Radboud University Nijmegen
Faculty of Science
Kerckhoffs Institute

Master of Science Thesis

GPU-based Password Cracking

On the Security of Password Hashing Schemes regarding
Advances in Graphics Processing Units

by

Martijn Sprengers
m.sprengers@student.ru.nl

Supervisors:
Dr. L. Batina (Radboud University Nijmegen)
Ir. S. Hegt (KPMG IT Advisory)
Ir. P. Ceelen (KPMG IT Advisory)

Radboud University Nijmegen

e\’aCI'l\I/
[
Liorre

MiNe €

Thesis number: 646
Final Version

Abstract
Since users rely on passwords to authenticate themselves to computer systems, ad-
versaries attempt to recover those passwords. To prevent such a recovery, various
password hashing schemes can be used to store passwords securely. However, recent
advances in the graphics processing unit (GPU) hardware challenge the way we have
to look at secure password storage. GPU'’s have proven to be suitable for crypto-
graphic operations and provide a significant speedup in performance compared to
traditional central processing units (CPU'’s).
This research focuses on the security requirements and properties of prevalent pass-
word hashing schemes. Moreover, we present a proof of concept that launches an
exhaustive search attack on the MD5-crypt password hashing scheme using modern
GPU’s. We show that it is possible to achieve a performance of 880 000 hashes
per second, using different optimization techniques. Therefore our implementation,
executed on a typical GPU, is more than 30 times faster than equally priced CPU
hardware. With this performance increase, ‘complex’ passwords with a length of 8
characters are now becoming feasible to crack. In addition, we show that between
50% and 80% of the passwords in a leaked database could be recovered within 2
months of computation time on one Nvidia GeForce 295 GTX.

Preface

This master thesis is a result of the research I conducted during my graduation
project from September 2010 until February 2011. This project is the final part
of my master ‘Computer Security’ which is taught at the Kerckhoffs Institute,
a collaboration between the University of Twente, the Eindhoven University of
Technology and the Radboud University Nijmegen. The research was carried
out at ‘KPMG IT Advisory: ICT Security & Control (ISC)’ in Amstelveen, the
Netherlands. This business unit is specialized in advisory and audit services on
information security issues.

First of all, I would like to thank Dr. L. Batina, member of the Digital Security
department of the Radboud University Nijmegen, for supervising this project
and putting effort in my research. Furthermore, much gratitude goes out to my
supervisors at KPMG, Ir. S. Hegt and Ir. P. Ceelen. I would like to thank them
for investing their time and effort, which, together with their professional skills,
helped me considerably in completing this project.

In addition, I would like to thank Mr. P.H. Kamp for his comments and
discussions on the design of his MD5-crypt algorithm, which provided me with
more insight about the context it was created in. Furthermore, my gratitude goes
out to Dr. B. de Weger and Mr. M. Stevens, who provided me with comments
on the key-stretching technique and the break of the collision resistant property
of the MD5 hash function.

I would also like to thank Ir. P. Kornelisse, Director at KPMG ISC, for giving
me the opportunity to write this thesis at KPMG IT Advisory, M. Smeets MSc.
for his discussions on GPU hardware and M. van Veen MSc., who provided me
with a fast password generation algorithm. Finally, I would like to thank the rest
of the ISC team for their openness, professionalism and the social work environ-
ment they offered, which made me decide to stay at KPMG after my graduation.

Martijn Sprengers, Amstelveen, February 2011

Contents

Contents vii
1 Introduction 1
1.1 Introduction 2
1.2 Related work 2
1.3 Scope and contributions L. 3
1.4 Research methodology 4
1.5 Relevance e 4
1.6 External validity o 5
1.7 Outline e 5

2 Attacking cryptographic systems 7
2.1 Generic attacks 8
2.1.1 Exhaustive search attack 8

2.1.2 Birthday attack L oo 9

2.1.3 Time-memory trade-off attack 10

2.2 Performance enhancements 11
2.2.1 Bitslicing 11

2.2.2 Special purpose hardware 11

3 Hash functions 13
3.1 Introduction to hash functions and their cryptographic properties . 14
3.2 The MD5 hash function 16
3.2.1 Merkle-Damgard hash functions 16

3.2.2 Notation. 17

3.2.3 MD5 algorithm description 18

3.2.4 The MDb5 compression function 19

4 Password hashing schemes 21
4.1 Introduction to password hashing schemes 22

vii

viii

CONTENTS

4.2 The need for password hashing schemes 23
4.3 Attack strategies 24
4.4 Properties of a good password hashing scheme 27
4.4.1 Key-stretching oo oL 29

4.5 Attacker models for hash functions and password hashing schemes 30
4.5.1 Attacks to the key-stretching technique 33
Outline of the GPU hardware 35
5.1 Hardware outline 36
5.1.1 Comparing GPU and CPU design properties 37
5.1.2 Speed comparison between CPU and GPU 39

5.2 GPU application programming interfaces 41
5.3 The CUDA programming model 42
5.3.1 Compiler model, 43
5.3.2 Execution model00 43
5.3.3 Memory Outline, 45
Cracking MD5-crypt with GPU hardware 49
6.1 Considerations 50
6.2 Design of MDb-crypt oL oo 50
6.3 Enabling exhaustive search attacks on GPU’s 52
6.3.1 Parallelization of MD5-crypt 52
6.3.2 Algorithm optimizations 53

6.4 Theoretical analysis of the maximum performance 54
6.4.1 Simple arithmeticmodel 54
6.4.2 Performance prediction model 56
Optimization of our implementation on a CUDA enabled GPU 61

7.1 Implementation details oL 62
7.2 Optimizations o 63
7.2.1 Maximizing parallelization, 63
7.2.2 Memory Optimizations 67
7.2.3 Execution Configuration Optimizations 72
7.2.4 Instruction Optimizations 76
7.2.5 Control Flow Optimizations 77
Experimental evaluation 79
8.1 Experiment setup L 80
8.1.1 Performance metric 80
8.1.2 Available hardware 80
8.2 Optimizations effectso oo 80

8.2.1 Algorithm optimizations 80

CONTENTS

8.2.2 Configuration optimizations 82

8.2.3 Comparison of theoretical limitations versus practical lim-
itations Lo 83
8.3 Comparison with other implementations and hardware 84
8.3.1 Comparison against CPU implementations 84
8.3.2 Comparison against other cryptographic implementations . 85
8.4 Consequences for practical use of password hashing schemes 86
9 Conclusions and future work 91
9.1 Conclusions Lo 92
9.2 DiScussion e e 93
9.3 Futurework 94
Bibliography 95
A Appendix A 103
A.1 Specifications test machine 0000 103
A.1.1 Specifications Intel Core i7920 103
A.1.2 Specifications Nvidia GeForce GTX 295 104
A2 Codeoverview e 105
A.2.1 Password generation algorithm 105
List of Symbols and Abbreviations 107
List of Figures 108
List of Algorithms 111
List of Tables 112

ix

Chapter 1

Introduction

1.

INTRODUCTION

1.1 Introduction

Many software services provide an authentication system that relies on a user
name and password combination. Initially, this password is generated by the user
and stored in a safe location on the system. To make sure that these passwords are
still safe even if the security of the location can not be guaranteed, it is common
to use a cryptographic hash function to calculate the digest of the password
and store this together with the users credentials. When a user authenticates
himself to the system again, the digest of the plaintext password is calculated
and compared to the stored digest.

Due to the cryptographic properties of the hash function, the digest of the
password is not easily reversible and therefore the probability that an adver-
sary learns partial information about the password should be proportional to the
work he invests and the predictability of the password distribution. However,
it is the latter property that fails for human generated passwords. Therefore,
most deficiencies of password authentication systems arise from human memory
limitations. Users tend to pick passwords that are easy to remember and do
not contain sufficient randomness, which lead to predictable passwords. This en-
ables an adversary to generate possible candidate passwords, calculate the digest
and compare them with the stored digest. Password hashing schemes have been
designed to decrease the feasibility of such an attack, e.g. by increasing the com-
plexity of the calculations. However, many of those password hashing schemes
have been designed in the mid nineties and since Moore’s law is still valid, it is
doubted if these schemes still provide enough security. Moreover, new hardware
platforms have been designed to execute such attacks even faster. One of these
platforms is the Graphics Processing Unit (GPU).

Since the late nineties GPU’s have been developed and improved. They have
proven to be very suitable for processing parallel tasks and calculating floating
point operations. It is especially the parallel design of a GPU that makes it
suitable for cryptographic functions. While the advantages of GPU’s in other
areas (like graphical design and game-industry) have already been recognized, the
cryptographic community was not able to use them due to the lack of user-friendly
programming API’s and the lack of support for integer arithmetic. However, GPU
producers have dealt with those shortcomings.

1.2 Related work

After Thompson et al. [70] had shown that GPU’s could be used for general
purpose computing too, in contrast to specific graphics applications, Cook et al.
[15] showed that GPU’s could be used for cryptography. However, due the lack of
integer arithmetic and support of API’s, no remarkable speedup was gained. After
general programming API’s for GPU’s became available, Yang and Goodman[77]

1.3. Scope and contributions

and Harrison and Waldron[29] showed that contemporary GPU’s can outperform
high-performance Central Processing Units (CPU’s) on symmetric cryptographic
computations, yielding speedups of at most 60 times for the DES symmetric
key algorithm. Moreover, GPU implementations of the AES algorithm have
been extensively reviewed [28, 41, 20, 12]. Szerwinski et al.[69] and Harrison
et al.[30] showed how GPU’s could be used for asymmetric cryptography, while
Bernstein et al.[9] showed that it is possible to reach up to 481 million modular
multiplications per second on an Nvidia GTX 295, in order to break the Certicom
elliptic curve cryptosystem (ECC) challenge! [10, 8]. In addition, cryptographic
hash functions, such as MD5 [40, 32] and Blowfish [48], have been implemented
on graphic cards too, yielding significant speed ups over CPU’s.

1.3 Scope and contributions

This research focuses on launching exhaustive search attacks on authentication
mechanisms that use password hashing schemes based on a cryptographic hash
function (such as MD5). We focus on how these password schemes can be ef-
ficiently implemented on GPU’s, which can initiate massive parallel execution
paths at low cost, compared to a typical CPU. In particular, the password hash-
ing scheme MD5-crypt is reviewed. Therefore, our main research question is:

How DO GRAPHICS PROCESSING UNITS EFFECT THE PERFORMANCE OF
EXHAUSTIVE SEARCH ATTACKS ON PASSWORD HASHING SCHEMES LIKE MD5-
CRYPT?

With the research question defined, we summarize the contributions as fol-
lows:

e We define the security properties of password hashing schemes based on
the properties of cryptographic hash functions. The trade-off (or paradox)
‘slow hashing, fast authentication’ will be emphasized.

o We identify the current and future attacker models on password hashing
schemes. We determine if the recent break of a cryptographic property
of MD5[72, 67] affects the security of the password hashing scheme MD5-
crypt. Moreover, we try to determine to what extent the break of collision
resistance properties influence the security of password hashing schemes in
general.

o We show how different optimization strategies for GPU’s could be used to
get a maximum performance increase over CPU’s.

!See http://www.certicom.com/index .php/the-certicom-ecc-challenge for more infor-
mation.

http://www.certicom.com/index.php/the-certicom-ecc-challenge

1. INTRODUCTION

e We publish a working proof of concept, which is the first and fastest GPU
implementation to crack password hashes for MD5-crypt.

e We argue to what extent password hashing schemes should be improved
in order to withstand exhaustive search attacks executed on near-future
hardware.

1.4 Research methodology
To answer our research question, we use the following research methodology:

e Literature study. We try to identify the known optimization techniques
for GPU’s and cryptographic applications. Furthermore, we specify the
properties of common password hashing schemes and see how they protect
against known attacker models. Moreover, given the recent break of the
collision resistance property of MD5, we determine whether this influences
the security of MD5-crypt.

e Theoretic and practice based models. In order to show why GPU’s yield a
performance increase over CPU’s, we define a theoretical model to estimate
the maximum speed increase for MD5-crypt. Furthermore, we compare this
model to known practice based models.

e Proof of concept. We develop a GPU implementation of the MD5-crypt
password hashing scheme and describe how optimizations are implemented.
Based on an experimental evaluation, we try to determine whether exhaus-
tive search attacks on password hashing schemes are feasible with contem-
porary GPU’s.

1.5 Relevance

People identifying themselves to systems and Internet services have to specify
a password during their first authentication process. From then, the service
provider is responsible for the storage of their credentials. While most databases
and password storages systems are protected, either by corporate network, ‘SAM’
file (on Windows) or ‘shadow’ file (on UNIX), password hashing plays an impor-
tant role when the confidentiality of such databases and files, together with the
rest of the user’s information, can not be guaranteed by the system. This can the
case when the data are lost, stolen or published, e.g. by an disgruntled employee
or malicious user. If the password hashing scheme is poorly designed, end-user
passwords can be recovered easily. With the plain text password, malicious users
can then authenticate themselves with another identity on the specific system or
other services (since most end-users use the same password for multiple services).

1.6. External validity

To clarify the relevance, we quote the designer of MDb5-crypt, Poul-Hennig
Kamp:

“The hashing used for protection of passwords should be strong
enough to make it unfeasible to brute-force any but the most trivial
passwords across all the users. The driving factor (in the design) was
the execution time: I wanted it to be big enough to make key-space
searches unappetizing. I still believe that MD5-crypt is safe from all
but key-space searches.

In my naive youth, I seriously expected that when I had pointed
out that a password hashing did not need to be stable over any time
longer than the individual passwords it protected, real card-carrying
cryptographers would spend some time solving this practical problem
once and for all with a family of configurable password scramblers.
In fact they did not, as it was to them a problem they had already
solved theoretically.”

MD5-crypt and other password hashing schemes are designed without sustainable
security requirements and are actually the product of the differential attacks on
the DES encryption scheme in the early nineties. Since then, MD5-crypt was used
as the standard password hashing scheme in most Unix variants, such as BSD
and Linux. Moreover, corporations like Cisco have it employed in their routers
and the RIPE Network Coordination Centre stores the MD5-crypt hashes, used
to authenticate their users, in public. If the security of MDb5-crypt fails, it will
have a large impact on the confidentiality and integrity of systems and services.

1.6 External validity

The password hashing scheme that will be reviewed in this work, MDb5-crypt, was
designed in the early nineties and has not been updated ever since. Subsequent
password hashing schemes, such as SHA-crypt[21], are based on the same design
as MD5-crypt. They only differ in the way how the underlying hash functions are
implemented. Therefore, if our research proves to be successful, it could easily
be adapted to other password hashing schemes, making our method generic. The
same generalization applies for our efficient GPU implementation of the MD5
hash function, since it is very similar in design to other commonly used hash
functions.

1.7 Outline

Chapter 2 introduces the generic attacks on cryptographic systems and the feasi-
bility of such attacks on current key sizes. Chapter 3 describes the properties and

1. INTRODUCTION

requirements of hash functions and the MD5 hash function in particular. Then,
Chapter 4 describes the properties and requirements of password hashing schemes
based on those cryptographic hash functions. Further more, specific attacks and
attacker models to password hashing schemes are defined. To describe our attack
with GPU’s on one specific password hashing scheme, Chapter 5 contains an in-
troduction to GPU hardware and programming models. Chapter 6 will cover our
approach to launch an exhaustive search attack with GPU’s on MD5-crypt. To
maximize the performance of our attack, our optimization strategies and efficient
GPU implementation will be described in Chapter 7. Chapter 8 then contains
the results of the experimental evaluation for our proof of concept. Finally, the
conclusions and future work are presented in Chapter 9.

Chapter 2

Attacking cryptographic systems

This chapter describes general attacks to cryptographic systems, which include
hash functions and password hashing schemes based on those hash functions.
Moreover, special attack enhancements, such as bit slicing and specialized hard-

ware, are described.

2.

ATTACKING CRYPTOGRAPHIC SYSTEMS

2.1 Generic attacks

This section describes the attacks that hold for all cryptographic functions, in-
cluding hash functions and password hashing schemes.

2.1.1 Exhaustive search attack

The easiest to perform and most powerful attack is the exhaustive search attack.
However, most secure cryptographic systems have large key spaces, which make
it impossible to find the key in a feasible amount of time. To decrease the time
needed for cryptanalytic attacks to find a key, either the time to apply the cryp-
tographic function should be decreased or the available computing power should
be increased. Of course combining the two is even more advantageous for such
attacks. For example, consider a cryptographic hash function (e.g. MD5) with
an output space of 128 bit. If all outcomes are equally likely, the search space

2128 " which is not feasible for modern hardware. The European Net-

would be
work of Excellence in Cryptology II (ECRYPT II), publishes an annual report on
algorithms and keysizes for both symmetric and asymmetric cryptographic appli-
cations. For 2010, Table 2.1 considers the feasibility of launching an exhaustive
search attack on different keysizes for specific cryptographic applications (after

[64, 54]).

Duration Symmetric RSA ECC

Days-hours 50 512 100
5 years 73 1024 146
10-20 years 103 2048 206
30-50 years 141 4096 282

Table 2.1: Duration of exhaustive search attacks on key sizes, in bit length, for
specific cryptographic applications. (Assumptions: no quantum computers; no
breakthroughs; limited budget)

The feasibility to attack current password hashing schemes is shown by Clair et
al.[14]. They developed an analytical model to understand the time required to
recover random passwords. Their empirical study suggests that current systems
vulnerable to exhaustive search attacks will be obsolete in 2-10 years.

Exhaustive search is commonly used in combination with the following types
of attack[43]:

o Known plaintext With this type of attack, the adversary has access to
both the plaintext and the corresponding ciphertext. He tries to discover

2.1. Generic attacks

the correlation between the two, e.g. by finding the key to encrypt the
plaintext.

o (liphertext-only With this type of attack, the adversary only has access to
the ciphertext. His goal is to find the corresponding plaintext or key, e.g.
a hashed password.

Since password hashing schemes are based on one-way hash functions, exhaustive
search on those schemes is only possible in combination with ciphertext only
attacks'.

If one assumes that the probability of the exhaustive search attack succeeding
on the first try is exactly equal to the probability that it would succeed on the
2nd, or n-th attempt, the law of averages then states that the best and unbiased
estimate is the mid-point of the series. In here, ‘best’ is defined as having the
smallest sum of squared deviations of the difference between the successful at-
tempt and the half-way point[26]. So, if an exhaustive search has a complexity
of 2" in time, a successful try is expected at 2771,

2.1.2 Birthday attack

This type of attack is based on the birthday problem in probability theory. This
theory states the probability that in a set of randomly chosen people a pair
of them will have the same birthday. Against most people’s expectation, the
probability that 2 people, out of a set of 23, having their birthday on the same
date is close to 50 %. With a birthday attack, an adversary randomly generates
output of a given cryptographic function until two inputs map to the same output.
Let n(p, N) be the smallest number of values we have to choose, such that the
probability for finding a collision is at least p (with a total of N possibilities).
Then n(p, N) can be approximated by [60]:

n(p,N)%,/QNlnlip. (2.1)

Now let Q(IV) be the expected number of values an adversary has to choose before

finding the first collision. This number can be approximated by [60, 6]:
Q(N) ~ N. (2.2)

Since cryptographic hash functions map an arbitrary input to a fixed size output,
collisions always occur (due to the pigeonhole principle). A good cryptographic
hash function H has N output values that are all equally likely. This makes birth-
day attacks more efficient, since finding a collision only takes 1.25v/N evaluations

! Actually, the original UNIX crypt function uses DES to ‘encrypt’ the user password, but
with the zero’s as the plaintext and the user password as the key.

2.

ATTACKING CRYPTOGRAPHIC SYSTEMS

10

of the hash function H (where N should be sufficiently large). For example, MD5
has an output of 128 bits, so N = 2128, If MD5 is perfect collision resistant, a
collision will then be found after approximately 264 tries. However, MD5 has
been widely investigated on its cryptographic strength. For example, Feng and
Xie [73, 74] reported that collisions can be found in approximately 22! time.

2.1.3 Time-memory trade-off attack

The time that is needed to break a cryptographic system can be reduced by
using a technique called time-memory trade-off. The technique was introduced
by Hellman [31] in 1980 and it is based on the fact that exhaustive search needs
a lot of time or computing power to complete. When the same attack has to be
carried out more than once, it may be beneficial to execute the exhaustive search
in advance and store the results in memory. If this precomputation is done, the
search can be carried out almost instantly. However, storing all results in memory
is not very practical since most attacks need a unfeasible amount of memory.
Therefore, memory is traded against time. Consider a cryptographic system
with N possible keys. Time-memory trade-off can find a key in N2/? operations
using only N2/3 words of memory. However, this is a probabilistic method and
therefore the success of the attack depends on the time and memory allocated
for the cryptanalysis. The original technique by Hellman has some constraints
on its reduction function and therefore collisions in the table storage could occur.
Oechslin [50] proposed a new time-memory trade-off technique (called rainbow
tables) with multiple reduction functions, which significantly reduce the number
of collisions and so reduce the number of calculations.

Time-memory trade-off is especially effective against the Windows Lan Man-
ager password hashing scheme [50] and the traditional Unix hashing scheme,
which is based on DES [44]. However, password hashing schemes that use a suf-
ficiently large salt offer good protection against time-memory trade-off attacks.
Since a salt differs for every user, multiple rainbow tables have to be created. If a
password hashing scheme uses a n-bit salt, 2" rainbow tables have to be created,
which is unfeasible for large n.

Another way to prevent time-memory trade-off attacks against a password
hashing scheme is to use a variable k number of hash iterations. The number
k is then stored together with the salt (both publicly known) and every time
the user authenticates himself to the system, the password hashing scheme is
called with k iterations of the hash function. This way, time-memory trade-off
becomes unfeasible since the adversary should precompute the rainbow tables for
all possible k.

2.2. Performance enhancements

2.2 Performance enhancements

The previously described attacks can be enhanced by other techniques and hard-
ware, which will be described this section.

2.2.1 Bit slicing

While the origin of the bit slicing technique dates from the early seventies, it
became popular again (albeit in another form) by Biham’s 1997 paper [11], in
which he describes how bit slicing can increase the performance of cryptographic
applications like DES. Bitslicing, as described by Biham, views an n-bit processor
as a computer with n one-bit processors. The algorithm is then broken down to
AND, OR, NOT, and XOR gates, and these gates are implemented as machine
instructions. For example, if we consider a 64-bit machine, this results in the
(cryptographic) function being executed 64 times in parallel. The bit-sliced DES
algorithm yields a significant speedup over the original implementation, which
supports exhaustive search attacks.

In more recent times, Kasper and Schwabe[33] showed that a bit sliced imple-
mentation of AES encryption is up to 25% faster than previous implementations,
while simultaneously offering protection against timing attacks. This makes it
valuable to consider when performing exhaustive search attacks on MD5 and
MD5-crypt. Unfortunately, no literature on how to implement a bit sliced ver-
sion of MD5 of MD5-crypt could be found. The authors of ‘John the Ripper’ [19]
made a proof of concept for a bitsliced implementation of MD5, but no notable
performance increase was gained. The authors state that bitsliced implemen-
tations for MD5 and SHA-1 are possible, but they are only more efficient than
traditional ones if near-future CPU’s have wider registers (over 128 bit), larger
L1 caches, and higher instruction issue rates. However, current general-purpose
CPUs that satisfy these criteria happen to support parallel operations on 32-bit
elements within the 128-bit vector registers (like the SSE instruction set), which
is both more straightforward and more efficient than a pure bitsliced version of
these hash functions.

2.2.2 Special purpose hardware

In contrast to generic purpose machines, special purpose hardware is solely build
for the application of one (cryptographic) function. For example Kedem and Ishi-
hara[35] used a Single Instruction Multiple Data (SIMD) machine to ‘crack’ the
traditional Unix hashing scheme. With the introduction of new architectures, new
possibilities arise with regard to the exhaustive search attacks on cryptographic
systems. The following architectures are most common:

11

2.

ATTACKING CRYPTOGRAPHIC SYSTEMS

12

e (ell The cell processor is a microprocessor architecture jointly developed by

Sony, IBM, and Toshiba. It was specially developed for the Sony Playstation
3, since the architecture combines a general purpose processor of modest
performance with streamlined co-processing elements, which greatly accel-
erate multimedia and vector processing applications. It turned out that this
architecture could be used for finding MD5-collisions as well. The Hash-
Clash project used 200 Cell processors to find such collisions in limited time,
which enabled the creation of rogue SSL certificates. [67, 66]

FPGA A Field-Programmable Gate Array is an integrated circuit designed
to be configured by a customer after manufacturing. They contain pro-
grammable logic components (logic blocks), and a hierarchy of reconfig-
urable interconnects that allow those components to communicate. Logic
blocks can be configured to perform complex combinational functions, or
merely simple logic gates like AND and XOR. In most FPGA’s, the logic
blocks also include memory elements. Since cryptographic functions can
easily be simplified to logic operators, FPGA’s can be used for implement-
ing them[22]. For example, Mentens et al. [44] showed that the traditional
Unix password hashing scheme can be ‘cracked’ within an hour on a FPGA
if all possible salts are precomputed.

GPU GPU’s are an upcoming platform for applications of cryptographic
functions, since more graphics cards support integer arithmetic and general
programming application programming interfaces (API’s). This research
uses GPU’s to speed up exhaustive search attacks on prevalent password

hashing schemes.

Chapter 3

Hash functions

Since password hashing schemes rely on the cryptographic properties of the un-
derlying hash functions, this chapter describes the design of hash functions and
one hash function in particular, the Message Digest Algorithm 5 (MD5).

13

3.

HASH FUNCTIONS

14

3.1 Introduction to hash functions and their cryptographic
properties

A hash function is a mathematical function that maps an arbitrary sized input
(domain) into a fixed sized output (range)[43]:

H:75 — 73, (3.1)

where H is the hash function, Zs is equal to {0, 1}, m is the input size (in number
of bits) and n is the output size (in number of bits). In most cases m > n holds.
This is the reason why hash functions are also called compression functions. Most
hash functions are built for a particular purpose. To produce the hash, the bits of
the input message are mixed by bitwise operations (rotations and shifts), modular
additions and compression functions. These mixing techniques are then iterated
in order to ensure high complexity and pseudo-randomness of the output.
The main properties of a good hash function are:

Uniformly distributed A perfect hash function should produce unique output
for every unique input. However, due the fact that in most cases the domain
is greater than the range and according to the pigeon hole principle!, some
different inputs will map to the same output. These situations are called
collisions. To minimize the likelihood of collisions, the output of a good
hash function should be uniformly distributed, meaning that the probability
for all outputs is the same: 1/N, where N is the size of the output space.
In the case that the output size is determined by n bits, the probability of
all the 2" outputs should be 1/2".

Deterministic For any given input, the hash function should produce the same
hash value on any given time.

Low complexity It should be easy to compute a hash value for any given mes-
sage. An efficient hash function should have a linear complexity of O(m).

The idea for hash functions was originally conceived in the late 50’s [37], but it
is still a very active research field. Hash functions can be used for many purposes,
but the most prevalent are:

e Fast table lookup. Elements of the table can be found fast if together with
the element the hash value of every element is stored as an index.

e Message digest. A hash function is used to compare two large bit streams
by calculating the hash value of both the streams. If the hash values are dif-
ferent, the input streams must be different. If the hash values are the same,

!The pigeonhole principle states that if n items are put into m pigeonholes with n > m,
then at least one pigeonhole must contain more than one item.

3.1. Introduction to hash functions and their cryptographic properties

then one could say that the input streams are the same, with probability
P. The hash function is considered good if P is high.

Encryption. Some encryption algorithms use hash functions to produce
ciphertext that cannot be mapped back to the input. Hash functions that
are used in this context are called mixing functions.

Digital signatures. Instead of signing a whole document, it is more efficient
to sign only the hash of the document. Upon verification of the signature,
the hash of the document is used to ensure document integrity.

Authentication. Hash-based Message Authentication is a specific construc-
tion for calculating a message authentication code (MAC) involving a cryp-
tographic hash function in combination with a secret key. This way, end
users who share the key can determine if the message has been tampered
with.

Password storage. Since hash functions deterministically map input to uni-
formly distributed output and the fact that they are hard to reverse, they
are considered appropriate functions for password storage.

Depending on the application of the hash function generally two kinds of

hash functions can be distinguished: cryptographic and non-cryptographic hash
functions. Regarding the purpose of this research, we will only review the cryp-
tographic hash functions.

Cryptographic hash functions are used in a variety of security applications,

such as digital signatures, message authentication codes and other forms of au-
thentication. If the security of such a function is broken, the parent security
application may be broken too. Therefore extra security properties are required
to make general hash functions suitable for cryptographic use[43].

Pre-image resistance This concept is related to that of a one-way function.

Functions that lack this property are vulnerable to so-called pre-image at-
tacks. To avoid those, two subtypes of pre-image resistance can be defined:

1. First pre-image resistance Given a hash function H and a hash h, it
should be hard to find any message m such that h = H(m).

2. Second pre-image resistance Given a hash function H and a message
mq it should be hard to find another message mo (where mg # mq)
such that H(mj) = H(msg). This property is sometimes referred to as
weak collision resistance.

Collision resistance Given a hash function H, it should be hard to find two

different messages m; and mg such that H(m;) = H(msg). Such a pair is

15

3.

HASH FUNCTIONS

16

called a cryptographic hash collision. This property is sometimes referred
to as strong collision resistance.

A brute force attack can find a first or second pre-image for some hash function
with an output size of n bits in approximately 2" hash operations. In addition
to this, a brute force attack to generate a collision can be mounted in 27, due to
the birthday paradox (which is be described in Chapter 2.1.2).

In the former description, hard to find implies that there should be no other
attack feasible than an exhaustive search attack, and the exhaustive search attack
should not be feasible for as long as the security of the system is considered
important. This concept is related to the bit length of the key. For example,
if an adversary needs thousands of expensive computers and years of execution
time in order to break a key that is not used anymore at the time of recovery,
then this attack is not considered as a break. A cryptographic hash function is
considered broken if there exists an attack that requires less operations and time
to execute than an exhaustive search approach would require.

3.2 The MD5 hash function

The Message Digest algorithm 5, or briefly MD5, is a widely used cryptographic
hash function. It was first proposed by Rivest in 1992. The RFC1321 document
[56] describes the hash function and its applications in cryptography. The al-
gorithm takes as input a message of arbitrary length and produces as output a
128-bit ‘fingerprint’ or ‘message digest’ of the input. For example, consider the
8-byte input ‘Computer’, which can be represented by 436 f6d707574657216. It
will be hashed to the following digest value (represented in 32 hexadecimals):

M D5(Computer) = 181900dad960becch34 f53c4e0 f f46471¢

The MD?5 algorithm is an extension of the MD-4 message digest algorithm. Var-
ious modifications have been made in order to make MD5 less vulnerable to
successful cryptanalytic attacks. MD5 is slightly slower than MD4, but is more
‘conservative’ in design and security. However, the author already stated in 1992
that he could not guarantee that it is computationally infeasible to mount a
pre-image attack or produce two messages with the same digest. The following
subsections will describe the algorithm and its design principles.

3.2.1 Merkle-Damgard hash functions

In order to ensure that a cryptographic hash function is able to process an
arbitrary-length message into a fixed-length output, the MD5 algorithm is based
on the hash function construction by Merkle and Damgard [45, 17]. They showed
that this can be achieved by splitting the input into a series of equal-sized blocks,

3.2. The MD5 hash function

and operating on them in sequence using a one-way compression function that
processes a fixed-length input into a shorter, fixed-length output. The compres-
sion function can either be specially designed for hashing or be built from a block
cipher. Figure 3.1 shows an overview of the Merkle-Damgard construction. In
the figure, the message m is divided into equal size message blocks 1| ... ||zx,
the one-way compression function is denoted as Hj and xy denotes the initial
value with the same size as the message blocks x1 ... x, (o is implementation or
algorithm specific and is represented by an initialization vector). The algorithm
then starts by taking zg and x1 as input to the compression function Hj and
outputs an intermediate value of the same size of xy and x1. Then for each mes-
sage block x;, the compression function Hj takes the result so far, combines it
with the message block, and produces an intermediate result. The last message
block x,, contains bits representing the length of the entire message m, optionally
padded to a fixed length output.

¥
o
¥

-

I—P—Hh k—:lr-lll—.i-H#

Figure 3.1: Overview of the Merkle-Damgard contruction.

Merkle and Damgard showed that their construction is sound: if the compres-
sion function is collision-resistant, then the hash function will also be collision
resistant. An important aspect of their proof is the fact that messages should be
padded with data that encodes the length of the original input message. This is
called length padding or Merkle-Damgard strengthening.

3.2.2 Notation

To describe the algorithm, the following notation is used:
e A word denotes a 32 bit quantity.
o A byte denotes a 8 bit quantity.

e MD5 works on four words of unsigned integers. The bits are numbered
from 0 (least significant bit) up to 31 (most significant bit).

e Integers are represented in hexadecimal format (with subscriptig) or in
binary format (with subscripts). For example, the number 42 is represented
by 2A16 and 001010105.

R Hk(m‘j

17

3.

HASH FUNCTIONS

18

Let X +Y and X —Y denote addition and subtraction (modulo 232) of two
words X and Y respectively.

Let X A'Y denote the bitwise AND of words X,Y or bits X,Y.
Let X VY denote the bitwise OR of words X, Y or bits X, Y.
Let X @Y denote the bitwise XOR, of words X,Y or bits X, Y.
Let X denote the bitwise complement of the word or bit X.
Let X|[i] denote the i-th bit of the word X.

Let X <<< n and X >>> n denote the cyclic left and cyclic right
shift of word X by n positions. For example (010011012 <<< 2) =
(01001101 >>> 6) = 00110101

Let X||Y denote the concatenation of X and Y.

3.2.3 MD5 algorithm description

To compute the MD5 message digest of an input M, with length b, the following
stages should be completed (as described in [56]).

1. Padding To make sure that the length of the message is congruent to 448

modulo 512, the message is extended with a single ‘1’ bit followed by a
number of ‘0’ bits. To make the length of the message an exact multiple
of 512, 64 bits representing b are added at the end. In the unlikely event
that b is greater than 264, then only the low-order 64 bits of b are used.
For example, let the message M be the single character ‘a’, then the rep-
resentation of the message in bits will be: 01100001 (‘a’ has number 97 in
the ASCII-table). M contains 8 bits, which means that 440 (448-8) bits
will be added. The first added bit will be a ‘1’ and the 439 others will be
‘0’ bits. Because the length of the message is 8, the word representing the
length will be 00001000 and is appended directly after the message (The 64
bits representing the message length are appended as two 32-bit words and
appended low-order word first). Altogether, the message is represented by
the following 512 bits:

0110000110000000 . . . 00000000°* . . .
00000000000000000000000000001000 . . . 00000000%. (3.2)

Padding is always performed, even in the length of the message is already
congruent to 448 modulo 512.

3.2. The MD5 hash function

2. Partitioning At this point the resulting message has a length that is an
exact multiple of 512 bits. Equivalently, this message has a length that is
an exact multiple of 16 words. Let My... My_1 denote the words of the
resulting message, where N is a multiple of 16.

3. Initialization In this phase, four words (Ag, By, Co, Dp) are initialized to

the following hexadecimal values:

Ao = 01 23 45 67

By = 89 ab cd ef
Cy = fe dc ba 98
Dy = 76 54 32 10

4. Processing MDb5 goes through N states THV, for 0 < ¢ < N, called the
intermediate hash values. Each T HYV; consists of four 32-bit words A;, B;,
C;, D;. If i = 0 these are initialized to the four words described above:

IHVy = (Ao, By, Co, Do).

For ¢« = 1... N, the intermediate hash value T HV; is computed using the
MD5 compression function:

IHV; = MD5Compress(IHV;_1, M;). (3.3)

The compression function of MD5 (MD5Compress()) will be described in
detail below.

5. Output The resulting hash value is the last intermediate hash value I HVy,
expressed as the concatenation of the sequence of bytes, each usually shown
in 2 digit hexadecimal representation, given by the four words Ay, By, C,
Dy.

3.2.4 The MD5 compression function

This section will describe the MD5 compression function based on the RFC1321
[56] and the work of Stevens [65]. The input for the compression function
MD5Compress(I HV;_1,M;) is given by an intermediate hash value THV;_; =
(A,B,C, D) and a 512-bit message block M;. There are 64 steps (numbered 0
up to 63), split into four consecutive rounds of 16 steps each. Each step uses
a modular addition, a left rotation, and an application of a non-linear function.
Depending on the step ¢, an Addition Constant AC; and a Rotation Constant
RC} are defined as follows:

ACy = |2%sin(t+1)|],0 <t < 64,

19

3.

HASH FUNCTIONS

20

(7,12,17,22) for t =0,4,8,12,

(5,9,14,20) for t = 16,20, 24, 28,
(4,11,16,23) for t = 32, 36,40, 44,
(6,10,15,21) for ¢ = 48,52, 56, 60.

(RCt, RCyy1, RCyyo, RCyy3) =

The non-linear function f; depends on the round:

F(X,Y,Z)=(XAY)A(XAZ) for0<t< 16,
G(X,Y,Z2)=(ZAX)N(ZAY) for16 <t < 32,

XY 7Z)=
X, Y, 2) HX,Y,2)=X®Y & Z for 32 < t < 48,
I(X,)Y,Z)=Y & (XVZ) for 48 <t < 64.
The message block M; is partitioned into sixteen consecutive 32-bit words my, ..., m15

and expanded to 64 words (Wt)tﬁio for each step using the following relations:

my for 0 <t < 16,
M(145tymodle for 16 < ¢ < 32,
Wy =
M (543t)mod16 for 32 <t < 48,
m(7t)mod16 for 48 S t < 64.
Fort =0,...,63, the compression function algorithm maintains four 32-bit inte-

gers (Q, Qi—1,Qi1—2,Q—3) to store the intermediate state. These are initialized
as (Qo, Q-1,Q-2,Q_3) = (B,C, D, A) and updated as follows:

Qi1 = Qi + ((Q—3 + f1(Qt, Qi—1, Qt—2) + Wi + AC;) <<< RCY) for 0 <t < 64.

After this step the resulting state words are added to the intermediate hash value.
The MD5 compression function can finally be described as:

MD5Compress(IHV;—1,M;) = (A + Qs1, B + Qe4,C + Q63, D + Qe2).

Chapter 4

Password hashing schemes

Passwords are the most common form of user authentication in computer systems.
To secure against unauthorized disclosure of users’ credentials, passwords are
usually protected by hashing them, e.g. by using one of the hash functions
described earlier. The hashed passwords are then stored in a password table.
During the log in process, the user-provided password is hashed again using the
same hash function and compared with the stored hashed password to authorize
user access. There are two main types of attack that can be mounted on such a

authentication system:

1. On line guessing attack With this attack, the only way for the adversary to
verify whether a password is correct, is by interacting with the login server.
This kind of attack can be countered by techniques as account locking and
delayed response. This research will not focus on this type of attack. An
evaluation and more information about the countermeasures can be found
in [52].

2. Off line guessing attack With this attack, it is presumed that the adversary
has access to the files or database where the hashed passwords are stored.
He can mount all kinds of attacks against the hashed passwords, due to
the fact that they are now in his ‘property’. This research will not focus
on how to prevent an adversary to access password files, but it will focus
on the schemes that hash and store them. Those schemes try to provide
security even if an adversary has access to the password files.

This chapter focuses on the design, security properties and attacker models of
prevalent password hashing schemes.

21

4. PASSWORD HASHING SCHEMES

22

4.1 Introduction to password hashing schemes

Password hashing schemes are a set of algorithms, including one or more hash-
ing functions, that try to protect the password information of users on a given
system. Before the plaintext password is hashed, it is usually transformed and
complemented by a salt. Because a password hashing scheme has to be a static
one-way function, a salt is random data, which may be public, that is hashed
together with the password in order to make it unlikely that identical passwords
are hashed to the same ciphertext. Another advantage of a salt is the fact that it
makes dictionary attacks more difficult, which will be described in Chapter 4.4.

A password hashing scheme is not the same as a hash function. Typically,
it is build on top of a cryptographic hash function to ensure that passwords are
stored securely. Most password hashing schemes are defined as follows:

PHS : 7" x 75 — 7, (4.1)

where PH S is the password hashing scheme, Zs equals {0,1}, m is the password
size (in number of bits), s is the salt size (in number of bits) and n is the output
size (in number of bits). Typically, m + s < n, because the length of the salt
and the plaintext password do not exceed the output size. Password hashing
schemes can restrict the input size, because if m + s > n, it will not add extra
security. However, users should be able to remember their passwords somehow
and therefore pick m small. In most schemes, the output of the function is not
merely the hash of the password: it is a text string which also stores the salt
and identifies the hash algorithm used. See Figure 4.1 for a graphical overview of
a common password hashing scheme. This figure shows the black box overview

Salt

l

Plaintext ——> Crypt() ——> HASHFUNCTIONID | Salt | Ciphertext

T

Hash function

Figure 4.1: An black box overview of the UNIX password hashing scheme crypt().

of the UNIX password hashing scheme called crypt(). If a new user has to
set his password, the system takes the plaintext password, hashes it together
with the salt according to the specified hash function scheme and stores it in the
/etc/shadow file in the following way:

$HASHFUNCTIONID$SALT$CIPHERTEXT

4.2. The need for password hashing schemes

The contemporary crypt () function is compatible with the cryptographic hash
functions shown in Table 4.1.

Identifier Scheme Hash function Salt length (in Salt length (in
of characters) bits)

1 MDb5-crypt MD5 8 64

2a B-crypt Blowfish 8 64

md5 Sun MD5 MD5 8 64

5 SHA-crypt SHA-256 16 128

6 SHA-crypt SHA-512 16 128

Table 4.1: Schemes shown in this table are built around the hash function they
are named after.

When a user has to authenticate himself to the system again, he has to type
in his password which will be hashed in the same way as when he had to set
his password together with the stored salt. If the newly calculated ciphertext
matches the one stored in the /etc/shadow file, authentication is successful.

4.2 The need for password hashing schemes

To understand the need for password hashing schemes, it it is important to dis-
tinguish between two types of off-line attacks that adversaries can mount against
the storage of passwords (it is assumed that the adversary already has access to
the storage files):

1. Depth-search With this kind of attack the adversary wants to find the pass-
word of one specific user, which is often a user with high level access, like
a superuser or administrator. The adversary has to focus on this one hash.
This this kind of attack can be executed with the complete attack strat-
egy|[71], where the adversary is willing to take all the required computa-
tional effort to find the password.

2. Broad-search With this kind of attack the adversary wants to find just one
plaintext password out of a storage with more hashed passwords, because
one plaintext password can be sufficient to compromise the security of the
system. This kind of attack can be executed with the incomplete attack
strategy[71], where the adversary tries a number of N guesses for each
hashed password in the storage file, thereby finding the password only with
a certain probability.

23

4. PASSWORD HASHING SCHEMES

Now let p be the probability that a user has chosen a weak password and n be
number of users on the targeted system. Then it is easy to see that a broad-search
has a higher probability (np) of success than a depth-search (only p), given the
assumption that the password strengths are identical. Table 4.2 shows some of
the characteristics of real (cracked) password datasets.

Dataset Number of Average % with spe- % only % in dictio-
passwords password cial chars lowercase nary
length ASCII
phpbb.com 184 000 7.5 2 41 29
rockyou.com 14 000 000 8.7 7 25 1

Table 4.2: Characteristics of real world password datasets.

The datasets in this table were published by skullsecurity.org! and contain the
passwords that people use when they are not restricted by a password policy. The
phpbb.com database was cracked in January 2009 and the rockyou.com database
in December 2009. While the average password length for both datasets looks
good (with a password length > 7), 29% of the passwords in the phpbb dataset
could be found in an extended English dictionary?. A fast CPU can iterate
through such a dictionary in less then a second. The statistics also show that
few people use special characters in their passwords and on average more than
30 % of the people only use lowercase ASCII characters from the set {a,...,z}.
Regarding the average length of 8 characters, this means that only 268 ~ 237
combinations are used, which which is feasible for an exhaustive search attack.

4.3 Attack strategies

In addition to the previously mentioned attack types, there is another dimension:
the attack strategy. The three main strategies are defined as:

1. Ezhaustive search attack With this sort of attack, the adversary iterates
over all possible input combinations. Let M be the domain for the password
hashing scheme PHS, s; an arbitrary salt, m; € M be the password the
user wants to store and h; the hashed form of the password by applying
PHS(my, s1). Now let M (the domain of the hashing scheme) be uniformly
distributed and let |M| = N, such that ¥Ym € M the probability p,, of
PHS(m,s1) = hy is % To find the password m; from hp, the adversary

'See http://wuw.skullsecurity.org/wiki/index.php/Passwords for more details.
2An English dictionary with almost 400.000 entries, including conjungations and names.

24

http://www.skullsecurity.org/wiki/index.php/Passwords

4.3. Attack strategies

tries all m in the domain M. If for some m, PHS(m, s1) = hy, the adversary
knows then that m; = m. The probability P of a successful attack can be
calculated by:

1
P:me:N*Nzl (4.2)

So an exhaustive search attack will always find the password. However, the
time to find it is limited by N. If the input size is very large, it is not feasible
to iterate over all the possibilities anymore. For example if the maximum
input length is 9 characters and if all 94 printable ASCII characters are
admitted, N will be:

9
N = 94" =579 156 036 661 182 475 ~ 2° (4.3)
k=0

If one has a computer that can review 1 billion passwords per second, it will
still take more than 18 years to go through the whole search space and the
expected time to crack one password will be half that time. However, users
tend to pick their passwords with less randomness than randomly chosen
passwords.

. Dictionary attack In order to remember them more easily, humans tend to
pick common words as a password[51, 75]. This enables adversaries to use
common dictionaries to find passwords. A typical dictionary has less en-
tries than the number of possibilities one has to iterate with an exhaustive
search attack. This makes dictionary attacks faster than exhaustive search
attacks. However, under the assumption that users select uniformly dis-
tributed passwords, the probability that an adversary eventually will find
the password is less than with an exhaustive search attack. Let E be the
set of entries in a dictionary and |F| = K, where E C M. The probability
P of a successful attack can be calculated by:

1 K

P:me:K*N:— (4.4)

Typically K << N, which means that the probability of a successful at-
tack is small. However, in real world situations this is not the case and a
dictionary attack therefore has a higher probability of a successful attack.
(See Table 4.2).

. Fingerprinting attack This kind of attacks exploits the fact that people
have to remember their password somehow. When constructing an easy
to remember yet still hard to crack password, people use various kind
of strategies. These include techniques as generating mnemonic phrases,
obfuscation or the use of patterns. An example of a mnemonic phrase

25

4. PASSWORD HASHING SCHEMES

26

could be: ‘Robert Rodriguez made 3 films: Machete, Grindhouse and El
mariachi’. The derived password would then be: ‘RRm3fM&G+Em’, which
is easy to remember but very hard to guess. Obfuscation can be achieved
by replacing some of the original characters in a password by characters
that look the same, like how the English word ‘password’ can be trans-
formed to ‘p@sswOrd’. Examples of simple patterns that people could use
to strengthen their password are: ‘1lqQ’, ‘65$#’ and ‘rdevgt’ (characters
close to each other on the keyboard). However, adversaries have become
more sophisticated in how to deal with these techniques. Based on earlier
cracked password databases, they derived statistics about length, character
frequency and pattern usage. Based upon the retrieved statistics, specific
search spaces are constructed and exhaustive search is then applied.?

All these attacks can be combined in order to achieve the best trade-off between
input coverage and computation time.

To avoid such attacks on passwords, it is necessary that the input to the
password hashing scheme is uniformly distributed. This implies that a strong
password should have as much as randomness as possible. A good way to measure
the strength of a password - or the randomness of information in general - is
entropy. Shannon proposed in his paper of 1948 [63] that entropy could be used
to quantify, in the sense of an expected value, the information contained in a
message, usually in units such as bits. Equivalently, the Shannon entropy is a
measure of the average information content one is missing when he does not know
the value of the random variable, i.e. the measure of uncertainty. Let X be a
discrete random variable with possible values {z1,...,2,} , then the Shannon
entropy H(X) can be defined by[16]:

H(X)=— ZP(%’) log, p(i) (4.5)
=1

where b is the base of the logarithm used and is p(x;) is the probability mass
function of outcome z;. For example, the entropy in a fair coin flip is ex-
actly 1 bit because the probability p(heads) = p(tail) = 0.5. Then H(X) =
—p(heads) logy p(heads) — p(tail) logy p(tail) = 1 bit.

The entropy for an ideal password can now be calculated by:

u = logy(n), (4.6)

where u is the entropy in bits and n the number of possibilities. For example
if the maximum size of the input space is 10 characters and if all 94 printable

3The authors of the article ‘Password Fingerprinting’ use a real-world database
of passwords that was leaked to prove that their technique works on all lev-
els of passwords including easy passwords, medium strength passwords, and a
bit more difficult passwords. (See http://www.question-defense.com/2010/08/15/
automated-password-cracking-use-oclhashcat-to-launch-a-fingerprint-attack)

http://www.question-defense.com/2010/08/15/automated-password-cracking-use-oclhashcat-to-launch-a-fingerprint-attack
http://www.question-defense.com/2010/08/15/automated-password-cracking-use-oclhashcat-to-launch-a-fingerprint-attack

4.4. Properties of a good password hashing scheme

ASCII characters are admitted, the entropy will be log,(94!%) ~ 66 bits. How-
ever, Shannon also conducted some social experiments to show the entropy of
the English language [62]. It turned out that standard English has an entropy
between 0.6 to 1.3 bits per letter. For an ideal password that is encoded with
ASCII (six bits per character), one would like to have an entropy of six bits per
character, which implies maximal randomness. Passwords do not always contain
standard English words, but the United States National Institute of Standards
and Technology (NIST)[13] calculated that a user-chosen password based on all
94 printable ASCII characters with a length of 10 characters has an entropy of 21
bits. Using modern day computing power, all 22! possibilities could be searched
in limited time.

Zviran and Haga[78] already showed in 1999 by means of an empirical study
that users are not eager to change their habits regarding the creation of strong
passwords. One of the causes, as identified by Katz et al.[34], is that users are
asked to generate, memorize, and keep secret a growing number of passwords
as they join new password protected services over time. Since the mid nineties
this trend has been recognized as both a nuisance and a security risk. They
have shown that typical users can be trained to select and remember a single
secure password, but multiplying this dozens or hundreds of times is sure to push
the physiological limitations of human memory. Halderman et al.[27] proposed
a solution by securing all the passwords of a user by ‘masterpassword’, but this
only solves the problem at the user-side of the authentication mechanism. At the
server-side, the low entropy passwords are still stored in their original form.

4.4 Properties of a good password hashing scheme

If all users just pick high entropy passwords, there is no need for password hashing
schemes, since an application of a simple cryptographic hash function like MD5
would be enough to secure their passwords (with the assumption that MD5 is
pre-image resistant). However the studies by Shannon, Zviran, Katz and the
NIST show that it is hard for users to create passwords with high entropy, so the
storage of hashed passwords has become very important. To review the quality of
such a scheme, it it necessary to define the properties of a good password hashing
scheme first. In 1979, Morris et al.[47] already proposed ways to protect stored
passwords. Most of their principles are still valid today.

o (Correct use of salts As stated in Section 4.1, salts are necessary to produce
a secure output of a password hashing scheme. Let H be a hash function,
m1 be a plaintext password that user 1 wants to hash and s the salt that
is concatenated with password before the hash function is applied. Now
consider that user 2 has a password mg that is the same as user 1, so
m1 = my. If we apply the hash function H without a salt, H(m1) = H(mz).

27

4. PASSWORD HASHING SCHEMES

28

An adversary that is in possession of the file with hashed passwords can
easily see that user 1 and 2 have the same password. If we concatenate
the password with the per-user different salt, the hashed passwords will
not be same anymore. Let s; and sg (where s; # s2) be the salts of user
1 and 2 respectively. If we now concatenate their passwords with their
salts, H(mq||s1) # H(mzl|s2) even if my = mgo (and given that the collision
probability is negligible). Another advantage of using a salt is the fact that
precomputation attacks are not feasible anymore. With a precomputation
attack the adversary computes n possible inputs (e.g. common passwords)
to the hash scheme and stores all the n inputs and their hashed outputs
H(n) in a database. Now, if the adversary encounters a new hash he can find
the plain text by a simple table lookup. Precomputation can be very useful
for a dictionary attack and the decrease in the cost of contemporary mass
storage has made it practical for fairly large dictionaries. Oechslin[50], as
described in Chapter 2.1.3, constructed a more advanced precomputation
method, by applying a time-memory trade-off in combination with hash
chains. This speeds up the cracking process even more.

A good salt can prevent against both weaknesses. For example, if we add
a salt of 1 bit to the input of a hash function H, the output of H(m||1)
and H (m]|0) should be totally different due the avalanche effect in the used
hash function. This should solve the problem that two users with the same
password have the same hashed password. However, a salt of 1 bit can still
be precomputed. The original Unix password hashing scheme used triple
DES in combination with a 12 bit salt. This extends the output space of a

212 possibilities. Mentens et al. [44] showed that even

single password with
a 12 bit salt could be precomputed with a time-memory trade-off attack.
Therefore, newer hashing schemes such as MDb5-crypt or SHA-crypt use
salts up to 8 or 16 characters respectively. Since the salt input to those
schemes requires a base64 input (represented by 6 bits), this implies that
the entropy is 48 and 96 bit respectively. There are no time-memory trade-

off attacks on these systems reported (yet).

Slow hashing Most common cryptographic hash functions are designed to
quickly evaluate the one way function, in order to hash large input (See
Chapter 3.1). While this could be an advantage for the systems that need
to evaluate hash functions quickly, it also makes exhaustive search attacks
on the input feasible. To slow down these kind of attacks, one approach is to
use hash functions which do not yield efficient implementations. However,
people are not likely to design such hash functions, because the usability will
decrease. Instead it is possible to modify existing password hashing schemes
to yield expensive hash functions, without voiding their security warranty.
One approach to this is called key-stretching, which will be described in

4.4. Properties of a good password hashing scheme

Chapter 4.4.1.

o Avoid pipelined implementations As described by Provos et al. [55], a pass-
word hashing scheme should not lend itself to any kind of pipelined hard-
ware implementation. It should therefore permit relatively little speed-up
from any kind of computation. For example, calculating the hash of 1000
passwords with the same salt and calculating the hash of one password un-
der 1000 salts should both cost approximately 1000 times more computation
time than calculating the hash of a single password.

e FEnforcement of complexr passwords This is not really a property of a good
password hashing scheme, but rather a policy of the system that uses pass-
word authentication mechanisms, which may be implemented by the pass-
word hashing scheme. To enforce the use of complex passwords, systems
should enforce password policies. However, there has to be a trade-off be-
tween the strictness of the policy and the limitations of the human memory
or will to remember difficult passwords. Yan et al. [75] stated that an in-
teresting and important challenge is finding compliance enforcement mech-
anisms that work well with mnemonic password choice. Proactive password
checkers, which verify that a password is not part of a known weak subset of
the password space, might be an effective tool. But as Yan[75] has shown,
what engineers expect to work and what users actually make to work are
two different things. Rigorous experimental testing of interface usability is
in their view a necessary ingredient for robust secure systems. If users are
not content with new password policies, they just stop using the service,
fall back to their simple and weak passwords or write them down.

4.4.1 Key-stretching

To slow down exhaustive search attacks on password hashing schemes, two meth-
ods have been proposed in the literature:

e In the first approach, which was proposed by Abadi et al.[3] and Man-
ber[42], the password is concatenated with an additional salt (also known
as a ‘password supplement’) before it is hashed. This supplement is kept
secret to the user and is typically chosen in a range 1...k%, where k£ should
be feasible for an exhaustive search. The user has to guess this supplement
by repeatedly hashing his password, salt and a random supplement in the
predefined range. However, this also holds for the attacker who is guessing
the password by brute force. When checking a password guess an attacker
will need to perform a hash for each possible supplement until the space is
searched. Thus, if the password supplement space is of size k the attacker
will need to perform k hashes before he can completely eliminate one guess

29

4. PASSWORD HASHING SCHEMES

30

as a possible password, whereas the user only has to perform at most k
hashes.

e The second approach was proposed by Kelsey et al.[36]. They derive a new
password by repeatedly iterating a hash function on the original password.
Assuming that there are no shortcuts, an adversary’s best attack is to apply
the function to each guess himself. Therefore, if the scheme is parameterized
to use k iterations, an adversary will need to compute k hash functions for
each guess. For example, if IV is the size of the finite set of all possible
passwords up to a given length, an attacker has to compute at most Nk
hash functions, whereas the user only has to compute k£ hash functions.

The primary drawback of the first approach is that a regular user needs a method
for determining if the password supplement is correct. If this approach is inte-
grated into a login system, some extra data can be stored on the server and the
server can perform the search. However, it is hard to keep such data secret and it
breaks our assumption on access to data. That is why current password hashing
schemes have deployed the second approach (which is also called key stretching).
The basic concept is that a regular hash function, H(), is replaced with a new
hash function, H*(), where H”() is computed by repeatedly applying the hash
function k times. For example, H?(z) is equivalent to computing H(H (H(z))).
If N is the set of all possible passwords the adversary wants to test and we con-
jecture that for all n € N the fastest way for an adversary to compute H(n) is
by repeated applying the function the hash function k£ times, then the cost of a
brute force attack will increase by a linear factor k, again if no shortcuts exist.

4.5 Attacker models for hash functions and password hash-
ing schemes

To show the strength of password hashing schemes, it is good to define where
they protect against. An adversary can have multiple goals regarding the output
of password hashing schemes. In this research, the following attacker models are
distinguished distinguished:

1. Plain-text password recovery An adversary wants to find the plaintext pass-
word of one or more users of a system, in order to use the password else-
where (for example for authentication to the user’s bank account). The
adversary can achieve this by iterating over all the password possibilities
with a exhaustive search attack.

2. System authentication An adversary wants to get access to a system or
service on which the user has an account (for example if an adversary
has a user account on a system but wants to become local administrator).

4.5. Attacker models for hash functions and password hashing schemes

In addition to the exhaustive search attack mentioned in the previous he
now could also apply a first pre-image and second pre-image attack, since
the clear text password is not necessary to successfully authenticate the
adversary. Every input to the password hashing scheme that maps to the
same output as the user’s output will be sufficient.

3. Weak hash generation If an adversary has control over the salt that is
generated for a typical user, he can generate a random looking salt while the
user thinks this is just a random salt. Then, with the help of precomputed
rainbow tables for a small set of the random looking salts, the adversary
can efficiently mount a time-memory trade-off attack to find the password.
This attack makes the system as safe as it is without a salt.

By choosing a good cryptographic hash function, the designer of a password
hashing scheme can prove that his scheme protects against pre- and weak collision
attacks. Let PHS be a password hashing scheme that is build by hash function
H* (where H* is computed by repeatedly applying the hash function k times), p;
the clear text password, s the public salt and h; the application of PHS(p1, s1).
Now the following holds:

e H is first pre-image resistant = PH S is first pre-image resistant (it is hard
to find any pq, such that hy = PHS(p1,s1)).

e H is weak collision resistant* = PHS is weak collision resistant (it is
hard to find another input py (where ps # p1) such that PHS(p1,s1) =
PHS(pQ, 81)).

e H is strong collision resistant = PHS is strong collision resistant (it is
hard to find two arbitrary inputs p; and ps (where py # pi1) such that
PHS(pl, 51) = PHS(pQ, 51)).

At first glance, a break of the strong collision resistance property of the hash
function does not have impact on the security of the password hashing scheme,
since an adversary only has access to the hash outcome h; and a weak collision
attack requires access to the input. However, if we assume the attacker model
weak hash generation, an adversary has access to the salt. This way, the following
theoretic attack to a password hashing scheme, which uses the key-stretching
technique, is possible. Consider the password hashing scheme PHS, that uses
the hash function H on the input password p; and salt s; in the following way:

PHS(p1,s1) = H*(p1lls1) = ha. (4.7)

4The term ‘weak collision resistance’ is preferred over ‘second pre-image resistance’ because
it better states the difference between first and second pre-image resistance.

31

4. PASSWORD HASHING SCHEMES

32

In here, hq is the produced output hash and & is the number of applications of
the hash function H. If we assume that the salt can be arbitrary in size then the
adversary can produce a salt s; and an evil twin sg such that the attack described
in [66] can be applied to produce the collision H?(p1||s1) = H (p2||s2). Since colli-
sion occurred in the 0-th iteration of the hash function, consecutive applications of
H until H* will also produce a collision and therefore PHS(py, s1) = PHS(p2, 52)
holds. Moreover, if the PHS' is defined in the following way:

PHS(p1,81) = Vi<kHi(p1|]31HHi*1) = hl(whereHO = H(p1||s1)), (4.8)

the attack still holds, since the collision already occurred at H° and the salt,
password and result of H*~! are always concatenated in the same way. Con-
sidering the previous, password hashing schemes that use key-stretching in the
two ways described above do not provide additional security for strong collision
attacks other than the application of the first hash (H"), given that the salt can
be chosen by the attacker.

However, password hashing schemes that concatenate the password pi, the
salt chosen by the adversary s; and the result of the last round H*~! in a pseudo-
random way can provide k times additional security. In this way, the complexity
of a short-chosen prefix collision attack [66] on the password hashing scheme will
be k times higher than such an attack on one application of the hash function,
since the specially crafted salt should work for all the k£ applications of the hash
function.

An off line exhaustive search attack on the input of a password hashing scheme
is always possible, although such an attack can not guarantee a successful search
because the size of the input set can be infinite (or unfeasible to iterate over).
However, as shown by Section 4.2, users tend to pick passwords with far less
entropy as can be achieved with a given character set. This makes the password
hashing scheme more vulnerable to dictionary and brute force attacks. To deal
with these kinds of attack, most password hashing schemes use the key stretching
technique to slow down the hashing process. In their main loop they apply the
hash function k times, every time with different input concatenated with the
output of the last round (e.g. MD5-crypt, which will be described in Chapter 6).
While the key stretching technique slows down exhaustive search attacks for large
k, users also have to apply the hash function k£ times, which leads to a paradox:

e Users expect k to be low = fast authentication.
e Users expect k to be high = less successful exhaustive search.

Moreover, this paradox also applies for the design of hash functions. On the
one hand hash functions should be computationally fast in order to hash large
amounts of data, while on the other hand hash functions should be computation-
ally slow in to order to slow down exhaustive search.

4.5. Attacker models for hash functions and password hashing schemes

4.5.1 Attacks to the key-stretching technique

Attacks to key-stretching algorithms (as described earlier) can typically benefit
from economies of scale. These are optimizations that are not available or useful
for a typical user of the cryptographic system, but can make large scale attacks
easier. The economies of scale useful for an attacker can be divided into [36, 55]:

o Narrow-pipe attacks This type of attack occurs when the intermediate state
in the key-stretching algorithm has less bits of state then the final output.
For example, if you have an intermediate state of less then s+t bits (where
s is the length of the original key and ¢ is the amount of bits stretched) an
adversary can guess the intermediate state instead of calculating it and the
security of the system will have less than s + ¢ bits.

o Reuse of computed values The key-stretching algorithm should be designed
in such a way that adversaries cannot reuse intermediate computations,
which can speed up the key search significantly. For example, if a key-
stretching algorithm uses 2! iterations of the hash function H, it should be
very unlikely that the algorithm produces intermediate values X; and Xo
along with i and j (i, < 2¢) such that H*(X1) = H7(X3), where X7 # X
or i # j.

e Special purpose hardware As will be described in the next chapters, some
key search attacks may be carried out by massively parallel computers that
can be built to try all possible keys cheaply. The choice of the key-stretching
algorithm should take into account such attacks and hence make such at-
tacks more expensive to carry out for special purpose hardware without
making it significantly more expensive for legitimate users that have a gen-
eral purpose processor.

33

Chapter 5

Outline of the GPU hardware

This chapter describes the internal working of a graphics processing unit and
explains why it is more useful for parallel computing than a normal central pro-
cessing unit (CPU). Since the late nineties Graphics Processing Units (GPU)
have been developed and improved. They have proven to be very suitable for
processing parallel tasks and calculating floating point operations. It is espe-
cially the parallel design of a GPU that makes it suitable for cryptographic func-
tions. While the advantages of GPU’s in other areas (like graphical design and
game-industry) have already been recognized, the cryptographic community was
not able to use them due to the lack of user-friendly programming API’s and
the lack of support for integer arithmetic. However, GPU producers have dealt
with those shortcomings. Goodman and Yang[77] have shown that contemporary
GPU’s can outperform high-performance Central Processing Units (CPU’s) on
cryptographic computations, yielding speedups of at most 60 times for the AES
and DES symmetric key algorithms. Szerwinski and Giineysu showed how GPU’s
could be used for asymmetric cryptography [69], while Bernstein et al. showed
that it is possible to reach up to 481 million modular multiplications per second
on a NVIDIA GTX 295 [9], in order to break the Certicom elliptic curve cryp-
tographic system (ECC) challenge with the use of GPU’s [10]. This knowledge
is very useful, since a lot of cryptographic functions were designed to be imple-
mented on a traditional CPU. The shift of focus to GPU’s provides new insights
on how we should deal with (implementations of) cryptography in the future.

35

5.

OUTLINE OF THE GPU HARDWARE

36

5.1 Hardware outline

ALU | ALU
Control
ALY | ALU

CPU

8
c

Figure 5.1: Overview of a typical CPU and GPU. Due to its design, the GPU is
specialized for intensive, highly parallel computation [1].

A typical GPU, as shown in Figure 5.1, consists of the same elements as a
normal CPU:

e Arithmetic logic unit (ALU) The digital circuit that performs arithmetic,
logical and shift operations. In a GPU, this unit is also called ‘stream
processor’ or ‘thread processor’.

e Control Unit Dispatches instructions and keeps track of the locations in
memory. In a GPU, also a thread dispatcher resides on the control unit,
which controls the creation and execution of threads.

e DRAM Main memory, which can be refreshed dynamically.

e (Cache A smaller, faster memory which stores copies of the data from the
most frequently used main memory locations.

In addition, a GPU has multiprocessors. Every multiprocessor contains a number
of thread processors and a shared memory, which is accessible by all the thread
processors in the multiprocessor.

Because of the fact that a GPU is specialized for intensive, highly parallel
computation, exactly what graphics rendering is about, it is designed in such
a way that more transistors are devoted to data processing rather than data
caching and flow control, as schematically illustrated by Figure 5.1. Moreover, a
GPU is suited to address problems that can be expressed as data-parallel com-
putations with high arithmetic intensity (the ratio of arithmetic operations to
memory operations). This means that a GPU can execute the same program for
each data element in parallel, which implies lower requirements for sophisticated
flow control and higher arithmetic intensity (the memory access latency can now
be ‘hidden’ with calculations by the execution of other threads instead of data
caches). The processing of parallel data maps data elements to parallel processing

5.1. Hardware outline

threads. Many applications that process large data sets can use a data-parallel
programming model to speed up the computations. In 3D rendering, large sets of
pixels and vertices are mapped to parallel threads. But also many algorithms out-
side the field of image rendering and processing are accelerated by data-parallel
processing, for example applications of a cryptographic hash function on a large
dataset can be done in parallel.

5.1.1 Comparing GPU and CPU design properties

The increase in CPU frequency is limited by physical restrictions and high power
consumption. Their performance is often raised by increasing the number of
cores: some processors may contain up to six cores. However, further growth is
not expected to be coming soon [68]. As stated by Garland et al.[25], the em-
phasize is shifting from latency-oriented CPU’s, which focus on minimizing the
latency of a single sequential task, towards throughput-oriented GPU’s, which
focus on maximizing total throughput. Latency-oriented CPU’s are designed for
common applications, based on the Multiple-Instruction Multiple-Data (MIMD)
architecture, as proposed by Flynn [23]. This means that each core works inde-
pendently of the others, executing various instructions for multiple processes.

For throughput-oriented GPU’s, the requirements for the graphical compu-
tational problems led to a specific parallel architecture in which multiproces-
sors can execute hundreds of threads concurrently. This architecture is called
Single-Instruction Multiple-Threads (SIMT). It is based on the Single-Instruction
Multiple-Data model (SIMD)[23], which describes multiple processing elements
that perform the same operation on multiple data simultaneously. Accordingly,
such an architecture exploits data level parallelism.

The SIMT architecture

The SIMT architecture describes a multiprocessor that can create, manage, sched-
ule and execute threads in groups. A group of N parallel threads is called a warp.
Every thread has its own instruction address counter and register state. Individ-
ual threads in the same warp start together at the same program address, but
can execute and branch independently.

A warp executes one common instruction at a time, so full efficiency is realized
when all N threads of a warp agree on their execution path. If a thread in a
warp diverges via a data-dependent conditional branch, the warp serially executes
each branch path taken, disabling threads that are not on that path. When
all paths are completed, the threads converge back to the original execution
path. Branch divergence occurs only within a warp. Different warps on different
multiprocessors execute independently regardless of whether they are executing
common or disjoint code paths.

37

5.

OUTLINE OF THE GPU HARDWARE

38

To maximize utilization, a GPU relies thus on thread-level parallelism. Uti-
lization is therefore directly linked to the number of warps residing on a multi-
processor. At every instruction issue time, a warp scheduler selects a warp that
is ready to execute its next instruction and issues the instruction to the active
threads of the warp. The number of clock cycles it takes for a warp to be ready
to execute its next instruction is called latency (which actually depends on the
number of clock cycles it takes to issue a memory request). Full utilization is
then achieved when the warp scheduler always has an instruction to issue for
some warp at every clock cycle during that latency period. This is called latency
hiding. The number of instructions required to hide a latency of L clock cycles
depends on the throughput of these instructions. For example, if we assume that
a multiprocessor issues one instruction per warp over 4 clock cycles and maxi-
mum throughput for all instructions is achieved, then the number of instructions
to hide the latency should be L/4.

The SIMT architecture is related to SIMD vector organizations in the sense
that a single instruction controls multiple processing elements. The major dif-
ference between the SIMD and SIMT architectures is the fact that SIMD vector
organizations expose the width (and thus the number of threads that can run
concurrently on one processor) to the software. SIMT instructions on the other
hand specify the execution and branching behavior of a single thread. This en-
ables programmers to write thread-level parallel code for independent threads as
well as data-parallel code for coordinated threads. Actually, the programmer can
even ignore the SIMT behavior; however, substantial performance improvements
can be realized by taking care that the code seldom requires threads in a warp
to diverge.

Threads and resources

Apart from the difference in architectural design, there exists also a major differ-
ence in the organization of threads. On a typical CPU only one or two threads
can run concurrently per core, whereas on a typical GPU up to 1024 threads can
run concurrently per multiprocessor (and most GPU’s have several multiproces-
sors). For example, the Nvidia GTX 295 has 60 multiprocessors, which can yield
more than 30.000 concurrent or active threads. In comparison, an Intel i7 9xx
processor has only 4 cores, which can run 8 concurrent threads in total (if ‘Hyper-
Threading’ is enabled). In addition, switching from one thread to another takes
hundreds of clock cycles on a typical CPU (threads are then called ‘heavyweight
threads’), whereas a GPU can switch several threads per clock cycle (threads
are then called ‘lightweight threads’). This is due the fact that for a CPU the
operating system must swap threads on and off the CPU execution channels to
provide multithreading capability. Thread switching is therefore slow and expen-
sive. On a GPU, thousands of threads are queued in warps of N threads each.

5.1. Hardware outline

If the GPU must wait on one warp of threads, it simply begins executing work
on another warp. Because separate registers are allocated to all active threads,
no swapping of registers or state need to be done when switching between GPU
threads. Resources stay allocated to each thread until its execution is completed.

Memory access

The CPU and GPU both have their own RAM. On a CPU, the RAM is generally
equally accessible to all code (if the code accesses memory that is located within
the boundaries enforced by the operating system). On a GPU, the RAM divided
virtually and physically into different types, each of which has a special purpose
and fulfills different needs. Due to the fact that different GPU’s have different
types of memory, we will not go in to detail here.

Computing capabilities

In this research we use the GPU hardware from the Nvidia Corporation. The
properties and performance differ per Nvidia card, but all hardware is based on
the SIMT principle. Nvidia has classified their graphic cards in order to dis-
tinguish the properties and features of each device. This classification is called
compute capability, and determines the set of instructions supported by the de-
vice, the maximum number of threads per block and the number of registers per
multiprocessor. Higher compute capability versions are supersets of lower (i.e.
earlier) versions, and so they are backward compatible.

5.1.2 Speed comparison between CPU and GPU

The computing power of a hardware unit is easily measured by the number of
floating point operations it can handle per second. That is why most speed
comparisons of hardware use the unit GFLOPS, which stands for Giga Floating
Point Operations per Second. Figure 5.2 shows the theoretical limit of computing
power for contemporary hardware. Recent GPU’s can handle seventeen times
more floating point operations per second than the recent CPU’s. And from the
derivative of the GPU lines it is clear that the increase in speed has not yet
converged. However, these numbers are gathered from the vendors that sell the
hardware. The actual values are lower. In practice such performance will never
be reached because many algorithms are limited by bandwidth, meaning that the
memory subsystem cannot provide the data as fast as the arithmetic core could
process it. But for a comparison in speed, these numbers will suffice.

To calculate the actual GFLOP unit for CPU’s the following formula can be
used: (Number of cores) * (Number of single precision floating point instructions
per clock cycle) * (Clock frequency in GigaHertz). As an example consider the
Intel i7 920 which has 4 cores, can calculate 4 instructions per clock cycle and

39

5.

OUTLINE OF THE GPU HARDWARE

40

Theoretical
GFLOP/s
1500

NVIDIA GPU Single Precision
1250 =—p==NVIDIA GPU Double Precision
=+—Intel CPU Single Precision
==t==|nitel CPU Double Precision

1000

750

Tesla C2050

500

250

g Pentiynt4 P
Sep-01 Jan-03 Jun-04 0Oct-05 Mar-07 Jul-08 Dec-09

Figure 5.2: Theoretical computing power of recent hardware [1].

has a clock frequency of 2.66 GHz. So this processor can handle 4 * 4 x 2.66 =~ 42
GFLOPS. For GPU’s it is a bit harder to calculate the actual GFLOP unit.
This is because (Nvidia) graphic cards use three clocks: a memory, processor (or
shader) and core (or graphics) clock. To measure the actual peak performance,
the shader clock is the most important because it defines the speed at which the
program fragments (shaders) that perform calculations on individual elements
(and produce information related to that element) can run. As an example con-
sider the Nvidia GeForce GTX 295 graphics card which has 2 GPU units with
240 multiprocessors each and its shader clock is set to 1.242 GHz. In its turn,
every multiprocessor has 8 cores. The CUDA Programming Guide [1] states that
‘it takes 4 clocks for one multiprocessor to handle one warp’, which means that
it takes 4 clocks for 8 cores to handle one instruction for all the 32 threads in
a warp. In other words, each core can handle one instruction per clock cycle.
This means that the GeForce GTX 295 can handle 480 % 1.242 ~ 596 GLOPS.
This value is much lower than stated in Figure 5.2, because a GPU can use an
extended instruction set for floating point operations: multiply and add is a sin-
gle instruction and it can also perform one extra multiply (which is called the
dual-issued single precision floating point multiplication) per clock cycle, setting
the total to 3x596 ~ 1800 GFLOPS. However, cryptographic functions like MD5
or AES do computations on 32-bit integers, not on floating points. To compare
the speed between CPU’s and GPU’s with regard to cryptography it is necessary
to define GIPS: Giga Instructions Per Second. Instructions that require floating
points, such as multiply and add and the dual-issued single precision floating point
multiplication, cannot be used on integers and therefore the number of instruc-
tions per second (IPS) is smaller than the number of floating point operations
per second (FLOPS).

5.2. GPU application programming interfaces

Compute Capability 1.x Compute Capability 2.0

32-bit integer add, logi- 8 32

cal operation

32-bit integer shift, 8§ 16

compare

32-bit integer multiply =~ Multiple Instructions 16

24-bit integer multiply 8 Multiple Instructions
Type conversions 8 16

Table 5.1: Throughput of native arithmetic instructions (operations per clock
cycle per multiprocessor)[1].

Table 5.1 shows the throughput of the arithmetic instructions (in operations
per clock cycle per multiprocessor) that are natively supported in hardware for
(Nvidia) devices of various compute capabilities. If we assume that 24-bit integer
multiply is sufficient for all calculations, we can still state that one multiprocessor
can handle 8 arithmetic instructions per clock cycle. So this means that the
GeForce GTX 295 (with compute capability 1.3 and 60 multiprocessors) can
handle 60 * 8 x 1.242 ~ 596 GIPS. For a typical CPU the number of instructions
per second is more difficult to determine. In practice, this number depends on the
algorithm, instruction set used, memory bandwidth and bus size. For example,
an Intel Core i7 980EE can handle about 45 instructions per clock cycle at 3.3
GHz!, which leads to a total of 3.3 * 45 ~ 148 GIPS.

5.2 GPU application programming interfaces

Developers that want to produce code that exploits the power of GPU’s for generic
programming could use one of the available application programming interfaces
(APTI’s). The most currently used API’s for GPU programming are:

e Compute Unified Device Architecture (CUDA) This parallel computing ar-
chitecture, developed by Nvidia and released begin 2007, provides both a
low level and high level API. It only works on CUDA enabled graphic cards
from Nvidia and is basically an extension of the C programming language.
The CUDA drivers are needed to run an executable compiled with CUDA.
The main advantages of this architecture are:

— code can read from arbitrary memory addresses,

— fast shared memory, which acts as an user-managed cache, can be used
by threads residing on the same multiprocessor,

!Calculated with the Dhrystone benchmark.

41

5.

OUTLINE OF THE GPU HARDWARE

42

— full support for integer and bitwise operations.

The main disadvantage of CUDA is the fact that it is only available for
Nvidia graphic cards that support it.

o FireStream This parallel computing architecture is basically ATIT’s counter-
part of CUDA which has its own software development kit (SDK), called
‘Stream’. This SDK includes a hardware optimized version of the ‘Brook’
language developed by Stanford University, which is itself a variant of the
C language, optimized for parallel computing. It has basically the same
(dis)advantages as Nvidia’s CUDA.

e Open Computing Language (OpenCL) Because both FireStream and CUDA
are proprietary, the Khronos Group launched an open standard for parallel
programming on heterogeneous systems. This computing language does
not only restrict the programmer to use the power of GPU’s; but it also
addresses the power of every (parallel) computing device found in personal
computers, servers and handheld devices. The first stable release dates from
June 2010, so its is fairly new (by time of writing this thesis). The main
advantages of this API are:

— every computing device can be addressed and used for heterogeneous
generic programming,

— it is an open standard.

However, OpenCL is a very recent technology and therefore the main dis-
advantage is the lack of support and integration.

The architecture used in this research is CUDA. The available cluster of GPU’s
is from Nvidia, which limits this research to either OpenCL or CUDA. Since
OpenCL is a fairly new development language with relatively low use cases and
support and CUDA has proven to be stable for some years, we have chosen the
latter. In addition, CUDA has better reference guides and examples to learn
from which results in a steeper learning curve. This makes it easier for CUDA
to get the best performance out of Nvidia cards than OpenCL. Moreover, Nvidia
has released several tools that make the programming easier. It has for example
a profiler, which helps to get an overview of your CUDA programs, and an occu-
pancy calculator, which determines the best configuration settings for a specific
graphic card.

5.3 The CUDA programming model

The CUDA programming model enforces cooperation between hardware, soft-
ware and different tools to compile, link and run CUDA code. This section will

5.3. The CUDA programming model

describe the compiler model, the mapping from the hardware to the software (the
execution model) and how the memory on the GPU can be used. Moreover, the
CUDA programming model also contains a collection of compilers and tools to
optimize CUDA code.

5.3.1 Compiler model

The CUDA programming model supports two ways of writing programs. This
research will only focus on the CUDA C variant, which is a minimal set of exten-
sions to the C language?. A source file can contain a mixture of host code (i.e.
code that executes on the CPU) and device code (i.e. code that executes on the
GPU). The nvce compiler first separates the host and device code. Whereas the
host code (plain C for example) is then compiled and linked by the programmer’s
favorite compiler, the device code is compiled by nvce to an assembly form (the
PTX code). Then this PTX code can either be converted to binary form, which
is called a cubin object, or loaded by the application at runtime and get compiled
via the just-in-time compilation mechanism.

5.3.2 Execution model

Because both the GPU hardware and the CUDA framework are designed by
Nvidia, these two interact very well with each other. The most important aspect
to understand how CUDA works is the mapping between the API and the hard-
ware. The soft- and hardware entities in the programming model are shown in
Figure 5.3. Every entity in the figure will be described below:

e Dewvice The device is defined as the GPU hardware which runs the code.
e Host The host is defined as the CPU hardware which controls the GPU.

e Kernel A kernel is defined as a function that runs on the device. As men-
tioned earlier, the CUDA architecture is based on the SIMT principle. This
means that every thread processor executes the same function in parallel.
Only one kernel is executed at the time and therefore many threads can
execute that kernel simultaneously.

e Thread and Tread Processor A thread runs a kernel which is executed by
the thread processor. Every thread has a unique id.

e Thread Block and Multiprocessor Every thread block contains a predefined
number of threads. A thread block is then executed by one multiprocessor.
However, several concurrent thread blocks can reside on one multiprocessor,
limited by multiprocessor resources such as shared memory and number

2The other way to write CUDA programs is via the CUDA driver API

43

5.

OUTLINE OF THE GPU HARDWARE

44

Software Hardware
2 =
Thread
Thread Processor
(|
|
[||
R -
[
Thread I:l
Block Multiprocessor
]] | [o oo O [e]
- %
I o

Grid Device

Figure 5.3: The CUDA execution model [1].

of available registers. Threads within a thread block can cooperate and
synchronize, while threads in different blocks cannot.

e Grid and Device Every grid contains a predefined number of thread blocks,
so a kernel is launched as a grid of thread blocks.

The number of threads in a thread block and the number of thread blocks in
a grid can be determined at compile time or runtime. This allows programs to
transparently scale to different GPU’s and hardware configurations. The hard-
ware is free to schedule thread blocks on any processor as a long as it fits in the
warp size. When a multiprocessor is given one or more thread blocks to exe-
cute, it partitions them into warps that get scheduled by a warp scheduler for
execution. The way a block is partitioned into warps is always the same. Each
warp contains threads of consecutive, increasing thread id’s with the first warp
containing thread 0. The configuration of a kernel (in number of grids, thread
blocks and threads) significantly influences the execution speed. It is important
to divide the threads evenly over every warp. We will discuss optimal kernel
configuration in Chapter 7.2.3.

Figure 5.4 gives an overview of how threads, thread blocks and grids can be
defined. Over time, every kernel is executed depending on its own configuration.
This configuration is described by the number of threads per block, the number
of blocks per grid, the amount of static memory needed and the algorithm specific

parameters.

5.3. The CUDA programming model

Host Deavice
Grid 1
Kernel 1 Block Block Block
(0, 0) (1. 0} {2, 0}
Block .- Block \ Block
(o, 1} (11} (2.1)
v
%
: ; 5
< Grd2 o .
4 Py
il
Kernal 2 - » '|I
5 B \
& . i .
! —4
1 i ‘| | i i ¢
- Block (1, 1) }

Figure 5.4: An example of a kernel configuration [1].

5.3.3 Memory Outline

Figure 5.5 gives an overview of the available memory on a typical Nvidia CUDA
enabled GPU.
The following different classes of physical memory can be distinguished:

o Device Memory This is the largest memory, with sizes up to 1.5 GB, but
also the memory with the highest latency with regard to the individual
thread processors. It can be compared with the DRAM of a normal CPU.
The device memory is virtually divided into the following parts:

— Global memory Global memory resides in device memory and is ac-
cessed via 32-, 64-, or 128-byte transactions. These memory transac-
tions must be aligned. This means that only the first 32-, 64-, or 128-
byte segments of the global memory that are aligned to their size (their
first address is a multiple of their size) can be read or written by mem-
ory transactions. When a warp executes an instruction that accesses
global memory, it coalesces the memory accesses of the threads within
the warp into one or more of these memory transactions depending

45

5. OUTLINE OF THE GPU HARDWARE

Block (0, 0) Block (1, 0)

|

Thread (0,0) | Thread (1, 0) | Thread (0,0) | Thread (1, 0)

Figure 5.5: Overview of the CUDA memory model [1].

on the size of the word accessed by each thread and the distribution
of the memory addresses across the threads. The more transactions
are necessary, the more unused words are transferred compared to the
words accessed by the individual threads, which reduces the instruc-
tion throughput. For example, if a thread wants to access 4 bytes, but
a 32-byte memory transaction is generated, the throughput is divided
by a factor 8.

— Local memory The memory outline in Figure 5.5 shows that the local
memory is a distinctive unit close to the individual thread processor.
The local memory space resides in device memory however, so local
memory accesses have the same high latency and low bandwidth as
global memory accesses. In contrast to global memory, this type of
memory is organized in such a way that consecutive 32-bit words are
accessed by consecutive tread id’s and the access is therefore fully
coalesced as long as the threads in a warp originate from the same
relative address. Local memory can not be allocated: variables are
automatically placed in local memory by the compiler if they not fit in

46

5.3. The CUDA programming model

faster memory or registers (also called register spilling). The compiler
uses various criteria for this: arrays that are not indexed with constant
quantities, arrays that consume too much register space or kernels that
requested more registers than available.

— Constant memory Every device has a constant memory space. For
most devices the size of this memory is 64 KB. While this memory
resides on the device memory, it is cached on-chip. This means that a
read from constant memory only costs one read from the cache, which
is significantly faster than global memory: for all threads that belong
to a half warp (either the first or the second half of a warp), a read
from the constant cache is as fast as a read from register as long as all
threads read the same address. Reading from different addresses by
threads in the same half warp are serialized, which means that the cost
(expressed in memory latency) to access the constant memory scales
linearly with the number of different addresses read by the threads in
a half warp.

— Texture memory Texture memory has basically the same properties as
constant memory except that it is optimized for 2D spacial locality,
which means that threads of the same warp that read texture addresses
that are close together will achieve best performance. While the use of
texture memory can significantly improve the output of graphic CUDA
programs, we will not go in to detail because password cracking does
not use graphics processing.

The global, constant and texture memory can be set by the host and there-
fore allow a developer to use them directly. Local memory can only be set
by individual threads and should therefore be taken care of in advance (e.g.
by placing large arrays in the shared memory).

Registers In Figure 5.5 is shown that every thread has it own set of regis-
ters. This is true in the sense that every multiprocessor has a number of
registers which should be shared by all his thread processors. A typical mul-
tiprocessor (like the ones on a Nvidia GTX295) has 8192 32-bit registers.
Basically, every access to a register by the thread processor is immediate,
which means that it takes zero extra clock cycles per instruction. Delays
may occur by read-after-write dependencies and register bank conflicts. A
read-after-write dependency occurs when the instruction’s input operands
are not yet available because some of the operands are written by previ-
ous instructions whose execution has not completed yet. The latency is
then equal to the execution time of the previous instruction and the warp
scheduler must schedule instructions for different warps during that time.
The execution time varies depending on the instruction, but the latency

47

5.

OUTLINE OF THE GPU HARDWARE

48

is on average 24 clock cycles. A bank is an equally-sized set of memory
modules, which can be accessed simultaneously by different threads. Bank
conflicts occur when two addresses of a memory request fall in the same
memory bank and access to those banks is then serialized by the hardware.
The compiler and hardware thread scheduler will schedule instructions as
optimally as possible to avoid register memory bank conflicts.

Shared Memory Every multiprocessor has its own shared memory that is
shared between all threads in a block (even the ones that are not in the
active warp). Because shared memory resides on-chip, it is much faster
than local and global memory. In fact, uncached shared memory latency is
roughly 100 times lower than global memory latency, provided that there
are no bank conflicts between the threads. Bank conflicts in shared memory
will be described more detailed in Chapter 7.2.2. To achieve low latency,
the available shared memory is divided into banks. Due to this partition,
any memory read or write request made of n addresses that fall in n dis-
tinct memory banks can therefore be serviced simultaneously, increasing the
overall bandwidth by n times the bandwidth of a single module. Shared
memory is not initialized automatically and should therefore be assigned
before compile time. Because every thread in a block can access the shared
memory and the kernel configuration is not always known at compile time,
the programmer has to align the memory and make sure that every thread
accesses its own piece of shared memory.

To summarize, Table 5.2 shows the features of a Nvidia’s GPU device memory.

Memory Location Cached Access Scope Lifetime
on/off
chip
Register ~ On n/a R/W 1 thread Thread
Local Off No R/W 1 thread Thread
Shared On n/a R/W Al threads in block Block
Global Oft No R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation
Texture Off Yes R All threads + host Host allocation

Table 5.2: Features of Nvidia’s GPU device memory (with compute capability
1.3)[1].

For an overview of the Nvidia 295 GTX specifications, we refer to Appendix

Chapter 6

Cracking MD5-crypt with GPU
hardware

In the previous chapters we gave a definition of password hashing schemes, defined
their security properties and described several attack scenario’s. Furthermore,
we described the internal working of the graphics processing unit. With this
knowledge, we are now able to define an exhaustive search attack with GPU’s
on a specific password hashing scheme. This chapter will cover our approach to
launch an attack on MD5-crypt.

49

6.

CRACKING MD5-CRYPT WITH GPU HARDWARE

50

6.1 Considerations

Since this research focuses on one attack case only, some assumptions have to be
defined. Our implementation is based on the following considerations.

e Attacker model We assume that the adversary definitely has to find the
plaintext password given the ciphertext (ciphertext only attack) and there-
fore should perform an exhaustive search over all possible inputs. Further-
more, the attacker does not have control over the salt and because the salt
is 48 bit in size, we consider time-memory trade-off not valuable enough to
exploit.

e Hardware The exhaustive search is performed by Nvidia GPU’s, since we
have chosen CUDA to be our specific programming interface. However,
the optimizations that described could be used for different architectures

as well.

e Password generation To make sure the performance of the implementation
can be compared with real password recovery tools, unique passwords need
to be generated. The performance is than measured in unique password
hashes that can be checked per second. Since some of the optimizations
depend on the password length, we assume the password length to be less
than 16 bytes. !

o Law of averages We cannot use the law of averages with our exhaustive
search since we use a linear password generation algorithm (thread 0 checks
‘aaaa’, thread 1 checks ‘baaa’, etc.) and since we assume that the password
input space is not uniformly random distributed[26].

6.2 Design of MD5-crypt

The scheme that will be reviewed in this research is the MD5-crypt scheme. MD5-
crypt is the standard password hashing scheme for FreeBSD operating systems,
supported by most Linux distributions (in the GNU C library) and implemented
in Cisco routers. It was designed by Poul-Henning Kamp in 1994.

Figure 6.1 shows the schematic overview of the MD5-crypt implementation.
The figure only shows the most relevant parts and abstracts from initializations.
Basically, MD5-crypt applies the MD5-compression function 1002 times:

e In the first application, the concatenation of the password, salt and pass-
word again is hashed.

116 bytes is about twice the average password length of real world datasets (see Table 4.2).

6.2.

Design of MDb5-crypt

Password Salt

\ 4

| MD5Compress(password| | salt| | password)

result

MD5Compress(password| | 1 | |salt| |result)

result

| Init(buffer)
- n=0

v

buffer = password| |result

¢—If(n%3]
result | puffer = buffer| |salt else M DS_Crypt
If{n%7) J'
else buffer = buffer| |password
A 4
If(n<1000) MD53Compress(buffer)
: n++
If(n==|1IJDU]
result
result

Figure 6.1: Schematic overview of MD5-crypt.

e In the second application, the concatenation of the password, magic string
(‘318’), salt and the result of the first application is hashed.

e In the next thousand applications, the concatenation of the password, salt

and result of the previous application is hashed based on the round number

Although Poul-Henning Kamp did not write a design document, he put com-
ments throughout the source code and was asked to review the security of the

o1

6.

CRACKING MD5-CRYPT WITH GPU HARDWARE

52

scheme in an article about open source software by Jeff Norris [49]. In this article
Poul-Henning Kamp states the following:

“Fortunately, I have no reason to believe that any problem exists with
either the algorithm or the implementation, and given that MD5 is
pretty strong, it’s unlikely that any will ever be found.”

He is correct when he argues that MD?5 is still pretty strong for the purpose of
password encryption, since MD5 only suffers from collision attacks and no feasible
pre-image attacks have been found yet. There is a theoretic attack by Sasaki and
Aoki [58] that generates a pseudo pre-image of MD5 with a complexity of 2116
and generates a full pre-image of MD5 with a complexity of 21234, These numbers
are still not feasible for contemporary and near future hardware, and even if they
were, the key stretching technique makes the attack even n times harder.

As we have seen in Chapter 4.5, collisions can theoretically influence password
hashing schemes. Wang et al. [59] and Leurent [39] have shown that for the APOP
protocol strong collision attacks can be used to recover the plaintext password.
The APOP protocol uses one application of MD5(P, C'), where P is the password
and C' a random nonce. If an adversary has access to C', he can launch a collision
attack. This attack assumed the following conditions:

1. There exists no message difference in the last part of messages.
2. Many collisions can be generated in practical time.

MD5-crypt uses the key-stretching technique in such a way that it becomes
very hard for an adversary to exploit the break of the strong collision resistant
property of MD5. The attack from [59] could work theoretically if the salt and
password are concatenated in the same way with every iteration of the hash
function and the salt could be arbitrarily chosen by the adversary. Then an evil
salt could be created such that two different inputs collide under the salt and
its evil twin [18]. Since MD5-crypt concatenates the password, salt and result of
the previous iteration in a pseudo-random way (which breaks the first condition)
and since MD5-crypt uses 1000 iterations (which breaks the second condition),
we have no belief that collision attacks affect the security of MD5-crypt.

6.3 Enabling exhaustive search attacks on GPU’s

6.3.1 Parallelization of MD5-crypt

To check whether the MD5-crypt algorithm can be parallelized, it is necessary
to verify if the MDb5 hash function itself can be parallelized. In the MD5-
Compression function, each 512-bit input block is digested in 4 phases. Each
phase consists of 16 basic steps, for a total of 64 basic steps. Then, each step

6.3. Enabling exhaustive search attacks on GPU’s

updates one word of a 4-word accumulated digest, using the entire intermediate
digest as well as block data and constants (the Markle-Damgard principle). So
in general, each basic step depends on the output of the prior step, defeating
simple parallelization of the steps. The same concept holds for MDb5-crypt, in
the main loop (where the MD5-Compression functions is applied a 1000 times),
the output of the last round serves as input for the next round, again defeating
parallelization of the rounds.

While it is not possible to parallelize the MD5-crypt algorithm itself, an exhaus-
tive search attack to find a matching password for a given hash can be paral-
lelized easily. In fact, exhaustive searches are embarrassingly parallel[24], since
the parallel processing units of the underlying hardware do not have to interact
or cooperate with each other. Every processing unit tries a set of possibilities and
compares them with a target. The only cooperation that is needed, is the division
of the search space and a general stop message that terminates the search when
one processing unit has found a match. If we map this approach to MD5-crypt,
every processing unit needs to calculate the MDb5-crypt output hashes of all the
candidate passwords in the input set he is given and match them with a target
hash.

6.3.2 Algorithm optimizations

This section describes the optimizations that can be done in the algorithm itself
in order to speed up the execution of one MD5-crypt round. The main part
of the MDb5-crypt password hashing scheme consists of the application of the
MD5-compression function a thousand times. So every optimization in the MD5-
compression function will yield a linear speed up of 1000 times in the MD5-
crypt function. Based on the assumption of the password length, two major
optimizations of the MD5 hash function can be used.

The first optimization is based on the fact that passwords with sizes lesser
than 16 bytes result in only one application of the MD5-compression function. As
described in Chapter 3.2.3, the MDb5 hash function operates on a b-bit message
M which is padded to make the length of the message a multiple of 512. For
every 512-bit block of the message M, the MDb5-compression function is called.
However, if M is only 512 bit long, the MD5-compression function is called only
once. So if the input to the MD5 hash functions in MD5-crypt is only 448 bit
long a linear speed up can be achieved. To calculate the maximum length of the
password that still allows this optimization, we have to find the call to the MD5-
compression function in the MD5-crypt algorithm that uses the largest input.
Depending on the round in the algorithm, the password P, salt S and the result
of the last application of the MD5-function R are concatenated in such a way
that it uses at most 2 % |P| + |S| + |R| bytes. Because the salt and the result of
last round are always 8 and 16 byte respectively, the following should hold for

53

6.

CRACKING MD5-CRYPT WITH GPU HARDWARE

54

1P 448

The second optimization is based on the fact that the length of passwords
is typically significantly shorter than 16 bytes. As described in Section 3.2.4,
the MD5-compression function operates on a 512-bit message block M;, which
is partitioned into sixteen consecutive 32-bit words my,...,m15, and then ex-
panded to 64 words (Wt)%3 for each of the 64 steps in the function. Because
of the assumption of the password length, the length of the input for the MD5-
compression function can be calculated in advance. This means that not all of
the input words mg, ..., m15 are initialized to a value. Regarding Equation 6.1,
the number of input words N,,,;; that are zero can then be calculated as:

56 — (2 |P|+ 24 16 — |P

The 4 in the denominator comes from the fact that 4 bytes make up 1 word
and the addition with 1 comes from the fact that the last word is not needed to
represent the length of the input (the input length is smaller than 232).

6.4 Theoretical analysis of the maximum performance

In this section three ways to estimate the maximum performance of MD5-crypt
are described. First, the theoretic upper bound is estimated by counting the
number of instructions needed to complete one application of MD5-crypt. Then
based on the number of clock cycles per second of a given device, it is possible
to estimate the performance. While this approach is applicable for all kinds of
devices, the second analysis will yield a more practical and specific approach,
especially for CUDA enabled GPU’s. The performance is now estimated by a
prediction model. The last approach is based on our own implementation and will
be described in detail later. To compare the different approaches, the performance
is measured in hashes per second, i.e. the number of candidate passwords that
can be checked on a given device within one second. Furthermore, the models
are based on a variable password length with a maximum of 15 bytes.

6.4.1 Simple arithmetic model

To estimate the performance of MD5-crypt on a given architecture, we first define
a simple model that is based on the number of arithmetic instructions needed to
complete one round of the password hashing scheme. Since it is not very hard to
estimate the instruction throughput of a hardware platform, this model can be
used to compare the performance of the hashing scheme on different architectures
and determines the maxim speedup that can be achieved. To define this model,
all arithmetic and logic operations are taken into account.

6.4. Theoretical analysis of the maximum performance

To determine the number of arithmetic instructions needed to complete one
round of MDb5-crypt, it is necessary to determine the number of instructions for
MDS5 first. Recall from Chapter 3.2.4 that the MD5-compression function does
all the arithmetic work. It consists of 64 rounds in which the following function
is called:

Qi1 = Qt + ((Qi—3 + fi(Qr, Qt—1, Qr—2) + Wi + AC}) <<< RCy) for 0 <t < 64.
In the equation, f; depends on the round number and is

FX,)Y,Z)=(XAY)® (X AZ) for0<t< 16,
GX,)Y,Z)=(ZANX)®(ZANY) for16 <t < 32,
HX,)Y,Z)=XaoYaZ for 32 <t < 48,
I(X,)Y,Z)=Y ® (X VZ) for 48 <t < 64.

ft(X7Y7 Z) =

To summarize, in every round () requires 3 additions, one cyclic rotation and
applies one subfunction. The cyclic rotation requires 2 shifts and 1 addition.
Table 6.1 shows the number of logic operations for the subfunctions.

Subfunction Logic Operations One application of) 16 applications of @
F 4 11 176
G 4 11 176
H 2 9 144
1 3 10 160
Total after 64 rounds 656

Table 6.1: Instruction count of the elementary MD5 functions.

Every subfunction is called 16 times, and together with the arithmetic oper-
ations of () and the cyclic rotation, the total number of native arithmetic oper-
ations for one application of the MD5-compression function will be 656 instruc-
tions. Since MDb5-crypt basically applies the MD5-compression function 1002
times, it means that one application of MD5-crypt costs 657312 native arithmetic
instructions. Note that this calculation only takes the native arithmetic instruc-
tions into account and not the memory accesses (for example the operations to
correctly set the 64-byte input for the MD5-function). With this information,
and the information about how to calculate the integer operations per second for
a given architecture (as explained in Chapter 5.1.2), a performance comparison
between different architectures can be made. Table 6.2 shows the performance
of MD5 and MD5-crypt on different architectures. Note that we do not take
compiler optimizations into account, so both architectures need to do the same
amount of arithmetic instructions to execute the algorithms. The table shows us
that better equipment does not always implies better performance. For example,

95

6. CRACKING MD5-CRYPT WITH GPU HARDWARE

Architecture Avarage price in Peak perfor- Theoretical Theoretical
name EUR mance in GIPS speed MD5 speed
(hash/sec.) MD5-crypt
(hash/sec.)
Nvidia GTX295 290 596 908M 906K
Nvidia GTX580 450 790 1204M 1202K
Nvidia S1070 6000 1382 2107M 2100K
Intel i7 965EE 450 76 116M 115K
Intel i7 980EE 900 147 224M 223K

Table 6.2: Performance comparison between different architectures.

the Nvidia Tesla S1070 has an average price of 6000 Eur, but produces only a
little over twice the performance over the GTX295, while the average cost is 15
times higher?. This due to the design of the S1070: it is built out of four separate
Tesla T10’s and intended for memory intensive implementations. Therefore it
has a total of 4 GB of global memory, which is expensive.

6.4.2 Performance prediction model

Since the previous model only takes the number of operations into account and
neglects the memory accesses, the model will not be very accurate for a per-
formance estimation of real implementations. In addition, the CUDA execution
model is complicated and performance can not be measured by simply calculating
the number of clock cycles and memory accesses. It also depends on the compute
capability of the device and the way the architecture maps the software imple-
mentation on the hardware. A more accurate way to estimate the performance
of real CUDA implementations was proposed by Kothapalli et al. [38]. Their
model takes into account the various facets of the GPU architecture like schedul-
ing, memory hierarchy and pipelining. It is based on the arithmetic intensity and
memory accesses per kernel, which is executed by each thread. Let the number
of clock cycles required for arithmetic computation in a thread be denoted as
Ncomp and let the number of clock cycles required for memory accesses (both
shared and global memory) be denoted as Nmem. Now let Cp(K) be the num-
ber of clock cycles required to execute kernel K on thread T'. If the hardware
is capable of hiding all the memory latency (which depends on the configuration
and the nature of the problem one wants to solve), the MAX model can be used:

Cr(K) = max(Necomp; Nmem) (6.3)

2For overview peak performance and specifications of Nvidia GPU’s, see: http://en.
wikipedia.org/wiki/Comparison_of _Nvidia_graphics_processing_units

56

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

6.4. Theoretical analysis of the maximum performance

If the hardware cannot hide all the latencies, the worst case scenario is used to
determine C7(K) (all memory accesses are serialized), which is called the SUM
model:

Cr(K) = Ncomp + Nmem (6.4)

Depending on the model, the number of clock cycles required for the kernel K to
execute, denoted as C(K), can be defined as:

1

C(K) = Np(K) * Ny(K) * Ny (K) x Cp(K) * NosD'

(6.5)

In this equation, Np(K) is the number of blocks assigned to each multiprocessor,
Ny (K) is the number of warps that fit in each block, N;(K) is the number of
threads in a warp, Cp(K) is the maximum number of cycles required by any

thread T executing kernel K (where Cr(K) :m:,gx C(T)), N¢ is number of
processors in a multiprocessor and D is the depth of the pipeline, i.e. a multi-
processor can execute D threads in parallel. The total time in seconds T'(K) to
execute a kernel is then defined as:

T(K) = 22 (6.6)

All the previously defined variables are depending on the kind of problem the
GPU has to solve. The MAX model can be applied for arithmetic intensive
implementations while the SUM model can be used best for memory intensive
implementations.

Case study: MD5-crypt

To estimate the performance of MD5-crypt with the practical based model, we
have to determine number of threads that a we need to count the number of
hashes per second. If we assume that every unique thread 7' can review one pass-
word candidate, it is possible to determine the number of clock cycles C(K) a
kernel K requires to execute one round of MD5-crypt. Together with a predeter-
mined number of password candidates IV, it is possible to estimate the number of
hashes per second with this model. For the sake of simplicity, let N be a multiple
of 32 (the number of threads in a warp), for example 320 000. If we define a
block size of 256 threads and we have a device with 60 multiprocessors (like the
Nvidia GTX295), the number of blocks per multiprocessor Np(K) = [3200001.

60+256
Now it is necessary to determine the number of clock cycles required for arith-

metic computation Ncomp and the number of clock cycles required for memory
accesses Nmem done in one thread that executes one instance of MD5-crypt for
one candidate password. Ncomp is the same as the amount in Section 6.4.1,
which is 657312. To determine Nyem, we just count all the memory accesses in
the default MDb5-crypt implementation. However, this value is dependent on the

57

6.

CRACKING MD5-CRYPT WITH GPU HARDWARE

o8

password- and salt length. If we assume that both have a length of 8 bytes, the
total number of memory accesses will be 110394 for one thread that executes one
instance of MDb5-crypt for one candidate password. Further more, on a Nvidia
GTX 295 the number of cores per multiprocessors N¢ is 8, the maximum number
of threads in a warp N (K) is 32 and the depth of the pipeline D is 1. Finally,
because the block size is 256, the number of warps that fit in each block N, (K)
is 8. With the previous information available, it is now possible to estimate the
kernel execution time for 320000 candidate passwords, by combining Equation 6.5
and 6.6. Figure 6.4.2 shows the performance estimates for the SUM and MAX
model, both for accessing shared memory (which takes on average 4 clock cycles
per access [1]) and global memory (which takes on average 500 clock cycles per
access [1]). Furthermore, the performance estimate for the theoretical model is
shown. While the difference between the shared memory and the global memory
approach seems large (900K versus 11K hashes per second respectively), in prac-
tice the warp scheduler will try to hide the latency by swapping threads that are
waiting on a memory request and therefore the practical values will be higher.
The degree of hiding depends on the configuration and the implementation it-
self. The difference between the values of the MAX model with shared memory
and the theoretical model is caused by the configuration settings in the practical
model. If the workload is not divided amongst all multiprocessors equally, the
performance will decrease.

1000000

800000

600000

400000

Hashes per second

200000

MAX shared MAX global SUM shared SUM global Theoretic

Figure 6.2: Performances achieved for MD5-crypt on a Nvidia GTX295, calcu-
lated by the practical based model.

We have shown the theoretical performance increase for MD5-crypt executed
on GPU hardware. Furthermore we have shown a practical based estimated of
the performance when including the CUDA memory model. It shows us that it is
of utmost importance to ensure that all the variables should be stored in shared
memory. In the next chapters we will describe our proof of concept, which is

6.4. Theoretical analysis of the maximum performance

an implementation of MD5-crypt on Nvidia CUDA enabled GPU’s, including a
description on how to optimize exhaustive searches for password hashing schemes
on GPU’s.

99

Chapter 7

Optimization of our
implementation on a CUDA

enabled GPU

Now we have estimated the maximum theoretical and practical performance of
our approach, this chapter will treat the specific optimizations that can be used
in order to increase the performance on a CUDA enabled device. It will also
cover the implementation choices we have made.

61

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

62

7.1 Implementation details

This section contains the actual implementation in pseudocode. Only the most
relevant parts are reviewed here. For an overview of all code, we refer to http:
//www.martijnsprengers.eu/phKrack/. The implementation itself differs from
the original implementation by Poul-Henning Kamp because all calculations are
done on integers instead of bytes and no conversion to base 64 takes place, since
it is enough to compare the 128 bit output of the final MD5-compression function
with the 128 bit hash of the target password. Furthermore, the algorithm specific
optimizations from Chapter 6.3.2 are now incorporated. GPU and CUDA specific
code is left out.
The algorithm can be described by the following steps:

1. Decode the base 64 target hash to four 32-bit words (CPU).

2. Calculate the size of the search space, based on the character set and max-
imum password length (CPU).

3. Initialize n GPU kernels with the salt, target hash, configuration parameters
(such as grid size and number of threads per block) and the i-th (where
i < n) part of the search space (CPU).

4. Depending on the virtual thread number, generate an unique password
candidate. Since thread creation does not render large overhead, every
thread checks one password candidate.(GPU)

5. Hash the candidate password is with MDb5-crypt, which is described by
Algorithm 1, 2 and 3 (GPU).

Algorithm 1 MDb5-crypt pseudo code, Context 1.

1. unsigned integer buf fer[16]

2: unsigned integer final[4]

3: set(buf fer,password|salt||password)

4: set(buf fer,0x80) > Add the binary 1
5: set(buf fer,msglen << 3) > Add the message bit length
6: MD5Compress(final,buf fer) > Call MD5 and store result in final

Algorithm 1 shows how the first context is built. It sets up buf fer, which
contains the concatenation of the password, salt and password. Then, buf fer is
structured as described by Chapter 3.2.3 and the MD5-compression function is
called. The result is stored in the final array. This result is then fed into context
two (shown in Algorithm 2), where a new buf fer is built. This time it contains
the concatenation of the password, the string ‘1’ and the salt. Furthermore n
bytes of the result of the first context are added, where n is the length of the

http://www.martijnsprengers.eu/phKrack/
http://www.martijnsprengers.eu/phKrack/

7.2. Optimizations

password. Then, depending on n, a null byte or the first byte of the password is
added. Finally, buf fer is padded and partitioned before the MD5-compression
function is called. Again, the result of this context is stored in the final array
and fed to the third context (Algorithm 3). This context contains a loop with
1000 iterations. Every iteration, the result of the last round (final) and the
password are stored in buf fer. Then, depending on the iteration number, the
password and salt are added, and finally the MD5-compression function is called,
which stores the result in final again. At the end, the result of the last iteration
contains the actual password hash, which is then matched against the target hash.
If both match, a flag is set and the algorithm can stop searching. This concludes
the description of the most important part of the MD5-crypt algorithm.

Algorithm 2 MD5-crypt pseudo code, Context 2.

1: set(buf fer,password||1||salt)
2: set(buf fer,finalllen(password))) > Add len(password) bytes of final
3: for i = passwordLength,i,7 >>=1 do
4: if & 1 then > Case 4 is odd
5: set(buf fer,\0) > Add a null byte
6: else > Case @ is even
7: set(buf fer,pw[0]) > Add the first byte of the password
8: end if
9: end for
10: set(buf fer,0x80) > Add the binary 1
11: set(buf fer,msglen << 3) > Add the message bit length
12: MD5Compress(final,buf fer) > Call MD5 and store result in final

7.2 Optimizations

This section describes the types of optimizations that can be used within the
CUDA framework. Some types result in a significant performance increase while
others even decrease the overall performance. The optimizations described in
this section are applied to our implementation. In general, the programmer has
to determine if this specific type of optimization affects his own implementation.
The discussed optimizations are mentioned in [1, 2].

7.2.1 Maximizing parallelization

To maximize the utilization it is important that the parallelism is efficiently
mapped to the different levels of the architecture. Three main levels are distin-
guished.

63

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

64

Algorithm 3 MD5-crypt pseudo code, main loop.

1: msglen =0
2: for ¢+ = 0,7 < 1000, i++ do

3: msglen = 0

4: for j =0,5 < 16,j++ do

5: buf ferlj] =0

6: end for

7 if i & 1 then

8: set(buf fer,password)

9: msglen += len(password)
10: else

11: set(buf fer,final)

12: msglen += 16

13: end if

14 if ¢ % 3 then

15: set(buf fer,salt)

16: msglen += len(salt)

17: end if

18: if ¢ % 7 then

19: set(buf fer,password)
20: msglen += len(password)
21: end if
22: if i & 1 then
23: set(buf fer,final)
24: msglen += 16
25: else
26: set(buf fer,password)
27: msglen += len(password)
28: end if

29: set(buf fer,0x80)

30: set(buf fer,msglen << 3)

31: MD5Compress(final,buf fer)
32: end for

33: if target == final then

34: setFlag(input Password)

35: end if

> Case 7 is odd

> Case 7 is even
> Add the result of last round

> Case i 13

> Case it 7

> Case 4 is odd
> Add the result of last round

> Case 7 is even

> Add the binary 1
> Add the message bit length
> Call MDb5 and store result in final

> Match with target

7.2. Optimizations

Application level

According to Amdahl’s law [4], the maximum speedup of a program using multiple
processors in parallel computing is limited by the time needed for the sequential
fraction of the program. It is thus desirable that most of the program can be
executed in parallel. Amdahl’s law states that if P is the part of a program that
can be made parallel (i.e. benefit from parallelization), and (1 — P) is the part
that cannot be parallelized (remains sequential), then the maximum speedup that
can be achieved by using N processors is calculated by:
1

S_(l—P)—k%' (7.1)
As an example, consider Figure 7.1. It shows the maximum performance increase
for a multiprocessor with 240 cores (like a Nvidia GTX295) depending on which
percentage of the program can be made parallel. The figure clearly shows that
the speedup is only feasible if at least 80% of the program can be parallelized.

240 core multiprocessor
300

250

150

Speedup(s)

100

) _/

a 0,2 04 0,6 0,8 1

Percentage of code parallelized (P)

Figure 7.1: Example of Amdahl’s law for a 240 core multiprocessor.

A great part of parallel programming consists of attempting to reduce the
component (1 — P) to the smallest possible value. Iterating over a given input
space and generating passwords according to a password hashing scheme is even
embarrassingly parallel, which means that the sequential fraction of the program
is almost zero and consequently the maximum speedup can be achieved. Pass-
word crackers achieve this because of their nature: every password can be checked
independently (individual threads do not need to cooperate) and all the threads
have the same execution path (only the data part is different). The only thing
that can not be parallelized in our implementation is the initialization and con-
figuration of the GPU. This includes the division of the input space in case of
a distributed system. However, this is only be done once and the calculation of

65

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

66

the actual hashes is still fully parallelized on the GPU. In addition, there are no
intermediate communications between the GPU and the host CPU, which are
dependent on the bus speed and slow down the execution speed.

Device level

The compute capability of the device determines the number of kernels that can
reside concurrently on a device. This is an important aspect, because the more
kernels that reside on a device, the more the hardware is kept busy. For example,
if one kernel needs to access data on the global memory, the device can run
another kernel while waiting for the memory access to complete. However, on
devices with compute capability 1.x, only one kernel can reside on the device
concurrently. This implies that the kernel should be launched with sufficient
thread blocks, i.e. with at least as many thread blocks as there are multiprocessors
on the device. Chapter 7.2.3 will treat more configuration optimizations that can
be applied to our implementation.

Multiprocessor level

The application should use the thread-level parallelism principle at an even lower
level. It is therefore important to keep the individual multiprocessors as busy
as possible. This can be achieved by latency hiding. Whenever the warp sched-
uler issues an instruction, it selects a warp which is ready to execute its next
instruction and then issues that instruction to the active threads in the warp.
The number of clock cycles it takes for a warp to be ready for the execution of
its next instruction is called latency. Maximum utilization is therefore directly
dependent on the number of warps that can reside on one multiprocessor. If all
warp schedulers always have an instruction to issue for some warp at every clock
cycle during that latency period, the latency can be completely hidden. As de-
scribed in Chapter 5.1.1, the number of instructions needed to hide a latency of
L clock cycles can be determined by taking %, since a multiprocessor in a device
with compute capability 1.x can issue one instruction per warp over 4 clock cycles
[1].

A warp is not always ready to execute its next instruction. This is mainly
caused by the input variables not being available yet. Since our final optimized
implementation does not require calls to global memory, latency is caused by
either register dependencies, shared memory accesses and constant cache misses.
If all input operants are registers, for example in the MD5-compression function,
the latency is caused by previous instructions whose execution is not completed
yet.

7.2. Optimizations

7.2.2 Memory Optimizations

While hash functions have high arithmetic intensity in their calculations, the pass-
word hashing schemes based on them frequently access the memory (for example
to add the password and salt to a buffer) and therefore it is mostly the memory
that determines the bottleneck in the execution speed. This section describes all
memory optimizations that can be done in order to improve performance. The
result of each improvement will be presented in Chapter 8.

Global memory

Our implementation does not use large data structures and therefore we do not
need to store data in global memory manually. However, if our data structures do
not fit in shared memory and the compiler could not place them in the registers,
those structures will be placed in local memory, which actually resides in global
memory. Local memory is so named because its scope is local to the thread,
but the physical location of this memory is off-chip and has the same properties
as global memory. Only the compiler decides what variables will be placed in
local memory, based on how much space the data structures need and based
on how much registers are spilled. (See Section 5.3.3). Because global memory
latency is very high compared to shared memory or register latency, the most
important performance consideration is to make sure global memory accesses
are coalesced. With our implementation this is already the case, since variables
in local memory are organized as such that consecutive words are accessed by
consecutive thread id’s. Accesses are therefore fully coalesced if all threads in a
warp access the same relative address. This is the case in our implementation
because all threads use the same index in the arrays every time. In our first,
non-optimized implementation, the following data structures are stored in per
thread local memory (and thus having the same properties of global memory):

unsigned char buffer [64];
unsigned int final [16];
unsigned char password[N];
unsigned char salt [8l;
unsigned char charset [M];
unsigned int target [4];

buffer is used to store the 64-byte input for the MD5-compression function,
final is used to store the output of the MD5-compression function, password
is the N-byte password that has to be checked, salt is the 8-byte salt that is
the same for all threads, charset is the M-byte character set which is used to
build a candidate password based on the current thread id and target is the
representation of the target hash in 4 unsigned integers.

67

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

68

As a consequence, the kernel has to access the local memory every time it uses
one of the above variables. The latency of these accesses is about 400 to 600 clock
cycles (depending on the compute capability and the memory bus speed of the
device). The number of warps that are needed to keep the warp schedulers busy
during the latency period can be determined by the ratio between the number of
instructions with on-chip memory and the number of instructions with off-chip
memory. If this ratio is low, more warps resident per multiprocessor (and thus
more threads per block) are required to hide the latency.

Shared memory

Although the warp scheduler uses latency hiding to cover the global memory
latency, the access time of shared memory is almost as fast as register access time
and use of shared memory is therefore preferred over global memory. Because it
is on-chip, uncached shared memory latency is roughly 100x lower than global
memory latency. However, all virtual threads that run on one multiprocessor
have to share the available shared memory and so concurrent threads can access
other thread’s memory addresses. Therefore, the developer has to manage the
memory accesses himself.

Individual threads can access their shared memory addresses concurrently
with the use of equally sized 32-bit wide memory modules, called banks. Because
banks can be accessed simultaneously, any memory load or store of n addresses
that spans n distinct memory banks can be serviced simultaneously, yielding an
effective bandwidth that is n times as high as the bandwidth of a single bank. On
a device with compute capability 1.x, the shared memory has 16 banks that are
organized in such a way that successive 32-bit words are assigned to successive
banks, i.e. interleaved. A memory request for a complete warp is split into two
memory requests, one for each half-warp, that are issued independently. Each
bank has a bandwidth of 32 bits per clock cycle and since there are 16 banks on
a device and the warp size is 32, accessing all the banks for the threads in a full
warp has a bandwidth of 32 bits per two clock cycles.

Bank conflicts arise when multiple threads from the same half-warp access
the same bank. The warp is then serialized, and every thread that accesses that
bank is then executed sequentially. No bank conflicts can arise between threads
that belong to the first- and second half warp respectively. The hardware splits
a memory request that has bank conflicts into as many separate conflict-free
requests as necessary, decreasing the effective bandwidth by a factor equal to the
number of separate memory requests. There is one exception: when all threads
in a half warp address the same shared memory location, the value is broadcasted.
To minimize bank conflicts, it is important to understand how memory addresses
map to memory banks and how memory requests should be optimally scheduled
in a specific implementation. For example, consider the following listing;:

7.2. Optimizations

__shared__ char shared[32];
char *data = shared[threadId];

In here, shared[32] is an array of bytes in the shared memory and every thread
has to access its own byte by its threadId. However, this example will generate
a 4-way bank conflict, because only 4 bytes fit in one 32-bit bank. The warp
scheduler will now serialize the accesses, degrading performance of the effective
bandwidth by a factor 4. The bank conflict in this example can be solved by
multiplying the indexes with a factor 4:

char *data = shared[threadIdx*4];

Now every thread of the half-warp accesses its corresponding word. To use the
speed of the shared memory for this research, the buffer where the input is stored,
before it is passed to the MD5-compression function, is declared like this:

__shared__ unsigned int shared[THREADS_PER_BLOCK] [16];
unsigned int *buffer = shared[threadId];

Every thread in a block has now access to its own part of the shared memory.
However, as explained by the previous example, this implementation will lead to
a 16-way bank conflict (which is very inefficient): thread 0 accesses shared[0][0]
(address 0) which is mapped to bank 0, thread 1 accesses shared[1][0] (address
16) which mapped to bank 0,..., thread 15 accesses shared[15][0] (address 240)
which is also mapped to bank 0 (= 240 mod 16). This bank conflict will cause all
16 threads of a half warp to access the first bank, which will lead to 16 serialized
requests. However, this conflict can be solved entirely by declaring one extra
element per thread (which is called a stride):

__shared__ unsigned int shared[THREADS_PER_BLOCK] [16+1];
Now the addresses per thread have to be shifted with one word too:
unsigned int *buffer = shared[threadId]+1;

Now due to the modular arithmetic of the device, it will calculate the correct cor-
responding bank for all the threads in a half-warp: thread 0 accesses shared[0][1]
(address 1) which is mapped to bank 1, thread 1 accesses shared[1][1] (address
18) which is mapped to bank 2 (= 18 mod 16),..., thread 15 accesses shared[15][1]
(address 256) which is mapped to bank 0 (= 256 mod 16). Now all threads can
access their respective banks simultaneously. However, this solution does increase
the total amount of shared memory needed to run the kernel and shared mem-
ory is sparse. As a consequence, less threads per block can be configured to run
concurrently on a multiprocessor, which will yield an overall loss in occupancy.

69

7. OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

To calculate the total amount of shared memory Spiocr in bytes that is allo-
cated for a block, the following can be used:

Sblock = Ceﬂ(Ska GS)v (72)

where S is the amount of shared memory used by the kernel in bytes and Gg
is the shared memory allocation granularity, which is equal to 512 for devices of
compute capability 1.x and 128 for devices of compute capability 2.x. Si can be
derived by taking the product of the shared memory needed to run one thread
and the number threads in a block.

If we want to decrease the local memory usage to zero and remove all the
bank conflicts, our implementation needs the following data structures available
in shared memory (assumed that the password length is n bytes):

__shared__ unsigned int buffer [THREADS_PER_BLOCK] [k+1] ;
__shared__ unsigned int final [THREADS_PER_BLOCK] [4+1] ;
__shared__ unsigned char passwords[THREADS_PER_BLOCK] [n+1];

In here buffer [THREADS_PER_BLOCK] [k+1] contains the input to the MD5-compression
function, k is the number of words needed to store the input calculated by (16 —
Nypuit) (see Equation 6.2), final [THREADS_PER_BLOCK] [4+1] is used to store the
output of the MD5-compression function and passwords [THREADS_PER_BLOCK] [n+1]
contains the candidate passwords that threads have to check. So the total shared
memory used by the kernel in bytes can now be calculated by:

Shioets = ceil(THREADS_PER_BLOCK x (4k +n + 25), Gg). (7.3)

On a device with compute capability 1.x, the maximum shared memory per
multiprocessor is set to 16384 bytes. For example, if we take 256 threads per
block and a password length of 8 bytes, the total shared memory needed would
become ceil(256 * (4 * 10 + 8 + 25),512) = 18944 bytes (which is more than the
16384 bytes available, making the kernel refuse to launch). If we take 224 threads
per block, the kernel uses ceil(224 % (4% 10+ 8+25),512) = 16384 which is exactly
the maximum possible amount.

Table 7.1 shows the effect of the stride on the number of warp serializes in
our implementation when the kernel is ran once with 224 threads per block. The
about 9000 warp serializes that remain after the shared memory bank conflicts are
solved, have several causes: uncontrollable register bank conflicts, constant cache
misses and read-after-write dependencies. However, compared to the 66 million
warp serializes that exist with the bank conflicts, this number is not significant.

Registers

Theoretically, because registers have a zero clock cycle latency, it is of utmost
importance to keep all the program variables in the registers whenever possible.

70

7.2. Optimizations

Stride Number of warp serializes
No stride 66 000 000
Stride 1 9 389

Table 7.1: Effects of stride on the number of warp serializes.

Every multiprocessor stores the execution context, such as program counters
and variables, of all threads in the registers for the entire lifetime of the warp.
These threads are called active threads and have to share the available registers.
Every multiprocessor has a maximum number of registers that can be used, which
implies that the number of warps in a block that reside and can be processed on
a given multiprocessor depends on the amount of registers (and shared memory)
used by the kernel. The total number of warps in a block also depends on the
compute capability of the device. It is calculated as follows[1]:

Ty

Wblock = ceil(y 1), (74)

size
where T3 is the number of threads per block, W;.. is the warp size which is
equal to 32 for devices with compute capability 1.x and ceil(x,y) is equal to =
rounded up to the nearest multiple of y. Now, the total number of registers Ryjock
allocated for a block can be calculated as follows[1]:

Ryiock, = ceil(ceill(Whyioek, Guw) X Wiize X Ry, G), (7.5)

where G, is the warp allocation granularity which is equal to 2 for devices with
compute capability 1.x, Ry is the number of registers used by the kernel and
Gr is the thread allocation granularity (which is equal to 256 for devices with
compute capability 1.0 and 1.1, and 512 for devices with compute capability 1.2
and 1.3).

Register latency is caused by either read-after-write dependencies and register
memory bank conflicts. This type of latency approximately costs 24 cycles, but
can be completely hidden if the number of active threads per block is well chosen.
A device with compute capability 1.x has 8 thread processors per multiprocessor
and thus needs 8 x 24 = 192 active threads (which is equal to 6 warps) to hide
this latency.

The programmer has no control over which variables are placed in registers
and which are spilled to local memory. The only thing a programmer can do, is
to restrict the compiler in the number of registers that can be used by a kernel.
The compiler and hardware thread scheduler will then schedule instructions as
optimally as possible to avoid register memory bank conflicts. They achieve the
best results when the number of threads per block is a multiple of 64. Other than
following this rule, an application has no direct control over these bank conflicts.

71

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

72

Constant memory

The constant memory space originally resides in the device (global) memory and
is cached in the constant cache. Because the constant memory is cached on-chip,
a read from the constant memory is as fast as a read from the registers. On
a cache miss, a read from the constant memory is as fast as a read from the
device memory. For devices with compute capability 1.x, a request for constant
memory is split into two request, one for all threads in a half-warp, which are
issued independently. This request is then split into as many separate requests as
there are different memory addresses in the initial request. So accesses to different
addresses are thus serialized and decreasing throughput by a factor equal to the
number of separate memory addresses.

In our implementation, the following variables stay the same throughout the
execution of the whole kernel and can therefore be placed in the constant memory:

__constant__ unsigned char salt [8l;

__constant__ unsigned char charset [M];

__constant__ unsigned int target [4];

From these 3 variables, the threads of a warp always access the same addresses
for salt and target and those requests are thus as fast as register requests.
However, every thread generates a unique password based on its thread id and so
multiple threads in a warp access different memory addresses of charset when
generating the password. However, this is only done once per thread and therefore
it has no significant impact on the performance.

7.2.3 Execution Configuration Optimizations

One of the major keys to performance is to keep the hardware as busy as possible.
This implies that the workload should be equally shared between all the multi-
processors of a device. If the work is poorly balanced across the multiprocessors,
they will deliver suboptimal performance. It is therefore important to optimize
the execution configuration for a given kernel. The key concept that helps to
achieve optimal performance is occupancy.

Occupancy is specified as the metric that determines how effectively the hard-
ware is kept busy by looking at the active warps on a multiprocessor. This metric
originates from the fact that thread instructions are executed sequentially and
therefore the only way to hide latencies and keep the hardware busy when the
current warp is paused or waiting for input, is to execute other warps that are

available on the multiprocessor. Occupancy is therefore defined as WVrVn(jz - where
W, is the number of active warps per multiprocessor and W4, is the maximum
number of possible active warps per multiprocessor (which are 24, 32 and 48

for devices with compute capability 1.2, 1.3 and 2.x respectively). Occupancy

7.2. Optimizations

is kernel (and thus application) dependent, which means that some kernels do
achieve higher performance with lower occupancy. However, low occupancy al-
ways interferes with the ability to hide memory latency, which result in a decrease
of performance. On the other hand, higher occupancy does not always implies
higher performance, but it may help to cover the latencies and achieve a better
distribution of the workload.

The main factor to determine occupancy is thus the number of active warps
per multiprocessor, which in its turn is determined by the number of thread
blocks per multiprocessor and the number of threads per block. Recall from
Chapter 5.3.2 that a entire blocks are executed on one multiprocessor and that
the warp size is 32 for all compute capabilities. The number of active warps per
multiprocessor can then be calculated as W, = %, where T, is the number of
active threads per multiprocessor. Now to determine the optimal number threads
per block T we have to take into account the following restrictions, which we
will discuss below:

e Physical configuration limits of the GPU.
e Maximum number of available registers per multiprocessor.
e Maximum number of available shared memory per multiprocessor.

Apart from these restrictions, we will also discuss some guidelines to determine
the optimal number of threads per block.

Physical configuration limits of the GPU

Every GPU has its own physical properties, described by the compute capability
group the GPU belongs. The most important properties are:

e Threads per warp Wy, (warpsize). The maximum allowed value of the
number of threads that can be executed concurrently, which is equal to 32
for all compute capabilities.

o Warps per multiprocessor Wp,q.. The maximum allowed value of the num-
ber of warps that can reside on one multiprocessor.

e Threads per multiprocessor. The maximum allowed value of the number of
threads that can reside on one multiprocessor. This number is determined
by the product of the threads per warp and the warps per multiprocessor.

e Thread blocks per multiprocessor T'B,,q- The maximum allowed value of
the number of thread blocks per multiprocessor, which is equal to 8 for all
compute capabilities.

73

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

74

Based on the previous, the number of active threads per multiprocessor T, can
be calculated as:

(7.6)

Winas * Wi
T, = T} * min (TBmM, W)

Ty

Now maximum occupancy can be achieved if the active threads per multiprocessor
is equal to the product of warps per multiprocessor and threads per warp:

Wma:c * Wsize)

= Wsize Wmaz 7.7
- : (r.1)

Ty * min (TBm,w,
For example, if we do not consider the register and shared memory usage for our
implementation and we use a device with compute capability 1.3, we will get the
following formula for the calculation of the optimal number of threads per block
Ty (and thus maximum occupancy):

2 % 32
Ty, % min <8, 5 ;3) = 1024 (7.8)
b

Figure 7.2 plots Equation 7.8 for several values of T} and shows the influence of
several block sizes on the occupancy of our kernel implementation. As becomes
clear from the figure, block sizes of 128, 256, 512 and 1024 result in the maximum
occupancy. However, we did not yet take the effects of shared memory and

register size into consideration.

100% # % A =

60%
i -

40% 1

20%

Occupancy

0%

o 128 256 384 512 640 768 896 1024

Threads per block

Figure 7.2: General influence of number of threads per block on the occupancy
of a device with compute capability 1.3.

Maximum number of available registers per multiprocessor

Equations 7.4 and 7.5 show how the total number of registers Rpjocr allocated
for a thread block can be calculated. After inspection of our intermediate ptx

7.2. Optimizations

code, it turned out that our implementation uses 17 registers per thread. With
this information we can calculate the maximum number of threads per block and
find the maximum occupancy our implementation can achieve, given that we use
a device with compute capability 1.3 which has 16384 32-bit registers available
per multiprocessor. Now the maximum number of threads per block Tj can be
calculated as:

Ryock 16384

’ Rk X Wsize % see 17 x 32

x 32 =960

Because of the ceil(z,y) function we have to round down 1176i8342 to 30 and the
final result then becomes 960 threads per block. With this number of threads per
block, the number of active threads per multiprocessor W, is then 960/32 = 30

and the achieved occupancy is then 30/32 % 100% =~ 94%.

Maximum number of available shared memory per multiprocessor

Equation 7.3 shows how the amount of shared memory for a given kernel can
be calculated. If we use a device with compute capability 1.3, we have 16384
bytes shared memory available per multiprocessor. In the previous section we
already showed that a maximum of 224 threads per block can be configured,
with the assumption that the password length is 8 bytes. It turns out that
the available shared memory is the bottleneck with a maximum of only 224
threads per block, where based on the physical limits and the number of available
registers, a maximum number of 1024 and 960 threads per block can be configured
respectively. This means that maximum occupancy for our implementation can
be achieved with 224 threads per block, as shown by Figure 7.3. From the figure
it becomes clear that with 224 threads per block (marked with a square), the
maximum occupancy is 22%. Note that this figure looks different from Figure
7.2, because the bottleneck is now determined by the available shared memory
and not by the physical configuration limits.

General guidelines

The physical configuration limits, number of registers used and the available
shared memory are not the only influences on the optimal configuration setting.
From several other design documents [57, 38|, reference guides [1, 2] and our
own experience, the following guidelines should be taken into consideration to
determine the number of threads per block:

e Since the warp size for all compute capabilities is 32 threads, the number
of threads per block should be a multiple of 32. This ensures that no
incomplete warps are executed, which do not fully use the computing power
of a multiprocessor.

75

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

76

100%

p
80% //A
60% /
40%

20%

Occupancy

0% T T T T T T T v
o 128 256 384 512 640 768 896 1024

Threads per block

Figure 7.3: Maximum achieved occupancy for our implementation ran on a device
with compute capability 1.3.

e To hide the latency for register memory bank conflicts, the optimal number
of threads should be a multiple of 64.

e Since the latency of register read-after-write dependencies is approximately
24 cycles, the number of threads per block should be higher then 8 x 24 =
192 and 32 x 24 = 768 for compute capabilities 1.3 (8 thread processors per
multiprocessor) and 2.x (32 thread processors per multiprocessor) respec-
tively.

e The performance increases when the gridsize is a multiple of the number of
available multiprocessors since the thread blocks are then equally divided
amongst the multiprocessors.

Together with the information extracted from Figure 7.2, the most optimal
number of threads per block should therefore be 256, 512 or 1024, but since our
implementation is restricted by available shared memory our most optimal value
is 224 threads per block, which equals to 22 % occupancy.

7.2.4 Instruction Optimizations

GPU’s have an instruction set that fits their purposes for graphics calculation.
However, not all instructions that execute fast on a CPU will do so on a typical
GPU. Therefore, awareness of how instructions are executed often permits low-
level optimizations, especially in code that is run frequently (hot-spots), such as
the 1000 iteration for-loop in our implementation. When all high-level optimiza-
tions have been done, it may be advantageous to look at low-level instruction
optimizations. The following low-level optimizations may affect our implementa-

tion:

7.2. Optimizations

e Modular arithmetic This kind arithmetic is expensive on GPU’s. In the hot-
spot in our implementation the if-statements if (i % 3) and if(i % 7) are
used. Unfortunately, we cannot rewrite these statements because 3 and 7
are not powers of 2. If they were, (i&(n—1)) (where n is a power of 2) could
be used, which is less expensive. The same holds for division, but since we
use division only once per thread (in the password generation phase), it
is not significantly beneficial to rewrite this statement. And if it was, we
could still not use it since the denominator is not a power of 2 (else (i / n)
could be written as (i >> loga(n))).

o Type conversions This kind of arithmetic is expensive too, for example
functions operating on char whose operands need to be converted to an
int. In the original implementation two data structures were used to store
the input to the MDb5-compression function:

unsigned char buffer[64];
unsigned int buffer[16];

The 64 char array was converted to a 16 int array, which then served as
input for the MD5-compression function. However, since the elements of
the array are stored sequentially in the GPU memory, it is not necessary
to converge between char and int. In our current implementation only
the int buffer[16] array is enough, because the addresses of the 16 int
elements can be accessed byte-wise with this function:

void setThisRef(unsigned int *a,unsigned int b, unsigned char c){
unsigned char* ptr = (unsigned charx) a;
*(ptr + b) = c;

3

While this solution does not decrease the number of instructions (because a
cast from int to char is still needed), it needs less calls to shared memory
(because we only need one data structure to store the input), which slow
down the execution.

7.2.5 Control Flow Optimizations

Any flow control instruction (if, switch, do, for, while) can significantly affect
the instruction throughput if threads of the same warp follow different execu-
tion paths, which is called warp divergence. If this is the case, the different
execution paths must be serialized, increasing the total number of instructions
executed for this warp. When all the different execution paths have completed,
the threads converge back to the same execution path. This only happens when

77

7.

OPTIMIZATION OF OUR IMPLEMENTATION ON A CUDA ENABLED GPU

78

threads have data-dependent branches, for example based on their thread-id.
Algorithm-dependent (e.g. based counters or constants) branches do not cause
warp divergence.

With an exhaustive search attack, threads do not have to cooperate and do not
have data-dependent branches. This means that all threads in a warp can follow
the same execution path, so warp divergence does not occur. Even in the main
loop of our implementation, every thread in a warp executes the same instruction
at the same time throughout all the 1000 iterations. Our implementation only
has a data-dependent branch on the password length, so if we make sure that
threads in the same warp check passwords with the same length, warp divergence
does not exist.

Although all threads have the same execution path, there is still an optimiza-
tion which can be used. Branching is not a native arithmetic instruction and
thus multiple clock cycles are required to calculate the outcome of an if state-
ment. This can be prevented by using branch prediction. In our case we have
two options to achieve this:

e Loop unrolling By default, the compiler unrolls small loops with a known
trip count. The #pragma unroll statement can be used to control unrolling
of larger loops, even if the trip count is not known. In our case, it seems that
the compiler ignores this optimization for the for loop with 1000 iterations.
Even if we used the #pragma unroll 1000 statement, the compiler decided
to keep the 1000 iterations, disabling a performance increase. If we apply
a loop unroll on only the first 5 iterations, the number of instructions in
the ptx file doubles and since a CUDA kernel is restricted to a maximum
of 2 million instructions, we think the compiler uses the total number of
instructions to determine if the kernel is able to launch.

e Loop prediction It may be advantageous to precalculate all the given in-
stances of our for loop, since the 1000 iterations have a certain period. Al-
gorithm 3 shows that the input structure to the MD5-compression function
is different for some iterations, based on the iteration number i. However,
not all the 1000 iterations are different. For example, ¢ = 1 and ¢ = 5 have
the same input structure: password+salt+password+final, where final
is the result of last round. If we can precalculate the period, we can remove
all the if statements. To determine the period, we need to find the least
common multiple of [2, 3, 7], which is 42. In total, there are 9 different input
structures, which repeat themselves after 42 iterations. We can now rewrite
the for loop such that all the if statements are removed. However, loop
prediction increases the number of lower level instructions and we have to
make sure that we do not exceed the maximum number of instructions per
kernel, which is physically determined to 2 million for all Nvidia devices.

Chapter 8

Experimental evaluation

We have described how GPU’s can speedup the performance of MD5-crypt and
differentiated the optimizations. To see whether our implementation is success-
ful, this chapter will contain the setup and outcomes of our experiments. The
following three kinds of results are distinguished:

e We describe how the specific optimizations, as defined in Chapter 7, effect
the performance on CUDA enabled GPU’s.

e We compare the performance of known CPU implementations of MD5-
crypt to ours. Moreover, we compare the performance increase against
other achievements in the field (such as GPU implementations for AES and
ECC).

e We measure the effects of our performance increase on contemporary pass-
word databases and password policies.

79

8.

EXPERIMENTAL EVALUATION

80

8.1 Experiment setup

8.1.1 Performance metric

To measure the performance of our implementation and to compare it against
implementations on other hardware platforms, we use the real hashes per second
metric. Let n be the size of the search space, then this metric is measured by
counting the number of clock cycles it takes for all n threads to:

e Generate a candidate password.
e Calculate a MD5-crypt hash.
e Compare the hash against the target hash.

Then, the total number of clock cycles c is divided by the number of clock cycles
a given device can execute per second C to get the execution time in seconds s.

Finally, the number of hashes per second is calculated as %

8.1.2 Awvailable hardware

Although our implementation can execute on multiple GPU’s, we have ran our
tests only on one Nvidia GeForce 295 GTX. To compare the implementation
with CPU hardware, we used an equally priced Intel i7 920 processor. The
specifications of the hardware on which we have performed the experiments can
be found in Appendix A.1.

8.2 Optimizations effects

To measure the impact of the optimizations described in Chapter 6 and 7 on the
performance of our GPU implementation, we have set up the following experi-

ments:

e Measure the influence of different optimizations on the performance of our
implementation.

e Measure the influence of different configuration parameters on the perfor-

mance of our implementation.

8.2.1 Algorithm optimizations

After we have defined a baseline (point 1), four optimizations are compared to
this baseline (point 2 to 5). Then, the optimizations are combined (point 6 and
7) and again compared to the baseline.

8.2. Optimizations effects

1. Baseline. This is the implementation which does not use any optimization
at all. Moreover, all the variables are stored in the local (i.e. global)
memory and the allocation of the memory is done automatically.

2. Constant memory. The variables that do not change during the execution,
such as target hash, salt and character set, are now stored in the constant
memory. The other variables are still stored in local memory.

3. Shared memory (bank conflicts). The changing variables, such as the input
buffer and the resulting hashes, are now stored in the fast shared memory.
However, as described in Chapter 7.2.2, bank conflicts and thus warp seri-
alizes occur, which slow down the execution. The non-changing variables
are still stored in the local memory.

4. Shared memory (no bank conflicts). The allocation of the shared memory is
now done is such a way that no bank conflicts occur. With a strided access
pattern every thread can access its own bank such that warp serializes are
kept to a minimum, which increases the performance (at the cost of a little
increase in total shared memory used).

5. Optimized MD5. Based on the description in Chapter 6.3.2, the MD5-
compression function is statically optimized. Depending on the password
length, only the necessary calculations are performed.

6. Shared and constant memory (no bank conflicts). Now both the chang-
ing and non-changing variables are kept in shared and constant memory
respectively.

7. Optimized MD5 with shared and constant memory. In addition to point 6,
the optimized version of the MD5-compression function is used as well.

To make a fair comparison, the configuration parameters are kept equal. The
number of thread blocks (gridsize) is set to ‘1200’ (since this is a multiple of ‘60’,
which is the number of multiprocessors on a Nvidia GTX 295) and the number
of threads per block (blocksize) is set to ‘160 (since this is the maximum number
for all optimizations to have enough shared memory available). In Figure 8.1 the
performance increase per optimization is shown in black, combined optimizations
are shown in gray. The figure shows us that the shared memory (without bank
conflicts) and MD5-compression function optimization achieve speedups of 3 and
2 times the baseline respectively. However, when we combine both optimizations,
the speedup is only a little over 3 times the baseline. This can be explained by
the fact that the MD5-compression function optimization reduces the number
of memory calls. While this optimization achieves a significant performance in-
crease when all variables are stored in local memory, only little performance

81

8.

EXPERIMENTAL EVALUATION

82

900000

800000

700000

600000

500000

400000

300000

200000

100000 -j I

0 T T T T T T

Baszeline Constant Shared Shared Optimized Sharedand Optimized
memory MEemMory memory MD5 constant MD5 with

(bank (no bank memory shared and

conflicts) conflicts) (nobank constant

conflicts) memory

Hashes persecond

Figure 8.1: Performance increase per optimization, executed on one Nvidia
GeForce GTX 295.

increase is gained when all variables are stored in shared memory (since this type
of memory has low latency). Furthermore, the figure also shows that there is
very little performance increase when the non-changing variables are stored in
constant memory and the other variables are stored in shared memory compared
to storing all the variables in shared memory (point 6 and 4 respectively). This
can be explained by the fact that the compiler stores frequently used variables
in the constant memory by itself and keeps a copy in local memory too (when
a constant cache miss arises). Finally, the figure shows that storing variables in
the shared memory while not solving the bank conflicts even degrades the per-
formance compared to the baseline. Therefore, bank conflicts (and thus warp
serializes) should be avoided.

8.2.2 Configuration optimizations

Chapter 7.2.3 shows us that it is important to keep the hardware as busy possible
by maximizing the occupancy. To measure the influence of the number of threads
per block (blocksize) on the performance of our most optimal implementation, we
varied the number of threads per block while keeping the gridsize constant. Figure
8.2 shows the influence of the blocksize on the performance while the gridsize is set
to ‘1200’. With the most optimal implementation and the threads per block set to
224, we are able to launch an exhaustive search with our maximum performance
of approximately 880 000 hashes per second. Blocksizes up to 229 could be used
as well, but did not achieve more performance than 224 threads per block. With
blocksizes higher than 229, the kernel refused to run since there was not enough

8.2. Optimizations effects

Performance on one GTX 295
900000 >
800000 A-A
700000 A A/ \
e 4V v
g 600000 ‘/
E 500000 I,
- 400000
i 300000 /
200000
100000 I
0
0 32 64 96 128 160 192 224
Number of threads per block

Figure 8.2: Influence of the number threads per block on the performance of our
most optimal implementation, executed on one Nvidia GeForce GTX 295.

shared memory available. The graph shows a characteristic behavior: depending
on the number of threads per block configured, we get stair-like graphs. Multiples
of the warp size (32) and half warp size (16) result in more optimal performance.
However, depending on the number of registers per thread and the amount of
shared memory used, other configurations are possible and lead to smaller steps

in between.

8.2.3 Comparison of theoretical limitations versus practical limita-
tions

In the theoretical estimate of the performance we did not incorporate the candi-
date password generation phase and the comparison with the target hash. Since
our password generation algorithm (which can be found in Appendix A.2.1) uses
modular arithmetic and integer division, this influences the final performance.
However, every thread only generates one password, so the time this takes may
be ignored compared to the execution time of the rest of the algorithm. Figure
8.3 shows our most optimal implementation, but without the optimization of the
MD5 algorithm, compared against the theoretic and practical based models (as
described in Chapter 6.4.1 and 6.4.2). From the figure it becomes clear that the
performance of our implementation is between the performance estimates of the
SUM and MAX model. This can be explained by the fact that the warp scheduler
swaps threads while they are waiting for a (shared) memory call to complete and
thus higher performance can be achieved than estimated with the SUM model.
Since MDb5-crypt is memory intensive, memory calls can not be ignored and there-
fore our implementation will never reach the same level of performance as the
MAX or theoretic model.

83

8.

EXPERIMENTAL EVALUATION

84

1000000

800000 -
600000 -
400000 -
200000 -
0 A T T T

Hashes per second

Simple MAX model SUM model QOur
arithmetic implementation
model

Figure 8.3: Performance of our implementation compared against the theoretic
models. The SUM and MAX model displayed in the graph assume that all
variables can be placed in the shared memory.

8.3 Comparison with other implementations and hardware

8.3.1 Comparison against CPU implementations

In order to compare our implementation against implementations on other hard-
ware platforms, it is necessary to consider the costs of the hardware. We have
ran our implementation on two equally priced devices: the Nvidia GeForce 295
GTX and the Intel i7 920 (both with an average price of 290 euro). However,
we neglected the fact that a GPU cannot run without a host CPU. In addition,
a CPU is not able to address all its resources since it has to run an operating
system as well.

At the time of writing this thesis, no other MD5-crypt GPU implementations
were available for testing. Therefore, we compared our implementation to the
fastest MD5-crypt CPU implementation known to us, which is incorporated in
the password cracker ‘John the Ripper’[19]. However, John the Ripper does not
have support for parallel MD5-crypt yet. As of June 2010, only parallel CPU
implementations of DES and berypt are supported’. In order to fully use all four
cores of the Intel i7 920, we used the OpenMP library to parallelize our CPU im-
plementation. Figure 8.4 shows the performance of MD5-crypt implementations
on GPU and CPU hardware. Our GPU implementation (about 880 000 hashes
per second) achieves a speedup of 28 times over our CPU implementation (about
32 000 hashes per second) and a speedup of 104 times over the John the Ripper
CPU implementation (about 8500 hashes per second). Compared to the John
the Ripper implementation, we achieve a speedup of two orders of magnitude.

!See: http://openwall.info/wiki/john/parallelization

http://openwall.info/wiki/john/parallelization

8.3. Comparison with other implementations and hardware

1000000

800000

600000 -

400000

Hashes persecond

200000

o - . —
Our GPU Our CPU lohnthe Ripper
implementation implementation

Figure 8.4: Performance comparison of different implementations on different
architectures.

8.3.2 Comparison against other cryptographic implementations

GPU’s have proven to be suitable to speedup the implementations of symmet-
ric [29, 28] and asymmetric [30, 69] cryptographic functions, such as AES [12],
RSA[30] and ECCJ9, 8]. Table 8.1 shows the different speed ups GPU’s can
achieve over CPU’s. Note that not all experiments were carried out on equally
priced hardware, which influences the final outcome. Moreover, variations in
hardware, relative newness of GPU and CPU chips, CPU implementations, and
CPU technologies (e.g. the use of the SSE instruction set) will all lead to changes
in the GPU / CPU run-time ratio. However, the table does show that GPU’s
can be efficiently used to perform cryptographic operations, or at least can act
as a cryptographic ‘co-processor’.

Work Cryptographic Algorithm Speed up GPU
type over CPU

[9, §] Asymmetric ECC 4-5

[41] Symmetric AES 5-20

[29] Symmetric AES 4-10

[30] Asymmetric RSA 4

This work Hashing MD5-crypt 28

Table 8.1: Speed up GPU over CPU for different cryptographic applications.

The major difference between the speedup for hashing and the other cryp-
tographic types comes from the fact that hash functions are solely build out of
native arithmetic instructions (such as shifts, additions and logical operators)
that have high throughput on a typical GPU. RSA and ECC, in contrast, are
build out of multiplications and modular arithmetic, which have lower through-
put than native arithmetic instructions. In addition, password hashing allows for

85

8.

EXPERIMENTAL EVALUATION

86

a maximal parallelization whereas with AES not all modes of encryption can be
used for parallelization (e.g. Cipher-block Chaining or Cipher Feedback mode).

8.4 Consequences for practical use of password hashing
schemes

We have shown that in the field of exhaustive searches on the password hashing
scheme MDb5-crypt, GPU’s can significantly speed up the cracking process. To
determine if this speedup is significant enough to attack systems that use such
password hashing schemes, we have to see how our implementation performs on
real world datasets. As example databases, we took the ones described in Chapter
4.2. To see whether the passwords are crackable in a feasible amount of time, we
defined four password ‘classes’:

1. Passwords consisting of only lowercase ASCII characters (26 in total)

2. Passwords consisting of lowercase and numeric ASCII characters (36 in
total)

3. Passwords consisting of lowercase, numeric and uppercase ASCII characters
(62 in total)

4. Passwords consisting of lowercase, numeric, uppercase and special ASCII
characters (94 in total)

Table 8.2 shows how the four classes are represented in the two datasets.

Dataset %inclassl %inclass2 %inclass3 % in class 4
phpbb.com 41 47 10 2
rockyou.com 26 59 8 7

Table 8.2: Characteristics of real world password datasets.

We can now determine which percentage of the databases could be exhaustively
searched in a feasible amount of time. If we assume that all password combina-
tions are equally likely, we can calculate the maximum length & of the passwords
in each class (with ¢ the number of base characters in the respective class) based
on a given level of entropy h:

k= Llogc(Qh)J (8.1)

8.4. Consequences for practical use of password hashing schemes

100000000 / / T
10000000 / / F
1000000 /

100000 / / 7
10000 Pl —— phpbb MD5crypt
/ / 7~ rockyou MDScrypt

1000 ~

// -~ =phpbb plain MD5
100 P PPP 2 manths

10 /

' /

1

Time in seconds

0 20 40 60 80 100

% of database cracked

Figure 8.5: Crack times for real world datasets on one Nvidia GTX 295 with a
performance of 880000 hashes per second.

Figure 8.5 then shows the amount of time it takes for one Nvidia GTX 295 to
crack a percentage of the database, given that all the passwords were hashed with
MD5-crypt. The figure shows us that within two months (which is the standard
password expiration period in most corporate environments) of cracking time,
respectively 77% and 54% of the passwords in the phpbb and rockyou database
could be cracked. In addition, the figure shows that 98% of the phpbb database
could be cracked if no password hashing scheme is used and the passwords are
hashed with only one application of the MD5 function. Considering the fact that
one cracked password can influence the security of an entire system, we consider
the identified percentages as unacceptable. Moreover, given Moore’s Law, even
more passwords can be effectively searched in the near future. Table 8.4 shows
the search times for the four password classes and some password lengths, given
the performance of 880 000 hashes per second.

Length 26 characters 36 characters 62 characters 94 characters

4 0,5 Seconds 2 Seconds 16 Seconds 2 Minutes

5 13 Seconds 1 Minute 17 Minutes 2 Hours

6 5 Minutes 41 Minutes 18 Hours 10 Days

7 2 Hours 1 Days 46 Days 3 Years

8 2 Days 37 Days 8 Years 264 Years

9 71 Days 4 Years 488 Years 20647 Years
10 5 Years 132 Years 30243 Years 2480775 Years

Table 8.3: Exhaustive search times of some password lengths on one GTX 295
with a performance of 880 000 hashes per second.

87

8. EXPERIMENTAL EVALUATION

To decrease the percentage of passwords that can be recovered with exhaustive
searches on prevalent graphics hardware, the following methods could be used:

e Increase the entropy of the user password by enforcing a password policy.

e Increase the complexity of the password hashing scheme in such a way that
one user is able to hash his password, but exhaustive searches take too much
time to complete for multiple candidate passwords. This can be achieved
by increasing the number of calls to the underlying hash function (e.g. by
increasing the number of iterations in the key-stretching technique).

The first method increases the search space exponentially while the second method
only linearly increases the time needed to iterate over the search space. Therefore,
it is better to enforce users to increase the entropy in their passwords. Even so,
if all users would pick passwords with high entropy, the use of password hashing
schemes would be superfluous. However, if we want to increase the complexity
of password hashing schemes in order to withstand exhaustive search attacks on
current hardware, we could use the following rule of thumb: One application of
the password hashing scheme should not execute in less than 10 milliseconds on
specialized hardware. If we apply this rule to MD5-crypt, the number of itera-
tions should be increased with four orders of magnitude (from 1000 to 10 000
0000 iterations).

To see whether a specific password policy is still valid given contemporary
and near-future hardware, we present a model to calculate the probability P
of a successful exhaustive search attack on one password p, given the password
policy (determined by number of characters in the password class ¢ and minimum
password length k), the exhaustive search speed (in hashes per dollar per second)
S, the value of the assets that should be protected A and the password expiry
period (in seconds) E. The model can then be described as:

pp) = ZEXE (82)

This model is only valid under the following assumptions:

e The adversary has no knowledge about the password distribution, i.e. all
candidate passwords should be randomly generated.

e All users have unique random salts.
e Users did not pick passwords that can be found (partially) in a dictionary.

Figure 8.6 shows the probability of a successful exhaustive search attack for some
lengths in the most complex password class (where ¢ is 94 and k£ > 6). With
an exhaustive search speed of 2200 hashes per dollar per second and the expiry

88

8.4. Consequences for practical use of password hashing schemes

1,00 -
0,80 -
-9
Z 050 -
i 51000000
0,40
2 M 510000000
0,20 - 5100000000
0,00 -
7 8 g 10
Password length k

Figure 8.6: Probability of a successful exhaustive search attack for some lengths
in the most complex password class.

period set to 2 months, well funded adversaries (with A > $10, 000, 000) are able
to crack all passwords with a length less than 10 characters.

This concludes the description of our experimental results. We have shown
that GPU’s can significantly speedup cryptographic applications such as pass-
word hashing, provided that the full power of a typical GPU can be addressed.
Moreover, we have shown that either the design of password hashing schemes
should be adapted to contemporary standards or users should increase the en-
tropy in their passwords.

89

Chapter 9

Conclusions and future work

91

9.

CONCLUSIONS AND FUTURE WORK

92

9.1 Conclusions

In this research, we have identified both the security properties and attacker
models of prevalent password hashing schemes. In particular, we have shown that
GPU’s could be used for launching exhaustive search attacks on password hashing
schemes that rely on the key strength of user-chosen passwords. We have shown
that such attacks could be parallelized because of their embarrassingly parallel
nature, which enabled us to optimize the implementation of one password hashing
scheme, MDb5-crypt. We have shown that our implementation approaches the
theoretical speed limit on a CUDA enabled GPU. Moreover, our implementation
achieves a speedup of two orders of magnitude over the best known existing CPU
implementation.

We described how a general programming framework for GPU’s; CUDA, could
be used in combination with the specific hardware properties of a (Nvidia) GPU,
such as fast shared memory and intelligent thread schedulers. Our implementa-
tion achieves a performance around 880 000 password hashes per second, whereas
an equally priced CPU only achieves a performance around 30 000 password
hashes per second. With this performance increase, ‘complex’ passwords with a
length of 8 characters are now becoming feasible to crack. Moreover, we showed
that between 50 % and 80 % of the passwords in a leaked database could be re-
covered within 2 months of computation time on one Nvidia GeForce 295 GTX.
To help an organisation assess its risks related to the password policy, we pro-
posed a model that, given the value of the protected assets, the performance
of a specific hardware platform, the password policy imposed and the password
expiration period, will estimate the probability of a succesfull exhaustive search
attack on a password hahing scheme. To decrease the probability of success for
such an attack, the complexity of prevalent password hashing schemes should be
increased by at least four orders of magnitude.

In addition to the existing attacks on password hashing schemes, we identi-
fied a theoretical attack that is based on a strong collision attack on the under-
lying hash function (see Chapter 4.5). Therefore, one extra property should be
defined for password hashing schemes that use the key-stretching technique to
‘strengthen’ the password. Based on the collision attacks, those schemes should
hash the salt, password and result of last round in a pseudo random way for every
iteration in the key-stretching phase. While the collision resistance property of
the MD5 hash function has been broken, password hashing schemes based on this
function, according to our findings, can still be used securely. However, the use
of new hash functions, such as SHA-3, should be considered in the near future.

9.2. Discussion

0.2 Discussion

Since password hashing schemes rely on cryptographic hash functions, it makes
it hard to find the pre-image of a given password hash. However, most hash
functions are built to execute in a very fast way, making them suitable for cal-
culating hashes of large input domains. It is exactly this property that makes
password hashing schemes vulnerable to exhaustive search attacks. For normal
cryptographic functions that are based on keys (like AES) this is not a problem
since the search space is of order 2" where n is typically larger than 128. How-
ever, password hashing schemes take the user-chosen password as a ‘key’, which
leads to a much smaller search space (order 2", where n is smaller than 64). To
seize this problem, we considered three countermeasures:

e Either increase the complexity of the underlying cryptographic hash func-
tion or increase the number of iterations in the key-stretching technique,
which both increase the complexity of the password hashing scheme linearly.

e Increase the entropy in user-chosen passwords exponentially, e.g. by imple-
menting a password policy in the password hashing scheme that decides if
the password matches a predefined entropy level.

e Focus on two-factor or other authentication mechanisms, such as zero-
knowledge password proofs[7].

The first countermeasure only temporarily solves the problem since, according
to Moore’s law[46], hardware speed increases linearly too. Their should be a
trade-off between the usability and security, as there exists a paradox that au-
thentication needs to be fast but exhaustive searches need to be slow. Moreover,
every time the number of iterations or hash function is updated, the new scheme
is not backward compatible with the old passwords.

The second countermeasure seems more promising, since imposing a password
policy does make users choose stronger passwords. However, because it is shown
that users can not remember long passwords, they will either write them down
or use their password for multiple services, which both defeat security to some
extent.

The third countermeasure seems to be the most promising, but shifting in
this direction requires willingness from the users and service providers in both a
technical and economical way.

To put everything in perspective, passwords are only one way to ensure some
level of security. If an adversary really wants a user’s password, it is pretty certain
that he can and will get it at some level of effort. Therefore, password hashing
schemes only play the role of making some other, more illegal, way the easiest
one.

93

9.

CONCLUSIONS AND FUTURE WORK

94

9.3 Future work

This research mainly focused on the optimization of launching an exhaustive
search attack on one password hashing scheme with Nvidia GPU’s and the CUDA
framework. As future work, it would be interesting to implement and optimize
other password hashing schemes, such as SHA-crypt, berypt, Windows NTLM
and Oracle’s proprietary scheme. In addition, it would be valuable to see how
Nvidia GPU’s perform compared to chip sets and frameworks by other manufac-
turers (e.g. ATI cards that use the FireStream framework).

Our current implementation is scalable over multiple GPU’s, but every GPU
gets an equal share of the search space, while not every GPU has the same
specifications. A load balancer for GPU’s in a distributed environment is some-
thing worth looking at. In addition, it would be interesting to explore how the
computing power of multiple GPU’s could be addressed in a larger distributed
environment, with frameworks such as BOINCI[5]. Moreover, we think that this
is one step towards the goal to solve complex problems in heterogeneous environ-
ments, consisting of a mix of CPU’s, GPU’s, mobile devices and other hardware
platforms. This phenomenon is called Jungle Computing [61]. While OpenCL
already provides something like a framework for this purpose, it is still a very
young research field [76].

This research has focused on password hashing schemes and attacks to their
security properties. While we have shown that exhaustive searches for most pass-
word keyspaces are possible, it would be interesting to see if other properties can
be attacked. An example of such an attack is to use the break of the collision
resistant property of MDb5 to exploit the MD5-crypt scheme, given that the ad-
versary has full control over the salt and that the salt may be arbitrary in length.

Another way to optimize implementations of cryptographic applications on
GPU’s is the bit slicing technique. If future graphic cards support higher register
sizes, bitsliced implementations would become an option, which could increase
the performance of GPU’s.

Finally, as mentioned in the discussion section, it would be interesting to do
a feasibility study to see whether contemporary authentication systems can be
improved to manage two-factor authentication. Moreover, other studies should
investigate whether or not users and service providers are willing to change their
mentality regarding authentication, such that authentication does not depend
on a username/password combination anymore. Identity service providers use
highly qualified authentication mechanisms. An example of such a provider is
the Dutch Digidentity', which provides authentication mechanisms for services
based on verified and uniform digital identities.

'See: http://www.digidentity.eu/

http://www.digidentity.eu/

Bibliography

[10]

Compute Unified Device Architecture Programming Guide. Technical report, Nvidia
Corporation, August 2010. [cited at p. 36, 40, 41, 44, 45, 46, 48, 58, 63, 66, 71, 75, 108, 112]

CUDA Best practices guide. Technical report, Nvidia Corporation, August 2010.
[cited at p. 63, T5]

M. Abadi, T. M. A. Lomas, and R. Needham. Strengthening passwords. SRC
Technical Note, 33, 1997. [cited at p. 29

G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-
puter conference, pages 483—-485. ACM, 1967. [cited at p. 65]

D. P. Anderson. BOINC: A system for public-resource computing and storage.
In proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
pages 4-10. IEEE Computer Society, 2004. [cited at p. 94]

M. Bellare and T. Kohno. Hash function balance and its impact on birthday at-
tacks. In Advances in Cryptology-Eurocrypt 2004, pages 401-418. Springer, 2004.
[cited at p. 9]

S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secureagainst dictionary attacks. Proceedings of the IEEE symposium on Security
and Privacy, 1992. [cited at p. 93]

D. Bernstein, H. C. Chen, C. M. Cheng, T. Lange, R. Niederhagen, P. Schwabe, and
B. Y. Yang. ECC2K-130 on NVIDIA GPUs. Progress in Cryptology-INDOCRYPT
2010, pages 328-346, 2010. [cited at p. 3, 85]

D. J. Bernstein, H. C. Chen, M. S. Chen, C. M. Cheng, C. H. Hsiao, T. Lange, Z. C.
Lin, and B. Y. Yang. The billion-mulmod-per-second PC. SHARCS Workshop,
2009. [cited at p. 3, 35, 85]

D. J. Bernstein, T. R. Chen, C. M. Cheng, T. Lange, and B. Y. Yang. ECM on
graphics cards. Advances in Cryptology-EUROCRYPT 2009, 28, 2009. [cited at p. 3,
35)

95

BIBLIOGRAPHY

96

[11]

E. Biham. A fast new DES implementation in software. In Fast Software Encryp-
tion: 4th International Workshop, FSE’97, Haifa, Israel, January 1997. Proceed-
ings. Springer, January 1997. [cited at p. 11]

J. W. Bos, D. A. Osvik, and D. Stefan. Fast Implementations of AES on Various
Platforms. Technical report, Cryptology ePrint Archive, Report 2009/501, Novem-
ber 2009. http://eprint. iacr. org, 2009. [cited at p. 3, 85]

W. E. Burr, D. F. Dodson, and W. T. Polk. Electronic authentication guideline.
NIST Special Publication, 800:63, 2004. [cited at p. 27]

L. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P. McDaniel, and T. Jaeger.
Password exhaustion: predicting the end of password usefulness. Information Sys-
tems Security, pages 37-55, 2006. [cited at p. 8]

D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret
key cryptography using graphics cards. Topics in Cryptology—CT-RSA 2005, pages
334-350, 2005. [cited at p. 2|

T. M. Cover, J. A. Thomas, and J. Wiley. Elements of information theory, volume 1.
Wiley Online Library, 1991. [cited at p. 26]

I. Damgard. A design principle for hash functions. Advances in Cryptology,
CRYPTO089:416-427, 1990. [cited at p. 16]

B. Den Boer and A. Bosselaers. Collisions for the compression function of MD5. In
Advances in CryptologyFEurocrypt93, pages 293-304. Springer, 1994. [cited at p. 52]

S. Designer. John the Ripper password cracker, January 2011. [cited at p. 11, 84]

A. Di Biagio, A. Barenghi, G. Agosta, and G. Pelosi. Design of a parallel AES for
graphics hardware using the CUDA framework. In Parallel & Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pages 1-8. IEEE, 20009.
[cited at p. 3]

Ulrich Drepper. Unix crypt using SHA-256 and SHA-512. Technical report, Akkadia,
2008. [cited at p. 5]

A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA implementation and
performance evaluation of the AES block cipher candidate algorithm finalists. In
The Third AES Candidate Conference, printed by the National Institute of Standards
and Technology, Gaithersburg, MD, pages 13-27. Citeseer, 2000. [cited at p. 12]

M. J. Flynn. Some computer organizations and their effectiveness. Computers,
IEEFE Transactions on, 100(9):948-960, 2009. [cited at p. 37]

1. Foster. Designing and building parallel programs: concepts and tools for parallel
software engineering. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA, 1995. [cited at p. 53]

M. Garland and D. B. Kirk. Understanding throughput-oriented architectures. Com-
munications of the ACM, 53(11):58-66, 2010. [cited at p. 37]

Bibliography

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

C. M. Grinstead and J. L. Snell. Introduction to probability. Amer Mathematical
Society, 1997. [cited at p. 9, 50]

J. A. Halderman, B. Waters, and E. W. Felten. A convenient method for securely
managing passwords. Proceedings of the ACM, 14th international conference on
World Wide Web:471-479, 2005. [cited at p. 27]

O. Harrison and J. Waldron. AES encryption implementation and analysis on com-
modity graphics processing units. Cryptographic Hardware and Embedded Systems-
CHES 2007, pages 209-226, 2007. [cited at p. 3, 85]

O. Harrison and J. Waldron. Practical symmetric key cryptography on modern
graphics hardware. In Proceedings of the 17th conference on Security symposium,
pages 195-209. USENIX Association, 2008. [cited at p. 3, 85]

Owen Harrison and John Waldron. Efficient acceleration of asymmetric cryptogra-
phy on graphics hardware. In Preneel [53], pages 350-367. [cited at p. 3, 85]

M. Hellman. A cryptanalytic time-memory trade-off. Information Theory, IEEE
Transactions on, 26(4):401-406, 2002. [cited at p. 10]

G. Hu, J. Ma, and B. Huang. High Throughput Implementation of MD5 Algo-
rithm on GPU. In Ubiquitous Information Technologies & Applications, 2009.
ICUT’09. Proceedings of the 4th International Conference on, pages 1-5. IEEE,
2010. [cited at p. 3]

Emilia Kéasper and Peter Schwabe. Faster and timing-attack resistant AES-
GCM. In Cryptographic Hardware and Embedded Systems — CHES 2009, volume
5747 of Lecture Notes in Computer Science, pages 1-17. Springer, 2009. Doc-
ument ID: cc3a43763e7c¢5016ddc9cfd5d06{8218, http://eprint.iacr.org/2009/
129. [cited at p. 11]

J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange
using human-memorable passwords. Advances in CryptologyEurocrypt 2001, pages
475-494, 2001. [cited at p. 27]

G. Kedem and Y. Ishihara. Brute force attack on UNIX passwords with SIMD
computer. In Proceedings of the 8th conference on USENIX Security Symposium-
Volume 8, page 8. USENIX Association, 1999. [cited at p. 11]

J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure applications of low-entropy
keys. Information Security, pages 121-134, 1998. [cited at p. 30, 33]

D. E. Knuth. The art of computer programming, Vol. 3, 1973. [cited at p. 14]

K. Kothapalli, R. Mukherjee, MS Rehman, S. Patidar, PJ Narayanan, and K. Sri-
nathan. A performance prediction model for the cuda gpgpu platform. In High
Performance Computing (HiPC), 2009 International Conference on, pages 463-472.
IEEE, 2010. [cited at p. 56, 75]

G. Leurent. Message freedom in MD4 and MD5 collisions: Application to APOP.
In Fast Software Encryption, pages 309-328. Springer, 2007. [cited at p. 52]

97

http://eprint.iacr.org/2009/129
http://eprint.iacr.org/2009/129

BIBLIOGRAPHY

98

[40]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

C. Li, H. Wu, S. Chen, X. Li, and D. Guo. Efficient implementation for MD5-RC4
encryption using GPU with CUDA. In Anti-counterfeiting, Security, and Identifica-
tion in Communication, 2009. ASID 2009. 3rd International Conference on, pages
167-170. IEEE, 2009. [cited at p. 3]

S. A. Manavski. CUDA compatible GPU as an efficient hardware accelerator for
AES cryptography. In Signal Processing and Communications, 2007. ICSPC 2007.
IEEFE International Conference on, pages 65—68. IEEE, 2008. [cited at p. 3, 85]

U. Manber. A simple scheme to make passwords based on one-way functions much
harder to crack. Computers & Security, 15(2):171-176, 1996. [cited at p. 29]

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography. CRC, 1997. [cited at p. 8, 14, 15]

N. Mentens, L. Batina, I. Verbauwhede, and Bart Preneel. Time-Memory Trade-Off
Attack on FPGA Platforms: UNIX Password Cracking. Reconfigurable Computing:
Architectures and Applications, pages 323-334, 2006. [cited at p. 10, 12, 28]

R. Merkle. A certified digital signature. In Advances in CryptologyCRYPTO89
Proceedings, pages 218-238. Springer, 1990. [cited at p. 16]

G. E. Moore et al. Cramming more components onto integrated circuits. Proceedings
of the IEEFE, 86(1):82—-85, 1998. [cited at p. 93]

R. Morris and K. Thompson. Password security: A case history. Communications
of the ACM, 22(11):594-597, 1979. [cited at p. 27]

R. Mukherjee, M. S. Rehman, K. Kothapalli, PJ Narayanan, and K. Srinathan. Pre-
senting new Speed records and constant time encryption on the GPU. [cited at p. 3]

J. S. Norris and P. H. Kamp. Mission-critical development with open source software:
Lessons learned. Ieee Software, pages 42—49, 2004. [cited at p. 52]

P. Oechslin. Making a faster cryptanalytic time-memory trade-off. Advances in
Cryptology-CRYPTO 2003, pages 617-630, 2003. [cited at p. 10, 28]

L. O’Gorman. Comparing passwords, tokens, and biometrics for user authentication.
Proceedings of the IEEE, 91(12):2021-2040, 2005. [cited at p. 25]

B. Pinkas and T. Sander. Securing passwords against dictionary attacks. Proceedings
of the 9th ACM Conference on Computer and Communications Security, pages 161
170, 2002. [cited at p. 21]

Bart Preneel, editor. Progress in Cryptology - AFRICACRYPT 2009, Second In-
ternational Conference on Cryptology in Africa, Gammarth, Tunisia, June 21-25,
2009. Proceedings, volume 5580 of Lecture Notes in Computer Science. Springer,
2009. [cited at p. 97]

Bart Preneel. Perspectives on lightweight cryptography. Inscrypt 2010, October
2010. [cited at p. 8]

N. Provos and D. Mazieres. A future-adaptable password scheme. In Proceedings of
the Annual USENIX Technical Conference. Citeseer, 1999. [cited at p. 29, 33]

Bibliography

[56] R. Rivest. RFC1321: The MD5 message-digest algorithm. RFC Editor United
States, 1992. [cited at p. 16, 18, 19]

[57] S. Ryoo, C.I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In Proceedings of the 18th ACM SIGPLAN Symposium on Prin-
ciples and practice of parallel programming, pages 73—-82. ACM, 2008. [cited at p. 75]

[58] Y. Sasaki and K. Aoki. Finding preimages in full MD5 faster than exhaustive search.
Advances in Cryptology-EUROCRYPT 2009, pages 134-152, 2009. [cited at p. 52]

[59] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro. Security of md5 challenge and
response: Extension of apop password recovery attack. In Proceedings of the 2008
The Cryptopgraphers’ Track at the RSA conference on Topics in cryptology, pages
1-18. Springer-Verlag, 2008. [cited at p. 52]

[60] B. Schneier. Applied cryptography: protocols, algorithms, and source code in C.
Albazaar, 2007. [cited at p. 9]

[61] F. J. Seinstra, J. Maassen, R. V. Nieuwpoort, N. Drost, T. Kessel, B. Werkhoven,
J. Urbani, C. Jacobs, T. Kielmann, and H. E. Bal. Jungle Computing: Distributed
Supercomputing beyond Clusters, Grids, and Clouds. Grids, Clouds and Virtual-
ization, pages 167-197, 2011. [cited at p. 94]

[62] C. E. Shannon. Prediction and entropy of printed English. Bell System Technical
Journal, 30(1):50-64, 1951. [cited at p. 27]

[63] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3-55, 2001. [cited at p. 26]

[64] N. Smart. ECRYPT II yearly report on algorithms and keysizes (2009-2010). Tech-
nical report, Technical report, ECRYPT, 2010, 2010. [cited at p. 8]

[65] M. Stevens. On Collisions for MD5. Master’s thesis, Eindhoven University of Tech-
nology, June 2007. [cited at p. 19]

[66] M. Stevens, A. Lenstra, and B. De Weger. Chosen-prefix collisions for MD5
and colliding X. 509 certificates for different identities. Advances in Cryptology-
EUROCRYPT 2007, pages 1-22, 2007. [cited at p. 12, 32]

[67] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D. Osvik, and
B. De Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue CA
certificate. Advances in Cryptology-CRYPTO 2009, pages 55-69, 2009. [cited at p. 3,
12]

[68] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobbs Journal, 30(3):202-210, 2005. [cited at p. 37]

[69] R. Szerwinski and T. Giineysu. Exploiting the power of GPUs for asymmetric
cryptography. Cryptographic Hardware and Embedded Systems—CHES 2008, pages
79-99, 2008. [cited at p. 3, 35, 85]

99

BIBLIOGRAPHY

100

[70]

[72]

[73]

[74]

C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for
general-purpose computing: A framework and analysis. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, pages 306-317.
IEEE Computer Society Press, 2002. [cited at p. 2]

E. Verheul. Selecting secure passwords. Topics in Cryptology—CT-RSA 2007, pages
49-66, 2006. [cited at p. 23]

X. Wang and H. Yu. How to break MD5 and other hash functions. Advances in
Cryptology—-EUROCRYPT 2005, pages 19-35, 2005. [cited at p. 3]

T. Xie and D. Feng. How To Find Weak Input Differences For MD5 Collision
Attacks. 2010. [cited at p. 10]

T. Xie and Dengguo Feng. Construct md5 collisions using just a single block of
message. Cryptology ePrint Archive, Report 2010/643, 2010. http://eprint.
iacr.org/. [cited at p. 10]

J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability and se-
curity: Empirical results. Security & Privacy, IEEE, 2(5):25-31, 2004. [cited at p. 25,
29]

C. T. Yang, C. L. Huang, and C. F. Lin. Hybrid CUDA, OpenMP, and MPI parallel
programming on multicore GPU clusters. Computer Physics Communications, 2010.
[cited at p. 94]

J. Yang and J. Goodman. Symmetric key cryptography on modern graphics hard-
ware. Advances in Cryptology—ASIACRYPT 2007, pages 249-264, 2008. [cited at p. 2,
35

M. Zviran and W. J. Haga. Password security: an empirical study. Journal of
Management Information Systems, 15(4):185, 1999. [cited at p. 27]

http://eprint.iacr.org/
http://eprint.iacr.org/

Appendices

101

Appendix A

Appendix A

A.1 Specifications test machine

CPU Intel Core i7 920 (s1366,2.66GHz)

Memory 6GB DDR3 1066MHz in triple channel mode
Motherboard ASUS P6T7 WS SuperComp (place for four GPU’s)
Harddisk 3x 500GB S-ATAII

GPU Nvidia GeForce GTX 295 (2x) and GeForce 9800 GT (1x)
Power supply 1500 watt

Operating System Microsoft Windows server 2008 x64

A.1.1 Specifications Intel Core i7 920

The Intel Core i7 920 processor we used for this research has the following spec-
ifications.

CPU Essentials:

Number of cores 4
Number of Threads 8
Clock Speed (MHz) 2670
Max Turbo Frequency (MHz) 2930
Smart Cache (MB) 8
Instruction Set 64-bit
Instruction Set Extensions SSE4.2

103

A. APPENDIX A

104

CPU Memory specs.:
Max Memory Size (GB)
Memory Types

Number of Memory Channels

Max Memory Bandwidth (GB/s)

24
DDR3-800/1066
3

25.6

A.1.2 Specifications Nvidia GeForce GTX 295

The Nvidia GeForce GTX 295 cards we used for this research have the following

specifications.

GPU Engine Specs:
Processor Cores

Graphics Clock (MHz)
Processor Clock (MHz)
Texture Fill Rate (billion/sec)

Memory Specs:

Memory Clock (MHz)
Standard Memory Config
Memory Interface Width
Memory Bandwidth (GB/sec)

480 (240 x 2)
576

1242

92.2

999
1792MB (896MB x 2) GDDR3
896-bit (448-bit x 2)

223.8

The Nvidia GeForce 9800 GT card we used for this research has the following

specifications.

GPU Engine Specs:
Processor Cores

Graphics Clock (MHz)
Processor Clock (MHz)
Texture Fill Rate (billion/sec)

Memory Specs:

Memory Clock (MHz)
Standard Memory Config
Memory Interface Width
Memory Bandwidth (GB/sec)

112
600
1500
33.6

900
512MB GDDR3
256-bit (448-bit x 2)
57.6

A.2. Code overview

A.2 Code overview

All the code produced in this research can be found at http://www.martijnsprengers.
eu/phKrack/. The following implementations are available:

e GPUCrypt. This is the main algorithm that uses the power of CUDA
enabled GPU’s to launch an exhaustive search on a MD5-crypt target hash,
given a salt, maximum password length, base character set and GPU specific
configuration parameters.

e CPUCrypt. This is the same algorithm as GPUcrypt, but now adapted to
be used on a typical multiprocessor CPU. The parallelization is achieved
with the OpenMP library (http://www.openmp.org).

A.2.1 Password generation algorithm

In both the implementations, we used the following algorithm to generate a unique
candidate password based on a unique thread number. The generation is based
on the base charset, password length and the startpoint, which determines the
part of the search space the current GPU should traverse.

char* generatePassword(int threadID, char #*charset, int charsetLength,
int passwordLength, int startpoint){

//Store the input

char input[passwordLength] ;

char buffer[passwordLength];
memset (buffer,0,passwordLength) ;

int base = charsetlLength;
//startpoint determines share of the search space
int n = threadID+startpoint;
int index=0;
doq{
buffer[index] = nYbase;
n /= base;
index++;
b
while (n>0);

for(int i=0; i < passwordLength; i++)
input[i] = charset[buffer[i]];

//Set null byte

105

http://www.martijnsprengers.eu/phKrack/
http://www.martijnsprengers.eu/phKrack/
http://www.openmp.org

A. APPENDIX A

input [passwordLength] = ’\0’;

return input;

¥

106

List of Symbols
and Abbreviations

Abbreviation Description Definition
AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

BSD Berkeley Software Distribution

CBC Cipher-Block Chaining

CFB Cipher Feedback mode

CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DES Data Encryption Standard

ECC Elliptic Curve Cryptography

FLOP Floating point operations per second
FPGA Field-programmable Gate Array
GPU Graphics Processing Unit

1PS Instructions per second

MD5 Message-Digest Algorithm 5

NIST National Institute of Standards and Technology
OpenCL Open Computing Language

PHS Password Hashing Scheme

RAM Random-Access Memory

RFC Request For Comments

RSA Rivest, Shamir and Adleman

SHA Secure Hash Algorithm

SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Threads

107

List of Figures

3.1

4.1

5.1
5.2
5.3

5.4
5.5

6.1
6.2

7.1
7.2

7.3

8.1

8.2

8.3

8.4

Overview of the Merkle-Damgard contruction. 17
An black box overview of the UNIX password hashing scheme crypt(). 22

Overview of a typical CPU and GPU. Due to its design, the GPU is

specialized for intensive, highly parallel computation [1]. 36
Theoretical computing power of recent hardware [1]. 40
The CUDA execution model [1]. 44
An example of a kernel configuration [1].. 45
Overview of the CUDA memory model [1]. 46
Schematic overview of MD5-crypt. L Lo 51
Performances achieved for MDb5-crypt on a Nvidia GTX295, calcu-

lated by the practical based model. oL 58
Example of Amdahl’s law for a 240 core multiprocessor. 65
General influence of number of threads per block on the occupancy of

a device with compute capability 1.3.. 74
Maximum achieved occupancy for our implementation ran on a device

with compute capability 1.3. 76

Performance increase per optimization, executed on one Nvidia GeForce
GTX 295, . . . 82
Influence of the number threads per block on the performance of our

most optimal implementation, executed on one Nvidia GeForce GTX

205, e e e e 83
Performance of our implementation compared against the theoretic
models. The SUM and MAX model displayed in the graph assume

that all variables can be placed in the shared memory. 84
Performance comparison of different implementations on different ar-
chitectures. 85

List of Figures

8.5

8.6

Crack times for real world datasets on one Nvidia GTX 295 with a
performance of 880000 hashes per second. 87
Probability of a successful exhaustive search attack for some lengths
in the most complex password class. 89

109

List of Algorithms

1 MD5-crypt pseudo code, Context 1.
2 MD5-crypt pseudo code, Context 2.
3 MDb5-crypt pseudo code, main loop.

111

List of Tables

2.1

4.1

4.2

5.1

5.2

6.1
6.2

7.1

8.1
8.2
8.3

Duration of exhaustive search attacks on key sizes, in bit length, for
specific cryptographic applications. (Assumptions: no quantum com-

puters; no breakthroughs; limited budget)

Schemes shown in this table are built around the hash function they

are named after. L
Characteristics of real world password datasets.

Throughput of native arithmetic instructions (operations per clock

cycle per multiprocessor)[1].o o o oo

Features of Nvidia’s GPU device memory (with compute capability

Instruction count of the elementary MD5 functions.
Performance comparison between different architectures.

Effects of stride on the number of warp serializes.

Speed up GPU over CPU for different cryptographic applications.

Characteristics of real world password datasets.

Exhaustive search times of some password lengths on one GTX 295

with a performance of 880 000 hashes per second.

112

	Contents
	1 Introduction
	1.1 Introduction
	1.2 Related work
	1.3 Scope and contributions
	1.4 Research methodology
	1.5 Relevance
	1.6 External validity
	1.7 Outline

	2 Attacking cryptographic systems
	2.1 Generic attacks
	2.1.1 Exhaustive search attack
	2.1.2 Birthday attack
	2.1.3 Time-memory trade-off attack

	2.2 Performance enhancements
	2.2.1 Bit slicing
	2.2.2 Special purpose hardware

	3 Hash functions
	3.1 Introduction to hash functions and their cryptographic properties
	3.2 The MD5 hash function
	3.2.1 Merkle-Damgard hash functions
	3.2.2 Notation
	3.2.3 MD5 algorithm description
	3.2.4 The MD5 compression function

	4 Password hashing schemes
	4.1 Introduction to password hashing schemes
	4.2 The need for password hashing schemes
	4.3 Attack strategies
	4.4 Properties of a good password hashing scheme
	4.4.1 Key-stretching

	4.5 Attacker models for hash functions and password hashing schemes
	4.5.1 Attacks to the key-stretching technique

	5 Outline of the GPU hardware
	5.1 Hardware outline
	5.1.1 Comparing GPU and CPU design properties
	5.1.2 Speed comparison between CPU and GPU

	5.2 GPU application programming interfaces
	5.3 The CUDA programming model
	5.3.1 Compiler model
	5.3.2 Execution model
	5.3.3 Memory Outline

	6 Cracking MD5-crypt with GPU hardware
	6.1 Considerations
	6.2 Design of MD5-crypt
	6.3 Enabling exhaustive search attacks on GPU's
	6.3.1 Parallelization of MD5-crypt
	6.3.2 Algorithm optimizations

	6.4 Theoretical analysis of the maximum performance
	6.4.1 Simple arithmetic model
	6.4.2 Performance prediction model

	7 Optimization of our implementation on a CUDA enabled GPU
	7.1 Implementation details
	7.2 Optimizations
	7.2.1 Maximizing parallelization
	7.2.2 Memory Optimizations
	7.2.3 Execution Configuration Optimizations
	7.2.4 Instruction Optimizations
	7.2.5 Control Flow Optimizations

	8 Experimental evaluation
	8.1 Experiment setup
	8.1.1 Performance metric
	8.1.2 Available hardware

	8.2 Optimizations effects
	8.2.1 Algorithm optimizations
	8.2.2 Configuration optimizations
	8.2.3 Comparison of theoretical limitations versus practical limitations

	8.3 Comparison with other implementations and hardware
	8.3.1 Comparison against CPU implementations
	8.3.2 Comparison against other cryptographic implementations

	8.4 Consequences for practical use of password hashing schemes

	9 Conclusions and future work
	9.1 Conclusions
	9.2 Discussion
	9.3 Future work

	Bibliography
	A Appendix A
	A.1 Specifications test machine
	A.1.1 Specifications Intel Core i7 920
	A.1.2 Specifications Nvidia GeForce GTX 295

	A.2 Code overview
	A.2.1 Password generation algorithm

	List of Symbols and Abbreviations
	List of Figures
	List of Algorithms
	List of Tables

