
Building iTask Applications

A GUI Paradigm Based on Workflows

Master Thesis Computer Science

Steffen Michels

August 2010

Supervisors: Rinus Plasmeijer and Peter Achten

Radboud University Nijmegen, The Netherlands
Institute for Computing and Information Sciences

Research Number: 639

2

Abstract

The iTask system [25] is a workflow management system (WFMS) using a workflow
description language (WDL) embedded in the functional general purpose program-
ming language Clean. The WDL is declarative in the sense that only process and
data and no representation is defined. A webapplication for carrying out workflows
is automatically generated using Clean’s generic programming [3] facilities. In this
thesis the iTask system is extended to support building of office-like applications.
The result is a novel paradigm for implementing GUI applications based on work-
flows. It is shown that those applications can be described in terms of grouped tasks
using a uniform concept of shared data to communicate. Additionally a menu sys-
tem is added. A multi-file text editor and a prototype showing essential concepts for
realising an integrated development environment (IDE) for Clean are implemented
using those concepts.

The extended WDL stays orthogonal to the basic iTask WDL and fits into its
task based concept. Also information included in the extended WDL not deal-
ing with process or data are kept minimal. Programmers are released from using
callbacks, keeping track of the application’s controlflow and managing GUI ele-
ments manually, like in most widget-based approaches. Also functional concepts
like higher-order tasks turns out to be very suited for building a general multiple
document interface (MDI) infrastructure and generalising GUI patterns.

3

Acknowledgements

First I thank Rinus Plasmeijer for supervising my previous research leading to
the idea for this master thesis and also for supervising my thesis and spending
much time on discussing my progress during the last half year. Then I want to
thank Peter Achten for also supervising my thesis, especially for critically reading
it and bringing in expertise about Object I/O in particular and functional GUI
programming in general. Further I would like to thank Bas Lijnse for helping me to
keep an overview of the principles and the code of the iTask system and for giving
constructive criticism about the extensions I added to it. Then my thanks goes
to Erik Crombag for giving me hints about implementation details especially for
the client-side, like the group panel and the source code control, and for discussing
new concepts I added. Finally I thank John van Groningen for explaining to me
how external processes can be called from Clean and showing me details about the
compilation process of the Clean IDE.

4

Contents

1 Introduction 9

2 iTask Architecture 13
2.1 The iTask WDL . 13

2.1.1 Basic Tasks . 13
2.1.2 Combinators . 14
2.1.3 Adding Computations . 15
2.1.4 Specialised Types . 15
2.1.5 Exceptions . 16

2.2 Architecture Overview . 17
2.2.1 Processes . 17
2.2.2 Server Services . 18
2.2.3 Task Tree Computation . 18

2.3 User Interface Handling . 19
2.3.1 Data Paths . 19
2.3.2 Data Masks . 20
2.3.3 Generating User Interface Definitions 20
2.3.4 Updating a Value . 22
2.3.5 Adapting the GUI . 22
2.3.6 Example . 23

3 Design Goals 25
3.1 Scope . 25
3.2 General Design Principles . 27

4 iTask Extensions 29
4.1 Menus . 29

4.1.1 Actions . 30
4.1.2 Structure of Menus . 30
4.1.3 Setting & Dynamically Changing Menus 31
4.1.4 Actions & Interaction Tasks 32
4.1.5 Parameter Passing with Actions 33

4.2 Shared Data . 34
4.2.1 Reference Types . 35
4.2.2 Deleting Data . 35
4.2.3 Views . 36
4.2.4 Shared Editors . 37
4.2.5 Views & Data Masks . 38
4.2.6 Updating Shared Editors . 38
4.2.7 Merging Values . 41
4.2.8 Shared Documents . 42
4.2.9 Lenses . 48

5

6 CONTENTS

4.3 Grouped Tasks . 49
4.3.1 Dynamically Adding Tasks 49
4.3.2 Grouped Behaviour . 50
4.3.3 Focussing Tasks . 51
4.3.4 Group Actions . 53
4.3.5 Core Group Combinator . 56
4.3.6 Derived Dynamic Group Combinators 56
4.3.7 Nested Groups . 57

4.4 MDI Applications . 58
4.4.1 Global and Editor Tasks . 59
4.4.2 Global and Editor Actions . 59
4.4.3 Application State . 59
4.4.4 Handling Editors . 60
4.4.5 The MDI Combinator . 61
4.4.6 Example . 61

4.5 Specialised Types . 62
4.5.1 Formatted Text . 62
4.5.2 Source Code . 65
4.5.3 Colour . 67

4.6 OS Tasks . 68
4.6.1 Platform Independent Paths 68
4.6.2 File System Tasks . 69
4.6.3 Calling Processes . 70

5 Case Studies 73
5.1 Text Editor . 73

5.1.1 Requirements . 73
5.1.2 Text Files . 74
5.1.3 Global State & Editor States 74
5.1.4 Global Actions . 75
5.1.5 Editor Actions . 75
5.1.6 Menus . 77
5.1.7 Global Tasks . 77
5.1.8 Editor Tasks . 80

5.2 A Clean IDE . 84
5.2.1 Application State . 84
5.2.2 Syntax Highlighting . 85
5.2.3 Storing & Compiling Projects 87
5.2.4 GUI Patterns . 89

6 Evaluation 93

7 Related Work 97

8 Conclusions & Future Work 99

A iTask Language Overview 105
A.1 Basic Tasks . 105

A.1.1 Interaction Tasks . 105
A.1.2 Store Tasks . 106
A.1.3 Date & Time Tasks . 107
A.1.4 Import Tasks . 107
A.1.5 System Tasks . 108

A.2 Combinators . 108

CONTENTS 7

A.2.1 Sequence Combinators . 108
A.2.2 Repetition Combinators . 109
A.2.3 Static Group Combinators . 109
A.2.4 Tuning Combinators . 110
A.2.5 Lifting Combinators . 110

A.3 Common Domain . 110

List of Figures

2.1 Date Widget . 16
2.2 Client/Server Architecture Overview 17
2.3 Data Paths Example . 20
2.4 Generically Generated GUI Example 23

4.1 Menu Examples . 33
4.2 Calculate Sum Example . 38
4.3 Updating Shared Editors . 41
4.4 Local Document . 44
4.5 Shared Document Without New Data 46
4.6 Shared Document With New Uploaded Data 47
4.7 Grouped Behaviours . 52
4.8 Focus Example Before Focus Action 53
4.9 Focus Example After Focus Action 53
4.10 Group Actions Example With Empty Group 55
4.11 Group Actions Example With Dynamically Added Tasks 56
4.12 Group Actions Example With Unpinned Task 56
4.13 MDI Overview . 62
4.14 Formatted Text Example . 65
4.15 Source Code Example . 66
4.16 Colours Example . 68

5.1 Text Editor’s Global File Menu . 77
5.2 Single Editor’s File Menu . 78
5.3 Pinned Editor’s File Menu . 78
5.4 Open dialog . 79
5.5 Request Saving Changes Dialog . 82
5.6 Replace Dialog . 83
5.7 Text File Statistics . 83
5.8 Syntax Highlighting Colour Options 85
5.9 Formatted Text Syntax Highlighting 86
5.10 Waiting for Compilation to Finish 88
5.11 Compiled Executable as Document 88
5.12 Compiler Error Messages . 89
5.13 Wizard Step . 91

8 CONTENTS

Chapter 1

Introduction

Workflows are used to define relationships between tasks to achieve a certain goal.
They define which tasks depend on each other, in which order they have to be per-
formed and who has to do them. The iTask system [25] is a workflow management
system (WFMS), which uses a workflow description language (WDL) to describe
such workflows.

The iTask WDL is embedded in the functional general purpose programming
language Clean. This approach has the advantage that arbitrary computations,
recursion and also functional concepts like higher-order tasks are added to the WDL.
So tasks can recursively call themselves and accept or produce functions or other
tasks. Additionally all tasks are strongly typed, since Clean’s type system is used.
Each task accepts and produces typed values.

iTask makes it possible to create interactive multi-user web applications to carry
out the workflows. For this another powerful feature of Clean is used which is generic
programming [3]. This makes it possible to automatically generate web interfaces
to edit data values of any type.

Although originally designed for workflows, the iTask system can be seen as
a more general I/O paradigm for implementing applications with graphical user
interfaces (GUI). There are several differences with traditional approaches, like the
imperative platform independent libraries wxWidgets1 or Java’s Swing2 and also
functional approaches like Object I/O [1, 2] or wxHaskell [18] (also discussed in
Chapter 7).

Those paradigms are based on callback functions. The programmer has to split
up the program logic and manually handle the current state to coordinate consec-
utive callbacks. The iTask WDL is designed to describe the program’s control flow
using standard workflow patterns (identified by van der Aalst et al. [28]), like a
sequence or a collection of parallel tasks, or recursion. An important property of
this language is that a semantics can be given to it [16] which might help to reason
about programs written in that language.

Also compared to more functional approaches not based on callback functions
like Fudgets [6, 7] or Fruit [9, 10] a unique property of the iTask approach that it is
based on workflow semantics. We think that this kind of semantics is more suited
for expressing the application’s control flow from a higher level than for example the
model used by Fruit, which is based on signals transformers. (Details are discussed
in Chapter 7.)

Virtually all paradigms are based on widgets which explicitly have to be created,
managed and destroyed by the programmer. This is a great source of errors. In more
functional approaches like Fudgets or Fruit widgets can declaratively be described

1http://www.wxwidgets.org/
2http://java.sun.com/

9

http://www.wxwidgets.org/
http://java.sun.com/

10 CHAPTER 1. INTRODUCTION

and combined as long as the user interface is static. For dynamically changing
user interfaces widgets also have to be created and removed. The iTask paradigm
completely abstracts from widgets and only deals with editing data of a certain
type. Generic algorithms are used to automatically generate GUIs for editing this
data. This allows for a more abstract view of the process and can save much time
when writing applications.

Although using standard controls also makes it possible to implement platform
independent libraries, the level of abstraction of the iTask WDL allows for gener-
ating user interfaces even more independent from the kind of client. The actual
representation of the user interface could depend on the device on which the inter-
face is rendered, which can be a normal PC but also a mobile device with a small
screen. The program may even be used by blind persons using a Braille display,
since the WDL description only defines what to do (for example which data has to
be entered) and not how this is done. This level of abstraction is also suited for
describing interaction with other computers systems. A GUI is not needed here,
only data of the correct type has to be provided. Currently the JavaScript library
ExtJS 3 is used to render the GUI inside a browser on the client-side, but the system
is designed in such a way that the user interface could in principle be rendered by
any client.

Recently more and more office-like software is realised as web application. One
example for this is Google Docs4 which includes for instance a web based word
processor, spreadsheet and presentation application. A client running in a browser
has the advantage that the resulting applications are platform independent. Also
one does not have to install special software on the client computer and the data
the user works on is available everywhere since it is stored on a server (or a cloud
of servers). In the iTask system the entire current state of a workflow is always
synchronised with a server. At each moment working on a task can be stopped and
continued later, also on a different computer.

Web technology originally was not designed for such kinds of applications. Al-
though it is shifting more and more in a direction which makes it possible to im-
plement applications as powerful as traditional offline software, it is still important
to provide the programmer with a formalism, like the iTask WDL, which abstracts
from tricky issues like keeping the state of the application.

A last unique property of the iTask paradigm is that it is embedded in a WFMS.
This makes it possible to add applications as part of workflows. Also workflow
functionality like assigning tasks to different users and giving them a priority and a
deadline can be used inside applications. This suggest that this approach is highly
suited for realising multi-user applications.

Although past experience with using iTask for a non-workflow interactive appli-
cation turned out to be successful [15], the iTask system lacks some features needed
to realise modern user interfaces. The goal of this master thesis is to extend iTask
in such a way that it can be used to generate user-friendly applications. The chal-
lenge is to make iTask powerful enough to create arbitrary office-like applications,
but keep the task semantics and declarativeness of the WDL as intact as possible.

We also expect some drawback of having a GUI paradigm with that high level
of abstraction. The disadvantage is that the programmer has less control over how
the application will look like and can realise less interactivity than with approaches
working on a lower level of abstraction, like widgets or even pixels. If the pro-
grammer builds the GUI by putting widgets together it is possible to influence the
layout. In the case the programmer can only tell the system that the user should
edit a value of a certain type the layout is determined automatically by the generic

3http://www.extjs.com/
4http://docs.google.com/

http://www.extjs.com/
http://docs.google.com/

11

algorithm.
The best method to show that a system is usable for creating applications is to

do so. So we will use two case studies which we are going to implement using the
iTask system. We start with a multi-document text editor. Although this is a rela-
tively simple application, its realisation requires to solve the more general problem
of implementing a multiple document interface (MDI) application. A more sophis-
ticated application is an integrated development environment (IDE) for Clean. This
is very useful since the current version is restricted to Windows only. The new IDE
would run in a browser and will therefore be platform independent. Additionally
it will be easy to add facilities for multiple users working together. In this thesis
not a full implementation of an IDE is given, but important problems like calling
a compiler and highlighting syntax are solved. This suggest that this approach is
powerful enough for this complex kind of application.

Summarised the contributions of this thesis are:

• Missing concepts needed to realise modern GUIs are identified and added to
the iTask WDL.

• The iTask WFMS is extended to support those new concepts.

• It is shown how common GUI concepts, like MDI applications, can be ex-
pressed in terms of the workflow-based WDL.

• An implementation of a MDI text editor, which is a typical office-like appli-
cation, and also of some features needed for an IDE is given.

This thesis is organised as follows. Before focussing on how the system has to be
extended first in Chapter 2 an overview of the architecture of the iTask system and
its WDL is given. Then in Chapter 3 general requirements about the extensions are
discussed. This includes a discussion of important capabilities needed for realising
modern GUIs and how they fit into the iTask approach. Also possible problems
and limitations of this approach are discussed. All extensions of the iTask system
are described in detail in Chapter 4. In Chapter 5 the case studies described above
are used to show the suitability of the extended system for this kind of applications.
The extended WDL and the experiences with the case studies are evaluated in
Chapter 6. The results are compared to related work in Chapter 7. Chapter 8
concludes the thesis and gives some ideas for future work. Finally in Appendix A a
short reference of the iTask WDL is given.

12 CHAPTER 1. INTRODUCTION

Chapter 2

iTask Architecture

Before focussing on extending the iTask system in this chapter an overview of the
general architecture, as described in [19], is given. First the structure of the iTask
WDL is discussed in Section 2.1. Then in Section 2.2 an overview of the system for
executing workflows defined in this WDL is given. Because automatically generating
user interfaces for editing data of arbitrary type is one of the most sophisticated
parts of the system, special attention is paid to it in Section 2.3.

2.1 The iTask WDL

The iTask system comes with a language for declarative descriptions of workflows.
Declarative here means that only the process and the data involved are described.
All other details such as how data is stored or represented by the user interface are
handled automatically. The language consists of two building blocks: basic tasks
and task combinators. The result of a combinator is a task again. In this way
complex workflows can be build by repeatedly combining tasks to more complex
ones. A workflow therefore is simply a task. Because the language is embedded in
Clean all kinds of computations and data structures can be added inside a workflow
specification.

Here only the general structure of the WDL is discussed. An overview of avail-
able basic tasks and combinators is given in Appendix A.

2.1.1 Basic Tasks

Basic tasks are the smallest unit of work that can be done like entering data or
writing data to a database. Some examples are given below. This is only a small
collection of simple basic tasks. A more complete overview of available basic tasks
is given in Section A.1.

enterInformation :: question → Task a | html question & iTask a

showMessageAbout :: message a → Task Void | html message & iTask a

writeDB :: (DBid a) a → Task a | iTask a

Each task has type Task a which means that it returns a result of type a. The first
task asks the user to enter some information. Which information can be entered is
determined by the type a and therefore depends on the context in which the task
is used. The user can enter information of any type which can be defined in Clean
as long is the context restriction iTask is fulfilled. It consists of generic functions
for storing data, generating forms, updating values and generating error and hint
messages:

13

14 CHAPTER 2. ITASK ARCHITECTURE

class iTask a

| gPrint {|?|}
, gParse {|?|}
, gVisualize {|?|}
, gHint {|?|}
, gError {|?|}
, gUpdate {|?|}
, TC a

Those functions are discussed later. The class TC (type code) indicates that values
of this type can be packed into dynamics1.The class html is used for questions and
messages, which are converted to a HTML representation before they are sent to the
client. Most of the time this will be a simple string, but also a type for describing
arbitrary HTML constructions is provided.

Another task which requires user interaction is showMessageAbout which shows a
message together with a value of arbitrary type to the user. The task has en empty
result which is indicated by the type Void. There are also tasks which require no user
interaction. The task writeDB writes a value (second argument) to a store identified
by a reference (first argument) and finishes immediately. The example of those
basic tasks shows that everything specified is what has to be done and not how it
is done.

2.1.2 Combinators

To define complex workflows basic tasks can be put together to combined tasks
by using combinators. Again here only the idea is explained and a more detailed
overview is given in the appendix (Section A.2).

One of the most important combinator is the monadic bind combinator :

(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask a & iTask b

This combinator first executes the first task. After the first task is finished it gives
the result to a second one. The result this second task returns is given as result of
the combinator. The combinator is a task itself, which means that it can again be
combined with other tasks using combinators. In this way for example sequences
of arbitrary length can be defined using the bind combinator repeatedly. Examples
for other combinators are combinators to execute tasks in parallel or assign tasks
to other users.

Example

The following example demonstrates how the bind combinator is used:

bindExample :: Task Void

bindExample= enterInt >>= showMessageAbout "you entered"

where
enterInt :: Task Int

enterInt= enterInformation "enter integer"

First the user can enter an integer. It is necessary to indicate the type of enterInt
because somewhere it has to be specified what kind of data is entered by the user.
The integer entered by the user is given to showMessageAbout. This time the compiler
can automatically derive the type of the argument given to this function. So the
user gets to see the integer she just entered. The task bindExample can be used as
workflow which can be started by the user directly, but can also be combined with
other tasks to build a more complex workflow.

1Clean provides a hybrid static/dynamic type system. Nearly all values (including functions)
can dynamically be packed and unpacked at runtime [29].

2.1. THE ITASK WDL 15

The remarkable thing here is that the author of such a workflow can just specify
a sequence of actions in a very natural way. It seems as if execution of the function
stops at the first task as long as the user is working on it and then continues with
the second one. The system automatically keeps track of the current execution state
of the workflow and restores it if a request of a client arrives.

2.1.3 Adding Computations

The fact that the language is embedded in Clean makes it even more powerful,
because this makes it possible to add all kinds of computations inside of workflow
definitions.

Example

How this can be done is shown by the following example:

computationExample :: Task Void

computationExample=
enterInformation "enter integer"

>>= λi. showMessageAbout "Fibonacci number" (fib i)
where

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

The user first enters an integer, like in the previous example. This time the type of
enterInformation does not have to be given explicitly, since it can be derived by the
compiler automatically. The type is determined by the context in which the result
is used later, that is as argument of fib. This functions is just the naive functional
definition of the Fibonacci numbers. The computed Fibonacci number is shown to
the user. This shows that arbitrary computations can be used inside workflows.

2.1.4 Specialised Types

Data structures are always composed out of basic types in Clean. For some datas-
tructures special widgets could be used to let the user edit the value in a more
convenient way. A number of specialised types are included in the system. The
most commonly used are collected in the common domain described in Section A.3.

The idea of those specialised types is that they only define the kind of the
data. Nothing is specified about the representation. Therefore it belongs to the
description of the workflow’s data. How those types are actually represented by the
GUI is determined by the generic algorithm and mainly by the client.

Example

For instance a date could be defined as follows:

:: Date = { day :: Int

, mon :: Int

, year :: Int

}

It would not be very user friendly and could lead to invalid dates to let the user
edit the tree integers directly. So a special widget, depicted in Figure 2.1, is used if
a value of type Date is edited.

16 CHAPTER 2. ITASK ARCHITECTURE

Figure 2.1: The Widget Used for Editing Dates

2.1.5 Exceptions

Exceptions are a powerful feature to handle errors in a way that separates the
handling of errors from the program logic. Because of this exceptions have been
added to the iTask language. Each task can throw an exception if an exceptional
situation occurs using the following task:

throw :: e → Task a | iTask a & TC e

Any value which can be packed into a dynamic can be used as exception. The task
itself returns a value of arbitrary type to make it combinable with other tasks in
all contexts. Actually the task never produces a result. As soon as an exception
is thrown it moves its way up the calling stack until it is caught or the top of the
stack is reached. This is the expected behaviour for exceptions.

To catch an exception the task in which an exception is thrown has to be sur-
rounded by this task:

try :: (Task a) (e → Task a) → Task a | iTask a & iTask e

If the task given as first argument finishes normally its result is returned as result
of try. In this situation try has the same effect as the task given as first argument.
If an exception of a type matching e occurs it is used to build a new task which
then gives the result of try instead.

Examples

There is a problem with the example computing Fibonacci numbers given in Sec-
tion 2.1.3. If the user enters a negative number the computation fails and in the
worst case the entire server crashes.

The function for computing Fibonacci numbers can be replaced by a task doing
the same computation in a safe way. It throws an exception if called with a negative
argument:

fibTask :: Int → Task Int

fibTask i = if (i ≥ 0)
(return (fib i))
(throw "negative argument!")

where
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

If the number is not negative the function fib as defined before is used. For this
the basic task return is used which simply generates a task returning a given value.

2.2. ARCHITECTURE OVERVIEW 17

Otherwise an exception is thrown. In this case it is a string but arbitrary types can
be used as exceptions.

With this a new workflow for calculating Fibonacci numbers can be defined:

exceptionExample :: Task Void

exceptionExample=
enterInformation "enter integer"

>>= λi. try (showResult i) handleException

where
showResult :: Int → Task Void

showResult i =
fibTask i

>>= showMessageAbout "Fibonacci number"

handleException :: String → Task Void

handleException err = showMessageAbout "Error computing fib:" err

First the user can enter an arbitrary integer. The task showResult just computes
and prints the Fibonacci number without caring about possible errors. If the user
enters a positive number the workflow behaves as if showResult was used without the
surrounding try. If the user enters a negative number the string exception is caught
by handleException. The user gets to see an error message instead of the computed
number.

Of course, there are more elegant ways to enforce properties on user input. The
example is only meant to demonstrate the use of exceptions. More realistic examples
are given in Sections 4.6.2 and 5.2.3.

2.2 Architecture Overview

As depicted in Figure 2.2 the iTask system consists of a server and a client applica-
tion written in JavaScript running inside a browser. The client uses Ajax to access
services the server provides. The server maintains a list of all workflow definitions
and stores to keep track of user sessions and current instances of running workflows.
For most of the services a so called task tree is computed as intermediate step.

Figure 2.2: An Overview of the Client/Server Architecture of the iTask System
(taken from [19])

2.2.1 Processes

In the iTask system a process is a portion of work a user is currently working on.
A process is always generated if a user starts a new instance of a workflow, but can
also be started by other processes.

18 CHAPTER 2. ITASK ARCHITECTURE

Each process has its own identifier, a user who is currently working on it and can
have a manager who can for instance suspend the process or assign it to someone
else. Also additional information like the creation time, the priority or a deadline
are assigned to each process. Relations between parallel processes can be defined
hierarchically.

2.2.2 Server Services

The server makes a number of different services available to clients. They are briefly
described here.

Authentication Service A client can start a session by authenticating to the
server. For this a username and a password is required. Each user also can
have several roles which can be used to restrict certain workflows to a group
of users. The client can also log out and destroy a session.

Workflow Directory Service This service provides a list of all available work-
flows. Users can browse this list and initiate new workflow instances.

Tasklist Service A list with all work the user currently has to do is provided
together with some information about parent/child relations.

Task Service This service is used to actually work on tasks. The server provides
the client with a high-level definition of the user interface which is interpreted
and rendered by the client. If the user changes something an event is sent
to the server, which updates the current state of the task on the server and
sends back updates for the user interface. The client either renders a new user
interface or adapts the existing one. How this is done is described in more
detail in Section 2.3.

Property Service Each workflow also has some meta data like the user to which
it is assigned or its priority. Those meta data can be changed by this service.

2.2.3 Task Tree Computation

The task tree provides an intermediate representation of the structure and progress
of tasks and separates this from their representation as a user interface. So the
implementation of basic tasks and combinators only have to build a tree. This tree
is then queried by the services to obtain the information necessary to handle the
client’s request. For instance the Tasklist Service only retrieves a list of all tasks a
user is working on while the Task Service can use the tree structure to generate a
GUI definition and send it to the client.

The leaves in a task tree represent basic tasks, while the nodes are compositions.
There are several different types of leaves:

Interactive Task A task that can be worked on through a GUI. Such a leaf con-
tains either a high-level definition of or updates for the user interface. Mostly
tasks creating such a node are interaction tasks (Section A.1.1).

Monitor Task A task that upon evaluation monitors a condition and may give
status output. It contains a HTML representation of the status. An example
is a timer task which forces the execution of the workflow to pause for a certain
amount of time. In this case the status shown to the user is the remaining
time.

Instruction Task A task which displays an instruction, which is an HTML-message,
to the user.

2.3. USER INTERFACE HANDLING 19

RPC Task A task that represents a remote procedure call invocation, containing
a reference to the call.

Finished Task A finished task. Each task can eventually result in such a node.
The only information that is still needed about a finished task is its result.

Those leaves can be combined by the following nodes in the tree:

Main Task A main chunk of work added at the top of each process. For parallel
processes assigned to different users such nodes can also occur as child of other
nodes in the entire hierarchy.

Sequence Task A sequence of consecutive tasks, for instance generated by the
bind combinator.

Parallel Task A composition of tasks executed in parallel and carried out by dif-
ferent users.

Grouped Task A group of task running in parallel and carried out by the same
user. (The distinction between grouped and parallel tasks is discussed in
Section 4.3.)

2.3 User Interface Handling

Automatically generating user interfaces for editing arbitrary data types is one
of the most sophisticated parts of the iTask system. For any type used inside a
workflow a GUI which has a layout suited for representing the actual structure and
reacts dynamically to user inputs without interrupting the user’s work has to be
generated. For this first the definition of the GUI has to be generated, then user-
inputs have to be mapped back to the server and finally the GUI at the client side
has to be adapted.

First data paths used to point to substructures inside of datastructures are dis-
cussed (Section 2.3.1). This is followed by the description of the concept of data
masks in Section 2.3.2. They are used to keep track of which parts of the datastruc-
ture the user already gave a value to. The structure of the GUI definitions generated
for data of arbitrary types is discussed in Section 2.3.3. In Section 2.3.4 it is ex-
plained how an event on the client side is used to update the value stored on the
server. After this there may be the need to adapt the user interface (Section 2.3.5).
Finally an example is given in Section 2.3.6.

2.3.1 Data Paths

Data paths are used to point to substructures inside of datastructures. A client can
send an event telling exactly which part of the value to update in this way.

Data paths are basically just a list of integers defining a path through the
generic representation of the datastructure. Additionally a sub-editor index, used
for putting several views into one form (Section 4.2.4), can belong to it:

:: DataPath= DataPath [Int] (Maybe SubEditorIndex)

:: SubEditorIndex :== Int

The list of integers encodes the path of the datastructure from top of the generic
tree to the element to which the path points. Each integer encodes the index for
each constructor choice.

20 CHAPTER 2. ITASK ARCHITECTURE

For a value of type ::Tree = Node Tree Int Tree | Leaf Int an example of data
paths is given in Figure 2.3. Each constructor choice is encoded by the construc-
tor’s index (starting from 0). So the root node of the tree has data path [0]. For
each field of a constructor also the index (again starting from 0) is given. So the
integer in the root node has data path [0, 1]. The 0 encodes the choice for the first
constructor (Node) and the 1 encodes that the integer is the second argument of
this constructor. For all other constructors and values in the tree a path can be
determined analogously.

Figure 2.3: The Data Paths of an Example Binary Tree (taken from [19])

2.3.2 Data Masks

If the user edits data not all parts of the data structure might already have a value.
For instance if the user adds a new element to a list of integers, before the user
entered a valid value for the integer the field should be treated in a different way
than field with a value already filled in. It should be blank instead of showing a
value and should not be validated. This cannot be encoded in the edited value
itself, because each field always has a value. Instead the notion of a data mask is
used, defined as:

:: DataMask :== [[Int]]

Basically a data mask is a list of all data paths (defined as [Int], because the sub-edit
index is not needed here) which have been accessed by the user.

Example

Suppose that the user enters a value of the following type:

:: IntList= Nil | Cons Int IntList

Further suppose the current value is Nil. But then the user decides to add a new
element to the list. The new value is therefore Cons 0 Nil. This is because 0 is the
default value for integers. But actually the user did not fill in a number yet, so in
the GUI there should be a blank field instead of a field showing 0. This is encoded
by not including the field’s data path, which is [1, 0], in the data mask. The first
time the user enters a valid value, the field’s data path is added to the mask.

2.3.3 Generating User Interface Definitions

User interface definitions are generated by the generic function gVisualize, which
can generate high level user interface definitions which are JSON -encoded [11] and
can be interpreted by the client. Also a HTML or text representation of a value can
be generated for static elements and labels. The generic function can be derived for
all algebraic data types (ADT) and also for records. Also many types like tuples or
lists are treated in a special way to generate a better user interface. The following
functions are used to wrap calls to gVisualize for the different purposes:

2.3. USER INTERFACE HANDLING 21

visualizeAsEditor :: String (Maybe SubEditorIndex) DataMask a → ([TUIDef] ,Bool)
| gVisualize{|?|}
, gHint{|?|}
, gError{|?|} a

visualizeAsHtmlDisplay :: a → [HtmlTag] | gVisualize{|?|} a
visualizeAsTextDisplay :: a → String | gVisualize{|?|} a
visualizeAsHtmlLabel :: a → [HtmlTag] | gVisualize{|?|} a
visualizeAsTextLabel :: a → String | gVisualize{|?|} a

The first function is responsible for generating a definition for an editor which lets
users edit a value of arbitrary type for which there is an instance of gVisualize which
actually generates the definition. This generic function is also used for generating
HTML and text visualisations as done by the latter four functions. Additionally
there are generic functions for generating error messages and hints (gError and gHint)
which are not discussed in detail here.

The first parameter of visualizeAsEditor is a name for the generated editor, then
a subeditor index for the form can be given. Finally the value’s data mask and the
value itself is given to the function. The result is a list of user interface definitions
and a flag telling if the editor is valid, which means that all fields are filled in and
have a valid value. The reason why a list of values of type TUIDef (TUI means “Task
User Interface”) is returned is that for a constructor with multiple arguments a GUI
description for each argument is generated. GUI definitions are used to describe
the user interface in an abstract way:

:: TUIDef = TUIStringControl TUIBasicControl

| TUICharControl TUIBasicControl

| TUIIntControl TUIBasicControl

| TUIRealControl TUIBasicControl

| TUIBoolControl TUIBasicControl

| TUINoteControl TUIBasicControl

| TUIDateControl TUIBasicControl

...

| TUITupleContainer TUITupleContainer

...

:: TUIBasicControl=
{ name :: String

, id :: TUIId

, value :: String

, fieldLabel :: Maybe String

, staticDisplay :: Bool

, optional :: Bool

, errorMsg :: String

, hintMsg :: String

}

:: TUITupleContainer=
{ id :: TUIId

, items :: [[TUIDef]]
, fieldLabel :: Maybe String

}

:: TUIId :== String

First there are controls for basic values like strings and integers, but also specialised
ones like Note and Date which are also treated like basic values. They are all defined
using the same information, encoded in TUIBasicControl, like a name, an identifier,
the actual string-encoded value and some other information.

22 CHAPTER 2. ITASK ARCHITECTURE

There are also controls, like TUITupleContainer for describing nested structures. In
TUITupleContainer there is a field items which can contain a number of user interface
definitions, representing the values stored inside of the tuple. The GUI description
of each item is of type [TUIDef] since it can be a constructor with multiple arguments.
Therefore the list of GUI descriptions is of type [[TUIDef]] . Such special containers
are also used for nested constructions like lists and records.

The entire datastructure is encoded into a JSON-string and sent to the client
which uses this abstract definition to render the GUI.

It is possible to hide parts of a datastructure in its visualisation by wrapping it
with:

:: Hidden a = Hidden a

Also in an editable representation of a datastructure parts can be made static.
Substructures inside of those parts can be made editable again:

:: HtmlDisplay a = HtmlDisplay a

:: Editable a = Editable a

For example if a value of type (HtmlDisplay Int, String) is edited, in the GUI a static
non-editable integer is shown together with a field for editing the string.

2.3.4 Updating a Value

If the user changes a value this event is sent to the server where the current value
of each editor is stored. In the current implementation this is done if a field loses
focus, but also for example a timeout could be used as trigger. Each event includes
the identifier of the main task, the data path of the changed value and a new value.
Actually more than one value can be updated in one request, for instance if the
user changes a field and unfocuses it by unchecking a checkbox. Then the event for
changing the field and the checkbox are put together in one request.

The current value which is stored on the server is updated by the generic function
gUpdate. The function goes trough the datastructure until it finds the corresponding
data path and updates the value accordingly. The new value is stored on the server
which keeps track of the current state of the workflow in this way.

2.3.5 Adapting the GUI

The GUI may have to be adapted after the user changed the value. For instance
if a different constructor of an ADT is chosen the content of the old one has to be
replaced by the content of the new one. For this gVisualize can also generate updates
for the user interface by comparing the old with the new value. The generated list
of updates is sent to the client which can interpret them and adapt the GUI. An
advantage of this approach above redrawing the entire form is that the user can
continue using the form without being disturbed when the answer of the server
arrives.

The updates sent to the client consists of a list of update commands:

: TUIUpdate

= TUIAdd TUIId TUIDef

| TUIAddTo TUIId TUIDef

| TUIRemove TUIId

| TUIReplace TUIId TUIDef

| TUISetValue TUIId String

...

Some examples for such commands are adding additional components after (TUIAdd)
or as child of (TUIAddTo) a component with given identifier. Also components can be
removed (TUIRemove), replaced (TUIReplace) or given new values (TUISetValue).

2.3. USER INTERFACE HANDLING 23

2.3.6 Example

Suppose that the user should enter a value of this type:

:: SomeRecord= { optionalString :: Maybe String

, maybeInteger :: MaybeInteger

}

:: MaybeInteger= NoInteger | Integer Int

The generically generated form shown in Figure 2.4a is in a valid state. The labels
of the record fields are also used as labels in the form. The type Maybe is treated
in a special way such that the first field becomes optional. No asterisk, indicating
required fields, is displayed behind its label and it may be left blank. For the second
field the constructor NoInteger is chosen.

If the user selects the other constructor Integer the server generates an update
instruction to add a field for entering the integer. The updated user interface is
shown in Figure 2.4b. The field is still blank which means that its data path is not
included in the data mask. Therefore the form is invalid because the second field is
not optional. After the user fills in some integer (Figure 2.4c) the form is valid and
the user can proceed.

(a)

(b)

(c)

Figure 2.4: An Example of a Generically Generated GUI for Editing a Record
Structure

Summary

In this chapter the structure of the iTask WDL and the architecture of the WFMS
executing workflow specified in this WDL are discussed. Special attention is paid
to generically generating and updating GUIs, because this is one of the most so-
phisticated parts of the system and makes it possible to abstract from widgets in
the WDL.

In the remainder of this thesis this system is extended to be usable as a paradigm
for creating office-like GUI applications.

24 CHAPTER 2. ITASK ARCHITECTURE

Chapter 3

Design Goals

Here first it is discussed which essential facilities of GUI libraries there are and are
missing in the iTask language and to what extend they are added (Section 3.1).
Then general principles which should be fulfilled for the new features added to the
iTask language are given (Section 3.2).

3.1 Scope

There are a number of facilities which are essential parts for developing modern user
interfaces. The focus of this research is to design a language for describing GUIs,
that fits neatly into the task based iTask system. The goal is to get a language
with a high level of abstraction. Necessarily this gives the programmer less control
over the resulting application than with traditional libraries.

Consequently the system will not be suitable for all kinds of applications. It is
not the intention to make it possible to implement highly interactive applications
like games, but to give a better way to realise applications based on editing data
using standard widgets. So the kind of applications that the new paradigm is suited
for are office-like applications, like text editors, word processors and IDEs.

In the following it is discussed to what extend which facilities will be integrated
into the iTask system:

Menus Menus are essential parts of nearly every user interface. They provide the
user with a set of commands in a structured way. The commands are grouped
using headings and a graphical representation of all available commands is
provided.

Clearly menus are a concept important for the kind of applications that is
intended to be realisable with iTask and will therefore be included.

Windows & Dialogs Windows and dialogs are the top level objects in most GUI
systems. They include all the lower level objects like textfields, textareas and
checkboxes. Complex programs contain several windows to separate data,
which for example belongs to different opened documents.

It is one of the goals to extend the system in such a way that different parallel
tasks can be visualised as separate windows.

Layouts Modern graphical applications aim at giving the user a user-friendly and
aesthetic user interface. To achieve this ways to place the widgets the user
interface is composed of are needed. Layouts are often a complex and sophis-
ticated part of GUI toolkits.

25

26 CHAPTER 3. DESIGN GOALS

One of the powerful features of iTask is that the programmer does not have
to specify which widgets are needed in order to enter information. This is
automatically solved by generic programming techniques. The goal of the
iTask system is to provide a generic interface generating adequate GUIs for
editing arbitrary datastructures. Because the programmer does not deal with
widgets directly, there is no way to determine their layout. Also there is a
tension between the approach to send an abstract user interface definition to
the client which then determines how to render it and to give the server the
possibility to influence the layout. Consequently this project does not deal
with layouts.

Custom Widgets Some applications need widgets not included in the set of stan-
dard widgets provided by the library. Examples for this are textareas provid-
ing syntax highlighting, a widget for choosing a colour or an area for making
drawings.

One already existing solution for this are iEditors [14] which uses Java applets
to move parts of the functionality to the client-side. So the client runs code
submitted to it instead of interpreting a high level GUI definition. This has
the advantage that the only thing needed on the client-side is an interpreter
for Java applets. The disadvantage is that the client cannot decide how to
represent the GUI which is one of the advantages of having an abstract GUI
definition. Also applets generate some overhead and do not fit well into the
GUI.

Another solution, which fits better with the idea of sending an abstract GUI
definition to the client, is to add new specialised types and extend the client
with new widgets representing them. This is already done for a set of spe-
cialised types (Section A.3). The idea is to add more of those specialised types.
The disadvantage is that this requires that all possible future clients will have
to implement a suitable control for this special type. However currently there
is only one standard client and therefore in this thesis this technique is used
to realise for instance text areas doing syntax highlighting for Clean code.

General Canvas For instance for implementing games or programs for film editing
the programmer needs to get more direct access to the computer’s hardware
instead of using widgets. This means that the programmer for example han-
dles keyboard event and draws pixels directly.

A general canvas is not added to the system for several reasons. First it does
not fit with the level of abstraction of the iTask WDL. Second the interface
between the server and the client is not designed for realising that kind of
interaction. Third using a browser as client restricts the possibilities to access
hardware directly, although modern web technology developes into a direc-
tion which makes it possible to make drawings (for instance using the canvas
element included in HTML5 1) or even to use 3D graphics (using WebGL2).

Views Many applications provide the user with different views on the same data,
for example a What You See Is What You Get (WYSIWYG) editor and a
structured view on a document. This is known as model-view-controller (MVC)
paradigm [17]. If data is changed in one view also all other views are updated.
Most GUI toolkits do not have explicit support for views. The programmer
has to modify the representation of all views manually if a shared model is
changed.

1http://dev.w3.org/html5/html-author/#the-canvas-element
2https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/

WebGL-spec.html

http://dev.w3.org/html5/html-author/#the-canvas-element
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html
https://cvs.khronos.org/svn/repos/registry/trunk/public/webgl/doc/spec/WebGL-spec.html

3.2. GENERAL DESIGN PRINCIPLES 27

In an iTask workflow it is not possible to realise this manually because there
is no way how grouped tasks, including different views, can communicate in a
way which makes different views possible. So to implement applications using
the MVC concept a way to define views on data shared among grouped tasks
has to be added to the system.

3.2 General Design Principles

The iTask system is based on workflows which is a unique property of the new GUI
paradigm. Consequently new facilities should never change the structure of the
language in such a way that it has nothing to do with tasks any more. Trying to
develop a GUI paradigm which is based on workflows, with the expected advantage
that this results in more intuitive and abstract descriptions of user interfaces, is
the main goal of this research. Another important point is that users of the iTask
language expect a consistent interface.

One design goal of the iTask WDL was declarativeness. Lijnse and Plasmeijer
define declarativeness in the context of an iTask workflow description as a speci-
fication defining only data or process [19]. Clearly this definition is too strict for
a GUI paradigm. Even specifying that the user can give a command with a menu
instead of a button or defining a menu structure is not declarative according to this
definition. So in some cases it is necessary to define how a task is presented to the
user. Information about the representation should nevertheless only be given were
really necessary. Also they should stay as abstract as possible. Additionally this
information should not interfere too much with the actual process description and
should be kept minimal. In the best case it should only be added as annotations,
which does not influence the functionality of the workflow, or they should clearly
be separated from the process description.

Another nice property of the iTask WDL is that simple workflows definitions
are very concise compared to solutions which would require creating widgets to edit
data manually. This results in a low learning curve. This advantage should not be
lost. Necessarily some GUI concepts will make workflow definitions more difficult to
understand and write. Still this should not make workflow definitions which make
no use of those new concepts more complex.

Summarised the following design principles will be used for all features added
to the language:

• All new concepts should be integrated into the task structure of the iTask
WDL.

• The language should stay as declarative as possible. Information not describ-
ing data or process should be kept minimal and interfere with the actual
process as less as possible.

• The extensions should be orthogonal to the basic iTask paradigm. New fea-
tures should not make the language more difficult to use for cases they where
are not needed.

Summary

In this chapter the goal, the scope and general requirements for the extended iTask
system are defined. In the remainder of this thesis those extensions are discussed
in detail.

28 CHAPTER 3. DESIGN GOALS

Chapter 4

iTask Extensions

To provide the features discussed in Chapter 3 the iTask system is extended. Those
extensions are described in detail in this chapter.

Actually three new basic concepts are added to the system. The first one is the
possibility to use menus to generate actions (Section 4.1). The second one is the
concepts of different views on shared data (Section 4.2). Finally the third one are
grouped tasks which can be rendered in different windows (Section 4.3). Also tasks
can be added to those groups dynamically without interfering with other ones.

On those concepts a high-level combinator for MDI functionality is built (Sec-
tion 4.4). Also the set of specialised types of the system is extended with types
for formatted text, source code and colours (Section 4.5). Finally some new tasks
for accessing operating system functionality like calling processes are added (Sec-
tion 4.6).

4.1 Menus

Menus are essential parts of nearly every complex user interface. It allows the
programmer to give a structured overview of available commands. Those commands
are called actions in iTask terminology and were originally added to handle button
inputs. The goal is to integrate menu actions neatly in the already existing concept.
There is no essential difference between a button being pressed and a menu item
being selected. So menus are just another mechanism to generate actions.

In traditional I/O paradigms the programmer has to take care that the menu
always shows options applicable to the current context by adapting the structure
and enabling or disabling entries in the menu. This is contrary to the design goal
that everything should be as declarative as possible. In the solution described here
the goal is that the programmer only has to specify a global structure of the menus
and define which actions are possible for each context. This has the advantage that
menu items do not have to be enabled or disabled explicitly, because this is done
by the system automatically.

Menus have a structure which is separated from the actual actions triggered by
menu items. Because menus are based on the idea of actions generated by buttons,
first in Section 4.1.1 the concept of actions is explained. In Section 4.1.2 a datatype
for defining the structure of menus is introduced. How this structure is applied
to a workflow and can dynamically be changed during executing is described in
Section 4.1.3. After the structure has been discussed it is focused on how interaction
tasks are extended to be able to use button and menu actions (Section 4.1.4). Finally
a mechanism for passing parameters with actions is discussed in Section 4.1.5.

29

30 CHAPTER 4. ITASK EXTENSIONS

4.1.1 Actions

Before menus were added to the system there was already the possibility to specify
different actions for interaction tasks. Those actions can be triggered by the user
by pressing buttons. The observation is that actions are a more general concept
which could also be used to represent menu events in the WDL. For the process
description there is no difference between a button being pressend and a menu item
being clicked.

Actions are defined as follows:

:: Action = ActionLabel String

| ActionIcon String String

| ActionOk

| ActionCancel

| ...

| ActionParam String String

There are several predefined actions for common cases like ActionOk or ActionCancel

for which the label and icon of the button is derived automatically. Also the pro-
grammer can specify custom actions with or without an icon for the generated but-
ton (ActionLabel and ActionIcon). The constructor ActionParam is used for parameter
passing which is discussed in Section 4.1.5.

4.1.2 Structure of Menus

Most applications have a number of top-level menus with menu items triggering
actions. Also submenus can be used inside of the menu structure. Finally items
can be grouped using separators. An ADT is used to enumerate the elements of the
menu, because each menu has a relatively simple uniform structure:

:: Menu = Menu String [MenuItem]
:: MenuItem= MenuItem String Action (Maybe Hotkey)

| SubMenu String [MenuItem]
| MenuSeparator

| MenuName String MenuItem

What is described here is a menu bar with several top-level menus. Each entry in
the menu bar is represented by one instance of Menu, which has a name and contains
a number of menu items. Each menu item is either an entry which triggers a given
action, a submenu which contains another list of items or a separator. Additionally
MenuName can be used to give a part of a menu a name which can be used to modify
it independent from the structure in which it is embedded, as will be explained in
Section 4.1.3. An example of how such a structure will look like on the client is
given in Section 4.1.4.

A menu item may additionally be triggered using a hotkey defined by the fol-
lowing type:

:: Hotkey = { key :: Key

, ctrl :: Bool

, alt :: Bool

, shift :: Bool

}

:: Key = A | B | C | D | E | F | G | H | I | J | K | L | M

| N | O | P | Q | R | S | T | U | V | W | X | Y | Z

For each hotkey one letter key is required. Additionally for the control, the alternate
and the shift key it can be specified if they have to be pressed to trigger the action
assigned to the hotkey.

4.1. MENUS 31

4.1.3 Setting & Dynamically Changing Menus

In contrast to buttons the structure of a menu is relatively stable during the run of
an application. Specifying the structure in each context where it is needed would
clutter up the code. Further the menu’s structure is neither process nor code. So
the part of the workflow dealing with it should be kept minimal.

Because an (single-user) application will run inside one process in the iTask
system, the structure of the menu is set for an entire process. At each moment
there is one menu structure assigned to each process. The structure is used to
construct a concrete menu bar for the current context, as discussed in Section 4.1.4.

Tasks to get, set and remove the entire menu system for the current process are
added to the iTask WDL:

getMenus :: Task (Maybe [Menu])
setMenus :: [Menu] → Task Void

removeMenus :: Task Void

Initially each process starts with no menu. Consequently workflows not using menus
will never have to use one of those tasks. This corresponds to the design goal that
extensions should be orthogonal to the basic iTask WDL.

Although setMenus already makes it possible to dynamically change the structure
of the menu, sometimes it is more convenient to change only a small part of the
menu instead of the whole one. For example one might want to add files to a
submenu opening recently opened files without worrying about where in the menu
this submenu is located. For situations like this it is possible to give a name to
a part of the menu structure (using MenuName), as already discussed. For changing
parts of the structure the following tasks can be used:

setMenuItem :: String MenuItem → Task Void

getMenuItem :: String → Task (Maybe MenuItem)

Programmers should not use the same name twice. If they do for performance
reasons only the first occurrence of the name is taken into account by those two
tasks.

Example

A submenu for recently opened files can be defined like this:

MenuName "recOpened" (SubMenu "Recently Opened" [])

This submenu can be placed at an arbitrary place inside the menu structure. The
name of an opened file can be added to the submenu by the following task which
can abstract from the position of the submenu inside the entire menu structure:

1addToRecentlyOpened :: String (DBRef TextFile) → Task Void

2addToRecentlyOpened name (DBRef id) =
3getMenuItem "recOpened"

4>>= λitem. case item of
5Just (SubMenu label entries) = setMenuItem "recOpened"

6(SubMenu
7label

8[MenuItem name (ActionParam "open" (toString id)) Nothing:entries]
9)
10_ = return Void

First the current state of the submenu is retrieved by its name (line 3). Then the
new file identified by its name and identifier is added to the submenu (lines 5 –
9). In the case the submenu does not exist nothing is changed (line 10). How the
special action ActionParam is used is explained in Section 4.1.5.

32 CHAPTER 4. ITASK EXTENSIONS

4.1.4 Actions & Interaction Tasks

The only kind of tasks for which it makes sense to let them generate actions are
interaction tasks. The reason for this is that those tasks interact with the user.
One exception are menus attached to a group of tasks, which is discussed later in
Section 4.3.4.

In a first approach interaction tasks with additional parameters are used to
indicate possible actions. Actually two lists are used. For actions in both lists
buttons are generated. The buttons in one of them are only enabled if the editor is
in a valid state.

For this thesis this idea was extended to include also menu actions. Additionally
a condition indicating in which situation an action is possible is added:

:: TaskAction a = ButtonAction (ActionWithCond a)
| MenuAction (ActionWithCond a)
| ButtonAndMenuAction (ActionWithCond a)
| MenuParamAction (String, ActionCondition a)

:: ActionWithCond a :== (Action, ActionCondition a)
:: ActionCondition a = Always | IfValid | Predicate ((EditorValue a) → Bool)
:: EditorValue a = Invalid | Valid a

A list of TaskAction values is used to indicate possible actions for a task. The first
constructor ButtonAction just generates a buttons.

The situation for menu actions is a little bit more complex because a menu
structure with items, triggering actions, is already defined for the process. The idea
is that not for all situations each action might have a meaning. For some tasks
shown to the user only a restricted set of actions might by applicable. Because of
this a MenuAction entry in the list means that this action is accepted by the task.
The actual menu bar is constructed for each task and contains only items producing
actions the task accepts.

Also an abbreviation for adding the same action as button and menu action is
provided (ButtonAndMenuAction). The constructor MenuParamAction is used for parameter
passing with actions and will be explained in Section 4.1.5.

For each entry a condition is given under which the action can be triggered
(ActionCondition). Items generating actions not applicable at the moment are dis-
abled in the GUI. The action can always (Always) be triggered or only if the editor
is in a valid state (IfValid). Also a predicate on the editor’s current value can be
used.

So for all interaction tasks defined in Section A.1.1 a list of actions should be
attached. From a process description point of view, if ignoring how those actions are
triggered, they define which actions can be taken in that context in a declarative way.
To achieve the goal of being orthogonal to the basic iTask WDL the old versions
are kept and for all tasks an additional version is added. There are some exceptions
for which it makes no sense to define another set of actions, like requestConfirmation

or showStickyMessage. An example of a variant of an interaction task is:

enterInformationA :: q [TaskAction a] → Task (Action,a) | html q & iTask a

Compared to the normal enterInformation there is an additional parameter which is
the list of actions. Also the result of the task includes the action the user triggered
to end the task.

The approach to add additional versions of interaction tasks doubles their num-
ber. But the goal to keep workflow definitions readable for cases no different actions
are needed is more important than reducing the number of tasks. Actually the same
choice is make for the versions of tasks with additional context information. They
could be added as optional parameter which would reduce the number of interaction

4.1. MENUS 33

tasks to ten. But the about 35 variants of interaction tasks in the current version
lead to code which is more readable for simple cases.

Example

Assume that the following menu structure is set for a process using setMenus:

[Menu "menu 1" [
MenuItem "item 1" ActionOk Nothing,
MenuSeparator,
MenuItem "item 2" ActionCancel Nothing]

]

If none of the two actions is in the action list of an interaction task, a disabled
menu entry in the menu bar is created (Figure 4.1a). In the case the list is
[MenuAction (ActionCancel,Always)] only the item that generates ActionCancel is shown
in the menu (Figure 4.1b). If the current editor does not have a valid value a menu
like in Figure 4.1c is generated for the following action list:

[MenuAction (ActionCancel, Always) , MenuAction (ActionOk, IfValid)]

(a) (b) (c)

Figure 4.1: Examples of Menus for Different Contexts Generated from the Same
Structure

The icons shown in the menu are predefined for the default actions ActionOk and
ActionCancel.

4.1.5 Parameter Passing with Actions

Sometimes it is helpful to pass arguments together with actions. For example a menu
with a list of files to be opened could use the same actions but pass the filename
as parameter. For this a special action ActionParam with two string parameters is
used. The first parameter is the name of the action and the second one is the
parameter passed along with the action. Actually using a string as parameter is
not a very beautiful solution, but using a typed value would make it impossible to
use differently typed parameters in one list. An interaction task can accept this
kind of action with given name but arbitrary parameter using MenuParamAction.

Example

In the example in Section 4.1.3 the following action was added to a menu for recently
opened files:

ActionParam "open" (toString id)

This action includes the name of the action ("open") and also a parameter which is
the identifier of the file encoded as string. If such an action is returned as result of
an interaction task (in this case for instance with a MenuParamAction ("open" , Always)

in its action list) all actions with the same name but possibly different parameter
values can be handled with the same piece of code. In this case:

34 CHAPTER 4. ITASK EXTENSIONS

case action of
ActionParam "open" fid = openFile (DBRef (toInt fid))
...

The parameter can be given to another task. In this example fid is converted into
a reference to a file and given to a task opening this file.

Summary

In this section a menu system is added to iTask . It is an extension of the actions
generated by buttons and fits into the task structure of the WDL. The menu’s
structure clearly has nothing to do with data or process, but it is only set for the
entire process in a way that nowhere else in the workflow description it has to be
dealt with at least the static part of the structure. The actual menu bar in the GUI
is generated based on the context. So non-declarative information is kept minimal
in the workflow description. Which actions can be triggered in a certain context
can be specified for each interaction task. The way they are extended makes sure
that code not using this functionality does not have to be changed.

4.2 Shared Data

Shared Data is data which is shared among different tasks running in parallel. This
is very important for programming complex applications. Such applications have a
complex internal state which is modified by different parts of the application. The
places where the state is modified can be inside the same form or spread among
different dialogs, windows or even processes executed by different users. This can be
seen as a classical MVC paradigm [17], where the internal state of the application
is the model containing the entire state of the program and all places where this
state is changed are called views.

One characteristic of views is that they can represent the state of the application
or only a small part of it in a different way. For example the field for changing the
text in a text editor is only used for changing the text stored in the application’s
state without dealing with the file which is currently opened, probably stored in
the same state. Also for instance an IDE might show both the source code of a file
and a list of all functions defined inside of it. If one view is changed, for example
a function is removed, this change should instantaneously be reflected in all other
views.

First in Section 4.2.1 it is explained how destructively updated variables shared
among different tasks are realised in a pure functional setting. How the storage
used by those variables can be freed again is discussed in Section 4.2.2. Based on
this mechanism, which can serve as a shared model, in Section 4.2.3 it is shown how
views on such models can be defined. Further new interaction tasks for providing
those views to the user are introduced (Section 4.2.4). Some implementation details
are discussed, like how the definition of views relate to the usage of data masks (Sec-
tion 4.2.5) and how shared editors are updated in the iTask system (Section 4.2.6).
Shared editors can also work on data shared among different processes which might
result in editing conflicts. How those are handled is described in Section 4.2.7. Doc-
uments are specialised data types which handle uploaded files. Shared documents
need special attention because of their structure (Section 4.2.8). Actually how views
are defined is a realisation of the theoretical concept of lenses [5] which is discussed
in Section 4.2.9.

4.2. SHARED DATA 35

4.2.1 Reference Types

In a pure functional language it is not possible to define shared variables which can
be updated destructively in a straightforward way. For this reference types can be
used. This solution was already described for iData earlier [23] and is also part of
the iTask system. Therefore it is not a contribution of this thesis.

In iTask a reference is a string which gives a unique name to a variable. Addi-
tionally it has a type to make sure that it is only used in a correct context. The
type used for this is:

:: DBid a :== String

The actual value of such a variable is stored at a place where the reference type
points to, which can be a file, a database or some place in memory. To read and
destructively update the value of the variable the following tasks are used:

readDB :: (DBid a) → Task a | iTask a

writeDB :: (DBid a) a → Task a | iTask a

modifyDB :: (DBid a) (a → a) → Task a | iTask a

The tasks dealing with stored data are also defined in Section A.1.2.
While it makes sense that the unique name has to be provided by the user in

situations where the variable is shared among different processes which are started
independently, there are many situations in which a variable is created by a process
and is only used by itself or other processes started by it. In such a case it is
very error prone to let the user determine a unique name, because there could be
name conflicts. To not force programmers to implement the generation of unique
names, the task createDBid for automatically creating unique references is added as
contribution of this thesis:

createDBid :: Task (DBid a)
createDB :: a → Task (DBid a) | iTask a

The implementation of createDBid is trivial because each task already has a unique
identifier which can be used to make sure that a name generated by a task is also
unique. The second task createDB is just an abbreviation for first creating a unique
identifier and then writing an initial value to it.

Ideally DBid should be an abstract type in this case, because such an identifier
should never be modified or created without making sure that there is also a store
in which a value of the given type is stored. However it is not possible to make the
type abstract due to current limitations of the Clean compiler1.

4.2.2 Deleting Data

Memory used by shared variables has to be freed again after they have been used.
In contrast to normal variables for variables managed by the iTask system garbage
collection cannot be done by the Clean runtime-system automatically because the
values are stored in some other place and exists independently from the references
which can be handled by Clean’s garbage collection.

More complexity is added by the fact that references can also be stored in other
shared variables or be written to disk. Also for reference names which are given
by the user it is impossible to determine if somewhere in the future a process uses
this name to access a certain variable. Most of the times such names reference a
database used by different workflows which should never be garbage collected.

Because of this shared variables are not garbage collected but can only be ex-
plicitly deleted by the user. A task for this is added as contribution of this thesis:

1A value returned by a task has the context restriction TC, which means that it can be packed
into a Dynamic. Abstract datatypes currently cannot be packed.

36 CHAPTER 4. ITASK EXTENSIONS

deleteDB :: (DBid a) → Task Void

Of course, this makes it more difficult to deal with shared variables because they
can be deleted if trying to read their value. readDB gives a default value if one tries
to read a deleted variable, but also another task is introduced which only gives a
value if the variable is not deleted:

readDBIfStored :: (DBid a) → Task (Maybe a) | iTask a

4.2.3 Views

With the new tasks described above it is possible to create variables and modify
their current values at different places in the workflow. However this is still not
as interactive as it should be. It is only possible to get the current value of the
shared variable, to edit it and to store the changes back after the user finished the
edit task. What we want to achieve is that changes in the editor are immediately
mapped back to the shared state and all other editors referring to the same value
are updated instantaneously. For this the concept of views is introduced, which can
either be an editor modifying the value or a listener only showing a part of the
current state:

:: Editor s a = { editorFrom :: s → a, editorTo :: a s → s }
:: Listener s a = { listenerFrom :: s → a }

Here s is the type of the shared state and a is the type of the value shown to the
user. The listener has only one function converting the state to a value which is
then shown to the user. The editor has a function with the same purpose but
additionally one to put the changed value back into the shared state. This function
additionally gets the current value of the state to make it possible to update only
a small part of it and leave the rest unchanged. This is actually a realisation of
lenses [5] and is further discussed in Section 4.2.9.

As will be explained later (Section 4.2.4) one might want to create forms with
multiple views on the same state. For this different views have to be put together
in one list to give them as argument. The problem is that they are possibly of
different type and therefore cannot be put together into one list. To solve this
problem functions are used to transform editors and listeners to the abstract type
View:

:: View s

listener :: (Listener s a) → View s | iTask a & iTask s & SharedVariable s

editor :: (Editor s a) → View s | iTask a & iTask s & SharedVariable s

class SharedVariable s | gMerge{|?|} s

The trick here is that the type a is hidden inside the abstract type View. This type
has only one type variable indicating the type of the model on which it provides a
view. The type of the value edited by the user is completely hidden. In this way it is
possible to create lists of different views. The class SharedVariable contains a context
restriction for a generic function used to merge outdated values (Section 4.2.7). Two
special views idEditor and idListener which do no conversion are predefined:

idEditor :: View s | iTask s & SharedVariable s

idEditor = editor {editorFrom= id, editorTo= (λa _ → a)}

idListener :: View s | iTask s & SharedVariable s

idListener = listener {listenerFrom= id}

The definition of the type View is shortly discussed to illustrate how the view’s
type can be hidden. Actually users of the iTask WDL never have to deal with this:

4.2. SHARED DATA 37

:: View s = ∃a: Listener (Listener‘ s a) | ∃a: Editor (Editor‘ s a)

A view is either an editor or a listener. The type of the value edited by or shown
to the user is hidden using existential quantification.

The structure of Listener‘ is simple:

:: Listener‘ s a = { visualize :: s → [HtmlTag] }

There is only one function transforming a model-value into a HTML representa-
tion. The type of this representation is independent from the type of the value it
represents. Therefore the type of it can completely be hidden.

The same trick is used for editors:

:: Editor‘ s a =
{ getNewValue :: ViewNr [(DataPath,String)] s s *TSt

→ *(s,*TSt)

, determineUpdates :: TaskNr ViewNr s [(String,String)] *TSt
→ *(([TUIUpdate] ,Bool) ,*TSt)

, visualize :: TaskNr ViewNr s *TSt

→ *(([TUIDef] ,Bool) ,*TSt)
}

There are functions to process events to get a new value, to determine GUI updates
and to generate an editor visualisation. They all use the unique type TSt which is
the core task state used for the implementation of tasks. This state is for instance
necessary to retrieve the current value of shared variables.

The functions are not discussed here in detail. The essence is that they are
independent form the type presented to the user.

4.2.4 Shared Editors

There are two basic tasks for updating shared values:

updateShared :: q [TaskAction s] (DBid s) [View s] → Task (Action, s)
| html q & iTask s & SharedVariable s

updateSharedLocal :: q [TaskAction s] s [View s] → Task (Action, s)
| html q & iTask s & SharedVariable s

Both look similar to the normal updateInformationA but additionally get a list of
views. The global version of the task (updateShared) gets a reference to a shared
variable which is edited by all views given to the task. There is also a local version
which is derived from the first one and automatically generates a variable which
exists as long as the task is carried out and is shared among the views given to it.

Example 1

A simple example which uses shared editors to instantaneously calculate the sum
of two integers is given:

quitButton= ButtonAction (ActionQuit, Always)

calculateSum=
updateSharedLocal "Sum" [quitButton] (0,0) [

idEditor,
listener {listenerFrom= λ (x,y) → x + y}

]

38 CHAPTER 4. ITASK EXTENSIONS

The internal state is a tuple of two integers. The user can edit this state with the
identity editor. The second view is a listener which calculates the sum and shows
it to the user. The resulting GUI is shown in Figure 4.2.

Figure 4.2: The GUI Generated for the Calculate Sum Example

Example 2

Editors can also be used to put certain constraints on an edited value. For example
it is possible to let the user edit a list which is sorted automatically each time it is
changed by the user:

autoSortedList :: Task Void

autoSortedList=
updateSharedLocal "Automatically Sorted List" [quitButton] emptyL [

editor {editorFrom= sort, editorTo= λlist _ → list}
]

where
emptyL :: [String]
emptyL = []

The type of the shared model and the view is both [String] in this example. The
editor behaves as the identity editor with the exception that it sorts the list before
showing it to the user using the library function sort.

4.2.5 Views & Data Masks

For normal interaction tasks data masks (Section 2.3.2) are used to keep track which
fields the user already filled in. For views on shared data the situation is different.
The shared variable always has a value and is therefore always converted into a
view value with all fields filled in. For instance if one has a shared view on a list of
integers and adds an element automatically the default value 0 is filled in instead
of a blank field.

The fundamental problem is that the functions defining views can only transform
a value and no mask. It would be possible to extend the concept of views such that
also data masks are converted to solve this problem. However this makes using
views much more difficult and inconvenient. Because in most cases this feature
is not needed anyhow we decided to accept that shared views always have values
filled in for all fields and leave the concept of views being defined only in terms of
transforming a value.

4.2.6 Updating Shared Editors

Shared editors are more difficult to handle than normal ones. The reason is that
the local state of normal editor is only changed by themselves. In contrast the state
shared editors work on can also be changed by other tasks.

In this section it is explained how the iTask system is extend to deal with the
problem of updating multiple editors working on the same shared value at the same
time.

4.2. SHARED DATA 39

Generating GUI Updates for Shared Data

For normal interaction tasks an interface definition or a set of updates is generated
during the construction of the task tree and stored inside of it. This is possible
because all tasks have a local value which is edited only by them and cannot be
changed by other subtasks.

This is not possible for views because at the moment a node for the task in the
task tree is created there are possibly other views which were not added to the tree
yet and will change the value of the shared state. So the calculation of the interface
definition or updates has to be done after the entire tree is built and all editors
updated their values.

To achieve this the task node of an interactive task can also contain a function
calculating an interface definition or updates for it at a moment after the entire tree
is built:

:: InteractiveTask = Definition ([TUIDef] , [TUIButton]) [(Action,Bool)]
| Updates [TUIUpdate] [(Action,Bool)]
| Message ([TUIDef] , [TUIButton]) [(Action,Bool)]
| Func (*TSt → *(InteractiveTask, *TSt))

So an interactive node in the task tree can include a GUI definition, GUI updates
or a message for the conventional interaction tasks. Additionally a list of accepted
actions together with a flag indicating if the action can currently be triggered is
included. For shared editors a function is used to calculate a new node after the
entire tree has been built. In this way all views are rendered with the same, current
value of the shared variable.

Updating Basic Values

Events from the client can either change a basic value or a constructor. Basic values
are for instance Int, String or Bool, but also specialised types like Note or Date are
treated like basic types in this context. An important property of such events is
that it is not necessary to update the user interface on the client side as response
to the event. This is because the form element representing the basic value already
contains the new value the user inserted into it. The situation is different for events
changing the constructor for a value inside the datastructure. In this case the GUI
on the client side does not represent the new value at the moment the event is sent.
Form elements possibly have to be removed and new elements have to be added.

Consequently for forms editing a local value the server never sends updates
for changing fields representing basic values. The situation is different for shared
editors, because basic values can possibly be changed by other views or the function
in the view definition. So the visualisation function has to be extended to send also
updates for basic values which have been changed.

However just comparing the old and the new value of a basic type and sending
an update if it has changed gives a problem for some cases. This is illustrated by
the following example: assume there is a single field for entering an integer, but a
function in the view always changes it back to 0 before storing it back in the shared
state:

constIntExample= updateSharedLocal

"constant integer"

[quitButton]
0
[editor {editorFrom= id, editorTo= λ_ _ → 0}]

The correct behaviour of the server would be to always set the field back to 0. The
problem with just comparing the new value with the previous one when generating

40 CHAPTER 4. ITASK EXTENSIONS

updates is that the value of the integer is always 0. So no update is send to the
client although the user may have typed in a different integer.

In the following some attempts for solving this problem are discussed.

A Naive Approach: Updating all Basic Values A simple solution for this
problem seems to always send updates to set all basic value fields to their correct
value. The first obvious drawback is that superfluous update commands are sent,
which wastes bandwidth and computation time. But worst of all, the user may
already work on a different field at the moment the update from the server arrives.
In this case the information the user already typed in is overwritten with the old
value from the server. Summarised this solution destroys the concept of updating
the user interface in an iterative way. So this approach is not a solution.

Solution 1: Redefining the Meaning of Old Values I suggested this ap-
proach for solving the problem in some early work about iteratively updated web-
forms [20].

The generic function for generating updates expects two values, which is the old
value before the event and the new values updated by the event (Section 2.3.5). In
this solution the meaning of the old value is redefined. Instead of using the value
before the event, the value the GUI on the client-side represents at the moment the
event is sent is taken as old value. For instance if an integer field is changed from
0 to 1, the old value according to the original definition is 0. Actually the GUI
already represents a 1 at the moment the event is sent.

To retrieve the old value according to the new definition first only events up-
dating basic values are processes. In this way a value representing the state on the
client-side is constructed. The new value is this value with additionally also the
events updating constructors applied.

This solves the problem, because fields representing a value differing from the
new one are updated.

However giving the old value a different meaning causes problems in some cases.
An example is a new implementation of the visualisation of the list type where
automatically a new optional blank element is added to the end of the list. With
the redefined meaning of old value the visualisation function cannot derive if a new
value was added as last element and a new blank field has to be added or if the last
element was changed.

So a solution which uses the original definition of the old value is needed.

Solution 2: Resetting Fields Actually the server can detect when a problem
as described above occurs. This happens when a basic value’s old and new value
are equal but there has been an event for it, which means that it was changed by
the user. In this case the value shown in the client is not correct and must be reset
to the previous value. The server can achieve this by sending an update instruction
for setting the value back to the old one.

This solution solves the problem by detecting the situation causing the prob-
lem, but leaves the definition of the old value intact and therefore causes no other
problems. Consequently this solution has finally been implemented for the iTask
system.

Overview

How views are updated is summarised in Figure 4.3. The client sends a list of
events to the server which all originate from the same editor. First the previous
value stored on the server is updated using those events after conversion to the editor

4.2. SHARED DATA 41

domain. This new value is used to determine updates for the editor by comparing
it with the old value. Additionally the new value after conversion to the model
domain is stored as new value of the shared variable. In the phase of building the
user interface also this new value is used for determining the new user interfaces of
all other editors.

Figure 4.3: An Overview how Shared Editors are Updated

4.2.7 Merging Values

If all editors providing a view on the same shared variable are inside the same
process, all of them are updated for each update request to the server. Consequently
they all have a value representing the same shared state. But if shared values are
edited in different processes possibly by different users, it can happen that an editor
representing an outdated value is sending an update request. There are two easy
solutions to deal with this situation:

• Discard the changes of the outdated editor.

• Overwrite all changes the outdated editor missed.

Obviously the second approach is not very practical. First of all, an arbitrary
number of updates can be overwritten, possibly the outdated editor missed many of
them. Also if a user changes something and sees her change happen on the screen,
she expects the change to be successful and does not expect it to be overwritten
later. With the first approach only one update is discarded and the user immediately
gets feedback about this because the new value the editor is updated to does not
represent her changes.

So in principle the first solution is preferable. This was also done in previous
work about iData [23] where a version number was used and only editors with the
correct number were allowed to change the shared variable. But there are cases
were it might be safe to do (part of) the update even if the editor was outdated.
While the entire shared value might be outdated, it can be safe to change parts
of it which were not changed by the missed updates. For this each editor locally
saves the last value of the shared variable it has seen and a function (wrapping the
generic function gMerge) to merge the different values is used:

mergeValues :: a a a → a | gMerge{|?|} a

There are three arguments of the same type:

42 CHAPTER 4. ITASK EXTENSIONS

old The last value of the shared variable the editor has seen before the update.

current The current, up-to-date value of the shared variable.

new A new value resulting from the user’s edit action.

Intuitively what has to be done is that current is updated to new if no changes
between old and current are overwritten. In the case that the editor is up-to-date
old and current are equal and the result is the value of new.

The generic algorithm for merging the values has to make a decision each time
there is a difference in the structure or in the value of basic types of the three values:

• If there is no difference between old and current it is safe to construct a result
according to new.

• If there is a difference between old and current this difference should not be
overwritten and the structure or value of the result is given by current.

This algorithm works fine for changed basic values and if constructors are used to
indicate choices. For datastructures which can change their size dynamically such
as lists it can have unexpected results. This is because the algorithm cannot make
a distinction between cases in which the value of items is changed and cases in
which the position changes because other items were added or removed. So a better
solution might be needed here. Also for notes one can imagine that there are better
ways to merge different versions than treating the entire string as one value.

A situation were two users change the same part of a data structure is undesirable
in many cases, because it always leads to problems. So most applications should
make sure that not more than one user is allowed to modify the same part of a data
structure at the same time on a higher level.

On the other hand there are applications which let users work on the same data
at the same time. Examples for this are Google Wave2 and Etherpad3. For realising
this kind of realtime interaction the iTask system would have to be extended with
the possibility to send notification to clients and not only to answer to requests.
For this first Clean would have to provide the possibility to start multiple threads.
So this remains an interesting issue for future work.

Example

The value of a local variable is [1 ,2] at the moment an editor is generated. The user
changes this value to [3 ,4]. Between the generation of the form and the update sent
to the server another process changes the value to [0 ,2]. The new value of the state
is determined by mergeValues [1 ,2] [0 ,2] [3 ,4]. The first element of the list has been
changed from 1 to 0. This change is not overwritten and therefore the first element
of the result is 0. For the second element the situation is different because there is
no difference between the first two arguments. Consequently the second element of
the result is 4. The entire result is [0 ,4].

4.2.8 Shared Documents

Documents are used to represent any kind of file in the iTask system. The user can
upload, download and delete them. Documents are handled in a special way inside
iTask . This is because files of arbitrary size can be uploaded and possibly a large
amount of data is involved. Therefore documents are stored in such a way that not
the entire data has to be copied too often. For this references to the actual data

2http://wave.google.com/
3http://www.etherpad.org/

http://wave.google.com/
http://www.etherpad.org/

4.2. SHARED DATA 43

are used. This requires special attention if documents are shared among a number
of views.

There are two approaches to handle documents. In a first approach documents
are mutable. This means that old data is overwritten if the user uploads new one.
In the end it turned out that immutable documents are easier to handle. Here each
time the user uploads data a unique identifier is given to it and it is never changed
later. This avoids many problems when sharing documents. Still it is an interesting
issue how mutable shared documents can be handled and is therefore also discussed
in this section. After this it is discussed how immutable documents avoids many
problems which have to be solved for mutable ones in a complicated way.

Mutable Shared Documents

First it is described how mutable documents are handled by normal editors. This
is followed by a discussion how documents edited by shared editors are handled.
Finally some remarks about deleting documents are made.

Local Documents As already mentioned documents are stored in a special way.
The document type does not directly contain the data of the document but a store,
which contains the data, is created at the moment document data is uploaded. The
document type itself only contains a reference to this store which is identified by the
task by which it was created. To avoid copying the data unnecessarily tasks can use
document data which was not created by themselves, but by previous tasks. This
is safe since this previous task is finished at the moment data created by it is used
by another task and can therefore not change the data any more. If the document
is changed, which means that new data is uploaded, a new store for the current
task is created. Tasks are never allowed to overwrite data created by previous tasks
because they can possibly be used by other parallel tasks.

The actual data is only send to the user if this is requested. If generating
a form for a document only a button for requesting the download is generated.
For downloads and uploads of documents a special service (added to the services
discussed in Section 2.2.2) is made available to the client.

An example is given in Figure 4.4. First a document is created by Task 1. Its
data is stored in a store identified by this task. Then two new tasks are started
which both give the user the possibility to update the document. Although the
two documents are conceptually different documents which can be changed inde-
pendently the data does not have to be copied. Only the document information
containing a reference to the data is copied and given to the two parallel tasks.
Both still use the data created by Task 1. If there is no change this is no problem,
because Task 1 is finished and the data will never be changed. In the right task
the user does not update the document and therefore the returned document still
points to the data created by Task 1. In the left task the user uploads new data. At
the moment the new data is uploaded a new store for it is created. So the returned
document contains a reference to the new data without interfering with the results
of the right task.

The values given by the tasks do not have to be single documents. They can also
be datastructures possibly containing an unbounded number of them. For dealing
with this each document also has an index to make it possible to create more than
one data store for a single task.

Shared Documents The data of documents stored inside a shared variable do
not belong to a task but to this shared variable. This makes sure that each task
accessing it using an updateShared has access to the current version which might
be data uploaded by a different task. To handle this for this thesis the types

44 CHAPTER 4. ITASK EXTENSIONS

Figure 4.4: An Example of How a Local Document is Handled

representing documents are extended to make a distinction between the two kinds
of documents:

:: DocumentType= Local | Shared String

So a document can either be local or shared indicated by a value of type DocumentType.
For local documents it is not necessary to store the task identifier they belong to
because the identifier of the current task is always available. For shared documents
the identifier of the shared variable has to be stored because it is not available at
the moment a document upload is handled. It is stored as string because of type
problems occurring otherwise4.

There are situations in which a shared document can safely use local data. This
is possible if a local document already containing data is used by a shared editor
and therefore turned into a shared one. Because of this each document can be local
or shared and independently has a local or shared location where its data is stored.
This is modelled by the following types:

:: DocumentDataLocation= LocalLocation TaskId

| SharedLocation String SharedDocumentVersion

:: SharedDocumentVersion :== Int

For the data location either the identifier of a task or of a shared variable is used
to point to a store with the document’s data. Additionally for shared documents a
version number is used to make sure that outdated editors never overwrite changes
they did not see.

Finally the new datatype for mutable documents is:

:: Document = { type :: DocumentType

4The shared variable in which the document is embedded can be of arbitrary type. So the
type should actually be :: DocumentType= Local | Shared (∀a: (DBid a)). For quantified types
generic functions cannot be derived automatically. Using a string is more convenient than doing
this for all generic functions needed for this type.

4.2. SHARED DATA 45

, content :: DocumentContent

}

:: DocumentContent = EmptyDocument | DocumentContent DocumentInfo

:: DocumentInfo = { fileName :: String

, size :: Int

, mimeType :: String

, dataLocation :: DocumentDataLocation

, index :: Int

}

Each document always has a type (DocumentType). If the document is empty no
further information is required (EmptyDocument). If it is not empty (DocumentContent)
it has a name, a size, a mime-type, a data location and an index, which is used to
handle datastructures containing more than one document, as already discussed.

Empty documents are created as local document. Even if they are stored in-
side a shared variable they are still local until they are used in the context of an
updateShared. This is done because in this way no efficiency is lost if a value is stored
in a database but no shared editors are ever using this document. In the case that
a shared editor is used on a variable all documents inside the datastructure are
changed to shared documents. For this the following generic function is used:

generic gMakeSharedCopy a :: a (DBid b) → a

The first argument is the value in which all documents are changed and the second
one is the identifier of the shared variable. The function only changes the type but
not the data location of the documents.

In the result of an updateShared or of a readDB all documents are changed back to
local copies by this function:

generic gMakeLocalCopy a :: a *TSt → (a,*TSt)

If the document still has a local data location only the type is changed back, as
shown in Figure 4.5. First a local document is created which is then stored in a
shared variable by createDB. The document inside of the shared variable is still a
local one. The identifier of the shared variable (DBid 1) is given to an updateShared

task. Here the document is changed to a shared one. The number identifies the
shared variable it belongs to. Still the document points to the original data created
by Task 1. The user does not upload new data. If the updateShared task finishes a
local document is returned, which still points to the original data. So the data is
never copied.

If new document data is uploaded for a shared document it is stored at a shared
location. Data at a local location is only modified by the task owning it. If the task
is finished the data stays the same. This is because possibly other parallel tasks
also use the same data. This situation is depicted in Figure 4.6. A local document
is given to two parallel tasks. In the first one its content is shown to the user. In
the second one first it is stored inside a shared variable and given to an updateShared

after that. Before new data is uploaded in the shared editor both documents still
point to the same data. If new data is uploaded a new store has to be created
because in the left task still the old content of the document has to be available. So
after the upload the new value of the shared variable (shared 1”) has a document
pointing to a new data store belonging to the shared variable.

Finally it has to be discussed what happens if a shared document with its data
at a shared location is turned into a local copy. In this case a copy of the data has
to be made at a local location. This is the reason why gMakeLocalCopy modifies the
task state. This new copy is needed because one wants to have the document at the

46 CHAPTER 4. ITASK EXTENSIONS

Figure 4.5: An Example of How a Shared Document Without New Data is Handled

moment of time when the document is retrieved, either because an updateShared task
finished and returned it or because readDB is called. If the value inside the shared
variable is changed later this should have no effect on the local copy.

Deleting Document Data For local documents it is not necessary to delete the
data store if a document is deleted. The only thing that has to be done is to do
not point at this data any more. Of course, it would be nice if also in this case the
document data is freed up.

Mutable shared documents explicitly have to be deleted because other views
accessing the document also have to notice that the document to which they still
have a pointer was deleted. So a new method to explicitly delete documents is
added to the document service.

Also document data for which no references are existing any more should be
deleted by some kind of garbage collection system, which is not implemented yet.

Immutable Shared Documents

One way to drastically simplify handling of documents is to make them immutable.
This means that each time a document is uploaded a unique identifier is determined
for it and that its data never changes. If a new file is uploaded the document is
replaced by a new one without erasing the data of the previous one.

4.2. SHARED DATA 47

Figure 4.6: An Example of How a Shared Document With New Uploaded Data is
Handled

This solves all problems of documents used by parallel tasks and possibly being
modified and makes the distinction between shared and local document superfluous.
The drawback is that each version of the document keeps stored, as long as there
is no garbage collection.

Compared to the previously defined type for mutable documents the structure
of documents becomes very simple now:

:: Document= { documentId :: DocumentId

, name :: String

, mime :: String

, size :: Int

}

:: DocumentId :== String

Each document has a unique identifier, a name, a mime type and a size.
However this simple solution behaves not the same way as the solution discussed

for mutable documents. If a document is downloaded from an outdated view the
user does not get the most recent version of the document, but the version that was
recent the last time the view was refreshed. If an outdated editor tries to update a
new document or delete it, the action has no effect and the value is changed back
to the recent version by the merging algorithm (Section 4.2.7).

48 CHAPTER 4. ITASK EXTENSIONS

Because downloading the file cannot be seen as an editing action, immutable
documents behave in the same way as basic values or other specialised types. To
see the recent value of a basic value in an outdated view, the user either has to
press the refresh button or try to change the value, which results in the field being
updated to the recent value. The problem therefore exists on a higher level and is
not specific to documents.

4.2.9 Lenses

To show that the concept of views as introduced here is general enough to make all
kinds of state updates possible, it is compared with the concept of lenses [5].

Definition of Lenses

A lens is a pair of functions:

v ↗∈ Σ → ∆ (4.1)

v ↘∈ ∆× Σ → Σ (4.2)

The first function v ↗, also called “get”, corresponds with editorFrom and v ↘, also
called “putback”, corresponds with editorTo. So the editors defined in this thesis
are as expressive as lenses.

Totality

It is important that for each possible value of the shared state an editor value exists
and that for each possible editor value in combination with a shared value a new
shared value can be computed. In short v ↗ and v ↘ should be total.

In Clean it is possible to define partial functions. In the case a function is
evaluated for an argument for which it is undefined, the entire program crashes.
The compiler can give warnings about functions which can possibly fail, but it is
the programmers responsibility to provide functions to the editor that do not let
the program crash.

Actually it is not necessary to be that strict, because there might be values of the
state domain which are never given to the variable, given a certain start value and
a list of editors. But nevertheless we would regard it as good practise to define only
total editors, such that they can safely be combined which other editors working on
the same state type.

Well-behaved Lenses

Well-behaved lenses have the following property:

v ↘ (v ↗ (I), I) = I for all I ∈ Σ (4.3)

v ↗ (v ↘ (J, I)) = J for all (J, I) ∈ ∆× Σ (4.4)

Editors not fulfilling this can show unexpected behaviour. For example if an editor
value is changed one might expect that while all other editors might be updated
the value of the changed editor remains unchanged. However not fulfilling this
property makes it possible to define interesting editors showing values with enforced
properties, such as automatically sorted lists (see also Example 2 in Section 4.2.4).
Therefore this property is not required for iTask views.

4.3. GROUPED TASKS 49

Summary

In this section it is shown how views on shared data can be defined as realisation
of the theoretical concept of lenses [5]. Further interaction tasks presenting those
views to the user are defined and it is shown how the iTask system is extended
for handling those shared editors. Special attention is paid to documents which in
contrast to other types include references to the actual document’s data instead of
the data itself. Finally a simple way to deal with possible editing conflicts is shown.
Making it possible that multiple users can work on the same data in realtime remains
an issue for future work.

4.3 Grouped Tasks

More complex applications consist of multiple windows with which the user can
perform different tasks, for instance editing different documents. Most applications
at least have dialogs to do basic operations such as opening files. This can be
modelled as different tasks running in parallel. In this section it is discussed how
tasks can be grouped together in such as way that they are usable to model different
windows or dialogs.

In iTask there is a distinction between parallel tasks and groups of tasks. Parallel
tasks are conceptually meant as independent tasks which are carried out at the same
time. Each of such task runs in its own process and can be assigned to different users.
The manager of such a parallel task can monitor the progress and reassign tasks. In
contrast groups are tasks which belong together and run in a single process. They
are a good way to model different dialogs and windows running inside the same
application.

Because parallel tasks are not needed for programming (single-user) GUI appli-
cations, only groups are discussed in this thesis. Both concepts are based on the
same concept for dynamically adding new tasks, discussed in Section 4.3.1. Based
on this the contribution of thesis is to extend the concept of groups with some con-
cepts needed for realising GUI applications. First, tasks can get different behaviours
such that they are rendered in windows or modal dialogs (Section 4.3.2). Second,
tasks inside of groups can be focussed by other ones (Section 4.3.3). Third, actions
can be attached to groups to make it possible to add new tasks independent from
other ones triggered by menu events (Section 4.3.4). The core group combinators
eventually added to the WDL and supporting all of those concepts is discussed in
Section 4.3.5. Because the core combinator is difficult to handle some versions de-
rived from it are introduced in Section 4.3.6. Finally the behaviour of nested groups
is described in Section 4.3.7.

4.3.1 Dynamically Adding Tasks

A basic requirement for a combinator for grouping tasks is that tasks can be added
dynamically. For example dialogs are always added dynamically if the user wants to
perform a certain action. In the following a first approach for dynamically adding
tasks is discussed followed by an improved approach finally added to the iTask
system.

The Todo-list Combinator

In some earlier work [21] I proposed the so-called Todo-list Combinator which gives
the intuition that there are a number of tasks which have to be performed and can
possibly generate additional tasks. The combinator task finishes if all required tasks
are performed:

50 CHAPTER 4. ITASK EXTENSIONS

todoList ::

(taskResult gState → (gState, [Task taskResult]))
gState

[Task taskResult]
→

Task gState

| iTask taskResult & iTask gState

The third parameter is a list of initial tasks which are executed in parallel. A
group has an internal state of type gState which’s initial value is given as second
parameter. This state is returned when all tasks are finished. A function given as
first parameter is used to update the group’s state when a task finishes. For this
the task’s result and the old value of the state is used. The function also produces
a second value of type [Task taskResult] which is a list of new tasks. Those tasks are
dynamically added to the list of parallel tasks.

Intuitively this combinator represents a todo-list of tasks. Finishing a task can
result in other tasks added to the list. If all tasks are finished the result accumulated
in the state is given as result. The original problem solved by this combinator is the
definition of a function with possible undefined variables. Each undefined variable
results in another task for giving the definition of this variable. The combinator
stops if there are no undefined variables left. The accumulated result is a list of
variable names together with a definition.

More General Actions

A major drawback of the Todo-list combinator is that it is not possible to stop the
execution of all tasks if not all of them are finished. This is solved by giving the
possibility to return a Stop instead of a list of new tasks. So the function returns a
value of the following type instead of a list of tasks:

:: PAction x = Stop | Continue | Extend .[x]

Continue is just a more readable way to write Extend [] .
This idea is used in the iTask system. A simplified version (which is extended

with other concepts in the remainder of this section) of the resulting group combi-
nator is:

groupSimplified ::

(taskResult gState → (gState,PAction (Task taskResult)))
gState

[Task taskResult]
→
Task gState

| iTask taskResult & iTask gState

The only difference with the Todo-list combinator is that the update function gen-
erates a value of type PAction (Task taskResult) instead of [Task taskResult].

4.3.2 Grouped Behaviour

One goal of groups is to model windows, so there has to be a way to specify whether
a given task is a window, which can be modal or not, or results in a non-floating
task in the GUI. The tuning combinators (Section A.2.4) are used to assign one of
the following behaviours to a grouped task:

:: GroupedBehaviour= GBFixed

| GBFloating

| GBAlwaysFixed

| GBAlwaysFloating

4.3. GROUPED TASKS 51

| GBModal

First of all tasks can initially be fixed (GBFixed) or floating which means visualised
as window (GBFloating). The user has the possibility to undock fixed tasks to make
them floating or to dock windows to make them fixed. To make tasks always fixed
or floating the behaviour can be set to GBAlwaysFixed or GBAlwaysFloating. Finally a
task can be a modal dialog (GBModal) which means that interaction with all other
tasks inside the group is blocked as long as this task is running. If no behaviour is
specified tasks have the default behaviour GBFixed.

The server just sends the behaviour along with the normal GUI definition. To
render the tasks accordingly is the responsibility of the client. This conforms to
the design goal that the GUI definition is as abstract as possible. There are several
possibilities how to render non-floating tasks. A good and simple choice is to arrange
them vertically down but in a way that there is a clear separation between them to
show that they are different tasks. An idea was to save space by making a shared
menu bar and a footer where buttons are shown. For this always one task has the
focus, which of course should be indicated visually. Only the menu bar and the
buttons of the focused task are shown.

While this is a good idea for menus, in practise it turned out to be not very user-
friendly to have a shared button footer. One reason is that this is not the expected
behaviour and therefore users may not even notice that there are buttons at the
bottom of the screen. Another reason is that the distance between the buttons and
the form can become large and therefore it is inconvenient to use them. So buttons
are rendered inside the form as usual, but only the buttons of the focused task are
visible while buttons of the other ones are hidden. This also saves the same amount
of space than the first solution but is more convenient to use, although it can be
discussed whether hidden buttons may confuse the user.

Because the details of the user interface are handled by the client, information
like positions and sizes of windows and whether a task has been pinned or unpinned
are not synchronized with the server. One might want to do that to make sure that
the user interface is in the same state if the user stops working and continues later.
But synchronizing this information with the server is difficult because different
clients may render the user interface in a very different way. So the standard client
stores the state of the user interface locally. This is done by storing it inside of
cookies. Consequently as long as the user continues working on the same machine
the user interface is restored. Continuing the work on a different machine results in
different positions and sizes of windows and the initial pinned states.

Example

In Figure 4.7 an example of a group with four tasks showing all possible grouped
behaviours except GBModal is given. For the initially fixed task there is a button to
unpin it making it floating, but not for the task which is always fixed. Analogously
only one of the windows has a button to pin it. The button of the first fixed task
is hidden since it does not have the focus.

4.3.3 Focussing Tasks

In most user interface systems the programmer has full control over the stacking
order of windows, which determines which of them overlaps or hides other ones.
Also the programmer can freely choose their position, size and other properties.
The iTask system is designed in such a way that as much as possible details of
the concrete user interface are left over to the client. This is also true for grouped
tasks where the server only controls which tasks there are and which behaviour they

52 CHAPTER 4. ITASK EXTENSIONS

Figure 4.7: Examples of How the Different Grouped Behaviours are Visualised

have. All details, like all properties of the windows currently shown to the user, are
controlled by the client.

However focussing windows is an essential action needed for many applications.
This is especially important for applications with many windows. Because of this
the actions of a group are extended with a special command focussing tasks with a
given tag:

:: PAction x t = Stop | Continue | Extend .[x] | Focus (Tag t)

Tags can be given to tasks using the tuning combinators and are defined as:

:: Tag s = Tag s & toString s

In Clean this notation imposes a context restriction on the argument of the con-
structor Tag. This means that values of all types for which an instance of toString is
defined can serve as tags. Internally tags are handled as strings, but defining tags in
this way makes it more convenient to use for instance integers as tags. Tags can be
assigned to tasks using the tuning combinators. A task can have more than one tag.
Giving more than one tag to a task can be achieved using the tuning combinator
several times or using another type which represents a list of tags:

:: Tags s = Tags [s] & toString s

In contrast to group behaviours which have to be given to the top task which is
child of the group, tags for focussing an interaction task shown in a group have to
be assigned to that task directly. So if a grouped task is a sequence with several
interaction tasks, each of them can have different tags.

If the command to focus tasks with a certain tag is given it can happen that
there is more than one task with this tag. If this situation occurs for a number of
fixed tasks, only one of them is focussed. The choice which task to focus is left to
the client. For floating tasks the windows of all tasks with the tag are brought to
front, above the windows of other tasks. The order of the focussed windows also
depends on the client.

Example

The following example illustrates how one task can focus another one inside of a
group:

focusExample= groupSimplified func Void [task i \\ i← [1..4]]
where

4.3. GROUPED TASKS 53

task :: Int → Task Int

task i = enterInformationAbout "Task" i <<@ Tag i <<@ GBFloating

func :: Int Void → (Void,PAction (Task Int) Int)
func i _ = (Void, Focus (Tag i))

The group does not make use of the state which is therefore of type Void. Initially
it consists of four floating tasks tagged with 1 – 4. The user can enter an integer in
all of those tasks. In Figure 4.8 the user enters a 1 in the task tagged with 4.

Figure 4.8: The Focus Example Before a Task Focused Another One

If the user now presses the okay button the task returns 1 which is then given to
the update function. The function generates a focus command for all tasks tagged
with 1. So, as shown in Figure 4.9, the window of the task tagged with 1 is brought
to front and focussed.

Figure 4.9: The Focus Example After a Task Focused Another One

4.3.4 Group Actions

One of the observations which led to groups of tasks which can be extended dynam-
ically, was that there are situations in which the result of finished tasks may make
new tasks necessary. Those tasks should be added without interfering with other
tasks still running in the group.

But there are situations in which this is not sufficient. The user might want to
add new tasks without stopping one of the tasks currently running inside the group.
For example the user might want to add a task editing a file, without interfering
with tasks editing other files running in the same group. There might even be
groups without any running task at all, for instance a MDI application without any
opened document. In this case the user should be able to open a file in some way.
The task for doing this cannot be started by a task inside the group, because there
is no such task. The task has to be started by the group itself.

For this purpose group actions are invented. They are a way to produce a value
which is treated as if it was given as result of a finished task and can therefore have

54 CHAPTER 4. ITASK EXTENSIONS

the same effect on the group’s state. They can add new tasks, stop the group or
focus tasks. Also conceptually it is nice to distinguish between actions independent
from a certain task in the group, like opening a new file, and actions concerning a
certain task, like doing some modification of a file edited by a task inside a group.

Group actions can only be triggered by menus. The reason is that menus can be
added to each kind of user interface. If a task already has its own menu it is easy to
merge the group actions into it. Also for groups without any task a menu bar can
be added at the top. If a task is rendered inside of a window, menu items referring
to group actions can be hidden because they are shown in the top menu of the
group anyhow. This gives a nice separation between global actions and actions only
related to that task. If a floating task’s menu only includes group action related
items it can be hidden completely. For this the server sends a flag for each menu
item, indicating whether it refers to a group action or not. If the task is pinned its
menu, then shown in the group’s toolbar, includes all items.

A list of group actions is added as extra parameter to the group combinator:

groupSimplifiedA ::

(taskResult gState → (gState,PAction (Task taskResult)))
gState

[Task taskResult]
[GroupAction taskResult gState shared]

→
Task gState

| iTask taskResult & iTask gState & iTask shared

A group action is defined as:

:: GroupAction taskResult gState shared =
GroupAction Action taskResult (GroupCondition gState shared)

| GroupActionParam String (String → taskResult) (GroupCondition gState shared)

Like for menu actions accepted by interaction tasks (Section 4.1.4) there is a dis-
tinction between normal actions and parametrised ones. In the first case if a given
action is triggered by the menu a value of type taskResult is generated as if it was
the result of a task inside the group. In the second case the parameter is used to
produce this value. For both cases there is a condition telling whether the action is
possible at the moment or not:

:: GroupCondition gState shared =
GroupAlways

| StatePredicate (gState → Bool)
| SharedPredicate (DBid shared) ((SharedValue shared) → Bool)

:: SharedValue shared =
SharedDeleted

| SharedValue shared

In the first case (GroupAlways) the action is always possible. Then a predicate on the
group’s state can be used (StatePredicate). Often the condition may depend on a
shared variable which is used by tasks running inside the group. So also a predicate
on an arbitrary shared variable (SharedPredicate) can be used. For this a reference
to the variable has to be given together with a predicate. The reference to the
shared variable has to be dereferenced before a predicate on the state can be used.
Each time the predicate is evaluated first it is determined if the shared variable is
deleted or not. A value of type SharedValue is produced accordingly and given to the
predicate.

It can be prevented that tasks inherit the actions from its group. If group actions
are used is determined by this type which can be assigned to a task using the tuning
combinators:

4.3. GROUPED TASKS 55

:: GroupActionsBehaviour = IncludeGroupActions

| ExcludeGroupActions

By default all tasks inherit group actions from their parent group.

Example

This example shows how group action can be used to dynamically add tasks. Also
it shows how grouped tasks are handled by the menu system:

groupActionsExample=
setMenus [Menu "Example" [MenuItem "Add task" ActionAdd Nothing

, MenuItem "Close" ActionClose Nothing

]
]

>>| groupSimplifiedA func Void [] groupActions

where
ActionAdd= ActionLabel "add"

func :: Bool Void → (Void,PAction (Task Bool) tag)
func True _ = (Void, Extend [showMessageA

"Dynamically added task!"

[MenuAction (ActionClose, Always)]
>>| return False])

func False _ = (Void, Continue)

groupActions :: [GroupAction Bool Void Void]
groupActions= [GroupAction ActionAdd True GroupAlways]

The group’s state is not used and is therefore of type Void. The initially empty group
has a menu with one item for dynamically adding an arbitrary number of simple
tasks to it, as depicted in Figure 4.10. The menu action generates the value True.
This value is given to the update function which dynamically extends the group.

Figure 4.10: The GUI Generated for the Group Combinator Example With Empty
Group

The situation when some tasks have been added is shown in Figure 4.11. Because
those tasks accept the action ActionClose, the menu item triggering it is also added
to the menu system. If this action is triggered this finishes the task which then
disappears from the group. Because the dynamically added tasks return False no
new task is added in this case. The update function generates a Continue.

As shown in in Figure 4.12 the menu of an unpinned and therefore floating task
only includes the item to close the task. This improves usability because the other
item does not refer to this task but to the group. The menu item for adding a task
is still available in the group’s menu bar.

56 CHAPTER 4. ITASK EXTENSIONS

Figure 4.11: The GUI Generated for the Group Combinator Example With Dy-
namically Added Tasks

Figure 4.12: The GUI Generated for the Group Combinator Example With Un-
pinned Task

4.3.5 Core Group Combinator

The group combinator finally included in the WDL has some additional parameters:

group ::

String

String

((taskResult,Int) gState → (gState,PAction (Task taskResult) tag))
(gState → gResult)
gState

[Task taskResult]
[GroupAction taskResult gState shared]

→
Task gResult

| iTask taskResult & iTask gState & iTask gResult & iTask shared

The first two parameters are a label and a description. In this version the state
during execution and the final result have a different type. For this a conversion
function is used as fourth parameter. The goal is to get a fully configurable con-
struction in one step. A last difference is that the update function also gets an
index for each finished task to indicate which of them finished.

All other group combinators are derived from this core group combinator.

4.3.6 Derived Dynamic Group Combinators

In many cases one wants to have a group to which tasks can be added dynamically,
but has no need for the internal state. This is because the interaction between the
group’s task will be realised using the more powerful concept of shared data. In this
case dealing with an accumulator function producing a new state and an actions is
unnecessarily complex.

So a combinator for dynamic groups not using an update functions but letting
the tasks generate new tasks or stop the group directly is defined:

:: GAction= GStop | GContinue | GExtend [Task GAction] | GFocus String

4.3. GROUPED TASKS 57

dynamicGroup :: [Task GAction] → Task Void

First a new set of actions similar to the ones described in Section 4.3.1 is defined.
The reason why the existing parametrised type PAction is not used with the proper
parameter is that this would result in a cyclic definition. Each task in such a group
directly returns such an action, since the update function is left out. Consequently
the only parameter of dynamicGroup is a list of initial tasks returning such an action.
The constructor GFocus accepts a string instead of a tag, because using a tag adds
unnecessary complexity to the type of tasks based on such a group. Actually this
does not influence the expressiveness but only forces the programmer to convert a
value to a string manually.

One might additionally want to use group actions for directly adding new tasks.
For this an additional parameter has to be added:

dynamicGroupA :: [Task GAction] [GroupAction GAction Void shared] → Task Void

| iTask shared

The type of the group actions (GroupAction GAction Void shared) reflects the fact that
group actions here can add new tasks directly, by giving a value of type GAction.
The internal state is of type Void, because it is not used at all. The type of the
shared variable on which predicates can be used is not fixed.

A last combinator is used for groups in which the entire group can only be
influenced by group actions, but tasks cannot dynamically extend or stop the group:

:: GOnlyAction= GOStop | GOContinue | GOExtend [Task Void] | GOFocus String

dynamicGroupAOnly:: [Task Void] [GroupAction GOnlyAction Void shared] → Task Void

| iTask shared

The only thing that is changed here is that the tasks itself produce an empty result
(Void).

Example

The example from Section 4.3.3 can be rewritten using dynamicGroup:

focusExample= dynamicGroup [task i \\ i← [1..4]]
where

task :: Int → Task GAction

task i = GBFloating @>> (
enterInformationAbout "Task" i <<@ Tag i

>>= λfocus. return (GFocus focus))

No state and no update function is needed here. Consequently the code is simpler
than the original example, which would be even more complex if not the simplified
version of the group combinator was used.

4.3.7 Nested Groups

Because a group is a task itself, groups can be added as children of other groups.
A special meaning is given to nested groups because the obvious one would lead
to strange results like windows inside of other windows. Like nested parallel com-
binators nested groups are flattened which means that all tasks are rendered as if
they were in the top group. So for the user a possibly complex structure of nested
groups looks like a single one.

The fact that groups are flattened does not mean that using nested groups is
the same as using one group. First of all if a group which is child of another group
is stopped, only the tasks inside this group are stopped. The parent group keeps

58 CHAPTER 4. ITASK EXTENSIONS

running. Also actions for adding and focussing tasks only work on the group they
are generated in. This makes it possible to structure tasks in a hierarchical way
and to stop a subset of them at the same time. Only stopping the top group stops
all tasks.

Also each group can have its own group actions. Each group inherits all actions
from its top group. If the same action is used in a child and in a parent group
both actions have an effect. An example of how this is used for different levels of
actions is given in Section 5.1.5. For floating tasks the client only hides menu items
referring to actions of the top group, because only they are certainly included in
the group’s menu. Actions of all child groups are handled like actions of tasks.

A remaining unsolved issue are mixed groups and parallel constructions. While
it is no problem to use a parallel combinator as child of a group or a group as child
of a parallel combinator, it is unclear what should happen if for instance a parallel
combinator which has a group as child is child of another group.

Summary

In this section the concept of groups to which tasks can be added dynamically
based on the result of other tasks is extended. First, tasks inside of groups can have
different behaviours. They can for example be floating and therefore rendered as
windows or be modal dialogs. Second, tasks can be focused by other tasks. Third,
the possibility to add tasks triggered by menu actions is added. Finally, groups can
be nested to define a hierarchical structure of tasks, with the possibility to assign
actions to and close subsets of them.

This concept is essential for realising GUI applications. The extended concept
essentially stays a group of tasks with some added annotations and an extra list of
actions. Therefore it fits into the task structure of the WDL.

4.4 MDI Applications

MDI applications make it possible to work on multiple documents at the same
time in the same application. In such applications new windows are used for each
document opened by the user. An example are text editors in which the user can
open an arbitrary number of files and edit them in separate windows.

With the new iTask paradigm it is possible to realise such applications by using
grouped tasks each giving a view on another document. The state of all documents
should be stored in such a way that tasks dealing with one document can only
modify that one. But also some tasks should have the possibility to access all of
them. This is for example necessary to check for unsaved work before closing the
application. This problem can be solved in a general way such that programmers do
not have to implement this state management separately for each MDI application.

Here a general combinator for creating MDI applications is discussed. This is an
example of how functional programming concepts such as higher-order tasks can be
used to supply the programmer with general behaviour which can help to implement
concrete applications. Also it is shown how functionality can be encapsulated such
that tasks can only use an abstract interface to manipulate a hidden application
state.

For MDI applications a distinction is made between global and editor tasks (Sec-
tion 4.4.1). The same distinction is made for actions as discussed in Section 4.4.2.
After those basic concepts are explained in Section 4.4.3 it is shown how the state
of the application, which includes the states of all editors, is stored. An interface
for creating and accessing editors is given in Section 4.4.4. The main result is a

4.4. MDI APPLICATIONS 59

high-order combinator for MDI applications which is introduced in Section 4.4.5.
Finally in Section 4.4.6 an example of the structure of an MDI application is given.

4.4.1 Global and Editor Tasks

A MDI application consists of a number of tasks grouped together. In this way they
can interact with the user using different windows. In general a distinction between
global and editor tasks can be made. Global tasks do not deal with a specific
document but operate on a global level. A simple example is a task providing a
help document to the user. Then there are tasks for editing a specific document,
called editors in the following. In general for each opened document there should
be an editor.

4.4.2 Global and Editor Actions

Global actions are actions not modifying a specific document. Global tasks and
editors are always generated by global actions. For instance an action for opening
an about dialog is a global action. Also the action to generate a new or open an
existing document is such an action.

Editor actions are actions inside an editor and always deal with a specific doc-
ument. Saving or closing a file are examples for such actions.

4.4.3 Application State

The state of the entire application can be split up in two parts. First there is some
global data which is only stored once, for instance some default options applied
to all new documents. Then for each document which is edited there is a state
storing information about the editing process, for instance the current content of
the document. So there is a global state and a collection of an arbitrary number
of editor states. For each editor state in that collection there should also be a task
using it.

A first approach to store the different states is to store the global and each
editor state in a separate shared variable. While the global state can be accessed
by all tasks, each editor could generate and delete its own state. The problem
with this approach is that this makes it impossible to access any editor state from
a global task, which is needed for example to check if there is unfinished work.
Because generally there is no possibility to access tasks from another one, a global
task cannot even determine if there are any editor tasks remaining. If all tasks are
grouped the only possibility to quit the application is to close the entire group and
lose all unsaved data.

To improve upon this the global and all editor states can be stored inside one
shared variable to which all tasks have access. Each editor can look up and access
its own state in the collection of states. While this solves the problem of a global
task not being able to access all editor’s states, this has the drawback that bad
encapsulation is achieved. Each editor can see and access also the data of all other
ones and the programmer has to be careful not to manipulate data of other editors.
Also each editor searching up and putting back its own state into a collection of
possibly many states is not very efficient.

A combination of both methods gives a way to store the application state in
such a way that it is possible to inspect all editor states for global tasks, but also let
editors only access there own state and therefore achieves good encapsulation. As
in the first approach the global and all editor states are stored in separate shared
variables. The global state is accessible by all tasks and editor states only by the

60 CHAPTER 4. ITASK EXTENSIONS

corresponding editors. But additionally a collection of references to all editor states
is stored on a global level. A simple but sufficient type for storing this collection is:

:: MDIAppState editorState :== [DBid editorState]

Here simply a list of references to stored editor states is used. All editor states have
the same type which has to be defined by the application’s programmer to handle
all kinds of documents the program is able to edit.

Each editor only gets a reference to its own state and can therefore not change
the state of other ones. From a global level is it possible to access all editor states
using the list of references.

4.4.4 Handling Editors

Giving global tasks direct access to the collection of editor states would be sufficient
to realise the intended functionality. The disadvantage of such an approach is that
global tasks could arbitrarily manipulate this collection. This could lead to incon-
sistent states of the application, for instance editor tasks without corresponding
state.

To achieve a higher level of encapsulation the collection of editor states can also
be hidden for global tasks. An interface for dealing with editors is provided to
them. Creating and deleting editor states and putting them into the collection can
be done automatically. Also it is impossible to remove an editor’s state from the
collection if the corresponding task is still running.

To provide global tasks with the possibility to deal with editors a collection
of tasks put together into a record is used. The type of this record describes the
interface for dealing with editors:

:: MDITasks editorState iterationState= {
createEditor :: MDICreateEditor editorState,
iterateEditors :: MDIIterateEditors editorState iterationState,
existsEditor :: MDIExistsEditor editorState

}

:: MDICreateEditor editorState :==
editorState ((DBid editorState) → Task Void)

→
Task GAction

:: MDIIterateEditors editorState iterationState :==
iterationState (iterationState (DBid editorState) → Task iterationState)

→
Task iterationState

:: MDIExistsEditor editorState :==
(editorState → Bool)

→
Task (Maybe (DBid editorState))

The first task is used to create editors. It expects the editor’s initial state as first
argument. This initial value is stored in a shared variable and a reference is put
into the collection of editors automatically. The second argument is the editor task
which gets a reference to its state. After this task finishes the shared variable is
deleted and its reference is removed from the collection automatically. The result of
createEditor is a task which can dynamically be added to the application’s group and
therefore has to return a value of type GAction. Actually it always returns GContinue.
The editor task itself is of type Void and can therefore not influence the group it is
running in. The task createEditor is a nice example of a higher-order task.

4.4. MDI APPLICATIONS 61

The task iterateEditors is used to access all editor states without giving access to
the collection of references directly. The task given as second argument is called for
all editor states and gets a reference to each of them. During this iteration a state,
which’s initial value is given as first argument of iterateEditors, is accumulated. In
each iteration the task gets the current value and produces a new value of this state.
This could for example be used to count the total number of words in all opened
documents. The reason why an accumulator task is used instead of a function is
that the states can also be manipulated in this way. Also it is possible to prompt
the user, for instance to ask if unsaved data should be saved. For simplicity reasons
iterationState is quantified at the global level, which means that for each application
the same type has to be used each time this task is used.

The last task existsEditor checks if an editor, for which a predicate given as first
argument holds, exists. A reference to the state of the first editor for which the
predicate holds is given as result. If the predicate holds for no editor the result is
Nothing. Actually the same thing can be done using iterateEditors, but existsEditor

is more convenient to use for its purpose and can also be more efficient because
iteration stops at the first editor for which the predicate holds.

4.4.5 The MDI Combinator

Finally this combinator provides all functionality to create MDI applications:

mdiApplication ::

globalState

(
(DBid globalState) (MDITasks editorState iterationState)
→ [GroupAction GAction Void globalState]

)
→

Task Void

| iTask, SharedVariable globalState

& iTask, SharedVariable editorState

& iTask iterationState

There are only two arguments. The first one is the initial global state. The second
one is a function producing group actions which can be used to generate tasks
added to the application’s group, which is hidden in the combinator, dynamically.
The group starts without tasks. For generating the group actions two things are
provided by the combinator. The first one is a reference to a shared variable storing
the global state. The second one is the collection of tasks for creating and accessing
editors. Those things can be used by all tasks generated by the group actions.
Actually giving the tasks to manipulate other editors to editor tasks is against the
goal of encapsulation, but there is no way to prevent programmers from doing that.

After the application quits, which means that the task mdiApplication finishes,
the combinator makes sure that all shared variables generated for the global state,
the collection of editors and editor states are cleaned up.

4.4.6 Example

How the different states are handled for the case that there are two editors and
one global task is visualised in Figure 4.13. On the top level there is a group with
the three subtasks. There is a shared variable for the global state accessible by all
tasks. Further each editor has its own state. There is a reference to both states in
the collection Editor States. The global task cannot directly access this collection
but can do so indirectly using the tasks stored in MDI Tasks.

62 CHAPTER 4. ITASK EXTENSIONS

Figure 4.13: An Overview of How Different States in a MDI Application are Handled

A case study where this combinator is used to implement a multi-file text editor
is done in Section 5.1.

Summary

In this section we show that MDI applications can be realised using the new
paradigm. Further we show how functional concepts like higher-order tasks can
be used to build a combinator providing basic MDI infrastructure. This combina-
tor automatically keeps track of a collection of editor states and makes sure that
it is kept in a consistent state and cleaned up properly. Also encapsulation can
be achieved. Tasks for editing one document cannot access states corresponding to
other ones. Tasks on a global level are provided with an interface to create and
access editors, but cannot manipulate the collection of editor states directly.

4.5 Specialised Types

The iTask system already comes with a number of specialised types (Section A.3).
This collection is extended with types for formatted text (Section 4.5.1), source
code (Section 4.5.2) and colour (Section 4.5.3). As discussed in Section 3.1 this is
the preferred solution for adding new widgets to the system.

4.5.1 Formatted Text

Formatted text is a very important part of many different kinds of software. It is
not only used in traditional offline software like word processors but also in web
applications like forums or wikis. Here it is shown how iTask can be extended with
a specialised type for handling formatted text.

Formatted Text Editors on the Client

Many formatted text editors which can be used inside web applications are available.
One widely used and powerful solution is TinyMCE 5, but also ExtJS has an editor
for formatted text, which is not as powerful as other solutions, but is sufficient for
this purpose. So the editor of ExtJS is used because it is easy to integrate.

What those editors have in common is that they are WYSIWYG editors, which
means that the user sees the result immediately and can change the formatting of
the text using controls. They behave similar as ordinary word processing software.
In the end the result is HTML code representing the formatted text.

5http://tinymce.moxiecode.com/

http://tinymce.moxiecode.com/

4.5. SPECIALISED TYPES 63

Representation on the Server

Because the client side produces HTML code, it is convenient to also use HTML as
representation of formatted text on the server. Of course, this forces all possible
clients to understand and produce HTML but this is the case anyhow because also
on other places in the current implementation of the iTask system HTML code is
sent to the client.

A datatype for HTML is already present in the system. Using it would require
parsing the code from the client at each event. This would produce much overhead.
Because of this a string representation of the HTML code is stored. The programmer
can parse it manually if needed. Another information stored in the type is which
kind of controls the user can use in order to manipulate the text. The type for
formatted text is defined as follows:

:: FormattedText= FormattedText String FormattedTextControls

:: FormattedTextControls=
{ alignmentControls :: Bool // Enable the left, center, right alignment buttons
, colorControls :: Bool // Enable the fore/highlight color buttons
, fontControl :: Bool // Enable font selection
, fontSizeControls :: Bool // Enable the increase/decrease font size buttons
, formatControls :: Bool // Enable the bold, italic and underline buttons
, linkControl :: Bool // Enable the create link button
, listControls :: Bool // Enable the bullet and numbered list buttons
, sourceEditControl :: Bool // Enable the switch to source edit button
}

The list of controls available is no general list of possible controls for editors but is
just the list of controls the editor of ExtJS has. So the type could be more general in
this point. Predefined values are provided to make handling of FormattedTextControls
easier:

allControls :: FormattedTextControls // all possible controls
noControls :: FormattedTextControls // no controls

Additionally there are some self explanatory auxiliary functions for dealing with
formatted texts:

mkEmptyFormattedText :: FormattedTextControls → FormattedText

mkFormattedText :: String FormattedTextControls → FormattedText

setFormattedTextSrc :: String FormattedText → FormattedText

getFormattedTextSrc :: FormattedText → String

toUnformattedString :: FormattedText Bool → String

The boolean parameter of toUnformattedString indicates if the cursor should be in-
cluded into the resulting string. Details are discussed in the next section.

Dealing with the Cursor & Selections

There should also be the possibility to see and change the current cursor or selection
on the server side. For example a simple search function needs to see the current
cursor and set the selection to the next word found. Although it would be more
convenient to implement such functionality on the client-side a solution where the
cursor/selection is just seen as part of the value and can be manipulated by the
server is more flexible.

There are two ways for indicating the current selection. The first one is to add
offsets to the type FormattedText indicating the selection’s position inside the code.
This is a good solution for plain text. The drawback of this approach in combination

64 CHAPTER 4. ITASK EXTENSIONS

with HTML code is that the offsets have to change in the case the code is changed.
If a formatting is added but the text itself remains unchanged the offsets do not
indicate the same position inside the text any more.

A better solution in this case is to use markers inside the string. In principle
in HTML code a special tag could be used as marker. This has the drawback that
one might want to get the unformatted version of a formatted text and still want to
keep those markers. To add markers to an arbitrary string in Clean the following
hack is used to define the markers:

SelectionStartMarker :== "\0s"
SelectionEndMarker :== "\0e"

A null-character should never occur inside a string but in Clean the length of a string
is determined by the length of the array storing it and it is possible to process strings
with null-characters inside.

To get rid of those markers this function can be used:

removeMarkers :: String → String

The implementation of the client side is very tricky. Because string with null-
characters cannot be sent to the client, the server replaces those markers by special
HTML tags before the code is sent. The client can then set the selection accordingly.
The other way around if the client sends a value to the server first special tags are
added at the position of the current selection. It turned out be very difficult to
implement this behaviour in a reliable way. One problem is that the standard
compliant interface for text selections is difficult to use. Also the Internet Explorer
does not support the standard compliant interface for text selections and one has
to find ways to work around this. Still the prototype, although it is not very stable,
shows that in principle it is possible to deal with the cursor and selections in this
way.

Example

The example shows how different views on a formatted text can be defined:

1formattedText :: Task Void
2formattedText =
3setMenus [Menu "Example" [MenuItem "Quit" ActionQuit]]
4>>| createDB (mkEmptyFormattedText {allControls & sourceEditControl = False})
5>>= λid. dynamicGroupAOnly
6[(ignoreResult (t <<@ ExcludeGroupActions) <<@ GBFloating) \\ t← tasks id]
7actions
8>>| deleteDB id
9where
10tasks sid =
11[updateShared "WYSIWYG Editor" [] sid [idEditor]
12, updateShared "HTML-Source Editor" [] sid [editor
13{ editorFrom = λft → Note (getFormattedTextSrc ft)
14, editorTo = λ(Note src) ft → setFormattedTextSrc src ft
15}]
16, updateShared "Formatted Preview" [] sid [idListener]
17, updateShared "Unformatted Preview" [] sid [listener
18{listenerFrom = λft → Note (toUnformattedString ft False)}]
19]
20

21actions :: [GroupAction GOnlyAction Void Void]
22actions = [GroupAction ActionQuit GOStop GroupAlways]

First a shared variable with an initially empty formatted text is created (line 4). All
possible controls except the one for switching to a HTML source view are available
to the user. Then a group consisting of four different floating tasks representing the
different views is defined (lines 5 – 7). After the group is finished the shared variable
is deleted (line 8). The first view (line 11) is just an identity editor. Since the type
of the shared state is FormattedText a WYSIWYG editor is shown to the user. The
second view (lines 12 – 15) lets the user edit the HTML code of the formatted text.

4.5. SPECIALISED TYPES 65

Then there are two listeners. The first one (line 16) shows the formatted text to the
user and the second one (lines 17, 18) first converts the text into an unformatted
string.

The resulting application is shown in Figure 4.14. As soon as the value of the
formatted text is changed either in the WYSIWYG or in the code editor, all other
views are updated. The application is therefore also an excellent example for the
usage of shared data.

Figure 4.14: The GUI Generated for the Formatted Text Example

4.5.2 Source Code

The type described in this section is another example of a specialised type. Actually
source codes consists of a string, but are rendered in a different way similar to the
Note type, which is a string that is rendered in a multi-line textfield instead of a
single-line one. In the type for source codes the code is represented by a string on
the server side. How it is shown to the user, for instance with highlighted syntax,
is left over to the client. The only additional information the server gives is the
language of the source.

Source Code Type

Source codes are represented by this type with additional auxiliary functions:

:: SourceCode= SourceCode String SourceCodeLanguage

:: SourceCodeLanguage= JS | CSS | PHP | HTML | XML | Clean

mkSourceCode :: String SourceCodeLanguage → SourceCode

setSource :: String SourceCode → SourceCode

getSource :: SourceCode → String

66 CHAPTER 4. ITASK EXTENSIONS

A source code consists of the code itself and its language. There is only a fixed set of
supported languages, since the client also has to know how to highlight the syntax
for each of the languages listed in SourceCodeLanguage. To add another language one
would have to add a new constructor and provide the client with the capability to
deal with the language.

Another possibility would be to use a specialisation for each language:

:: CleanSource = Clean String

:: JSSource = JS String

...

The drawback of this solution is that for each of those types an instance of gVisualize
generating and updating the proper control would have to be added.

Client Implementation

For the implementation on the client-side the JavaScript library CodeMirror6 is
used. It can already highlight the syntax for some popular languages. For our
purposes we extended it with the ability to deal with Clean code. Additionally
line-numbers are automatically rendered on the left.

Because everything is computed on the client-side syntax highlighting is done
instantaneously and it is possible to handle a large amount of code.

Example

The following example lets the user enter Clean code:

sourceCodeExample :: Task Void

sourceCodeExample=
updateInformation "Clean Code" (mkSourceCode "" Clean)

>>| stop

After the user entered the code of this example itself, it is represented on the client
as shown in Figure 4.15.

Figure 4.15: The GUI Generated for the Source Code Example

6http://marijn.haverbeke.nl/codemirror

http://marijn.haverbeke.nl/codemirror

4.5. SPECIALISED TYPES 67

4.5.3 Colour

Dealing with colours is another example of how an abstract representation on the
server can be represented by a graphical user interface element on the client.

Colour Type

A colour is represented by a string with the hexadecimal representation of the
colour’s three RGB-components (for instance the colour white is represented by
"FFFFFF"):

:: Color = Color String

Additionally some colours are predefined:

colorBlack :== Color "000000"

colorRed :== Color "FF0000"

colorGreen :== Color "00FF00"

colorBlue :== Color "0000FF"

colorYellow :== Color "FFFF00"

colorFuchsia :== Color "FF00FF"

colorAqua :== Color "00FFFF"

colorPurple :== Color "800080"

colorOrange :== Color "FF9900"

colorWhite :== Color "FFFFFF"

This representation is used because it is close to the one used for web-languages like
HTML and CSS and is also used for the colour picker of ExtJS.

Client Implementation

For the client-side the colour picker of ExtJS is used. It gives a list of colours from
which the user can choose. This restricts the user to a number of predefined colours.
It would be possible to replace the implementation by a more general one which
allows the user to pick an arbitrary colour.

Example

In this example the user can choose a foreground and a background colour:

:: ColorRecord= { foregroundColor :: Color

, backgroundColor :: Color

}

derive class iTask ColorRecord

colorExample=
updateInformation "Choose colors" { foregroundColor= colorBlack

, backgroundColor= colorRed

}

First a record for storing the two colours is defined. The shorthand derive class is
used to derive instances for all generic functions required for a class. The user can
update the given start values for the colours. How this is represented on the client
is depicted in Figure 4.16.

Summary

In this section specialised types for formatted text, source code and colour are
added. They are required for the case studies (Chapter 5). It has been shown that

68 CHAPTER 4. ITASK EXTENSIONS

Figure 4.16: The GUI Generated for the Colours Example

this way of adding new widgets provides the author of iTask workflows with an
abstract functional representation of the edited values. On the client-side already
existing solutions can be integrated.

4.6 OS Tasks

There are situations in which one wants to directly use functionality of the operating
system on the server. For example one wants to store information in files instead
of stores and run external tools on them. Concretely, to implement an IDE one has
to store source code files in the file system on the server and run a compiler.

It is possible to lift existing operating system tasks to the task domain, using the
lifting combinators (Section A.2.5). However it is more convenient to add special
tasks for this purpose, since they can fit better in the iTask WDL. For instance
all tasks discussed in this section throw proper exceptions, which would not be
possible using lifted library functions. Also parts of the functionality added here is
not available in the standard libraries. Consequently in this section new tasks are
added.

All tasks are realised calling functions written in C using the interface between
Clean and C. The fact that currently the iTask server only runs on Windows plat-
forms reduces the complexity of the problem. So just a number of Windows system
calls have to be done.

Although the current implementation of the iTask server is restricted to Win-
dows, the iTask WDL should stay platform independent. Because of this paths
are represented in a platform independent way, described in Section 4.6.1. Then
tasks dealing with the file system (Section 4.6.2) and for calling external processes
(Section 4.6.3) are discussed.

4.6.1 Platform Independent Paths

A type for representing paths in a platform independent way is taken from the Clean
library:

:: Path = RelativePath [PathStep]
| AbsolutePath DiskName [PathStep]

:: PathStep = PathUp | PathDown String

:: DiskName :== String

There are absolute and relative paths. Both consists of a sequence of steps, which
are going the path up and down. If going down a name of a directory or file has to

4.6. OS TASKS 69

be given. Absolute paths also have a disk name, but it is only used for platforms
using disk names and ignored otherwise.

There are situations in which one might want to append a number of path steps
to a path not caring whether it is an absolute or relative one. For instance one
might want to append a file name to the path of a folder the file is located in. To
make this more convenient the following operator is defined as contribution of this
thesis:

(+<) infixr 5 :: Path [PathStep] → Path

Further there is a function for converting platform independent paths into a platform
dependent string representation:

pathToPD_String :: Path *env → (String, *env) | FileSystem env

A unique state representing the file system has to be provided.
To make it more convenient to use in iTask for this thesis also a task version

hiding the unique state is added:

pathToPDString :: Path → Task String

Examples

A number of relative example paths and their encoded string versions in Windows
format are given:

RelativePath [] ”.”
RelativePath [PathDown "test.txt"] ”.\test.txt”
RelativePath [PathDown "someDir" , PathDown "test.txt"] ”someDir\test.txt”
RelativePath [PathUp, PathDown "test.txt"] ”..\test.txt”
RelativePath [PathDown "someDir"] +< [PathDown "test.txt"] ”someDir\test.txt”

The absolute path AbsolutePath "c" [PathDown "someDir" , PathDown "test.txt"] is en-
coded as “c:\someDir\test.txt” on Windows and as “/someDir/test.txt” on UNIX
platforms.

4.6.2 File System Tasks

A small collection for reading and writing text files, checking whether a file exists or
is a directory, to create a directory and to get the application path are implemented.
The collection is not complete and more or less arbitrary. It is based on facilities
needed for realising the IDE case study (Section 5.2).

readTextFile :: Path → Task String

writeTextFile :: String Path → Task Void

fileExists :: Path → Task Bool

isDirectory :: Path → Task Bool

createDirectory :: Path → Task Void

getAppPath :: Task String

Most basic tasks of the iTask language cannot fail, because they do not depend on
factors outside of the iTask system. The situation is different for the tasks presented
above. There are many reasons for those functions to fail, for instance a file might
not exist or the server process might have no permission to access it. For this reason
a number of exceptions, which can be thrown by tasks, as discussed in Section 2.1.5,
are used to indicate the different kinds of errors:

:: FileException = FileException String FileProblem

:: FileProblem = CannotOpen | CannotClose | IOError

:: DirectoryException = CannotCreate

70 CHAPTER 4. ITASK EXTENSIONS

The first argument of FileException is the platform dependent string representation
of the file’s path.

Example

The following program first lets the user input the path of a text file, reads its
content and shows it to the user:

readFile :: Task Void

readFile=
enterInformation "Enter the path of a text file:"

>>= readTextFile

>>= showMessageAbout "This is the content of the file:"

The problem here is that the user can give a path to a non-existing file. This will
result in an exception thrown by readTextFile. This exception should be caught and
an error message should be generated:

readFileErr :: Task Void

readFileErr=
try

readFile

(λ (FileException path _) → showMessageAbout "Cannot read file:" path)

4.6.3 Calling Processes

There are situations in which one wants to call other processes on the server, for
instance a compiler. One way to do this is the following task:

callProcessBlocking :: Path [String] → Task Int

The first argument is a path to an executable. The second one is a list of command-
line arguments. The result of the task is the return code of the process. As the
name suggests the call is blocking. This means that the server process blocks and
can therefore not give a response to the client until the external process finishes.
Even worse because currently there is no threading on the server side, also requests
of other clients cannot be handled. Therefore this task should only be used for
processes that are certain to terminate within a very short time.

A better solution is provided by the following task:

callProcess :: message Path [String] → Task Int | html message

It does essentially the same thing as the previous one, but instead of waiting until
the external process finishes it stores its process identifier and shows a message
given as first argument to the user. For this a monitor node in the task tree is
generated. Each time the task is rebuilt it is checked whether the external process
terminated in the meantime. If this is not the case the message is shown again. If
the process terminated the task finishes and gives the process return code as result.
Actually this means that the user has to push the refresh button (or the client has to
refresh automatically within a certain interval) until the process finishes. Currently
it is not possible to send a notification to the client immediately after the process
finishes.

Actually non-blocking calls can also be realised using RPC functionality avail-
able for the iTask system. This makes it also possible to communicate with web
services. For this functionality several threads are required. It is worked around
the fact that threading is not possible with Clean by using a daemon written in
Java to handle RPC requests. This generates much overhead for the simple case of
a process running on the server. Using a web service is more complex than that.

4.6. OS TASKS 71

So at the moment the solution presented in this section is preferable since it is less
complex and generates less overhead.

Of course, also calling an external process can fail. Therefore both tasks may
throw the following exception:

:: CallException= CallFailed String

Example

The following task shuts down the Windows computer the iTask server is running
on and forces all applications to quit immediately:

shutdownExample= callProcessBlocking

(AbsolutePath "c" [PathDown "windows" , PathDown "system32" , PathDown "shutdown.exe"])
["/s" , "/f" , "/t 0"]

An example how a compiler is called using a non-blocking call is given in Sec-
tion 5.2.3.

Summary

In this section it is shown how I/O functionality like dealing with files on the server
and calling processes can be added to the iTask system. The fact that tasks can
have arbitrary side-effects makes it possible to do so in a straightforward way. Those
tasks are also a good example of how errors can be structured using ADTs and used
as exceptions to handle errors.

72 CHAPTER 4. ITASK EXTENSIONS

Chapter 5

Case Studies

In this section first it is described how a multi-document text editor can be imple-
mented in Section 5.1. This is an example of a simple but commonly used MDI
application. Then in Section 5.2 the implementation of a prototype, showing con-
cepts needed for realising an IDE for Clean, is discussed.

5.1 Text Editor

A text editor is a good example, because it is a MDI application, but has a relatively
simple user interface. Also this is a core component of an IDE. The purpose is to
show that the extended iTask language is powerful enough to describe such an
application. The text editor is based on the MDI combinator (Section 4.4).

In this section first the requirements for the text editor are discussed in Sec-
tion 5.1.1. Then in Section 5.1.2 it is described how the documents this application
works on, which are text files, are represented. The datastructures for storing the
global and the editor states are discussed in Section 5.1.3. In Section 4.4.2 actions
for MDI applications are separated into global and editor actions. For the case
of the text editor the concrete actions of both types are defined in Sections 5.1.4
and 5.1.5. How those actions are made available to the user by the menu system
is shown in Section 5.1.6. Finally the implementation of the global (Section 5.1.7)
and editor tasks (Section 5.1.8), as defined in Section 4.4.1, is discussed in detail.

5.1.1 Requirements

As basis there have to be files which can be opened and would be stored in a file
system for normal offline applications. Files could be stored in the server’s file
system for the case of this iTask application, for example using the tasks defined
in Section 4.6.2. However the solution to store files using the database capabilities
of the iTask system, which makes it possible to store values of arbitrary type in a
convenient and type-safe way, is preferred here.

Because the focus here is showing how the text editor’s user interface is realised,
the database for storing files is very simple. Files are not organised, for instance in
folders. Also there is no mechanism for locking files opened by other instances of
the application.

The application should fulfil the standard requirements one would expect for a
simple text editor application, like the possibility to open multiple files in separate
windows or start working on a new file, to save files and to close them again.
There should also be the possibility to quit the entire application. An important
requirement is that no unsaved data is lost without asking the user to save it. Also

73

74 CHAPTER 5. CASE STUDIES

the same file should not be opened more than once. An attempt to open an already
opened file should result in focussing the window editing it.

The main requirement for editors is that there should be the possibility to edit
the text file in a multi-line textfield. Also additional possibilities to manipulate
the content of the file like replacing all occurrences of a string should be available.
Finally the user should get the possibility to view some statistics about a file’s
content.

5.1.2 Text Files

Here a very simple database is used to store text files permanently. A text file is
defined as:

:: FileName :== String

:: TextFile= { fileId :: (DBRef TextFile)
, name :: FileName

, content :: Note

}

Each file has an identifier, a name and a content which is of type Note, because it
is displayed as multi-line input-field in the user interface in this way. It is simple
to make a permanent database for text files by using existing functionality of iTask
and defining an instance of DB for this type:

instance DB TextFile where
databaseId = mkDBid "TextFiles"

getItemId file = file.fileId

setItemId id file = {file & fileId = id}

Here "TextFiles" is an identifier for the database which is used for all instances of
workflows run by all users. So files are stored permanently in a database accessible
by all workflow instances. There should be some kind of locking in case two users
try to edit the same file, but this is left out for simplicity reasons here. It is possible
to access the database of text files using the tasks discussed in Section A.1.2.

Upon this a more high level interface for accessing text files is built:

storeFile :: FileName Note → Task TextFile

setFileContent :: Note TextFile → Task TextFile

getFile :: (DBRef TextFile) → Task TextFile

getAllFileNames :: Task [(FileName, Hidden (DBRef TextFile))]

First there is a task to store a file with a given name and content (storeFile) and
to update the content of an existing file (setFileContent). Then an existing file
can be retrieved from the database using getFile, which is more convenient to use
than dbReadItem, because it assumes that the file exists and does not return a Maybe.
Finally a list of all file names together with their identifiers can read from the
database (getAllFileNames). The identifier is hidden because if the list is visualised
for the user only the names should be visible without the identifiers.

5.1.3 Global State & Editor States

As discussed in Section 4.4.3 an MDI application has a global state and a number
of editor states. The global state for this application is very simple. It is just an
integer counting the number of new documents to be able to number them. (They
are called “New Text Document 1”, “New Text Document 2”, . . .) Consequently
the first parameter given to the MDI combinator is just 0.

Each editor has a state of the following type:

5.1. TEXT EDITOR 75

:: EditorState = EditorState Note EditorFile

:: EditorFile = NewFile Int | OpenedFile TextFile

The state consists of the current content of the edited file of type Note. Additionally
information about the file which is edited is given. The edited file can either be a
new file with a number or an existing opened file.

Some auxiliary functions are defined on the editor state:

hasUnsavedData :: EditorState → Bool

getFileName :: EditorFile → String

The first task checks if there is a difference between the current content of the editor
and the content stored in the file. The second one returns the name of existing files.
For new files it returns "New Text Document" followed by its number.

5.1.4 Global Actions

On the global level there are actions for opening a new or existing file, showing the
about dialog and quitting the entire application. Those actions have in common that
they do not refer to a specific edited file. They also have a meaning if no text files
are opened at all. They correspond to the global actions defined in Section 4.4.2.
So the list of group actions is given to the MDI combinator:

1groupActions :: (DBid Int) (MDITasks EditorState Bool) → [GroupAction GAction Void Int]
2groupActions gid mdiTasks=:{createEditor, iterateEditors} =
3[GroupAction ActionNew
4(GExtend [newFile gid createEditor]) GroupAlways
5

6, GroupAction ActionOpen
7(GExtend [openDialog mdiTasks <<@ GBFloating]) GroupAlways
8

9, GroupActionParam actionOpenFile
10(λfid → GExtend [open (DBRef (toInt fid)) mdiTasks False]) GroupAlways
11

12, GroupAction ActionShowAbout
13(GExtend [about <<@ GBAlwaysFloating]) GroupAlways
14

15, GroupAction ActionQuit
16(GExtend [quit iterateEditors <<@ GBModal]) GroupAlways
17]
18

19actionOpenFile :== "openFile"

All actions can always be triggered (GroupAlways). The first action creates an editor
editing a new file (lines 3, 4). The added task needs the reference to the global
state since it has to derive the number of the new file and needs the MDI task to
generate editors. Then there is an action to generate a dialog to open a file (lines 6,
7). The next action is a parametrised one, which is used by a menu showing recently
opened files to directly open a file with a given identifier (lines 9, 10). Because a
parameter is encoded as string it has to be converted into a file identifier in a
somehow circuitously way. The third parameter False prevents that the file is added
to the recently opened menu a second time. Then there are actions for showing a
simple about dialog (lines 12, 13) and quitting the application (line 15, 16). The
latter task makes use of iterateEditors to save unsaved data. The task for quitting
the application has modal behaviour. Because of this all dialogs asking the user to
save unsaved work are modal. All tasks are discussed in detail in Section 5.1.7.

5.1.5 Editor Actions

Then there are actions defined as editor actions in Section 4.4.2 which work on a
specific edited file. They are saving and closing the file and opening a dialog for
statistics or to replace text.

76 CHAPTER 5. CASE STUDIES

But there are also actions working on a specific file and a specific subtask related
to that file. They are used for subtasks showing statistics or replacing text to close
them and to trigger the “replace all”-action.

This can be modelled by using nested groups. For each edited file a new group
is added as editor. Here the file specific actions are defined. Each of those groups
always has an editor for the content of the file as child. Also there can be an
arbitrary number of statistics and replace-dialogs, which define their own button
actions:

1textEditorFile :: EditorStateRef → Task Void
2textEditorFile eid = dynamicGroupA [editorWindow eid <<@ GBFloating] (actions eid)
3where
4actions :: EditorStateRef → [GroupAction GAction Void EditorState]
5actions eid =
6[GroupAction ActionSave
7(GExtend [save eid]) (SharedPredicate eid noNewFile)
8

9, GroupAction ActionSaveAs
10(GExtend [saveAs eid <<@ GBModal]) GroupAlways
11

12, GroupAction ActionReplace
13(GExtend [replaceT eid <<@ GBFloating]) (SharedPredicate eid contNotEmpty)
14

15, GroupAction ActionStats
16(GExtend [statistics eid <<@ GBFloating]) GroupAlways
17

18, GroupAction ActionClose
19(GExtend [close eid <<@ GBModal]) GroupAlways
20]
21

22noNewFile :: (SharedValue EditorState) → Bool
23noNewFile SharedDeleted = abort "editor state deleted"
24noNewFile (SharedValue (EditorState _ file)) = case file of
25(OpenedFile _) = True
26_ = False
27

28contNotEmpty :: (SharedValue EditorState) → Bool
29contNotEmpty SharedDeleted = abort "editor state deleted"
30contNotEmpty (SharedValue (EditorState (Note cont) _)) = cont 6= ""
31

32:: EditorStateRef :== DBid EditorState

First there is a task editorWindow initially added to the group (line 2). It lets the user
edit the file’s content using a textfield. It never finishes directly since it includes
an interaction task with no actions. The only way to stop it is to stop the entire
group and therefore closing the file. For the entire group there are actions for saving
an already existing file (lines 6, 7) and for saving the editor’s content as new file
(lines 9, 10). The former should only be triggered if an existing files is opened which
is checked by the predicate noNewFile (lines 22 – 26) on the editor’s state. The case
that the state is deleted should never occur and aborts the program. Further there
are actions opening dialogs for replacing text (lines 12, 13) and showing statistics
(lines 15, 16). An arbitrary number of such tasks can be added to the group. A
predicate to check that the content is not empty (lines 28 – 30) is used to prevent
starting a task replacing text for files with empty content. Finally the file can be
closed (lines 18, 19). The reason why this action not just generates a GStop is that
first the user might be given to possibility to save unsaved modifications of the file.
All tasks are discussed in detail in Section 5.1.8.

In principle all subtasks inherit the group actions of the group above, but if
they are rendered as floating windows only the group actions of the file specific
group are used. So in the menu of an editor only file specific actions such as closing
the file, but no global actions like quitting the application are available. Global
action can only be triggered in the top menu bar of the group. In this way it is
avoided that global action are repeated for each editor and mixed up with file specific
ones. ExcludeGroupActions annotations are used for the statistics and replace-dialogs
to avoid that all actions are repeated in the menus of the dialogs.

5.1. TEXT EDITOR 77

5.1.6 Menus

Both global and editor actions have to be made available to users. For this the menu
system is used. There is only one menu structure defined for the entire application:

setMenus

[Menu "File" [MenuItem "New" ActionNew (hotkey N)
, MenuItem "Open..." ActionOpen (hotkey O)
, MenuName recOpenedMenu (SubMenu "Recently Opened" [])
, MenuSeparator
, MenuItem "Save" ActionSave (hotkey S)
, MenuItem "Save As..." ActionSaveAs (hotkey A)
, MenuSeparator
, MenuItem "Close" ActionClose (hotkey C)
, MenuItem "Quit" ActionQuit (hotkey Q)
]

, Menu "Edit" [MenuItem "Replace..." ActionReplace (hotkey R)
]

, Menu "Tools" [MenuItem "Statistics..." ActionStats (hotkey T)
]

, Menu "Help" [MenuItem "About" ActionShowAbout Nothing

]
]

recOpenedMenu :== "recOpened"

hotkey :: Key → Maybe Hotkey

hotkey key = Just {ctrl = True, alt = False, shift = True, key = key}

The sub-menu showing recently opened files has a name to make it more convenient
to change it dynamically. For the hotkeys the control and shift key both have to
be pressed together with a letter. This avoids conflicts with the browser’s hotkeys.
Most of them only use the control key.

The structure is used to automatically build appropriate menus for the different
menu bars, as indicated in Figures 5.1 and 5.2. The menu bar of the application’s
main group includes global actions and the menu of a single editor window includes
editor actions, while both menus are based on the same structure.

Figure 5.1: The Text Editor’s Global File Menu

As can be seen in Figure 5.3 the menu of a pinned editor shows both global and
editor actions.

5.1.7 Global Tasks

In this section the global tasks not dealing with a specific opened file are discussed.

78 CHAPTER 5. CASE STUDIES

Figure 5.2: A File Menu of One Single Editor

Figure 5.3: A Pinned Editor’s File Menu

New File

1newFile :: (DBid Int) (MDICreateEditor EditorState) → Task GAction
2newFile gid createEditor =
3modifyDB gid inc
4>>= λnewNum. createEditor (EditorState (Note "") (NewFile newNum)) textEditorFile

For creating an editor for a new file first the number stored in the global state
is incremented and given to the next task (line 3). Then a new editor is created
using the task provided by the MDI combinator (line 4). The initial editor state
represents an empty new file with the number just retrieved from the global state.
The editor task textEditorFile is discussed in Section 5.1.5.

Open File

The task for creating an editor for an existing file is more sophisticated. It is either
used by the open dialog, discussed in the next section, or by the menu for recently
opened files.

1open :: (DBRef TextFile) (MDITasks EditorState a) Bool → Task GAction
2open fid {createEditor, existsEditor} addToRecOpened =
3existsEditor isEditingOpenendFile
4>>= λmbEid. case mbEid of
5Nothing =
6getFile fid
7>>= λfile. if addToRecOpened
8(addToRecentlyOpened file.TextFile.name fid)
9(return Void)
10>>| return (GExtend [editor file])
11Just eid = return (GFocus eid)
12where
13isEditingOpenendFile :: EditorState → Bool
14isEditingOpenendFile (EditorState _ file) = case file of
15NewFile _ = False
16OpenedFile file = (fid==file.fileId)
17

18addToRecentlyOpened :: String (DBRef TextFile) → Task Void
19addToRecentlyOpened name (DBRef id) =
20getMenuItem recOpenedMenu
21>>= λitem. case item of
22Just (SubMenu label entries) = setMenuItem recOpenedMenu (newSubMenu label entries)
23_ = stop
24where
25newSubMenu label entries =

5.1. TEXT EDITOR 79

26SubMenu
27label
28(take 5 [MenuItem name (ActionParam actionOpenFile (toString id)) Nothing:entries])
29

30editor :: TextFile → Task GAction
31editor file =
32GBFloating @>> createEditor
33(EditorState file.TextFile.content (OpenedFile file))
34textEditorFile

The task gets the file identifier, the MDI tasks and a flag indicating if the file should
be added to the menu of recently opened files.

First it is checked if the file is already opened using existsEditor and the predicate
defined in lines 13 – 16. If this is the case the editor window editing this file, which
is tagged with the editor state’s identifier, is focussed (line 11). Otherwise the file is
retrieved from the database (line 6), possibly added to the menu of recently opened
files (lines 7 – 9) and an editor task is added (line 10).

The task for adding a file to the menu (lines 18 – 28) first retrieves the submenu
from the menu structure using the name that is given to it (line 20). The the sub-
menu is dynamically changed and replaced by a new submenu (line 22). In this new
submenu (lines 25 – 28) an entry for the new file is added at the top. The list only
shows the last five opened files, which is achieved by applying take 5 to it.

The new editor (lines 30 – 34) is created using the MDI task for creating editors.
The initial state consists of the file’s current content and the file itself. The editor
task is the group discussed in Section 5.1.5.

Open Dialog

1openDialog :: (MDITasks EditorState a) → Task GAction
2openDialog mdiTasks =
3getAllFileNames
4>>= λfiles. if (isEmpty files)
5(showMessageAbout "Open File" "No files to open!"
6>>| continue
7)
8(enterChoiceA "Open File" buttons files
9>>= λ(action,(name, Hidden fid)). case action of
10ActionOk = open fid mdiTasks (Just name)
11_ = continue
12)
13where
14buttons = [ButtonAction (ActionCancel, Always) , ButtonAction (ActionOk, IfValid)]

To create an open dialog giving the user the possibility to choose a file to open first
the list of all stored files is retrieved from the database (line 3). If there are no files
to open the user gets a message about this (lines 5 – 7). The task continue is just an
abbreviation for return GContiue. Otherwise the user can choose a file (line 8) and
press an okay or cancel button (line 14). If the action is cancelled the tasks ends
without further effect (line 11). Otherwise the file is opened using open (line 10).

An example how the task looks like if there are three documents in the database
is given in Figure 5.4.

Figure 5.4: The Text Editor’s Open dialog

80 CHAPTER 5. CASE STUDIES

About Dialog

1about :: Task GAction
2about =
3showMessageAbout "About" "iTextEditor August 2010"
4>>| continue

This task generates a dialog showing some information about the application.

Quitting the Application

There is a task for quitting the application. It makes sure that no unsaved data is
lost:

1quit :: (MDIIterateEditors EditorState Bool) → Task GAction
2quit iterateEditors =
3iterateEditors False checkForUnsavedData
4>>= λcancel. if cancel continue (return GStop)
5where
6checkForUnsavedData :: Bool String → Task Bool
7checkForUnsavedData True editor = return True
8checkForUnsavedData False editor = requestClosingFile editor

This task iterates over all editors using the corresponding MDI task (line 3). For
each editor a request to close it is done (line 8) using requestClosingFile which is
conceptually an editor task and therefore described in Section 5.1.8. This task
gives the user the possibility to cancel the action. In this case for all other editors
no closing request is done (line 7) and the application is not quitted (line 4).

5.1.8 Editor Tasks

In this section tasks dealing with specific opened files are discussed.

The Title Listener

The title listener is a view on the editor state which gives the name of the file and
additionally adds an asterisk in front of it if it contains unsaved data:

1titleListener :: View EditorState
2titleListener = listener
3{ listenerFrom = λst=:(EditorState _ file) →
4if (hasUnsavedData st) "*" ""
5+++
6getFileName file
7}

Main Editor Window

1editorWindow :: EditorStateRef → Task GAction
2editorWindow eid =
3updateShared "Text Editor" [] eid [titleListener, mainEditor] <<@ Tag eid
4>>| continue
5where
6mainEditor = editor
7{ editorFrom = λ(EditorState cont _) → cont
8, editorTo = λnewCont (EditorState _ file) → EditorState newCont file
9}

The main editor window gives two views on the editor state. First it shows the
name of the file using the title listener, then it defines an editor editing the content
(lines 6 – 9). The interaction task is tagged with the reference to the state (line 3)
to make it possible to focus the window in which the task is running. The task
has no actions which means that the only way to stop it is to stop the group it is
running in. Consequently as long as a file is opened exactly one main editor window
exists for it.

How this task looks like is shown in Figures 5.2 and 5.3.

5.1. TEXT EDITOR 81

Saving Files

The first task is used to save an existing file or call saveAs for new files:

1save :: EditorStateRef → Task GAction
2save eid =
3readDB eid
4>>= λeditor. case editor of
5EditorState txt (OpenedFile file) =
6setFileContent txt file
7>>= λfile. writeDB eid (EditorState file.TextFile.content (OpenedFile file))
8>>| continue
9_ = saveAs eid

In the case the editor is editing an existing file (line 5) the current content is written
to the database (line 6) The modified file is also put in the editor state (line 7). If
the editor is editing a new file the task for saving a new file is used (line 9) which
makes this task more robust.

For saving a new file this task is used:

1saveAs :: EditorStateRef → Task GAction
2saveAs eid =
3enterInformationA "Save As: enter name" buttons <<@ ExcludeGroupActions
4>>= λ(action,name).case action of
5ActionOk =
6readDB eid
7>>= λ(EditorState txt _). storeFile name txt
8>>= λfile=:{TextFile|content}. writeDB
9eid
10(EditorState content (OpenedFile file))
11>>| continue
12_ = continue
13where
14buttons = [ButtonAction (ActionCancel, Always) , ButtonAction (ActionOk, IfValid)]

Here first the user has to enter a name for the file (line 3). If the okay button is
pressed (line 5), the new file is stored (line 7) and the editor state is updated (lines 8
– 10).

Closing Files

1close :: EditorStateRef → Task GAction
2close eid =
3requestClosingFile eid
4>>= λcancel. if cancel continue (return GStop)
5

6requestClosingFile :: EditorStateRef → Task Bool
7requestClosingFile eid =
8readDB eid
9>>= λstate=:(EditorState _ file). if (hasUnsavedData state)
10(ExcludeGroupActions @>>
11showMessageAboutA "Save changes?" buttons (question file)
12>>= λaction. case action of
13ActionCancel = return True
14ActionNo = return False
15ActionYes = save eid >>| return False
16)
17(return False)
18where
19buttons = [ButtonAction (ActionCancel, Always)
20, ButtonAction (ActionNo, Always)
21, ButtonAction (ActionYes, Always)
22]
23

24question file = "Save changes to ’"+++ getFileName file+++ "’?"

The task is splitted up in two parts because requestClosingFile is also used if the
entire application is quitted. The result of requestClosingFile indicates if the user
cancelled the action. If the file has no unsaved data nothing happens and the user
has no possibility to cancel the action (line 17). If there is unsaved data the user
is asked whether the file should be saved (line 11). The user can cancel the action
(line 13), discard the changes (line 14) or save them (line 15). For saving the file

82 CHAPTER 5. CASE STUDIES

save is used which is implemented robust enough to work for existing but also for
new files.

How the modal dialog to request closing a file looks like is shown in Figure 5.5.

Figure 5.5: The Modal Dialog Used to Request Saving Changes

Replacing Text

1:: Replace = { searchFor :: String
2, replaceWith :: String
3}
4

5derive class iTask Replace
6

7replaceT :: EditorStateRef → Task GAction
8replaceT eid = replaceT‘ {searchFor = "" , replaceWith = ""}
9where
10replaceT‘ :: Replace → Task GAction
11replaceT‘ repl =
12ExcludeGroupActions @>>
13updateInformationA "Replace" buttons repl
14>>= λ(action, repl). case action of
15ActionReplaceAll =
16modifyDB eid (dbReplaceFunc repl)
17>>| replaceT‘ repl
18_ = continue
19

20buttons = [ButtonAction (ActionClose, Always) , ButtonAction (ActionReplaceAll, IfValid)]
21

22dbReplaceFunc repl (EditorState (Note txt) file) =
23EditorState (Note (replaceSubString repl.searchFor repl.replaceWith txt)) file
24

25ActionReplaceAll :== ActionLabel "Replace all"

The behaviour of this task is that the user can type in a string which is searched
for and another string by which all occurrences of this string is replaced. This
information is represented by a value of the type Replace. After the text has been
modified the task should not end but still should give the user the possibility to
replace another string. The fields should show the last values the user typed in.

To achieve this the task replaceT‘ is used which expects an initial replace-value
as input and asks the user to update it (lines 12, 13). As long as the user wants to
replace text (line 15) the editor state is updated accordingly (lines 16, 22, 23) and
the task calls itself recursively (line 17). The entire task stops if the user presses
the cancel button (line 18). The user does not notice that a new task is started
recursively, because the new task after the text has been modified generates the
same user interface the user saw before. The task replaceT itself just calls replaceT‘

with empty fields as initial value (line 8).
In Figure 5.6 is it depicted how this task will be presented to the user.

Statistics

1:: TextStatistics = { lines :: Int
2, words :: Int

5.1. TEXT EDITOR 83

Figure 5.6: The Dialog to Replace Substrings in Edited Files

3, characters :: Int
4}
5

6derive class iTask TextStatistics
7

8statistics :: EditorStateRef → Task GAction
9statistics eid =
10ExcludeGroupActions @>>
11updateShared "Statistics" buttons eid [titleListener, statsListener]
12>>| continue
13where
14buttons = [ButtonAction (ActionOk, Always)]
15

16statsListener = listener {listenerFrom = λ(EditorState (Note text) _) →
17let txt = trim text
18in
19{ lines = length (split "\n" txt)
20, words = length (split " " (replaceSubString "\n" " " txt))
21, characters = textSize txt
22}
23}

Two views on the editor’s state are given. The first one is a title listener to indicate
for which file statistics are shown. The second listener (lines 16 – 23) uses some
string functions to calculate the number of lines, words and characters and presents
it to the user by putting it into a value of type TextStatistics.

The shared data mechanism of the iTask system automatically updates the view
instantaneously each time the content of the file changes either because the user
typed in something in the main editor or because strings are replaced by a replace
task.

In Figure 5.7 an example of a text document with some text filled in together
with the corresponding statistics is given.

Figure 5.7: An Example for Text File Statistics

Summary

In this section the implementation of a multi-file text editor is discussed in detail.
This shows that this kind of MDI application can be implemented using the iTask

84 CHAPTER 5. CASE STUDIES

paradigm. Actually the iTask paradigm turned out to be very suited for this kind
of application.

Using the menu system and nested groups makes it possible to structure possible
user actions in a declarative way. Different menu bars for the different contexts are
created automatically based on a single menu structure. Tasks accessing one file
like the main editor, the replace and the statistics dialog can be implemented in
such a way that they are independent. Changes made by one task are automatically
reflected in the other ones, without one task being aware of the other ones. Finally
the interface provided by the MDI combinator turned out to be very convenient to
check if files are already opened or to request saving changed data.

5.2 A Clean IDE

With the MDI text editor we already showed that it is possible to realise essential
functionality needed for an IDE. However an IDE is a greater challenge because more
sophisticated features, for instance syntax highlighting, I/O like calling a compiler
and also configuration issues, are involved.

An IDE also requires a complex program logic for instance to determine which
files belong to a project or which library modules are used. Also functionality like
searching up definitions in a project requires more than simple string comparison.
For the case of the Clean IDE this is already implemented in the old IDE1 also
written in Clean. Those issues have nothing to do with the iTask paradigm and are
therefore not handled in this thesis.

Only a collection of issues essential for realising an IDE are implemented in
a small prototype which is able to compile a project with only one source code
file using the standard environment. Actually we know how to realise handling of
multiple files, but keeping track of which files are needed for a project is a lot of
administrative work. Although functions for doing this are available in the code
of the old IDE, it is not that easy to retrieve this functionality from existing code.
The prototype developed in this project forms the basis for a complete IDE and
shows that it is possible to type in syntax highlighted code, to compile this code
on the server-side and send it to the client, to configure the application and to deal
with errors using exceptions.

First the global application state of this prototype is discussed (Section 5.2.1).
Then in Section 5.2.2 it is discussed how syntax highlighting can be realised. This is
followed by a discussion of how projects can be stored and compiled in Section 5.2.3.
The prototype requires some GUI constructions, like a configuration wizard, which
can be generalised to GUI patterns which are discussed in Section 5.2.4.

5.2.1 Application State

This is the datastructure used as global application state:

:: AppState= { srcEditorContent :: String

, ideConfig :: IDEConfig

, syntaxHighlColors :: SyntaxHighlighterColors

}

First it contains the editor’s current content as plain string. The field ideConfig

is mainly used to store and compile the code and discussed in Section 5.2.3. The
colours used for syntax highlighting are determined by the field syntaxHighlColors

described in Section 5.2.2.

1http://wiki.clean.cs.ru.nl/Download_Clean

http://wiki.clean.cs.ru.nl/Download_Clean

5.2. A CLEAN IDE 85

5.2.2 Syntax Highlighting

Syntax highlighting for Clean programs can be done using the source code type (Sec-
tion 4.5.2). Here an alternative solution using a formatted text (Section 4.5.1) with
highlighted syntax as view on a plain string is used. Since the syntax highlighting
is done on the server this solution is more flexible.

Because the colours are determined on the server-side they are configurable. The
following type is used to give colours to the different constructs of Clean code:

:: SyntaxHighlighterColors= { keywords :: Color

, typeDefinitions :: Color

, singleLineComments :: Color

, multiLineComments :: Color

, strings :: Color

, characters :: Color

, numbers :: Color

}

This can directly be updated by the user (using updateInformation) as depicted in
Figure 5.8.

Figure 5.8: The Dialog Used to Choose the Colours for Syntax Highlighting

What is needed now is a function for converting source code in plain text to
formatted text representing the code with highlighted syntax using given colours:

highlightSyntax :: String SyntaxHighlighterColors → FormattedText

The implementation of this function is not discussed here.

86 CHAPTER 5. CASE STUDIES

The editor using this function is defined as:

srcEditorView :: View AppState

srcEditorView= editor

{ editorFrom = λstate →
highlightSyntax state.srcEditorContent state.syntaxHighlColors

, editorTo = λft state →
{state & srcEditorContent= toUnformattedString ft True}

}

The editorFrom function retrieves the current content of the editor and the colours
from the application state and feeds them to the syntax highlighter function. With a
formatted text control without controls this looks like shown in Figure 5.9. Convert-
ing the formatted text back to plain text, which is then put back into the application
state, is done using toUnformattedString. Cursor markers are kept inside the string
to leave the cursor on the same position before and after syntax highlighting is
performed.

Figure 5.9: Example Code Syntax Highlighted Using Formatted Text

Because the colours are computed by the server, the formatted text should send
an event to the server not only if it is unfocussed, but more often to colour for
instance a new keyword instantaneously. An event could be generated at each
keystroke, but this would be a waste of bandwidth. So a timer is used to send an
event if there has been no new keystroke for about a half second.

But sending events to the server while the user is working on the code leads to
timing problems. If between the event and the response from the server the user
types in something, this is discarded at the moment the newly highlighted source
from the server arrives and replaces the current one. Blocking user inputs between
a request and its response would solve the problem but would make the application
much less user-friendly. A more complex solution is to discard the response from
the server if the content changed after the event and send a new request. So the
content is only updated if there has been no user input for a period given by the
timer plus the time the answer from the server arrives. In practice this could be a
usable solution since normally source code is not entered without some pauses in
between.

However implementing this in a stable way such that no user input is lost, has
turned out to be not that easy. Also there are the already discussed problems with
the formatted text control (Section 4.5.1). Consequently using the source code type
is the more stable and interactive but less flexible way at the moment. A flexible
and fast way would be to compile the syntax highlighter function, written in Clean,
in such a way that it runs on the client.

5.2. A CLEAN IDE 87

5.2.3 Storing & Compiling Projects

In general there are several options how source code is compiled in a server/client
application. The first choice is whether the compilation is done on the server or
on the client. This choice is easy here because there is no general way to call a
compiler on the client-side if it runs inside a web browser. On the server the iTask
process can easily be given permissions to run a compiler.

Also there has to be the possibility to run the compiled program, again with the
choice on which side this is done. Doing so on the server might not be a good idea,
because there has to be some way to interact with the program from the client-side.
Also the process running on the server must have very limited privileges. It is not
a good idea to let clients submit arbitrary code which can access the entire server.
But also with limited privileges it very difficult to avoid security problems.

Sending the executable to the client gives the problem of platform dependency.
The client, written in JavaScript, is platform independent, but a Windows exe-
cutable received by the browser can only be executed on Windows platforms. A
solution would be to detect the operating system of the client and use cross compil-
ers to generate an executable for the platform the client is running on. The problem
is that there is only a Windows version of the most recent Clean system.

Another options to solve the problem in a platform independent way would be to
translate the program into some platform independent language instead of machine
code. For instance Clean code could be translated into JavaScript which then runs
into the browser. A problem here is doing I/O. A virtual console could be used
to run console applications inside the browser, but other operations like writing to
files cannot be done. Still giving this possibility as additional option would be an
elegant solution for a restricted class of applications. Realising this is an issue for
further research.

The pragmatic solution it is chosen for in this thesis, is to generate a Windows
executable on the server-side and send it to the client. The user can then download
and run it on a Windows machine. It is not a very elegant and user-friendly solution,
but it is functional enough to compile and run any application written in Clean.

Compiling a Clean program is not that trivial, because the compiler, the code
generator and the linker are separate executables. Also for being efficient one has to
check which parts of the program have to be recompiled. Fortunately this is already
solved by the old IDE and there is the possibility to give a project as argument and
let it batch-build by the IDE executable. In the configuration there is a path where
projects are stored and also a path to the old IDE executable:

:: IDEConfig= { oldIDEPath :: Path

, projectsPath :: Path

}

For generating a project some functionality has been taken out of the old IDE’s
code. A very simple project with one file in which the standard environment can be
used is written into the file system of the server. Then this project can be compiled
using this task:

1compileToExe :: (DBid AppState) → Task Document
2compileToExe sid
3] compileToExe‘ = try compileToExe‘ handleCallException
4] compileToExe‘ = try compileToExe‘ handleReadLogException
5] compileToExe‘ = try compileToExe‘ handleStringExceptions
6= compileToExe‘
7where
8compileToExe‘ =
9getConfig sid
10>>= λconfig. getAppPath
11>>= λappPath. pathToPDString config.projectsPath
12>>= λprjPath. callProcess
13"building project..."
14config.oldIDEPath

88 CHAPTER 5. CASE STUDIES

15["--batch-build \""+++ appPath+++ prjPath+++ "\\test\\test.prj\""]
16>>= λret. case ret of
170 = importDocument (prjPath+++ "\\test\\test.exe")
18>>= return
19_ = readTextFile (config.projectsPath
20+<
21[PathDown "test"
22, PathDown "test.log"
23]
24)
25>>= λlog. throw (CompilerErrors
26(filter ((6=) "") (split "\n" log))
27)
28

29handleCallException (CallFailed path) =
30throw (CannotRunCompiler ("Error creating process ’"+++ path+++ "’"))
31handleReadLogException (FileException path _) =
32throw (CannotRunCompiler ("Unable to retrieve compiler errors from ’"+++ path+++ "’"))
33handleStringExceptions str =
34throw (CannotRunCompiler str)

The task assumes that there is a test project at some hard coded path, compiles
it and returns the generated executable as iTask document. If one would not care
about possible errors only lines 9 – 18 would be needed. First the configuration
is retrieved from the application state using some auxiliary function (getConfig).
Additionally the application’s path is retrieved and the path for storing projects
is converted into a platform dependent string representation (lines 10, 11). Then
the old IDE is called to compile the project (lines 12 – 15). What the user gets
to see while the process is running is shown in Figure 5.10. If there are no errors
the process returns 0 after compilation. The generated executable is imported as
document using importDocument (Section A.1.4). The document is then returned as
result of the task (line 18). The resulting document can be downloaded by the user
as depicted in Figure 5.11.

Figure 5.10: GUI Shown while the User is Waiting for the Compilation to Finish

Figure 5.11: A Compiled Executable Provided as iTask Document

During compilation the compiler might find errors in the code. Actually this will
occur more often than that the code is correct. In this case errors can be read from
a log file generated by the compiler (lines 19 – 24). The content of the file consisting
of several lines is splitted into a list of strings and empty lines are filtered out. After
this those messages are thrown as exception (lines 25 – 27). This exception can be
caught by the caller of compileToExe and shown to the user (Figure 5.12).

The type of the exception thrown by compileToExe is:

:: CompilerException= CannotRunCompiler String | CompilerErrors [String]

The first kind of exception that can occur (CannotRunCompiler) means that the com-
piler could not even be run properly. There are several places were this can go
wrong. Trying to call a process can cause a CallFailed exception, trying to read in
the error log can cause a FileException and also the task for importing a document
can throw an exception which is just a string.

5.2. A CLEAN IDE 89

Figure 5.12: An Example of Compiler Error Messages

In lines 3 – 6 of compileToExe the actual task is surrounded by three try tasks,
each responsible for catching a different kind of exception. Those exceptions are
converted into proper CannotRunCompiler exceptions (lines 29 – 34) before they are
thrown out of the function.

5.2.4 GUI Patterns

While developing GUI applications there are several repeating patterns. Similar
to the idea of the MDI combinator (Section 4.4) higher-order tasks can be used to
implement a certain behaviour once in a general way. It would be possible to make
a collection of general GUI patterns. Here two GUI tasks used for the IDE are
presented, serving as example.

Editing Options

Editing options is similar to having a view on a shared state. From some state
including all options of the entire application a small portion is extracted, which is
then modified by the user. In contrast to a view the state is only changed after the
user confirms the change. If the user cancels the action the state is not changed at
all. A task for doing this is:

editOptions ::

description state (state → opts) (opts state → state)
→

Task state

| html description & iTask state & iTask opts

The second and third argument corresponds to the get and putback functions of
lenses (Section 4.2.9). The user can edit the value of type opts retrieved from the
state and has the choice to confirm or cancel the modification by pressing a button.
The possibly modified state is the result of the task.

For editing options inside a shared variable it would be more convenient to use
a task which immediately changes the value of that variable like:

editOptions ::

description (DBid state) (state → opts) (opts state → state)
→

Task Void

| html description & iTask state & SharedVariable state & iTask opts

The reason why the first version of the combinator is used is that also options stored
in the project file, influencing how the project is compiled, can be edited. The first
version provides a more general solution, which works no matter how the state is

90 CHAPTER 5. CASE STUDIES

stored. In the application two task are build upon this: one for editing options
stored in the application state and one for editing options stored in the project file.

Of course, this task is very simple and consists only of a few lines of code, but
still it is very convenient to have such a combinator if in the application options
have to be edited several times. Especially it would be nice to have such a task in
a library inside the iTask system.

Example An example of a dialog generated using this task can be seen in Fig-
ure 5.8.

Wizards

A wizard is a sequence of steps the user has to perform to achieve a certain goal.
They guide the user through a process step-by-step. This is especially user friendly
for processes which are complex and not performed regularly. For instance wizards
are often used for configuration purposes or to guide the user through the process
of generating special documents like letters.

At each step the user has buttons to proceed or to go back to the previous step
in order to change information previously entered. The last step shows a button to
finish the wizard. Also the user can cancel the wizard at each point. This common
behaviour is generalised using this higher-order combinator:

wizard :: description [WizardStep state] state → Task (Maybe state)
| html description & iTask state & SharedVariable state

The wizard uses one variable shared among all steps. Its initial value is given as
third parameter and its new values is given as result if the user does not cancel
the wizard. The wizard gets are list of steps which are carried out sequentially and
defined as:

:: WizardStep state = ViewOnState String [View state]
| CustomTask (state WizardAction → Task (state,WizardAction))

:: WizardAction= GotoNext | GotoPrevious

A step using the constructor ViewOnState provides an explanatory text, views on the
shared state and buttons for going to the next or previous step and to cancel the
wizard. Using views on a shared state has the advantage that no data is lost if the
user goes through the steps using the buttons.

In some situation such a standard step is not sufficient. For instance for the case
that one wants to verify a certain condition like checking if a path is valid or if one
wants to read some value from another database. In this case a custom task can
be provided which can arbitrarily interact which the user or do some other I/O. It
modifies the state and returns it together with an action telling whether to go back
to the previous or go on with the next step.

Also information about the last action is needed. One may only want to check
for conditions about information if they were entered by the previous step. If the
user goes back, the task may just want to skip itself by immediately returning a
GotoPrevious.

Example In the IDE a wizard is used for generating the initial configuration,
which includes the path where projects are stored and the path to the old IDE
executable. Here only the two steps for entering the path to the old IDE are
described.

The shared state of the wizard is of the already discussed type IDEConfig. First
a view to edit the path is used:

5.2. A CLEAN IDE 91

1ViewOnState "Give the path to an old IDE executable:"
2[editor { editorFrom = λconfig → config.oldIDEPath
3, editorTo = λpath config → {config & oldIDEPath = path}
4}
5]

This step does not require much explanation. It just gives a view on the corre-
sponding field of the state. As can be seen in Figure 5.13 buttons are automatically
added by the wizard combinator.

Figure 5.13: An Example of a Wizard Step

After this it is checked whether a file at this path is existing by this custom task:

1CustomTask (λconfig prevAction → case prevAction of
2GotoPrevious = return (config, GotoPrevious)
3GotoNext =
4fileExists config.oldIDEPath
5>>= λok. if ok
6(return (config, GotoNext))
7(showMessageAbout "Error" ("’"+++ config.oldIDEPath+++
8"’ does not exist!"
9)
10>>| return (config, GotoPrevious)
11)
12)

If the previous step was not the step for entering the path, the previous step was
the step after this check. Therefore the previous action was to go back. In this case
the path does not has to be checked again and the wizard should go to the previous
step which is the step for entering the path (line 2).

Otherwise it is checked whether the file given as IDE executable exists (line 4).
If this is the case it is continued with the next step immediately (line 6). In this
case the user does not even notice the existence of this task. If the file does not
exist an error message is shown to the user (lines 7 – 9) and the wizard goes back
to the previous step such that the user can correct the path (line 10).

Summary

In this section it is shown that essential parts of an IDE like compilation and syntax
highlighting can be realised. Doing compilation in a more platform independent and
user friendly way is still an open issue. Also GUI patterns like wizards and option
dialogs can be realised in a general way.

However to extend this to an entire Clean IDE comparable to the old one would
still require much more work. The reason is that there are difficult issues like deter-
mining which modules belong to the project, handling environments and searching
up definitions. This complex program logic is already implemented in the old IDE,
but nevertheless it would require much work to get it out of the old code. Those
issues have nothing to do with the GUI paradigm and are therefore left out.

92 CHAPTER 5. CASE STUDIES

Chapter 6

Evaluation

The extended iTask language has the intended capabilities discussed in Section 3.1.
It is possible to use menus to give commands in a structured way (Section 4.1) and
to let the user work on parallel tasks shown in windows (Section 4.3). Also there is
an elegant way to realise views using shared data (Section 4.2). This can be used as
basis for realising MDI applications (Section 4.4), which also shows that higher-order
combinators can help implementing common behaviour. Also more sophisticated
controls like formatted text (Section 4.5.1), source code (Section 4.5.2) and colours
(Section 4.5.3) can be integrated into the iTask system. Finally the case studies
(Chapter 5) show that it is possible to develop applications like a multi-document
text editor and suggest that it would be feasible to implement a more complex
application like an IDE. Here it is also shown that, like in modern commonly used
languages, exceptions can be used to handle errors in a way that is separated from
the actual program logic. Also repeatedly occurring GUI patterns can be generalised
using customary combinators (Section 5.2.4). This idea could be used to build a
collection of commonly used GUI patterns to provide programmers with powerful
existing functionality.

The constructions added to the language adhere to the general design principles
(Section 3.2). Nearly all new features are added as extensions to the language,
which can be used optionally but do not make the language more difficult to use
for more simple cases. For instance setting menus and creating shared views is
done by using new tasks, which can be ignored if this functionality is not needed.
There are only few changes which makes rewriting existing code necessary, but most
changes makes old functionality more convenient to use and the code more readable,
like an improved list of button actions which denotes the conditions for allowing
certain actions in a more readable way than using two lists. Other examples of
new tasks developed for this thesis which makes old functionally easier to use are
tasks dealing with stored values, like automatically creating a unique identifier and
setting an initial value with createDB.

The way how views on a shared state can be realised is declarative in the sense
that only process and data are specified. Instead of monitoring the shared state and
redrawing all views manually, the programmer just defines a relation between the
shared state and the view using two functions. So the programmer just specifies that
there are tasks updating shared data (process) and gives a functional relationship
between the shared state and the views edited by the user (data). Creating windows
is not declarative in the sense that annotations are used to define the behaviour of
tasks. However if those annotations are left out one gets a declarative workflow
description with the same functionality. The action list of tasks and groups is also
not declarative because there is a distinction between buttons and menu actions.
But also here if ignoring this information those action lists are declarative because

93

94 CHAPTER 6. EVALUATION

they define which actions are in principle possible in a certain context and can be
triggered in a certain situation (uniformly defines by the condition) which merely
describes the process. Only defining the structure of menus is clearly not declarative
since it has nothing to do with the process or the processed data. For this reason it
is clearly separated from the action lists. Also at least the static part of the menu
structure only has to be defined once at the beginning of an application. Therefore
the part of the workflow not dealing with process or data is kept minimal.

All new features do not destroy the characteristic of everything being a task.
Menus are just another way of generating actions and do not change the structure
of the language essentially. Windows are modelled as a group of tasks running in
parallel. Since the possibilities how tasks can influence each other are very limited,
this has the drawback that for instance it is not possible to easily set the stacking
order of windows or to close a certain one. It is only possible to dynamically add
new tasks and stop all tasks in a group. Nested groups can be a way to close only
a subset of the tasks running in parallel. Still no process running in a parent group
can close such a group, the tasks doing this has to run in the group which is about
to be closed. The possibility to focus a window was added because it is an essential
operation but actually it does not fit well into the structure of a group. Also group
actions are special in the sense that this is the only construction of the language
where tasks are not started because another tasks finishes. Group actions behave
similar as callback functions in the sense that they have an effect in the case some
menu event occurs. But still the effect of them is restricted to adding new tasks or
stopping the group they are attached to and cannot arbitrarily interact with other
tasks. Also shared data extends the way tasks running in parallel can interact and
makes it therefore more difficult to reason about workflows. Still the interaction
is restricted and well-defined. Tasks do not directly influence or are even aware of
other tasks using the same state, but only work on a data model.

Programmer are therefore forced to use views on a shared state to implement
applications with interaction between different windows. This avoids dependencies
between different tasks. For instance a dialog for replacing all occurrences of a string
inside a text, does not change the text area inside another window, but works on
the shared state including the text. So this task will work even if there is no editor
showing the text at the moment or the representation of the text is changed later.
This also has the advantage that the programmer does not have to deal with many
different references to other components of the user interface like in other libraries.
Most of the time one reference to a shared state or a part of it is sufficient.

Everything being a task also has other advantages. The entire state is stored on
and synchronised with the server. It is possible to pause the work at any moment
and continue working on another computer. Also the entire application or parts of it
can be assigned to other users and have a priority and a deadline. This means that
realising multi-user applications is essentially not more difficult than implementing
a single-user one. Assigning the tasks working on the same data-model to different
users tuns a single into a multi-user application. Of course, in practise additional
measures might have to be taken to prevent conflicts if the automatic merging
mechanism is not sufficient.

Additionally an abstract semantics can be given to workflows [16]. Having a
language with defined semantics has the advantage that this might help to reason
about the language in general and about programs written in this language in
particular. Still there are tasks having side-effects for which it would be difficult
to define a formal semantics, like reading and writing external files. But such side-
effects never change the task structure and have no influence on tasks not accessing
those files. Also shared variables behave like global variables which makes reasoning
about them difficult. But still for a restricted but functional set of the language
a semantics can be defined and help to reason about some properties of (parts of)

95

applications written in the iTask language.
Summarised implementing applications using iTask workflows gives the pro-

grammer a highly abstract and declarative way of working. Programmers do not
have to deal with time consuming issues like putting a complex user interface to-
gether but can concentrate on modelling the flow of data and relationships between
different views on this data. We expect a low learning curve for implementing
application in this way, because there are only few concepts which are powerful
enough to support building complex applications. Also this way of programming is
suited for rapid prototyping techniques. Changes can instantaneously be made and
shown to a customer. Another advantage of the high level of abstraction is that
also a high level of platform independency could be achieved because the system
has much freedom of how the interface will look like and can therefore adapt it to
the client currently used.

The high level of abstraction also has its drawbacks. The programmer has
less control over how the user interface will look like. Also the way tasks can
interact is restricted. It is impossible to freely arrange, move or modify parts of
the GUI. Additionally the programmer is forced to use certain methods in the
implementation, like the usage of shared data, and has therefore less freedom.

96 CHAPTER 6. EVALUATION

Chapter 7

Related Work

In contrast to existing functional libraries for generating user interfaces, which deal
with widgets which are composed in some way to build the user interface, the
iTask system works on a higher level of abstraction. It deals with data and the
process manipulating it. The resulting user interface is automatically generated
using generic programming techniques. Another unique feature of iTask is that
it is based on a workflow semantics, which is a very natural way of defining and
separating different portions of work a user has to do on a high level.

There are functional libraries which have a more imperative taste in the sense
that the user explicitly has to create user interface elements and update them if the
state of the application changes. Events generated by user actions are handled using
callback function like in most imperative libraries. Examples are Object I/O [1, 2]
and wxHaskell [18]. The former uses Clean’s uniqueness type system [27, 4] to do
I/O while the latter uses Haskell ’s monadic I/O approach [22, 30], which is sim-
ilar to the monadic iTask language. For storing the state of the application in
Object I/O each process has a program state which can be accessed by all call-
back functions. Additionally a polymorphic local state can be defined for a set of
components. Finally there are complex message passing mechanisms to realise com-
munication between multiple interactive processes. In iTask sharing data among a
subset of tasks inside a process, the entire process or between multiple processes
can be done using the same concept of shared data. In wxHaskell the concept of
mutable values is used which is similar to iTask ’s shared variables. However those
mutable variables cannot be used to communicate between processes and there is
no possibility to automatically generate views only by giving a functional relation
between the model and the view.

Haggis [12] also lets programmers create widgets explicitly but gives them a
more compositional view on the user interface. Each component is treated as virtual
I/O device. Components are repeatedly combined together to build up the entire
application. Also a separation between the user interface and the application, which
means between the representation and the actual value or interaction with the user,
is made. This ensures a higher level of abstraction for the implementation of the
program logic. No callback functions are used to handle events but one can wait
for a message to be generated by a component. For instance mutable variables are
treated that way. One can for example wait for a variable to change. Also buttons
generate a message if they are clicked. Concurrency is used to make it possible to
compose parts of the user interface waiting for messages at the same time.

A more functional approach of defining user interfaces is Fudgets [6, 7]. Here
fudgets, which are stream processors and pass messages, are hierarchically combined
to build up the application. There are no mutable variables. Sharing data has to
be realised by routing messages between components.

97

98 CHAPTER 7. RELATED WORK

Fruit [9, 10] emphasises being build on a formal model even more. The main
building blocks here are signals which are continuous time-varying values and signal
transformers using pure functions for mapping signals to other signals. A GUI
application is modelled as a signal transformer from a signal including all user
inputs to a signal representing a picture. This purely functional approach makes it
possible to define a complete semantics of the language, in contrast to iTask where
tasks can have arbitrary side-effects. However the cost of the formal model used
by Fruit is that it is very cumbersome to define I/O other than turning the user
input into a picture. All I/O operations explicitly have to be added to the input
and output signal.

An example where generic programming techniques are used for generating forms
is the iData toolkit [24]. It supports the creation of interactive web applications
consisting of interconnected forms. A mechanism for providing views similar to the
approach discussed in this thesis is used. It has been shown that a complex appli-
cation like a conference management system which also uses destructively updated
shared data can be realised using this approach [23]. However the iData toolkit is
not based on workflow semantics. In contrast to iTask where the system automati-
cally keeps track of the control flow, with iData the programmer has to keep track
of the application state manually.

Two more recent approaches for defining web applications that are also based
on functional languages are Links [8] and Hop [26]. As iData and the iTask system
their goal is to implement web applications using a single framework, instead of using
different languages for the client, the program logic on the server and accessing the
database. For iTask similar capabilities for client-side processing are available using
client-side interpreter technology [13]. Links and Hop both do not work on the same
level of abstraction as iTask but let the programmer deal with HTML code directly.

Chapter 8

Conclusions & Future Work

The iTask system has been extended to deal with essential features needed for
implementing modern user interfaces. It is possible to structure commands using
menus, to organise work in different windows and to modify a shared data model by
different parallel tasks. Also it is shown that specialised types can be added to allow
for abstract representations of more complex user interface components. Further
we showed that it is possible to build complex office-like applications using the
extended workflow language. The extended system is still based on the semantics
of workflows and stays abstract and declarative.

The proposed paradigm for implementing graphical user interfaces has a higher
level of abstraction than existing solutions with the price that it gives the program-
mer less control over how the user interface looks like. We think that the paradigm
is highly suited for using rapid prototyping techniques and has a low learning curve,
because it is based only on few core concepts. Still it is very powerful because all the
power of functional programming can be used. Being embedded in a workflow sys-
tem provides features like dealing with multiple users for free. Finally the program
logic is based on a language for which abstract formal semantics can be defined,
which might help reasoning about applications.

One direction for future work is to do more case studies. The work of this
project could be continued and an entire IDE could be implemented to show that
this complex kind of application can be realised. Also other kinds of application, for
instance programs allowing the user to edit large amounts of data like spreadsheet
applications, are interesting candidates to test and possibly improve the system. An
interesting question for multi-user applications is for which situations the merging
algorithm is good enough and when the programmer manually has to avoid conflicts.
Maybe also more sophisticated mechanism for dealing with conflicts automatically
might be needed. Adding a versioning system storing the entire history of the state
would also be interesting in this context.

It has been shown how higher-order tasks can be used to generalise common
behaviour. It would be very helpful if programmers were already equipped with a
collection of solutions for common problems. Research in this direction first would
have to identify common GUI patterns and then show how to realise them in a
generalised way.

At the moment there is only one client designed for running in a web browser, but
in principle the design of the system is suited for supporting several very different
clients. A question related to applications is if it is possible to write a complex
application, which itself is not aware on which client it is running at the moment,
but can be used for instance in a web browser, on a smart-phone and on a client
usable for blind persons. An important point here is to evaluate the usability
compared to applications designed especially for those clients.

99

100 CHAPTER 8. CONCLUSIONS & FUTURE WORK

Although this project does not deal with layouts for good reasons in some situa-
tions it is desirable to influence it in some way. The question here is to what extent
this is possible without destroying the advantages of generically generated forms.

A last area of research would be to define a formal semantics for the extended
language. This could possibly lead to the insight that some features should be
realised in an even more declarative way. The hope is that this can help reasoning
about and testing an application implemented using the iTask WDL.

Bibliography

[1] Peter Achten and Marinus J. Plasmeijer. Interactive functional objects in
Clean. In Implementation of Functional Languages, pages 304–321, 1997.

[2] Peter Achten and Martin Wierich. A tutorial to the Clean Object I/O library
- version 1.2. ftp://ftp.cs.ru.nl/pub/Clean/supported/ObjectIO.1.2/

doc/tutorial.pdf, February 2000.

[3] Artem Alimarine. Generic Functional Programming - Conceptual Design, Im-
plementation and Applications. PhD thesis, Radboud University Nijmegen,
2005.

[4] Erik Barendsen and Sjaak Smetsers. Uniqueness type inference. In PLILPS ’95:
Proceedings of the 7th International Symposium on Programming Languages:
Implementations, Logics and Programs, pages 189–206, London, UK, 1995.
Springer-Verlag.

[5] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational
lenses: a language for updatable views. In PODS ’06: Proceedings of the
twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 338–347, New York, NY, USA, 2006. ACM.

[6] M. Carlsson and T. Hallgren. Fudgets - a graphical user interface in a lazy
functional language. In FPCA ’93 - Conference on Functional Programming
Languages and Computer Architecture, pages 321–330. ACM Press, June 1993.

[7] Magnus Carlsson and Thomas Hallgren. Fudgets — Purely Functional Pro-
cesses with applications to Graphical User Interfaces. PhD thesis, Department
of Computing Science, Chalmers University of Technology, S-412 96 Göteborg,
Sweden, March 1998.

[8] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: web
programming without tiers. In Proceedings of the 5th International Sympo-
sium on Formal Methods for Components and Objects ’06, volume 4709, CWI,
Amsterdam, The Netherlands, November 2006. Springer-Verlag.

[9] Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In
Haskell Workshop, pages 41–69, September 2001.

[10] Antony Alexander Courtney. Modeling user interfaces in a functional language.
PhD thesis, Yale University, New Haven, CT, USA, 2004. Director-Hudak,
Paul.

[11] D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Informational), July 2006.

101

ftp://ftp.cs.ru.nl/pub/Clean/supported/ObjectIO.1.2/doc/tutorial.pdf
ftp://ftp.cs.ru.nl/pub/Clean/supported/ObjectIO.1.2/doc/tutorial.pdf

102 BIBLIOGRAPHY

[12] Sigbjørn Finne and Simon Peyton Jones. Composing the user interface with
Haggis. In Advanced Functional Programming: Second Interational School,
LNCS #1129, pages 26–30. Springer-Verlag, 1996.

[13] Jan Martin Jansen. Functional Web Applications – Implementation and Use of
Client Side Interpreters. PhD thesis, Institute for Computing and Information
Sciences, Radboud University Nijmegen, The Netherlands, July 2010. ISBN
978-90-9025436-4.

[14] Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. iEditors: Extend-
ing iTask with interactive plug-ins. In S-B Scholz, editor, Proceedings Imple-
mentation and Application of Functional Languages, 20th International Sympo-
sium, IFL 2008, pages 170–186, Hatfield, Hertfordshire, UK, 10-12 September
2008. University of Hertfordshire, Technical Report No. 474.

[15] Pieter Koopman, Peter Achten, and Rinus Plasmeijer. Validating specifications
for model-based testing. In Hamid Arabnia and Hassan Reza, editors, Proceed-
ings of the International Conference on Software Engineering Research and
Practice ’08, pages 231–237, Las Vegas, NV, USA, 14-17, July 2008. CSREA
Press.

[16] Pieter Koopman, Rinus Plasmeijer, and Peter Achten. An executable and
testable semantics for iTasks. In Scholz, S.-B. (ed.), IFL’08 : Proceedings of
the 20th International Symposium on the Implementation and Application of
Functional Languages, pages 53–64. Hertfordshire, UK : University of Hert-
fordshire, September 2008.

[17] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model view
controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August-September 1988.

[18] Daan Leijen. wxHaskell: a portable and concise gui library for Haskell. In
Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
pages 57–68, New York, NY, USA, 2004. ACM.

[19] Bas Lijnse and Rinus Plasmeijer. iTasks 2: iTasks for end-users. In Proceedings
21st Symposium on Implementation and Application of Functional Languages,
September 2009.

[20] Steffen Michels. Asynchronous update of webforms using generic programming
techniques. http://www.steffen-michels.de/articles/rdr2.pdf, 2009.
Written for the course “R&D: Research 2”.

[21] Steffen Michels. Modeling a software development process using iTasks.
http://www.steffen-michels.de/articles/rdr3.pdf, 2010. Written for
the course “R&D: Research 3”.

[22] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 71–84, New York, NY, USA,
1993. ACM.

[23] Rinus Plasmeijer and Peter Achten. A conference management system based on
the iData toolkit. In Implementation and application of functional languages :
18th international symposium, IFL 2006, Budapest, Hungary, September 4-6,
2006 ; revised selected papers, pages 108–125. Springer Verlag, 2006.

http://www.steffen-michels.de/articles/rdr2.pdf
http://www.steffen-michels.de/articles/rdr3.pdf

BIBLIOGRAPHY 103

[24] Rinus Plasmeijer and Peter Achten. iData for the world wide web - program-
ming interconnected web forms. In In Proceedings Eighth International Sym-
posium on Functional and Logic Programming (FLOPS 2006), volume 3945 of
LNCS, pages 24–26. Springer Verlag, 2006.

[25] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. An introduction to
iTasks: Defining interactive work flows for the web. In Central European Func-
tional Programming School, Revised Selected Lectures, CEFP 2007, volume
5161 of LNCS, pages 1–40, Cluj-Napoca, Romania, June 23-30 2007. Springer.

[26] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a language for
programming the web 2.0. In Proceedings of the 11th symposium on Object-
oriented programming systems, languages, and applications ’06, pages 975–985,
Portland, Oregon, USA, October 2006.

[27] Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and Marinus J.
Plasmeijer. Guaranteeing safe destructive updates through a type system with
uniqueness information for graphs. In Proceedings of the International Work-
shop on Graph Transformations in Computer Science, pages 358–379, London,
UK, 1994. Springer-Verlag.

[28] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[29] Martijn Vervoort and Rinus Plasmeijer. Lazy dynamic input/output in the lazy
functional language Clean. In The 14th International Workshop on the Imple-
mentation of Functional Languages, IFL’02, Selected Papers, volume 2670 of
LNCS, pages 101–117. Springer, 2002.

[30] Philip Wadler. Monads for functional programming. In Advanced Functional
Programming, First International Spring School on Advanced Functional Pro-
gramming Techniques-Tutorial Text, pages 24–52, London, UK, 1995. Springer-
Verlag.

104 BIBLIOGRAPHY

Appendix A

iTask Language Overview

In this appendix an overview of the iTask WDL, without the extensions added
in this thesis, is given. This includes basic tasks (Section A.1), task combinators
(Section A.2) and the common domain of specialised types (Section A.3). This
overview is not complete, but gives an impression of the most commonly used
language constructions which might be relevant for implementing GUI applications.

To increase readability context restriction are left out in this chapter. If not
defined otherwise, types represented by single-letter lower-case variables (a, b, . . .)
have the restriction iTask. The variables question, message and instruction have re-
striction html.

A.1 Basic Tasks

Basic tasks are the smallest amount of work that can be done. There are tasks for
interacting with the user, for storing data or performing other kinds of I/O.

A.1.1 Interaction Tasks

Interaction tasks are tasks requiring user interaction. First there are tasks to simply
show information to the user:

Shows a message to the user. The user can end the task after reading the message.
showMessage :: message → Task Void

Shows a message to the user. The user cannot end the task after reading the message.
showStickyMessage :: message → Task Void

Shows an instruction to the user. The user can dismiss the instruction.
showInstruction :: String instruction → Task Void

The task showStickyMessage never finishes. Therefore is should only be used in parallel
with other tasks, such that the task finishes because of the parallel construction it
is part of does so.

Then there are tasks letting the user giving information to the system, like
entering data or making choices:

Asks the user to enter information.
enterInformation :: question → Task a

Asks the user to update predefined information.
updateInformation :: question a → Task a

Asks the user to confirm or decline a question.
requestConfirmation :: question → Task Bool

105

106 APPENDIX A. ITASK LANGUAGE OVERVIEW

Asks the user to select one item from a list of options.
enterChoice :: question [a] → Task a

Asks the user to select one item from a list of options with one option already pre-selected.
updateChoice :: question [a] Int → Task a

Asks the user to select one or more items from a list of options.
enterMultipleChoice :: question [a] → Task [a]

Asks the user to select one or more items from a list of options with some options already
pre-selected.
updateMultipleChoice :: question [a] [Int] → Task [a]

For all interaction tasks there is also a version giving additional context information
to the user. The context is of arbitrary type. A HTML representation of it is
generically generated, as explained in Section 2.3.3.

enterInformationAbout :: question b → Task a

updateInformationAbout :: question b a → Task a

requestConfirmationAbout :: question a → Task Bool

enterChoiceAbout :: question b [a] → Task a

updateChoiceAbout :: question b [a] Int → Task a

enterMultipleChoiceAbout :: question b [a] → Task [a]
updateMultipleChoiceAbout :: question b [a] [Int] → Task [a]
showMessageAbout :: message a → Task Void

showStickyMessageAbout :: message a → Task Void

showInstructionAbout :: String instruction b → Task Void

A.1.2 Store Tasks

There are tasks to store a single value and also tasks for storing a collection of
multiple values in a type-safe way.

Storing a Single Value

The following tasks are used to handle a database of one value of arbitrary type:

Creates a database reference from a string uniquely identifying the database.
mkDBid :: String → (DBid a)

Reads from the database. Returns a default value if no value is stored.
readDB :: (DBid a) → Task a

Writes to the database.
writeDB :: (DBid a) a → Task a

A reference to such a database is a string with added type information:

::DBid a :== String

Storing a Collection of Values

To store a collection of multiple values of a type an instance of DB has to be provided
for this type:

class DB a where
databaseId :: DBid [a]
getItemId :: a → DBRef a

setItemId :: (DBRef a) a → a

:: DBRef a = DBRef Int

A.1. BASIC TASKS 107

First the database has a unique identifier (databaseId). Then in each item an iden-
tifier, which is an integer with type information (DBRef), has to be stored. The
programmer has to provide a function for retrieving this identifier from a given
value (getItemId). Finally a function for setting the identifier (setItemId) has to be
provided.

Once this is defined for a type the following tasks can be used to access the
database of multiple values of this type:

Determines if two values have the same identifier.
eqItemId :: a a → Bool

Reads the entire collection of stored values.
dbReadAll :: Task [a]

Writes the entire collection of stored values.
dbWriteAll :: [a] → Task Void

Creates a new entry in the database.
dbCreateItem :: a → Task a

Reads the entry with given identifier.
dbReadItem :: (DBRef a) → Task (Maybe a)

Updates an entry.
dbUpdateItem :: a → Task a

Deletes an entry from the collection.
dbDeleteItem :: (DBRef a) → Task Void

A.1.3 Date & Time Tasks

Tasks for retrieving the current date and time are simple examples of tasks retrieving
information from outside of the iTask system and therefore performing I/O with
the operating system:

Returns the current time.
getCurrentTime :: Task Time

Returns the current date.
getCurrentDate :: Task Date

Returns the current date and time.
getCurrentDateTime :: Task DateTime

The types Time, Date and DateTime are included in the common domain which is
discussed in Section A.3.

A workflow can also be paused for a given amount of time:

The task completes at the specified time.
waitForTime :: Time → Task Void

The task completes at the specified date.
waitForDate :: Date → Task Void

The task completes after the specified amount of time has passed since the creation of the
task.
waitForTimer :: Time → Task Void

A.1.4 Import Tasks

Import tasks can be used to import text files, comma-separated values (CSV) files
and arbitrary files as documents. For paths platform dependent strings are used
here:

108 APPENDIX A. ITASK LANGUAGE OVERVIEW

Imports a text file.
importTextFile :: String → Task String

Imports a CSV file. A comma (’,’) is used as field separator, double quotes (’”’) may be
used to enclose fields and the escape character is backslash (’\’).
importCSVFile :: String → Task [[String]]

Imports a CSV file with custom field separator, quote and escape character.
importCSVFileWith :: Char Char Char String → Task [[String]]

Imports an arbitrary file as document.
importDocument :: String → Task Document

A.1.5 System Tasks

This is a small collection of tasks which can be used for interacting with the iTask
engine directly:

Returns the user currently logged in the iTask system.
getCurrentUser :: Task User

Retrieves the process id of the current process.
getCurrentProcessId :: Task ProcessId

Gets the user the current task is assigned to.
getContextWorker :: Task User

Gets the user the current task is managed by.
getContextManager :: Task User

Compute a default value.
getDefaultValue :: Task a

Gets a random integer.
getRandomInt :: Task Int

There are also many more tasks for interacting with the iTask engine directly.
For instance the process, data and user databases can be accessed. This makes it
possible to implement tasks for managing the iTask system using the iTask WDL.
For instance the root user gets to see workflows for adding or removing users.
However this is not relevant for the topic of this thesis and is therefore not discussed
in detail.

Another interesting task is about changing running workflows which is also out-
side of the scope of this thesis.

A.2 Combinators

Combinators are used to build complex tasks by combining more simple ones. The
result of a combinator is a task again. In this way arbitrary complex workflows can
be built.

A.2.1 Sequence Combinators

There are a some combinators for defining a sequence of tasks.

Combines two tasks sequentially. The first task is executed first. When it is finished the
second task is executed with the result of the first task as parameter.
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b

Combines two tasks sequentially like >>=, but the result of the first task is ignored.
(>>|) infixl 1 :: (Task a) (Task b) → Task b

Executes the list of tasks one after another. The result is a list of all single tasks’ results.

A.2. COMBINATORS 109

sequence :: String [Task a] → Task [a]

Combines two tasks sequentially like >>=, but both have to return an optional values. The
second task is only executed if the first one returns a value.
(>>?) infixl 1 :: (Task (Maybe a)) (a → Task (Maybe b)) → Task (Maybe b)

A.2.2 Repetition Combinators

Those combinators repeat a task until some condition holds.

Repeats a task infinitely. The combined task never finishes.
forever :: (Task a) → Task a

Repeats a task until a given predicate on its result holds.
(<!) infixl 6 :: (Task a) (a → .Bool) → Task a

Repeats a task until a given predicate on its result holds. If the predicate does not hold
additionally an errors message is shown.
(<|) infixl 6 :: (Task a) (a → (Bool, [HtmlTag])) → Task a

Iterates a task until a given predicate holds. The repetition is initialized using the third
parameter as initial value and continued using the first. The output of each cycle serves as
input for the next one. As soon as the predicate holds for a produced value it is returned
as result.
repeatTask :: (a → Task a) (a → Bool) a → Task a

Iterates a task until a given predicate holds. The repetition is initialized using the first
parameter and continued using the second. The output of each cycle serves as input for
the next one. As soon as the predicate holds for a produced value it is returned as result.
iterateUntil :: (Task a) (a → Task a) (a → .Bool) → Task a

A.2.3 Static Group Combinators

The core group combinator making it possible to dynamically add tasks is dis-
cussed in Section 4.3.5. There is also a collection of static combinators without the
possibility to add tasks dynamically. They are derived from the core combinator.

Groups two tasks of the same type. The result of the task finishing first is taken as result.
(-||-) infixr 3 :: (Task a) (Task a) → Task a

Groups two tasks of different type. The result of the task finishing first is taken as result.
eitherTask :: (Task a) (Task b) → Task (Either a b)

Groups two tasks of different type. The group finishes if both tasks are finished. The
group’s result is the result of the right task.
(||-) infixr 3 :: (Task a) (Task b) → Task b

Groups two tasks of different type. The group finishes if both tasks are finished. The
group’s result is the result of the left task.
(-||) infixl 3 :: (Task a) (Task b) → Task a

Groups two tasks of different type. The group finishes if both tasks are finished. The
group’s result is a tuple including the results of both tasks.
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a,b)

Groups an arbitrary number of tasks of the same type. The result of the task finishing first
is taken as result.
anyTask :: [Task a] → Task a

Groups an arbitrary number of tasks of the same type. The group finishes if all tasks are
finished. The group’s result is a list including the results of all tasks.
allTasks :: [Task a] → Task [a]

110 APPENDIX A. ITASK LANGUAGE OVERVIEW

A.2.4 Tuning Combinators

Tuning combinators are used to fine tune tasks or workflows. For this the following
combinators are used to apply values of class tune to an arbitrary task:

(<<@) infixl 2 :: (Task a) b → Task a | tune b

(@>>) infixr 2 :: b (Task a) → Task a | tune b

class tune b :: b (Task a) → Task a

To give an impression a list of types for which an instance of tune is defined is given:

instance tune ManagerProperties // Set initial properties
instance tune User // Set initial worker
instance tune (Subject s) // Set initial subject
instance tune TaskPriority // Set initial priority
instance tune Timestamp // Set initial deadline

The types are not discussed in details here. They are used to tune workflows. They
only have an effect if applied to the workflow’s top-level task.

A.2.5 Lifting Combinators

To do I/O in Clean the uniqueness type system [27, 4] is used to manipulate a
unique value of type World. This makes it possible to do arbitrary I/O in a pure
functional setting. The iTask WDL is based on a monadic combinator language
which hides this unique state.

It is possible to use an arbitrary I/O function working on the unique world by
lifting it to the task domain:

appWorld :: (*World → *World) → Task Void

accWorld :: (*World → *(a,*World)) → Task a | iTask a

There are two variants. The first one only changes the value of the world. The
second one additionally returns a value.

A.3 Common Domain

The common domain is a collection of specialised types. Actually it extends the set
of basic types with commonly used, more sophisticated ones. For most of them a
special widget is used to edit them.

First there are string with a special meaning:

:: EmailAddress= EmailAddress String

:: URL = URL String

:: PhoneNr = PhoneNr String

:: Note = Note String

:: Password = Password String

This adds information about the intended use of those strings in the workflow
description. Also the system can visualise and validate this data in a different way.
For instance a Note is represented by a multi-line textarea instead of a single-line
textfield. For a Password the GUI does not print the characters in plain text.

The following types are used to represent dates, times and a combination of
both:

:: Date = { day :: Int

, mon :: Int

, year :: Int

}

A.3. COMMON DOMAIN 111

:: Time = { hour :: Int

, min :: Int

, sec :: Int

}

:: DateTime= DateTime Date Time

How a Date is represented in the GUI is depicted in Figure 2.1.
An amount of money can be represented by this type which stores the currency

together with the amount in cents:

:: Currency= EUR Int

| GBP Int

| USD Int

| JPY Int

Finally buttons can be added to the GUI. It is not possible to trigger actions
using such buttons. The user can only press and unpress them. The value of type
ButtonState indicates the current state:

:: FormButton= { label :: String

, icon :: String

, state :: ButtonState

}

:: ButtonState= NotPressed | Pressed

Actually this type does not fit neatly into the concept since it changes the repre-
sentation of what is actually a boolean value. So it does not really deal with the
data processed by the workflow.

	Introduction
	iTask Architecture
	The iTask WDL
	Basic Tasks
	Combinators
	Adding Computations
	Specialised Types
	Exceptions

	Architecture Overview
	Processes
	Server Services
	Task Tree Computation

	User Interface Handling
	Data Paths
	Data Masks
	Generating User Interface Definitions
	Updating a Value
	Adapting the GUI
	Example

	Design Goals
	Scope
	General Design Principles

	iTask Extensions
	Menus
	Actions
	Structure of Menus
	Setting & Dynamically Changing Menus
	Actions & Interaction Tasks
	Parameter Passing with Actions

	Shared Data
	Reference Types
	Deleting Data
	Views
	Shared Editors
	Views & Data Masks
	Updating Shared Editors
	Merging Values
	Shared Documents
	Lenses

	Grouped Tasks
	Dynamically Adding Tasks
	Grouped Behaviour
	Focussing Tasks
	Group Actions
	Core Group Combinator
	Derived Dynamic Group Combinators
	Nested Groups

	MDI Applications
	Global and Editor Tasks
	Global and Editor Actions
	Application State
	Handling Editors
	The MDI Combinator
	Example

	Specialised Types
	Formatted Text
	Source Code
	Colour

	OS Tasks
	Platform Independent Paths
	File System Tasks
	Calling Processes

	Case Studies
	Text Editor
	Requirements
	Text Files
	Global State & Editor States
	Global Actions
	Editor Actions
	Menus
	Global Tasks
	Editor Tasks

	A Clean IDE
	Application State
	Syntax Highlighting
	Storing & Compiling Projects
	GUI Patterns

	Evaluation
	Related Work
	Conclusions & Future Work
	iTask Language Overview
	Basic Tasks
	Interaction Tasks
	Store Tasks
	Date & Time Tasks
	Import Tasks
	System Tasks

	Combinators
	Sequence Combinators
	Repetition Combinators
	Static Group Combinators
	Tuning Combinators
	Lifting Combinators

	Common Domain

