RAM: Rapid Alignment Method

%

algoiltli""“’ ez

T ired¥Eiy arodt @Gy | B °"§f338,jmﬁﬂm
traCESpomtsalmmm, & Bacoay T e
mmblweuﬂ uﬁeﬁ, t{eadnsform posims
res'a.lts number race im t’;‘; si mmﬁ al"‘“i‘ l%are:“lam

text EE possible m..u l a9
FEsWave et ciershct -

'ﬁPOIS fi I E
H gure m 3 @
standard B U o le = .E ; E =All Ement npn WA=

B om —l 1 encryption mﬁtﬂh

ultiple ﬂ detmnr§
™ O a: filter chapter "

n 5.
bit step EEEE W peak 3 Fourier result
-]

by Ruben Muijrers
supervised by Jasper van Woudenberg and Lejla Batina

Thesis 561

June 17, 2011

Differential Power Analysis is a widely used side channel attack that uses leakage in
the power signal of a device to extract its key. It requires a large number of power signal
measurements of the device while it is encrypting known plaintexts and uses statistics to
analyze them.

For this attack to work it is important that power traces are aligned in the time domain.
If this is not the case the number of traces required to successfully perform the attack
increases with several orders of magnitude. One of the countermeasures against this type
of attack is based on this requirement. By using an unstable clock or introducing dummy
operations the measurements are misaligned.

We propose an algorithm to align these measurements based on the ideas of SIFT
and U-SURF which are algorithms used for object recognition in images. The proposed
algorithm consists of four main components: A detector to detect points of interest;
A descriptor to generate a feature vector for those points; A matcher to match points
between traces using the feature vector; And a warper that aligns the trace on these points
and interpolates in between. Each of the components can easily be replaced resulting in
an easy to use framework for new alignment algorithms.

We conclude that the proposed algorithm outperforms Static Alignment and SW-DPA
and that performs similar to Elastic Alignment but is over 50 times faster.

Acknowledgments

Here I'd like to thank a few people who also contributed to this thesis in one way or an-
other. On the top of my list are my supervisors Lejla Batina and Jasper van Woudenberg.
Their guidance and patience was a great help getting this thesis done. Their help was
especially appreciated during the last week when e-mail communication with comments,
questions and suggestions intensified to several e-mails a day. Also I'd like to thank Jing
Pan for filling in for Jasper when he was not available.

I’d like to thank Riscure B.V. for providing the knowledge, software and hardware
needed for this thesis. Additionally I'd like to thank Riscure for providing lunch each
time I dropped by, these were the most extensive lunches I’ve seen so far in a company
(keep it up!). Also I'd like to thank the employees of Riscure for making my weekly trip
to Delft (which took 3 hours one way) a rewarding one. I'd like to thank them for all the
funny and interesting discussions during lunchtime.

Furthermore I’d like to thank a couple of my fellow students, namely Albert Gerritsen,
Allan van Hulst, Jan de Muijnck-Hughes and Jelle Schuhmacher (not related to the
famous racer). They encouraged me and were of great help when I got stuck. I'm also
grateful for the daily discussions in the coffee breaks. Although most of these discussions
did not make too much sense these were always a welcome intermezzo.

Finally I'd like to thank my girlfriend, Linda, for being very supportive during the
writing of this thesis. Also I'd like to thank her for being one of the very few who are
able to getting me to work whenever I run out of motivation.

Contents

[List of Figures|

[List of Algorithms|

[List of Tables
Cist of Abbreviafions

(1 _Introduction

2 CPA and Alignment]
2.1 Power Analysis|

[2.2.1 Maskingl
222 Hiding|

[3 Dealing with time shifted traces|
[3.1 Sliding window DPA|o o
[3.2 Static Alignment|o
3.3 Elastic Alignment|.

[4 Alignment with wavelets|

4.1 Fourier Transform|

0.1 Outhinel

6.3 Descriptor| e
16.3.1 The Fast Haar Descriptor|
[6.3.2 The Super Fast Haar Descriptor]

6.4 Matcherl

6.0 Warp

10

11

14
14
15
16
16

19
19
19
20

22
22
24
25

29
29
31

(7 Experiments|

7.2 Software and Settings|
(7.3 Tuning Results|
7.4 Speed Boosting Results|

[7.4.1 'The Fast Haar Descriptor|

[7.4.2 The Super Fast Haar Descriptor]

[7.4.3 Matching Heuristics| . . .
[7.4.4 Simplifications
[7.5 Comparison Results

8 Conclusion|

Bibliograp

45
45
47
50
53
93
54
95
56
o7

59
99
60

62

List of Figures

[3.2.1 Static Alignment Example]o 0oL o 20
[3.3.1 The FastDTW process| 21
|4.1.1 A stationary signal and its Fourier Transtorm| 23
4.1.2 A non-stationary signal and its Fourier Iransform|. 23
14.2.1 STF'T" of the stationary and non-stationary signal| 25
4.3.1 Wavelet examples| oo 26
|4.3.2 Wavelet responses tor the non-stationary signal| 27
[4.3.3 Wavelet response of a power trace|. 28
5.2.1 Box filter used in SURFE| 31
[6.2.1 Filtered wavelet responses for a power trace] 35
6.3.1 A POI and its sections in a power trace| 38
[6.4.1 Cross matching example| 41
[7.0.1 The measurement setup| 46
[[.2.1 A trace from the test datasetl, 48
[7.3.1 The tuning results| 52
[7.3.2 T'he performance ot the tuned version| 53
[7.4.1 Results of the Fast Haar Descriptor|. 594
[7.4.2 Results of the Super Fast Haar Descriptor] 55
[7.4.3 Simplification results| oo oo o6
[7.5.1 Comparison Results|, 58

List of Algorithms

6.1 'The main loop tor the proposed algorithm| 34
6.2 Calculates the convolution of the Mexican hat block wavelet/ 37
6.3 'T'he main procedure for the Detector. | 37
6.4 'The main procedure for the Descriptor| 39
6.0 'T'he main procedure for the Super Fast Haar Descriptor| 40
6.6 The violator function|. oL 42
6.7 'The main procedure for the Matcher| 43
6.8 'The main procedure for the Warper|. 44

List of Tables

[7.1 Top 5 CPU intensive tunctions| 53
[7.2 Timing results for the various descriptors| 55
[7.3 T ming results for the simplification attempts| 57
7.4 Timing results for the various alignment methods. The time listed for |

SW-DPA is the additional time it took to perform the DPA attackl 57

List of Abbreviations

AES
CPA
DES
DPA
DTW
EA

FT

MHz
POI
RAM
RFID
SIFT
SNR
SPA
STEFT
SURF
SW-DPA
U-SURF
XOR

Advanced Encryption Standard
Correlation Power Analysis
Data Encryption Standard
Differential Power Analysis
Dynamic Time Warping
Elastic Alignment

Fourier Transform

Megahertz

Point Of Interest

Rapid Alignment Method
Radio Frequency Identification
Scale Invariant Feature Transform
Signal-to-Noise Ratio

Simple Power Analysis

Short Term Fourier Transform
Speeded Up Robust Features
Sliding Window DPA

Upright SURF

Exclusive OR

10

1 Introduction

Nowadays small electronic devices such as smart phones, PDAs and smart cards are
becoming increasingly popular. As a side effect of this trend more critical information
is stored in these devices and therefore it is crucial that they are secure. When smart
cards entered the consumer market they often had major cryptographic weaknesses in
encryption algorithms. Because of the constraints on memory and computing time engi-
neers were forced to develop there own encryption methods which were usually not nearly
as well tested as the known encryption algorithms for faster platforms such as personal
computers. This has changed now, due to more powerful smart cards using proven secure
algorithms.

A good example that this can backfire has been shown by Garcia et al. [10]. The
MIFARE classic RFID chip was developed by NXP Semiconductors (formerly Phillips
Semiconductors) and is in use for over a decade now. At the moment [10] was published
NXP claimed that they had sold over 1 billion MIFARE cards and there would be around
200 million MIFARE classic cards in use around the world. Due to the fact that the card
had such a successful history it was marketed as field-proven secure. However, at the time
the MIFARE classic chips came to the market there where no RFID readers available
for consumers. Those few who were able to look at the internals of the chip had to
sign a non-disclosure agreement. When eventually researchers were able to evaluate the
encryption algorithm used in the chip, they found a major flaw which exposed the keys
and thereby allowed full read and write access to the cards. Due to the many applications
this discovery had quite some impact and was covered by several media. NXP still sells
MIFARE classic systems but gives a warning when selling, also they no longer claim it
is field-proven secure.

Now the algorithms used in modern chips have become secure, attackers shift focus
to specific implementations. One of the new focus areas is the power consumption of
a device. About a decade ago Kocher et al. proposed a method that allowed attackers
to extract the secret key used for encryption operations from a small device such as a
smartcard [I2]. Since then many countermeasures been developed and ways to negate or
reduce these countermeasures as well.

Kocher’s proposed method, DPA (Differential Power Analysis), and many variants
depend on the assumption that during the encryption the time intervals between the start
of the encryption algorithm and each operation during the encryption remain constant
between multiple executions of the algorithm (with the same input). Meaning that if it
takes 1 millisecond for the algorithm to get to a certain point in the algorithm, it will
take 1 millisecond to get to that same point every time the algorithm is executed. In
standard algorithms this is usually the case. However by adding bogus operations at
random points in time or using an unstable clock it is possible to defend against DPA

11

attacks. This thesis proposes a method to negate this countermeasure. By finding easy
to recognize points in the power signal of a device and aligning those points the power
signal is altered so it is susceptible to a DPA attack again.

Other algorithms to do this are Static Alignment and Elastic Alignment. Although
Static Alignment can be used for this purpose it does not perform very well. This is
due to the fact that it can only handle differences in the starting point of the encryption
algorithm but not differences in the timing of the individual operations. By shifting
the recorded power signals in such a way that they align around the point of attack it
improves susceptibility to DPA attacks not substantially.

Elastic Alignment performs quite well. On the used trace set it was capable of raising
the chance of success from 0% to 95%. It works by aligning samples with each other
that have the highest correlation. It first does this with the minimal resolution of only
two samples. It then iteratively increases the resolution of the recorded power signal and
aligns again at each step until the full resolution is reached. Although this algorithm
performs well in a lot of cases it has the major drawback that it is slow. Although it has
a computational complexity of O(c-n) with n being the number of samples, the constant
factor c¢ is quite high. This causes alignment to take several days on large trace sets.

The proposed algorithm is designed to deal with the calculation time issues of Elastic
Alignment and it should execute much faster while still producing reasonable results. It
aims to bring down the calculation time from days to hours. The algorithm is inspired
by U-SURF [3] which, given a reference picture, is used to recognize pictures of the same
scene/object taking into account differences in angle and light. The proposed algorithm
uses several techniques used in U-SURF, among most notably the use of block wavelets
for detection and identifying of specific points in the recorded power signal. The main
advantage of block wavelets is that they can be applied in O(1) which makes the algorithm
very fast.

The question that this thesis attempts to answer is as follows:

Can we design an alignment algorithm that is fast and yet provides rea-
sonable results?

Where ’fast’ means that the computation of an typical trace set should complete in hours
as opposed to Elastic Alignment were it takes days. With 'reasonable’ is meant that the
resulting aligned traces should be usable to perform a DPA-style attack. To answer the
question ideas from the SIFT and U-SURF algorithms are used and adapted to fit this
application.

We translate the ideas of SIFT and U-SURF from the 2 dimensions (images) to one
dimension (power traces). Our one dimensional version needs to be a lot more robust
against noise since power traces contain a lot more noise than the images used for object
recognition. Finally we add a step to the algorithm that takes care of the actual alignment
of the traces.

This thesis is organized as follows. Chapter 2 describes the basics of side channel
attacks such as DPA and several countermeasures. Chapter 3 covers the algorithms cur-
rently available, Sliding Window DPA, Static Alignment and Elastic Alignment. Chapter

12

4 gives some background about signal processing and substantiate the choice for the use
of wavelets for this application. Chapter 5 covers the fundamentals of SIFT and U-SURF
on which the proposed algorithm is based. The proposed algorithm is described into de-
tail in Chapter 6 and Chapter 7 discusses the setup for our experiments. Last but not
least, in Chapter 8 the conclusion and further research is covered.

13

2 CPA and Alignment

2.1 Power Analysis

Attacking an electronic device by analyzing the algorithm mathematically is considered
attacking over the main channel. One tries to find a mathematical or logical flaw in
the algorithm (or protocol) and tries to exploit that. If this succeeds, every device that
implements the same algorithm is vulnerable to the same attack. There are other attacks
smart cards and small electronic devices have weaknesses against. Every computer chip
emits heat, sound and light during a calculation. Also the electromagnetic field and
the power consumption change during a calculation. Side channel analysis makes use of
the information that is exposed through these side products of the computation. The
data that is measured from such a side channel can be combined with a model that
gives the relation of the side channel leakage and the internal activity of the chip. With
an accurate enough model and an unprotected device it is possible to find out what the
device is computing. With side channel analysis the focus is not so much on the algorithm
itself but more on a specific implementation. If one succeeds in breaking the security
of a device through side channel analysis it does not mean that every other device that
uses the same algorithm is also vulnerable to this same attack. Different chips can have
different implementations of the same algorithm and can have different countermeasures
to prevent side analysis. The type of side channel attack that inspired this thesis is called
power analysis, which was invented by Kocher et al. a decade ago [12]. Power analysis
focuses on the power usage of a device and tries to map this to the internal calculations.

One of the most notable power analysis attacks is called Differential Power Analysis.
This works roughly as follows.

1. First the timing of the leakage is determined. This should be a position in the
algorithm where some bits of the key k are combined with a known non-constant
value v. This is normally a piece of the plaintext when attacking the beginning of
the encryption algorithm or a piece of the cyphertext when attacking at the end.
We denote the piece of the key and the known value combined as f(v, k).

2. Now we feed the device a large number of random plaintexts and let it encrypt
these. How many are necessary depends on the countermeasures present in the
device and the amount of power leakage and measurement noise. In practice the
number of plaintexts needed varies from thousands to millions.

3. For each of the possible values of k the bit f(v, k) is predicted. It is important
that the number of possible values of k is limited. For every possible value of &
the trace set is split into two groups. One, where the predicted bit f(v,k) is 0

14

and the other where the bit is 1. If the guess for & was correct the majority of
traces in each group group are traces where the actual bit matches the predicted
bit f(v,k) . If the guess for k was incorrect the traces are split randomly and the
two groups contain traces more or less 50% of traces where the actual bit matches
the predicted bit and 50% of the traces where the actual bit does not match the
predicted bit.

4. The traces from each group are averaged. Both the averaged traces are subtracted
from each other. Since the traces were split on the basis of the predicted value
of f(v,k) all sample points not representing this bit average to more or less the
same value in both of the groups. Subtracting those results in a value near 0. The
same happens for the sample point where f(v, k) is processed if k was wrong. If
k was right this sample point averages to power consumption value that is needed
to process the value of the predicted bit for each group. Subtracting these two
averages does not yield a value near 0. So ideally the result of these four steps is a
trace where every sample point is 0 and a clear peak (positive or negative) at the
position where f(v, k) was processed.

The above process is repeated for every key bit. The statistical test used to determine
the relationship between the hypothetical power consumption and the measured power
consumption is called a side channel distinguisher. A popular variant of DPA is- Corre-
lation Power Analysis (CPA)[3]. CPA does not use the difference in means as the side
channel distinguisher but uses Pearson correlation. It takes longer to compute but it
is more sensitive for the linear dependencies of power in data and thus provides better
results in general.

Simple Power Analysis (SPA) [12] requires the attacker to analyze the power signal
manually by finding patterns in the signal. This is, despite the name, far from simple
and requires quite some experience on the attacker side. However, typically only a few
traces are needed to perform SPA. Therefore it might be the only option to go with when
not many traces are available.

Since the DPA and CPA rely on respectively averaging and correlating traces, it is
important that the traces are aligned in the time domain. A specific calculation step
of the chip-under-attack should occur at the same position in the time domain for all
the measured traces. If this is not the case, combining the traces averages out the
measurements and lose the information stored in there. Some of the countermeasures
against DPA-style attacks are based on this principle and aim to create variances in the
time domain.

2.2 Countermeasures

There is a strong push from certification bodies such as Common Criteria and EMVco
on manufacturers to keep up with the latest techniques, while balancing these with their
economical constraints. They therefore implement a range of countermeasures to reduce
the possibilities of DPA-style attacks. The main goal of the countermeasures against

15

DPA or CPA is to minimize or hide the dependencies between the power consumption
and the intermediate values of the encryption algorithm used. Several countermeasures
have already been developed and successfully put in use against DPA or CPA attacks.
Although this research is focused on one specific way to counter one specific class of
countermeasures (time domain hiding, including random delays and unstable clocks) it
is important to know that this is only one of the few types of countermeasures. Most
countermeasures fall in one of two categories which are explained in the remainder of
this section.

2.2.1 Masking

With masking, one changes the encryption algorithm slightly so that the intermediate
values are randomized and do not correspond to the standard but the final result remains
the same. Because many attacks depend on the prediction of intermediate values this
is an effective way of preventing such attacks. A typical way to do masking for AES
(Advanced Encryption Standard) is to XOR all intermediate value with a certain mask.
This way at every point in the algorithm the intermediate values are different from
what is defined in the standard. Of course one has to make sure that the final result
is the same. Before the start of the encryption one picks a random value m, this is the
mask. Now the algorithm, including the S-boxes, are changed in such a way that every
intermediate result v is replaced by its masked variant v,, = v & m. At the end of the
encryption algorithm the mask is removed to get the correct result. Because now only
U 18 processed there is no dependency between v and the power usage as long as m
remains unknown to the attacker. To negate this countermeasure one can use second
order power attacks [12, [I5] which attack multiple points in the algorithm at the same
time and exploit the dependencies within the algorithm. Using more than one mask
increases the protection level but decreases the performance which can be unacceptable
given the timing constraints of the protocol used.

2.2.2 Hiding

The second category, hiding, is focused on decreasing the so-called signal-to-noise ratio
(SNR) [14] which is defined as follows:

Var(Pezp)

SNR =
Var(Pnoise)

Where Py, is the exploitable component of the power consumption and P4 is the noise
component. The lower the SNR is the more traces are needed to successfully perform
the side channel attack. Put simply: the more noise there is, the harder it is to get
something useful out of the signal. There are multiple ways of decreasing this ratio.

Amplitude related hiding
Possibly the most straightforward way to do this is to increase the noise. This is typically
done by adding a parallel calculation (hardware or software) or adding extra hardware

16

components that generate random noise. This principle shows one of the advantages of
a hardware implementation opposed to a software implementation. In hardware imple-
mentations, where the algorithm is implemented by linking logical gates, the algorithms
are executed much faster and often there exists some parallelism which introduces noise
as opposed to software implementations where a general purpose processor needs to ex-
ecute assembler code. When parts of the algorithm are executed in parallel the power
signal does not map to a single point in the computation anymore. Now the power signal
consists of the sum of multiple computations. This makes DPA-style attacks much more
difficult and increases the number of traces needed considerably.

One can of course also reduce the usable signal. By ensuring that every operation uses
the same amount of power it reduces the amount of leakage. An example of this is shown
below:

1: if b then
2 a=£f()
3: else

4 a=1

The problem with the above code is that calling a function typically (in line 2) uses more
power than assigning a constant (in line 4). This could show up in the power signal. To
solve this issue we introduce a dummy variable d which can be used in the following way:

1: if b then
2 d=1
3: a=f(Q
4: else

5 a=1

6 d =10

Now the branches of the if-statement do the same calculation except they assign the
results to a different address. They both use the same amount of power and are therefore
much harder to distinguish when looking at the power signal. A disadvantage of this type
of countermeasures is that adding bogus instructions usually comes with a significant
performance penalty.

There are several logic styles which aim to have a constant power usage throughout
the program and keep any information hidden from view. A few examples of such styles
are Sense Amplifier Based Logic [20], Wave Dynamic Differential Logic [21] and Dual-rail
Transition Logic [17].

Time related hiding

Another set of countermeasures in this category is based on making the computations
happen at a non-consistent time during the execution of the encryption algorithm. Al-
though this is not a distinct category, technically it falls under hiding, it is the most
important set of countermeasures for this thesis. To do this one can introduce dummy
instructions in the algorithm or process interrupts at randomized intervals. This causes

17

changes in the time dimension. Both DPA and CPA combine traces to enhance the
relation between the power trace and the computation in the device. When this counter-
measure is applied it becomes much harder to perform the attack successfully. Note that
it is still possible to perform the attack but the number of traces needed increases with
several orders of magnitude to average out the effects of the shifted time dimension. A
disadvantage is that there is a performance penalty due to the fact that the algorithm
contains dummy instructions and that the values for the randomized intervals need to
be computed.

Changes in the time dimension can also be achieved by using an unstable clock. This
causes operations to have a non-constant time, even if they are the same [14].

This thesis focuses on this last type of countermeasures. By aligning the traces we
reduce the changes in the time dimension so fewer traces are needed to successfully
attack the implementation. This is particular interesting due to the fact that modern
cards usually have an unstable clock, added noise and added dummy instructions as
countermeasures.

18

3 Dealing with time shifted traces

3.1 Sliding window DPA

This method was proposed by Clavier et al. in 2000 [7]. Sliding window DPA (or SW-
DPA) is specifically designed to counter random process interrupts (RPI). When RPT are
used as a countermeasure the position of the leakage that is exploited by DPA can shift
a few clock cycles. SW-DPA is based on this assumption, Clavier et al. describes it as
follows.

“Suppose the spike on the differential trace should be seen after n cycles. If
RPIs occurred, a spike appears after n 4+ C), cycles, where the delay C, =
Yo ¢, ¢ being the i-th cycle, with ¢; = 1 if an RPI occurred and ¢; = 0 if
not.”[7]

When traces are averaged during the DPA the resulting spike follows a Gaussian dis-
tribution. The top of this distribution is usually to low to be useful in a DPA attack.
Clavier et al. proposes to reconstruct this spike by averaging consecutive clock cycles.
This way, when looking at multiple traces, the spike information that was spread over
several clock cycles is now combined and put back in one place.

In practice this means that each clock cycle in a power trace is replaced by the average
of itself and a number of previous clock cycles. The two main parameters of this method
are the number of cycles to average (the window size) and the number of samples per
one clock cycle. The correct number of cycles to average depends on how many RPI
have occurred before the spike. If the number is way off, the samples that contain spike
information are averaged with other samples reducing the height of the spike again. There
is no way of exactly knowing how many RPI occur on average before the spike so several
values have to be tried. The number of samples per clock cycle depends on the settings
during acquisition of the power traces. This is known by the attacker.

In [22] it was shown that SW-DPA performs fairly well. However when an unstable
clock is used the performance drops drastically. This is not surprising since the algorithm
assumes a stable clock of which the frequency is set in parameters of the algorithm.

3.2 Static Alignment

This algorithm is proposed by Mangard et al. in 2007 [14]. The basic idea is as follows:
the attacker selects an fragment in the reference trace close to the area where the attack
takes place. Then the algorithm aims to find this same fragment in the other traces and
shifts the other trace so that the reference fragments are aligned. The attacker should pick

19

trace 0

40

35

[
B! *100

010 20 30 40 &0 60 70 B0 90 100 110 120 130 140 150 160 170 180 190 200 210 220 2390 240 250 260 270 280 290
i frace 1

100
010 20 30 40 &0 60 70 B0 90 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 280 260 270 280 290

Figure 3.2.1: Static Alignment example. The two unaligned traces have the fragments
selected that will be used for Static Align

a fragment with a unique pattern, since it reduces confusion of the algorithm. Although
this does not fully counter an unstable clock or random delays it often does reduce the
number of traces needed to successfully perform a DPA attack. This is due to the fact
that aligning at a certain point in a trace reduces the noise and thereby increases the
SNR around that point.

The Static Alignment implementation used for this thesis uses normalized cross-correlation
to identify the fragment where the traces should be aligned. The fragment with the high-
est cross-correlation with the reference fragment is selected as the point where to align.
Usually this fragment can be found near the position where the reference is found in the
reference trace to use this as heuristic the attacker can specify a maximum shift so the
algorithm only has to search within that window. If the best cross-correlation found is
below a threshold set by the attacker the entire trace is excluded from the result. In
figure [3-2.1] two traces can be seen. Trace 0 is the reference trace here where the attacker
selects a fragment for the algorithm to align on. Trace 1 is the only target trace here,
the selection here shows the same fragment as in the reference trace.

3.3 Elastic Alighment

Elastic Alignment by van Woudenberg et al. in 2011 [22] is conceptually more difficult
than Static Alignment. It aims to stretch and shrink the trace in such a way that the
time dimension is fully restored and the unstable clock and/or random delays are fully
negated. It does this by calculating the distance (absolute difference) between every
sample of the target trace with every sample in the target trace. This results in a matrix
T of size N - N. The goal is to find a path from the lower left corner (the start of
both traces) to the upper right corner (the end of both traces). This path is called the
warppath, it is used to warp the target trace so is aligned with the reference trace. Using
dynamic programming techniques the path is selected where the sum of all the distances
is the lowest. The cells in the matrix that are selected represent which sample points of

20

1/8 = 1/4 = 1/2

Figure 3.3.1: The FastDTW process with four iterations. Every iteration the resolution
for both traces is doubled. Figure by [22].

the target trace should be aligned with which sample points of the reference trace. A hard
constraint is that every sample point k£ that comes before sample point p the after being
aligned should still come before p and every sample point ¢ that comes after p should also
come after p when the traces are aligned. In other words: one can only stretch and shrink
the trace but one is not allowed to fold the trace. This constraint is based on the fact
that typically for encryption algorithms it is important that the computations happen
in a certain order. Lifting this constrained would assume that the device under attack
could change the order in which calculations are done. Although it is possible that this
happens, it is not common and it increases the search space exponentially which makes
it much harder to traverse.

The algorithm described above takes O(n?) to compute where n is the length of the
traces. This is problematic given the fact that some trace sets have a few million samples
per trace. To overcome this problem Elastic Alignment makes use of FastDTW proposed
by Salvador et al. in 2004 [I9]. The idea here is to reduce the number of samples that
are related to each other by starting the calculation on a low resolution of the trace
and iteratively increasing the resolution. Each iteration gives a hint on where the lowest
distances can be found for the next iteration. This way the number of sample points
being related can be greatly reduced.

This process is shown in figure [3.3.1] Both axes represent the traces at different
resolutions. The light gray squares represent the sample points where the algorithms
look for good matches. This algorithm runs in O(n). By only allocating the areas that
are of interest instead of the entire table, it is possible to reduce the memory consumption
from O(n?) to O(n) as well.

The aim of this thesis is not to reduce the order of complexity but to reduce the constant
¢ in O(c-n). Instead of relating every sample of the reference trace to every sample
in the target trace the proposed algorithm only relates specific samples and interpolates
everything in between. The aim is to reduce ¢ with several orders of magnitude compared
to Elastic Alignment.

21

4 Alignment with wavelets

The proposed algorithm does the same as Elastic Alignment but in a different way. The
aim is to create an algorithm that is significantly faster than Elastic Alignment. Despite
the linear complexity of Elastic Alignment, it can still take several days to align a typical
trace set for modern cards. The proposed algorithm aims to reduce the running time
with several orders of magnitude. Although the aligned trace quality is very important
(the better the quality the less traces are needed), sacrificing some quality in exchange
for speed is acceptable.

The proposed algorithm tries to find points of interest (POI) in the reference trace
and then tries to find the same points of interest in the target trace. Matching points
are used for the alignment. A point of interest can be a peak or a slope or anything else
that is fast to detect and can be detected repeatedly in other traces from the same set.
To match the POIs from the reference trace and the target trace for each POI a feature
vector is generated based on the samples around the POI. This is feature vector is called
the description of the POI. The algorithm aims for a unique description per POI so there
won’t be any confusion when matching the POlIs.

There are many ways to detect POIs and create a description of their context. A good
detection algorithm is fast, robust to noise and finds the same POls in the reference trace
and in the target trace. A good description algorithm is fast and creates a description
that is unique for every POI in a trace but is the same for the same POI in the reference
and in the target trace. For both these tasks we choose to use wavelets because they are
very fast and perform well when it comes to catching the characteristics of a signal. In
the remainder of we explain why wavelets are preferred over the more traditional way of
analyzing a signal by using a Fourier Transform.

4.1 Fourier Transform

In the 19th century Fourier showed that any periodic function can be expressed as an
infinite sum of periodic complex exponential functions [9]. In other words any periodic
function can be expressed through much simpler functions. This idea was later gener-
alized to non-periodic functions and discretised so it was suitable for fast computation.
Even up to now this has been arguably the most popular tool to analyze signals. In this
subsection we explain briefly what it does and what the disadvantages are in the context
of this thesis.

A Fourier transform (FT) gives us an idea of what frequencies appear in the signal
and with what strength. This can be illustrated by the example shown in figure {.1.1]
Figure shows a periodic signal and the Fourier transform of that signal.

22

Fourier transform on the stationary signal

Amplitude
°

101

. . . .
50 100 150 200 250
Frequency (Hz)

o
°
o
&
°
2
°
2
5
o
N
°
Sk
&
°
©
°
@
&
°
=
°
=
&
°
o

o

Figure 4.1.1: A stationary signal (left) consisting out of a 10Hz, 25Hz, 50Hz and a 100Hz
wave and its Fourier transform (right).

Fourier transform on the non-stationary signal
T T T T

1 18
038 “ 16t
0.6 I‘ - 14l
0.4
|‘ 12t
0.2
O
E I‘ 3 107
sl
< -0.2 |
6l
-0.4 |
-06 ‘ 4
-0.8 2
-1 | . . . 0 . . . L
0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 250
Time (s) Frequency (Hz)

Figure 4.1.2: A non-stationary signal(left) consisting out of a 10Hz, 25Hz, 50Hz and a
100Hz wave and its Fourier transform (right).

In the Fourier transform we see four peaks, one peak at each of the frequencies the
original signal consisted of. The peaks should be the same height but because the F'T
was computed here on a sample set instead of the actual function some peaks are higher
than others. The peak heights vary depending on the size of the sample set and on the
sample frequency. Nonetheless, the Fourier plot gives us a very clear description about
the signal. Whereas the original signal seems somewhat chaotic to an inexperienced eye,
the Fourier transform can easily be read by anyone.

Now a slightly different signal, it contains the same frequencies as before (10Hz, 25Hz,
50Hz and 100Hz) but instead of all the frequencies at the same time (as it was in the
previous example), here the frequencies are consecutive so there exists only one frequency
at a time. The resulting plot is shown in figure

In the same figure we see that although the original signal was quite different from

23

the periodic signal, the FT looks very similar. In the F'T we see four peaks again, one
for each frequency. We also see some noise here, this is because of the transitions from
one frequency to another. Note that for real signals noise is very common and cannot be
used to identify or describe signals. Except for the noise the F'T looks the same as for the
first example. The amplitudes of the Fourier transformed signals are indistinguishable.

This is because an implicit assumption of FT. It assumes that the signal contains the
same frequencies during the entire signal (from minus infinity to infinity). These types
of signals are called stationary signals. The second example however, is a non-stationary
signal as its frequencies change over time. Most signals that appear in real life are non-
stationary. The power traces we want to analyze are never stationary since they are
based on the computations in a computer chip. So Fourier transforms are not the best
option for analyzing them.

Note that depending on the implementation an F'T transform can also give information
about the phase of a frequency (whether it is shifted to the left or the right). Although this
information does help at differentiating the examples used here, one can easily construct
an example (by shifting the frequencies slightly until they match in both the stationary
and the non-stationary example) where an F'T would fail to differentiate the signals again.
For simplicity’s sake we ignore the phase information here as it does not fully counter
the arguments presented here.

4.2 Short Term Fourier Transform

To be able to deal with non-stationary signals Short Term Fourier Transform (STFT)
was designed [I]. This is basically the same as FT but uses a window. Instead of
transforming the entire signal STFT only transforms the signal within the window. The
window has a predefined width and starts at the beginning of the signal. After each
transform the window shifts over the signal until it reaches the end performing an FT at
every step. This gives us information about the frequency domain and about the time
domain of the signal. Figure 4.2.1]| shows the results of the STFT on the two examples
used earlier in this section.

Now we can clearly distinguish the signals. However, a significant problem with STFT
is the width of the window. A large window gives us poor time-resolution (the larger the
window the more it STFT looks like a normal FT). On the other hand if the window is
small it has less resolution for frequencies. In the case of a small window the peaks of
the FT widen so it becomes less clear what the actual frequency was.

The appropriate window size for STFT is application dependent. If the frequency
components are well separated one can sacrifice some frequency resolution to get a better
time resolution and vice versa. The window size comes down to a choice between the a
good resolution in the frequency dimension and the time dimension.

Note that this problem is inherent to a physical phenomenon and is known as the
Heisenberg Uncertainty Principle. Published by W. Heisenberg in 1927 this principle
states that is not possible to measure certain pairs of physical properties simultaneously
with arbitrary precision. The more precisely one property is measured the less precisely

24

STFTonthe stationary signal STFTenthe non-stationary signal

Amplitude
Amplitude

Figure 4.2.1: The results of the STFT on the stationary (left) and the non-stationary
(right) signal

the other can be measured. A common example of such a pair is position and momentum
of a particle. Here the frequency and the position of a wave are such a pair. It basically
means that one cannot know what spectral components exist at what instances of time.
One can only know the time intervals in which certain bands of frequencies exist. This is
a trade-of which appears very clearly when using STFT. According Heisenberg’s principle
it is impossible to solve window problem of STFT perfectly, however one can make choice
that works well based on the application.

4.3 Wavelet Transform

Another technique that tries to deal with the ineffectiveness in certain applications of
FT is wavelet transform. The term ’wavelet’ used in digital signal processing dates back
several decades [18] and means ’small wave’. A wavelet can be visualized as a brief
oscillatiorﬂ It is a non-stationary signal with an amplitude that starts out at zero,
increases, and then decreases back to zero. A few examples of wavelets are shown in
figure [£.37]

By calculating the convolution of a wavelet at a sample in the signal one gets a response
that tells how well the wavelet matches the signal at that point. If this is done for every
sample in the signal the series responses shows where and how well the signal matches the
wavelet. Often the wavelet is applied multiple times with different scales. By doing this
it is possible to describe a signal at low frequencies (large wavelets) and high frequencies
(small wavelets). A wavelet can be scaled with the following formula:

VYap(t) = L"Lﬁ(t b

va'ta)

!The source of this quote is unknown

25

- 9 F 9
@ w
E tosv E Losv
4 ot
SE - SE
F —Ft £
VAN b sz
Lz M FZ
LT LSt
. LT
50 a0
o 0
— - so L s
— N .
L oeT b st
) -
sz sz
L - —E=
SE- +OSE-
e [
S e
r T T T T S T T T 1 r T 5= T 1
L T T S SO T B S TR SR T " a in n
e e = = ? P 2 9 l < < -
apn])|dury apnydwy
m m m. m - m.
F oLy E | sy
F v Lt
L g€ - S'E
L £ E
L g2 L ST
h...mu Lz
_—FT1 F ST
L m.o||||||| — L5
= - \||o| o
T Tt —m—— o 50
[T ..
et - osT
L re
[- 8z
. .
o Q€
- v
S St
r T T 5= T T T 1
n T T T Y B B n
[T S T T = T BN B B S) B> E = =} oo o
e e @ = @ P ? 7 @
aprdury apryjdury

Figure 4.3.1: Examples of a Morlet wavelet (top-left), Mexicanhat wavelet (top-right),

Mexicanhat block wavelet (bottom-left) and Haar wavelet (bottom-right)

26

0.15

lHr

m

AR A
‘\‘.‘"I

\“MWH..H\u..“u'..'u'..'w gl

A

Wavelet transform on the non-stationary signal, wavelet size 0.02 Waveletﬁansfmrm un the non- stahnnary signal, wavelet size 0.04
4l e ||
‘r%‘ ” | [I.E 09 |\1
0 H
|| \ U (i |} |

»
M e

Wy (
.....
-0.15 Time (s) -0.15 Time(s)
0.15 0.15
Wavelettransform on the non-stationary sjgnal, wavelst size 0.08 Wavelettransform on the non-stationary signal, wavelet size 0.16
' [II H

H| ‘h
Hu u.u v

ke

|3 llmllhlfu\lh\lf'lﬂ‘
1l Wll\'JIIMIH

. Amplitude

0.8 0.9 ll

Amplitude

\] AA
| [
v |' [‘ |
nL 02 03 o0& ||‘q$"' ‘HI | p7 ‘s ‘ pal/ 1

i
'\‘|'\\|H I I
uuuww f

.05 i N .
/ {
n.- .9 I| 1
| F '\5’ {f v
|/

|
|
;HHHHH | | .' I I
|/ Vi (i
al ||\ T!
: R ‘

A |4\“

Amplitude

+ Amplitude

il

-0.05

-0.15 Time (s) -0.15 Time (s}

Figure 4.3.2: The response of 4 wavelets on the non-stationary signal

Where 1) is the wavelet function with (positive) scale a at offset b. A wavelet transform
can mathematically be expressed in the following way:

WTy{a}(a,b) = / () as(t)dt

Where 1), is the scaled wavelet function and x(t) is here the signal over time ¢. This
simply means that you first stretch the wavelet by using a and place it on the signal that
you want to analyze at b. Then pass over the samples of the signal and multiply every
sample with the value of the wavelet at that position. Because most values of 1) are zero
only the part of the signal around the center of the wavelet give nonzero values. The
sum of those values is called the response for the wavelet at position b. Calculating this
for every possible (or useful) b results in a wavelet transform at scale a. By doing this
for several values of a we get a 2 dimensional matrix with wavelet responses. The result
of a wavelet transform on the consecutive frequencies example from figure [£.1.2]is shown
in figure

Figure [£.3.2 shows at what time which wavelet responses are the highest in the signal.
The four graphs show a clear distinction for every frequency. Note that the choice of the
wavelet matters, here the Mexicanhat wavelet is used with 4 different scales. Depending
on what patterns need to be found different wavelets can be used. For example when
searching for a specific frequency one could use a sine (or cosine) with that frequency. To
turn this into a wavelet the sine is multiplied with a Gaussian distribution curve defined
by the following formula:

1 _(m—w)?
- e 202

Gausse ,(x) =

Original Trace

*100

0 10 20 30 40 &0 60 70 B0 80 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 250 260 270 280 280

1010 Transformed with scale 384

-10 100
010 20 30 40 &0 60 70 B0 90 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 280 280 270 280 290

104110 Transformed with scale 6

51

0

5§
f
*100

0 10 20 30 40 50 60 70 80 ©0 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 250 260 270 280 290

Figure 4.3.3: A power trace (top) with two wavelet transforms at different scales (middle,
bottom)

Where o is the standard deviation of the distribution this curve describes and p is
the average. One can use oto tune the width of the bell curve and uto shift it over the
x-axis. The result of the multiplication of the sine and the Gaussian is a Morlet wavelet
as is shown in figure [£.3.I] When only searching for slopes in a signal one can use Haar
wavelets. In the wavelet transform example used here only 4 different scales are used,
depending on the application this could suffice or many more could be needed.

Figure shows a wavelet transform for a power trace with wavelet scale 384 and
6. Scale 384 responds nicely to the big peaks which are visible in the original trace while
scale 6 responds to every little peak in the trace.

In this thesis wavelets are used for the detection of interesting points in a trace and for
generating a feature vector of such points. The advantage of wavelets for the detection
of these points is obvious since wavelets give us a position of such a point whereas an F'T
discards the time domain. Another advantage, which is the main reason wavelets are used
for the feature vector, is speed. When using block wavelets, a wavelet convolution can
be calculated in O(1). The details on how wavelets are used in the proposed algorithm
are elaborated in chapter [6]

28

5 SIFT and U-SURF

The proposed algorithm is inspired by SIFT and U-SURF. The purpose of these algo-
rithms is object recognition in images. However the techniques used in these algorithms
can be translated into recognizing specific points in a power trace. The proposed finds
points in two traces and aligns these points. The difference is that here we only work in
1 dimension (which reduces computational complexity) but we have to deal with a lot
more noise (which can confuse the algorithm). The remainder of this section describes
the original SIFT and U-SURF algorithm.

5.1 SIFT

SIFT stands for Scale Invariant Feature Transform. It is a feature generation method
proposed by Lowe in 1999 [13]. The features generated are used to recognize objects
in images. Object recognition algorithms have to be robust against scaling, translation,
rotation and noise in the images. SIFT aims to achieve a certain robustness by using a
multiple filter approach. The algorithm has three phases.

Detection phase

The algorithm starts by identifying key points in a gray scale image by using a difference-
of-Gaussian function. The key points are minima or maxima of this function. Invariance
to noise and minor distortions is achieved by blurring the image. The idea of these key
points is that they will be detected in other images of this object as well. In the next
phases these key points are used to recognize the object.

The difference-of-Gaussian function works as follows. First the image is blurred with a
Gaussian distribution curve with o = /2, this is image A. Image A is blurred again with
the same Gaussian, this is image B. Image B is subtracted from A (the difference of the
Gaussians) resulting in the first layer of an image pyramid. Each layer of this pyramid
represents a certain scale of detection. The lowest layer is allows for the detection of very
small key points while the top layer allows for detection of large key points. The next
layers of the image pyramid are created by repeatedly resampling image B. This allows
to detect key points of different scales. Each layer in the pyramid represents a such a
scale.

Then at the first level of the pyramid a best-of-neighbors filter is applied. If a pixel
has a higher (or lower) value than all of its 8 neighbors it passes, else it is discarded. If
a pixel passes, the closest pixel at the next level in the pyramid is calculated and the
same filter is applied. The level at which the calculation stops defines the scale of the
key point. For a typical 512 x 512 pixel image this results in 1000 key points.

29

For each pixel A;; in image A the gradient magnitude, M;;, and the orientation, R;j,
are calculated using pixel differences:

Mij = \/(Aij = Ait15)* + (A — Aij41)?
Rz’j = atan2(Aij — AH—Lja Ai,j—l—l — Ai,j)

Where the atan2(x,y) function is a variation on the standard arctan(z) function.
The atan2 function is common in programming languages (C, C++, Java, .NET...) for
calculating an angle between the x-axis and a point given the coordinates x and y. It is
defined as follows:

(arctan(%) x>0
74 arctan(¥) y >0,z <0
—m +arctan(¥) y < 0,2 <0

atan2(x,y) =
(@) 5 y>0,2=0
-5 y<0,z=0
undefined y=0,z=0

Since SIFT aims to be robust against rotation the orientation of each key point is
important. For each key point a canonical orientation is selected by finding a peak in a
histogram. The histogram consists of 36 bins covering the 360 degrees of orientation. For
every pixel around a key point with coordinates (i, j), M;; is weighted against a Gaussian
(o0 = 3-scale, where scale is the scale of the key point) window and then accumulated in
the bin corresponding with R;;. The histogram is smoothed and then the peak is selected
which defines the orientation of the specific key point.

Description Phase

The SIFT algorithm then calculates some features which bare some similarities to the
inferior temporal cortex in primate vision. The area around each key point is downsam-
pled to a 4 x 4 area and is represented with 8 orientation planes. The planes are small
gradient matrices that each represent 45 degrees of the 360 degrees of orientation. Only
the gradients (M;;) from the pixels that have the an orientation (R;;)that is represented
by the specific plane are copied to the plane. The rest of the values in the plane are
filled using linear interpolation. The orientation planes are blurred to allow for shifts in
positions of the gradients. These planes are the feature set for the specific key point.

Matching Phase

SIFT now looks for key point matches in the object-to-be-found-image and the search-
image. If enough key points from the object-to-recognize match in the image where the
object needs to be found. By using a variant of the kd-tree structure (k-dimensional tree,
a data structure that, given an element, allows for fast retrieval of its nearest neighbors)
called the best-bin-first search algorithm proposed by Beis et al. [4], SIFT is able to
quickly look up and compare key points. The best-bin-first algorithm is a approximation

30

Figure 5.2.1: From left to right: Gaussian 2nd order partial derivative in y-direction and
xy-direction; and the approximations of these functions; figure by [16]

algorithm. It returns the nearest neighbor for most queries and a very close neighbor
otherwise.

SIFT also proposes to use a Hough transform proposed by Ballard et al. [2] to identify
the orientation of the object-to-recognize. The Hough transform uses a voting scheme
to decide on a canonical orientation for the object-to-recognize. By searching for key
points that match this orientation SIFT and clustering these in a hash table SIFT only
considers plausible key point combinations as the object-to-recognize.

5.2 U-SURF

U-SURF stands for Upright-SURF where SURF stands for Speeded Up Robust Features.
U-SURF is exactly the same as SURF except that it skips a step where orientations of the
points of interest (POI, this is same as the key point in SIFT) are calculated. Since, when
handling power traces, rotation is not a problem U-SURF is closer related. Therefore
this section covers U-SURF and not SURF. Just as SIFT U-SURF uses three phases.
The algorithm is split up into three components each responsible for one phase.

The Detector
U-SURF takes the ideas of SIF'T and simplifies them resulting in greatly boosted speed of
the algorithm. Instead of using the blurred image pyramid from SIFT it uses a speeded
up version of the Hessian-Laplace detector first proposed by Mikolajczyk et al. in 2001
[16]. This detector is based on a Hessian matrix defined by the convolutions of several
Gaussian second order derivatives. POIs are identified by the response of the Hessian
filter applied on the image. However instead of using a continuous Gaussian curve it uses
discretised approximation as can be seen in figure [5.2.1

The response of the Hessian filter then simplifies to:

Hessian(approx) = Dy Dy, — (0.9 - Dyy)?

Where D is the return value of the convolution of the Gaussian derivatives (D, is z
direction, Dy, is y direction and Dy, is diagonal see ﬁgure. Using the approximated
filters brings another advantage. Filter responses can be calculated in O(1) instead of
O(n?) where n is the scale of the filter. For a normal discretised filter one would need to
multiply every pixel of the filter with each corresponding pixel in the image. Because the
approximation filters only consist of a few different areas one can use an integral image
[8] to do it in constant time.

31

An integral image works as follows. Every pixel in the the integral image, I, is the
sum of all the pixels to the left and above of this pixel in the original image, i,,. The
value of each pixel in the integral image is defined as follows:

Ixy = ixy + Ix—l,y + Ix,y—l - Ix—l,y—l

Now the sum of an area in the original image can easily be calculated:

Z gty = Iac+1Ipp—Ipc—1Iap
A<z’'<B;C<y’'<D

One can do the convolution of a box area in the filter by multiplying value of that area,
as is shown in [5.2.1] with the sum of the corresponding area in the original image. This
takes constant time regardless of the size of the filter. The Hessian filter is applied at
different scales, just like SIFT a best-of-neighbor filter is applied. The resulting pixels
are the POls.

The Descriptor

For the generation of the features Haar wavelets are used. They consist of box areas
as well and are therefore also fast with the use of the integral image. A window of 20
times the scale of the POI is split up into smaller 4 x 4 subregions. For every pixel
in a subregion a Haar wavelet response in y-direction, d,, and in x-direction, d,, are
calculated. These responses are weighted with a Gaussian (o = 3.3 - scale) centered at
the POL Then per subregion all the responses d, and d, are summed and form the first
set of features for the subregion. The responses |d,| and |d,| are also summed and form
the second set. At four features per subregion and 16 subregions each POI is describe
by 64 features.

The Matcher

The matching works the same as with SIFT. It also uses the best-bin-first search algorithm
proposed by Beis et al. [4] and Hough transforms proposed by Ballard et al. [2] to define
a canonical orientation for the object-to-detect. In addition to this U-SURF adds an
additional indexing step based on the sign of the Hessian response.

32

6 The Algorithm

6.1 Outline

Our proposed algorithm tries to reduce the effects of an unstable clock and dummy
operations by aligning all traces in a set to a reference trace. This is a common approach
which is also used by Static Alignment and Elastic Alignment. The reference trace can
be the result of a calculation (such as averaging several traces) or just be one trace of
the set. For simplicity’s sake in this thesis we use the first trace in the set. In this thesis
we refer to the trace we align to as the reference trace and the traces that need to be
aligned as the target traces.

In order to limit the amount of tunable settings for attackers every parameter in the
algorithm was related to properties of the trace. This way the constants used in the
algorithm are not specific for one trace set causing the algorithm to be easier to use.

The algorithm discussed in this thesis is based on the ideas used in the SIFT [13]
algorithm and variants on that. To be more specific the proposed algorithm is inspired
by U-SURF [3]. It consists out of four components. First the Detector finds points
of interest (POI) in the reference trace and the target traces. The Descriptor then
describes the POIs based on their context. These descriptions then are matched against
the descriptions in the reference trace by the Matcher. Finally the Warper uses the
matched points to stretch and shrink the target traces to align them with the reference
trace. 'This process starts with a large wavelet size and is recursively repeated with
smaller wavelet sizes.

In the following sub-sections a detailed description is given for each of the four com-
ponents. The main procedure of the algorithm is shown in algorithm [6.1] The constant
Detpp used in the code is the minimum wavelet scale. This is described further in the
next section.

6.2 Detector

The detector’s job is to detect points-of-interest (POI). A POI is nothing more than a
point in the trace which can quickly and repeatedly be recognized in other traces of the
same set. Later on the descriptor aims to describe the context of these points in a unique
way. The entire detector procedure is shown in algorithm [6.3]

POIs are found by doing a wavelet transform. The response for wavelets of various
scales is calculated for the trace. The algorithm starts with the largest wavelet scale
< Detpy - 28 with k being a natural number. For each iteration the scale is halved until

33

Algorithm 6.1 The main loop for the proposed algorithm
01: // ’mat’ the match array that is being built
02: // ’ref’ is the reference trace
03: // ’tar’ is the target trace
04: // ’aref’ the area in the reference trace where is scanned for POIs
05: // ’aref’ the area in the target trace where is scanned for PO0Is
06: // ’ws’ is the wavelet size
07: void doAlignRecurse(match[] mat, trace ref, trace tar,
area aref, area atar, int ws)
08: if(ws < Detp || aref.size <= 0 || atar.size <= 0)
09: return;
10: POI[] rp = Detector.detectWithScale(aref, ref, ws);
11: POI[] tp = Detector.detectWithScale(atar, tar, ws);
12: Descriptor.describe(rp);
13: Descriptor.describe(tp);
14: match[] m = Matcher.match(rp,tp);
15: if(m.isEmpty())

16: doAlignRecurse(mat, ref, tar, aref, atar, ws/2);

17: return;

18: doAlignRecurse(mat, ref, tar, new area(aref.start, m[0].ref),

new area(atar.start, m[0].tar),
ws/2);

19: mat.add(m[0]);

20: for(int i = 1; 1 < m.size(); i++)

21: doAlignRecurse(mat, ref, tar, new area(m[i-1].ref, m[i].ref),
new area(m[i-1].tar, m[i].tar),
ws/2);

22: mat.add(m[i]);

23: doAlignRecurse(mat, ref, tar, new area(m[m.size-1].ref, aref.end),

new area(m[m.size-1].tar, atar.end),
ws/2);

24: // ’ref’ is the reference trace

25: // ’tar’ is the target trace

26: trace doAlign(trace ref, trace tar)

27: match[] mat = new match[]; //match list

28: doAlignRecurse(mat, ref, tar, new area(ref.start, ref.end),
new area(tar.start, tar.end),
getMaxWaveSize (ref.length) ;

29: return Warper.warp(mat, tar);

34

Original Trace

40

35

30

*100

0 10 20 30 40 &0 60 70 B0 80 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 250 260 270 280 280
*0 Transformed with scale 384

0 10 20 30 40 &0 60 70 B0 ©0 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 250 280 270 280 280

*100

104710 Transformed with scale &

0 10 20 30 40 &0 60 70 B0 80 100 110 120 130 140 150 160 170 180 180 200 210 220 230 240 250 280 270 280 290

*100

Figure 6.2.1: A power trace (top) with its points of interest for two scales (middle,
bottom)

the minimum wavelet scale Detyy,,, is reached. Due to the type of wavelet used (Mexican
hat) Dety,,, should be a multiple of 3.

For performance reasons the wavelets are not applied for every sample but with a step
size of 10% of the wavelet scale. A small step size slows down the algorithm where as a
big step size does not detect enough POIs to work with. Early testing showed promising
results for a value of 10% but given the nature of the constant other values may work
fine as well.

To be able to compare the responses to a threshold the responses are normalized with
respect to the wavelet scale. Samples with an absolute wavelet response less than Detyy,
times the standard deviation of the trace, are discarded.

A best-of-its-neighbors filter is than applied to the remaining samples. If the absolute
wavelet response of a sample is not greater than the absolute wavelet responses of its
neighbors the sample is discarded. Neighbors are here defined as every sample within 3
times the step size from the sample under evaluation. Early testing showed that at least
3 times the step size is needed here, otherwise too many POls come through the filter
and the matcher will not be able to differentiate them anymore. A greater window here
could also work but has not been researched.

The samples that remain are the points of interest. Since these are the points that are
used for alignment later on it is important that they are located as accurate as possible.
To achieve this the remaining responses are pin pointed by searching for the highest
wavelet response in the vicinity (1 times the step size, otherwise this POI would not have
been the best of its neighbors and would not have passed the filter) of the point.

Figure shows the result of the detector. The first image is the original trace

35

followed by two images that show the POIls found by the detector at different scales. As
is expected, large wavelets result in much fewer POIs than small wavelets. Therefore it is
easier to match the POls from large scale wavelets to POIs from another trace. However
smaller wavelets give more information on how to align the traces.

The type of wavelet used here defines on what patterns the responses will be high.
Searching for slope patterns (by using Haar wavelets) and for peak patterns (by using
Mexican hat block wavelets) was used. Both wavelets are shown in figure The
Mexican hat block wavelet outperformed the Haar wavelets in repeatability (it found the
same points in similar traces).

Because the wavelet transform on a sample set comes down to multiplying every sam-
ple point of the wavelet with a sample point of the signal that is being analyzed, the
complexity of applying a wavelet is usually O(n) with n being the scale of the wavelet.
However when using block wavelets such as the Haar wavelet or the Mexican hat block
wavelet as shown in figure it can be done in O(1). First the trace is converted to
a summed trace. Every sample is now the sum of itself and its predecessors. This is
based on the idea of integral images by Crow [8]. By subtracting two samples it is now
possible to obtain the sum of all the samples in between. A convolution with a wavelet
is now calculated by multiplying the sum samples with the value of the block. A Haar
wavelet can be applied with only 3 read operations on the trace regardless of its scale.
The Mexican hat block wavelet needs only 4 read operations. Using the wavelets shown
in the mathematical formulas for getting a wavelet response on a sample array A
at position ¢ with scale s look as follows:

Haar(A,i,s) = 75
_ —2- Ali] + Ali — 5] + Ali + 5]
Vs
Mesicamhat(i g) = ZCAli= 8= Ali= 5) +2- (Ali+ 5] = Ali = §) = (Afi+ 3 - Ali+)

Note that the scaling with /s is not mandatory in general but is used here to compare
wavelet responses of different scales.
The code for a convolution with a Mexican hat wavelet can be seen in algorithm [6.2]

6.3 Descriptor

The descriptor aims to uniquely describe each POI by its context. It generates a feature
vector which is used by the matcher to calculate the distance between two POIs. These
features must be robust to noise and because there are many POIs coming from one

36

Algorithm 6.2 Calculates the convolution of the Mexican hat block wavelet

01: // ’sa’ is the sum array, sa{k]::E:fsalnpkﬂﬂ

02: // ’idx’ is the position in the signal where the wavelet is applied
03: // ’ws’ 1is the scale of the wavelet, which should be a multiple of 3
04: // return value is the response of the wavelet

05: double convoluteMexicanHatWavelet(double sa[], int idx, int ws)

06: int ts = ws / 3;

07: idx -= (ws+1) / 2; //add 1 to round upwards for odd ws
08: if(idx < 0 || idx+ws >= a.length)
09: return O;

10: return (3.0*(salidx+2*ts]-salidx+ts])-(salidx+ws]-salidx])) / sqrt(ws);

Algorithm 6.3 The main procedure for the Detector.

01: // ’samples’ is the sample array, which contains all sample points
02: // ’ws’ 1is the scale of the wavelet, which must be a multiple of 6
03: return value is a list of POI positions
04: int[] doDetect(double samples[], int ws)

05: double sall = createSumArray(samples); //sum array

06: double ral[] = new double[sa.length]; //response array
07: int s = max(1, ws / 10); //stepsize

08: int[] ret = new int[]; //result variable
09: for(int i = 0; i < sa.length; i +=)

10: ral[i] = convoluteMexicanHatWavelet(sa, i, ws);

11: if (abs(ralil) < Detyp*samples.sdev)

12: ral[i] = 0;

13: for(int i = 0; i < sa.length; i += s8)

14: if(ral[i]l !'= O && isHighestOfItsNeighborPeaks(ralil))
15: ret.add(pinPointPeak(sa, 1));

16: return ret;

37

0 Transformed Trace

0 ‘ ‘

010 20 30 40 &0 60 70 80 90 100 110120 130 140 150 160 170 180 190 200 210 220 2390 240 250 260 270 280 290
10

*100

*100
10 20 30 40 &0 T80 190 200 210 220 230 240 250 280 270 280 280

Figure 6.3.1: A selected point of interest (top) and 8 sections which are used for the
features (bottom)

single trace, the features must be fast to calculate. Given these constraints it is clear
that there are many possible features that can be chosen here. One of the first options
that came to mind was using an F'T to describe the the area around each POI. However,
on our test data it quickly showed that this was not feasible for POIs with a small scale
since there are not enough data points for a proper FT. The current approach is based
on the approach found in U-SURF.

An area of Des,, times the scale around each POI is divided in several sections as can
be seen in figure[6.3.1] The constant Desgs is intended to have the same value for different
trace sets. Its value will be empirically determined. For each of the sections a few simple
features are calculated. The sections are used to keep some temporal information in.

A Haar wavelet response is calculated (again using the summed trace described in the
previous sub-section) with wavelet scale Desp,, times the scale of the POI. The wavelet
responses are weighted with a Gaussian centered at the POI with o equal to Desgy,
times the scale of the POI. This ensures that the area close to the POI is of greater
importance when comparing two feature vectors than the areas further away. To include
information about the polarity of the section all the wavelet responses are summed. To
include information about the intensity of the section all the absolute wavelet responses
are summed. A fourth constant is used to determine the number of sections. This
number is based on the feature count Desy.. There are always be twice as much features
as sections. How the whole procedure looks in code can be seen in algorithm [6.4] All the
constants (Desqs, DeSpy, Desgq, Des fc) are intended to remain the same for different
trace sets. They are chosen in such a way that they depend on properties of the trace.

6.3.1 The Fast Haar Descriptor

An altered descriptor has been used. The idea of this descriptor is to use less sample
points to calculate the features. Instead of using every sample point in a section only a
number Desgs of points are selected at constant intervals from each other.

The algorithm for this descriptor is very similar to algorithm [6.4] The only differences

38

Algorithm 6.4 The main procedure for the Descriptor

01: // ’sa’ is the sum array, salk] :Zf sampleli]

02: // ’idx’ is the position in the signal where the POI is found
03: // ’ws’ 1is the scale of the wavelet

04: // return value is a list of features for the specified POI
05: double[] doDescribe(double sa[], int idx, int ws)

06: double f[] = new double[16]; //the feature vector

07: int da = Desgs * ws; //the size of the description area

08: int sc = Desyp. / 2; //section count

09: int ss = da / sc; //section size

10: int o = idx - sc/2 * ss; // offset, most left sample point

11: for(int s = 0; s < sc; s++)

12: f[2%s] = 0;

13: f[2*xs+1] = 0;

14: for(int i = 0; 1 < ss; i++)

15: double t = convoluteHaarWavelet(sa, o+s*ss+i, Desp,*ws) *
Gauss(ots*ss+i - idx, Desgy,);

16: f[2x*s] += t;

17: f[2xs+1] += abs(t);

18: return f;

are that after line 10 the following line is added:
int stepsize = maz(1l, ws / Desgs);
And line 14 is replaced with:

for(int 1 = 0; 1 < ss; it=stepsize)

6.3.2 The Super Fast Haar Descriptor

To further speed up the descriptor we assume that the Gaussian used in the descriptor
does not need to be continuous. By using a discretised version of the Gaussian function
we get a block pattern which means we can apply the summed array trick here. For every
scale two sum arrays of the trace are calculated. One for the Haar wavelet responses and
one for the absolute Haar wavelet responses. By subtracting two elements from these sum
arrays it is possible to calculate the sum of the wavelet responses in between in O(1). Such
a summed block is then multiplied with the average of the Gaussian curve that would
be used in the normal descriptor for that block. Each block takes 2 read operations
and a multiplication with the Gaussian value to calculate. The number of blocks used
per section is defined by Desps. More blocks means a more accurate Gaussian upto the
value where Desps equals the sample count per section. Then the Gaussian has the same
accuracy as in the normal descriptor.

39

Algorithm 6.5 The main procedure for the Super Fast Haar Descriptor
01: // ’asr’ is the sum array of the absolute wavelet responses
02: // ’sr’ 1is the sum array of the wavelet responses
03: // ’idx’ is the position in the signal where the POI is found
04: // return value is a list of features for the specified POI
05: double[] doDescribe(double asr[], double sr[], int idx)
06: double f[] = new double[16]; //the feature vector

07: int da = Desys * ws; //the size of the description area
08: int sc = Desy. / 2; //section count
09: int ss = da / sc; //section size

10: int bs = ss / Desys; //block size

11: int o = idx - da/2; // offset, most left sample point

12: for(int s = 0; s < sc; s++)

13: f[2*s] = 0;

14 f[2*xs+1] = 0;

15: for(int 1 = 0; i < Despg; i++)

16: f[2*xs] += sumArea(sr, o+s*ss+i*bs, o+s*ss+ixbs+bs) *
averageGuass (o+s*ss+i*bs, o+s*ss+ixbs+bs, Desgy,);

17: f[2*xs+1] += sumArea(asr, o+s*ss+ix*bs, o+s*ss+i*bs+bs) *
averageGuass (o+s*ss+i*bs, o+s*ss+ixbstbs, Desgy,);

18: return f;

The code for this algorithm is shown in algorithm [6.5] it assumes that the two summed
arrays for the wavelet responses are already calculated.

6.4 Matcher

The matcher creates a mapping between two sets of POlIs. Because the results of the
detector and the descriptor are not perfect the matcher has to be robust to the fact that
not every POI appears in every trace and that descriptions may be similar.

For every POI from the reference trace a distance is calculated to every POI from the
target trace. To allow comparison against a threshold the normalized Euclidean distance
is used, which is a special case of the Mahalanobis distance and is defined by the following
formula:

Where o; is the standard deviation of the z; over the sample set. In our case o; is
calculated using every possible POI with the same scale. In some cases, especially those
with large scales, there are not enough POIs to give a proper estimate for o; but in
practice this does not cause problems.

40

Reference Trace Reference Trace

Target Trace Target Trace

Figure 6.4.1: Two matched POI sets, with Mat,,q = 1000 (left) and Mat,,q = 4(right)

Each POI from the reference trace is matched with the point with the lowest distance
of the target trace. If the distance is greater than Mat,,q the match is removed. In these
cases the distance is so large that one could state that the matched points are not similar
at all. Farly testing showed that this removed most of the mismatches as can be seen in
figure [6.4.1] The traces used here were from a different trace set than the one used in
chapter [7] due to the fact that this was the only trace set available at the time.

In the remaining matches there can still occur cross matches. By this we mean that
sample point ref, of the reference trace is matched against sample point tar, of the
target trace while at the same time sample ref, 4, is matched against sample tar, 4
with p- ¢ < 0. This cannot be allowed because it would violate the temporal behavior
of the trace. This is the same constraint that is given with Elastic Alignment: the
trace can be stretched and shrunk but not folded. To resolve these cross matches the
confidence of a match and a penalty function is used. The confidence of a match is
defined by the distance of the best match divided by the distance for the second best
match. The penalty function halves the confidence of a match for every other match it
crosses. The conflicting match with the lowest confidence is then removed from the set.
This is repeated until all cross matches are resolved. A pseudo code implementation is

shown in algorithm [6.6] and

6.5 Warper

The Warper takes a list of matched POIs from two traces and shrinks and stretches
the target trace so it is aligned with the reference trace. In the result trace the values
of the samples that are included in the match list are set to the values of the target-
trace. Values in between the matched points are interpolated. Various interpolation
schemes have been tried such as Nearest Neighbor, Linear, Cosine, Cubic and Hermite
[6]. Hermite interpolation is similar to cubic but has tension and biasing parameters.
The tension controls tightens the curve at known points whereas bias twists the curve
towards one of the two points. Early testing showed that differences were minimal but
slightly in favor of the Cubic interpolation scheme. The other schemes have not been
researched further.

41

Algorithm 6.6 The violator function
01: // ’mat’ is the list of matches
02: // ’idx’ is the index where the conflict was detected
03: int findViolator(match[] mat, int idx)
04: match[] v = selectMatchesCrossedBy(mat, idx); //matches that cause problems
05: double mc = infinity; //lowest confidence thusfar

06: int mm =0

07: for(int 1 = 0; i < v.length; i++)

08: double ¢ = v[i].confidence;

09: ¢ *= pow(0.5, countCrossMatches(mat, i));
10: if(c < mc)

11: mc = C;

12: mm = i;

13: return i;

The start and the end of the traces are not necessarily aligned. The samples before the
first matched sample are interpolated with the same parameters as the samples between
the first and the second matched samples. The same is done at the end of the trace.
Sometimes a gap remains at the start or end of an aligned trace. There are multiple
values that can be used to fill such a gap. One can use zeroes, copy parts of the reference
trace or use the value of the nearest sample. The best results were achieved by using
the values of the nearest sample. This is due to the fact that it does not disturb the
continuity of the trace as zeroes would do and it does not add patterns that should not
be there as copying from the reference trace would do. The pseudo code is shown in

algorithm [6.8]

42

Algorithm 6.7 The main procedure for the Matcher

01: // ’ref’ is the list of POIs found in the reference trace
02: // ’tar’ is the list of POIs found in the target trace
03: match[] doMatch(POI[] ref, POI[] tar)

04: double d1 = infinity; //shortest distance

05: double d2 = infinity; //second shortest distance
06: POI pm = null; //P0I with distance di

07: double c =1; //confidence for the match

08: match[] ret = new match[];
09: forall(POI p in ref)

10: forall(POI g in tar)

11: double d = getNormalizedEuclideanDistance(p, q);
12: if(d < di1)

13: d2 = di;

14: dl = d;

15: pm = q;

16: elseif(d < 42)

17: d2 = d;

18: if(d2 < infinity)

19: ¢ -=d1 / d2;

20: if(d1 < Mat,,q)

21: ret.add(new match(p, pm, ¢));

22: //resolve conflicts

23: for(int i = 0; i < ret.length; i++)
24: if (crossesAnyOtherMatch(ret[i])

25: ret.remove(findViolator(ret, 1i));
26: i=0;

27: return ret;

43

Algorithm 6.8 The main procedure for the Warper
01: // ’mat’ is the list of matches
02: // ’t’ is the trace currently being aligned
03: trace doWarp(match[] mat, trace t)
04: trace ret = new trace();
05: addArtificialMatchesStartEnd(mat) ;
06: for(int m = 1; m < mat.length; mt++)

07: int ddest = mat[m].refpos - mat[m-1].refpos; //delta in refrence trace
08: int dsrc = mat[m].tarpos - mat[m-1].tarpos; //delta in target trace
09: double r = dsrc / ddest; // stretch/shrink factor

10: for(int i = 0; i < ddest; i++)

11: ret [mat[m] .refpos + i] = interpolatedPoint (t, mat[m].tarpos + i*r);
12: ret[ret.length-1] = t[t.length-1];

13: return ret;

44

7 Experiments

The performance of the proposed algorithm was measured through several experiments.
The set up for these experiments is similar to what was used by Hogenboom in [11],
this set up can be seen in figure [7.0.1] The main differences are that here a different
oscilloscope is used and the device-under-attack is different. The detailed hardware and
software requirements as well as the general setup are explained in the remainder of this
chapter.

7.1 Hardware

The hardware used for our measurements consists of several components which are listed
below.

Power tracer This device is an advanced smartcard reader which can be connected to an
oscilloscope. It is developed by Riscure B.V. and is controlled via the software tool
Inspector. The power tracer can trigger the oscilloscope so the amount of unusable
samples is reduced. It also has a very low noise power supply for the smart card
which improves the signal to noise ratio.

Oscilloscope To measure the power usage of a device one needs an oscilloscope. For this
project the LeCroy 104Xi was used. This is a Windows based oscilloscope that can
measure up to 10 gigasamples per second and has a low noise figure.

Filters An analog filter was used to filter out frequencies that would not contribute to
the CPA. In this case we used a lowpass 48Mhz filter which reduces the amplitude
of the high frequencies and allows the low frequencies to pass through.

Smartcard The traces that were used for this project were acquired from a cards provided
by Riscure. They contained a software implementation of Triple DES (used here
with k1 = ko, so it becomes a normal DES) with countermeasures which could be
turned on and off. For this project the only countermeasure that was turned on
was random delays.

Computer Finally there is a computer needed to link everything together. Although the
traces and calculations were performed on several computers the calculation time
measurement was done on a computer with an E6750 2.66Ghz processor and 2Gb
of RAM memory.

45

Figure 7.0.1: A measurement set up similar to the one used for this thesis. Next to the
laptop is the power tracer placed on top of the oscilloscope.

46

7.2 Software and Settings

The main tool used for this project is an application called 'Inspector’. This is a tool
developed by Riscure B.V. specifically designed to handle any operations needed for
side channel analysis. When this tool is combined with the right hardware it can be
used to acquire samples for analysis. These samples can be power measurements or
electromagnetic measurements. Samples can also be inspected and analyzed with various
modules that come with the product. The version used for this project and also currently
the latest version is 4.3. Several modules where used to filter the data set before aligning.
The following modules were used for this thesis:

DESAcquisition Module

This module is used in combination with the oscilloscope and powertracer to gather
traces from an electronic device, in our case a smartcard. The module dialog shows
various settings for the oscilloscope and the power tracer. The most notable settings for
the oscilloscope are: the sample frequency, number of samples and delay.

The sample frequency specifies how many samples per second should be taken. Higher
frequencies give more detail but use more disc space to store. The frequency should be
set to at least the clock speed of the smartcard, 4Mhz in our case. If the sample rate
is lower than the clock speed, different clock cycles end up in one sample and valuable
leaked information might get lost. This setting was set to 250 megasamples per second.
We chose for a much higher frequency than the clock speed to get a more accurate
reading per clock cycle. The acquired traces were resampled right after acquisition by
the Resample module.

The number of samples specifies how many samples are acquired per trace. It is
important that this enough to cover one round of the encryption procedure. If it is too
low and critical parts are missing it is impossible to do a successful CPA attack. We chose
a number much greater than we anticipated we would need. Afterwards we cropped the
part of the trace that was actually useful. This resulted in traces of 8248 samples long.

If a delay is set the oscilloscope waits with sampling until it receives a trigger from
the powertracer. In our case the trigger was sent right after the input bytes for the
encryption algorithm were transmitted.

There are also some settings for the powertracer. The most notable here is the number
of traces that should be acquired. In order to generate graphs based on statistics a large
number of traces is required. We set this setting to 500,000 (five hundred thousand)
traces.

Resample Module

Right after the acquisition before writing them to the disc the traces were resampled
in order to save disc (and memory) space. This module resamples a trace by averaging
consecutive samples. We resampled to 4 megasamples per second (the clock speed of the
smartcard). This resulted in a data set of 16 gigabytes. We set this module to align to a
peak (clock pulse) before starting to average. This ensures that for every trace in the set
the resample window is more or less positioned the same way. Otherwise one could have

47

*10 miolt trace 0
-275

-280

-285

-200

-205

-3004

-305 ac
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Figure 7.2.1: A typical trace from the data set, showing the last round of the encryption

the clock pulse in the beginning of the window in one trace and at the end in another.
When traces are combined leakage information is spread over multiple clock cycles an
become much harder to retrieve. A typical trace from the resulting set is shown in figure
Note that the y-axis shows negative mVolts. This is due to an offset error during
acquisition and has no consequences for this thesis.

StaticAlign Module

This module was used to align the traces in the set so we could compare our proposed
algorithm to Static Alignment. This module implements Static Alignment as is described
in chapter [3] We selected a trace fragment of 600 samples at the end of the encryption
where the module should align on. The allowed shift for this fragment was set to 250
samples.

CombAverage Module

This module pre-processes the traces for a SW-DPA attack. It averages the samples as
described previously after which a normal DPA attack can be performed. The module
has two settings: the number of samples per clock cycle which is set to 1 and the size of
the sliding window for which we used the values 50, 100 and 200.

ElasticAlign Module

This module was used to align the traces in the set so we could compare our proposed
algorithm to Elastic Alignment. This module implements Elastic Alignment as is de-
scribed in chapter 3] This module has a settings to set the radius in which FastDTW
searches for the optimal warppath. We set this setting to auto configure. The module
then selects the optimal settings based on the first few traces. The optimal radius found
was 70.

RAMAIlign

This is a custom module that implements our proposed algorithm. In the settings dialog
all the constants introduced in chapter [0] are listed and can be changed. As a baseline
the initial values of the constants were chosen close to the values of U-SURF [3] where
possible. The other baselines for the constants were based on early experimentation.
Then the values where changed and used for a fraction of the data set. Based on the
average Pearson correlation of the target traces with the reference trace it was decided
whether increasing the value or decreasing it would show more promise. If the traces
would be good aligned they would show a higher correlation than the baseline and if the
traces would not be aligned properly the correlation would be lower than the baseline.

48

However since high correlation does not directly indicate a proper alignment in some
cases it was decided that both a higher value and a lower value for the constants should
be analyzed.

The analysis was done by the FirstOrder Analysis module. Which was used to give a
more founded argument for the specific values for the constants. Here are the constants
listed with a short description and the values that were tested. The baseline values are
in bold.

Minimum Wavelet Size (Det,,,,) This constant specifies the stopping criterion for the
detector. The detector starts with large wavelets and decreases them every
iteration. If this wavelet size is reached the detector is done. Besides that
lowering this value increases computation time, usually there are much more
possible POls at low wavelet sizes. This could confuse the matcher. On the
other hand, lowering this value provides more precision for alignment and
could increase the overall score. Tested values: 3, 6 and 12.

Response Threshold (Dety,) The detector only selects samples to become potentially a
POI if the wavelet response at that point is greater than Dety, times the
standard deviation of the trace. A higher value causes less confusion for the
matcher but may result in too few POIs to do proper alignment. A lower
value has also increases the running time of the algorithm. The matching
algorithm is quadratic in the number of POIs detected so which makes this
very computationally very demanding. Tested values: 2, 2.5 and 3.

Area Size (Des,s) This specifies the size of the area around the POI which is used for the
generation of the feature vector for this POIL. The area of this POI is Desgs
times the scale of the POIL. Low values mean that POIs are related to each
other based on the samples close to the POI (which could have patterns that
exist multiple times in the trace). High values take samples further away into
account, but could cause confusion that due to the fact that areas of POls
overlap too much. Tested values: 12, 16 and 20.

Feature Count (Desyf.) This constant is related to the area size. It specifies how many
features should be calculated in the specified area. More features means
longer computation time but more accuracy when relating POIs. Tested
values: 16, 24 and 32.

Haar Wavelet Size (Desp,,) The descriptor uses Haar wavelets of size Desp,, times the
scale of the POI to generate the feature vectors. Higher values means search-
ing for patterns (slopes in this case) in lower signal frequencies. The wavelet
becomes bigger and is less sensitive for small frequencies. Tested values: 1.5,
and 2.5.

Standard Deviation Gaussian (Desg,) The descriptor weighs the Haar wavelet responses
with a Gaussian with an standard deviation of Desy, times the scale of the
POI. The Gaussian is centered at the POI. Lowering the value of this constant

49

means that the description is focused on samples closer to the POL. Increasing
the value widens the focus window of the description. Tested values: 2.8, 3.3
and 3.8.

Maximum Distance (Mat,,q) This constant specifies the maximum allowed distance be-
tween two matched POls. If a match has a distance of more than Mat,, it
is discarded. Lowering this value prevents cross matching. Lowering it too
much discards usable matches. Tested values: 2.3, 2.5 and 2.7.

Due to the fact that some of the constants influence each other, changing the setting
on one constant may change the optimal settings for the others, it is hard to find good
values. A full grid search over all plausible combinations would take too much time so
we chose to pick a base line and tune one constant at the time.

FirstOrderStatisticalAnalysis Module

This is a statistical custom module by Jasper van Woudenberg (supervisor) it is used
to measure the performance of an pre-processing algorithm in combination with a CPA
attack. After pre-processing is done (in our case this is the aligning) it splits up the trace
set into subsets. For each subset a number of traces IV, is selected and a CPA attack is
performed on these traces. The module counts the number of successful attacks S; and
the number of unsuccessful attacks S_ and calculates the first order success rate Ry:

Sy

Ry=—2F
S, +5-

R is then reported as a percentage of success for this specific number of traces. Ng
is then increased and the process is repeated. This results in a climbing percentage of
success the more traces are added. This is an indication of, given the pre-processing
method, how many traces would be needed to get a certain percentage of success.

We set, the start number of traces to 100 and the end to 5000 with a step size of 100.
This means the data set is split into 500,000/5000 = 100 subsets and that the module
returns 50 data points per full execution. A full execution on takes about 9 hours on this
data set pre-processing not included.

7.3 Tuning Results

Every execution of the FirstOrderStatisticalAnalysis module results in a series of data
points. For every constant these data points were plotted in a graph as can be seen in
figure [7.3.1] In every graph the baseline is plotted with a black dotted line.

When looking at the resulting graphs one of the first things that can be concluded
is that the chosen baseline is not a particularly high performer. This is not a problem
though, since it is here only used to tune the constants. Another important thing to note
is that one should expect the graphs to be rather smooth and monotonically increasing.
This is because each added trace contains leaked information that, when successfully
extracted, should contribute to a higher success ratio. However the graphs are not

50

smooth and some start to decrease after a number of traces. This is due to the fact
that if alignment for a trace fails completely it takes many successfully aligned traces
to average out the errors. When more traces are used the chance of such a 'bad’ trace
increases and causes the success rate to drop.

There are two ways to counter this. The first is to improve the algorithm so it produces
less (or none) of these bad traces. This solution is implemented by using tuned values for
the constants. The second way is to build in a detection mechanism that discards bad
traces. This can be implemented by using Pearson correlation after the trace is aligned.
If the correlation result is below a certain threshold the trace is discarded. However, it
is possible to use filter for any alignment algorithm therefore it is not considered part of
the algorithm here. The correlation filter is not used during the experiments here since
it would mask the performance of the actual algorithm.

The results from the graph are discussed per graph.

Minimum Wayvelet Size This graph shows a clear increase in performance when using the
smallest possible wavelet of scale 3.

Response Threshold Here there is clear improvement when the number of POIs increases.
When too much POls are allowed the matcher gets confused and performance
drops drastically. This can be seen with the threshold value of 2.

Area Size This graph suggests that there is too much overlap in the descriptions of the
POTI and that the area size should be lowered.

Feature Count The results here are inconclusive. There is a very small difference in favor
of less features. However, this could be noise. In early testing we were able
to make a CPA attack work by increasing the number of features and since
this graph does not give enough reason to lower the value of this constant
remains at the baseline setting of 32.

Haar Wavelet Size Here the graphs show differences slightly in favor of the baseline set-
ting of 2.

Gaussian Standard Deviation Here we were too careful with changing the value. The
performance differences are very minimal but it is slightly in favor of a wider
Gaussian curve. This suggests that the actual description is focused too much
on samples close to the POL.

Maximum Distance Here we have been too careful with changing the value as well. From
early testing it was very clear that a high maximum distance would cause a
drop in performance. However this does not show up in the graph. Since the
Threshold graph suggests that more POIs would be better for alignment it
will probably not hurt to lower this setting slightly so only the best matches
are used.

After we set the parameters to the new values the success ratio increased greatly as
can be seen in figure This performance is sufficient enough to be useful in practice.

o1

Chame of success
e o o o
MR W @m

[=]

Chance of success
e o o o
MR W @

=]

Chance of success
e o o o
MR W @W

[=]

Constant: Response Threshold

2
2.5
----- 3
T
S
-~
pd an aem T T e [
e

R
-

1000 2000 3000 4000 5000
Number of Traces

Constant: Area Size

1000 2000 3000 000 S000
Number of Traces

Constant: Haar Wavelet Size
15

o 1000 2000 300D ADD0 5000

Number of Traces

Constant: Minimum Wawvelet Size

1 -
3
wmOLE 12
n
E ————— 0
Jos A
k=]
apa
E e e
— -
gn.l i _.—P'Fw'\r'hu-“‘"'ﬂ_/r -..ﬂ—""‘-u..-ﬁ\-
.-"‘-"_-‘ EL AT N
e - =
e —
o 1000 2000 3000 4000 SO00
Number of Traces
1 - Constant: Feature Count
16
wmO.E A 24
wm
E ————— 3z
Jos
k]
04
=
B
Upz2 A .
,-"_‘_ — (8 L P
) e
B S E— S
o 1000 2000 3000 4000 SO00
Mumber of Traces
3 - Constant: GaussianStandard Deviation
2E
WDE | ----- 33
wm
] 3B
dos -
k]
0
=
gnz
. e N
o T T — T T T T T T

1] 1000 2000 3000 ADDD 5000

Number of Traces

Constant: Maximum Distance

1 -
2.2
wDE 4 -=---- 25
W1
b 2E
Jos -
]
upd -
H
E 0.2 =
-2 o s
.l'/\"\-_/.r - P |_:H‘_ -
D T T T T T T T T T T
o 1000 2000 3000 ADDD SO0
Mumber of Traces

Figure 7.3.1: The results for tuning the constants

52

Tunedvs Baseline

- — i,

0E - e
07 ot

0.6 I Tuned

0.5 1 e Baseline
0.4 4 I|I

Chance of s wcess

03 o f
0z { -

ol A _.-'" R ,'r ’ R

Li] 1000 2000 3000 4000 S0

Number of Traces

Figure 7.3.2: The performance of the tuned version

’ Component | Time of Calculation (%) |
generateFeatures() 32
getEucledianDistance() 21.6
convoluteHaarWavelet () 20.4
getFeature() 15.8
getGaussian() 4.3
9.9

Table 7.1: Top 5 CPU intensive functions

Although further tuning might further increase the success ratio the focus was shifted to

speed.

7.4 Speed Boosting Results

To find out where the algorithm spent the most time during execution it was passed
through the Netbeans profiler. The top five most demanding functions are shown in
table The first, third and fifth function in the table are both used in the descriptor.
This means that the descriptor consumes 56.7% of the CPU cycles. Our first attempt to
speed up the algorithm is by using a faster descriptor.

7.4.1 The Fast Haar Descriptor

The Fast Haar descriptor introduces a new constant:

93

FastHaar Descriptor

07
0.6
0.5

0.4

Chance of s wcess

0.3

02

0.1

Li] 1000 2000 3000 4000 S0

Number of Traces
Figure 7.4.1: Results of the Fast Haar Descriptor

Samples Per Section (Desgs) This is the number of samples used per section. The more
are used the better the descriptor describes that section. If significantly less
are used it speeds up the algorithm. Tested values: 10 and 20.

The results from this run are shown in figure The number of selected samples per
section does not seem to influence the success rate with the chosen values. Although this
might be different on noisier trace sets, for this trace set it means that this descriptor
performs well enough for use in practice. The run time on our test computer is shown in
table[7.2] Although the speed increase is significant there is more to gain as is shown in
the next subsection.

7.4.2 The Super Fast Haar Descriptor

The Super Fast Haar descriptor introduces a new constant:

Blocks Per Section (Desps) This is the number of blocks to calculate per sample. A
higher value means that the result comes closer to that of a continuous Gaus-
sian curve. Lower values speed up the calculation. Tested values: 1 and
2

From the results shown in figure it is clear that the performance is decreased.
Although the algorithm gained a great speed boost as is shown in table the Fast
Haar Descriptor may be preferred on more difficult trace sets.

54

SuperFastHaar Descriptor

0.E 4
0.7
0.6
0.5 Ny
0.4

03 .-"|l 1

0z { | f

Chance of s wcess

ot 44 ee==- Tuned

Li] 1000 2000 3000

Number of Traces

Figure 7.4.2: Results of the Super Fast Haar Descriptor

Algorithm ‘ Run Time | Time Per Trace
RAM 169 minutes 20.28 ms
RAM -+ Fast Haar 10 123 minutes 14.76 ms
RAM -+ Fast Haar 20 140 minutes 16.8 ms
RAM + Super Fast Haar 1 | 55 minutes 6.6 ms
RAM + Super Fast Haar 2 | 63 minutes 7.6 ms

Table 7.2: Timing results for the various descriptors

7.4.3 Matching Heuristics

The second and fourth entry in table are both functions used in the matcher. To
decrease the number of POls related to each other the POls of the reference trace were
split into two groups based on the sign of the Mexican Hat wavelet response. When
matching a target trace to the reference trace based on the sign of the response of the
POI in the target trace it is only compared with the POIs in the group with the same
sign. This should reduce the amount of POI comparisons with 50% without affecting the
success rate.

Unfortunately, our tests did not show a significant increase in speed. This may be due
to recursive character of the overall algorithm which already reduces the number of POIs
comparisons greatly (only does in close vicinity are used). The overhead of selecting the
group and possible cache misses may negate the expected gain in speed. Due to time
constrains we were not able to pursue this option further but we recommend it should
definitely be revisited.

95

Mo Gaussian o Simplifications

oS bl N S e = T
os T e os P = il =< —
A I
0.5 Y 0.E e
w07 ..-'rJ.-‘ s w07 pa
3 o8 r g os 4_,;
i i =
T o= f T 05
@ @
04 h B 04
E 0.3 '.III N Fasthaar E 0.3 MearestNeighbor
i L
0.z I SuperfastHaar 0.z Mo Finpointing
.. .
01 jr _____ Tuned 01 FastHaar 10
1} o
o 1000 2000 3000 A0D0D 5000 o 1000 2000 3000 A0D0 5000
Mumber of Traces Mumber of Traces

Figure 7.4.3: The algorithm without Gaussian (Left) without pinpointing (Right) and
with Nearest Neighbor interpolation (Right)

7.4.4 Simplifications

When the first version of the algorithm was designed a lot of design choices were based
on the U-SURF paper and on early testing. Here more extensive testing is used to see
whether all computation steps are necessary. Time constrains limited the number of tests
that could be performed here but some interesting results were found nonetheless. Other
tests suggested that increasing the standard deviation of Gaussian used in the descriptor
increases performance of the algorithm. This means that looking at samples close to the
POI may not be the best way to match them to POIs in other traces. The Gaussian
weighting function was removed and the results are shown in the left graph in figure
The graph shows an increase in performance for both the Fast and Super Fast
Haar descriptors. This means that either the values that have been used thus far for the
standard deviation of the Gaussian were way too low or the Gaussian is not needed at
all. The gain in success rate also comes with a speed boost for the Fast Haar descriptor
as can be seen in table [T.3l

Other choices that were based on early testing were the use of a pinpointing method
and the choice of the interpolation scheme of the warper. Instead of using pinpointing
to find the precise position of a POI one may assume that the precision of 10% of the
wavelet scale would suffice. The right graph in figure[7.4.3|shows that there is a slight but
significant performance drop when not using pinpointing. The timing results in table
show that instead of reducing the time to process the traces it took longer. This could
be due to the fact that the feature vectors of the POIs are of lesser quality causing the
more cross matching to solve for the matcher.

From the same figure and table can be seen that choosing a nearest neighbor interpola-
tion scheme for the warper slightly lowers performance. The reduction in processing time
also slightly decreases but since in practice it is more important to gain a little higher
chance of success than a few minutes in time Cubic interpolation scheme is preferred.

56

’ Algorithm ‘ Run Time | Time Per Trace

RAM + Fast Haar 10 + No Gauss 76 minutes 9.1 ms
RAM + Super Fast Haar 1 + No Gauss 54 minutes 6.5 ms
RAM + Fast Haar 10 + Nearest Neighbor | 121 minutes 14.6 ms
RAM + Fast Haar 10 + No Pinpointing | 116 minutes 13.9 ms

Table 7.3: Timing results for the simplification attempts

Algorithm ‘ Run Time | Time Per Trace
Static Alignment 12 minutes 1.44 ms
SW-DPA 18 minutes 2.16 ms
RAM —+ Super Fast Haar + No Gauss | 63 minutes 7.6 ms
RAM -+ Fast Haar + No Gauss 76 minutes 9.1 ms
Elastic Alignment 3115 minutes 373.8 ms

Table 7.4: Timing results for the various alignment methods. The time listed for SW-
DPA is the additional time it took to perform the DPA attack

7.5 Comparison Results

The algorithms that resulted from the experiments was compared to Elastic Alignment,
Static Alignment and SW-DPA. The results are shown in figure The graph on the
left shows that our proposed algorithm performs slightly worse than Elastic Alignment
for low number of traces. Static Alignment and SW-DPA are not able to overcome the
countermeasures within 5000 traces.

Since our main goal was to design an algorithm that was much faster than FElastic
Alignment we compared the running times of the algorithms. The results are shown in
table Our proposed algorithm performs much faster than Elastic Alignment. So
when time is a factor this clearly is the algorithm of choice.

To further express the potential of this algorithm the success-to-minute ratio was
calculated from the already available data. To give a clear picture of the advantage of
RAM over Elastic Alignment the data needed to be transformed and interpolated. The
the chance of success after a certain number of minutes is plotted in figure In
the graph on the right can be seen that RAM achieves success rates of over 95% in 30
minutes where Elastic Alignment would take over 32 hours to do the same.

57

1 -
e
0.9 s 0.9
0.8 - # 0.8
0.7 1 0.7
]

& 0.6 o - 0.6
205 o B 05

3 "
S04 [o 0.4
gz d —— RAM+FastHaar g 0.3

{ Elastic o
0.2 4 WS-DPA 0.2
o1 o/ —— Static ol
0 +— - _— — _ 0

] 1000 2000 3000 4000 5000
Traces

Elastic
— RAM+FastHaar
RAM+SuperFastHaar

] 40 50 =) 70 o
Time [m)

Figure 7.5.1: Success To Trace Ratio (Left) and Success to Time Ratio (Right). Note
that data points in the right graph are not measurements but translated

and interpolated points from other experiments.

o8

8 Conclusion

8.1 Conclusion

Differential Power Analysis is a widely used side channel attack that uses leakage in the
power signal of a device to extract its secret key. It requires a large number of power signal
measurements of the device while it is encrypting known plaintexts and uses statistics to
analyze them.

For this attack to work it is important that power traces are aligned in the time domain.
If this is not the case the number of traces required to successfully perform the attack
increases with several orders of magnitude. One of the countermeasures against this
type of attacks is based on this requirement. By using an unstable clock or introducing
dummy operations the measurements are misaligned.

Although several algorithms exist to align the measurements they are all limited in
either success-to-number-of-traces-ratio or computation time. We introduce a fast algo-
rithm with a reasonable success ratio. We used a smartcard with a software implemen-
tation of triple DES to measure the performance of the algorithm.

We used several experiments to tune the parameters of the algorithm. All of these
parameters are dependent on properties of the traces to be aligned. This results in an
algorithm which is easy to use for an attacker since there are no parameters that need
tuning. Although our tuning efforts resulted in reasonable results it is very well possible
that further tuning increases performance even more.

We compared our proposed algorithm with Static Alignment, Sliding Window DPA and
Elastic Alignment. While Static Alignment and Sliding Window DPA are not capable
of properly aligning the used trace set, Elastic Alignment showed excellent performance
but was relatively slow. It took almost 52 hours to process the 500,000 traces from our
data set. Our proposed algorithm performed similarly in terms of success ratio compared
to Elastic Alignment but took only 76 minutes to process the data set.

The proposed algorithm consists of four components. Each of these components can
be replaced so that new approaches can easily be tested. This provides an easy to use
framework for alignment algorithms.

At his moment the matcher component is the weakest link. The algorithm detects
points of interest of different scales to align the traces with. If a mismatch occurs between
two traces with points of a large scale the resulting trace is not be usable. A better
matching scheme may prevent this.

We conclude that RAM Alignment outperforms all of its competitors: WS-DPA, Static
Alignment and Elastic Alignmentp_-].

!Near the end of writing this thesis, Riscure reported they developed a new version of Elastic Alignment

99

8.2 Further research and suggestions

Although our proposed algorithm already outperforms it competitors, there are still some
open ends. In this section is briefly discussed what topics could be interesting for further
research.

One of the most important differences between modern smartcards and the smartcard
used for testing is that modern smartcards have significantly more noise in there power
signal. It would be interesting to know how well the proposed algorithm reacts to such
noise. To do this similar tests could be run on smartcards with different noise profiles
and other countermeasures enabled.

To boost the success rate of the algorithm it would definitely be interesting to further
tune the constants. The tuning so far has shown an increase in the success rate from
about 20% to 95-100%. With more extensive tuning it might be possible to achieve these
success rates with less traces.

To boost the speed of the algorithm the focus should be on the matcher as this is
currently the most demanding component in the algorithm. To lower the O(n?) in that
component one could sort the POIs selected for matching based on their distance to the
origin, the distance to a description vector with only zeroes. In that way it is possible to
discard of POIs that definitely fall outside the maximum distance range in O(nlog(n)).
This lowers the amount of POIs that are related to each other in the O(n?) part of the
algorithm.

Splitting the POIs of the reference trace into two groups based on whether the Mexican
Hat wavelet response was positive or negative could decrease the number of POIs related
to each other with 50%. We did some experiments with this but it the results were
inconclusive. It is recommended to revisit this option.

After the sumtrace is calculated most operations are done independent to each other.
This allows for parallel computing which could greatly improve the calculation time.
Also the application of the algorithm allows for easy use of parallel computing. Since the
traces are processed independently only being compared with the reference trace (read
operations only) it is possible to assign different parts of the trace set to different threads
without much overhead.

Now, for matching the POIs are selected based on their position in the trace (they
are selected based on the POIs found on the previous (larger) scale). Instead, the POls
of the reference trace could be stored in a kd-tree-like structure. This returns POIs in
nearest-neighbor-first order. To built such a tree takes O(nlog(n)). This will cause a lot
more cross matches that need to be dealt with, on the other hand it might be possible to
recover from mismatches at higher scales since they are no longer used to select potential
good POI matches. Right now if a mismatch occurs at a large scale all lower scales go
wrong too.

In order to make the algorithm easy to use all of the parameters are depending on
properties of the trace. However, some (the detection of POIs) depend on the standard
deviation of the trace. This is not ideal since some traces contain patterns that are

which is about 3 times faster than the implementation used in this thesis.

60

not part of the encryption, often due to communication, that significantly increase the
standard deviation. To overcome this properly one could select a part of the trace over
which the standard deviation should be calculated instead of the full trace.

Last but not least, different detector and description schemes could be used to in-
crease the aligned trace quality. This fundamentally changes the algorithm but the
detector-descriptor-matcher-warper-framework proposed here could be useful in many
configurations.

61

Bibliography

[1]

[4]

15]

[11]

[12]

J. Allen. Short term spectral analysis, synthesis, and modification by discrete
Fourier transform. Acoustics, Speech and Signal Processing, IEEE Transactions

on, 25(3):235-238, 2003.

D. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern
recognition, 13(2):111-122, 1981.

H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer
Vision—ECCYV 2006, pages 404-417, 2006.

J. Beis and D. Lowe. Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In Computer Vision and Pattern Recognition, 1997.
Proceedings., 1997 IEEE Computer Society Conference on, pages 1000-1006. IEEE,
1997.

E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model.
Cryptographic Hardware and Embedded Systems-CHES 2004, pages 135-152, 2004.

R. Burden and J. Faires. Numerical analysis. 2004. Brooks Cole, Pacific Grouve,
California, United States.

C. Clavier, J. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Cryptographic Hardware and Embedded Systems-
CHES 2000, pages 13-48. Springer, 2000.

F. Crow. Summed-area tables for texture mapping. ACM SIGGRAPH Computer
Graphics, 18(3):207-212, 1984.

J. Fourier. Théorie Analytique de la Chaleur, 1822. Firmin Didot-Pére et Fils (now
public domain, scanned by Google) Fourier-Théorie Analytique de la Chaleur. pdf.

F. Garcia, G. de Koning Gans, R. Muijrers, P. Van Rossum, R. Verdult, R. Schreur,
and B. Jacobs. Dismantling MIFARE classic. Computer Security-ESORICS 2008,
pages 97-114, 2008.

J. Hogenboom. Principal Component Analysis and Side-Channel Attacks, MSc¢ The-
sis Nr 634. 2010.

P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
cryptology-CRYPTO’99: 19th Annual International Cryptology Conference, Santa

62

[21]

Barbara, California, USA August 15-19, 1999 proceedings, page 388. Springer Berlin
Heidelberg, 1999.

D. Lowe. Object recognition from local scale-invariant features. In ICCV, page 1150.
Published by the IEEE Computer Society, 1999.

S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing the secrets
of smart cards. Springer Verlag, 2007.

T. Messerges. Using second-order power analysis to attack DPA resistant software. In
Cryptographic Hardware and Embedded Systems-CHES 2000, pages 27-78. Springer,
2000.

K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points.
In Computer Vision, 2001. ICCV 2001. Proceedings. FEighth IEEE International
Conference on, volume 1, pages 525-531. IEEE, 2001.

A. Moradi, M. Shalmani, and M. Salmasizadeh. Dual-rail transition logic: A logic
style for counteracting power analysis attacks. Computers & Electrical Engineering,
35(2):359-369, 2009.

N. Ricker. Wavelet contraction, wavelet expansion, and the control of seismic reso-
lution. Geophysics, 18:769, 1953.

S. Salvador and P. Chan. FastDTW: Toward accurate dynamic time warping in
linear time and space. In KDD Workshop on Mining Temporal and Sequential Data,
pages 70-80, 2004.

K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS logic with
signal independent power consumption to withstand differential power analysis on
smart cards. In Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings
of the 28th European, pages 403-406. IEEE, 2002.

K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In Proceedings of the conference on De-
sign, automation and test in Furope- Volume 1, page 10246. IEEE Computer Society,
2004.

J. van Woudenberg, M. Witteman, and B. Bakker. Improving differential power
analysis by elastic alignment. Topics in Cryptology—CT-RSA 2011, pages 104-119,
2011.

63

	List of Figures
	List of Algorithms
	List of Tables
	List of Abbreviations
	Introduction
	CPA and Alignment
	Power Analysis
	Countermeasures
	Masking
	Hiding

	Dealing with time shifted traces
	Sliding window DPA
	Static Alignment
	Elastic Alignment

	Alignment with wavelets
	Fourier Transform
	Short Term Fourier Transform
	Wavelet Transform

	SIFT and U-SURF
	SIFT
	U-SURF

	The Algorithm
	Outline
	Detector
	Descriptor
	The Fast Haar Descriptor
	The Super Fast Haar Descriptor

	Matcher
	Warper

	Experiments
	Hardware
	Software and Settings
	Tuning Results
	Speed Boosting Results
	The Fast Haar Descriptor
	The Super Fast Haar Descriptor
	Matching Heuristics
	Simplifications

	Comparison Results

	Conclusion
	Conclusion
	Further research and suggestions

	Bibliography

