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Summary

This thesis continues the research on abstract interpretation and information flow analysis from
Bubel et al. (2009). The logical framework used for the formal verification of program source
code is extended to allow for programs containing objects. The main challenge addressed with
this extension is the automatic derivation of loop invariants. The resulting method based on
abstraction is sound but also in most applications outperformed by the for objects more common
shape analysis techniques. Shape analysis on the other hand is not easily adapted to fit into
the existing approach. The possibility of combining shape analysis with the abstraction-based
approach used in this thesis requires further investigation.

In the second part of this thesis we improve the secure information flow analysis that is based
on the same logical framework. We obtain a higher level of value and control-flow sensitivity by
various adaptations to the framework’s signature, syntax and semantics. The combination of
this extended information flow analysis with the object-extended dynamic logic is a topic that
we want to investigate further in future research.
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1. Introduction

1.1. Theorem Proving

The development of computer software is a process consisting of several stages that can be
grouped into design, implementation, testing, documenting, deployment and maintenance.
These stages are often not executed entirely sequential but may be run in parallel. Partial
implementations may for example be tested before finishing the entire product, and documen-
tation can be added to the source code before the product is tested. The step of interest in
this thesis is the testing phase, where it is verified that the implemented program does indeed
match the specifications and requirements resulted from the design phase. There are several
approaches to test implementations, such as manual code reviews, test case generation and
running benchmark tools. In this thesis we focus on the method of formal verification of the
implementation.

In formal verification it is attempted to give a formal (or, if one prefers that term: mathe-
matical) proof that the provided program satisfies the requirements specified by the designers.
This verification is performed on the source code of the program, which is therefore referred to
as being a static analysis of the program. Would a different method of testing be adopted that
verifies by running instances of the program, such as in the case of benchmarking or running
test cases, this is referred to as a dynamic way of program analysis.

There are different approaches to formally verify a program, but they all share the property
that a formal language needs to be selected in which the formal requirements need to be defined,
that is, the specific requirements on which you want to verify the program. The usage of the
formal language requires the use of solely well-defined expressions, implying that every part of
the expression is formally defined in that language as well. For example, the property “This
method always returns the sum of the integers in the array provided” requires you to also specify
“method”, “return”, “sum”, “integers” and “array” in the formal language, which in addition
require other elements to be specified. This goes on recursively until the whole (programming)
language used for the program has been formally defined. Fortunately most of this formalization
can be reused if you have a second program to be proven in the same language, so we have to
go to the process of defining integers, objects and other elements only once. Except of course if
you want to use a different formal language to prove the requirements of the other program.

Several attempts have been made on describing specific domains in specific formal languages.
Some of these formalizations are provided in the form of theorem provers that are intended to
give the software tester the benefit of proving the correctness of the program in an environment
in which the lion’s share has already been formalized. In most cases it is even possible to
load the source code of the program to be verified into the theorem prover such that a formal
notation of the program is automatically created.

Two stages of the verification process remain. The first one is the formalization of the
statement to be proved (to which we refer as the proof obligation) which might not have to
be performed in the formal language but an intermediate language more convenient to the
programmer or verifier (e.g. JML for Java programs). This statement in the intermediate
language is then translated by the theorem prover to a formal notation. The last stage is
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generating the actual proof that this formalized property does (not) hold.
In this last stage we make a last distinction between theorem provers: those that try to

deduce the validity of the proof obligation automatically, called automatic theorem provers,
and those that require the human user to guide or entirely perform the proof deduction, hence
called interactive theorem provers. In general it may be said that interactive theorem proving
is more labor-intensive for the user, however enables the user to prove or disprove properties on
which an automatic theorem prover would fail.

It could be concluded that the formal verification of a program is in general a labor-intensive
process. Even given the presence of a theorem prover, the user still needs to (formally) define a
correct proof obligation and possibly interact with the theorem prover, implying that the user
has to understand the proof deduction and underlying mechanisms used by the theorem prover.
One might ask when this method could be preferred over other methods of software testing.

The main difference between formal verification and other testing methods, such as running
test cases, is that at the end of the process you have obtained a formal proof that the formalized
requirement indeed holds for the program. Most verification systems are designed with this
goal in mind, which means that a proof for a requirement gives you absolute certainty that the
requirement is fulfilled. This opposed to running arbitrary test cases, where the fulfillment of
the requirement is unknown for untested cases.

The usage of the terms source code, program and markup languages may give the impression
that theorem provers operate directly on the actual source code of the program. This holds for
the setting in which we are interested in this thesis, however the process of formalizing a domain
and properties to be proved also applies on other settings. Several theorem provers exist that
only consist of assuring the correct usage of the formal language and have some built-in libraries
for e.g. integer and boolean support, but leave it to the user to specify their own programming
language or calculus such as Coq (Castéran and Bertot, 2004), Isabelle/HOL (Nipkow et al.,
2002) and PVS (Owre et al., 1992). Other provers are aimed at their own formal language
for proving domain-specific properties, such as ProVerif (Blanchet, 2001), a tool for protocol
analysis which is in fact testing on the design instead of on the implementation.

In this chapter we introduce the dynamic logic that is used as the formal language in this
thesis. The same language is used by the verification tool KeY (Beckert et al., 2007), which
is further described in Section 1.2.4. We also introduce the concepts of abstract interpretation
and fixed points in Section 1.3, as well as information flow analysis in Section 1.4, which are
the two main themes discussed in this thesis. An outline of the whole thesis is presented in
Section 1.5.

1.2. The Logical System

In this section a dynamic logic is introduced that the remainder of this thesis extends to incor-
porate objects and value-sensitive information flow analysis (Sections 1.3 and 1.4). Notation
and definitions are adopted from the original work by Bubel et al. (2009).

1.2.1. First-order Logic

The dynamic logic used in this thesis can be seen as an extension to first-order logic. We give
a short description here to introduce notation and such. A detailed introduction to first-order
logic can be found in (Fitting, 1990). We start by defining a signature that lists all the symbols
used in the logic.
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Definition 1 (First-order signature). A first-order signature is a tuple Σ = (F ,P,V) where F
is a set of function symbols, P a set of predicate symbols and V a set of logic variables.

In the rest of this section we assume a fixed signature, so we omit it as a parameter to all
subsequent definitions. We use this assumption through-out this thesis, that is, we have the
similar assumption on signatures defined in later sections. Note that we do not define constants
as such, but rather consider them to be 0-ary function symbols.

The following syntax is the basic one used in our first-order logic and forms the base of the
syntax for the dynamic logic defined in Section 1.2.2 and the extensions contributed by this
thesis in Chapters 2 and 3. The syntax provides us with constructors to create terms (t) and
formulas (ϕ).

Definition 2 (First-order syntax). The way in which the elements from the signature can be
combined, is defined with the following syntax, in which f ∈ F , p ∈ P and y ∈ V.

t ::= f(t, . . . , t) | y | if (ϕ)then(t)else(t)

ϕ ::= true | false | p(t, . . . t) | ϕ & ϕ | (ϕ | ϕ) | ϕ −> ϕ | !ϕ | ∀y.ϕ | ∃y.ϕ | t .= t

The terms of the form f(t1, . . . , tn) and the formulas of the form p(t1, . . . , tn) must respect the
arities of the respective symbols f and p.

To provide the semantics of terms and formulas we require an interpretation I of function
and predicate symbols and a logic variable assignment β mapping logic variables to concrete
values.

Definition 3 (Interpretation and Logic Variable Assignment). Let D be the universe of concrete
values. The interpretation I is a function mapping a function symbol f ∈ F with arity n to a
function: I(f) : Dn → D and every predicate symbol p ∈ P with arity n to a relation I(p) ⊆ Dn.
The pair (D, I) is called a first-order structure.

A logic variable assignment β is a function mapping logic variables to concrete values: β :
V → D.

We can now assign a meaning to these terms and propositions by means of the evaluation
function val.

Definition 4 (First-order semantics). Given a universe D, an interpretation I and a logic
variable assignment β, the function valM,β evaluates a term t to a concrete value valM,β(t) ∈ D
and a formula ϕ to a truth value valM,β(ϕ) ∈ {tt ,ff }. A formula ϕ is called valid if and only
if valM,β(ϕ) = tt for all first-order structures M = (D, I) and logic variable assignments β. We
define this evaluation function as follows.

valM,β(f(t1, . . . , tn)) = I(f)(valM,β(t1), . . . , valM,β(tn))

valM,β(y) = β(y)

valM,β(if (ϕ)then(t1)else(t2)) =

{
valM,β(t1) if valM,β(ϕ) = tt
valM,β(t2) otherwise

valM,β(true) = tt

valM,β(false) = ff

valM,β(p(t1, . . . , tn)) = tt iff (valM,β(t1), . . . , valM,β(tn)) ∈ I(p)
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valM,β(ϕ1 & ϕ2) = tt iff ff 6∈ {valM,β(ϕ1), valM,β(ϕ2)}
valM,β(ϕ1 | ϕ2) = tt iff tt ∈ {valM,β(ϕ1), valM,β(ϕ2)}

valM,β(ϕ1 −> ϕ2) = valM,β(!ϕ1 | ϕ2)

valM,β(!ϕ) = tt iff valM,β(ϕ) = ff

valM,β(∀y.ϕ) = tt iff ff 6∈ {valM,βvy (ϕ) | v ∈ D}
valM,β(∃y.ϕ) = tt iff tt ∈ {valM,βvy (ϕ) | v ∈ D}

valM,β(t1
.
= t2) = tt iff valM,β(t1) = valM,β(t2)

When there exists a first-order structure M = (D, I) and a logic variable assignment β such
that valM,β(ϕ) = tt , we say that ϕ is satisfiable.

The notation βvy in the evaluation of formulas with a ∀ or ∃ quantifier means that we evaluate
the formula ϕ with the same logic variable assignment function β as the original formula, except
that the logic variable y is mapped to the value v.

a

Example 1:

As an example, consider the evaluation of the formula (true −> c − c .
= 0) - where c,−, 0 ∈ F

(c is a constant). We use the standard integer domain for D and the standard interpretation I
for − (minus):

valM,β(true −> c− c .= 0) = valM,β((! true) | (c− c .= 0))

= tt iff tt ∈ {valM,β(! true), valM,β(c− c .= 0))

= tt iff tt ∈ {tt iff valM,β(true) = ff , valM,β(c− c .= 0)}
= tt iff tt ∈ {ff , valM,β(c− c .= 0)}
= tt iff tt ∈ {ff , tt iff valM,β(c− c) = valM,β(0)}
= tt iff tt ∈ {ff , tt iff I(−)(valM,β(c), valM,β(c)) = I(0)}
= tt iff tt ∈ {ff , tt iff 0 = 0}
= tt iff tt ∈ {ff , tt}
= tt

a

In the particular case of Example 1 no matter what logic variable assignment β we use the
formula is always valid. In this case we call the first-order structure M = (D, I) a model for
that formula.

1.2.2. Dynamic Logic

Dynamic logic extends first-order logic by adding the possibility to reason about programs.
Again this introduction is relatively short and for more information we refer to Harel et al.
(2000). In this thesis we follow the approach by Saul Kripke (1963). He introduced Kripke
structures that consist of the (reachable) states a program can be in and transitions on how to
go from one state to another. The interpretation over the symbols on which the structure is
defined, in our case: program variables, may vary between states. In our use of Kripke structures
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s1

x 7→ 1
s2

x 7→ 2

s3

x 7→ 3

x = 3;

x = 1;

x = 1;

x = 2;

x = 2;

x = 3;

Figure 1.1.: A graph representing a Kripke structure on the program variable x.

we leave the concrete domain the same in all states. To make a distinction between symbols
whose interpretation is allowed to vary between states (again, here: program variables) and
those that are not (such as the interpretation of mathematical operators or other functions), we
divide the set F (see Definition 2) into Fr and Fn. The symbols in Fr are rigid symbols whose
interpretation cannot be changed, while the symbols in Fn are called non-rigid symbols and
their interpretation may differ between states. This means that we consider program variables
to be 0-ary elements of the set Fn.

One could represent such a Kripke structure in a graph, for example the one shown in Fig-
ure 1.1, where a simple structure is given for a single program variable x with a concrete domain
of the integers {1, 2, 3}.

The graph is shown as a way to represent Kripke structures however in the rest of this thesis
we represent a state solely by its interpretation of program variables. Transitions from one
state to another are the result of executing a program. To simplify the reasoning we transform
these programs into updates that directly describe the differences between the target state and
the starting state. These updates are thus an additional modality next to programs to model
transitions between states. We formally introduce these updates in the coming definitions.

To include these states, updates and program variables into our logic, we extend it as follows.

Definition 5 (Dynamic Logic Signature). A dynamic logic signature is a tuple Σ = (F ,P,V)
where P and V are as in Definition 1 and F = Fn∪Fr is the join of a set of non-rigid function
symbols and a set of rigid function symbols.

Definition 6 (Dynamic Logic Syntax). The first-order syntax is extended as follows, where
f ∈ Fr, p ∈ P, y ∈ V and x ∈ Fn (with arity 0).

t ::= f(t, . . . , t) | x | y | if (ϕ)then(t)else(t) | {U}t
ϕ ::= true | false | p(t, . . . t) | ϕ & ϕ | (ϕ | ϕ) | ϕ −> ϕ | !ϕ | ∀y.ϕ | ∃y.ϕ | t .= t | {U}ϕ | [p]ϕ

U ::= (x := t ‖ . . . ‖ x := t)

p ::= x = t | p;p | if (ϕ) {p} else {p} | while (ϕ) {p}

Terms f(t1, . . . , tn) and formulas p(t1, . . . , tn) must respect the arities of the symbols f and
p, respectively. Terms and formulas that appear inside programs may not contain any logic
variables, quantifiers, updates, or nested programs.

The syntax now includes updates and programs. As a short-hand, if the else part of a
conditional statement is empty, we may omit it. For example, if (i > 3) { i = 3 } else {}

may be written as if (i > 3) { i = 3 }.
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Updates represent transitions between states in a Kripke structure and the symbols {, }
around an update indicate application of this transition. On account of this the term {U}t
means that t is evaluated in the state that is reached after applying transition U in the current
state.

The symbol [p]ϕ denotes that if the execution of p terminates, ϕ holds in the (any) state in
which it terminates (box operator, partial correctness). Normally one has two ways to include
a program p in dynamic logic formulas. The other option is the diamond operator, denoting
total correctness: 〈p〉ϕ means that the execution of program p terminates and that in any state
reached after termination the formula ϕ holds. In this thesis we do not concern ourselves with a
situation in which p does not terminate. An interesting work on the combination of this dynamic
logic and its abstraction framework described in Chapter 2 with relation to termination can be
found in (Niedermann, 2011).

Definition 7 (States). A state is a function mapping program variables to concrete values
s : Fn → D. The set of all states is denoted by S.

Similar to logic variable assignments β, a state assigns values to program variables. The
difference is that in a dynamic logic it is possible to refer to different states within a formula
(using the [p]ϕ construction) and that the interpretation of a program variable may differ
between those states. Opposed to that the logic variables (and other symbols) have, likewise to
first-order logic, the same value independent of where they syntactically occur.

Definition 8 (Dynamic Logic Semantics). The evaluation function from first-order logic is
extended with the current state s as an additional parameter. The evaluation function val is
defined analogous to the first-order case. We mention here only the additional cases.

Updates U are evaluated to a result state valM,s,β(U) ∈ S and programs p to a set of states
valM,s,β(p) ⊆ S where the cardinality of valM,s,β(p) is either 0 or 1.

A formula ϕ is called valid if and only if valM,s,β(ϕ) = tt for all fist-order structures (D, I),
states s and logic variable assignments β.

The evaluation function for the terms and formulas syntax-constructors adopted from first-
order logic remains the same, the additional constructors are defined below:

valM,s,β(x) = s(x)

valM,s,β({U}t) = valM,s′,β(t) where s′ = valM,s,β(U)

valM,s,β({U}ϕ) = valM,s′,β(ϕ) where s′ = valM,s,β(U)

valM,s,β([p]ϕ) = tt iff ff 6∈ {valM,s′,β(ϕ) | s′ ∈ valM,s,β(p)}
valM,s,β(x1 := t1 ‖ . . . ‖ xn := tn) =

{
x 7→ s(x) | x 6∈ {x1, . . . , xn}

}
∪{

x 7→ valM,s,β(tk) | x = xk and x 6∈ {xk+1, . . . , xn}
}

valM,s,β(x = t) =
{

valM,s,β(x := t)
}

valM,s,β(p1;p2) =
{

valM,s′,β(p2) | s′ ∈ valM,s,β(p1)
}

valM,s,β(if(g){p1} else {p2}) =

{
valM,s,β(p1) if valM,s,β(g) = tt
valM,s,β(p2) otherwise

valM,s,β(while (g) {p}) =

{⋃
s1∈S1

valM,s1,β(while(g) {p}) if valM,s,β(g) = tt

{s} otherwise

where S1 = valM,s,β(p)
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A program is evaluated to the set of all states it may terminate in. Since we only consider
deterministic programs this set is either empty (in case of non-termination) or the cardinality
of the set is one.

Note that for a program formula [p]ϕ to hold, ϕ should hold in all result states from program
p, which corresponds to the definition of partial correctness.

As can be seen from their semantics, updates describe the difference in the interpretation
of program variables from the current state to the state reached after applying this update.
Since all of the elementary updates to program variables are evaluated in parallel, conflicts
may arise, i.e. when xi = xj for i 6= j. In this case the semantics ensures that the rightmost
update “wins”, and thus overwrites the effect of earlier elementary updates to the same program
variable (last-one wins semantics).

a

Example 2:

To prevent this example from growing lengthy, we show how the formula [y = 1](y
.
= 1) is eval-

uated.

valM,s,β([y = 1](y
.
= 1)) = tt iff ff 6∈ {valM,s′,β(y

.
= 1) | s′ ∈ valM,s,β(y = 1)}

= tt iff ff 6∈ {valM,s′,β(y
.
= 1) | s′ ∈ {valM,s,β(y := 1)}}

= tt iff ff 6∈ {valM,s′,β(y
.
= 1) | s′ ∈ {x 7→ s(x) | x 6∈ {y}}∪

{y 7→ valM,s,β(1)}}
= tt iff ff 6∈ {valM,s′,β(y

.
= 1)}, s′as the only option above

= tt iff ff 6∈ {tt iff valM,s′,β(y) = valM,s′,β(1)}
= tt iff ff 6∈ {tt iff s′(y) = I(1)}
= tt iff ff 6∈ {tt iff valM,s,β(1) = I(1)}
= tt iff ff 6∈ {tt iff I(1) = I(1)}
= tt iff ff 6∈ {tt}
= tt

a

1.2.3. Sequent Calculus

To reason about the validity of formulas we use a Gentzen-style sequent calculus (Gentzen,
1934). This section provides a brief introduction to sequent calculi in general and the notation
used throughout this thesis. A sequent has the following form:

ϕ1, . . . , ϕn =⇒ ϕm, . . . ϕl

Where we may abbreviate these lists of formulas to:

Γ =⇒ ∆

Or, to lift out certain formulas in particular, we can abbreviate it to:

Γ, ϕi =⇒ ϕj ,∆
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We call the collection of formulas in Γ the antecedent, those in ∆ the succedent. One could
consider this sequent as a meta-formula with implication as its main connective. That is, the
formula is true if one of the formulas in Γ is false or one of the formulas in ∆ is true. The
semantics of sequents is defined as:

valM,s,β(Γ =⇒ ∆) = valM,s,β(
∧

Γ −>
∨

∆)

A calculus rule is an inference rule of the following general form, using seq as an abbreviation
of a sequent:

seq1 . . . seqn

seq

Textual one can describe this rule as follows: “if all sequents seq1, . . . , seqn hold, then seq
also holds”. The sequent seq is therefore called the conclusion of the rule and the sequents
seq1, . . . , seqn its premises. A rule is sound if and only if the validity of its premises implies the
validity of its conclusion.

Using these rules a proof tree is constructed. The root node of the tree is annotated with the
sequent to be proven. For instance, assume we want to prove that formula ϕ is valid, we start
our sequent proof with the root node:

=⇒ ϕ

On every leaf sequent in the tree a calculus rule can be applied if the conclusion of the rule
matches that leaf sequent. Application of the rule adds the rule’s premises as new children to
this leaf, which now becomes a node in the tree and the premises are new leaf sequents. In any
tree constructed in this way, validity of all the leaves implies the validity of the root sequent,
provided that all the applied rules are sound. If a tree is constructed in which all leaves are
obviously valid, we have successfully proven the validity of the root sequent. Valid sequents can
be identified in the calculus by having closed as their (single) premise.

Given the semantics of a sequent, we can provide the following rules for sequents that close
a branch in the tree:

closeTrue
closed

Γ =⇒ true,∆
closeFalse

closed

Γ, false =⇒ ∆
closeAxiom

closed

Γ, φ =⇒ φ,∆

Another comprehensive rule is the andRight rule for formulas with the conjunction as their
main connective. To prove that the formula φ & ψ holds, we need to show that φ holds and
that ψ holds:

andRight
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆

Similar, for rules with the implication as their main connective, we have the impRight rule.
To show that φ −> ψ holds we need to show that if φ holds, ψ has to hold as well:

impRight
Γ, φ =⇒ ψ,∆

Γ =⇒ φ −> ψ,∆

Using these rules and the first-order syntax provided in Definition 2 we can now use the
sequent calculus to show the logic validity of the simple formula false −> (true & true), which
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we place in the sequent =⇒ false −> (true & true). This gives us the following small proof tree
of rule applications:

impRight

andRight

closeTrue
closed

false =⇒ true
closeTrue

closed

false =⇒ true

false =⇒ true & true

=⇒ false −> (true & true)

However this is not the only application of rules that shows the sequent to be valid. Another
(shorter) option is:

impRight

closeFalse
closed

false =⇒ true & true

=⇒ false −> (true & true)

The selection of rules to apply and in which order these rules are applied can dramatically
affect the length of the proof tree. An imperfect selection or order may even permanently
obstruct the discovery of a sequent’s proof, while a different selection or order does achieve to
prove that sequent.

1.2.4. The KeY Approach

The dynamic logic as introduced in this section is the core of the KeY System, a formal software
development tool that aims to integrate design, implementation, formal specification, and formal
verification of object-oriented software as seamlessly as possible (Ahrendt et al., 2005). The KeY
System includes a semi-automatic theorem prover for Java programs and is able to parse proof
obligations from JML markup in Java-source files. KeY does as much automatic as is possible,
but allows a user to provide proof steps in the form of rule applications when automation fails
at some point. This automation is internally achieved by proof search in the dynamic logic
calculus, realized by an automated prover.

An important feature of the KeY System is its integration with external SMT (Satisfiability
Modulo Theories) solvers that can be used to solve decision problems with respect to a certain
theory (such as integers, real numbers, arrays etc.). At the time of writing the most recent
version of the KeY System is 1.6.0 and integrates with CVC3, Simplify, Yices and Z3 (Barrett
and Tinelli, 2007; Detlefs et al., 2005; Dutertre and de Moura, 2006; de Moura and Bjørner,
2008).

The goal of this thesis is to achieve a fully automated system for specific application cases
(loop abstraction and information flow analysis), without the need for user interaction while
maintaining a high degree of completeness.

1.3. Abstract Interpretation

In their 1977 paper, Patrick and Radhia Cousot introduced the concept of abstract interpre-
tation of programs. They note that when statically analyzing a program one could, instead of
tracking the values of variables in a concrete universe, do so in an abstract universe. As an
intuitive example, first published by Sintzoff (1972), they consider lifting the concrete domain
of integers to the abstract domain of the so-called ‘sign language’ or ‘rule of signs’ which we use
only in an informal manner in this section. The concrete operation −5 ∗ 8 could for example be
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translated to the abstract operation −(+) ∗ (+), which evaluates to (−) ∗ (+), which evaluates
to (−). This gives us a sound approximation of the outcome of the operation, namely that the
outcome is negative. Obviously, being called an abstraction and an approximation, this gives us
incomplete results but the approach can still be useful in providing the programmer or compiler
(or: automatic static verifier) means to check for certain properties of programs such as type
checking, optimizations, partial correctness proofs etc.

The main advantage that can be obtained from applying abstraction during static program
analysis is located in the area of proving properties of programs containing loops. Independent
of the underlying mechanism causing the loops in the program, be it a while loop or a collection
of goto-statements, a general problem for verification is that in many occasions the number of
loop iterations is unknown when statically reviewing the source code. Cousot and Cousot use
the notion of a fixed point, a collection of states (Definition 7) that always contains the resulting
state when program execution exits the loop, independent of the number of executions of this
loop.

1.3.1. Fixed Points

A fixed point can be viewed as a mathematical fixed point. That is, we have a function that
when applied any number of times on a certain input, the output is always in the same set. In
our case the function f is a loop-part of a program and the input the state s of the program
before execution of the loop.

Using the syntax from our dynamic logic (Definition 6), consider the general loop while(g){b}.
The search for a fixed point of this loop means that we aim to find a set of states Sfp such that:

∀n . valM,s,β(bn) ⊆ Sfp
Where bn means n repetitive executions of the loop’s body b. In a concrete domain it is for

most loops not possible to find such a fixed point automatically, since the values of the program
variables updated in the loop depend on the number of executions. However in an abstract
domain this becomes possible. For example:

i = 1;

while (b) {

i = i + 1;

}

In a concrete domain we are not able to automatically find a fixed point for this loop for any
number of executions of the while loop. A fixed point would be here e.g. the set of all whole
numbers for program variable i. Usually we want to prevent information loss by finding the
smallest possible fixed point. In particular, we want to find this in an automatic fashion. In
the abstract domain we can specify the fixed point {i 7→ (+)} (assuming i is the only existing
program variable). In fact, if we introduce another sign (±), indicating all integers, we can
even claim that we are always able to find such a fixed point for any program with any starting
state: an (abstract) state where each program variable has the value (±). This state is always
a sound, but also very imprecise, fixed point in the abstract domain.

In Chapter 2 it is shown how this concept is adopted in our dynamic logic by Bubel et al.
(2009) to automatically derive loop invariants for programs dealing with integers. The contri-
bution made in that chapter is an extension to this adaptation for objects.
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1.4. Information Flow Analysis

There exist multiple ways to restrict and regulate access to data, however what happens to this
data after a process has obtained access to it cannot be controlled by regular access control.
The data, or information about the data, may flow from the process that has access to it to
other processes that do not. For example, a program P is given access to a file which cannot be
accessed by process Q (where Q may be a human user of the program P ). If P now reads the
content of the file and streams that directly to process Q, the information from the file flows to
the unauthorized process. This cannot be prevented by access control, since the process Q does
not access the file in question but only gets the information in the file. To detect such a leak
in program P , we perform a static analysis on its source code to detect where information goes
during the program’s execution. This type of analysis is known as information flow analysis.

In general when performing information flow analysis we separate the program variables in
different sets of security levels (Denning, 1976). In most literature one finds only two levels,
Low and High, but a different number of levels can be used. Moreover, the security levels are
considered to be part of a security lattice. In the example with only the levels Low and High, we
have the lattice in which information is allowed to flow between variables of the same security
level, or from Low to High but not from High to Low. Again, more complex security lattices may
exist. The concept is that the values of Low variables are observable to everyone, such as to the
process Q in our example, while the values of High variables are not. If using information flow
analysis we can prove that this is the case, we say to have proven the non-interference property
for this program: other processes are not able to derive any information from the High variables
using only the information from the Low variables.

To provide some examples of information flow and non-interference, let l1 and l2 be Low, and
h1 and h2 High variables. Then the following program-fragments result in unwanted information
flow:

1. l1 = h1

After execution of this statement l1 contains the same value as h1.

2. l2 = h1 / h2, where / is the division operator
Here the variable l2 does not give all information about the High variables but it provides
some partial information on their ratio.

In these examples the (partial) information from the value of the High variables flows directly
to the Low variables (explicit flow) and this information is thus observable by other processes.
It is also possible that information flows indirectly from High to Low variables (implicit flow),
as the following examples show:

1. if (h1 > 0) {l1 = 10} else {l1 = 20}

The value of l1 leaks the information whether h1 was bigger than 0.

2. l1 = 0; l2 = 0; if (h1 > h2) {l1 = 1} else {l2 = 1}

A slightly more complex program. Information is leaked since another process can observe
if either l1 or l2 has been set to 1, and the information that is leaked is partial information
on the relation > between h1 and h2.

One way of statically enforcing a safe information flow is to extend the regular type system
(of bools, integers etc.) with a security type. Often these types are Low and High as can be
expected from previous examples. The security type system is a collection of rules that enforces
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information flowing only in the safe direction and not the other way around. These rules are
enforced at compile-time which prevents a run-time overhead. Many different typing systems
have been developed with this concept, for an overview see Sabelfeld and Myers (2003). One of
the problems a typing approach to information flow analysis faces, is called ‘label creep’. Since
a safe approach would always apply the highest of possible security labels/types to a term,
it causes the labels to always creep upward to a higher security level and thus becomes too
restrictive for practical use (Denning, 1982).

In this thesis we take a different approach to the information flow problem, via the use of
dependencies: we identify the set of variables on which the value of a variable x depends, and
call this set the dependency set of x. This is further introduced in Section 3.1.

1.4.1. Declassification

In practical applications the requirement that an outside process cannot learn anything from
the High variables by only observing the program and its Low variables is too restrictive, since
most programs actually intend to leak some information about the High variables. Consider for
example a login-application. A correct username and password combination must not be leaked
directly to the user (e.g. “The username and password you provided were incorrect. It should
have been jdoe and monday”). However, whether or not the login combination was correct can
always be derived from the fact whether or not the system allowed you in, hence this partial
information is allowed to leak.

To obtain a more practical information flow analysis for realistic applications one should
therefore take into account the possibility to declassify certain parts of High variables. For
example, the variable correctPassword should not flow into a Low variable, but the result of
the operation correctPassword == providedPassword is allowed to flow out of the program.
A common approach is that in the program’s source code, next to the addition of security
levels for each variable, the programmer can also specify certain operations that may leak
(some) information. Using the terminology of Sabelfeld and Sands (2005): when specifying
declassification one specifies who may release what information, and where in the program code
or when during the execution this is allowed to happen.

In the remainder of this thesis we do however not come back to declassification. For an
interesting approach to declassification which allows for dynamic changes in the information
flow policy, we refer the reader to Broberg and Sands (2006).

1.4.2. Side Channels

Next to the direct and implicit ways in which information can leak via the Low variables,
information on the High variables can also leak via other channels observable to remote processes
(or adversaries). Take for example the program:

while (h > 0) {

someHighLevelOperation();

}

Where we assume that in someHighLevelOperation() no information flows to Low variables.
However, the execution of this method takes some time, and the number of executions of this
method is affected by the value of h. So here time is a side channel that gives some information
on the value of h.

Another example of a side channel leak would be the following program:

if (h == true) {
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x = readFromCD();

}

In this case one might deduct from whether or not the cd-drive starts spinning the value of
h was true or false. More complicated side channels exist, and are used in methods such as
Differential Power Analysis (Kocher et al., 1999).

In the rest of this thesis we assume the absence of side channel leaks. For an overview of side
channel attacks, see Le et al. (2008).

1.4.3. Information Flow Analysis in Dynamic Logic

In Chapter 3 we describe the extension made by Bubel et al. (2009) on the dynamic logic from
Section 1.2.2 to include information flow analysis. This extension however is too restrictive when
it comes to value sensitivity and for that reason fails to prove the non-interference property for
certain programs, although they are in fact secure. This thesis contributes in that same chapter
to the field by extending the logic framework further such that a larger set of secure programs
can be identified correctly.

1.5. Outline

The remainder of this thesis can be outlined as follows. In Chapter 2 we describe the extension
made to dynamic logic by Bubel et al. (2009) for the automatic derivation of loop invariants,
while simultaneously extending this for the inclusion of objects. In Chapter 3 the approach
by Bubel et al. (2009) is described to extend the dynamic logic for information flow analysis,
followed by a variation on this extension that allows for a better value-sensitive analysis. We
summarize the conclusions in Chapter 4 and give an overview of future research topics, which
includes extending the information-flow analysis for objects.
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2. Abstract Interpretation

This chapter continues on the work by Bubel et al. (2009), in which the dynamic logic calculus
is extended to include abstract domains and a calculus rule that allows the abstraction of a
while loop, as briefly introduced in Section 1.3. The calculus and loop abstraction presented
in that paper however only addresses the integer and (implicitly) the boolean domain. This
chapter re-explains their signature, syntax and semantics while simultaneously extending them
for the sort (or: object/class) domain.

a

Example 3:

To illustrate the extension to the definitions of signatures, syntax, semantics and calculus rules
we use a running example, in which the set of sorts consists of integers and tuples:

Sort int;

Sort Tuple {

int fst;

int snd;

Tuple next;

};

a

We use the word ‘original’ when referring to the work presented in the paper by Bubel et al.
(2009). The intention is to distinguish between the work that is reused and the work that is
contributed with this thesis.

2.1. A Dynamic Logic with Objects

2.1.1. Signature and Syntax

The signature from the dynamic logic (Definition 5) is adapted to include a set of sort symbols
(such as int, Tuple etc.). In the original version program variables had their own set, but as
discussed in Section 1.2.2 we move them in the set of functions, which becomes a collection of
two different types of functions: rigid functions (their interpretation is independent of the state
in which they are evaluated) and non-rigid functions (their meaning may vary with the state).
This allows us to represent program variables as 0-ary, non-rigid function symbols and object
fields as unary, non-rigid function symbols.

Definition 9 (Signature). A signature is a tuple Σ = (S,F ,P,V), where S is a set of sorts,
F a set of function symbols, P a set of predicate symbols and V a set of logic variables.
Function and predicate symbols have fixed arities. F can be further partitioned into Fr ∪Fn for
rigid and non-rigid functions respectively. The set of rigid functions with arity a is denoted as
Fr,a, similar the set of non-rigid functions with arity a as Fn,a.
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a

Example 4:

In our example, we define S := {int, Tuple}. The set of functions F is defined as the union of
the following sets:

Fn,0 := Program variables

Fn,1 := {fst : Tuple→ int,

snd : Tuple→ int,

next : Tuple→ Tuple}
Fr,0 := {. . . , −2 : int, −1 : int, 0 : int, 1 : int, 2 : int, . . . }
Fr,1 := {idInt : int→ int, idTup : Tuple→ Tuple}
Fr,2 := {intPlus : int→ int→ int, intMinus : int→ int→ int}

The only information provided about the function symbols in the signature is their name and
type. Their meaning is described in Definition 12. The set of predicate symbols P that is used
in our example is:

P := {leq : int× int, geq : int× int, eq : int× int}

In the rest of the examples we use infix notation for simplicity, i.e. + 7→ intPlus, - 7→
intMinus, ≤ 7→ leq, ≥ 7→ geq,

.
=7→ eq. Finally the set of program variables is left unspeci-

fied, but we stick to the use of i, j, k and so on for program variables of sort int and r, s, t
and so on for program variables of sort Tuple. a

As usual, we assume terms, formulas, updates etc. to be well-formed with respect to the
syntax. The original syntax is updated consistently to include the notion of sorts.

Definition 10 (Syntax). The syntax is defined as follows, where f ∈ Fr, x ∈ Fn,0, b ∈ Fn,1,
p ∈ P, and y ∈ V.

loc ::= x | t.b

t ::=
⋃
s∈S

ts

∀s ∈ S . ts ::= f(t, . . . , t) | x | y | t.b | if (ϕ)then(ts)else(ts) | {U}ts
ϕ ::= true | false | p(t, . . . , t) | ϕ & ϕ | (ϕ | ϕ) | ϕ −> ϕ | !ϕ |

∀Ty.ϕ | ∃Ty.ϕ | t .= t | {U}ϕ | [p]ϕ

U ::= (∀Tx.ϕ −> loc := t ‖ . . . ‖ ∀Tx.ϕ −> loc := t)

p ::= loc = t | p;p | if (ϕ) {p} else {p} | while (ϕ) {p}

Terms f(t1, . . . , tn) and formulas p(t1, . . . , tn) must respect the arities of the symbols f and
p, respectively. Terms and formulas that appear inside programs may not contain any logic
variables, quantifiers, updates, or nested programs. All terms, formulas and updates have to be
well-typed according to the signature of the used symbols.

Remark 1. By well-typed it is meant that the constructors for terms, formulas and updates
should be considered as a conditional definition where necessary. E.g.:

loc ∈ ts t ∈ ts′ s = s′

loc = t ∈ p
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f : s1 → · · · → sn → s t1 ∈ ts1 . . . tn ∈ tsn
f(t1, . . . , tn) ∈ ts

t ∈ ts′ b : s′ → s

t.b ∈ loc

Remark 2. In the remainder of this thesis we omit the subscript to denote the sort of a term
if this does not cause confusion.

a

Example 5:

Some correctly typed terms and formulas in our example include:

• 3 which is a term of type int

• t which is a term of type Tuple

• t.fst which is a term of type int

• t.next.snd ≥ 7 which is a formula

• t
.
= t.next which is a formula

a

Since most syntax symbols are explained in Section 1.2.2, at this point we limit the explanation
to the new symbols.

By convention the symbol loc is used as the placeholder for locations. A location is a non-
rigid functions symbol which can be either a program variable or a field with an argument.
The general syntax for a function application is f(t). For non-rigid functions representing a
field we usually take the familiar postfix notation t.f as is common in most object-oriented
programming languages. To further emphasize the difference we use the symbol b for non-rigid
functions representing a field, thus having the notation t.b.

Opposed to the syntax from Definition 6, variables and terms can now represent values of
different domains. To ensure a correct sort-preservation some additional notation in sub-script
is added. The sort of a quantified logic variable in formulas ∀y.ϕ and ∃y.ϕ is added as well. As
pointed out in Remark 2, we omit the subscript that denotes the sort of a term if it does not
cause confusion. To reduce the complexity of notation we also omit the sort in a quantifier (i.e.
we write ∀x instead of ∀Tx) when this is of no importance or can be easily derived from the
context.

Updates have been changed as well compared to the original syntax; a universal quantified
variable may appear in an elementary update (x of sort T )1. The need to extend the original
syntax of updates arises from the way in which the fixed point of a while loop (Section 1.3.1) is
derived automatically, as discussed in Section 2.2.3. The formula ϕ in such a quantified update
serves as a guard; the update only applies when ϕ holds. Quantified updates as a concept
for modeling the stack and heap during symbolic execution were first introduced by Rümmer
(2006).

1The restriction that only one variable can be quantified in an elementary update can easily be lifted, but
it proves sufficient for the purpose of this thesis to have only one quantified variable and simplifies the
presentation.
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Where desired we may write ∀Tx.ϕ(x) −> loc[x] := t[x] to keep explicit track of the quantified
variable. In case the quantified variable does not appear in the free variables of neither the
locations nor the term, it may be omitted in our notation. Similar if ϕ is the truth constant
true, ϕ may be omitted. For example, the elementary update ∀ Tuple t. true −> i := 3 can be
abbreviated to i := 3.

a

Example 6:

Let p denote the following program:

t.fst = 0;

i = 1;

while (g) {

t = t.next;

t.fst = i;

i = i + 1;

}

We can construct a simple statement on this program, such as i > 0 −> [p](t.fst ≥ 0). This
formula holds, if when the program variable i holds a value higher than zero, then after execu-
tion of program p the fst field of tuple t holds a value greater or equal than zero. In the next
section we introduce a semantics to capture this intended interpretation. a

2.1.2. Interpretation and Semantics

Given a universe of values D, we take Ds ⊆ D as the values in D of the sort s ∈ S. We also
assume that a partial order � on each Ds exists (as adopted from Beckert et al. (2007), Chapter
3).

Definition 11 (Well-Ordered Domains). Given a domain D, � is a partial well-ordering on D
if the following holds:

• Reflexivity: x � x for all x ∈ D

• Antisymmetry: x � y and y � x implies x = y

• Transitivity: x � y and y � z implies x � z

• Well-Orderedness: Each non-empty subset Dsub ⊆ D has a least element min�(Dsub) such
that for all x ∈ Dsub min�(Dsub) � x.

a

Example 7:

We use Z for Dint and for x, y ∈ Z we have that x � y if:

• x ≥ 0 and y < 0 or

• x ≥ 0 and y ≥ 0 and x ≤ y or

• x < 0 and y < 0 and y ≤ x
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As for the object domain DTuple any well-ordering suffices, e.g. based on Gödelization (Gödel,
1931, pages 178-179). a

Definition 12 (Interpretations, States, Variable Assignments). Given a universe D of values,
an interpretation I is a function mapping every rigid function symbol f ∈ F with arity n to a
function I(f) : Dn → D, and every predicate symbol p ∈ P with arity n to a relation I(p) ⊆ Dn.

A state maps each non-rigid function b : T1 × · · · × TN 7→ T , n ≥ 0, to a function s(b) :
DT1 × · · · × DTn 7→ DT ; the set of all states is denoted S. A logic variable assignment is a
function β : V → D.

a

Example 8:

We map the function +̇ : int× int 7→ int to:

I(+̇) : Z× Z→ Z
I(+̇)(x, y) = x+ y x, y ∈ Z

Where +̇ is a rigid function symbol of arity 2 and + the mathematical plus operation defined
on Z. Similar interpretations can be given to other functions and predicates. a

In the rest of this thesis when quantifying over different interpretations I we assume the meaning
of regular mathematical symbols such as +,−,≥, etc. to be fixed to their standard interpre-
tation. That is, when we state ‘let I0 be any interpretation. . . ’ this implies ‘let I0 be any
interpretation with +,−,≥, etc. defined as standard. . . ’.

Definition 13 (Semantics). Given a first-order structure M = (D, I) consisting of a universe
D and an interpretation I, a state s and a logic variable assignment β, we evaluate terms t to
a value valM,s,β(t) ∈ D, formulas ϕ to a truth value valM,s,β(ϕ) ∈ {tt ,ff }, updates U to a result
state valM,s,β(U) ∈ S, and programs p to a set of states valM,s,β(p) ⊆ S, where the cardinality
of valM,s,β(p) is either 0 or 1. The evaluation function valM,s,β is as in Definition 8. We list
the semantics of the new symbols:

valM,s,β(∀Ty.ϕ) = tt iff ff 6∈ {valM,s,βv
y
(ϕ) | v ∈ DT }

valM,s,β(∃Ty.ϕ) = tt iff tt ∈ {valM,s,βv
y
(ϕ) | v ∈ DT }

valM,s,β(∀T1x1; ϕ1; loc1 := t1 ‖
. . . ‖ ∀Tnxn; ϕn; locn := tn) =

{
F (loc) 7→ valM,s,β(loc) | ((loc, v), w) 6∈ ∪i≥1domi for all v, w ∈ D

}
∪{

F (loc) 7→ v | loc = lock and ((loc, v), a) ∈ domk and

a ∈ DTk
and b 6� a for all ((loc, v′), b) ∈ domk and

((loc, v′), w) 6∈
⋃
i>k

domi for all w ∈ D
}

where F (loc) =

{
x if loc = x (loc ∈ Fn,0)
(b, valM,s,β(loc′)) otherwise, loc = loc′.b

and domi = {((loci[xi/a], valM,s,βa
xi

(ti)), a) | a ∈ Ai}

and where Ai = {d ∈ DTi
| valM,s,βd

xi
(ϕi) = tt}
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valM,s,β(loc = t) =
{

valM,s,β(∀Ty; tt ; loc := t)
}

where loc ∈ tT
and where y 6∈ freeV ar(loc) and y 6∈ freeV ar(t)

We discuss the evaluation of updates (as adopted from (Beckert et al., 2007)) in more detail.
First of all, all locations that are not listed on the left-hand side of any of the elementary updates
in the parallel update remain unchanged, as is expressed by mapping them to valM,s,β(loc).
Secondly, those locations loci that are changed are updated to the corresponding term ti on the
right-hand side, where the complex condition ensures that (1) this ti is the last update occurring
in the parallel update, conform the ‘last-one wins semantics’ as described in Section 1.2.2, and
that (2) the possibly quantified argument x is the least object that results in the location loci on
the left-hand side of the update (least-one wins semantics). The function F is a mere translation
from the syntactical location to the mapping that is to be updated.

a

Example 9:

To show that a least-one wins semantics is required for applying parallel updates consider the
following example. Let f be a non-rigid function that takes an integer as argument, % the
modulo operator. Then in the update

∀x. f(x%2) := x

we have a clash on updates to both f(0) and f(1). That is, all odd substitutes for x update
the location f(1) and all even substitutes the location f(0). The value to which this location
is updated differs however per substitute and in the state resulting from this update each
location can be evaluated to only one value. Here the least-one wins semantics determines that
substitutes 0 and 1 are the least substitutes for x that update these locations. Hence the above
update is equivalent to:

f(0) := 0 ‖ f(1) := 1

In a more elaborate example, consider U the update

∀x. f(x%2) := x ‖ ∀x. f(2 · x) := x+ 1

We write each of these quantified updates on separate lines, note however that within each line
the updates are currently executed in real parallel, i.e. do not have a last-one wins semantics:

f(0) := 0 ‖ f(1) := 1 ‖ f(0) := 2 ‖ f(1) := 3 ‖ . . .
f(0) := 1 ‖ f(2) := 2 ‖ f(4) := 3 ‖ f(6) := 4 ‖ . . .

We have several parallel updates to locations f(0) and f(1), so we need a way to establish what
the value of these two locations is after application of this update. Given the partial ordering
from Example 7 on integers the least-one wins semantics tells us that the first update to f(1)
wins (since 1 � 3 � 5 � . . . ). For f(0) the first update also wins from all other updates resulting
from the first quantified update because of the least-one wins semantics (i.e. x is instantiated
with 0). However in the update resulting from the second quantified update the quantified
variable x is instantiated with 0 as well. In this clash the last-one wins semantics tells us that
the last update to f(0) wins. This means that the above update is equivalent to:

f(0) := 1 ‖ f(1) := 1 ‖ f(2) := 2 ‖ f(4) := 3 ‖ f(6) := 4 ‖ . . .

a
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2.1.3. Calculus

While updates describe state changes in a parallel, direct way, the box operator on a program
p describes a state change in a more complicated manner. The value of a program variable
after execution of program p is harder to deduce compared to after an update (e.g., because
of conditional statements and while loops). Also updates suffer less from the so-called aliasing
problem, namely that multiple program variable names may refer to the same data location in
memory. For example, we can postpone a proof split (e.g. the question whether an object x is
equal to an object y within the update y := z) which might simplify matters in cases where the
proof split turns out to be unnecessary (e.g. if this update is followed by the update x := null

and we want to prove that x
.
= null).

It is for these reasons that we prefer reasoning with updates instead of programs. For that
purpose calculus rules are added that symbolically execute program statements by rewriting
them into updates and formulas. Consider the assignment rule displayed below.

assignment
Γ =⇒ {U}{loc := t} [. . . ]ϕ,∆

Γ =⇒ {U}[loc = t; . . . ]ϕ,∆
We use the symbols U and . . . to collapse all elementary updates or program statements.

In each of these cases the collapsed set of elements may be empty, in which case they can be
omitted during application of this rule. To combine two updates into a parallel update (or to
apply them on a term) update rewrite rules can be used. These are displayed in Appendix A.

For the handling of conditional statements we provide the following rule:

ifElse

Γ, {U}g =⇒ {U}[p1; ...]ϕ,∆
Γ, {U}!g =⇒ {U}[p2; ...]ϕ,∆

Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,∆

Here we split the proof tree in two separate sequents that both need to be proven; one in
which the guard g is true under the update U and one in which it is false.

a

Example 10:

Consider the following proof obligation:

Γ =⇒ [i=3; if (i<0) {i=1} else {i=0}]i
.
= 0,∆

We first apply the assignment rule:

Γ =⇒ {i := 3}[if (i<0) {i=1} else {i=0}]i
.
= 0,∆

Next, we apply the ifElse rule, resulting in two branches:

Γ, {i := 3}i < 0 =⇒ {i := 3}[i=1]i
.
= 0,∆ (1)

Γ, {i := 3} !(i < 0) =⇒ {i := 3}[i=0]i
.
= 0,∆ (2)

We first continue with sequent (1). After applying some simplification steps we obtain:

Γ, 3 < 0 =⇒ {i := 3}[i=1]i
.
= 0,∆

Followed by

Γ, false =⇒ {i := 3}[i=1]i
.
= 0,∆

29



Which can be closed by the closeFalse rule. We continue in sequent (2) where we again apply
the assignment rule:

Γ, {i := 3} !(i < 0) =⇒ {i := 3}{i := 0}i .
= 0,∆

After some update rewriting rules (see Appendix A.2) we obtain the sequent

Γ, {i := 3} !(i < 0) =⇒ 0
.
= 0,∆

Which is trivially true and we close the second sequent as well, thereby completing the proof.
a

For a while loop, we could choose to unwind it:

loopUnwind

Γ, {U}g =⇒ {U}[b; while(g) {b}; ...]ϕ,∆
Γ, {U}!g =⇒ {U}[...]ϕ,∆

Γ =⇒ {U}[while (g) {b}; ...]ϕ,∆

Unwinding a loop is only successful if after a statically known number of iterations the
condition g becomes false. In the general case where the number of iterations is not known
beforehand (but for example depends on a provided parameter) induction or a loop invariant
rule has to be applied:

loopInvariant

Γ =⇒ {U}inv,∆ Initial
inv, g =⇒ [b]inv Invariant
inv, !g =⇒ [...]ϕ Use case

Γ =⇒ {U}[while (g) {b}; ...]ϕ,∆

Here we need to provide an invariant inv, where inv is a formula. The sequent with the
while-statement is split into three separate premises that need to hold. In the first sequent we
need to show that inv holds in the initial state, i.e. the invariant holds before the while loop is
executed (or: if the while loop is not executed at all). The second premise states that the loop
invariant must be an actual invariant, i.e., that an arbitrary execution of the loop in a state
satisfying the loop condition g does not invalidate the invariant. Finally in the third sequent,
having established in the other two that inv is indeed an invariant, we can continue our proof
for the rest of the program.

This rule has two issues: First, we lose information present in Γ, ∆ and U . In order to
preserve that information, it has to become part of our invariant. Second, and more pressing,
this invariant inv needs to be specified somehow. Since we want to achieve automatic program
verification, requesting this formula from a user is not the solution, but is the current approach
taken by theorem provers, since automatic derivation of a suitable invariant is problematic.

In the original work in Bubel et al. (2009) loop abstraction is used to overcome both the
problem of automatic derivation as well as the preservation of information in Γ,∆ and U .
Again we adopt this approach to enable loop abstraction with objects as well.
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2.2. Automatic Derived Invariants by Abstraction

As described briefly in Section 1.3, static program analysis benefits in multiple ways from
lifting the analysis from a concrete to an abstract domain. As mentioned in Section 2.1.3 we
use abstraction in this thesis mainly for the purpose of automatic generation of while loop
invariants. The main idea underlying this section is to repeatedly symbolically execute the
body of a while loop until a fixed point is found.

In the remainder of this section we first introduce an abstract domain for both integers and
objects which we use later on. We then explain how we can automatically derive an update
that represents a superset of all states that might be reached by a loop. It is shown how this
update is related to loop invariants and we adapt the loopInvariant rule accordingly.

2.2.1. Abstract Domains

We use the following definition for abstract domains and their logical representation, based on
the one from Bubel et al. (2009):

Definition 14 (Abstract Domains). An abstract domain is a finite lattice A. Let v denote
the partial order and t the join operator. A is an abstract domain for the concrete domain D
if there is an abstraction function α : 2D → A and a concretization function γ : A → 2D such
that

1. α and γ are monotone with respect to ⊆ and v, i.e. if x ⊆ y then α(x) v α(y) and if
a v b then γ(a) ⊆ γ(b).

2. For each a ∈ A : a w α(γ(a))

3. For each c ∈ 2D : c ⊆ γ(α(c))

The first property ensures consistency of the abstraction and concretization function with
respect to the abstract lattice, the second that we may lose precision when concretizing (γ)2

and the third that concrete values are all preserved when performing abstraction. The definition
for monotonicity might differ from one familiar to the reader, where ‘if’ is replaced with ‘if and
only if’, however that stronger definition is not required here.

We further extend our signature Σ to ΣA to represent and reason about formulas using this
abstract lattice within our concrete calculus.

Definition 15 (Logical Representations of Abstract Domains). We extend the signature Σ =
(S,F ,P,V) to the signature ΣA = (S,F ′,P ′,V) as follows (where A denotes the set of all
abstract domains, AT the abstract domain for sort T ):

• F ′r = Fr ∪ {γa,z : T1 × · · · × Tn 7→ T | a ∈ AT , z ∈ Z,AT ∈ A, Ti ∈ S, n ≥ 0}

• P ′ = P ∪ {χa : T | a ∈ AT ,AT ∈ A}

Moreover, in this context we only allow for interpretations I where

• ∀A ∈ A, a ∈ A, z ∈ Z, x1 ∈ D1, . . . xn ∈ Dn.I(γa,z(x1, . . . xn)) ∈ γ(a)

• ∀A ∈ A, a ∈ A.I(χa) = γ(a)

2This loss of precision only occurs in the abstract lattice for objects. In the one for the integers we have that
for each a ∈ A : a = α(γ(a)).
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With this extension, we have for each abstract element a an infinite number of concrete
constants functions γa,z which are used to represent abstract values in logical formulas. That
is, the functions γa,1, and γa,2(x), where γa,1 is a 0-ary and γa,2 a unary symbol, are both
concrete elements belonging to γ(a). Except for the fact that we know they are elements of
the concretization of the same abstract element a, we have no further a priori knowledge about
them. In other words, the uncertainty to which concrete element they are evaluated is treated
by underspecification. Consequently, if we have the constants γa,0 and γa,1 we cannot tell if they
are the same concrete element or not. Similar for γa,2(x) and γa,2(y) with x 6 .= y. To successfully
reason about these γ-symbols, rules need to be provided for handling them. E.g., in case for
the integer sign-language used in Section 1.3, we need rules to determine that (−) ∗ (+) (−),
or that (+)+(−) (±).

As long as we considered only program variables and not fields, the 0-ary gamma symbols
(constants) from the original work sufficed. In the presence of field functions and as a result
quantified updates, we have to extend the gamma functions to unary functions as well.

In the next two sections the abstract domains for integers and objects as used in this thesis
are described. The abstract domain for integers is conform the ‘sign language’ as described by
Cousot and Cousot (1977) and already used in (Bubel et al., 2009).

Abstract Domain for Integers

The abstract domain is constructed as a direct translation of the sign language. The concrete
domain D is in this case Z, the abstract lattice using the sign language (or: the sign lattice)
is shown in Figure 2.1 (taken from Bubel et al. (2009)). To illustrate the use of this abstract
lattice in a logical formula, consider the update U = i := γ≤,0 ‖ j := γ≤,1. With the necessary
rules for the handling of γ-constant symbols provided, we are now able to formulate sequents
such as =⇒ {U}i < 10, or !(γ≤,1 < 0) =⇒ {U}j .

= 0.

>

∅

≤ ≥

0neg pos

γ(>) = Z
γ(≤) = {i ∈ Z | i ≤ 0}
γ(≥) = {i ∈ Z | i ≥ 0}

γ(neg) = {i ∈ Z | i < 0}
γ(pos) = {i ∈ Z | i > 0}
γ(0) = {0}
γ(∅) = {}

Figure 2.1.: Abstract domain lattice for sign analysis, with its concretization function γ

Abstract Domain for Objects

For the well-understood and studied domain of integers an abstract domain is readily available.
Not only the sign language, but other distinctions such as odd versus even, or prime versus
non-prime can be used as well. Opposed to this the concrete domain of objects is harder to
translate to an abstract domain. In the research area of shape analysis several attempts have
been made to capture objects by using shapes as abstraction, but this is not easily translated to
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integrate with the original approach that is adopted in this thesis. See Section 2.4 for a further
comparison with shape analysis.

Instead we stay in line with the original approach of abstract domains and create such an
abstract domain for objects by the notion of reachability. That is, the only terms to which
we can update an object program variable are via direct assignments to other object program
variables (e.g. t = s) or using fields (e.g. t = s.next). Since we do not (yet) have the option to
create new objects in a program, we can conclude that all the objects that are reachable during
run-time are either pointed to by program variables, or reachable from the program variables
using field operations.

Given a state s0, M = (D, I) a first-order structure, the abstract domain Aobj := ℘(Apv ∪
Areach), i.e. the powerset of the join of the sets Apv and Areach, for the objects of one sort is
defined as:

• Apv = {x0 | x ∈ Fn,0}, with x a program variable for an object of the current sort, with
γ({x0}) = {valM,s0,β(x)}, i.e. the subset that is a member of the powerset Aobj containing
only x0, represents the single object indicated by program variable x in the initial state
before execution of the program.

• Areach = {x+
b1,...,bn

| x ∈ Fn,0 and ∀k; bk ∈ Fn,1 and path({b1, . . . , bn}, T, S)}, where

path({b1, . . . , bn}, T, S) = ∃k0, . . . , km ∈ {1, . . . n}; ∃r1, . . . rm−1 ∈ S;

bk0 : T → r0 and bkm : rm−1 → S and ∀1≤i<n bi : ri−1 → ri

indicates that there must be a path from sort T to sort S, S being the sort for which
this abstract lattice is defined. In this we can include fields that do not have the type
S → S and we ensure that no abstract elements are generated where none of the fields is
applicable to the sort of the lattice or none of the fields has the corresponding type of the
lattice.

Since Aobj is a powerset, we can easily create an abstract lattice from this abstract domain,
by taking ⊆ as v and ∪ as t.

a

Example 11:

With Aobj being defined as the powerset of the union of the two sets Apv and Areach we obtain
for the example setting Fn,0 = {x, y}, with both program variables being of the same type T
and only one field Fn,1 = {next : T → T}, for these two sets:

• Apv = {x0, y0}

• Areach = {x+
next, y

+
next}

The corresponding abstract lattice of Aobj is shown in Figure 2.2. a

Further the concretization of abstract elements a ∈ Aobj is given as γ(a) = {x | x ∈a
a and sort(x)

.
= sort(a)} where ∈a:

x ∈a a1 ∪ a2 iff (x ∈a a1 or x ∈a a2) and (a1 6= ∅ or a2 6= ∅)
x ∈a {y0} iff x = valM,s0,β(y)

x ∈a {y+
b1,...,bn

} iff ∃i∃z .
(
valM,s0,β0(bi)(z) = x and (z = valM,s0,β(y) or z ∈a {y+

b1,...,bn
})
)
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> = {x0, y0, x+
next, y

+
next}

∅

{x0} {y0} {x+
next} {y+

next}

{x0, y0} {x0, x+
next} {x0, y+

next} {y0, x+
next} {y0, y+

next} {x+
next, y

+
next}

{x0, y0, x+
next} . . . {y0, x+

next, y
+
next}

. . . . . . . . .

Figure 2.2.: Example abstract domain lattice for objects

The extra condition sort(x)
.
= sort(a) is needed since the fields b1, . . . , bn might be ‘interme-

diate’ fields. For example, we could have the element a = a+
nextA,nextB with a : A, nextA : B 7→ A

and nextB : A 7→ B. In this case it should hold that a.nextB.nextA ∈ γ(a), but also a.nextB 6∈
γ(a), since a is an abstract element only for objects of sort A.

Using this definition the top element of the abstract lattice now indeed represents all the
objects reachable by the program code. To simplify notation we may omit the set notation for
singleton sets in this abstract lattice. For example, instead of writing γ{x+next},0

we may write
γx+next,0

.
For completion, we show how an abstraction function α can be developed for each abstract

object domain, that fulfills the requirement that if x1 ⊆ x2 then α(x1) v α(x2):

α(x) =
⋃
{a | x ⊆ γ(a), a ∈ Apv ∪ Areach}

The function α returns one abstract element of the lattice Aobj . Note that these abstract
elements are elements of the powerset ℘(Apv ∪Areach) and thus are sets themselves. The above
definition correctly returns exactly one abstract element on each provided subset x ⊆ D.

a

Example 12:

Let p be the program

while(g) {

t = t.next;

t.fst = 1;

}

Using this extension, we can now formalize properties such as

∀ Tuple x . x.fst .
= 0 =⇒ [p]

(
∀ Tuple x . χt+next(x) −> x.fst ≥ 0

)
a
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2.2.2. Update Weakening

Here we introduce an ordering on updates, where one update U2 might be weaker than another
update U1. One can informally think of ‘being weaker’ as update U2 representing a less specific
state than U1.

Definition 16 (/P,C-relation on updates). Let P denote a proof, U1 and U2 updates, and C a
set of formulas (in practice arising from the context Γ and ∆). We call U2 P,C-weaker than
U1, i.e.,

U1 /P,C U2

if for any first-order structure M = (D, I), state s, and logic variable assignment β, where for
all ψ ∈ C we have valM,s,β(ψ) = tt, the following holds:

valM,s,β(U1) ∈ {valM ′,s,β(U2) |M ′ = (D, I ′) and I 'P,C I ′}

where I 'P,C I ′ means that I and I ′ coincide on all function and predicate symbols occurring
in P or C.3 In case of an empty set of context formulas C, we omit C and write P -weaker and
/P instead.

a

Example 13:

We show some attempts to weaken the update U = i := 3 ‖ j := j + 1 in the proof P :

j > 0 =⇒ {U}ϕ

• i := d ‖ j := e where d and e are new constant symbols, is P -weaker than U , since we can
choose interpretation I ′ ≡ I with I ′(d) = s(i) and I ′(e) = s(j) + 1.

• i := γ≥,0 ‖ j := f(1) where γ≥,0, f are new function symbols, is P -weaker than U , since
we can choose interpretation I ′ ≡ I with I ′(f)(1) = s(j) + 1.

• i := j ‖ j := j+ 1 is not P -weaker than U , since for any s′ with s′(j) 6= 3 the membership
requirement from Definition 16 does not hold.

• i := γ≥,0 ‖ j := γpos,0 is not P -weaker than U , but {j > 0}, P -weaker.

a

We also introduce a rule that allows us to replace an update U in a formula by an update U ′
that is weaker than U . In practice we only use this update weakening to replace a right-hand
side term of an elementary update with a (correct) γ-symbol. The following weakenUpdate rule
is adopted from the rule in the original calculus to include the handling of locations (objects)
and γ-symbols as n-ary functions (as discussed in Definition 15).

weakenUpdate

Γ, {U}∀x.(loc[x]
.
= c̄(x)) =⇒ ∃̃γ̄.{U ′}∀x.(loc[x]

.
= c̄(x)),∆

Γ =⇒ {U ′}ϕ,∆
Γ =⇒ {U}ϕ,∆

where

3Note that in particular valI′,s,β(ψ) = tt holds for all ψ ∈ C.
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• loc is a list of locations (loc1, . . . , locn) of all locations updated in U or U ′, where loci 6=α

locj , with i 6= j. That is, only one of the locations that are equal after α-conversion
(note that because of quantified updates there might be a free variable occurring in each
location, term or guard) is included in this list.

• loc[x] means that the quantified variable in loc (if any) is substituted with x.

• c̄ is a list of fresh rigid functions (c1, . . . , cn) the same length as loc. If the quantified
variable x is not occurring in the location on the left-hand side of the equality this implies
that c returns the same value for each input.

• γ̄ is a list of function symbols (γa1,z1 , . . . , γam,zm) freshly introduced in U ′.

• ∃̃ is a special quantifier that expresses the same intention as the regular ∃ quantifier,
however with the difference that it operates on second order variables as well, which is
not possible in first order logic. Instead this quantifier requires the instantiation of its
second-order variable at the moment the rule is applied, preventing the ∃̃ quantifier from
occurring in the real logic. We show how this instantiation can be derived automatically
during the search for a fixed point in Section 2.2.4, and how this rule needs to be updated
consequently.

• The notation ∃̃γ̄.ψ is an abbreviation for ∃̃ȳ(∀x χā(ȳ(x)) & ψ[γ̄/ȳ]), where ā = (a1, . . . am)
are the abstract elements from γ̄ described above, ȳ = (y1, . . . ym) a list of fresh logic
variables of the same length as γ̄, ranging over functions.

• The notation ∀x.(loc[x]
.
= c(x)) is an abbreviation for ∀x.(loc1[x]

.
= c1(x)) & . . . &

∀x.(locn[x]
.
= cn(x)).

In this and the next section we continue using the symbol ∃̃, but it is important to note that
this is not a second-order quantifier but only a short way for representing our intention, the
real rule is introduced in Section 2.2.4.

a

Example 14:

Consider the sequent

=⇒ {i := 7}ϕ

that we want to weaken using the update i := γ≥,0. We have to show that there exists a 0-ary
function y0 such that after substituting γ≥,0 with y0, the value of i after the original update
is the same as after the weakening one. That is, the first premise of the weakenUpdate rule
becomes:

{i := 7}(i .
= c0) =⇒ ∃̃y0.(χ≥(y0) & {i := γ≥,0}[γ≥,0/y0](i

.
= c0))

Which we can prove by substituting y0 with either 7 or c0.
Now consider a sequent with updates:

=⇒ {t.snd := 3 ‖ s.snd := 6}ϕ

That we want to weaken with the update ∀x.x.snd := γ>,1(x). This time we make use of a unary
function γ symbol. The first sequent to prove resulting from application of the weakenUpdate
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rule becomes:

{t.snd := 3 ‖ s.snd := 6}∀x.(x.snd .
= c1(x))

=⇒ ∃̃y1.(∀x.χ>(y1(x)) & {∀x.x.snd := γ>,1(x)}[γ>,1/y1]∀x.(x.snd .
= c1(x))

In this case we can use c1 as an instantiation of y1 to successfully prove the sequent.
The problems for an automatic proof procedure are that (1) the “second-order” quantifier ∃̃

is not allowed to appear in a first-order formula, and that (2) these instantiations of y0 and y1

needs to be derived automatically. a

In Section 2.2.4 the weakenUpdate rule is slightly altered because of ∃̃, however for simplicity
we use the current version for the moment. A proof of the soundness for the altered rule is
provided in Appendix B.1. Recalling the classical invariant rule loopInvariant (Section 2.1.3):

loopInvariant

Γ =⇒ {U}inv,∆ Initial
inv, g =⇒ [b]inv Invariant
inv, !g =⇒ [...]ϕ Use case

Γ =⇒ {U}[while (g) {b}; ...]ϕ,∆

We now define a variation on this using the weaken-update approach:

invariantUpdate

Γ, {U}∀x.(loc[x]
.
= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc[x]

.
= c(x)),∆ Initial

Γ, {U ′}g, {U ′}[p]∀x.(loc[x]
.
= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc[x]

.
= c(x)),∆ Invariant

Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆ Use case

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

where the three premises to prove represent the same intention as those from the loopInvariant
rule, as discussed in Section 2.1.3. The first premise is the same as the first premise in the
weakenUpdate rule, indicating that the “invariant update” can be used to reach the state that
is reached with update U . The second premise shows that U ′ is indeed an invariant over the
while loop; for any state that is reached from executing the body of the while loop after U ′,
there exists an interpretation for the γ symbols such that U ′ directly reaches that state. Finally
the proof tree for ϕ is continued in the third premise.

a

Example 15:

Consider the following sequent:

∀ Tuple x . x.fst .
= 0 =⇒ [while (g) {t=t.next; t.fst=1}](t.fst ≥ 0)

As an invariant update we use the following: U ′ = t := γt+next,0
‖ ∀x . χt+next(x) −> x.fst :=

γ≥,1(x). To show that this is an actually invariant, we need to prove the following two premises
from the invariantUpdate rule (where substitution on the update U ′ has already been applied):

∀x . x.fst .
= 0, (t

.
= c1 & ∀x . x.fst .

= c2(x))

=⇒ ∃̃y1, y2.∀x.(χt+next(y1) & χ≥(y2(x))) &

{t := y1 ‖ ∀x . χt+next(x) −> x.fst := y2(x)}(t .
= c1 & ∀x . x.fst .

= c2(x))
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∀x . x.fst .
= 0, {U ′}g,

{U ′}[p](t
.
= c1 & ∀x . x.fst .

= c2(x))

=⇒ ∃̃y1, y2.∀x.(χt+next(y1) & χ≥(y2(x))) &

{t := y1 ‖ ∀x . χt+next(x) −> x.fst := y2(x)}(t .
= c1 & ∀x . x.fst .

= c2(x))

∀x . x.fst .
= 0, {U ′} ! g

=⇒ {U ′}(t.fst ≥ 0)

Provided that we can handle the “second-order” existential quantifier, instantiation of the
quantifiers with c1 for y1 and respectively c2 for y2 results in logically valid and provable se-
quents. a

Similar to the weakenUpdate rule, the invariantUpdate rule is altered in Section 2.2.4 to replace
the “second-order” quantifier ∃̃ with the real intended meaning.

2.2.3. Automated Fixed Point Search

The automatic derivation of fixed points is highly similar to the original one described in Bubel
et al. (2009). The main concept is to iterate the execution of the body of a while loop many
times and updating a “weakening update” accordingly until a fixed point for this update is
reached. Upon encountering a while loop, the loopUnwind rule (Section 2.1.3) is applied once.
The resulting sequent is executed up to the point where we re-encounter the while loop, using
the calculus rules for symbolic execution. Due to the possible presence of conditional statements
in the while loop, this symbolic execution results in one or more branches.

To obtain a fixed point, we collect the updates U1, . . .Um that are the result of the symbolic
execution of the while loop’s body, in each of those branches. We join them together with U0 in
one update U ′ that captures all states that can be reached with these updates. We then replace
U0 with U ′ and unwind the loop again, until we can conclude that U0 is a fixed point.

An overview of this process can be found in Figure 2.3, in which the symbol ṫ is used for the
join operator on branches, which is defined later in this section.

To detect whether U0 is a fixed point, we check if U0 is weaker than U ′ (see Definition 16).
That is, we try to prove that for all locations loc the states reachable from U0 subsume those
of U ′:

∀̃ȳ′.∃̃ȳ.(Eq(ȳ′, ȳ) & χγ̄′(ȳ
′) −> χγ̄0(ȳ) & ∀x{U0[γ̄0/ȳ]}loc[x]

.
= {U ′[γ̄′/ȳ′]}loc[x]) (2.1)

where

• γ̄0, γ̄′ denote sequences of all γ symbols occurring in one of the respective updates U0 or
U ′

• ȳ, ȳ′ are duplicate-free sequences of logic variables of same length as γ̄ resp. γ̄′

• χγ̄0(ȳ) is short for ∀x.χγ̄0(ȳ(x)), similar for χγ̄′(ȳ
′)
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Γ0 =⇒ {U0}[while(g) {b};...]ϕ,∆0

Γ0, g =⇒ {U0}[b; while(g) {b};...]ϕ,∆0

. . .Γ1 =⇒ {U1}[while(g) {b};...]ϕ,∆1 Γm =⇒ {Um}[while(g) {b};...]ϕ,∆m

U ′ = (C0,U0)ṫ . . . ṫ(Cm,Um); Ci = Γi ∪ ! ∆i

U0 subsumes U ′? U0 ← U ′

Return U0

loopUnwind

symbolic execution

No

Yes

Start

Figure 2.3.: Flowchart of the computation of a loop invariant: ṫ as the join operator

• ∃̃, ∀̃, x and loc are defined as in the weakenUpdate rule. Note that again we here have two
short-hand “second-order” quantifiers present (∃̃ and ∀̃) in a first-order formula, which is
not allowed.

• Eq(ȳ′, ȳ) :=
∧

yi∈ȳ,y′j∈ȳ′,
ai=aj

∀x.(yi(x) = y′j(x)) and χγ̄(ȳ) :=
∧

γai,i∈γ̄0,
yi∈ȳ

∀x.χai(yi(x)) (analog. χγ̄′)

As long as we have not found this fixed point we continue with another iteration of unwinding
the while loop and joining the branches, as shown in Figure 2.3. Due to the way the branches
are joined, a fixed pointed is guaranteed to be found as is described later in this section.

a

Example 16:

As a simple example, consider the following two updates:

U ′ = x := γ≥,0(x)

U0 = x := γ>,0(x)

We want to show that U0 subsumes U ′. I.e. we need to prove the following instantiation of
equation (2.1):

∀̃y′∃̃y.
(
Eq(y′, y) & χ≥(y′) −> χ>(y) & ∀x.({x := y(x)}x .

= {x := y′(x)}x)
)

Skolemization (Fitting, 1990) is a standard technique used in first-order logic to replace a
universal quantified variable with a new constant symbol (which is adopted as the forallRight
rule in the dynamic logic from KeY (Beckert et al., 2007)). Note that this rule is only available
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for first-order logic formula and that therefore the use of this rule on the special symbol ∀̃ is
just show the intention. This gives us (after update application):

∃̃y.
(
Eq(c, y) & χ≥(c) −> χ>(y) & y(x))

.
= c(x)

)
We can now instantiate the “second-order” existential quantifier on the function y with c:

Eq(c, c) & χ≥(c) −> χ>(c) & (c(x))
.
= c(x)

Where we mainly have to prove that for this new, unspecified non-rigid function c the formula

∀x.
(
χ≥(c(x)) −> χ>(c(x))

)
holds. Which, due to the nature of the abstract lattice for integers, is trivially the case. a

As noted by Niedermann (2011) a computational slightly more expensive but highly simpli-
fying way of detecting a fixed point is to see whether U0 =z U ′ (that is, equal except for the
z-index on γ-symbols4 ) since that is, after all, what being a fixed point implies: another execu-
tion of the loop’s body yields no change in the update representing the state change. This is a
sound approach and one may notice that it takes at most one iteration more than the detection
of a fixed point using the subsumption method described above. It also removes the need of
having the special quantifiers ∀̃ and ∃̃ to detect subsumption.

Joining Branches

The join rule introduced in this section is a special rule, in the sense that it is not a regular
sequent calculus rule but a ‘meta rule’ that is able to combine two branches of a proof tree.
The following is adopted from Bubel et al. (2009).

Let P denote a proof where we have unwinded and executed the while loop once, obtaining
several open branches:

...
Γs0 =⇒ {Us0}[while (g){b}]ϕ, ∆s0

...
Γs1 =⇒ {Us1}[while (g){b}]ϕ, ∆s1 . . . Γsm =⇒ {Usm}[while (g){b}]ϕ, ∆sm

Applying the join rule closes all except one of these open branches. The open branch that is
left is extended by adding the sequent

sm∨
i=s0

(Γsi & ! ∆si) =⇒ {(Cs0 ,Us0) ṫ . . . ṫ (Csm ,Usm)}[while (g) {b}]ϕ

as a new leaf with

• formula set Csi := Γsi ∪ ! ∆si and

• (C1,U1) ṫ (C2,U2) is an update join operation as defined below.

4That is, one z-index may be mapped to one other z-index, but not to multiple, i.e. update x := γa,1 ‖ y := γa,1
is equal to update x := γa,2 ‖ y := γa,2 in this context, but not equal to x := γa,2 ‖ y := γa,3.
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Definition 17 (Update Join · ṫ ·). The update join operation has the signature

ṫ : (℘(For)× Updates)× (℘(For)× Updates)→ Updates

where ℘(For) denotes the power set of formulas and is defined by the following property:
Let U1 and U2 denote arbitrary updates occurring in a proof P and let C1, C2 be formula

sets representing constraints on the update values. Then an update (C1,U1) ṫ (C2,U2) must be
(P,C1/2)-weaker than U1 resp. U2, i.e.

Ui /P,Ci (C1,U1) ṫ (C2,U2), i = 1, 2 .

Soundness of the join rule is a great convenience, but since it is only used for the automatic
derivation of weakened updates, the correctness of the real application of the derived weakened
update is ensured by the soundness of the invariantUpdate rule.

An Additional Rewrite Step

Up to this point the join-procedure is the same as it was in the original version, however with
the inclusion of objects some alternation is needed in the following steps. Consider the while
loop:

while (g) {

x = x.next;

x.car = x.car + i;

i = i - 1;

}

It may be clear that we want to end up with some kind of update like {i := γ>,0 ‖ x :=
γx+next,0

‖ ∀χx+next(x) −> x.car := γ>,1(x)}. This is where we need the quantified updates and
unary γ-symbols to correctly construct the weakened update. However, as can be seen in the
calculus rules for symbolic execution, quantified updates are never introduced by the application
of those rules. The introduction of the quantification needs therefore to be performed on the
level of this meta-rule so that they can be included in the weakened update. To continue
the joining of branches in a straight-forward way for the abstract domains of all sorts, we
introduce these quantifications using the following rewrite step during the symbolic execution
of the body of the while loop. That is, we only perform this rewrite step during the fixed point
search. After the symbolic execution of an assignment to a field of an abstract object variable
(e.g. {. . . ‖ loc := γa,z ‖ . . .}[loc.b1 . . . bn = t; ...]ϕ), we end up, after parallelization, with a
sequent of the form:

Γ =⇒ {. . . ‖ loc := γa,z ‖ . . . ‖ γa,z.b1 . . . bn := t}[p]ϕ,∆

We now rewrite this right-most elementary update to a quantified update of the form ∀x.χa(x) −>
x.b1 . . . bn := t′ instead, where t′ is a term describing all possible values the updated location
can have after this update. We need to take into account that this update now also affects
other objects in γ(a) that are different from the specific γa,z. In order to create a correct term
t′ we make use of the update join operation ṫ which is defined later on. We collapse the update
. . . ‖ loc := γa,z ‖ . . . just before the symbolic execution of the assignment to U . Our rewrite
rule is as follows:

Γ =⇒ {U ‖ γa,z.b1 . . . bn := t}ϕ,∆ 
Γ =⇒ {U ‖∀x.χa(x) −> x.b1 . . . bn := {U ′}x.b1 . . . bn}ϕ,∆
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where U ′ = (φ,U)ṫ(φ,U ‖∀x.χa(x) −> x.b1 . . . bn := t) in which φ = Γ∪! ∆. Since U ′ captures
both the update U in which all locations are unaffected by the assignment, and U ‖∀x.χa(x) −>
x.b1 . . . bn := t in which all possible locations are affected, the value of x.b1 . . . bn after this
update U ′ thus captures both the possibilities that a location was and was not affected by this
update, which is what we aimed to achieve.

a

Example 17:

Given the following sequent:

Γ =⇒ {∀x.χa(x) −> x.fst := 0 ‖ y := γa,0}[y.fst = 1; ...]ϕ,∆

After executing the assignment rule and performing some update rewriting steps, we obtain:

Γ =⇒ {∀x.χa(x) −> x.fst := 0 ‖ y := γa,0 ‖ γa,0.fst := 1}[...]ϕ,∆

This is the point where, during symbolic execution of the while loop’s body in the search for
a fixed point, the rewrite rule step is applied. The rewrite rule provides the following two input
pairs to the join operator ṫ described later in this section:

(Γ ∪ ! ∆ , ∀x.χa(x) −> x.fst := 0 ‖ y := γa,0)

(Γ ∪ ! ∆ , ∀x.χa(x) −> x.fst := 0 ‖ y := γa,0 ‖ ∀x.χa(x) −> x.fst := 1)

The join operator returns the update U ′ = y := γa,0 ‖ ∀x.χa(x) −> x.fst := γ≥,0(x). Thus
applying our rewrite step we obtain as a resulting sequent:

Γ =⇒ {∀x.χa(x) −> x.fst := 0 ‖ y := γa,0 ‖ ∀x.χa(x) −> x.fst := {U ′}x.fst}[...]ϕ,∆

And after application of the U ′ we obtain:

Γ =⇒ {∀x.χa(x) −> x.fst := 0 ‖ y := γa,0 ‖ ∀x.χa(x) −> x.fst := γ≥,0}[...]ϕ,∆

a

It should be noted that we do not prove the soundness of either the rewrite rule described
above, or the join operator (ṫ) described below. Therefore, these are not to be used in the
construction of a proof but only during the search for a fixed point. The resulting invariant
update can then be used in the real proof using the invariantUpdate rule which guarantees
soundness (as proven in Appendix B.2).

Defining the Join Operator (ṫ)

Given a thus modified update/constraints pair (U1, C1), (U2, C2), we join them (ṫ) to the update
U ′ as follows. Let loc be a location occurring on the left-hand side of U1 or U2. For each unique
loc after α-conversion we add by parallel composition the elementary update ∀x.(ϕ1(x) | . . . |
ϕn(x)) −> loc[x] := t′ where ϕi are the guards associated with all elementary updates to loc in
U1 or U2 and t′ is a term constructed as follows.

1. Try to prove

=⇒ ∃y.∀z.((C1 −> ({U1}loc[z])
.
= y) & (C2 −> ({U2}loc[z])

.
= y))
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when successful take t′ = t where t is the term occurring on the right-hand side in the
right-most elementary update to loc in either of the two updates. If the proof attempt
fails (e.g. because of a timeout), continue with the next step.

2. For each pair (Ci,Ui), i = 1, 2, start with the smallest abstract domain element a and try
to prove

Ci =⇒ ∀z.χa({Ui}loc[z])
using every element a in the abstract lattice until an a has been found for which this
sequent holds. Note that we always find an a for which this holds, if not any other
element then with a = > (thus the last abstract element that is tried).

Having obtained the abstract domain elements a1, a2 for each respective pair, we can
compute a1 t a2 (or at least an upper bound). We then take t′ = γa1ta2(x), where x is
the quantified variable.

a

Example 18:

Given program variables t, i and the constraint/update pairs

(i > 0,∀x.χt+next(x) −> x.fst := 0)

(i ≥ 0,∀x.χt+next(x) −> x.fst := i ‖ i := i− 1)

We compute the joined update for this pair as follows. Starting with location x.fst, we generate
the update ∀x.(χt+next(x) | χt+next(x)) −> x.fst := t′. The first attempt to find if this quantified
location is evaluated to the same value under both updates obviously fails, for example if i is 1.

We then enter the abstraction phase, and find that the first abstract elements in the integer
lattice for which the proof obligation in step 2 can be proven are 0 and ≥ for each pair:

i > 0 =⇒ ∀z.χ0({∀x.χt+next(x) −> x.fst := 0}z.fst) and

i ≥ 0 =⇒ ∀z.χ≥({∀x.χt+next(x) −> x.fst := i ‖ i := i− 1}z.fst)

The join for these elements gives us (0 t ≥) = ≥. The first sub-update of U ′ becomes
∀x.(χt+next(x) | χt+next(x)) −> x.fst := γ≥,0(x). A similar computation for i gives us the
complete update:

∀x.(χt+next(x) | χt+next(x)) −> x.fst := γ≥,0(x) ‖ ∀x. true −> i := γ≥,1(x)

a

2.2.4. Replacing the Special Quantifier ∃̃

In Section 2.2.2 the following definition of the invariantUpdate is specified:

invariantUpdate

Γ, {U}∀x.(loc[x]
.
= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc[x]

.
= c(x)),∆ Initial

Γ, {U ′}g, {U ′}[p]∀x.(loc[x]
.
= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc[x]

.
= c(x)),∆ Invariant

Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆ Use case

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆
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In this rule the notation ∃̃γ̄.ψ is an abbreviation for ∃̃ȳ(∀x χa(ȳ(x)) & ψ[γ̄/ȳ]), where ȳ =
(y1, . . . ym) a list of function variables of the same length as γ̄. Since γ symbols may be unary
functions, the special quantifier ∃̃ thus quantifies over second-order variables in a first order
formula, which is not possible. In the remainder of this section we assume all logic variables
quantified over by ∃̃ to be second-order. To show this in a more clear setting, consider the
following instantiation of the first premise:

Γ, {t.fst := 3}∀x.(x.fst .
= c(x)) =⇒ ∃̃γ̄.{∀x.x.car := γ≥,0(x)}ϕ,∆

Since ∃̃ appears as a “second-order” quantifier, this is an illegal formula in our logic. We
therefore remove the higher-order quantification step over y and assume that an instantiation
of y is given, we then obtain:

Γ, {t.fst := 3}∀x.(x.fst .
= c(x)) =⇒ ∀x.χ≥(y(x)) & {∀x.x.car := y(x)}ϕ,∆

No special “second-order” quantifier is present now. Recalling that the goal is to create a fully
automatic proof search and that we know that this proof search always applies the removal of the
“second-order” quantifier directly after the application of the invariantUpdate (or weakenUpdate)
rule, one could consider what happens if we combine these two steps into one. In that case the
need of a “second-order” quantifier becomes obsolete. We can combine the two steps into one
by placing a “definition” of y in the antecedent:

Γ, {t.fst := 3}∀x.(x.fst .
= c(x)),∀x.(y(x)

.
= r[x]) =⇒ ∀x.χ≥(y(x)) & {∀x.x.car := y(x)}ϕ,∆

Here r is a regular term with at most one free variable in it, substituted with x. In the
next section a method is described to automatically derive a term r that indeed captures the
definition of a correct replacement function y for γ. In this example we could of course simply
take r = c(x) or r = 3. To capture this concept of applying these two steps in one, we adapt
the invariantUpdate rule to:

invariantUpdate

Γ, {U}∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ, {U ′}g, {U ′}[p]∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

And similar the weakenUpdate rule to:

weakenUpdate

Γ, {U}∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ =⇒ {U ′}ϕ,∆
Γ =⇒ {U}ϕ,∆

where notation is the same as before and:

• ȳ a list of fresh logic variables (y1, . . . , yn) ranging over functions, the same length, arity
and sort as γ̄ (γa1,1, . . . γan,n). For later convenience we assume that all indexes of γ
variables are unique. That is, there do not exist two γ variables γa,i and γb,i with a 6= b.
We could ensure this by rewriting the indices (since they do not affect the meaning of the
symbol). As a result we can now state that a function symbol yi relates to a unique γa,i
with the same index.
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• Ξ a list of formulas ‘defining’ ȳ. Each ξi ∈ Ξ is required to be of the form ∀x.(yi(x)
.
= ri[x])

where ri is an automatically derived term for yi (having a free variable x which is quantified
over). Function symbols from γ̄ or ȳ are not allowed to appear in these ri.

• ∀x.χā(ȳ(x)) a list of formulas ensuring that each yi is a correct instantiation of each γi.
It is an abbreviation for the formula ∀x.χa1(y1(x)) & . . . & ∀x.χan(yn(x)) where ai is the
abstract element from γai,i.

Lemma 1. The weakenUpdate rule and invariantUpdate rule are sound.

The proof for this lemma is given in Appendix B.

Automatic Instantiation of Substitute

With these adaptations to the weakenUpdate and invariantUpdate rule the automatic proof search
not only has to return the fixed point or invariant update U ′ but also the correct substitute for
the γ symbols in the first (or first two) premises of the rule. That is, we need to establish an
automatic instantiation of ri for each γa,i as shown in the last definition of both rules. That
it is possible to do so results from the fact that we know how the invariant update U ′ and the
fresh γ symbols it contains were derived.

If a fresh γa,i occurs in an elementary update in U ′, we know it appears on the right-hand
side and, because of the way U ′ has been constructed, we also know that it is the only term on
the right-hand side of the elementary update. To see that this is indeed the case one has to
look at the definition of the automatic fixed point search and join rule operation as defined in
Section 2.2.3. Recall that a general form of an update is:

∀x.ϕ(x) −> loc[x] := t[x] ‖ ∀x.ϕ(x) −> loc[x] := t[x] ‖ . . .

Now for each fresh γa,i introduced in U ′ we need to construct a correct substitute as a term
ri to be used in the premise of either the weakenUpdate or the invariantUpdate rule. For each
γa,i we start by selecting from U ′ only the elementary updates in which this symbol occurs and
combine this as the update Uγ . Using the information on how U ′ is constructed, we know that
γa,i is the only symbol on the right hand side and thus that Uγ is of the form:

Uγ = ∀x.ϕ1(x) −> loc1[x] := γa,i(x) ‖ ∀x.ϕ2(x) −> loc2[x] := γa,i(x) ‖ . . .

For later steps it is important that we preserve the order of the elementary updates (that is, we
have to preserve the ‘last-one wins’ semantics). The construction of the corresponding ri that
defines the substitute yi for γa,i - that is, the term to be used in the ‘definition’ formula-set Ξ, is
now a two-step procedure. We first construct a partial term rk,i for each location lock modulo
the renaming of bound (quantified) variables. Then we combine these partial terms into the
final term ri.

For the construction of rk,i, the partial term for location lock, we first remove all the updates
to other locations from the update Uγ . This gives us:

Uk = ∀x.ϕ1(x) −> lock := γa,i(x) ‖ . . . ‖ ∀x.ϕn(x) −> lock := γa,i(x)

From the premise(s) in both the weakenUpdate and the invariantUpdate rule we know that after
substitution it has to hold that ∀x.(lock[x]

.
= ck(x)). To obtain the basis for our term rk,i, we

take:
rk,i[z] = {Uk}lock[z]
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Applying update simplification, this results in

rk,i[z] = if (ϕn(z))then(γa,i(z))else(. . . if (ϕ1(z))then(γa,i(z))else(lock[z]) . . . )

The ‘last-one wins’ semantics is preserved by this conditional term. It is clear that the best
substitute for γa,i(z) is ck(z) in order to fulfill the property that ∀x.(lock[x]

.
= ck(x)). We

construct the term rk,i by performing this substitution on the right-hand term. This gives us:

rk,i[z] = if (ϕn(z))then(ck(z))else(. . . if (ϕ1(z))then(ck(z))else(lock[z]) . . . )

We can now shorten this definition (and note that it is possible to obtain it even faster during
implementation) to:

rk,i[z] = if (ϕn(z) | . . . | ϕ1(z))then(ck(z))else(lock[z])

We repeat this procedure for all locations (modulo bound variable renaming), giving several
rk′,i for the different locations lock′ . To construct the final term ri for γa,i we combine these
sub-definitions for each location by substituting one rk,i term in the else-branch of another rk′,i
term (repeating this process pair-wise if there are more than two different locations module
bound variable renaming). The term occurring in the final else-branch is of no real concern.
The yi-function replacing γa,i as defined by this ri only occurs in situations where at least one
of the conditions in one of the if -parts holds.

The only restriction is that the value in this else-part has to fall in the correct abstract
domain, that is, χa should hold for this value where a the abstract element from γa,i. We can
assure this by taking a random element from γ(a) or by creating a new γa,j .

a

Example 19:

Consider that the update Uγ for γa,i is:

Uγ = ∀x.ϕ(x) −> x.fst := γa,i(x) ‖ ∀x.ϕ(x) −> x.snd := γa,i(x) ‖ . . .

We first take lock = x.fst. From update Uγ we preserve:

Uk = ∀x.ϕ1(x) −> x.fst := γa,i(x) ‖ . . . ‖ ∀x.ϕn(x) −> x.fst := γa,i(x)

To obtain the basis for our term rfst,i we take:

rfst,i[z] = {Uk}z.fst

Applying update simplification, we get:

rfst,i[z] = if (ϕn(z))then(γa,i(z))else(. . . if (ϕ1(z))then(γa,i(z))else(z.fst) . . . )

We construct the term rfst,i by performing the substitution of γa,i by cfst on the right-hand
term (given that cfst is the term to which x.fst locations are compared). This gives:

rfst,i[z] = if (ϕn(z))then(cfst(z))else(. . . if (ϕ1(z))then(cfst(z))else(z.fst) . . . )

Which can be shortened to:

rfst,i[z] = if (ϕn(z) | . . . | ϕ1(z))then(cfst(z))else(z.fst)
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We repeat this for the location x.snd, which gives us the following two sub-terms for ri:

rfst,i[z] = if (ϕn(z) | . . . | ϕ1(z))then(cfst(z))else(z.fst)

rsnd,i[z] = if (ϕp(z) | . . . | ϕm(z))then(csnd(z))else(z.snd)

We combine these sub-definitions for each location by substituting rsnd in rfst giving us:

ri[z] = if (ϕn(z) | . . . | ϕ1(z))then(cfst(z))else(if (ϕp(z) | . . . | ϕm(z))then(csnd(z))else(z.snd))

a

We now have constructed the term ri for γa,i that should match the invariant update found
by the fixed point search. When creating the formula ξi for Ξ that defines the function y, we
ensure that the logic variable z is replaced with the quantified variable x. In the general case,
this formula is thus:

ξi = ∀x.(yi(x)
.
= ri[x])

a

Example 20:

Given the sequent:

∀x.(x.fst .
= 0) =⇒ {t := t.next}[while(g) {t.fst = 1; t = t.next}]ϕ

Using the fixed point search as defined in Section 2.2.3, we obtain the invariant update:

U ′ = ∀x.χt+next(x) −> x.fst := γ≥,1(x) ‖ t := γt+next,2

Applying the invariantUpdate rule gives as first premise:

∀x.(x.fst .
= 0), {t := t.next}(∀x.(x.fst .

= c1(x)) & t
.
= c2),

∀x.(y1(x)
.
= r1[x]), ∀x.(y2(x)

.
= r2[x])

=⇒ ∀x.χ≥(r1[x]) & ∀x.χt+next(r2[x]) &

{U ′}[γ≥,0/y1][γt+next,2
/y2](∀x.(x.fst .

= c1(x)) & t
.
= c2)

Using the method described in this section we find for r1 and r2 the following terms:

r1[z] = if (χt+next
(z))then(c1(z))else(0)

r2[z] = if (true)then(c2(z))else(t.next)

We thus have formula ξ1 and ξ2 in Ξ:

ξ1 = ∀x.
(
y1(x)

.
= if (χt+next

(x))then(c1(x))else(0)
)

ξ2 = ∀x.
(
y2(x)

.
= if (true)then(c2(x))else(t.next)

)
With which the first premise can be proven. The same instantiations can be used to prove

the second premise as well. a
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2.3. Examples and Improvements

In Figure 2.4 a number of example programs using lists is shown. The first two programs (a-b)
are concerned with the structure of these lists, while the later three (c-e) are more concerned
with the data fields of the lists. In this section we describe what we can and cannot prove
using the abstract lattice as described for objects. To increase the set of propositions that
can be proved with the approach described in Section 2.2, the fixed point search is extended
in Section 2.3.4 with an ‘iterator shape’, using some concepts from shape analysis. However
due to the difference in nature between shape analysis and our abstraction based approach this
extension does not cover the same amount of shapes as is possible in shape analysis (Section 2.4).

In all of the programs in Figure 2.4 we have the assumption that t is an acyclic list of tuples
and that each of its fst fields is set to 1. In the first two programs (a-b) we want to show that t
remains acyclic. In programs (c-d) we want to show that the fst fields remain above the limit
of 0. Example (e) is an ‘object version’ of the example used in the original work on integers
and we merely want to show that sum holds afterwards a value ≥ 0.

We define Γ such that we cover all of the examples’ assumptions. Since we are not able to
specify that ‘just’ t is acyclic we add the assumption that the whole heap is acyclic as well5:

acyclic(l) = ∀x.∀y.(x 6 .= y −> x.next 6 .= y.next),

∀x.(x.next 6 .= x),

∀x.(x.next 6 .= l)

Γ = acyclic(t),

∀x.χ{t0,t+next}(x) −> x.fst
.
= 1

The proof obligations for each of the example programs are as follows, where we take p to be
the corresponding program from Figure 2.4:

(a) Γ =⇒ [p]acyclic(t)

(b) Γ =⇒ [p]acyclic(t)

(c) Γ =⇒ [p]∀x.χ{t+next}(x) −> x.fst ≥ 0

(d) Γ =⇒ [p]∀x.χ{t+next}(x) −> x.fst ≥ 0

(e) Γ =⇒ [p]sum ≥ 0

With our acyclicity definition we do allow for infinite lists, which may result in while loops that
do not terminate when executed, which could happen in e.g. in example (a). However since we
only use the box operator, if the list pointed to by t is infinite validity of the sequents above
is automatically obtained. In each of the proof obligations the formulas indeed hold after the
execution of the program. In the following sections we show for each of the examples how it
can be proved in the abstraction framework, or why it is out of scope.

5We might be able to define acyclicity of t before the code is executed, however not after t has been changed
in the program.
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x = t;

while (x != s) {

x = x.next;

}

e.next = x.next;

x.next = e;

(a) Insert

r = n;

x = t;

while (x != n) {

e = x.next;

x.next = r;

r = x;

x = e;

}

t = r;

(b) Reverse

while (t != null) {

t.fst = t.fst - 1;

t = t.next;

}

(c) Limits

while (t != null) {

t.fst = t.fst + 1;

t = t.next;

}

(d) Limits revised

sum = 0;

while (t != null) {

sum = sum + t.fst;

t = t.next;

}

(e) Sum

Figure 2.4.: Example programs

2.3.1. List Insertion

In this example we insert a node in an acyclic list and prove that afterwards we still have an
acyclic list. Below the program from example (a) is listed again, inserting an element e in the
list t just after the element s:

x = t;

while (x != s) {

x = x.next;

}

e.next = x.next;

x.next = e;

We want to formulate that in the initial state there are no cycles (recall: we extended the
condition of a non-cyclic list to having no cycles anywhere on the heap), thus:

∀a.∀b.(a 6 .= b −> a.next 6 .= b.next)

and to ensure that there is nothing pointing to the head of the list:

∀x.x.next 6 .= t

Which were already present in Γ. Further we specify that e is not yet in the list:

∀x.(x.next 6 .= e) & t 6 .= e

The property to prove is that after insertion acyclicity still holds, thus:

∀a.∀b.(a 6 .= b −> a.next 6 .= b.next), and ∀x.x.next 6 .= t
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We now execute the fixed point search as described in Section 2.2.3, where Ui denotes the
update after the i-th execution of the loop’s body, and U ′i denotes the result of the i-th join.

U0 = x := t

U1 = x := t.next

U ′1 = x := γt+next,0
U2 = x := γt+next,0

.next

U ′2 = x := γt+next,1

We have found a fixed point, because both U ′1 subsumes U ′2, and because the updates are
equivalent apart from their z-indexes. We can therefore apply the invariantUpdate rule with
update U ′1 as the weakening update. After continuing the symbolic execution of the two assign-
ments following the while loop, we thus obtain the update:

x := γt+next,0
‖ e.next := γt+next,0

.next ‖ γt+next,0.next := e

After some rewriting and calculus rule applications we are left with the following sequent to
prove (we ignore the second formula for acyclicity, to show that ∀x.(x.next 6 .= t), but its proof
is similar to the one for this sequent).

Γ, ∀x.(x.next 6 .= e), t 6 .= e, a 6 .= b =⇒
{x := γt+next,0

‖ e.next := γt+next,0
.next ‖ γt+next,0.next := e}(a.next 6 .= b.next)

We note beforehand that it cannot be that γt+next,0
.
= e since we have the assumption that e is

not yet an element in list t.
We can prove this sequent by performing a case split on the values of a and b. To save space,

we omit cases that contradict the assumptions in Γ:

• Case a
.
= e (thus b 6 .= e)

– Case b
.
= γt+next,0

After update application, we have to prove: γt+next,0
.next 6 .= e. Which is simple since

we had in Γ that ∀x.(x.next 6 .= e).

– Case b 6 .= γt+next,0
We have to prove: γt+next,0

.next 6 .= b.next. Note that we have b 6 .= γt+next,0
, so we can

use the proposition in Γ: ∀a.∀b.(a 6 .= b −> a.next 6 .= b.next).

• Case a
.
= γt+next,0

(thus b 6 .= γt+next,0
)

We have to prove: e 6 .= b.next. For which we again can use ∀x.(x.next 6 .= e).

• Case a 6 .= e and a 6 .= γt+next,0

– Case b
.
= e

We get a.next 6 .= γt+next,0
.next which we prove using ∀a∀b.(a 6 .= b −> a.next 6 .=

b.next).

– Case b
.
= γt+next,0

We get a.next 6 .= e which we prove using ∀x.(x.next 6 .= e).
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– Case b 6 .= e and b 6 .= γt+next,0
We get a.next 6 .= b.next for which we again can use (using the formula in the an-
tecedent that a 6 .= b): ∀a∀b.(a 6 .= b −> a.next 6 .= b.next).

This shows that using the abstract lattice we are able to prove the preservation of acyclicity
during element insertion.

2.3.2. List Reversal

Below the example (b) from Figure 2.4 on reversing a list:

r = n;

x = t;

while (x != n) {

e = x.next;

x.next = r;

r = x;

x = e;

}

t = r;

Note that n here is used to mark the end of the list (since we never introduced a real null
element). This implies that multiple next fields may point to this objects, making it an exception
to the acyclicity assumption. However, for this particular example where we start the program
with only one list this has no effect.

Again we want to prove that in the resulting reversed list t acyclicity still holds. The updates
used during the abstraction process are:

U0 = r := n ‖ x := t

U1 = e := t.next ‖ x.next := n ‖ r := t ‖ x := t.next

U ′1 = r := γ{n0,t0},0 ‖ x := γ{t0,t+next},0
‖ e := γ{e0,t+next},0

‖ x.next := γ{n0,t+next},0

U2 = e := γ{t0,t+next},0
.next ‖ ∀x . χ{t0,t+next}(x) −> x.next := γ{n0,t0},0(x) ‖

r := γ{t0,t+next},0
‖ x := γ{t0,t+next},0

.next

U ′2 = r := γ{n0,t0,t+next},0
‖ x := γ{t0,t+next},1

‖ e := γ{n0,t0,t+next},1
‖

∀x . χ{t0,t+next}(x) −> x.next := γ{n0,t0.t+next},0
(x)

We dropped some elementary updates such as to x.next in subsequent updates to save space.
After another round of abstraction we would find that U ′2 is a suitable fixed point. Using U ′2 as
a fixed point in the weakenUpdate rule prevents us from proving that acyclicity holds after the
reversal of this list. The part of U ′2 that causes this disability is the last elementary update:

{. . . ‖ ∀x . χ{t0,t+next}(x) −> x.next := γ{null0,t0.t+next},0
(x)}

Because of the abstraction performed with this update, we can neither show that

• no object gets its next field pointing to t, since it requires us to prove that:
∀x.χ{t0,t+next}(x) −> γ{null0,t0.t+next},0

(x) 6 .= t,

• no two next fields get assigned to the same object, since that requires us to prove:
∀x∀y. x 6 .= y −> γ{null0,t0.t+next},0

(x) 6 .= γ{null0,t0.t+next},0
(y).
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Both sequents cannot be proven because of our definition of γ functions, i.e. we do not know
whether γa,z(x)

.
= γa,z(y) holds or not, given that x 6 .= y (Section 2.2.1). Therefore, we are not

able to prove the acyclicity of t.

2.3.3. Field Invariants

The programs (c,d,e) listed in Figure 2.4 and the corresponding properties to prove are all
concerned with the fields of the nodes in the list of tuples t. In proof obligation (c - Limits) we
can clearly see how the fixed point search returns an over-approximated fixed point resulting in
the inability to prove the proposition. For convenience we repeat the example here:

while (t != null) {

t.fst = t.fst - 1;

t = t.next;

}

The join procedure for the search of the fixed point is the following (note that we have the
assumption in Γ that ∀x.χ{t0,t+next}(x) −> x.fst

.
= 1):

U0 = empty

U1 = t.fst := t.fst− 1 ‖ t := t.next

U ′1 = t.fst := γ≥,0 ‖ t := γt+next,0

U2 = ∀x.χt+next(x) −> x.fst := γ>,0 ‖ t := γt+next,0
.next

U ′2 = t.fst := γ≥,0 ‖ ∀x.χt+next(x) −> x.fst := γ>,1 ‖ t := γt+next,1

Since t gets abstracted to anything in the list starting from the object originally referred to by
t using the field next, the fixed point search cannot come to the conclusion that the value of
t.fst at the beginning of the while loop is always 1 (since according to the weakened updated
it might have been updated in the loop-cycle before this one). Therefore for all x.χt+next

(x) the
update to x.fst gets abstracted to γ>,0.

This same problem arises in (d - Limits revised), however since we are increasing the value of
the fst field instead of decreasing we abstract to γ≥. Therefore the checked property concerning
the limit holds no matter the number of iterations. In this case however, we could abstract t

straight to γ>,0 and still be able to prove that the fst fields all have a value above the limit after
termination of the while lop (since in our abstract lattice > only represents elements reachable
by the program code). We could harden the problem a little by adding an extra program
variable and adding to Γ : s.fst

.
= −10 so that we do need the more precise abstraction that

t only gets updated to objects reachable from t.
The similar issue holds for (e - Sum): without the existence of other program variables not

satisfying the conditions that their field fst is equal to 1 we could abstract t to γ>,0 and still
be able to prove the proposition that sum ≥ 0.

2.3.4. Improvements to the Fixed Point Search

As can be seen in Section 2.3, we are only able to to prove some of the examples from Figure 2.4,
and for some of those that we can prove an abstraction to > is just as sufficient as an abstraction
to any other correct abstract element, unless we add some specific side-conditions. On the other
hand, the examples that we are not able to prove result from the computed invariant update
being weaker than it needs to be.
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In this section an improvement extending the abstraction process is suggested, resulting in a
more specific fixed point. We try to capture one of the heap shapes that can be captured by shape
analysis (Section 2.4), which we call the iterator shape. To achieve this, additional information
needs to be provided to the join process, other than the abstraction currently provided by the
abstract lattice. The concept is that by providing extra information on the fields of the objects
pointed to by program variables, an improved join procedure can be developed. This is done by
introducing an additional predicate to be used in the search for a fixed point, adding additional
invariants (constraints) that can be used in the join procedure and combining these in a new,
extended version of the invariantUpdate rule.

A ‘border’ predicate for quantified updates

A new predicate, denoted by ζa,o is added, being quite similar to the predicate χa. The difference
in semantics is that o represents a ‘border’ object for the abstract elements from the set AReach
(Section 2.2.1). That is, the fields of object o are not allowed to be used to show that an object
is an element of γ(a).

The interpretation of this new predicate is defined as I(ζa,o)(x) = x ∈a,o a, where ∈a,o:

x ∈a,o a1 ∪ a2 iff (x ∈a,o a1 or x ∈a,o a2) and (a1 6= ∅ or a2 6= ∅)
x ∈a,o {y0} iff x = valM,s0,β(y)

x ∈a,o {y+
b1,...,bn

} iff ∃i∃z . valM,s0,β(bi)(z) = x and

(z = valM,s0,β(y) or (z 6= o and z ∈a,o {y+
b1,...,bn

}))

a

Example 21:

Consider a situation in which x.next.next = y and x.next 6= y. We then have that χx+next
(y)

and ζx+next,y.next
(y) hold, but ζx+next,x.next

(y) does not. a

This new predicate is used during the search for a fixed point in a while loop. In Section 2.2.3
a rewrite step is introduced when an update is performed to fields of ‘abstracted’ objects:

Γ =⇒ {U ‖ γa,z.b1 . . . bn := t}[p]ϕ,∆ 

Γ =⇒ {U ‖∀x.χa(x) −> x.b1 . . . bn := {U ′}x.b1 . . . bn}[p]ϕ,∆

where U ′ = (φ,U)ṫ(φ,U ‖∀x.χa(x) −> x.b1 . . . bn := t) in which φ = Γ ∪ ! ∆. Instead, we now
replace this rewrite step with:

Γ =⇒ {U ‖ γa,z.b1 . . . bn := t}[p]ϕ,∆ 

Γ =⇒ {U ‖∀x.ζa,γa,z(x) −> x.b1 . . . bn := {U ′}x.b1 . . . bn}[p]ϕ,∆

where U ′ = (φ,U)ṫ(φ,U ‖∀x.ζa,γa,z(x) −> x.b1 . . . bn := t) in which φ = Γ ∪ ! ∆.
In words, we rewrite the elementary update to a quantified one, as before, but now instead

of having the guard χa(x) we have ζa,γa,z(x). That means that the rewritten update does not
update all objects in γ(a), but only those reachable without using fields from object γa,z. Note
that for all objects o, if χa(o) holds, then so does ζa,o(o). The only restriction is that no fields of
o are used to show this property. Since χa(o) holds this means that o ∈a a holds, which always

53



can be shown without using a field of object o itself. This can be easily seen by noting that for
each object p whose field is used to show that o ∈a a, the property p ∈a a holds as well. Thus
if fields of o were used to show that o ∈a, then these steps were not needed since this implies it
was already shown that o ∈a. Hence this new version of this rewrite rule is still sound.

Upgrading the fixed point search

Consider the search for a fixed point in program (d - Limits), as described in Section 2.3.3. With
the adoption of the ζ predicates, we still preserve the same first update of symbolic execution
of the while loop, and thus the same result of the join procedure:

U0 = empty

U1 = t.fst := t.fst− 1 ‖ t := t.next

U ′1 = t.fst := γ≥,0 ‖ t := γt+next,0

If the fixed point search procedure continued in the same way as described in Section 2.2.3
consequently the same fixed point would be found. To improve the final fixed point returned,
an additional loop invariant is created for each of the fields of the objects, pointed to by program
variables. In that way we preserve additional information. In this example this concerns only
the fields of program variable t.

In a more general setting, consider the two constrained updates (C1,U1) and (C2,U2) provided
as input for the join. For each of the fields b of x, where program variable x was abstracted to
γa,z, we now generate an additional invariant as follows.

For each pair (Ci,Ui), i = 1, 2, for any abstract domain element a′ starting with the smallest
one, we try to prove

Ci =⇒ χa′({Ui}x.b)

and stop processing a pair as soon as an a′ has been found for which the sequent is valid, i.e. a
proof has been found (within a given timeout). After termination we are left with two abstract
domain elements a′1, a

′
2 for the respective pairs for which we compute a′1 t a′2 (or at least an

upper bound). Finally we generate the invariant χa′(x.f) (if an invariant already existed for
x.f we replace it by this one).

Applying this method on U0 and U1 from our example, using the information provided in Γ,
i.e. that
∀x.χ{t0,t+next}(x) −> x.fst

.
= 1 (Section 2.3) we obtain an invariant for the field fst: χpos(t.fst).

Since this is an invariant, we also know that χpos({U ′1}t.fst) thus χpos(γt+next,0
.fst).

After a second symbolic execution of the while loop we now obtain:

U ′1 = t.fst := γ≥,0 ‖ t := γt+next,0

U2 = ∀x.ζt+next,γt+next,0
(x) −> x.fst := γt+next,0

.fst− 1 ‖ t := γt+next,0
.next

Now that we have the ‘additional’ information on γt+next,0
.fst the join procedure finds for

γt+next,0
.fst − 1 again the abstract element ≥ and not the abstract element > which was the

result of this join in Section 2.3.3:

U ′2 = t.fst := γ≥,0 ‖ ∀x.ζt+next,γt+next,0
(x) −> x.fst := γ≥,1(x) ‖ t := γt+next,1

We again construct an extra invariant on the fst field of t = γt+next,1
= γt+next,0

.next. Note
that we here profit from the usage of ζ instead of χ, allowing us to prove that γt+next,0

.next.
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fst is not updated by the universal update in U ′2 and therefore we can again add the invariant
χpos(t.fst).

To detect a fixed point we again use the technique of showing that two updates resulting from
subsequent join procedures are equal apart from z-indexes conversion (Section 2.2.3), hereby
noting that this also has to apply for the z-index from γ-objects used as ‘border object’ in ζ
predicates.

As a result, we find U ′2 is a fixed point, making the proof search procedure able to construct
a proof tree for example (c) in Figure 2.4, with the third premise of the invariantUpdate rule
becoming:

Γ =⇒ {U ′2}(∀x.χt+next(x) −> x.fst ≥ 0)

Updating the invariantUpdate rule

In order to allow for the use of these new invariants apart from during the search for a fixed
point, the invariantUpdate rule needs to be redefined. It has to incorporate both the standard
approach on invariants (using an inv formula as seen in Section 2.1.3) and the new approach
(using weakening updates as seen in Section 2.2.2). We use the version with the short-hand
symbol, “second-order” quantifier ∃̃ here for simplicity and readability, but this rule can be
converted to a rule without this symbol using the approach described in Section 2.2.4.

invariantUpdate

Γ =⇒ {U ′}inv,∆
Γ, {U ′}g, {U ′}inv =⇒ {U ′}[p]inv,∆

Γ, {U}∀x.(loc .= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc .= c(x)),∆

Γ, {U ′}g, {U ′}[p]∀x.(loc .= c(x))) =⇒ ∃̃γ̄{U ′} ∀x.(loc .= c(x)),∆
Γ, {U ′} ! g, {U ′}inv =⇒ {U ′}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

The first premise indicates that the invariants (captured in the formula inv) should hold
in the base case. The second premise indicates that given that the invariants hold from the
previous execution and the condition of the loop is true, the invariants should also hold after
execution of the body of this while loop. In the last sequent we can continue the construction
of the proof tree with the additional information from the invariant formula.

Resulting extended coverage

With these new additions the proof search is able to prove programs of the form (c - Limits).
One could say that the extended approach also supports one ‘heap shape’ for acyclic lists,
which can be seen as a list iterator. In this shape we also preserve invariants on all the fields of
this list, including those different from the one used for list iteration (e.g. next). That is, we
have invariants on the current item in the list indicated by the iterator. However, because this
‘iterator-shape’ is the only shape ‘supported’ with this extension, we are still unable to prove
programs such as (b - Reverse) since the iterator shape is not sufficient here.

It is expected that extension of the current framework with more different shapes turns out
to be quite hard, since the underlying concepts of an abstract lattice are essentially different
from shape analysis. The abstract lattice is used to generate a so-called points-to set, indicating
the set of all possible concrete objects to which a program variable may point in a certain state.
Opposed to that, in shape analysis the information as to which concrete objects a program
variable may point is ignored and the analysis focuses on the shape of the heap instead which,
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quite as one would expect, is better suited for shape-related properties, such as acyclicity in list
reversal. A further comparison to shape analysis can be found in Section 2.4.

2.3.5. Improvements to the Abstract Lattice

The abstract lattice as described in Section 2.2.1 is a rather straight-forward one. Some im-
provements can be considered to create a more consistent lattice, or to allow for a simplified
usage.

1. First of all, the definition of ∈a could be extended to also include the object valM,s0,β(a)
in a+

field as well. This makes the abstract element a0 obsolete. This results in a simpler
lattice (with only one ‘kind’ of abstract element) but removing the ‘singleton’ elements
also makes the abstraction less concise. E.g. a variable that could be either in γ({a0})
or γ({b0}) is now joined to γ{a+field,b

+
field},0

instead of γ{a0,b0},0. The decision whether or

not the ‘singleton’ elements should be kept in the lattice depends on the type of program
to which abstraction is applied. Were the abstract lattice to be used mainly for e.g.
applications using list-iterators, the ‘singleton’ elements could be left out.

2. The abstract element {a+
x,y} captures both the abstract elements {a+

x} and {a+
y}, that

is, γ({a+
x}) ⊆ γ({a+

x,y}) and γ({a+
y}) ⊆ γ({a+

x,y}). In the current abstract lattice how-
ever, {a+

x} t {a+
y} = {a+

x, a
+
y}. One could change the definition of the lattice such that

this pair is joined to {a+
x,y} instead, as well would {a+

x} t {a+
x,y} and {a+

x,y} t {a+
y}.

This simplification of the lattice improves the consistency of joins and results in a better
understanding of the results of joining two update-branches.

2.4. Comparison with Shape Analysis

Shape analysis is the general name given to static code analysis techniques in which during
analysis a shape is updated representing the current state of the program during execution.
In this thesis loop invariants are used, where the set of concrete objects to which a program
variable may point represents the current value of that program variable, a so-called points-to
set. Instead, in shape analysis a “shape invariant” is created, similar as our loop invariants
describing that, no matter the number of loop-executions, the same shape of the program is
preserved.

Although different approaches to shape analysis exist, they all share the property of repre-
senting the possible states of the heap as a shape graph. In this graph each memory or heap cell
is represented by a node in the graph. Most notably there are one or more so-called summary
nodes, that represent a set of indistinguishable memory cells; i.e. ‘all the other cells on the heap,
not already explicitly represented as a node in the graph’. An example of such a shape graph
can be found in Figure 2.5.

An interesting approach to shape analysis is taken in (Sagiv et al., 2002) where a 2-valued
logic is combined with 3-valued logic. The third value (1

2) is used to indicate that the truth
value of a formula is unknown, allowing to abstract properties formulated in logic formulas.
This is used to give a value to relations with the summary node(s), for example, whether the
next field of an object in the summary node points to another object in the summary node. A

similar uncertainty is in our framework represented by the comparison γ{a+next},0
?
= γ{a+next},1

.
Using the approach by Sagiv et al. makes it simpler to generate different instantiations of their
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(a) Concrete heap layout
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next
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next s2

next

next

(b) Abstract heap layout

Figure 2.5.: Example of a shape graph. i is a program variable iterating through a list pointed to by
head l. In (a) the concrete list is shown, in (b) an abstracted version with two summary nodes that
could be used as an iterator loop’s invariant.

framework by using different 3-valued logic predicates, making the class of programs that can be
evaluated depend on the set of predicates used. One could for example use both the predicate

∀v.¬∃v1, v2.next(v1, v) ∧ next(v2, v) ∧ v1 6= v2

to (partially) define acyclicity as well as the predicate

∀v1, v2, v.(next(v1, v) ∧ next(v2, v))→ (v1 = v2 & v1 6= v)

The main benefit of shape analysis over the approach suggested in this thesis is that it is
very well-suited to reason on program properties related to certain heap shapes, such as lists or
trees. In particular, shape analysis is good in coping with changing heap structures, whereas
the approach in this thesis is rigid with respect to the chosen domain. That is, if assignments of
the form t.next = ... occur in a program the approach using abstract domains may become
rather imprecise. However, in this thesis it is attempted to integrate the abstraction of objects
with the existing abstraction framework in place for integers, enabling object abstraction using
the same paradigm.

Shape analysis techniques cannot be directly translated into this same approach. Using the
invariant update approach each program variable has to get assigned a value, whereas in shape
analysis the exact value of an individual program variable is not directly important; it is the
shape of the whole heap that is abstracted. As a result it is problematic to create an abstract
domain based on shape analysis and have concretized instances of each abstract element in the
form of γa,z to which program variables can be updated.

One approach that may be attempted is to create a more relational abstract lattice in which
relations between program variables can be described and abstracted. An update to one program
variable however may in such a setting also require to change the other program variables with
which its relation changes due to that update. Consequently one assignment may result in the
update of several program variables, which makes it hard to maintain a correct state. Therefore
it is not trivial to convert concepts from shape analysis to the abstract lattice based approach
used in this thesis.
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3. Information Flow Analysis

Much research in the area of computer security has been focused on regulating access to informa-
tion. A large number of protection measures exist (file permissions, encryption standards etc.),
however in this thesis we look at how this information, once obtained, is propagated through
a program. In the research area of information flow analysis it is aimed to detect if sensitive
information handled in a program can leak to outside observers who have no permission to
access that information. In Section 1.4 this research area is explained in more detail. In this
chapter we look at how to create an automatic information flow analysis for the programs that
can be written in the dynamic logic from Section 1.2.2.

As is customary, we use the convention that h-program variables contain, at the start of the
program execution, information of a High security level, whereas l-program variables contain
information of a Low security level. Furthermore, the value of l-program variables after the
execution of the program is observable by outside processes.

a

Example 22:

We consider a program to be secure if an attacker cannot deduce any information on the High
variables by observing the Low ones (non-interference).

(i) l = h is insecure because it leaks information directly from h to l.

(ii) if (h > 0) {l = 10} else {l = 20} is insecure because partial information on the
value of h can be deduced from the value of l.

(iii) if (h > 0) {l = 10} else {l = 20}; l = 0 is secure because the final value of l does
not depend on h.

(iv) if (h > 0) {l = 2} else {l = 2} is secure because the final value of l is the same
whether the first or second branch has been taken.

(v) h = 0; l = h is secure because the value of l is always 0.

(vi) l = h; l = l - h is secure because the value of l is always 0.

(vii) if (h > 0) {h = l; l = h} is secure because the value of l is not changed.

(viii) if (h - h + l > 0) {l = 0} else {l = 2} is secure because the value of h has no
influence on the condition, and thus the final value of l is only affected by the value of l
before execution of the program.

a

As pointed out in Section 1.4, a common approach is to use a type system that adds an
additional type to program variables indicating its security level. Via type interference or type
checking non-interference is ensured. These systems are always sound, i.e. they never classify
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an insecure program as secure. However to a reasonable degree of automation, compromises
need be made with respect to the completeness of these systems, i.e. they may classify secure
programs as insecure, or ‘unknown’.

Analyses that have troubles correctly labeling secure programs of the kind such as (iii) and
(iv) in Example 22, lack control-flow sensitivity. Programs of the kind as (v),(vi),(vii) and (viii)
require an analysis to have value sensitivity in order to correctly label them as secure. In their
article, Bubel et al. extend the program logic as described in detail in Chapter 2 to create an
automatic information flow analysis. Although they establish an improvement in precision and
achieving value-sensitivity when compared to most type-based systems, the resulting approach
is still incapable of showing that programs of the kind (iv), (vi) or (viii) are secure.

In the rest of this chapter, we first introduce the concept of dependencies that serves as the
basic concept for the information flow analysis. In Section 3.2 the extension by Bubel et al. is
described and its limitations are identified, followed by improvements on that extension fixing
those limitations in Section 3.3.

3.1. Dependencies

Considering the example programs in Example 22, one could state that in order for one of those
programs to be secure, the final value of l should not depend on the initial value of h. In a
more general sense, we could state that the final value of a variable x depends on a number of
variables, say ȳ (possibly including x). We call these variables ȳ the dependencies of variable
x. A more formal definition of the notion of dependencies is given in Definition 18 (as adopted
from (Bubel et al., 2009)).

Definition 18 (Variable Dependencies). Given a program variable x and a program p, the
dependencies of x under p form the smallest set D(x, p) ⊆ Fn,0 of program variables such that
the following holds for all first-order structures M = (D, I) and all variable assignments β: if
s1, s2 ∈ S are such that we have s1(y) = s2(y) for all y ∈ D(x, p), then either

• valM,s1,β(p) = valM,s2,β(p) = ∅ (i.e., from both initial states the execution of p does not
terminate), or

• valM,s1,β(p) = {s′1} and valM,s2,β(p) = {s′2} and s′1(x) = s′2(x) (i.e., from both initial
states the execution terminates and yields the same value for x).

We use some terminology to differentiate between two classes of dependencies. The term
explicit dependencies is used for program variables that are part of the term to which a variable
is updated, e.g. in x = y, the program variable y is an explicit dependency of x. The term
implicit dependencies is used for program variables that indirectly influence the update to a
variable, e.g. in if(y>0){x=1}else{x=0}, the program variable y is an implicit dependency of
x.

To be able to reason about dependencies in logical formulas in the way we talk about other
program properties, we cannot use this exact definition that compares all possible runs of a
program. We prefer it to be a local property that holds or does not hold in a given program
state. Hence in the next section we extend the logic and semantics of programs so that we can
store dependencies explicitly in states.
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3.2. Including Dependencies in the Logic

In (Bubel et al., 2009) the dynamic logic from Section 1.2.2 is extended to explicitly track
dependencies. In this section we discuss those extensions. To simplify the introduction of this
dependency tracking we stick to the dynamic logic without the extension for objects, i.e. the
logic as described in Section 1.2.2. The core concept of this approach is to extend the set of
program variables with a program variable xdep for each existing variable x. Simultaneously with
an update to x, its corresponding dependency variable xdep is updated to the set of variables
that x now depends on. At the end of the symbolic execution of a program, the variable xdep

contains the dependencies of x.

3.2.1. Extensions to Signature, Syntax and Semantics

We first extend the signature definition by adding sets of program variables used to represent
dependencies and additional program variables xdep to store dependencies.

Definition 19 (Signature with dependencies). Given a signature Σ = (F ,P,V) as defined in
Definition 5, the dependency extension of Σ is a signature Σdep = (S,Fdep ,Pdep ,V), where

• S is a set of sorts to which terms can be assigned, and contains at least the sort LocSet,

• Fdep
r = Fr ∪ {{}, ∪̇} ∪ {{x} | x ∈ Fn,0}, where {} is a constant symbol of type LocSet, ∪̇

is a function symbol with arity 2 of type LocSet× LocSet→ LocSet, and where the {x}

are function symbols with arity 0 of type LocSet,

• Fdep
n,0 = Fn,0 ∪ {xdep | x ∈ Fn,0}, and

• Pdep = P ∪ {⊆̇}, where ⊆̇ is a predicate symbol with arity 2 of type LocSet× LocSet.

We further require that:

• Programs over a signature Σdep are built only from the symbols already present in the
sub-signature Σ,

• We only consider universes D ⊇ ℘(Fn,0) where every set of program variables also occurs
as a value in the universe, and

• We only allow interpretations I that fix the meaning of the additional symbols as follows:

– I({}) = ∅,
– for all P1, P2 ∈ ℘(Fn,0): I(∪̇)(P1, P2) = P1 ∪ P2,

– for all x ∈ Fn,0: I({x}) = {x}, and

– I(⊆̇) = {(P1, P2) | P1 ⊆ P2 ⊆ Fn,0}.

To emphasize the second requirement: sets such as {x, y} are now part of the concrete domain.
We can create arbitrary sets of program variables on the logic level, such as {x} ∪̇ {y} ∪̇ {z}.
As a shorthand, we can also write {x,y,z} instead.

Definition 20 (Program Semantics with Dependencies). Similar as in Definition 8, given a
first-order structure M = (D, I), a state s and a logic variable assignment β, we evaluate
programs p to a set of states val ′M,s,β(p) ⊆ S. As before, our programs are deterministic, so the
sets always have at most one element. The evaluation of terms, formulas and updates remains
the same (and uses the regular function valM,s,β), the new function val ′M,s,β for programs is
given below.
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val ′M,s,β(x = t) =
{

valM,s,β

(
x := t ‖ xdep := deps(t)

)}
val ′M,s,β(p1;p2) =

{
val ′I,s′,β(p2) | s′ ∈ val ′M,s,β(p1)

}
val ′M,s,β(if(g){p1} else {p2}) =

{
S′1 if valM,s,β(g) = tt
S′2 otherwise

where S1 = val ′M,s,β(p1), S2 = val ′M,s,β(p2),

S′i = ∅ iff Si = ∅, otherwise S′i = {s′i} where

s′i(x) =


si(x) if x ∈ PV or

x = ydep and
si(y) = s(y)
for Si = {si}

si(x) ∪ valM,s,β(deps(g)) otherwise

val ′M,s,β(while (g) {p}) =

{⋃
s′1∈S′1

val ′I,s′1,β
(while(g) {p}) if valM,s,β(g) = tt

{s} otherwise

where S1 = val ′M,s,β(p),

and where S′1 is derived from S1 as above

The two main differences with the regular valM,s,β function for program statements are in
the assignment and in the handling of conditions from conditional and loop statements. When
performing an assignment to x, the corresponding program variable xdep is updated as well.
The term deps(t) over-approximates the precise semantic dependencies of t. The function deps
takes a term and returns a term, and is defined as follows:

deps(f(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(x) = xdep where x ∈ Fn,0
deps(if (ϕ)then(t1)else(t2)) = deps(ϕ) ∪̇ deps(t1) ∪̇ deps(t2)

deps(a) = {} where a ∈ {true, false}
deps(p(t1, . . . , tn)) = deps(t1) ∪̇ . . . ∪̇ deps(tn)

deps(ϕ1 ∗ ϕ2) = deps(ϕ1) ∪̇ deps(ϕ2) where ∗ ∈ {&, |,−>}
deps(!ϕ) = deps(ϕ)

deps(t1
.
= t2) = deps(t1) ∪̇ deps(t2)

a

Example 23:

Some results of applying the deps function on a term:

• deps(a + b) = adep ∪̇ bdep

• deps(if (h > 4)then(3)else(k)) = hdep ∪̇ kdep

a
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The second difference with valM,s,β is located in the handling of conditional and loop state-
ments. The function val ′M,s,β adds deps(g) to xdep only if x is changed in the body of the
conditional or while loop, to cover the implicit flow of information.

a

Example 24:

To prove that the non-interference property holds for program (vii) from Example 22, i.e. that
no information is leaked from the High variable h to the Low variable l, we have to show that
the sequent

hdep = {h}, ldep = {l} =⇒ [if (h>0) {h=l; l=h}](ldep ⊆̇ {l})

is valid. The formulas placed in the antecedent denote that we assume the initial value of
a program variable, i.e. before execution of the program, depends only on itself. The post-
condition after the program denotes that the final value of l at most depends on the initial
value of l.

The semantics indeed do not add h as a dependency, since the value of l is left unchanged.
a

3.2.2. Extensions to Calculus Rules

In accordance with the extensions made in Definition 20 we update the calculus rules. Only the
semantics of programs have changed from the original dynamic logic semantics. Hence the rules
not dealing with symbolic execution of programs, e.g. the weakenUpdate rule, are left unchanged.
For the assignment rule, we can almost directly translate the semantics into a calculus rule:

assignmentdep
Γ =⇒ {U}{x := t ‖ xdep := deps(t)}[...]ϕ,∆

Γ =⇒ {U}[x = t; ...]ϕ,∆

For conditional statements, the new semantics adds the dependencies from the condition to
the tracked dependencies of a program variable, only if its value has been changed at the end
of a branch. We translate this concept by adding a special shaped update V into the premises
of the rule:

ifElsedep

Γ, {U}g, {U}(ȳ .
= ȳpre) =⇒ {U}[p1]{V}[...]ϕ,∆

Γ, {U} ! g, {U}(ȳ .
= ȳpre) =⇒ {U}[p2]{V}[...]ϕ,∆

Γ =⇒ {U}[if (g) {p1} else {p2}; ...]ϕ,∆

where

• ȳ = (y1, y
dep
1 , . . . , yn, y

dep
n ) is a list of all program variables occurring in g, p1 or p2,

together with the corresponding dependency variables,

• ȳpre = (ypre1 , ypredep1 . . . , ypren , ypredepn ) is a list of fresh constant symbols of the same length
as ȳ, and

• V is the update

y
dep
1 := if (y1

.
= ypre1 )then(ydep1 )else

(
y
dep
1 ∪̇ {ȳ := ȳpre}deps(g)

)
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‖ . . . ‖
ydepn := if (yn

.
= ypren )then(ydepn )else

(
ydepn ∪̇ {ȳ := ȳpre}deps(g)

)
Here the fresh constant symbols ȳpre store the pre-state values of the program variables ȳ

before the symbolic execution of the conditional statement. The update V checks after execution
of each branch whether a program variable has changed, by comparing it with its value in the pre-
state. If so, the set deps(g) is added to its dependencies (evaluated in the pre-state) otherwise
the program variables affecting g are not added as a dependency of that program variable.

The same idea can be applied to the loopUnwind and invariantUpdate rules (where ȳ, ȳpre and
V are defined as above):

loopUnwinddep

Γ, {U}g, {U}(ȳ .
= ȳpre) =⇒ {U}[if (g) {p}]{V}[while (t) {p}; ...]ϕ,∆

Γ, {U} ! g =⇒ {U}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

invariantUpdatedep

Γ, {U}(x̄ .
= c̄) =⇒ ∃γ̄.{U ′}(x̄ .

= c̄),∆
Γ, {U ′}g, {U ′}(ȳ .

= ȳpre), {U ′}[if (g) {p}]{V}(x̄ .
= c̄) =⇒ ∃γ̄.{U ′}(x̄ .

= c̄),∆
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

The execution of the body of the while loop is wrapped in the condition of the while loop,
both in the loopUnwind and the invariantUpdate rule. This is done in order to make sure that
the implicit dependencies are tracked correctly.

Furthermore, to apply abstraction in the dependency-aware version of the calculus two ab-
stract domains have to be defined (as adopted from Bubel et al. (2009)):

1. The abstract domain Aval for the value abstraction of normal program variables that
carry values. The choice of Aval depends on the application context. An example is the
sign domain for integers.

2. The abstract domain Adep for the value abstraction of the dependency program variables.
Again, the suitable choice depends on the application context. In an information-flow
security context, a natural choice for Adep is suggested by the security lattice. An example
of such a lattice can be found in Figure 3.1.

>

∅

High Low

γ(>) = Fn,0
γ(High) = {x ∈ Fn,0 | x has security level High}
γ(Low) = {x ∈ Fn,0 | x has security level Low}
γ(∅) = {}

Figure 3.1.: Abstract domain lattice for program variables, based on a setting in which the security level
of a program variable can be either High or Low
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The proof search strategy remains nearly unchanged from the standard version as defined in
Section 2.2.3. When computing an abstraction, the abstract domain Aval is used for normal
program variables x ∈ Fn,0 and Adep for dependency program variables xdep ∈ Fdep

n,0 .
The second premise of the invariantUpdate rule has been changed to ensure correct tracking

of implicit dependencies. As a result, we compute the weakened update in the join procedure
(Section 2.2.3) no longer from the body p of the while loop, but from the program if(g){p},
so that we correctly include the implicit dependencies in the search for a fixed point.

a

Example 25:

We prove the non-interference of the program p :

l = 3;

while(h > 0) {

l = l + h;

h = h - 1

};

if (l > 0) {

l = 4

}

The non-interference is formulated in the sequent:

ldep
.
= {l}, hdep

.
= {h} =⇒ [p](ldep ⊆̇ {l})

We symbolically execute the first assignment:

Γ =⇒ {l := 3 ‖ ldep := {}}[while(h>0){l=l+h;h=h-1}if(l>0){l=4}]ϕ

The automatic search for a fixed point computes as an invariant of this while loop the update
U ′:

l := γpos,0 ‖ ldep := γHigh,0 ‖ h := γ>,0 ‖ hdep := {h}

We apply the invariantUpdatedep rule using U ′ as the weakening update, or: invariant update.
We focus on the third branch resulting from this application:

Γ =⇒ {U ′}[if(l>0){l=4}]ϕ

Application of the ifElsedep rule results in two branches. We know that the condition l > 0 is
always true, so we can close the else-branch immediately. We continue with the then-branch,
which gives us after symbolic execution of the assignment:

Γ, γpos,0 > 0 =⇒ {U ′}{l := 4 ‖ ldep := {}}ϕ

Applying these updates on the formula ϕ results in:

Γ, γpos,0 > 0 =⇒ {} ⊆̇ {l}

Which is obviously valid. a
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3.2.3. Limitations

Although the approach described in the previous sections correctly over-approximates the de-
pendencies of a program variable, this over-approximations is, as the name suggests, imprecise.
That is, for programs such as (vi) or (iv) from Example 22 the set of program variables tracked
in ldep is larger than the real set of dependencies, resulting in the inability to prove the non-
interference property.

In this section we identify the causes of this incompleteness by running through those example
programs. We start with program (vi): l = h; l = l - h;. The sequent to prove for non-
interference is:

hdep
.
= {h}, ldep

.
= {l} =⇒ [l=h;l=l-h](ldep ⊆̇ {l})

We collapse the antecedent into Γ, the non-interference formula to ϕ and symbolically execute
the first assignment:

Γ =⇒ {l := h ‖ ldep := hdep}[l=l-h]ϕ

The current state transition described by the update is correct: the value of l is depending on
the initial value of h. We now symbolically execute the second assignment and parallelize the
two (omitting the elementary updates overruled by the ‘last-one wins’ semantics as usual):

Γ =⇒ {l := h− h ‖ ldep := hdep}ϕ

At this stage the state transition described by the update is still correct, however over-
approximates the dependencies of l. We identify that this is caused by the fact that in the
assignmentdep rule the program variable ldep is updated to a term solely based on the syntactical
term assigned to l. As a result, the dependencies to which ldep gets updated have no value
sensitivity. Therefore the fact that the term to which l is updated always evaluates to 0,
independent of the value of h, goes unnoticed for the update to ldep .

We continue with the example program (iv), which was if (h > 0) {l = 2} else {l = 2}.
Again, we place this in a sequent for proving non-interference:

hdep
.
= {h}, ldep

.
= {l} =⇒ [if(h>0){l=2}else{l=2}](ldep ⊆̇ {l})

We symbolically execute this conditional statement, resulting in the following two premises
(note that ȳ = {l, ldep}):

Γ, h > 0, l
.
= lpre, ldep

.
= lpredep =⇒

[l=2]{ldep := if (l
.
= lpre)then(ldep)else(ldep ∪̇{l := lpre ‖ ldep := lpredep}deps(g))}ϕ (1)

Γ, !(h > 0), l
.
= lpre, ldep

.
= lpredep =⇒

[l=2]{ldep := if (l
.
= lpre)then(ldep)else(ldep ∪̇{l := lpre ‖ ldep := lpredep}deps(g))}ϕ (2)

These two sequents become, after symbolic execution of the assignment, parallelization and
application of updates, and rewriting them using Γ:

Γ, h > 0, l
.
= lpre, ldep

.
= lpredep =⇒ if (2

.
= l)then({})else({h}) ⊆̇ {l} (1)

Γ, !(h > 0), l
.
= lpre, ldep

.
= lpredep =⇒ if (2

.
= l)then({})else({h}) ⊆̇ {l} (2)

We cannot show that the condition 2
.
= l holds, therefore a cut has to be performed on whether

this condition holds or not. As a result, we cannot prove above sequents. The reason that again
we have an over-approximation of the actual dependencies of l is caused by the split into two
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sequents as a result of the ifElsedep rule. Since we cannot formulate a calculus rule combining
two sequents, it is impossible to tell that each branch results in the same update to l. This can
therefore be classified as a combination of a lack of value sensitivity and control flow sensitivity.

In the next section we improve this extension with a more precise approximation of the
dependencies by addressing these two issues.

3.3. Improving Value and Control-Flow Sensitivity

Section 3.2.3 shows that the original approach is limited in its handling of value sensitivity
within terms, such as: y - y always becomes 0, and has a lack of control-flow sensitivity
(though arguably in combination with value sensitivity), such as: in if(g){x=1}else{x=1}, x
always becomes 1. In this section we suggest an extension based on the one in Section 3.2 that
addresses these issues.

To improve the value sensitivity, xdep no longer directly represents the approximated depen-
dencies of x, but a Herbrand universe-like version (Herbrand, 1930) of the term t to which
x is updated (called a term expression). For example if x is updated to x − x, the variable
xdep is (more or less) updated to xc −c xc. In the semantics we evaluate term expressions that
are equivalent to the same equivalence class. This allows us to create rewrite rules on term
expressions that evaluate to the same equivalence class, enabling value sensitivity.

To improve the control flow sensitivity we delay the split based on the condition of a condi-
tional statement to after the symbolic execution of both branches, by making use of temporal
variables and the conditional term constructor if (ϕ)then(t)else(t). As a result we have a vari-
able’s value from both branches present in the same sequent, allowing for calculus or rewrite
rules that increase the control flow sensitivity.

3.3.1. Extensions to Signature, Syntax and Semantics

The sets of rigid functions is extended with a copy of the current rigid functions, non-rigid
functions and predicates (denoted by the subscript c). One could think of these elements as
the ground terms for a Herbrand universe, however they are not used as the interpretation for
the original symbols. Instead, they are used as a constant copy of these symbols (hence the
subscript c) for updates to dependency variables. We call these symbols term expressions and
give them the type TExp.

Definition 21 (Signature with dependencies). Given a dynamic logic signature Σ = (F ,P,V)
from Definition 5, the dependency extended version of Σ is a signature Σdep = (S,Fdep ,Pdep ,
V). The new sets are defined as follows:

• S is a set of sorts to which terms can be assigned, and contains at least the sorts LocSet

and TExp,

• Fdep
r = Fr ∪ {{}, ∪̇} ∪ {{x} | x ∈ Fn,0} ∪ {W} ∪ FTExp ∪ PTExp where all symbols are as in

Definition 19, W is a rigid function of arity 2 and FTExp = {fc | f ∈ F}. Given that f
has arity n, fc has type TExpn → TExp. Note that we add constant fc functions for both
rigid and non-rigid functions. Similar PTExp = {pc | p ∈ P}. Given that p has arity n,
pc has type TExpn → TExp. Note specifically that the symbols in the set PTExp are rigid
function symbols as well and not predicate symbols.

• Fdep
n,0 = Fn,0 ∪ {xdep | x ∈ Fn,0}.
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• Pdep = P ∪ {⊆̇} ∪ {⊆̇dep}, where ⊆̇ is as in Definition 19, ⊆̇dep has arity 2 and type
TExp× LocSet.

We adopt the additional requirements from Definition 19.

The W function introduced here is mainly an aid that is needed for tracking implicit depen-
dencies resulting from while loop conditions. The ⊆̇dep predicate is similar to the ⊆̇ predicate.
It is introduced since the xdep variables are no longer evaluated to a LocSet but to a TExp. The
⊆̇dep allows us to still compare the explicitly tracked dependencies with defined location sets,
e.g. xdep⊆̇dep{x}.

a

Example 26:

In our example a subset of the functions F is:

{+ : int× int→ int,− : int× int→ int, 0 : int, 1 : int, x : int}

The set FTExp (and thus also F ′) therefore has the subset:

{+c : TExp× TExp→ TExp,−c : TExp× TExp→ TExp, 0c : TExp, 1c : TExp, xc : TExp}

Similar, a subset of the predicates P is:

{≥: int× int,≤: int× int}

Therefore the set PTExp has the subset:

{≥c: TExp× TExp,≤c: TExp× TExp}

a

Definition 22 (Syntax with term expressions). We extend the syntax of terms and add a
syntax for term and formula expressions using only the newly added symbols. In the following
fc ∈ FTExp and pc ∈ PTExp, we list here only the changes to the syntax definition given in
Definition 6.

t ::= · · · | tExp | while(ϕ, t)

tExp ::= fc(tExp, . . . , tExp) | if c(ϕExp)thenc(tExp)elsec(tExp) | whilec(ϕExp, tExp)

ϕExp ::= truec | falsec | pc(tExp, . . . , tExp) | ϕExp &c ϕExp | (ϕExp |c ϕExp) |
ϕExp −>c ϕExp | !cϕExp | tExp

.
=c tExp

Note that the constructor fc(tExp, . . . , tExp) is superfluous since fc is also in F ′r and thus the
same term can be constructed with the constructor f(t, . . . , t) that already exists for terms
(Definition 6). It is only added for the sake of Definition 23.

The xdep variables are updated to term expressions (TExp) and no longer to a set of program
variables (LocSet). As a result we need a different way of ‘storing’ implicit dependencies, which
for conditional statements is provided with if c(ϕExp)thenc(tExp)elsec(tExp) and for while loops
with whilec(ϕExp, tExp).
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Since we want to be able to unwrap this constructor with the function defined below, we
add the constructor while(ϕ, t) for regular terms as well. This is just an aid to ensure that all
dependencies, both implicit and explicit, are present in an unwrapped term. It is by no means
intended as a fix point operator or µ-recursive function. The semantic interpretation of this
term is the functionW that is purposely under-specified to ensure that no two while(ϕ, t) terms
can be proven to evaluate to the same value except if they have exactly the same arguments.

There is no need to copy other constructors (similar for the copied formula constructors)
since they are not allowed to appear in programs (Definition 6) and we therefore have no use
for them.

The if c(ϕExp)thenc(tExp)elsec(tExp) constructor is also important for establishing control flow
sensitivity, as is shown in Section 3.3.3.

Definition 23 (Ground TExp terms and formulas). The set T 0
TExp =

⋃
tTExp, i.e. the set of all

terms that can be constructed from the FTExp function symbols and the syntax from Definition 22.
Similar we create the set P 0

TExp =
⋃
ϕTExp as the set of all ground formulas for term expressions.

a

Example 27:

Some elements of T 0
TExp include:

• 3c +c xc

• whilec(hc >c 0c, 7c −c yc)

• zc +c if c(truec)thenc(zc)elsec(0c)

Similar, some elements of P 0
TExp are:

• dc
.
=cyc (d a constant)

• 3c >c 2c

• (7c /c xc
.
=c 0c) &c falsec

a

Note that this definition is similar to the construction of a Herbrand universe.
We define a function unwrap : T 0

Exp → Term that returns a term in the logic based on the

provided term expression. We overload the function to handle formulas as well, unwrap : P 0
Exp →

For:

unwrap(fc(tExp,1, . . . , tExp,n)) = f(unwrap(tExp,1), . . . , unwrap(tExp,n))

unwrap(if c(ϕExp)thenc(tExp,1) = if (unwrap(ϕExp))

elsec(tExp,2)) then(unwrap(tExp,1))else(unwrap(tExp,2))

unwrap(whilec(ϕExp, tExp)) = while(unwrap(ϕExp), unwrap(tExp))

unwrap(truec) = true

unwrap(falsec) = false

unwrap(pc(tExp,1, . . . , tExp,n)) = p(unwrap(tExp,1), . . . , unwrap(tExp,n))

unwrap(ϕExp,1 ∗c ϕExp,2) = unwrap(ϕExp,1) ∗ unwrap(ϕExp,2) where ∗ ∈ {&, |,−>}
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unwrap(!cϕExp) = ! unwrap(ϕExp)

unwrap(tExp,1
.
=ctExp,2) = unwrap(tExp,1)

.
= unwrap(tExp,2)

a

Example 28:

Some examples of the operation of the rather simple unwrap function:

• unwrap(3c +c xc) = 3 + x

• unwrap(8c ≥c yc) = 8 ≥ y

a

We use this unwrap function in the definition of equivalence for term and formula expressions.
Two of these expressions are equivalent if the value of their unwrapped terms or formulas are
equal under any first-order structure, state or logic variable assignment.

Definition 24 (Equivalence of term and formula expressions). Two term expressions tExp, vExp ∈
T 0
TExp are said to be equivalent (denoted by tExp ∼ vExp) if and only if for all first-order structure
M = (D, I), states s and logic variable assignments β : valM,s,β(unwrap(tExp)) = valM,s,β(
unwrap(vExp)).

Similar two formula expressions ϕExp, φExp ∈ P 0
TExp are equivalent (ϕExp ∼ φExp) if and

only if for all first-order structures M = (D, I), states s and logic variable assignments β :
valM,s,β(unwrap(ϕExp)) = valM,s,β(unwrap(φExp)).

a

Example 29:

Recall that with Definition 12 we made the assumption that the interpretation I has a fixed,
standard interpretation for mathematical operators (+,−, /, ∗,≤,≥, 0, 1, 2, . . . ). This allows to
give the following examples of equivalent term expressions:

• xc +c 0c ∼ xc

• (ac /c 1c) +c 4c ∼ ac +c 4c

• 3c ≥c 0c ∼ truec

• truec &c falsec ∼ falsec

a

We now combine term expressions that are equivalent according to Definition 24 in the same
equivalence class. We introduce these classes so that we can make term expressions evaluate
to their corresponding class (Definition 28). This allows us to create rewrite rules between
term expressions of the same class, in that way enabling value sensitivity. Similar for formula
expressions.

Definition 25 (Equivalence class of term or formula expression). We define the set T 0
TExp/'

of equivalence classes on term expressions. An equivalence class [a] ∈ T 0
TExp/' is the set {x ∈

T 0
TExp | x ∼ a}. Similar we define the set P 0

TExp/' of equivalence classes on formula expressions.

An equivalence class [ϕ] ∈ P 0
TExp/' is the set {ψ ∈ P 0

TExp | ψ ∼ ϕ}.
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a

Example 30:

The following notations describe the same equivalence class:

• [yc −c yc] = [xc −c xc] = [0c ∗c zc] = [0c]

• [ac ∗c (bc/ccc)] = [(ac/ccc) ∗c bc]

• [xc +c 1c >c yc] = [xc ≥c yc]

• [xc ∗c 1c >c xc] = [yc >c yc] = [falsec]

a

In Definition 18 the dependencies of a program variable x under a program p are defined. We
here define the dependencies of a term t.

Definition 26 (Term dependencies). The dependencies of a term t form the smallest set D(t) ⊆
Fn,0 of program variables such that the following holds for all first-order structure M = (D, I)
and all logic variable assignments β: if s1, s2 ∈ S are such that we have s1(y) = s2(y) for all
y ∈ D(t), then valM,s1,β(t) = valM,s2,β(t).

We introduce a helper function getLocs that, when provided a term expression or formula
expression, returns the set of all the program variables present in the unwrapped version of that
term. That is:

getLocs(tExp) = getVars(unwrap(tExp))

getLocs(ϕExp) = getVars(unwrap(ϕExp))

where getVars returns all the symbols present in the as argument provided term, that are a
member of Fn,0. If a term expression is provided to getLocs that cannot be unwrapped to a
term that is part of the original signature (e.g. because of special symbols introduced for term
expressions), the getLocs function returns the set of all program variables (= Fn,0).

We introduce a choice function C that is used in the interpretation and evaluation of term
(and formula) expressions.

Definition 27 (Choice function). The function C : T 0
TExp/' → T 0

TExp selects a representative r

from the provided equivalence class such that getLocs(r) evaluates to the smallest LocSet of the
provided class.

Note that by the axiom of choice (Zermelo, 1904) such a function always exists.

In the rest of this section, and for the calculus rules introduced in Sections 3.3.2 and 3.3.3,
we need the following two lemmas.

Lemma 2. For any term t ∈ [r], [r] ∈ T 0
TExp/', getLocs(t) is a superset of the actual dependen-

cies (Definition 26) of every term unwrap(t′), t′ ∈ [r].

Proof. We first show that all unwrapped term expressions in [r] have exactly the same de-
pendency set. This is easily proven by contradiction. Assume that there are two term ex-
pressions t, t′ ∈ [r] such that D(unwrap(t)) 6= D(unwrap(t′)). This implies from the defini-
tion of term dependencies (Definition 26) that there must be at least one program variable,

71



say y, for which holds y ∈ D(unwrap(t)), y 6∈ D(unwrap(t′)) - or the other way around,
but without loss of generality we assume the current case. This means that there must be
a pair of states s1, s2 which coincide on all program variables except for y, where s1(y) 6=
s2(y) and val I,s1,β(unwrap(t)) 6= val I,s2,β(unwrap(t)). The evaluation of unwrap(t′) on the
other hand is identical in both states since this term is not affected by y by assumption.
Thus val I,s1,β(unwrap(t)) 6= val I,s1,β(unwrap(t′)) or val I,s2,β(unwrap(t)) 6= val I,s2,β(unwrap(t′)).
However, this contradicts the requirement for t and t′ to be in the same equivalence class (Def-
inition 25). Hence all unwrapped terms in [r] must have exactly the same dependencies.

Note that for term dependencies, a program variable has to be present in that term in order
to be a dependency. Considering the evaluation of terms (Definition 8), a program variable has
no effect unless it is present in that term. As a result the set getLocs(t), t ∈ [r] contains at least
the dependencies of unwrap(t). Combining this with the above proved property that all other
unwrapped terms of the same equivalence class have the same dependencies, we have proven
this lemma. ut

Lemma 3. For all t ∈ [r], [r] ∈ T 0
TExp/', D(unwrap(t)) = getLocs(unwrap(C([r]))). The set of

program variables present in the unwrapped term returned by the choice function, is exactly the
minimal dependency set (Definition 26) of all term expressions in the corresponding equivalence
class.

Proof. The definition of the choice function gives us that for all terms t′ ∈ [r] independent
of t = C([r]), getLocs(t′) ⊇ getLocs(t). We show that getLocs(t) is indeed equal to the real
dependencies of unwrap(t). From Lemma 2 we already obtain that getLocs(t) is at least a
superset of the real dependencies. Therefore if we show that the real dependencies cannot be
a real subset of this set, i.e. if we show that D(unwrap(t)) 6⊂ getLocs(t), we have proven the
lemma.

We show this by contradiction. Assume that D(unwrap(t)) ⊂ getLocs(t). This means that t
contains at least one program variable, say y, that has no influence on the value of unwrap(t).
Which implies that there exists a term t′ = t[yc/cc] where y is replaced with any constant term
expression cc (e.g. 0c, 4c, . . . ), and valM,s,β(unwrap(t′)) = valM,s,β(unwrap(t)) for any first-order
structure M , state s and logic variable assignment β. Hence t′ is an element of [r]. However,
we can now deduce that getLocs(t) = getLocs(t′) ∪ {y}, thus that getLocs(t′) ⊂ getLocs(t),
which contradicts our definition that the choice function C returns a term expression that when
unwrapped contains the least number of program variables. Hence, D(unwrap(t)) 6⊂ getLocs(t)
which is what we had to show. ut

We evaluate both term and formula expressions to their equivalence class. This allows us
to introduce rewrite rules that rewrite between terms and formulas of the same equivalence
class. The function W is required to have a different interpretation on every input. Since the
while(ϕ, t) is evaluated as W(ϕ, t), this ensures that no two while terms evaluate to the same
equivalence class. No sound rewrite rules can thus be created for while terms. This ensures
that the implicit dependencies remain present in ϕ, which is the only reason for which the
while-constructor is used.

Definition 28 (Domain and interpretation with term expressions). We only list the inter-
pretation of the symbols not already defined in Definition 19. The concrete domain for term
expressions DTExp is the set T 0

TExp/', for location sets DLocSet it is the powerset of all program

variables ℘(Fn,0). The interpretation I maps the new rigid functions from Definition 21, i.e.
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fc ∈ FTExp ∪ PTExp of arity n to a function I(fc) :
(
DTExp

)n → DTExp. We only consider inter-
pretations I where for all function symbols fc:

∀e1, . . . , en ∈ DTExp : I(fc)(e1, . . . , en) = [fc(C(e1), . . . , C(en))]

Where C : T 0
TExp/' → T 0

TExp (thus DTExp → T 0
TExp) is the choice function from Definition 27.

We require the following property on the interpretation of W:

∀p1, p2, v1, v2.(p1 6= p2 or v1 6= v2) : I(W)(p1, v1) 6= I(W)(p2, v2)

The interpretation of the ⊆̇dep predicate is:

∀e ∈ DTExp, l ∈ DLocSet : I(⊆̇dep)(e, l) = getLocs(C(e)) ⊆ l

In the definition of ⊆̇dep we use the property that C returns the actual (minimal) dependency
set of all terms in the provided equivalence class (Lemma 3). This implies that the getLocs
function applied on the term expression selected by C always returns the actual dependencies
for all terms in that class.

Opposed to that, no matter the representative term selected by C, the interpretation of fc
always gives the same equivalence class. Hence the additional property that C always returns
the term expression with the smallest LocSet is not relevant for this particular use.

The interpretation requirement on W to which the while constructor is evaluated, ensures
that no two terms containing this constructor are in the same equivalence class, unless the
arguments in while(ϕ, t) are exactly the same. This is, as stated before, necessary to include
the implicit dependencies of a while-statement.

For the definition of semantics, note that term and formula expressions are entirely built
from FTExp and PTExp (see Definition 23). Therefore their evaluation is already defined with
Definition 28, and we can conclude that all tExp ∈ T 0

Exp, ϕExp ∈ P 0
Exp, L ∈ LocSet have the

following property:

valM,s,β(tExp) = [tExp]

valM,s,β(ϕExp) = [ϕExp]

val ′M,s,β(tExp⊆̇depL) = tt iff getLocs(C(valM,s,β(tExp))) ⊆ valM,s,β(L)

Definition 29 (Program Semantics with Dependencies). We only list the difference in seman-
tics with the one from the dynamic logic defined in Definition 8.

valM,s,β(while(ϕ, t)) =W(valM,s,β(ϕ), valM,s,β(t))

val ′M,s,β(x = t) =
{

valM,s,β

(
x := t ‖ xdep := deps ′(t)

)}
val ′M,s,β(p1;p2) =

{
val ′I,s′,β(p2) | s′ ∈ val ′M,s,β(p1)

}
val ′M,s,β(if(g){p1} else {p2}) =

{
S′1 if valM,s,β(g) = tt
S′2 otherwise

where S1 = val ′M,s,β(p1), S2 = val ′M,s,β(p2),

S′i = ∅ iff Si = ∅, otherwise S′i = {s′i} where

s′i(x) =


si(x) if x ∈ Fn,0
[if c(C(valM,s,β(deps ′(g))))
thenc(C(s1(x)))
elsec(C(s2(x)))] otherwise (x = ydep)
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val ′M,s,β(while (g) {p}) =

{⋃
s′1∈S′1

val ′I,s′1,β
(while(g) {p}) if valM,s,β(g) = tt

{s} otherwise

where S1 = val ′M,s,β(p), S′1 = ∅ iff S1 = ∅,
otherwise S′1 = {s′1} where

s′1(x) =


s1(x) if x ∈ Fn,0 or

x = ydep and s1(y) = s(y)
[whilec(
C(valM,s,β(deps ′(g))),
C(s1(x)))] otherwise

We here make use of the deps ′ function that, different from the deps function, returns a
term or formula expression on a provided term or formula instead of a LocSet. We define this
function as:

deps ′(f(t1, . . . , tn)) = fc(deps ′(t1), . . . , deps ′(tn))

deps ′(x) = xc

deps ′(if (ϕ)then(t1)else(t2)) = if c(deps ′(ϕ))thenc(deps ′(t1))elsec(deps ′(t2))

deps ′(a) = ac where a ∈ {true, false}
deps ′(p(t1, . . . , tn)) = pc(deps ′(t1), . . . , deps ′(tn))

deps ′(ϕ1 ∗ ϕ2) = deps ′(ϕ1) ∗c deps ′(ϕ2) where ∗ ∈ {&, |,−>}
deps ′(!ϕ) = !cdeps ′(ϕ)

deps ′(t1
.
= t2) = deps ′(t1)

.
=cdeps ′(t2)

This is the inverse of the unwrap function, that is unwrap(deps ′(t)) = t. In the evaluation of
the conditional statement we no longer make a difference in the semantics whether a program
variable has the same value after the execution of the branch as before. Instead, we return the
equivalence class of a conditional term expression. The control flow sensitivity benefits from
the rewrite rules within this equivalence class, as is described in Section 3.3.3.

Theorem 1 (Dependency correctness). For every program p, program variable x and LocSet

L, if ȳdep
.
= ȳc −> [p]xdep ⊆̇dep L is valid, then D(x, p) ⊆ I(L) holds. In which ȳdep are

the dependency variables associated with ȳ, ȳc the constant term expressions for the non-rigid
function symbols ȳ, and ȳ is a list of all program variables present in program p.

Proof. (sketch) We do not consider interpretations where ȳdep 6 .= ȳc since then the statement
holds trivially.

If valM,s,β(p) = ∅ for any first-order structure M , state s and logic variable assignment β the
conclusion of this theorem automatically holds, so we assume that valM,s,β(p) = {s1}.

We can rewrite the theorem above to the statement “if getLocs(C(val I,s1,β(xdep))) ⊆ val I,s1,β(L)
holds under the assumption that valM,s,β(ydep) = valM,s,β(yc) for all y in ȳ, then D(x, p) ⊆ I(L)
holds”. Since valM,s,β(L) = I(L), we have to show that D(x, p) ⊆ getLocs(C(val I,s1,β(xdep)))
which by transitivity of ⊆ closes the proof.

To prove this we show that for each program evaluation step, xdep is updated to an equivalence
class [r] such that getLocs(C([r])) contains at least all the dependencies of x on that point in
the program evaluation. The evaluations of interest are those of assignment, conditional and
loop statements.
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The semantics for assignments gives us that the term to which x is updated is a member of
the equivalence class to which xdep is updated.

By induction we have for the conditional statement that both the then-branch p1 and the
else-branch p2 over-approximate the dependencies of changed variables. Each variable xdep

is updated to something similar to [if c(ϕ)thenc(t1)elsec(t2)], where ϕ, t1 and t2 are terms
containing at least the dependencies of the guard, then- and else-branch result respectively.
Hence, the getLocs function (Page 71) returns on this equivalence class a set of program variables
which is a superset of the actual dependencies.

For the loop statement we have by induction that the dependencies are over-approximated
when the while loop’s guard condition evaluates to tt . In case the condition evaluates to ff ,
the dependencies of each variable whose value is changed in the while loop, is updated. It is
updated to something similar to [whilec(ϕ, t)], where ϕ and t are terms containing at least the
dependencies of the guard and loop’s body respectively. Again the getLocs function returns on
this equivalence class a set of program variables which is a superset of the actual dependencies.

These three statements may be combined with the p1; p2 constructor, where p2 is evaluated
in the state resulting from p1, thus correctly preserving the dependencies. This implies that
val I,s1,β(xdep) = [r] and the term C([r]) contains at least all dependencies of x under p, which
is what we had to show. ut

a

Example 31:

As an example we evaluate the formula xc −c xc ⊆̇dep {}:

valM,s,β(xc −c xc ⊆̇dep {}) = tt iff getLocs(C(valM,s,β(xc −c xc))) ⊆ valM,s,β({})

tt iff getLocs(C([xc −c xc])) ⊆ {}
tt iff getLocs(0c) ⊆ {}
tt iff {} ⊆ {}
tt

a

3.3.2. Value Sensitivity

In the definitions of syntax and semantics in the previous section, variables of the kind xdep are
updated to a term of type TExp. Since we prefer to reason on non-interference using location
sets, i.e. terms of type LocSet instead of the equivalence class to which xdep evaluates, we
introduce the following calculus rule:

expressionToLocSet
Γ =⇒ getLocs(t)⊆̇L,∆

Γ =⇒ t⊆̇depL,∆

Note that both formulas are almost equal; except that ⊆̇dep uses the smallest set of depen-
dencies of equivalence class [t] (using the choice function C), while getLocs returns a set that is
bigger or equal to that set. Therefore if the premise holds, then so does the conclusion of the
rule.

The assignmentdep rule from Section 3.2.2 is left unchanged, except that we now use the deps ′

function instead of deps:
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assignmentdep
Γ =⇒ {U}{x := t ‖ xdep := deps ′(t)}[...]ϕ,∆

Γ =⇒ {U}[x = t; ...]ϕ,∆

To achieve value sensitivity note that a term expression tExp is evaluated to an equivalence
class. This implies that we can freely rewrite between terms that are equivalent according to
Definition 24, without altering the value of those terms. A large number of term rewriting rules
for regular terms can be adopted for term expressions. Here we list a number of them1:

tExp +c vExp  vExp +c tExp

tExp ∗c vExp  vExp ∗c tExp
tExp −c tExp  0c

1c ∗c tExp  tExp

0c ∗c tExp  0c

ic +c jc  kc where i, j, k ∈ Z, k = i+ j

tc ∗c (vc /cwc) (tc ∗c vc) /cwc

There is no need to convert all rules for arithmetic. Certain rules can be left out for sim-
plification of the proving process, which needs to be balanced against the resulting loss of
completeness.

Lemma 2 gives us that the variables present in the unwrapped version of these terms is always
a superset of the actual dependencies. These rewrite rules now give us the value sensitivity we
seek.

a

Example 32:

We start with the simple program l = h - h in the following sequent:

ldep
.
= lc, h

dep .
= hc =⇒ [l=h-h](ldep ⊆̇dep {l})

We perform the assignmentdep rule and obtain:

Γ =⇒ {l := h− h ‖ ldep := hdep −c hdep}(ldep ⊆̇dep {l})

We can apply this update and use the equivalence relations in Γ to obtain:

Γ =⇒ hc −c hc ⊆̇dep {l}

If we now apply the expressionToLocSet rule, we get Γ =⇒ {h} ⊆̇ {l}, which we cannot prove.
Instead, we first use the rewrite rule tExp −c tExp  0c, to replace the term expression with
another expression from the same equivalence class, giving us:

Γ =⇒ 0c ⊆̇dep {l}

Now we apply the expressionToLocSet rule, and get:

Γ =⇒ {} ⊆̇ {l}

1The rewrite rule tExp /c tExp  1c is not a sound rule, since these terms do not belong to the same equivalence
class in a state s with s(x) = 0.
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which holds trivially. a

a

Example 33:

Consider p to be the program l = h * (0 / 5) in the sequent:

ldep
.
= lc, h

dep .
= hc =⇒ [p](ldep ⊆̇dep {l})

We apply the assignmentdep rule and obtain:

Γ =⇒ {l := h ∗ (0/5) ‖ ldep := hdep ∗c (0c /c 5c)}(ldep ⊆̇dep {l})

Applying this update and rewriting equalities from Γ gives us:

Γ =⇒ hc ∗c (0c /c 5c) ⊆̇dep {l}

We now use the rewrite rule tc ∗c (vc /cwc) (tc ∗c vc) /cwc:

Γ =⇒ (hc ∗c 0c) /c 5c ⊆̇dep {l}

The rewrite rule tExp ∗c vExp  vExp ∗c tExp:

Γ =⇒ (0c ∗c hc) /c 5c ⊆̇dep {l}

And 0c ∗c tExp  0c:
Γ =⇒ 0c /c 5c ⊆̇dep {l}

We could reduce this term expression further, but we can also directly apply the expressionToLocSet
rule and obtain:

Γ =⇒ {} ⊆̇ {l}

which holds trivially. a

3.3.3. Control Flow Sensitivity

The problem in the approach outlined in 3.2 with respect to flow sensitivity is that the proof
tree is split into two separate branches as soon as an conditional statement is symbolically
executed. In the rule below we postpone this branching which allows us to have a better control
flow sensitivity. Note that in the following rule the succedent of the premise is a formula that
contains multiple programs placed in box operators.

ifElsedep
Γ =⇒ {U}{x̄pre := x̄}[p1; x̄t = x̄]{x̄ := x̄pre}[p2; x̄e = x̄]{x̄ := x̄pre}{V}[...]ϕ.∆

Γ =⇒ {U}[if(g){p1}else{p2}; ...]ϕ,∆

where

• x̄ = (x1, x
dep
1 , . . . , xn, x

dep
n ) are all variables changed in p1 or p2 with their corresponding

dependencies.
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• x̄pre = (xpre1 , xpredep1 , . . . , xpren , xpredepn ) a list of fresh variables, the same length as x̄.

• x̄t = (xt1, . . . , x
t
n) and x̄e = (xe1, . . . , x

e
n) are fresh variables, half the length of x̄.

• Update V is the collection of parallel updates for all xi ∈ x̄:

xi := if (g)then(xti)else(xei ) ‖

xi
dep := if c(deps ′(g))thenc(x

t
i
dep

)elsec(x
t
i
dep

)

• Vector notation is used in the changes to the program as well. x̄t = x̄ is short for
xt1 = x1; . . . ; xtn = xn, similar for other vector notations.

The idea behind this rule is as follows. When encountering an conditional statement we first
store the current value of all variables x̄ in the variables x̄pre, thus xpre holding the pre-state of
each variable x with respect to the conditional statement.

We execute the then-part of the statement and store the outcome for each variable x in
xt. This implies that the corresponding term expressions (due to the assignmentdep rule) are

stored in each xt
dep

. All variables x̄ are then reset to their initial value just before the symbolic
execution of the conditional statement, and the else-part is executed. The outcome of this part
(thus independently from the then-part of the branch) for each variable x is stored in xe.

We then again reset the values of variables x̄ to their value in the pre-state, ensuring that g
and deps ′(g) are evaluated the same as in the state before symbolic execution of the conditional
statement. The update V represents the real state transition caused by the conditional state-
ment. Note that due to the last-one-wins semantics for updates, V overwrites all the effects
caused by symbolic execution of both the branches with respect to the variables in x̄. For each
variable x, we know that depending on the condition g its value is now either xt or xe. The
dependency variable of each x is updated to the corresponding term expression.

Similar to term expressions, formula expressions are evaluated to their equivalence class. We
can therefore also freely rewrite between formulas that are equivalent according to Definition 24,
just as we did with term expressions in Section 3.3.2. Some of the rewrite rules include:

ic >c 0c  truec where i ∈ Z, i > 0

tExp +c ic ≥c tExp  truec where i ∈ Z, i ≥ 0

tExp /c vExp
.
=cwExp  tExp

.
=cvExp ∗c wExp

To obtain control flow sensitivity we add some more rewrite rules between equivalent term
expressions related to the conditional terms:

if c(ϕExp)thenc(tExp)elsec(tExp) tExp

if c(truec)thenc(tExp)elsec(vExp) tExp

if c(falsec)thenc(tExp)elsec(vExp) vExp

a

Example 34:

We use program (iv) from Example 22 in the following sequent:

hdep
.
= hc, l

dep .
= lc =⇒ [if(h>0){l=2}else{l=2}]ldep ⊆̇dep {l}
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Applying the ifElsedep rule gives us (note that x̄ = {l, ldep}):

Γ =⇒ {lpre := l ‖ lpredep := ldep}[l=2;lt=l]

{l := lpre ‖ ldep := lpredep}[l=2;le=l]

{l := lpre ‖ ldep := lpredep}{V}ϕ

Symbolic execution of the first program box and parallelization2 gives us:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ l := 2 ‖ ldep := 2c ‖ lt := 2 ‖ ltdep := 2c}
{l := lpre ‖ ldep := lpredep}[l=2;le=l]

{l := lpre ‖ ldep := lpredep}{V}ϕ

We also parallelize the two updates at the start of the succedent, giving:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ l := l ‖ ldep := ldep ‖ lt := 2 ‖ ltdep := 2c}
[l=2;le=l]

{l := lpre ‖ ldep := lpredep}{V}ϕ

Symbolic execution of the second program box and parallelization with the preceding update,
gives us:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ l := 2 ‖ ldep := 2c ‖

lt := 2 ‖ ltdep := 2c ‖ le := 2 ‖ ledep := 2c}
{l := lpre ‖ ldep := lpredep}{V}ϕ

Parallelizing the two updates before V and replacing V with its definition, now gives us:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ l := l ‖ ldep := ldep ‖

lt := 2 ‖ ltdep := 2c ‖ le := 2 ‖ ledep := 2c}
{l := if (h > 0)then(lt)else(le) ‖

ldep := if c(h
dep >c 0c)thenc(l

tdep)elsec(l
edep)}ϕ

And with parallelization we obtain:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ l := l ‖ ldep := ldep ‖

lt := 2 ‖ ltdep := 2c ‖ le := 2 ‖ ledep := 2c ‖
l := if (h > 0)then(2)else(2) ‖
ldep := if c(h

dep >c 0c)thenc(2c)elsec(2c)}ϕ

We apply this update on ϕ and get using the equalities in Γ:

Γ =⇒ if c(hc >c 0c)thenc(2c)elsec(2c) ⊆̇dep {l}

2Note that for a shorter notation we omit elementary updates that are later overruled by the last-one wins
semantics
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We can now use the rewrite rule if c(ϕExp)thenc(tExp)elsec(tExp) tExp :

Γ =⇒ 2c ⊆̇dep {l}

Followed by the expressionToLocSet rule:

Γ =⇒ {} ⊆̇ {l}

Which holds. a

Similar, we update the loopUnwind and invariantUpdate rules from the original extension for
dependencies to:

loopUnwind

Γ, {U}g, {U}(x̄ .
= x̄pre) =⇒ {U}[p]{V}[while (t) {p}; ...]ϕ,∆

Γ, {U} ! g =⇒ {U}[...]ϕ,∆

Γ,=⇒ {U}[while (t) {p}; ...]ϕ,∆

invariantUpdatedep

Γ, {U}(x̄ .
= c̄) =⇒ ∃γ̄.{U ′}(x̄ .

= c̄),∆
Γ, {U ′}g, {U ′}(x̄ .

= x̄pre), {U ′}[p]{V}(x̄ .
= c̄) =⇒ ∃γ̄.{U ′}(x̄ .

= c̄),∆
Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

where V is the update:

x
dep
i := deps ′(if (xi

.
= x

pre
i )then(xi)else(while(g, xi))

for all xi ∈ x̄.
Again we need to change some parts in the join procedure. In the automatic search for a

fixed point, we have to join in the abstract lattice not using xdep but using getLocs(xdep). The
abstract element returned (e.g. High) is used in the term to which xdep is updated in the joined
update, however xdep is not updated to (e.g.) γHigh,z but to γHigh,zc. Since these are standard
non-rigid functions, the unwrap function returns the normal term γa,z when supplied a term
expressions γa,zc. When this unwrapped γa,z term is supplied to the getVars function, it returns
the set a. E.g.:

getLocs(γHigh,zc) = getVars(γHigh,z) = High

where High is the set of all program variables that have the security label High.
a

Example 35:

We now show how to prove the non-interference property for program (viii) from Example 22.

ldep
.
= lc, h

dep .
= hc =⇒ [if(h-h+l>0){l=0}else{l=2}](ldep ⊆̇dep {l})

Symbolic execution of the conditional statement, gives us:

Γ =⇒ {lpre := l ‖ lpredep := ldep}[l=0;lt=l]

{l := lpre ‖ ldep := lpredep}[l=2;le=l]

{l := lpre ‖ ldep := lpredep}{V}(ldep ⊆̇dep {l})

80



Update parallelization (and unfolding of V) gives us:

Γ =⇒ {lpre := l ‖ lpredep := ldep ‖ lt := 0 ‖ ltdep := 0c ‖ le := 2 ‖ ledep := 2c ‖
l := if (h− h + l)then(0)else(2) ‖ ldep := if c(h

dep −c hdep +c l
dep)thenc(0c)elsec(2c)}

(ldep ⊆̇dep {l})

We apply this update on the predicate and get:

ldep
.
= lc, h

dep .
= hc =⇒ if c(h

dep −c hdep +c l
dep)thenc(0c)elsec(2c) ⊆̇dep {l}

From Section 3.3.2 have the rewrite rule tExp−c tExp  0c which we apply here with tExp = hdep :

ldep
.
= lc, h

dep .
= hc =⇒ if c(0c +c l

dep)thenc(0c)elsec(2c) ⊆̇dep {l}

And using the equalities from Γ:

ldep
.
= lc, h

dep .
= hc =⇒ if c(0c +c lc)thenc(0c)elsec(2c) ⊆̇dep {l}

Further rewrite rules could not reduce the number of variables in the term, so we apply the
expressionToLocSet rule and obtain:

ldep
.
= lc, h

dep .
= hc =⇒ {l} ⊆̇ {l}

Which holds. a

3.4. Other Approaches

During the research for the value sensitive information flow analysis as described in Section 3.3,
a number of other approaches had been considered as well. Despite the problems that they
presented we describe two of them in this section because the underlying concepts may be used
in further extensions to this framework. We describe the approaches without going into much
detail and point out why these approaches were abandoned.

3.4.1. Dependency Tracking with Labels

In one of the earlier approaches we introduced the notion of labels to the logic. This allowed us
to label a variable (or, in one of the variations: whole terms). In a normal setting, a program
variable x is updated to a term t representing the value of x. With the addition of labels we
keep track of which dependencies occurring in xdep were added because of which sub-term in t.

For example, the assignment x = y results in the update x := [l0]y, where l0 is a fresh label.
Assuming that at the initial state before program execution each program variable depends
only on itself, e.g. ydep

.
= {[]y} (where [] denotes an empty list of labels), we update the

dependencies of x simultaneously: xdep := [l0]ydep . This becomes, using information from the
antecedent: xdep := {[l0]y}. Several different approaches to introduce the labeled dependencies
were considered as well, but we do not discuss them here. After the symbolic execution of a
second assignment, e.g. x = x - y + w, we get after some simplification:

{x := [l0]y ‖ xdep := {[l0]y} ‖ x := [l0]y− [l2]y + [l3]w ‖ xdep := {[l0, l1, l2]y, [l3]w}}
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To achieve value sensitivity, several rewrite rules are introduced. First of all we allow for the
removal of labels from dependencies of a program variable, if that label is not present in the
term to which the program variable in question is updated. The argumentation behind this
step is that a label indicates the introduction of a dependency. Thus, if a label is not present in
a term, then the dependency it introduced is somehow gone. Such a rewrite rule would allow us
to remove the label l1 in our example, that disappeared during the parallelization step. Again,
different approaches were tried in which the label l1 would have remained present in the term,
but this gave rise to the same problems as are discussed later in this section. Omitting the
elementary updates having no effect due to the last-one wins semantics, we thus get in our
example:

{x := [l0]y− [l2]y + [l3]w ‖ xdep := {[l0, l2]y, [l3]w}}

The rule that really enables the value-sensitivity part of this approach, is one that allows for the
removal of labels from a variable in a term, if the value of this term is the same regardless the
value of that variable. After all, if variable has no influence on the term, it is not a dependency
of that term. In our example, we can use this rule to remove the labels from variable y:

{x := []y− []y + [l3]w ‖ xdep := {[l0, l2]y, [l3]w}}

We can now again use the rule to remove labels from the dependency variables no longer present
in the term to which x is updated:

{x := []y− []y + [l3]w ‖ xdep := {[]y, [l3]w}}

As a final rewrite rule, we now note that if a program variable dependency has no labels,
apparently all introductions of this dependency have been removed, allowing us to remove that
dependency entirely. This can in our example be used to remove the dependency on y:

{x := []y− []y + [l3]w ‖ xdep := {[l3]w}}

The exact definition of those rewrite rules differed between various approaches but the concep-
tual idea described here remained the same.

Problems arose on different parts in the formalization of this approach, of which the most
common ones we list here:

• When introducing the conditional or loop statement, we notice that the implicit depen-
dencies possibly arising from the associated condition are not added to the term to which
a variable (e.g. x) is updated. The update to x is only concerned with the explicit depen-
dencies. Therefore, if we add a labeled implicit dependency variable to xdep , the rewrite
rules allow for immediate removal of this dependency since its labels do not occur in the
update to x. As a solution to that issue, approached were tried to label whole terms with
the label of implicit dependencies. This complicated definition but was not a problem
that prevented a successful formalization.

• A bigger issue formed the formal definition of the semantics of labels, labeled terms and
labeled dependencies. The evaluation of a labeled term should become a tuple of both
the label-value and the actual value, and functions need to be defined as operating on
this tuples instead of only values. A different option is to include, similar to a logic
variable assignment β or state s, a label assignment function to the evaluation of terms
and formulas. Again, this is not a problem that prevents successful definition of the
concept of labels, but complicated the definition and indirectly the other issues as well.
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• An obstacle that was not overcome was a result of the fact that the value of program
variable x is now in relation with the program variable xdep . The preservation of this
relation and the underlying assumptions on this relation that make the rewrite rules pos-
sible is of a great importance. To correctly preserve this relation several approaches were
taken, differing in e.g. the preservation or replacement of labels in function applications,
update parallelization etc. Examples of elements in which we were not consistently able
to preserve the relation between program variable and dependency set, were in splits on
conditionals and, though similar, in the cut-rule3.

• As a result of the above complications, the definitions of the actual rewrite rules for value-
sensitivity become more restricted and in that way achieve less value-sensitivity as was
hoped for with the original concept.

3.4.2. Separation of Implicit and Explicit Dependencies

In a different approach we started with the remark that the dependencies of a program variable
x can be split into two sets, namely the program variables that have an explicit influence on
the value of x, and those that have an implicit influence (via conditions in conditional or loop
statements) on the value of x. We therefore remove the xdep variable from our extension and
instead replace it by two additional program variables for each existing program variable, namely
xexp and ximp . The calculus rules are updated consequently, such that we get for example from
the program if(y>0){x=w-w}else{x=z} the update:

x := if (y > 0)then(w− w)else(z) ‖ xexp := {w,z} ‖ ximp := {y} ‖

We now provide a rule to remove explicit dependencies if they do not affect the value of term
to which x is updated. For example, if we perform a split on the condition y > 0 we get two
branches. In the first branch we have the update:

x := w− w ‖ xexp := {w,z} ‖ ximp := {y} ‖

In which both the explicit dependencies of w and z can be removed from xexp . In the other
branch we have the update:

x := z ‖ xexp := {w,z} ‖ ximp := {y} ‖

In which only the dependency of w can be removed. The implicit dependencies however are
separated and can thus not be removed, which fixes one of the problems faced with the label-
based approach of the previous section.

On the other hand we do in this approach still have the problem that there is a relation
between x and xexp that needs to be preserved, giving rise to the same problems as faced in
the label-approach. It was attempted to combine both approaches but since the essence of the
problem is shared by both of them, this did not lead to a successful framework.

3The cut-rule is a rule that splits a proof tree into two branches. Each branch has a copy of the sequent on
which this rule is applied, however for the same formula ψ one branch includes this formula in the antecedent,
while the other branch in the succedent. The soundness of this rule is based on the fact that a formula can
only hold or not hold. Therefore if one can close both the two branches, one has proven the original sequent
as well.
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4. Conclusions and Future Research

The automatic abstraction of while loops as was introduced in (Bubel et al., 2009) is successfully
lifted to an approach that can handle objects and fields as well. We extended the dynamic logic’s
signature, syntax and semantics to include these objects and fields. Consequently calculus rules,
abstract domains and the automatic proof search are updated as well to be applicable to these
new definitions.

The resulting approach is able to find an invariant update for a while loop automatically,
however the abstraction becomes imprecise when proving properties concerning the shapes that
arise from the inclusion of objects, such as lists and trees. Especially when these shapes are
altered within a program difficulties arise. A better suited approach to prove those kind of
properties can be found in shape analysis, however we aimed at integrating the inclusion of
objects consistently with the original approach on invariant derivation, which differs radically
from the shape analysis technique.

A suggestion for improvement is done to imitate some of the capabilities of shape analysis by
adding explicit support for one particular shape, namely a list iterator. However, the limits of
extending the abstraction mechanism with concepts copied from shape analysis are met, when
fields responsible for the shape are changed within a program. In future research it would be
interesting to see if a stronger link with shape analysis can be obtained, or if it possible to
integrate shape analysis and the abstract lattice approach used in this thesis in one logical
framework.

We also improved on the information flow analysis using dependencies, introduced in (Bubel
et al., 2009) as well. By tracking the dependencies of a variable as a (Herbrand) term expression
instead, we are able to achieve both value and control flow sensitivity to a far larger extend
than the original approach. It is even suspected that the semantical definition of the explicitly
tracked dependencies equals exactly the set of actual dependencies, or at least comes very close.
This is only a suspicion based mainly on the observation that no counter-examples could be
found. For future research we would like to investigate this further and prove this hypothesis if
possible.

Another interesting subject for future research is to create a more generic logical framework for
dependency tracking. For cryptographic purposes, one could for example consider a framework
for tracking dependencies under a certain assumption. Such a framework would be able to prove
that in the program p : x = g^y, where g is the generator of a cyclic group, the variable y is
not a dependency of x under the Discrete Logarithm assumption.

Combining the information flow analysis and the object extension as they are introduced
in this thesis remains an open task. During the development of the logical framework for
information flow as it has been presented in this thesis a number of different approaches have
been tested. The concepts underlying these approach may be profited from in later extension
to the framework, including the integration with an object-oriented language.

We hope to keep on integrating and improving these logical frameworks in the future, and
eventually implement them in the formal verification tool KeY.
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A. Rewrite Rules

A.1. Update Rewriting Rules

A rewrite rule a  b is applicable to any occurrence of a within a sequent, and applying it
means to replace that occurrence of a with b.

{U}{x1 := t1 ‖ . . . ‖ xn := tn}  {U ‖ x1 := {U}t1 ‖ . . . ‖ xn := {U}tn}
{U}f(t1, . . . , tn)  f({U}t1, . . . , {U}tn)

{x1 := t1 ‖ . . . ‖ xn := tn}x  
{

x if x 6∈ {x1, . . . , xn}
tk if x = xk and x 6∈ {xk+1, . . . , xn}

{U}a  a where a ∈ V ∪ {true, false}
{U}if (ϕ)then(t1)else(t2)  if ({U}ϕ)then({U}t1)else({U}t2)

{U}p(t1, . . . , tn)  p({U}t1, . . . , {U}tn)

{U}(ϕ1 ∗ ϕ2) {U}ϕ1 ∗ {U}ϕ2 where ∗ ∈ {&, |,−>}
{U} !ϕ  !{U}ϕ

{U}Qy.ϕ  Qy.{U}ϕ where Q ∈ {∀,∃}, y 6∈ free(U)

{U}(t1
.
= t2)  {U}t1

.
= {U}t2

A.2. Update Rewriting Rules with Objects

The rewrite rules remain the same as in A.1, except for the application of updates on fields (as
adopted from (Beckert et al., 2007, Chapter 3)).

Let U = ∀x.ϕ1(x) −> loc1[x] := t1[x] ‖ . . . ‖ ∀x.ϕn(x) −> locn[x] := tn[x]

{U}loc.b 
{
tk[y′] if ∃y.

(
({U}loc) = lock[y] and ϕk(y) and loc 6∈ {lock+1[y], . . . locn[y]}

)
({U}loc).b otherwise

Where y′ is the “smallest” substitute for the quantified variable x in the update such that
ϕk(y

′) holds (preserving the least-one wins semantics). The instantiation of y′ is out of the
scope of this thesis, for more information the reader is referred to (Rümmer, 2006).
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B. Proofs

B.1. Lemma: Soundness of weakenUpdate

For convenience we repeat the weakenUpdate rule here:

weakenUpdate

Γ, {U}∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ =⇒ {U ′}ϕ,∆
Γ =⇒ {U}ϕ,∆

Proof. We assume the premises of the rule to be valid. Hence for all first-order structures
M = (D, I), states s, and logic variable assignments β we assume the following two statements
hold:

valM,s,β(Γ, {U}∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆) = tt

(B.1)

valM,s,β(Γ =⇒ {U ′}ϕ,∆) = tt
(B.2)

We need to show that for an arbitrary first-order structure M0 = (D, I0), state s0 and logic
variable assignment β0 the statement valM0,s0,β0(Γ =⇒ {U}ϕ,∆) = tt holds. Without the
following assumption we would be done immediately, so we include it:

valM0,s0,β0(
∧

(Γ ∪ ! ∆)) = tt (B.3)

We thus need to prove that valM0,s0,β0({U}ϕ) = tt . We take s1 = valM0,s0,β0(U), we thus need
to prove valM0,s1,β0(ϕ) = tt . Taking M ′0 = (D, I ′0) with I ′0 = I0 except that I ′0(c̄) = s1(F (loc)),
F as in the definition of semantics (Definition 13).

F (loc) =

{
x if loc = x (loc ∈ Fn,0)
(b, valM,s,β(loc′)) otherwise, loc = loc′.b

}
.

Thus we have

valM ′0,s0,β0({U}∀x.(loc[x]
.
= c̄(x))) = tt (B.4)

Since I ′0 only differs from I0 in the interpretation of c̄, which are not present in neither Γ nor
∆, we also have that:

valM ′0,s0,β0(
∧

(Γ ∪ ! ∆)) = tt (B.5)

All formulas ξi ∈ Ξ are required (see the definition of the weakenUpdate rule in Section 2.2.4) to
be of the form ∀x.yi(x)

.
= r[x], with yi fresh and not occurring anywhere else in Ξ. Therefore,
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the formulas in Ξ can never contradict themselves and we can conclude, combining (B.5), (B.4)
and the first premise (B.1):

valM ′0,s0,β0(∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]
.
= c̄(x))) = tt (B.6)

We now define interpretation M ′′0 = (D, I ′′0 ) with I ′′0 = I ′0 except for I ′′0 (γ) = I ′0(ȳ) which allows
us to remove the substitution (and the & connective) to obtain:

valM ′′0 ,s0,β0
(
{U ′}∀x.(loc[x]

.
= c̄(x))

)
= tt (B.7)

Let s′1 = valM ′′0 ,s0,β0(U ′), i.e., s′1 is the state reached by starting in s0 and executing U ′ with the
interpretation I ′′0 . Equation (B.7) is equivalent to

valM ′′0 ,s′1,β0(∀x.(loc[x]
.
= c̄(x))) = tt (B.8)

This implies that I ′′0 (c̄) = s′1(F (loc)) and since we know that I ′′0 (c̄) = s1(F (loc)) we also have
that s1(F (loc)) = s′1(F (loc)). So s1 and s′1 are identical on all locations potentially changed by
U or U ′. Both are derived from s0 with these updates, so we can conclude that s1 = s′1, which
gives us:

valM ′′0 ,s0,β0(U ′) = s1 (B.9)

Let M1 = (D, I1) with I1 be the interpretation identical to I ′′0 except that the I1(c̄) = I0(c̄).
Since the function symbols c̄ do not occur in U ′ we can get from (B.9):

valM1,s0,β0(U ′) = s1 (B.10)

Note that we would have got the same interpretation I1 if we had defined it as identical to I0

except with I1(γ̄) = I ′′0 (γ̄). Since the γ̄ symbols do not occur in Γ, Ξ or ∆ we know from (B.3)
that

valM1,s0,β0

(∧
(Γ ∪ Ξ ∪ ! ∆)

)
= tt (B.11)

Combining (B.2) with (B.11) we get

valM1,s0,β0

(
{U ′}ϕ

)
= tt (B.12)

With (B.10), this implies

valM1,s1,β0(ϕ) = tt (B.13)

Since the symbols γ̄ do not occur in ϕ, and since M1 is otherwise identical to M0, we get

valM0,s1,β0(ϕ) = tt (B.14)

which is what we had to show. ut
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B.2. Lemma: Soundness of invariantUpdate

The invariantUpdate rule from the Section 2.2.4:

invariantUpdate

Γ, {U}∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ, {U ′}g, {U ′}[p]∀x.(loc[x]
.
= c̄(x)),Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x)),∆

Γ, {U ′} ! g =⇒ {U ′}[...]ϕ,∆

Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆

Proof. We assume the premises to be valid, so we assume that for all first-order structures M ,
states s, logic variable assignments β:

valM,s,β(Γ, {U}ψ,Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]ψ,∆) = tt (B.15)

valM,s,β(Γ, {U ′}g, {U ′}[p]ψ,Ξ =⇒ ∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]ψ,∆) = tt (B.16)

valM,s,β(Γ.{U ′} ! g =⇒ {U ′}[...]ϕ,∆) = tt (B.17)

Where ψ = ∀x.(loc[x]
.
= c̄(x)) is used as an abbreviation to save space. We need to show that

for an arbitrary first-order structure M0 = (D, I0), state s and logic variable assignment β the
statement valM0,s0,β0(Γ =⇒ {U}[while (g) {p}; ...]ϕ,∆) = tt holds. As with the proof for
the weakenUpdate rule, without the following assumption we would be done immediately, hence
we include it:

valM0,s0,β0(
∧

(Γ ∪ ! ∆)) = tt (B.18)

Thus our statement to prove becomes valM0,s0,β0({U}[while (g) {p}; ...]ϕ) = tt . Let s1 =
valM0,s0,β0(U), the state reached after executing update U in s0. If the loop does not terminate
starting in s1, the proof goal holds trivially (note that we have used [p] for partial correctness).
Hence we assume that the loop terminates. Taking into consideration the semantics of the while
loop, we know that there has to be a finite sequence of states s1, . . . sk such that:

valM0,si,β0(p) = {si+1} i ∈ {1, . . . , k − 1} (B.19)

valM0,si,β0(g) = tt i ∈ {1, . . . , k − 1} (B.20)

valM0,sk,β0(g) = ff (B.21)

Which makes our goal to prove that the statement valM0,sk,β0([...]ϕ) = tt holds.
To do so we first prove by induction that for every state si (i ∈ {1, . . . k}), we can find an

interpretation Ii of the symbols γ̄ such that applying update U ′ to the initial state s0 with this
interpretation, we directly obtain state si.

So we proof by induction: for all i ∈ {1, . . . k}, there exists an Ii identical to I0 except for the
interpretation of γ̄ such that valMi,s0,β0(U ′) = si holds, where Mi = (D, Ii).

• Base case (i = 1).
Note that the first premise of the weakenUpdate rule is the same as the first premise of
the invariantUpdate rule. Similar to that proof, we can construct an interpretation I1 with
the requested properties, see (B.10) in Appendix B.1.
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• Induction step (i ∈ {2, . . . , k})
The induction hypothesis gives us:

valMi−1,s0,β0(U ′) = si−1 (B.22)

with Mi−1 = (D, Ii−1) and Ii−1 identical to I0 except for the interpretation of the symbols
γ̄. We define M ′i−1 = (D, I ′i−1) with I ′i−1 identical to Ii−1 except that I ′i−1(c̄) = si(F ( ¯loc)).
Since the c̄ do not occur in p, we obtain from (B.19):

valM ′i−1,si−1,β0([p]∀x.(loc[x]
.
= c̄(x))) = tt (B.23)

Since both γ̄ and c̄ do not occur in either Γ or ∆, and I ′i−1 is otherwise identical to I0, we
get from (B.18):

valM ′i−1,s0,β0
(
∧

(Γ ∪ ! ∆)) = tt (B.24)

Since the c̄ also do not occur in U ′ and I ′i−1 is otherwise identical to Ii−1, we get from
(B.22):

valM ′i−1,s0,β0
(U ′) = si−1 (B.25)

Combining this with (B.23) we obtain:

valM ′i−1,s0,β0
({U ′}[p]∀x.(loc[x]

.
= c̄(x))) = tt (B.26)

Since neither γ̄ nor c̄ appear in g, we can combine (B.25) with (B.20) and obtain:

valM ′i−1,s0,β0
({U ′}g) = tt (B.27)

If we now combine (B.24),(B.25),(B.26) on the premise (B.16) (again using the notion
that formulas in Ξ never contradict themselves as in B.1), we get:

valM ′i−1,s0,β0
(∀x.χā(ȳ(x)) & {U ′}[γ̄/ȳ]∀x.(loc[x]

.
= c̄(x))) = tt (B.28)

We now take M ′′i−1 = (D, I ′′i−1) with I ′′i−1 identical to I ′i−1 but with I ′′i−1(γ̄) = I ′i−1(ȳ) which
allows us to remove the substitution (and the & connective) to obtain:

valM ′′i−1,s0,β0
({U ′}∀x.(loc[x]

.
= c̄(x))) (B.29)

Let s′i = valM ′′i−1,s0,β0
(U ′), we have that the previous equation is equivalent to:

valM ′′i−1,s
′
i,β0

(∀x.(loc[x]
.
= c̄(x))) (B.30)

From this we know that s′i(
¯loc) = I ′′i−1(c̄). Since we defined I ′′i−1(c̄) = si( ¯loc), we know

that s′i = si. Given our definition of s′i, we obtain:

valM ′′i−1,s0,β0
(U ′) = si (B.31)

We now take Mi = (D, Ii) with Ii identical to I ′′i−1 except that Ii(c̄) = Ii−1(c̄). Since c̄
does not occur in U ′, we can rewrite the above equation to:

valMi,s0,β0(U ′) = si (B.32)

So now we have the interpretation Ii being equal to I0 except for the interpretation of γ̄
and for which the desired property holds. This ends the induction.
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Having proven our induction, we are interested in the particular case that i = k:

valMk,s0,β0(U ′) = sk (B.33)

Since the γ̄ symbols do not occur in g, we can combine this with (B.21) and obtain:

valMk,s0,β0({U ′}g) = ff (B.34)

And since these γ̄ also do not occur in Γ nor ∆, we get using (B.18):

valMk,s0,β0(
∧

(Γ ∪ ! ∆)) = tt (B.35)

If we combine these last two equations with the third premise of the invariantUpdate rule (B.17)
we get:

valMk,s0,β0({U ′}[...]ϕ) = tt (B.36)

With the knowledge on sk (B.33) we can replace this with

valMk,sk,β0([...]ϕ) = tt (B.37)

Finally, since the γ̄ symbols do not occur in [...]ϕ and Ik is otherwise identical to I0, we get:

valM0,sk,β0([...]ϕ) = tt (B.38)

which is what we had to show. ut
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