefore I conclude that CaseTalk has a positive e�ect
on the modeling process when using FCO-IM. In chapter 3 I will generalize the
method I have just described which means it can be used to test and evaluate
other modeling tools as well. Please note that the result for CaseTalk as such
is still not very informative since there is no comparative baseline. However, if
more tools were to be evaluated in a similar fashion, we could start a comparison
and see which tool (when analyzed using HCI usability heuristics) serves the
modeling process best.

As an addition to what I have stated in this section I would like to discuss
heuristic 1 one more time. Since I already stated that this heuristic may be
added to the method in the future, I would like to quickly explain how I en-
vision this in the current model. Heuristic 1 would also be considered of high
importance; the same as heuristics 2, 3, 4 and 5. This means that the score for
this heuristic also has to be doubled in accordance to the method I described
earlier. Also, the total scoring system would have to be adjusted to allow for the

CHAPTER 2. FCO-IM AND CASETALK 46

plus or minus 4 points that could be gained from this heuristic. I will explain
this procedure in slightly more detail in chapter 3.

2.5 Chapter conclusions

In this chapter I have identi�ed a few key elements of CaseTalk, which in chapter
4 will be used to develop the case study. These are:

• A basic model of all modeling steps in FCO-IM.

• The use cases (interactions) for CaseTalk. These are all the interactions
which are relevant to the modeling process.

• The heuristics based on Nielsen [12] which are relevant for the modeling
process.

• An evaluation method for modeling tools, with the current focus on CaseTalk.

Chapter 3

General Evaluation Method

In this chapter I will generalize the evaluation method �rst described and worked
out in section 2.3.2. This means I will aim to make it applicable to most, if not
all modeling tools and provide some insight on how to gather the scores for the
various heuristics used in this method.

3.1 Introduction to the Problem

A lot of work on modeling on evaluating the quality of models in the past. Most
of this work has focused on the quality of models produced, but a more interesting
area has of yet not seen a lot of attention: The quality of the modeling process
itself [10]. This is probably due to the fact that it is mostly the end result
which matters most. It is this end result which is used to de�ne businesses, IT
systems or databases so I agree with the fact that it is important to check the
quality of this end result. But in my opinion (which is shared by [9] and [10])
the end result is still very much dependent on the process of actually getting
it, so it is relevant to do more research in this area. As I have stated before,
the focus of my work in this thesis is evaluating the modeling tool, which in
turn is part of the modeling process. I will therefore not actually contribute
to the �eld of model process evaluation itself, but instead focus on creating an
evaluation method for a small part of the modeling process; the modeling tool
and its usage.

To tackle this problem, it is interesting to look at the �eld of human-
computer interaction (HCI). In this �eld we can see that a lot of work is being
done on how to analyse the way people work with computers and how they do
the things that they do. This is opposed to for example computer science where
the main focus is on how the program itself works; and if it follows the rules
laid out during the program's design. A very interesting take on using HCI to
evaluate CaseTalk was already provided in section 2.3.2.

And this is of course interesting for the problem of evaluating the model-
ing process. We can draw the parallel between what HCI does for computer

47

CHAPTER 3. GENERAL EVALUATION METHOD 48

programs and modeling: They both focus on the same problem area: how do
people do it? So if this is true, we should be able to modify and then use the
procedures from HCI to evaluate modeling tools as well. This problem has been
partly explored in work done by [13] and [16] and I will try to expand their work
and devise a general method which I will then test in practice by performing a
case study on CaseTalk, the FCO-IM tool which is explained in depth in section
2.3.

3.2 Evaluation Method

The general method for evaluating a modeling tool using HCI heuristics has
already been partially described and applied to CaseTalk in section 2.3.2. The
main focus of this method are the 10 heuristics de�ned by [12] of which I have
choosen eight which I consider relevant to the modeling process when seen from
the user's perspective. Of these eight heuristics I have identi�ed four which I
consider to be of a higher importance than the other ones. When these heuristics
are given scores, a 'grade' can be calculated. This grade, ranging from 0 to 10,
can be used to compare it to modeling tools for the same modeling language, or
even to compare various modeling languages and their tools to eachother. To
summarize my conclusions from section 2.3.2, and to provide an overview which
is a little bit more general than the one provided earlier I have compiled a list
which will be given below. This list only contains the remaining heuristics and
provides a short description from a modeler's perspective of every heuristic. The
description will also provide information on how to score that speci�c heuristic.
Also, in table 3.1 a summary of the heuristic's importance may be found.

3.2.1 Evaluation Criteria

1. Match between system and the real world - This heuristic must be judged
based on how well the tool actually implements the modeling language.
Are the same rules followed? Is the modeler able to perform all the actions
he would be able to perform with pen and paper? Do the models look the
same in the tool as they would look on paper? When there is a signi�cant
di�erence between the modeling tool and the actual modeling language
then this heuristic should not receive a very high score. This heuristic has
been given a high importance because it has a real e�ect on the resulting
model itself.

2. User control and freedom - This heuristic must be judged based on how
easy it is for the user to make mistakes (while experimenting for example)
and correcting those mistakes once they are identi�ed. Is there a simple
'undo' step or does the user have to go back many steps and complete
already completed steps all over again? If it is easy to correct mistakes
this heuristic should receive a high score. If correcting mistakes means
that previous work could or will be lost, then a low score should be given.

CHAPTER 3. GENERAL EVALUATION METHOD 49

This heuristic is given a high importance because it has a very big e�ect
on the e�ciency of the modeling process.

3. Consistency and standards - This heuristic must be judged based on how
consistent the modeling tools presents itself, and how well it adheres to set
standards in the industry. Especially the �rst part is relevant here. If the
tool is not consistent, it could throw the modeler o�-balance and result
in models that are not what the modeler had intended. For example, if a
button which should apply a certain constraint to an aspect of the model
does so di�erently every time you have another item selected then this
can be very confusing. If many if these examples exist in the modeling
tool then the heuristic should be scored low. If however, it is perfectly
clear what every bit of functionality does anywhere and anytime in the
program, then a high score should be given to this heuristic. This heuristic
is given a high importance because its implementation has a direct e�ect
on the resulting model itself.

4. Error prevention - This heuristic must be judged based on how well the
modeling tools helps the user in preventing errors in the model itself.
A modeling tool could for example give warnings when the user tries to
develop something which is inconsistent with other aspects of the model.
Or in graphical terms, prevent the user from drawing models which are
not allowed by the modeling language itself. More intelligent programs
could (by use of AI, pattern recognition and the like) even assist the user
by preventing semantically errors in the program. If the tool is capable of
helping the modeler with this, then this heuristic should be given a high
score. If, however, the program simply accepts all input by the user and
does not check validity in any way then it should receive a low score. This
heuristic is given a high importance because any errors in the model of
course have a detrimental e�ect on its quality.

5. Recognition rather than recall - This heuristic should be judged based on
how well the tool presents the relevant information to the user. If the
user needs to remember a lot of information just by memory (because it
is poorly placed) it might lead to errors in the model since the user might
not remember how he named a certain element, or what constraint was
put on which model element. If the program smartly displays all relevant
information onscreen for the user it will save the modeler time that would
otherwise be spent in looking up previous aspects of the model. When it
is very easy for the user to recall previous work (or even better: when it is
constantly displayed onscreen) this heuristic should receive a high score.
When a lot of work is required to �nd previous work then it should get
a low score. This heuristic is given a normal importance since its main
e�ect will be on the speed of the modeling process, not its quality.

6. Flexibility and e�ciency of use - This heuristic should be judged based on
how well the user can modify the program to suit his needs. If the user has

CHAPTER 3. GENERAL EVALUATION METHOD 50

for example a preferred way of modeling certain things, then he should be
able to adapt the interface of the program to re�ect this method. When
the interface is more �exible, the modeler will be able to work faster.
If the interface is customizable then this heuristic should receive a high
score. If not, then a low score should be administered. This heuristic is
given a normal importance since its main e�ect will be on the speed of the
modeling process, not is quality.

7. Aesthetic and minimalist design - This heuristic should be judged based
on how 'clean' the tool's interface looks. When working, a modeler should
not be distracted by too many items and features on screen. In fact, only
the required elements for his current, speci�c modeling action should be
visible. This will help the modeler focus on his current task and will have
a positive e�ect on the quality of models. Too much clutter might also
lead to a slower modeling process, since the modeler would be spending
too much time on �nding the required functionality in the interface. If
the interface is nice and clean, this heuristic should be given a high score.
However, if there is much cluttering going on and too many �ashy things
are present in the interface without a good reason then a low score should
be given. This heuristic is given normal importance since it is mostly
concerned with the speed of the modeling process, and only has a very
small e�ect on the actually quality of the resulting model.

8. Help users recognize, diagnose and recover from errors - This heuristic
should be judged based on how well the tool helps users to �nd errors
in their models, and correct those errors. The tool (since it 'knows' the
modeling language) should be able to identify any syntactical errors (and
perhaps even semantics, in the near future) in the model and present these
to the modeler. Ideally, the tool should also come up with possible �xes
to assist the modeler in correcting his model. If the tool has many such
features then this heuristic should receive a high score. However, should
the tool not be able to detect errors at all, then a low score should be
given. This heuristic is given normal importance, as it is only a secondary
safety feature and it only adds to the correctness of the �nal model, not
the actual quality of it. If semantic errors can be identi�ed as well, then
this heuristic should be given a higher importance, but since this is not
yet commercially available I have chosen to ignore it for now.

CHAPTER 3. GENERAL EVALUATION METHOD 51

Heuristic Name Importance

Match between system and the real world High
User control and freedom High
Consistency and standards High
Error prevention High
Recognition rather than recall Normal
Flexibility and e�ciency of use Normal
Aesthetic and minimalist design Normal
Help users recognize, diagnose, and recover from errors Normal

Table 3.1: Heuristics importance

3.2.2 Scoring

In section 3.2.1 I discussed what criteria should be scored. In this section, I
will discuss how to score these heuristics and how to derive a 'grade' from this
scoring system. Please note that I am not yet discussing the aspect of how to
get these scores; this will be discussed in a later section as it is a rather big issue
in the evaluation method.

The scoring itself is done on an ordinal scale [7]. I could have scored it on a
nominal scale (i.e. give it a score from 0-to-10), but I have decided not to for a
couple of reasons. First of all, nominal scales are hard to score. It is very easy
to leave the scorer wondering whether to go for a 6 or a 7. This means that the
scoring might become vague in some points, which leads to murky results. An
ordinal scale is usually more limited (less options to choose from), and when
chosen properly it will also have more clearly de�ned scoring points. A good
example of this includes the well known scale ranging from strongly disagree to
strongly agree. I have chosen a similar scoring system for my evaluation method
as well.

My second reason for using an ordinal scale is that it allows for a much better
expression of what someone 'feels'. If we look at a nominal scale we can only see
numbers. Of course, we know or might be told that every number higher then
�ve indicates that we like something, but it is a rather hard concept to express.
With an ordinal scale on the other hand we can actually choose the labels for
the scores which could be used to make the answers more domain speci�c, which
in turn leads back to argument one: the scoring will be clearer for whoever has
to decide on the score.

Another good reason for using an ordinal scale is that it can be transformed.
As I will explain later, I have identi�ed two ways to get scores for the heuristics
used in my evaluation method. Because of this, it might make more sense to
use di�erent labels for the di�erent ways of getting data. When the amount
of answers you are using is clear and you have assigned values to the index of
the answer the labels do not matter anymore. So instead of using a (strongly
disagree) to (strongly agree) type of scale, you might replace it with a scale
ranging from (- -) to (+ +). The values assigned to the answer stays the same,

CHAPTER 3. GENERAL EVALUATION METHOD 52

Scale 1 Scale 2 Standard value High importance value

strongly disagree - - -2 -4
disagree - -1 -2

neutral/no opinion o 0 0
agree + +1 +2

strongly agree + + +2 +4

Table 3.2: Scoring examples

Total score Grade Total score Grade Total score Grade

-12 0 -3 3.75 6 7.50
-11 0.42 -2 4.17 7 7.92
-10 0.83 -1 4.58 8 8.33
-9 1.25 0 5.00 9 8.75
-8 1.67 1 5.42 10 9.17
-7 2.08 2 5.83 11 9.58
-6 2.50 3 6.25 12 10.00
-5 2.92 4 6.67
-4 3.33 5 7.08

Table 3.3: Scoring table

but the �rst type of label might be more applicable to a certain research method
like survey, whereas the second type of label might be more applicable to another
type of research method, like a think aloud session.

So now that it is clear why I used this sort of scaling, let us now look at how
I used the ordinal scale. To simplify actually getting the results, I have decided
on a 5-grade scale. In the example given in section 2.3.2 I used a scale ranging
from (- -) to (+ +), with (o) as neutral. All of these were assigned numerical
values as well, ranging from (-2) to (+2). The scoring is done per heuristic.
When a heuristic is deemed high importance (as de�ned in section 3.2.1) the
scoring is doubled by the investigator, not the scorer himself. This is to provide
one uniform scoring criterion for the scorer and reduce ambiguity in the scoring
itself. By doubling the score I mean simply doubling the value. For example,
if the score was (-), meaning (-1), it would be doubled to (- -), or (-2). If the
score was (+ +), meaning (+2), the investigator would double the score to (+
+ + +), or (+4). The neutral value (o), stay the same.

As I have said before, the actual labels of the scores may be changed. So
instead of using a scale from (- -) to (+ +), one could use a scale from (strongly
disagree) to (strongly agree). This would especially be useful when performing
a survey to get a tool's scores. The �rst scale is more recommended when
performing a think aloud session. How to actually use these two methods will
be explained in section 3.3. A few examples are given in table 3.2.

Once the scores per heuristic are known, a few simple mathematical steps
can be applied to translate the �nal score to a 0-to-10 system. If one adds up the

CHAPTER 3. GENERAL EVALUATION METHOD 53

scores from the 8 heuristics (keeping in mind which ones are of high importance
and which are not) you arrive at the �nal score for the modeling tool you are
investigating. This can be translated to a grade by looking in table 3.3. The
grade may then be used to perform any sort of statistical analysis, since we have
now translated it into an interval scale [7] which may be used for these purposes.

In summary, I have made use of the properties of an ordinal scale in order to
make the scoring process easier for both the scorer and the investigator. Then I
translated these ordinal results into an interval scale so that the results can be
used in statistical analyses.

3.3 Getting the Scores

Now that I have explained on what criteria the heuristics should be judged,
and how the scoring should be done, I will now move on the explaining how
to actually get the scores for the heuristics. Talking to various people, I have
concluded that there are basically two distinct ways of getting the required
information: a survey, and a think aloud session. Both have their distinct pros
and cons, and I will discuss them both to some detail in this section. Please
note that I do not think one is generally better then the other, but I in speci�c
situation a certain preference might be observed and justi�ed.

3.3.1 Performing a Survey

Performing a survey is one way to get the scores for the di�erent heuristics.
Doing a survey requires basically two things: A good survey, and a large enough
group to perform the survey on [7]. I will brie�y discuss both these aspects, but
for more information I refer you to the relevant literature as I am not an expert
on these things. However, the size of the group has to be carefully considered.
If we look at our intended target population (people using the tool you are
investigating) we have to realize that looking at this group and comparing to
the world population we have to realize that it is actually not so big a group.
Therefore, it is important to make sure to get a big enough response. There are
many methods for getting a good response which are discussed in various pieces
of literature. I just want to state here, that getting a large group for a survey
is not as easy as it seems. Even if you manage to contact a large enough group,
there is no guarantee that you will get a 100% response so you will have to do
a lot of pre-research to ensure a sizable enough sample population.

My evaluation method is not �xed to any particular 'level of depth' in the
program. Up until now I have discussed only the possibility of investigating the
modeling tool as a whole. However, because of the fact that the heuristics by
[12] can be applied not only to a program as a whole, but also on parts of the
program, we can do the same with the survey. This leads to two approaches.

The basic idea of performing a survey to get scores for the various heuristics
is to create a questionnaire. In this questionnaire one can simply state the
heuristics with their appropriate description and ask the respondent to select

CHAPTER 3. GENERAL EVALUATION METHOD 54

their score for this heuristic. It would seem most logical to use the (strongly
disagree) to (strongly agree) scale for such a survey since the other scale might
not feel natural to your sample population.

A more advanced possibility to perform the survey is to look at the inter-
action patterns identi�ed in section 2.3.2. Instead of directly asking about the
heuristics, the researcher could score all interaction patterns seperately, and
thus gain a grade for every interaction. The average of these grades would then
be the �nal grade for the tool he is evaluating. Of course, not all modeling
tools have the same interaction patterns as CaseTalk, so when such a survey
is preferred it is necessary for the researcher to identify the interaction pattern
in his speci�c modeling tool �rst. The advantage of this method is that you
would get a better average for the tool as a total since you are no longer asking
the participant to �nd an average for the entire program but instead o�er him
the chance the give his opinion on little bits of the program. Also, since you
are getting results per interaction it would give you another way to statistically
compare data between researches.

The most obvious downside for performing an advanced survey is that it
requires a lot more work, both for the researcher and the participant. This is
widely considered to be bad, especially for the problem of participation [7]. The
more complex a survey becomes, the less likely it is to get people to participate
in your survey since it requires more of their time. Therefore, it is important to
consider your participation group before deciding on how complex you want to
make your survey.

3.3.2 Performing a Think Aloud Session

The next possibility is performing a think aloud session. Such a session is useful
because it o�ers a lot more information then just performing a survey. [7] and
[8] both conclude that a survey will give you a large amount of information, but
the information is actually very shallow. In other words, it will only give you
answers you were speci�cally looking for, and nothing else. In a think aloud
session on the other hand, you can get much more information which might also
be relevant to draw other conclusions from then you had originally anticipated.

I will not discuss in any great detail how exactly a think aloud session (TAP
session) works. Since it is a widely used concept a lot of information is available
on the internet, and I �nd it beyond the scope of my thesis to further go into
this matter. To summarize a TAP session: A person is asked to complete a
certain task, for example to produce a model. Furthermore, this participant is
asked to verbalize the thoughts he is having on a certain subject, generally the
subject you are investigating. These verbalizations are recorded, and so is the
actual progress of the task. Afterwards, a transcription is made of the session
which can be analyzed in a variety of ways.

For my modeling tool evaluation method TAP sessions can of course be used
as well. However, the method I propose di�ers somewhat from how you would
do a survey. First of all, the participant would no longer directly control the
scoring on most of the heuristics. This scoring is instead done by the researcher

CHAPTER 3. GENERAL EVALUATION METHOD 55

based on what he observes in the participant, and on the thoughts uttered by
the participant. First of all,a normal TAP session is organized. The participant
should be asked to complete a certain task, preferably creating a model using
the selected tool. Both the modeling process and the verbalizations should be
recorded and time stamped. After the session is over, the researcher should
create a transcript of the verbalizations. The transcript and the recording of
the modeling process should then be analyzed and tagged according to each
interaction pattern. So if we look at CaseTalk, the participant might be at time
stamp X interacting with the system based on the qualify part of expression
usecase. Then it is up to the researcher to distill from the transcript and the
user's actions the scoring of the heuristics. So instead of having the participant
score the heuristics, the researcher does it himself.

The main advantage of performing TAP sessions in this case is that it allows
the researcher to make a judgement based on what he himself thinks. This
means that all heuristics will be scored based on the same scale of good and bad
which will lead to more uniform results. Also, the transcript may even reveal
certain details that would otherwise be missed. Furthermore, a TAP session
may be seen as being more scienti�cally sound then a survey [7], since it o�ers
a score which has more evidence behind it.

However, there are two major downsides for choosing to evaluate with a TAP
session. The �rst is fairly obvious: It is a lot more work. Without signi�cant
resources you will never be able to achieve the numbers of participants which
may be reached using surveys. Think about it. Every single session needs to be
transcripted and analyzed. That alone might take hours for every participant.
A survey can simply be interpreted by a computer. Because of this reason, TAP
sessions are rarely as big as surveys.

The second major downside of using TAP sessions is that the researcher
himself will actually have to be familair with the modeling process and the tool
he is evaluating. This fact leads to two new problems. First of all, during his
familiarization with the tool, the researcher may already have formed an opinion
on the tool which colors his interpretation of the TAP session's transcript and
recording. Secondly, unless the researcher is actually an active modeler himself,
he will never be as familair as the people he is observing which may lead to
errors in the interpretation of what they are doing and what they are thinking.

For the case study in chapter 4 I will be doing a TAP session, so for more
information and a worked out example for FCO-IM and CaseTalk I would like
to refer you to that chapter. A survey would be advisable as well, but for this
thesis I have decided to just test the method using a TAP session.

3.3.3 Comparing the Survey and TAP methods

To conclude this section I have created an overview of the advantages and dis-
advantages of my proposed methods of data gathering. Of course, this analysis
is rather limited in it's scope, and I am quite clear that there is more to be said
on this matter, but that is not the scope of this thesis. The overview may be
found in table 3.4.

CHAPTER 3. GENERAL EVALUATION METHOD 56

Research method Simple Survey

Advantages Easy to reach large population
Easy to interpret

Disadvantages Not a lot of data gathered

Resarch method Advanced Survey

Advantages Easy to interpret
Depth is variable, more information
Better statistics

Disadvantages Getting large population more di�cult
More work for researcher

Research method TAP Session

Advantages Large amount of information
Better evidence for conclusions
May lead to new unexpected insights

Disadvantages A lot of work is needed
Participation must be lower because of work
Researcher has to be familair with tool

Table 3.4: Overview of research methods

Chapter 4

Case Study De�nition

In this chapter I will introduce and describe the case study I will perform to
evaluate my evaluation method. I will introduce the various test groups which
I will use in the case study, and specify the exact nature of the case study itself.
My aim in this chapter is to provide a general overview of the case study, in the
hope that it is repeatable for future work.

4.1 Case Study Goals

By performing a case study I hope to perform a �eld test of my evaluation
method (as described in chapter 3). By performing a �eld test I hope to see
if the method works in practice, and if the results yielded by one of the two
evaluation methods discussed in section 3.2 are consistent with eachother. My
case study will focus on testing the FCO-IM modeling tool CaseTalk.

The case study results will not only be viewed as a test of CaseTalk, but will
also be analyzed to ascertain how good the evaluation method itself is. How
this is done is explained in the relevant sections, further on in this chapter. To
summarize:

• Case Study Goals

1. Perform an evaluation of CaseTalk

2. Evaluate the evaluation method itself

4.2 Case Study 1 - TAP Session

4.2.1 TAP session description

To evaluate my evaluation method, I will start by performing a TAP session on
the FCO-IM modeling tool, CaseTalk. The TAP session will more or less be or-
ganized in the fashion described in section 3.3.2. This means that a task will be

57

CHAPTER 4. CASE STUDY DEFINITION 58

assigned to the students which will be evaluated. In this case I will record two
sources of information: Their verbal communication, using a microphone, and
their interactions with CaseTalk, which will be recorded using a screen capture
application called SnagIt (more information at http://www.techsmith.com/screen-
capture.asp). These two sources of information will be carefully time stamped
to allow for future analysis.

The investigator performing the study (in this case, myself) will also lead the
experiment. This means that the investigator will need some basic knowledge
of FCO-IM, in order to properly monitor the experiment as it takes place.The
main task for the investigator is to observe, and make notes where applicable.
It should be noted however, that the investigator is not allowed to comment on
the experiment itself while it is taking place. The research subject should react
and act as if no observer is present. This is to prevent the investigator having
any in�uence on the outcome of the experiment. However, the actual presence
of the researcher is still very important ([15]) since it is very well possible that
relevant information for the experiment is not actually recorded in the process.
Also, the investigator is also responsible to correct the participant is he does
not adequately verbalize his thoughts during the assignment.

The main part of the TAP session will consist of the participant performing a
modeling assignment (of which the details will be discussed later) following the
rules of FCO-IM, and making use of CaseTalk to perform the actual modeling.
By use of an instruction sheet and instructions by the investigator the partici-
pant will be given his instructions: Simply complete the modeling assignment as
you would do on any other occasion, but be sure to verbalize all your thoughts
with regards to performing the interactions with CaseTalk. A time limit of 10
minutes will be set on completing the assignment, to reduce the complexity of
the results, and reduce the amount of work needed to process the results. As
stated in various literature (including [15]): a small experiment can still yield
results relevant for a larger whole, when properly set up and executed.

The role of the investigator in this part will be two-fold: First, he has to
observe what is going on and encourage the participant to verbalize more when
so needed. Second, the investigator has to monitor the actual modeling session
and make sure the participant does not stray too far from the given goal. Of
course, a little room for error should be kept since this could be a result from the
modeling tool itself. However, when the participant gets stuck in completing the
task, the investigator should assist in order to make sure the experiment keeps
moving. Keep in mind that this is in essence not about the actual modeling:
this only serves as a tool to achieve our real goal: Evaluate CaseTalk. This
means that a little involvement from the investigator is justi�ed.

To reduce in�uence and interruptions from external sources, the experiment
will take place in a closed room where only the participant and the investigator
will be present. Food and drinks are not allowed during the experiment, as it
might disrupt the participant in completing his assignment. Besides, the short
nature of the experiment negates any need for refreshments during its course.
The participant will not be allowed to use his own computer system as we want
all participants to use the same version and settings of CaseTalk. All other

CHAPTER 4. CASE STUDY DEFINITION 59

equipment will also be prepared and tested before the experiment takes place
to reduce any chance of unexpected delays resulting from malfunctioning or
improperly set up equipment.

The timing and planning of this case study was done using the expertise
of the sta� of the Data Architectures & Metadata Management Group. Using
their knowledge of the student's time table I have selected a date and time on
which no classes were planned and which was not in advance of a test for which
preparation was required. Also using their help, I have contacted all students
through e-mail to ask for volunteers who would be willing to sacri�ce some of
their time to participate in my experiment.

Finally, two of the TAP sessions will be done with an experienced modeler
to ascertain whether or not including such person has any e�ect on the outcome
of the experiment. Currently, I have not yet researched this possibility, so
the outcome of this little meta-experiment may lead to future research. My
hypothesis is that there will not be a discernable e�ect based on the expertise
of the modeler, but there might be an slight di�erence based on the background
of the modeler. More research on this subject is needed as well.

4.2.2 Assigning the heuristics to use cases

As I have stated in section 3.3.2, use cases will need to be assigned to heuristics.
This is so we can identify which interaction has to do with which heuristic,
which in turn will allow me to perform a more to-the-point analysis of the TAP
session's resulting transcripts. Keep in mind that I am looking at the interaction
between the user and the modeling tool. These interactions are de�ned by use
cases which I identi�ed in section 2.3.2. Since I am looking at these interactions,
and the heuristics are based on interactions between man and machine it is
therefore a valid conclusion to say that every use case (or interaction) has one
or more heuristics which have a bearing on that speci�c use case.

In order to determine which heuristic has a bearing on which use case one
can take two approaches: assigning use cases to the heuristic or assign heuristics
to the use cases. The di�erence between the two is not very important for the
end result, but it does matter in actually getting to it. If we were to use the
�rst approach, I would look at every heuristic, and then decide which use case
is relevant for that heuristic. This means that I will be working through the list
of use cases every time. The second approach will require me to look at every
use case, and then decide which heuristic is relevant for this speci�c use case.
By using this approach, I will be going through the list of heuristics every time.
Since the list of heuristics is signi�cantly shorter then the list of use cases, this
will reduce some of the workload. This will be true not only for this speci�c
TAP session, but for every TAP session you might undertake for other tools as
well, since the list of use cases will be in most (if not all) cases be longer than
the list of heuristics; unless you have a very limited tool at your disposal.

The combination of use cases and heuristics can be found in table 4.1. An
in depth explanation of the various use cases will be given as well. Note that
the naming of the use cases is the same as the one used in section 2.3.2, and

CHAPTER 4. CASE STUDY DEFINITION 60

Use Case (name) Relevant heuristics

(1) Enter expression 1,2,3,4,5,6,7,8
(2) Qualify part of expression 1,4,5,6,8

(3) Con�rm expression is quali�ed/quanti�ed 4,7,8
(4) Con�rm expression 4,7,8
(5) Undo QlaQua step 2,4,7,8
(6) Cancel expression 2,3,4,6,7,8

(7) Delete repository item 1,2,3,4,6,7,8
(8) Generate new IGD 1,2,3,7

(9) Add repository item to IGD 1,2,3,4,5,6,7,8
(10) Delete repository item from IGD 1,2,3,4,5,6,7,8

(11) Add unicity constraint 1,2,3,4,5,6,7,8
(12) Delete unicity constraint 1,2,3,4,5,6,7,8
(13) Add totality constraint 1,2,3,4,5,6,7,8
(14) Delete totality constraint 1,2,3,4,5,6,7,8

Table 4.1: Use cases with assigned heuristics

the numbering for the heuistics is taken from section 3.2.1. This is list is not
completely set in stone, however, as some instances of use cases may not be
related to the heuristic they are generally related to. However, when such an
event takes place I will identify it, and take this into account when completing
the evaluation. Also, although for most use cases all heuristics are relevant, I
have chosen to list only the ones in which there is an emphasis.

• Enter expression. This use case is particulary relevant for the modeling
process as a whole, since it is one of the core aspects of entering data.
Therefore, since the use case itself is very important to the modeling pro-
cess, all heuristics are also important to consider for this speci�c use case.

• Qualify part of expression. Qualifying a part of the expression is very
relevant for the modeling process. Therefore, heuristics 1, 4 and 8 are
very important, since the quali�cation process needs to be the same as
the theoretical quali�cation process done on paper, and also be without
errors. Futhermore, the process of quali�cation needs to be done quickly
and e�ciently as well, so heuristics 5 and 6 are also important.

• Con�rm expression is quali�ed/quanti�ed. This use case is a con�rming
step, which means that it only functions to con�rm the �nal part of a
certain part of the ClaQla process. Because of this, error detection is still
important so heuristics 4 and 8 need to be adhered to. Furthermore, we
want the con�rmation process to be clear, so heuristic 7 is also relevant
here.

• Con�rm expression. The same conditions as in the previous use case apply,
so heuristics 4,7 and 8 are relevant here.

CHAPTER 4. CASE STUDY DEFINITION 61

• Undo ClaQua step. The very name and description of this use case indicate
that heuristic 2 is relevant. Furthermore, this use case is about error
control, which means that heuristics 4 and 8 are relevent here too. Finally,
this needs to be done e�ciently, so heuristic 7 should be applied as well.

• Cancel expression. This use case too is about correcting errors. It is log-
ical to assume that when you cancel an expression completely you were
obviously making a mistake. Therefore, heuristics 4 and 8 are very impor-
tant here. However, to prevent mistakes, this action should not be taken
lightly, and the user needs to know exactly what he is doing when selecting
this action. Because of this, heuristics 3, 6 and 7 should be adhered to.
Finally, because of the serieus impact of this action, heuristic 2 applies as
well, since the user should be able undo this action when he has made it.

• Delete repository item. More or less the same reasoning applies here as
with the previous use case, but with the adition that heuristic 1 is relevant
as well. This is because deleting a repository item is dependent on so many
other items in your repository. If you delete a fact type for example, all
related object types and expressions relating to that fact type will have
to be deleted as well; or rather: should be deleted as well, depending on
how good your tool is.

• Generate new IGD. Generating a new IGD is dependent on the items you
have in your repository. Therefore, the tool should take care to identify
its repository items correctly; hence the need for heuristic 1 to be applied.
Furthermore, the action should be easy to use and quickly accessable, so
heuristics 2,3 and 7 are relevant as well.

• Add repository item to IGD. Since this interaction is a crucial task in
actually generating the IGD (and thus, the model itself) all heuristics
must be applied. The interaction should be easy, straightforward and
checked for any errors on the user's part.

• Delete repository item to IGD. Same reasoning as the previous use case,
with the adition that heuristic 1 is even more important. When deleting
an item the system should also delete all related items from the IGD, as
you would otherwise have connections or constraints refering to nothing,
so the system needs to know the rules of FCO-IM.

• Add unicity constraint. Again, this is a very important modeling operation
which involves error checking, so the operation should be safe and quick.
Therefore, all heuristics apply.

• Delete unicity constraint. Same as above. However, the system should
also be aware that when deleting constraints, it should also re-verify the
population. This is something that should be monitored by the investiga-
tor when conducting the experiment.

• Add totality constraint. Same as unicity constraint.

CHAPTER 4. CASE STUDY DEFINITION 62

• Delete totality constraint. Same as unicity constraint.

To conclude this section I would once again like to emphasize that the above list
only serves as a guideline. Since both the heuristics and the use cases are based
on de�ntions in natural language they are not by any means to be considered as
absolute. For this they would have to be formalized, which is not yet possible.
Please use the above list only as a reference to what is very important for any
given interaction and when you are conducting similair research, feel free to
shift the focus to other areas. The main reason I have chosen to even make such
a list is that it will allow me to conduct the TAP session in a more organized
manner, and also to make analyzing the results a bit easier and systematic.

4.2.3 TAP Session assignment

Before I explain the assignment used in the TAP session, I would once again
like to stress that the assignment has nothing to do with modeling itself. I will
not even look at the quality of the model, or if the participants even successfully
completed the assignment. What I am interested in, are their interactions with
the system while trying to complete a modeling assignment. Because of this
fact, the assignment is deliberately made very easy. Instead of making the
assignment di�cult, we looked at choosing an assignment which incorporated
most of the FCO-IM elements requiring interaction with CaseTalk. I would
also like to emphasize that the assignment was selected and speci�ed by Dineke
Romeijn, from her position as teacher. For this I am very grateful.

The assignment chosen is based on an assignment in [?] on page 28 and
the assignment in [?] on page 18. We choose this assignment based on three
distinct criteria which makes them successful for a TAP session (based on the
criteria in [15]):

• It is short - can be completed in less then 15 minutes.

• It is simple - it requires very little skill to model the problem.

• It contains all elements of FCO-IM which in CaseTalk leads to interactions
with the program.

The assignment itself was modi�ed from the original version to be a little bit
easier and so that it may be completed faster. The latter was done by removing
the need to actually perform the �rst step of the modeling process (see �gure
2.3 and the related section for more information) and thus provide a very clear
set of factual sentences and constraints. This allows the assignment to focus
on the part of the modeling process done in CaseTalk, namely the classi�cation
and quali�cation process, and the drawing of the IGD. The resulting assignment
was checked and veri�ed by Dineke Romeijn.

The model which the students are supposed to create can be seen in �gure
4.1. However, instead of having the participants directly create that model, I
have made it a little bit more complicated. First, the students will be provided
with a population and a set of constraints and asked to create a model from

CHAPTER 4. CASE STUDY DEFINITION 63

Figure 4.1: Resulting model for TAP session

that data. Using this task, I will observe to what extent heuristics 1, 2, 3, 5, 6
and 7 are adhered to.

However, the population given will have some critical points in which it
is in violation of the constraints. The user is then asked to use any means
necessary to correct those mistakes in the population and come up with a valid
model. This step will allow me to observe to what extent heuristics 4 and 8
are adhered to. Because the user will have to use his imagination to correct the
population (and come up with facts that can be used to complement the missing
population elements) this latter part will allow for some deviation between the
various outcomes, but it is my opinion that these deviations in end result will
not a�ect the outcome of the experiment. This opinion is also stated in [15]:
"The end result of a certain experiment has little impact on the data collected by
the experiment itself, as long as the participants have �nished the same task.".

Between the �rst and second part of the TAP session, the investigator will
check the model produced by the modeler in order to make sure he has not
strayed too far from the intended model. This is to try and achieve as much
similarity between the various experiments as possible. If the resulting models
are extremely di�erent, we can no longer guarantee the external validity of
the experiment. If the model is judged to be too di�erent from the 'standard

CHAPTER 4. CASE STUDY DEFINITION 64

model' seen in �gure 4.1 then this standard model will be given to the student to
work with.The investigator will however not be involved with the second part of
the assignment. Finding the errors is the actual task to complete, so if the user
cannot �nd the errors (either by reasoning or by use of CaseTalk's functionality)
then he will simply be allowed to fail.

The �rst population will be given as fact sentences. These should easily be
translated into expressions used by CaseTalk by the participants, since they can
almost be translated without change. The only thing the participants are still
required to do is to identify the labels, facts and objects; but since these are
fairly obvious from the fact sentences I do not expect to see any big di�erences
between the various models. The given fact sentences look as follows:

• The o�ce of lecturer ALB is in room 37

• The o�ce of lecturer JNS is in room 34

• The o�ce of lecturer PTR is in room 15

• The o�ce of lecturer BER is in room 34

• There is a room 37

• There is a room 34

• There is a room 15

• The phone number of lecturer ALB is 0263657123

• The phone number of lecturer PTR is 0263657145

• The e-mail address of lecturer ALB is jj.alberts@abc.nl

• The e-mail address of lecturer PTR is mjl.peters@abc.nl

The constraints which should be put in place on the model are given as sentences
in natural language. I have decided not to simply state them as constraints,
because I want to see how people translate the constraints into constraints
which can be understood by CaseTalk. It will be made clear to the participant
that all constraints are correct, and that all errors identi�ed are the result of
the population being wrong. Therefore, I can assume that all the models will
have the same constraint unless an error was made. The constraint sentences
given to the participants look as follows:

• All lecturers must have an o�ce to work in.

• All lecturers should have either a telephone number, an e-mail address, or
both.

• A lecturer can only work in one o�ce. O�ces may be shared by lecturers.

• All o�ces can only have one room number.

CHAPTER 4. CASE STUDY DEFINITION 65

• A lecturer can only have one telephone number.

• Telephone numbers may be shared by lecturers.

• A lecturer can only have one e-mail address, and e-mail addresses can only
be given to one lecturer.

• A lecturer is identi�ed by his code, which can only be given to one lecturer.

The main problem that should be identi�ed by the participants is the fact that
the second constraint is violated. There are two teachers who do not have
either a telephone number or an e-mail address. These errors are supposed to
be corrected by the participant using either common reasoning (which should
be verbalized) or by using any of the checking tools available in CaseTalk.

To summarize the assignment, I have listed and summarized the two distinct
steps in the assignment:

1. Use CaseTalk to create an FCO-IM model based on the facts given. Do
not deviate from these facts, all errors you may identify are intentional.

2. Use any means necessary to identify the errors in your previous model.
Do not change any constraints, but adapt the population in such a way
that all constraints are adhered to. Make up facts which are not currently
given; as long as you make the population �t the constraints.

The time limit given for the assignment is currently set on 15 minutes. These
15 minutes are a guideline however, and it is up to the investigator's judgment
to ascertain how long a session is allowed to take. If the participant is no longer
making any progress at all, and the 15 minutes have elapsed it is logical to stop
the experiment. If the participant is hard at work at around 15 minutes, it would
be advisable to continue the experiment and let the participant �nish his current
task. Since I will be playing the investigator role in this speci�c experiment, I
will list the criteria used to stop the experiment at the experiment's description
listed in chapter 5.

4.3 Case Study Population

In this section I will discuss the intended case study population. Please note
that there is a di�erence between the intended population and the actual popu-
lation which participated in the experiment. For more information on the actual
participation I refer you to chapter 5.

In order to perform a good case study, the chosen population has to be
representative of the chosen domain ([15] and [7]). As easy as this may sound,
this is actually one of the hardest parts of setting up a case study. If we look at
the domain of CaseTalk, we can see that it is used by various groups of which
professional modelers, educational sta�, researchers and students are probably
the most numerous. To perform a complete evaluation of CaseTalk (in order to
achieve case study goal 1) I would certainly have to get a population containing

CHAPTER 4. CASE STUDY DEFINITION 66

at least all of those people. However, since my resources are limited I have
decided not to include researchers and professional modelers for the TAP session.
This is mainly due to the fact that I can not get people from those two groups
to participate at my current location. In order to take those groups into account
I would have to spent considerable time traveling for only a ten minute TAP
session, which is currently not feasible.

For the TAP session I have decided to have eight sessions. This number is
based on the amount of work it will take to adequately process the results (as
can be read in [15]). Because I will have to do everything myself, the amount
of work should not exceed reasonable limits with regards to the size and time
taken for this thesis. Six TAP sessions will be done with students, and two will
be done with educational sta�. The students will be selected from the HAN
university by way of invitations. The educational sta� will also be selected from
the HAN university, and also by way of invitations. Through this process I can
reduce overhead to a minimum, and make sure that I get a diverse group. The
students will be invited from two distinct programs. Three students will be
invited from the part time bachelor education. These students are currently in
their 'developing an information system' semester, and are following the course
'database design' by Dineke Romeijn. This course teaches them the basics of
FCO-IM and the use of CaseTalk. These students are from the Netherlands,
and may not be a�uent in English. Therefore, their TAP session will be held
in Dutch.

Three more students will be selected from the Data Architectures & Meta-
data Management Group's Master course. These students are mostly of a foreign
(i.e. not Dutch) nationality and are studying at the HAN university. They are
following various courses regarding modeling in general, FCO-IM and CaseTalk.
Their main language is English, so their TAP sessions will be held in that lan-
guage.

I have considered also getting some students from the Radboud University
to participate, to get a group of students without any real experience with
CaseTalk. This in order to get a fresh perspective from people who have not yet
worked with CaseTalk. However, I rejected this idea for a number of reasons.
First of all, the lack of experience might also mean a lack of opinion. It is
very hard for people to form an opinion on something on which they have only
worked with for a few minutes. Even looking from the investigator, it is very
hard to actually judge the quality of a tool when the people working with the
tool have had no previous experience with it.

Finally, the two educational sta� members are Dineke Romeijn and Chris
Scholten, who both work at the Data Architectures & Metadata Management
Group. They have extensive experience both in working with CaseTalk, and in
teaching it to students. However, they have not had any signi�cant in�uence in
the development of either FCO-IM or CaseTalk, which makes them less biased.
Guido Bakema and Jan-Pieter Zwart were also considered, but since they have
basically developed both FCO-IM and had a signi�cant in�uence on the devel-
opment of CaseTalk I considered them to be too biased to provide objective
information.

Chapter 5

Case-Study Results

In this chapter I will discuss (in depth) the results from the TAP sessios I
have performed. I will discuss each experiment individually, and perform the
evaluation method on each experiment. The conclusions drawn from these ex-
periments can be found in chapter 6; this chapter will only provide the data
and results themselves. All transcripts can be made available as attachements
to this thesis, but will not be included in the thesis itself. Also please note that
some of the experiments were performed in Dutch. English translations can be
made available on demand.

5.1 General impressions

As the TAP sessions performed for this thesis were not just to actually get a
score for CaseTalk and FCO-IM (but rather to investigate if my proposed eval-
uation method can return a good and consistent result) it is worth to mention
a few observations made during the experiment. These observations might help
to improve the method in future work, as it turned out that some of my as-
sumptions had been proven faulty during the course of the experiment itself.
These errors will be listed and explained.

First of all, I underestimated the amount of skill with the modeling tool
required to perform the experiment. In section 4.3 I argued that skill with
the modeling tool is not a very high prerequisite since even observing someone
trying to work with the tool would be worth investigating. However, during the
course of my experiments I encountered several participants who had in fact a
somewhat low skill level with CaseTalk, and these experiments did not go very
well. The participant would be unable to even perform some of the tasks set
out in the assignment, leading to the person just randomly clicking around in
CaseTalk and not knowing what to do. Since the participant was therefore not
actually performing any of the use cases laid out in section 2.3.2, I was unable to
gather any valid data from these actions leading to a unsatisfactory experiment.

The second mistake I made was to not asses my case study population care-

67

CHAPTER 5. CASE-STUDY RESULTS 68

fully enough. When selecting participants I assumed a certain level of skill with
the modeling method (FCO-IM) itself based on the fact that they were students
or sta� of the HAN and should be working with FCO-IM during their work or
studies. This turned out to be a faulty assumption, since especially some of the
students who participated showed a very low level of skill in working with FCO-
IM. When this is the case, the entire experiment should be rejected outright,
since such a person would not be able to demonstrate the connection between
a modeling tool and a modeling language. If the person does not know what he
is doing with the tool, then we cannot properly judge the quality of the heuris-
tics de�ned in section 4.2.2 since he or she will have no clear goal in the tool;
instead he or she will just be clicking at items in a random fashion to try and
�gure out what to do. Of course, this could be interpreted as valid data which
says something about how well a tool can help you to learn a certain modeling
language, but as I have not de�ned my heuristics in this way, I decided to reject
the data gathered from these participants.

Fortunately, not all my general observations are negative. First of all, the
assignment itself proved to be very e�ective. During the experiment I observed
that the setup of the experiment required the participants to use most of the use
cases described in section 2.3.2, which means that scores can be given for all of
the heuristics. Furthermore, the assignment proved to be more or less as di�cult
as I expected it would be (for the population which had a certain level of skill
in both FCO-IM and CaseTalk), and therefore the lenghth of the experiment
proved to be within bounds as well. I needed to hurry the participant along
during certain experiments, but this was mostly due to the perfectionist nature
of the participant in question, and not because the assignment proved to be too
much.

Something I did not consider in advance (but still proved important) is the
fact that the domain of the assignment determines where the di�culty lays.
In my assignment for example, the domain was of a educational nature with
teachers being assigned to rooms and such, as can be read in section 4.2.3. This
means that all of the paricipants, being selected from an educational institution,
had the domain knowledge required to interpret the results. When performing
this assignment in some other settings, care should be taken that the domain
used in the assignment is familair to the participants as not to confuse them
with terms they are not familair with. Again I want to emphasize that the
main purpose of these assignments is to perform my evaluation method, not
the check wether or not a participant has the ability to interpret domains and
model them.

One further general observation is that the location I chose for some of the
experiments was not ideal. My �rst location was a meeting room with open
windows to a busy hallway. This meant a lot of distraction both in terms of the
participant being distracted, and the audio recording being polluted with noise
from the hallway. The second location was a classroom which could be locked
and closed, and had no windows facing inwards. I found that the participants in
this room were more able to focus their attention and that the audio recording
was much clearer.

CHAPTER 5. CASE-STUDY RESULTS 69

5.2 Experiment results

The results from my experiment will be described in detail for each experiment
in turn. Every experiment will be described (in terms of setup and participants)
and I will discuss my observations from every experiment. The details and tran-
scripts from the experiment can be found as an additional document and will
not be included in this thesis. Finally, I will perform the evaluation method de-
scribed in chaper 3 to determine a score for CaseTalk based on the participant's
actions. The �nal score for CaseTalk will be given in the next section.

Experiment 1

Experiment introduction

The �rst experiment was done with a master student from the HAN university
(information published with permission of participant). She is studying FCO-
IM in several courses and has performed small assignments with FCO-IM before.
Her knowledge therefore is mostly theoretical, but she was convinced she could
perform the small assignment put before her. The experiment itself took place
in a closed meeting room where we were unfortunately disturbed due to the poor
quality of sound isolation present in that room. The audio recorded is likewise
polluted with random background noise, making it harder for me to properly
�nish transcripting this experiment.

Experiment overview

The participant started out by entering all the expressions given before her. This
meant that she was doing a lot of redundant work since most of the sentences
describing population are very much the same. Use cases 1, 2, 3 and 4 were
used to enter the expressions. While doing this work the participant observed
that 'I don't really need to give it a name since I already have the facts which is
about the same (02:20)', while manually trying to �nd the appropreate fact type
already stored in CaseTalk. By doing this, she was in essence repeating steps
she already took, and could furthermore make mistakes had she not recognized
this. Because of this, heuristics 4, 5 and 6 were violated.

Later on in the experiment, the participant said: 'this was just a population,
I didn't need to create a new expression for it since I already have an expression
(03:13)', and proceeded by cancelling her work only after she had in fact already
�nished it. By doing this, she demonstrated that CaseTalk had in fact not
informed her about the fact that she had already entered a completely similair
expression and was in fact only adding population to her model. Time was
wasted because CaseTalk did not properly keep her informed about what she
was doing during the execution of use cases 1, 2 and 3. Again, heuristics 4, 5
and 6 were violated because of this.

6 minutes into the experiment, the participant was trying to de�ne her ex-
istency postulating fact types about the object type 'room'. However, she did
not really know how to perform this action in CaseTalk, and ended up creating

CHAPTER 5. CASE-STUDY RESULTS 70

double object types at (06:10). CaseTalk should have (based on the fact that
the modeler should re�ect the modeling language) have given her the choice
wether or not she wanted to create a new object type, or to de�ne an existency
postulating fact type about the object type 'room'.

The participant then proceeds with entering all the fact type expressions
(and population) in a similair fashion using the procedures de�ned in use cases
1, 2, 3 and 4. Only after 10 minutes does she (by accident) discover the fact
that CaseTalk allows the editing of populations using a database editor (which
is in fact not related to the way FCO-IM works). So to summarize, CaseTalk
is violating the way popultion is added in FCO-IM (heuristics 1 and 3) by
implementing another way of doing this. Furthermore, this method is �awed in
that it is apperrantly not obvious for this user how to work and �nd it.

For the next phase of the assignments, the participant creates an IGD as
you would do in FCO-IM. However, the tool does make her job a bit harder,
since the IGD she creates by dragging all her repository items into the diagram
at (10:29) becomes an instant mess with overlapping lines, boxes and circles.
This happened by executing use cases 8 and 9 and is in violation of heuristic 5.
She corrects this by manually putting all items in a more logical position.

Adding the constraints in this experiment went very well. By executing use
cases 11, 12, 13 and 14 the participant was able to quickly put the relevant
constraints onto the model in a correct fashion. Because of this, I can conclude
that for these use cases actually all heuristics were followed. For this participant
it was easy to do and she seemed to be guided by the system when placing
constraints. Furthermore, the system would only allow constraints which are
legal in FCO-IM.

Experiment conclusion

The scoring for experiment 1 has been decided as follows: (based on the de-
scription given of the experiment, and the general remarks about the heuristics
made in this description)

Heuristic Name Score

Match between system and the real world +
User control and freedom o
Consistency and standards -
Error prevention - -
Recognition rather than recall o
Flexibility and e�ciency of use o
Aesthetic and minimalist design -
Help users recognize, diagnose, and recover from errors o

Table 5.1: Scoring Experiment 1

This leads to the following score for CaseTalk, based on the calculations
demonstrated in chapter 3.

CHAPTER 5. CASE-STUDY RESULTS 71

Absolute score Adjusted score Final score
-3 -5 2.92

Table 5.2: CaseTalk score Experiment 1

As we can see, the experiment did not go well for CaseTalk. This was mostly
due to the problems with preventing errors and providing one good overview
of how far along the modeling process was (heuristics 1 and 4). Furthermore,
based on this experiment we did not really see any strong points of CaseTalk
except for the match between the constraint process in CaseTalk and that same
process in FCO-IM.

Experiment 2

This experiment was rejected after analysis indicated that the participant's level
of skill in both FCO-IM and CaseTalk were below the requirements to success-
fully complete the assignment. A recording of this experiment is available, but
I do not consider that data in this recording to be valid based on the general
observations I made, which are described in section 5.1.

Experiment 3

Experiment introduction

The third experiment was done with a night course bachelor student at the HAN
university (information published with permission of the participant). He has
recently done a course on FCO-IM and has worked with CaseTalk during this
course. This person, however, is a bit skeptical about the use of FCO-IM. Since
he is a database manager, he wants a model to be translatable to a database
structure. FCO-IM however does not yet support a real time connection between
an actual database and the model, something that according to this participant
makes FCO-IM useless for any real-world application. He also does not have a
very high opinion of CaseTalk, which he considers to be �awed and riddled with
bugs. Nevertheless, he agreed to approach the assignment with a neutral view.
This experiment took place in the same location as the �rst experiment, which
lead to the same problems and complications in terms of the sound recording.

On a �nal note, this experiment took place in Dutch. Translations of all
citations will be provided in this description.

Experiment overview

This time the participant also started with entering all of the expressions pro-
vided in the assignment. As with participant 1, he also did this step by step;
entering each expression individually, as opposed to making use of the popula-
tion editor provided by CaseTalk. While doing this, the participant remarks:
'nou, ik heb nog iets niet goed gedaan, maar ik ga maar even door (02:20)',
or: 'well, I have still made a mistake, but I will just continue'. In this case,

CHAPTER 5. CASE-STUDY RESULTS 72

his mistake was a simple spelling error made in the word 'lecturer' which the
participant types as 'lecture'. Because of this, CaseTalk did not recognize this
expression as being part of an already existing fact type, and tried to make it a
di�erent one with the same name, leading to a 'recursive structure'. The partic-
ipant did not (at �rst) realize what he did wrong, and did also not understand
the error message CaseTalk displayed to him; something which is in violation
of heuristics 4 and 8, during the excecution of use cases 1, 2 and 3. The partic-
ipant never realized his mistake; instead he chose to enter the expression again
thereby inadvertently correcting his previous mistake.

During time index 04:20, the participant was starting on his existence pos-
tulating fact types. As we already saw during the �rst experiment, this lead
to some confusion. The mistake made by the participant in this instance was
that he tried to connect a fact type to an already established label type which
lead to an error from CaseTalk during the excecution of use case 3 as it should
in FCO-IM. This means that in this case heuristic 1 has been clearly followed.
However, the error itself was simply a message saying that he had performed
an illegal function without further explanation. This lead the participant to say
'ik, uh... ik moet even wat he? ik geef het even een andere naam (04:59)', or 'I,
uh... I have to do something, right? I'll just give it another name for now'. He
did not know what to do (and CaseTalk gave him no advice) so he simply tried
something else, which lead to a domain error in the resulting model, violating
heuristics 1, 2 and 3.

When trying to generate the IGD for the next phase (adding constraints)
the participant could not remember how to actually create one. Using tooltips
and clicking around did not help him either, so I had to assist him in this task.
This seems to be a violation of heuristics 6 and 7 while executing use case 8.

After eventually generating the IGD he also had the trouble of actually cre-
ating a layout that would make it easily readable to a viewer, as was the case
in experiment 1. Adding constraints turned to be impossible for this partici-
pant. His skill with FCO-IM and CaseTalk proved to be insu�cient to actually
intepret the fact sentences and translate those into constraints. Therefore, it is
impossible to judge any of the use cases and their associated heuristics based
on this experiment.

Finally, the participant used the build-in rule checker to determine if there
were any errors in his model. The participant did not understand any of
the information given in the error display, after which he stated: 'verify well-
formedness, dan gaat hij dus de regeltjes checken en dan roept hij dus vanalles
wat niet goed zit' or 'verify well-formedness, and he will check the rules and will
tell me everything that is not right at the moment'. So apperrantly the informa-
tion in that display was formulated according to FCO-IM standards, and with
enough expertise he would have been able to identify one or two errors in his
model. If we consider the heuristics for a moment, I can conclude that heuristics
1 and 8 have been adhered to.

CHAPTER 5. CASE-STUDY RESULTS 73

Experiment conclusion

The scoring for experiment 3 has been decided as follows: (based on the de-
scription given of the experiment, and the general remarks about the heuristics
made in this description)

Heuristic Name Score

Match between system and the real world + +
User control and freedom o
Consistency and standards o
Error prevention - -
Recognition rather than recall o
Flexibility and e�ciency of use -
Aesthetic and minimalist design -
Help users recognize, diagnose, and recover from errors +

Table 5.3: Scoring Experiment 3

This leads to the following score for CaseTalk, based on the calculations
demonstrated in chapter 3.

Absolute score Adjusted score Final score
-1 -1 4.58

Table 5.4: CaseTalk score Experiment 3

As we can see, the experiment did not go well for CaseTalk. First of all,
the link between FCO-IM and CaseTalk is (according to this experiment) very
good. However, error prevention has only been shown once in this experiment,
and it did not help at all. Furthermore, it allowed a lot of errors to take place
which might have been prevented. Finally, the error checker showed me that
CaseTalk does o�er some support in actually �nding errors in the model, but
you do need a strong understanding of FCO-IM to be able to work with this
tool

Experiment 4

Experiment introduction

The fourth experiment was also done withe a night course bachelor student
at the HAN university (information published with permission of participant).
He too has done a course on FCO-IM and CaseTalk. In contrast to his fellow
student from experiment 3, he has a higher opinion of FCO-IM but he is also
skeptical about CaseTalk; considering it too buggy. He also agreed to approach
the assignment from a neutral standpoint. This experiment took place in the
same location as the �rst and third experiment, which lead to the same problems
and complications in terms of the sound recording.

CHAPTER 5. CASE-STUDY RESULTS 74

On a �nal note, this experiment took place in Dutch. Translations of all
citations will be provided in this description.

Experiment overview

This participant also started with entering the �rst expression of the assignment.
The �rst few went really rapidly with the participant being able to connect
his knowledge of FCO-IM with the CaseTalk interface. However, the lack of
experience for this participant led him to make a rather crucial mistake: He
tried to identify part of the expression with the expression itself, as seen on
time stamp 01:43. The message given by CaseTalk did not allow him to �nd
out where the actual error in his expression lay, so the participant chose to turn
the object into a label type, thereby circumventing the error and proceeding with
executing use cases 2 and 3. Although the user did not know the error, CaseTalk
did prevent him from making a crucial mistake, thereby ful�lling heuristic 4.

Following this, the participant decided to 'ik pak alleen de tweede nog want
één tot en met vier lijken zoveel op elkaar dat ik denk dat als ik alleen... één tot
en met vier neemdat dat wel voldoende is', or 'I will only take the second one,
because one to four are so much alike that I think that if I only... take one until
four it should be su�cient. This is an interesting deviation from the path taken
by the previous participants as this participant has decided to let CaseTalk do
the work for him by simply identifying populations from expressions. In this, he
has demonstrated that use cases 1, 2, 3 and 4 are more or less open to his own
interpretation, thereby providing an excellent example of how heuristics 2, 4 and
6 are herein followed. This is con�rmed when at 03:00 the participant states:
'en inderdaad, hij herkent mijn zin... match', or 'and indeed, it recognizes my
sentence... match', and the CaseTalk has indeed already puzzled together the
sentence for him.

The participant starts to gets frustrated when he has reached the existence
postulating fact types. First of all, he explains that: 'alhoewel ik weet dat
CaseTalk als je eenmaal een fout gemaakt heb dat het vreselijk lastig te repareren
is', or 'although I know that in CaseTalk once you make a mistake it is very
hard to repair it', a statement which is then proven in his actions. He makes
the mistake of (again) recursively de�ning an expression. This leads him to
continiously have to retype the expression since he could not make CaseTalk
simply forget his last quali�ciation. For use cases 2, 3, 5 and 6 this means
that heuristics 2 and 6 were not followed. Eventually the participant got so
frustrated on trying to de�ne the existance postulating fact types that I decided
to move him on to the next part of the assignment.

While modeling the IGD, this participant decided to drag all his elements
to the canvas one-by-one, thereby creating the model as he saw �t. This did
not only help him to create a readable model, but also proved that for use cases
8 and 9 heuristics 1 and 6 are ful�lled. The resulting model looked clean and
tidy.

When adding constraints, things got complicated again. The participant did
not remember how to add certain constrains. He knew what button to press,

CHAPTER 5. CASE-STUDY RESULTS 75

but he was unable to select the appropreate amount of facts to actually put the
constraint on. This is due to the fact that the interface forces the user to make
a selection on how he wants to select one or more facts from the IGD. For use
cases 11 and 13 this would seem to indicate that although heuristic 1 is followed
(constraints are displayed exactly the same as in the real world), heuristics 2
and 6 are violated since the user is unable to actually add them to his model.

Experiment conclusion

The scoring for experiment 3 has been decided as follows: (based on the de-
scription given of the experiment, and the general remarks about the heuristics
made in this description)

Heuristic Name Score

Match between system and the real world + +
User control and freedom +
Consistency and standards o
Error prevention o
Recognition rather than recall o
Flexibility and e�ciency of use -
Aesthetic and minimalist design -
Help users recognize, diagnose, and recover from errors -

Table 5.5: Scoring Experiment 4

This leads to the following score for CaseTalk, based on the calculations
demonstrated in chapter 3.

Absolute score Adjusted score Final score
0 3 6.25

Table 5.6: CaseTalk score Experiment 3

This experiment went a bit better for CaseTalk. The user used a di�erent
approach then seen before in the earlier experiments, which lead him to use some
of the features of CaseTalk not seen before. The match between the system and
the real world is still strongly shown, but for the �rst time error prevention is
done correctly as well (the recursion example). Error prevention could still be a
lot better though, as the participant's problems with the existance postulating
fact types demonstrated.

Experiment 5

Experiment introduction

The �fth experiment was done with an employee and teacher from the HAN
university. He teaches several courses on FCO-IM and modeling in general, but

CHAPTER 5. CASE-STUDY RESULTS 76

does not have a lot of experience with CaseTalk (information published with
permission of participant). He is enthusiastic about the ideas expressed in FCO-
IM, but is also skeptical about CaseTalk for the same reasons given by the other
participants. Because of my negative experiences with the �rst experiments,
this experiment was held in a closed classroom at the HAN university, where I
could not be disturbed by people walking by. This led to a much clearer audio
recording, and greater concentration for the participant.

On a �nal note, this experiment took place in Dutch. Translations of all
citations will be provided in this description.

Experiment overview

The participant started with entering the �rst expression which went well, as we
have seen before. By classifying and qualifying (use cases 2 and 3) he managed
to quickly create his �rst fact- and object typehis experiment went a bit better
for CaseTalk. The user used a di�erent approach then seen before in the earlier
experiments, which lead him to use some of the features of CaseTalk not seen
before. The match between the system and the real world is still strongly
shown, but for the �rst time error prevention is done correctly as well (the
recursion example). Error prevention could still be a lot better though, as the
participant's problems with the existance postulating fact types demonstrated. .
However, after this the participant decided not to manually input the remaining
population (concerned with the same expression) but to leave this for a later
date, arguing that he only needed the �rst part of the population to actually
create the model. This is a good example of how heuristics 2 and 6 are followed;
since CaseTalk allows the user to perform the tasks as he or she sees �t.

While entering the existence postulating fact type, the participant seems to
know what he is doing, as opposed to the previous experiments in the partici-
pants had trouble entering these fact types. It should be noticed however, that
although the participant knew what he was doing, it did not seem as intuitive
as it is on paper. The user has to select an already existing fact type which
under normal circumstances means you are adding an instance to this fact type.
In this case, without warning, this function is suddenly changed meaning that
heuristic 3 is being violated.

Another thing I noticed in the recording, is that when the participant says:
'ik klik elke keer te veel... (02:51)', or 'every time I click too often', he does seem
to be clicking in thin air, apparently because he is suspecting another action to
take place (most likely in use case 4). Unfortunately, I cannot con�rm this so I
cannot take this information into account.

At (03:40) the participant makes use of CaseTalk's built in function to iden-
tify fact types which have already been entered and automatically �ll these in.
I have already observed in experiment 2 how this can be a bad thing (since the
smallest spelling error will already disrupt the process), but during this session
the tool worked quite well, taking a lot of work away from the user during use
cases 2, 3 and 4. Because of this, I can conclude based on this experiment that
in these use cases heuristics 2 and 6 are nicely followed.

CHAPTER 5. CASE-STUDY RESULTS 77

When the participant tries to generate the IGD, he runs into trouble again
(use case 8). This is because he does not remember how to do it, and CaseTalk's
interface does not o�er any help. This can be seen as a violation of heuristic
7. Because the participant was losing a lot of time on this I assisted him by
pointing him to the right menu item to create the IGD.

After creating the IGD, the participant adds all the repository items to the
canvas at once (use case 9) which results in the randomly positioned items I
observed earlier in experiment 1. The participant had to take some time to
rearrange the items so that the diagram became readable leading again to a loss
of time. This could be considered bad, since of the main goals of a modeling
tool is to increase e�ciency. To summarize: heuristic 6 is violated in this case,
since time is lost.

Finally, this participant had a very big problem with adding constraints.
Single-role constraints were no problem, since the recognized the icons from
the FCO-IM standard (use cases 11 and 13, applied to heuristic 1). Selecting
multiple roles however proved to be impossible. He simply could not manage
to use CaseTalk's interface to select multiple roles. I observed that the buttons
and icons in CaseTalk do not match their tool-tips, which in turn do not really
describe the exact function anyway. This leads me to the conclusion that for use
cases 11 and 13 heuristics 5, 6 and 7 are violated. The participant did eventually
not �gure it out in the allotted time.

Experiment conclusion

The scoring for experiment 5 has been decided as follows: (based on the de-
scription given of the experiment, and the general remarks about the heuristics
made in this description)

Heuristic Name Score

Match between system and the real world +
User control and freedom + +
Consistency and standards o
Error prevention o
Recognition rather than recall -
Flexibility and e�ciency of use - -
Aesthetic and minimalist design - -
Help users recognize, diagnose, and recover from errors o

Table 5.7: Scoring Experiment 5

This leads to the following score for CaseTalk, based on the calculations
demonstrated in chapter 3.

CHAPTER 5. CASE-STUDY RESULTS 78

Absolute score Adjusted score Final score
-2 1 5.42

Table 5.8: CaseTalk score Experiment 5

From this experiment I concluded that CaseTalk allows for a wide variety of
approaches to complete your modeling work, and that those approaches match
the real world implementation of FCO-IM on paper, which explains that good
scores for heuristics 1 and 2. However, the 'secondary' heuristics all get bad
to very bad scores based on what I have observed in this experiment. In this
experiment, I especially observed the design and e�ciency of CaseTalk to be
rather poor in some cases.

Experiment 6

Experiment introduction

The sixth experiment was done with an employee and teacher from the HAN
university. She teachers several courses on FCO-IM, and organizes and grades
assignments made with CaseTalk (information published with permission of
participant). She has extensive knowledge on both FCO-IM and CaseTalk and
a lot of experience on modeling with CaseTalk as well. Her opinion on CaseTalk
is rather mixed. She thinks the tool is well designed, but does not like the
current version of the tool since it contains too many bugs. This experiment
was also conducted in a closed classroom, leading to the same advantages as
described in experiment 5.

Since this experiment was conducted with the most experienced participant,
it was also the most complete. However, I will only look at the parts which were
more or less completed by other participants as well, otherwise the �nal result
would be unbalanced and statistically �awed. Furthermore, since this person
teaches in CaseTalk, she seemed to be somwhat biased towards the tool and
does not openly want to give it a bad name. I have tried to be observant of this
fact.

On a �nal note, this experiment took place in Dutch. Translations of all
citations will be provided in this description.

Experiment overview

The participant started by entering the �rst expression into CaseTalk and clas-
sifying/qualifying it, thereby executing use cases 1, 2, 3 and 4. This was in
complete agreement with the standard approach in FCO-IM, so I can conclude
again that for this part heuristic 1 has been nicely followed. She then also chose
not to enter the population as expressions, but rather to enter the population
at a later time using the population editor. Heuristics 2 and 6 are therefore
followed.

Moving on to the existence postulating fact types, I could clearly see that
the participant knew what she was doing. However, as I had already concluded

CHAPTER 5. CASE-STUDY RESULTS 79

during experiment 5, the way she does it does not imply proper design. The ac-
tion she performs would in another context imply a completely di�erent course
of action which is not explained by the tool itself. Therefore, people with less ex-
perience than this participant could be confused, something which is in violation
of heuristic 3.

Because of her experience, the participant very rapidly completed the �rst
part of the assignment, without allowing me to observe any very good or very
bad elements of CaseTalk. The only think that is very clear however, is that
for example at time indexes (02:50), (04:20) and (05:00) she demonstrates that
CaseTalk can be used in such a way that the normal use cases are no longer
followed, but a much more e�cient result can nevertheless be achieved which is
a good example of heuristic 2 being followed.

After creating the IGD, she decided to take the repository items one-by-one,
and only take the items she deemed necessary. This is basically a variation on
use cases 9 and 10 and an example of how heuristic 2 is again being followed.
Furthermore, the easy drag and drop system is an example of how heuristic 6
and 7 are implemented as well.

Adding constraints was very easy for the participant, but while executing
use cases 11 and 13 I could not help to observe that the interactions she had to
take were rather vague. A lot of times she had to use a complicated combination
of buttons (such as on time index (05:40)) to achieve a certain selection of roles.
This is certainly not a good example of how heuristic 6 should be followed.

As a �nal word, the error checking capabilities have not been observed at
all during the experiment due to the unusually high level of experience demon-
strated by this participant, so they will be graded as neutral in the conclusion.

Experiment conclusion

The scoring for experiment 5 has been decided as follows: (based on the de-
scription given of the experiment, and the general remarks about the heuristics
made in this description)

Heuristic Name Score

Match between system and the real world +
User control and freedom + +
Consistency and standards -
Error prevention o
Recognition rather than recall o
Flexibility and e�ciency of use o
Aesthetic and minimalist design o
Help users recognize, diagnose, and recover from errors o

Table 5.9: Scoring Experiment 6

This leads to the following score for CaseTalk, based on the calculations
demonstrated in chapter 3.

CHAPTER 5. CASE-STUDY RESULTS 80

Absolute score Adjusted score Final score
2 5 7.08

Table 5.10: CaseTalk score Experiment 6

Based on this experiment, CaseTalk should receive a high grade. The im-
portant things (such as match with the real world, and �exibility) are followed,
whereas the less important things are more or less neutral. I am speculating
that the high score is related to the amount of experience this person has, as
the experiments with the less experienced persons yielded lower grades. This
will be elaborated upon in chapter 6.

Experiment 7

This experiment was rejected, same situation and grounds as experiment 2.

Experiment 8

This experiment was rejected, same situations and grounds as experiment 2.

5.3 Final score FCO-IM

To calculate the �nal grade for FCO-IM, we simply take all the grades from the
experiments and take the average. The numerical results may be found in table
5.11. If we assume that me evaluation method is valid, we can conclude the
following things about CaseTalk:

• CaseTalk did not score very well in the experiments, which was mostly
due to the error prevention and correction being bad

• The match with the real world was usually very good

• With proper experience, CaseTalk can be used very �exibly

• Some parts of the CaseTalk interactions are not consistent, with the same
action producing a di�erent result based on unclear circumstances

These conclusions can of course be elaborated upon, but I would like to point
out that the main point of this thesis is not to actually evaluate CaseTalk, but
rather to evaluate my evaluation of CaseTalk. This will be done in chapter
6, so for more in-depth conclusions about the method itself please consult this
chapter.

CHAPTER 5. CASE-STUDY RESULTS 81

Experiment Grade

1 2.92
2 N/A
3 4.58
4 6.25
5 5.42
6 7.08
7 N/A
8 N/A

Average 5.25

Table 5.11: Grades for CaseTalk

Chapter 6

Conclusions & Future work

In this chapter I will discuss the conclusions drawn from this thesis. This will
mainly be about the testing of the evaluation method described in chapter 3 and
what I could conclude from these experiments. Please note that this chapter
will not be about CaseTalk or FCO-IM. For more conclusions on FCO-IM itself
I would like to refer you to chapter 2. Conclusions about CaseTalk given the
experiment results may be found in chapter 5.

6.1 General conclusion

When developing the evaluation method I discussed all the relevant literature
and method on which I have based my method. Because of this, I can conclude
that the internal validity of the evaluation method is therefore proven (given the
fact that there are no errors in my research). What is much more interesting
are the conclusions that I managed to get from the experiments as described in
chapter 5.

I have already stated earlier that for the method to be externally valid, it
should yield more or less the same result for every participant during the TAP
sessions, if the researcher will objectively look at the way the participants work.
However, as I observed during the experiments, it would appear that radically
di�erent scores can appear when the experience of the participants changes. As
seen in experiments 3 and 4; participants with more or less the same amount of
skill yield similar results. However, as is evident from experiment 6; people with
a lot of experience with the tool will be able to mask the tool's shortcomings
with their own personal experience and the way they work with the tool.

Based on this, a couple of changes can be proposed to my initial draft of
the evaluation method. Selection of TAP participants should be much more
intensively. 2 groups are probably needed: One group with little experience
with the tool, and another group with a lot of experience with the tool. The
results from these two groups could then be averaged to come up with a valid
grade for the tool you are investigating.

82

CHAPTER 6. CONCLUSIONS & FUTURE WORK 83

Another change to the method would be that the TAP assignment should
be build in such a way that ALL use cases will be used during the experiment.
During my TAP session, some use cases were not used by any of the participants.
This means that I could not really provide an evaluation for those use cases.
The most common of these are the 'delete' and 'undo' variants of the use cases.
If the participant does not make a mistake, he or she will have no reason to
execute these use cases. Perhaps such 'mistakes' could be introduced in the
assignment.

Another conclusion I managed to draw was that there is not enough infor-
mation in my �rst draft about how the use cases in a program may be linked to
the heuristics. For this, a set of guidelines should be created. These guidelines
should give suggestions on what aspects of a use case de�ne what heuristics are
important for this use case.

6.2 Answering the research questions

1. How can we analyze a modeling tool from an HCI perspective?

In this thesis I have developed an evaluation method based both use cases
and usability heuristics from the HCI �eld. The main idea is to �rst
identify the interaction patterns of a given modeling tool by identifying
all possible use cases. These use cases will serve as the main focus when
applying and testing the interaction heuristics de�ned in chapter 3. The
next step is to actually test and evaluate the heuristics by using the criteria
de�ned in section 3.2.1. This evaluation may be done by performing TAP
sessions, or by performing a user survey. How to do this is described in
section 3.3. The resulting scores can be calculated into a grade for the
modeling tool, which can then be used to compare the modeling tool to
other tools (for the same modeling method).

2. How can we use the evaluation method devised in question 1 to analyse
CaseTalk?

By developing and performing a TAP session using the method described
in the previous research question, we can get a number of grades for
CaseTalk. These grades can then be averaged to get one single (and �nal)
grade for CaseTalk. The results from the TAP session also indicate some
�aws in CaseTalk's design as I have observed in section 5.2.

Bibliography

[1] Activiteiten lectoraat data architectures en meta-
data management. URL http://www.han.nl/start/

graduate-school/onderzoek/lectoraten-kenniskringen/

data-architectures-metadata-management/lectoraat/

_attachments/activiteiten_lectoraat_data_architectures_

metadata_management.pdf.

[2] Guido Bakema, Jan Pieter Zwart, and Harm van der Lek. Volledig Com-
municatiegeoriënteerde Informatiemodellering FCO-IM. Sdu Uitgevers bv,
Den Haag, 2009.

[3] P.J.M. Frederiks and Th.P. van der Weide. Information modeling: The pro-
cess and the required competencies of its participants. Data & Knowledge
Engineering, 58:4 � 20, 2006.

[4] T Halpin. A fact-oriented approach to schema transformation. Lecture
Notes in Computer Science, 495:342�356, 1991.

[5] T. Halpin. Information Modelling and Relational Databases, from concep-
tual analysis to logical design. Morgan Kaufmann Publishers, 2001.

[6] T.A. Halpin and G.M. Nijssen. Conceptual Schema and Relational Database
design. Prentice Hall, 1989.

[7] H. Hart, H. Boeije, and J. Hox. Onderzoeksmethoden. Boom Uitgeverij,
2007.

[8] S. Hoppenbrouwers. Onderzoeksmethoden 2/best practices/thinkaloud, 1
2009. URL https://lab.cs.ru.nl/algemeen/Onderzoeksmethoden_2/

best_practices/thinkaloud.

[9] S.J.B.A. (Stijn) Hoppenbrouwers and P.J.F. (Peter) Lucas. Attacking the
knowledge acquisition bottleneck through games-for-modelling. In Proceed-
ings of AISB'09 workshop "AI and Games", 2009.

[10] Stijn Hoppenbrouwers, Patrick van Bommel, and Aki Järvinen. Method
engineering as game design: an emerging hci perspective on methods and
case tools. In Proceedings of EMMSAD'08 (Exploring Modelling Methods
for System Analysis and Design), held in conjunction with CAiSE'08, 2008.

84

http://www.han.nl/start/graduate-school/onderzoek/lectoraten-kenniskringen/data-architectures-metadata-management/lectoraat/_attachments/activiteiten_lectoraat_data_architectures_metadata_management.pdf
http://www.han.nl/start/graduate-school/onderzoek/lectoraten-kenniskringen/data-architectures-metadata-management/lectoraat/_attachments/activiteiten_lectoraat_data_architectures_metadata_management.pdf
http://www.han.nl/start/graduate-school/onderzoek/lectoraten-kenniskringen/data-architectures-metadata-management/lectoraat/_attachments/activiteiten_lectoraat_data_architectures_metadata_management.pdf
http://www.han.nl/start/graduate-school/onderzoek/lectoraten-kenniskringen/data-architectures-metadata-management/lectoraat/_attachments/activiteiten_lectoraat_data_architectures_metadata_management.pdf
http://www.han.nl/start/graduate-school/onderzoek/lectoraten-kenniskringen/data-architectures-metadata-management/lectoraat/_attachments/activiteiten_lectoraat_data_architectures_metadata_management.pdf
https://lab.cs.ru.nl/algemeen/Onderzoeksmethoden_2/best_practices/thinkaloud
https://lab.cs.ru.nl/algemeen/Onderzoeksmethoden_2/best_practices/thinkaloud

BIBLIOGRAPHY 85

[11] D Kulak and E Guiney. Use Cases: Requirements in Context. Addison
Wesley, 2000.

[12] J. Nielsen. Ten usability heuristics, 2007. URL http://phillips.rmc.

ca/courses/459-2007/lectures/03-heuristic-list.pdf.

[13] Bart Schotten. Designing a game for basic process model elicitation. Mas-
ter's thesis, Radboud University Nijmegen, 2009.

[14] P. (Patrick) van Bommel, S.J.B.A. (Stijn) Hoppenbrouwers, H.A. (Erik)
Proper, and J. (Jeroen) Roelofs. Innovations in Information Systems Mod-
elling, Methods and Best Practices; Advances in Database Research series,
chapter Concepts and Strategies for Quality of Modeling, pages 167 � 189.
IGI Global Publishing, 2008.

[15] Maarten W. van Someren, Yvonne F. Barnard, and Jacobijn A.C. Sand-
berg. The Think Aloud Method. Academic Press, London, 1994.

[16] Ilona Wilmont. A gaming approach to collaborative modelling. Master's
thesis, Radboud University Nijmegen, 2009.

http://phillips.rmc.ca/courses/459-2007/lectures/03-heuristic-list.pdf
http://phillips.rmc.ca/courses/459-2007/lectures/03-heuristic-list.pdf

	Introduction
	General introduction
	Information on the Data Architectures & Metadata Management Group
	Introduction to the thesis
	Relevance
	Research questions
	Research method

	FCO-IM and CaseTalk
	Introduction to FCO-IM
	modeling in FCO-IM
	General Information modeling
	Applying the Frederiks/van der Weide model to FCO-IM
	
	Constraints in FCO-IM
	Extra modeling aspects: Specialization and Generalization
	Beyond FCO-IM
	FCO-IM versus ORM

	FCO-IM in CaseTalk
	General analysis of CaseTalk
	CaseTalk from a HCI perspective

	Analyzing CaseTalk
	Evaluating the heuristics
	Conclusion based on the heuristics

	Chapter conclusions

	General Evaluation Method
	Introduction to the Problem
	Evaluation Method
	Evaluation Criteria
	Scoring

	Getting the Scores
	Performing a Survey
	Performing a Think Aloud Session
	Comparing the Survey and TAP methods

	Case Study Definition
	Case Study Goals
	Case Study 1 - TAP Session
	TAP session description
	Assigning the heuristics to use cases
	TAP Session assignment

	Case Study Population

	Case-Study Results
	General impressions
	Experiment results
	Final score FCO-IM

	Conclusions & Future work
	General conclusion
	Answering the research questions

	Bibliography

