Agile software development process
improvement in large organizations

Bart Leusink

August 20, 2012

Supervisor: Second assessor:
Marko van Eekelen Theo Schouten

research number: 168IK

Abstract

This thesis deals with software development process improvement in large organizations.
CMMI is combined with agile practices and concepts from literature to obtain an agile
CMMI framework. This framework is consequently tested in a case study at a large energy
supplier in the Netherlands. The framework proved helpful in determining problems and
opportunities for improvement in an existing software development process. This shows
that an agile CMMI framework can help a large organization improve their software devel-
opment process.

Contents

Problem Statement

1.1 Research methodology
1.1.1 Literature Review L
1.1.2 CaseStudy e

Theoretical Framework

2.1 Software Engineering
211 Waterfall
212 Agile . . . e

Challenges to Agile improvement

31 Teamsize
3.2 Geographical distribution
3.3 Entrenchedculture
3.4 Systemcomplexity
3.5 Legacysystems
3.6 Regulatorycompliance
3.7 Organizational distribution
3.8 DegreeofgovernanCe o i e e e e
3.9 Enterprisefocus e

Hybrid Agile

41 AdaptedBase
4.2 Riskbased
4.3 Cost/Benefitanalysis

Agile improvement models

5.1 4-Dimensional Analytical Tool
5.2 Agile Adoption and ImprovementModel L
53 TheAgile Maturity Map
5.4 Agile Adoption Framework o

Agile and CMMI

6.1 Causal analysisandresolution
6.2 Configuration managemento
6.3 Decision analysisandresolution
6.4 Integrated project management Lo o
6.5 Measurementandanalysis o

6.6 Organizational process definition 29

6.7 Organizational processfocus v o v i e 30
6.8 Organizational performance management 30
6.9 Organizational process performance o 31
6.10 Organizational training 31
6.11 Product integration 31
6.12 Project monitoringand control o o 32
6.13 Projectplanning 32
6.14 Process and product quality assurance 33
6.15 Quantitative project management o L 33
6.16 Requirements developmento o 34
6.17 Requirements management o 34
6.18 Risk management L 35
6.19 Supplier agreement management oL 35
6.20 Technical solution 35
6.21 Validation e 36
6.22 Verification 36

7 Applying the Agile CMMI Framework at a large energy company 38
7.1 Results of the interviews on agile principle level 39
711 Results 39

7.1.2 Levelofagility 45

7.1.3 Suggestions forimprovements oL 45

7.2 Results of the interviews on CMMI process arealevel 47
7271 Results 47

7.2.2 Suggestions for improvementso 51

7.3 Validation of the suggestions at a large energy company 52

8 Reflection 53
9 Conclusion 54
10 References 55
10.1 Academic peer-reviewed PapPers v v e e e e 55
10.2 Other. e e 58

A Interview questions 59
B Interviews 62
B.1 Interview 1 e 62
B.2 Interview 2 74
B.3 Interview 3 82
B.4 Interview 4 86
B.5 Interview 5 L 95
B.6 Interview 6 102
B.7 Interview 7 e 106
B8 Interview 8 110
B.9 Interview O 115

Chapter 1

Problem Statement

In software development, waterfall and agile are both trade-offs between speed and risk
[27]. Where waterfall provides the more risk averse option at the cost of speed, agile is
less disciplined and consequently a faster and more dynamic way to develop software.

Agile software development in large organisations is an area of continuing research. In
“Lots Done, More to Do: The Current State of Agile Systems Development Research”
[1], Abrahamsson et al. state that more research is needed about the adaptability and
extension of agile methods in large organizations.

In an effort to produce more, faster and at lower cost, an increasing number of large orga-
nizations is switching to agile software development methods [52] because they seek an
alternative to more traditional methodologies such as waterfall, which they find too cum-
bersome, bureaucratic and inflexible [24]. There is common consensus that agile method-
ology implementations need to be tailored to a specific organization while at the same time
organizations need to adapt to an agile way of working. Many large organizations opt for
an agile—waterfall hybrid approach, obtaining a balance between risk and speed that fits
their situation [6].

It is, however, easy to create an agile-waterfall hybrid which is far from efficient or even
problematic [9].

The use of process improvement frameworks such as CMMI [51] can help organizations
continually improve their software development processes. There have been many articles
about combining CMMI with Agile development [18, 40, 19, 15, 3, 47] but none of them
go into detail about specific agile-waterfall hybrid implementations of the various CMMI
process areas.

In this paper, | will combine CMMI with an agility improvement model to measure and im-
prove agile processes. This provides large organizations implementing a hybrid method-
ology a framework to improve their agility while at the same time maintaining or improving
their process maturity.

My research question is: Can an agile CMMI framework help a large organization improve
their software development processes?

1.1 Research methodology

1.1.1 Literature Review

| will start by reading up on existing literature regarding the adoption, successes and failures
of agile software development methodologies in large organisations, as well as currently
widely used and well-cited models for assessing the maturity of agile software development
processes and improving them.

Based on this analysis | will then combine the agile principles behind these improvement
models with CMMI to create a version of CMMI which can be used by large organizations
to measure their current efficiency of agile-waterfall hybrid software processes as well as
provide them with suggestions for process improvement. This requires | investigate the
various dimensions in which a hybrid software development methodology can be tailored,
what the specific choices between waterfall and agile approach entail and the correspond-
ing consequences for the organization.

For example, the choice to not provide elaborate requirements up front has implications for
the amount of customer involvement to arrive at the intended product. The same goes for
documentation; not sharing knowledge explicitly through documentation puts more em-
phasis on tacit knowledge sharing, which requires the organization to provide opportunities
to do so.

Which choice is best for the organization is dependent on multiple factors as each choice
has its advantages and disadvantages.

1.1.2 Case Study

To test the aforementioned agile CMMI framework | will use it to perform a case study at
a large electricity corporation in the Netherlands. I've chosen to focus my study on the
B2C department because it’s agile implementation is the furthest along and as such can
provide a more interesting proving ground for my proposed model.

To assess the current agility of agile software development at the company | will use the
indicators of the Agile Measurement Index [38] (see section 5.4 on page 20) to interview
several stakeholders at different stages of the agile software development process. I've
chosen to use this framework because it’s well-cited and has a very comprehensive list of
indicators [50] | have reduced the 300 indicators from [50] to the 45 interview questions in
appendix 10 on page 58. These questions are meant to detect the presence of the various
agile practices and concepts discussed in section 5.4 on page 20.

Before and after | ask the stakeholders about the state of the various agile principles in
the software development process in the organization, | will ask them whether they can
name problems or things that can be improved in their current software development pro-
cess. This way, | hope to get a fairly extensive list of problems that exist with the software
development process.

[will annotate the interview answers with whether they provide evidence for a full implemen-
tation of the agile practice or concept (+), a partly implemented agile concept or practice
(+/-) or lack of an implementation (-). | will email the interviewees a copy of their annotated
interview answers to assess whether they agree with my interpretation of their answers.

| will then use this information and the proposed agile CMMI framework to assess the agility
of the software development process using the scoring method described in the indicators
document of the agile adoption framework [50] and list opportunities for improvement in
the software development processes of the B2C department. Every (+) annotation is worth
1 point for that specific agile concept or practice, every (+/-) is worth half a point and every
(-) is worth no points. | will divide the amount of points for a specific agile practice or
concept by the amount of annotations for that specific concept or practice to get a final
score. If that score is higher or equal to 0.75 | will count the agile practice or concept as
implemented.

Since the ultimate goal of both CMMI and Agile is maximizing value for the organization, the
improvements proposed by an agile-CMMI hybrid model should contribute to the organi-
zational goals. To determine whether my framework actually provides these improvements
in practice, | will ask an agile expert to assess the applicability and value of the suggested
improvements.

Chapter 2

Theoretical Framework

In this chapter | will discuss some of the important concepts which should be known when
discussing agile software development process improvement. In section 2.1.1, the water-
fall model is described. This is a traditional plan-based approach to software development
process management. Agile software development is introduced in section 2.1.2. Ag-
ile software development differs from waterfall in the fact that it uses short iterations to
incrementally create software with a minimum of planning upfront.

2.1 Software Engineering

A commonly used definition of Software Engineering is coined by Friedrich L. Bauer in
1968: [31]

1

The establishment and use of sound engineering principles to obtain econom-
ically software that is reliable and works on real machines efficiently. , ,

While this definition clearly establishes the desired end result, there are several software
engineering process models to achieve this result.

There are a few common tasks in the software engineering process: [49]

¢ Requirements gathering: the developers sit down with the customer to talk about
his demands for the product and to find out the purpose of the software.

¢ Design: in this phase the customer’s requirements are analysed and based on this
a design for the software product is made.

e Coding: during this step the software is actually programmed and subsequently
integrated.

¢ Testing: the software is examined for errors and it is verified whether the delivered
functionality matches the design and customer requirements.

e Operations: the product is put to use by the customer and is supported by the
developers.

While these steps are present in most software engineering projects, the way of imple-
menting them can vastly differ between various software engineering process models.

2.1.1 Waterfall

In many organizations the waterfall model or a variant thereof is used. This model was
first described by Winston Royce [37]. Royce suggested implementing multiple levels of
feedback to improve robustness of the software development process and increase the
chance of a successful result. However, nowadays the waterfall model is often seen as
a model in which all steps in the project are executed sequentially. In practice, a pure
sequential order of the steps of the waterfall model is often not possible. It is often difficult
for the customer to know and articulate all of the requirements in the beginning of the
project and since he is only shown the end result after a long development process, there
is considerable risk of there being a mismatch between the end result and the actual wishes
of the customer [49].

2.1.2 Agile

Agile software development is based on the much older practice of iterative and incremen-
tal software development [22]. Iterative and incremental software development is based
on the Plan-Do-Check-Act cycle, an easily understood and widely used model from quality
management, popularized by W. Edwards Deming.

In the context of iterative and incremental software development, the steps in the software
development process can be represented by the following parts of the Plan-Do-Check-Act
cycle:

¢ Plan: the requirements are gathered and a single iteration is planned

¢ Do: the plan is implemented

¢ Check: the project team reflects on the plan and it’s results

e Act: based on the “Check” step, improvements in the process are implemented

Compared to the waterfall process model, iterative and incremental software development
has shorter cycles in which the previously mentioned software engineering process steps
are carried out to deliver a working piece of software at the end of the cycle. This principle
is essential for agile projects since relatively small iterations allow for frequent evaluation of
customer value and continuous improvement [46].

The term agile software development was coined in 2001 by a group of 17 software devel-
opers discussing lightweight development methods. The end result of that meeting was
The Agile Manifesto [46], a document outlining the purpose and principles of agile software
development.

The writers of the agile manifesto value [46]:

¢ Individuals and interactions over processes and tools.
The writers of The Agile Manifesto propose to build projects around motivated indi-
viduals and to trust them to get the job done when they get the environment and
support they need. They believe that the best architectures, requirements and de-
signs emerge from self-organizing teams.

e Working software over comprehensive documentation.

In agile software development, working software is the primary measure of progress.
Customers usually don’t care about design documents and diagrams, they care
whether they are delivered software that works as expected. That’s why in an agile
software development process, the highest priority of the project team is satisfying
the customer through early and continuous delivery of valuable software. Due to the
high volatility of today’s project demands, this customer value needs to be reevalu-
ated frequently. In large organizations, work on the specifications can take a lot of
time and the end results are often obsolete by the time they are finished [24].

e Customer collaboration over contract negotiation.

While the writers of The Agile Manifesto accept that contracts are often necessary
and can provide some useful boundaries to the project, they point out that continu-
ous customer collaboration is needed to make sure the team delivers what the client
wants. Consequently, agile software developers should not expect a detailed set
of requirements to be signed off at the beginning of the project, rather, they should
gather a number of high-level requirements that is subject to frequent change. Since
this is obviously not enough to design and code, this gap can be closed by con-
tinuous collaboration between business people and developers. The most efficient
and effective method of conveying information with and within a development team
is face-to-face conversation since a lot of the required information is tacit knowl-
edge, which is not easily codified. Many large organizations face problems related
to requirements, which can be a strong driver for a move to a more agile software
development process [24]. For example, when deadlines require that software de-
velopment is started when only partial or high-level requirements are available, orga-
nizations need to manage projects with incomplete requirements and find a way to
better understand the end user’s needs.

¢ Responding to change over following a plan.

In a highly dynamic, competitive environment, faithfully following a plan instead of
allowing for changing requirements can easily lead to an end product that no longer
corresponds with the customer’s wishes. Allowing changing requirements —even
late in development— can be a competitive advantage. Rapid changes in the require-
ments and other environmental factors drives large organizations to seek a flexible
software development process which is capable of adapting to volatile requirements
[24].

While the writers of The Agile Manifesto do think there is value in the latter part of the
statements, they believe that the first segment of the bullet point is more important. This
distinction lies at the heart of agile software development [46].

In practice, there are many different ways in which these principles can be implemented.
Currently, the most popular agile software engineering methodology is Scrum [52].

Chapter 3

Challenges to Agile improvement

Various authors [9, 24, 2] have described specific challenges that can prevent large orga-
nizations from achieving higher agility or maturity. In Agile Software Development at Scale
[2], Scott Ambler mentions a number of complexity factors that exist when applying Agile
strategies in large organizations. While each project will face a different combination of
these challenges, they can be divided in the following 9 categories:

3.1 Team size

Large teams will work differently from small teams and need to be organized differently
as well [2]. Many Agile practices are based on the assumption that teams are relatively
small [7, 24]. With much larger teams, paper- and whiteboard-based processes as well as
face-to-face strategies start to fall apart.

Some organizations have experienced successes with dividing labor within projects into
smaller subteams and organizing teams-of-teams (e.g. scrum-of-scrums) [24, 21, 41, 52],
where each subteam selects one member to take place in an overarching team, coordinat-
ing the efforts of the various subteams. However, critics [9] argue that multiple 15-minute
daily meetings can quickly become untenable. Some organizations [24] believe that the
solution to this problem lies in minimizing the need for cross-team communication.

3.2 Geographical distribution

In the ideal agile physical setup, the team is in the same room to facilitate easy communi-
cation [38]. However, in large organizations it is not uncommon for team members to be
on different floors or even in different buildings. Frequent face-to-face communication be-
tween the developers and the customer is crucial to achieve a high level of agility [38]. Just
like with large team sizes, effective collaboration and knowledge sharing becomes more
challenging when the team is distributed since agile processes that require face-to-face
interaction can no longer be used as effectively [2, 24, 7]. This creates the need for more
formal communication, such as meetings and documentation [24].

One solution to facilitate cross-team communication is the creation of team-of-teams [24,
21]. These have described in section 3.1 and the same challenges apply here as well.

When the organization uses outsourcing for a part of the project, additional challenges
such as timezone differences and cultural differences can appear [2].

Forrester [52] reports that some organizations have successfully been able to mitigate these
concerns by adopting technologies and techniques that support distributed collaboration,
such as wikis and web conferencing platforms.

3.3 Entrenched culture

Large organizations have often strived for years to achieve stability by using optimized
and repeatable processes and producing large amounts of documentation [33]. This has
created an entrenched culture in which people, processes and policies can not be easily
changed to accommodate a more agile way of working [2].

Due to the agile concept of team empowerment, team members in an agile development
process often have additional tasks next to their standard development position descrip-
tions. These tasks may require significantly more skills and experience from the developers
9.

Agile project management requires the project manager to relinquish a lot of the authority
he previously enjoyed in favor of a more facilitative role [33]. If an agile implementation does
not have significant buy-in from middle management, it is much more likely to fail, since
middle management is critical in driving change in large organizations [39].

The evolutionary or iterative process of agile software development creates a level of un-
certainty and ambiguity in long-term estimates [9]. With a completely agile way of plan-
ning software development, which specific functionality will be finished can only be known
shortly in advance but in large organizations business processes and infrastructure require
near-perfect predictions of difficult to estimate tasks [9]. For example, departments in an
organization need to know when new features or changes are finished to be able to do
their job.

Since an agile way of software development requires a fair amount of customer collabora-
tion, other departments need to allocate time to facilitate this collaboration to ensure that
the resulting software meets their needs.

When traditional processes overlap or conflict with agile practices this creates double work,
which greatly reduces agility [24].

3.4 System complexity

Large organizations often require large, complex systems which create the need for a viable
architectural strategy [2]. The standard Agile practice of starting development before the
requirements are well defined can lead to forgotten or misunderstood features in large,
complex projects. Likewise, resources and time can not be easily estimated without a
detailed plan.

While these risks might be acceptable for small or medium-sized projects, Agile develop-
ment of large, complex systems requires a different trade-off between risk and develop-
ment speed.

10

Boehm and Turner [7, 9] proposed creating an Agile-Waterfall hybrid methodology based
on the amounts of potential- and acceptable risk. See section 4.2 on page 13 more a
more detailed description of their risk-based method of creating a hybrid Agile-Waterfall
software development methodology.

3.5 Legacy systems

Large organizations usually have a number of legacy systems that can’t be easily changed
by using an agile methodology because these systems often don’t allow their replacements
to be built in an incremental way [9].

Another issue is the quality of the legacy system, since some legacy systems may have
code that is poorly written and documented or which has degraded over the years as
multiple people worked on it [2].

3.6 Regulatory compliance

Large organizations often have a multitude of regulations they have to comply with.

A number of these regulations are external, for example imposed by the customer or the
government. A few examples of these external regulations are financial regulations such
as Sarbanes-Oxley and Basel Ill for financial risks and technical regulations such as ISO
27002 for security risks.

There are usually also internal regulations, such as CMMI and ISO 900x for process im-
provement. These regulations can increase the documentation and process burden on a
project and complying with them while remaining agile can be a challenge [2, 9].

To address this issue, an Agile-Waterfall hybrid methodology can be tailored to the organi-
zation, ensuring that the project complies with all regulations while still benefiting from the
use of Agile practices where appropriate. In chapter 4 on page 13 | will describe various
methods for creating an organization specific blend of Agile and Waterfall practices.

3.7 Organizational distribution

Large organizations often hire consultants or contractors to help out with software devel-
opment projects. Managing Agile software development processes and achieving high
levels of agility becomes more difficult when the team is made up of people working for
different departments or different companies [2].

3.8 Degree of governance

IT governance is closely related to regulatory compliance since IT governance usually leads
to internal regulations. IT governance frameworks such as ITIL, CMMI and COBIT ensure
alignment of IT with business goals and provide structure to the IT development and man-
agement processes. The structure established by these frameworks may hinder agility
improvement [2, 9]. Traditional forms of governance, such as contracts, milestones and
progress measurement techniques may be inadequate to support the rapid pace of agile
processes [9].

11

A solution to this is a more agile approach to governance. In chapter 6 on page 26 |
describe an implementation of CMMI with Agile practices.

3.9 Enterprise focus

Large organizations often want to leverage common infrastructure platforms to lower costs,
reduce development time and improve consistency. This requires effective architecture,
portfolio management, business modelling and reuse disciplines.

Combining these disciplines with agile processing may prove challenging [2].

12

Chapter 4

Hybrid Agile

Hybrid methodologies are software development methodologies which combine waterfall
processes with aspects of agile methodologies. Many organizations choosing to imple-
ment agile methodologies opt for a hybrid approach [52], where instead of strictly sticking
to a specific methodology, they cherry-pick practices from several agile and plan-based
methodologies. There are various methods for composing an Agile-Waterfall hybrid soft-
ware development methodology from individual Agile- or plan-based practices.

In this chapter | will discuss some of the ways specific practices can be selected which
best match an organization. In section 4.1, | will discuss the adapted base methodol-
ogy of creating a hybrid methodology. A risk-based approach to choosing the amount of
agility in a software development process is described in section 4.2. A method based on
cost/benefit analysis is discussed in section 4.3.

4.1 Adapted Base

When using the adapted base methodology [20], teams choose a specific methodology -
such as Scrum- and then evaluate each practice of that methodology to determine whether
its purpose is congruent with the goals of the organization and project. If not, the practice
can be removed or replaced with a similar practice from e.g. waterfall or another agile
methodology. Boehm and Turner [7] argue that it’s better to start with a relatively minimal
set of practices and only adding extra ones when they can be clearly justified by a cost-
benefit or risk analysis.

4.2 Risk based

Boehm and Turner [7, 8, 9] proposed a method for creating a hybrid Agile-Waterfall method-
ology based on risk management. Organizations should rate a project’s risks to determine
which aspects of the software development process are better suited for a plan-based
approach and which aspects can benefit from an agile way of working. Method selection
is based on 5 dimensions:

¢ Personnel: How knowledgeable and collaborative are the developers?

¢ Dynamism: How stable or dynamic is the environment? Will there be a lot of re-
quirements changes?

13

e Culture: Does the organization have a culture where people feel comfortable and
empowered by having a lot of freedom or would they rather have their roles defined
by clear policies and procedures? The challenges that the entrenched culture poses
to agile implementation and improvement are detailed in section 3.3 on page 10.

e Size: How many developers are in a team and how big is the software product? The
risks related to team size are described in section 3.1 on page 9. The challenges that
large software products provide to the team are described in section 3.4 on page
10.

e Criticality: Wat is the impact of defects? Will bugs in the software cause loss of
large amounts of money or even lives?

Depending on these factors, organizations can choose between plan-based- and Agile
practices to create their own hybrid methodology, fitted to their organization.

The risk-based method does not explicitly say which software development practice cor-
responds to which score in a specific dimension and measures only a few of the many
possible obstacles to agile improvement.

4.3 Cost/Benefit analysis

The cost/benefit analysis methodology of creating an agile-waterfall hybrid is similar to the
risk-based method, using cost/benefit considerations instead of risk analysis. Austin and
Devin [5] propose comparing the benefits and costs of specific agile practices with their
equivalent practices in other agile methodologies and traditional methodologies such as
waterfall to find the practice with the highest benefit relative to its costs.

14

Chapter 5

Agile improvement models

Large organizations need to be able to determine the agility of their hybrid methodology to
find out what can be improved.

The goal of agile improvement- or maturity models is to describe evolutionary stages in the
agile adoption process with which organizations cannot only assess their current maturity
level, but also gain insight in what’s next in the journey to more agility and discipline. In
these models and frameworks, increasing maturity means the progression towards more
agile practices.

Thus, for a maturity model to be useful for agile improvement, organizations have to be
able to do two things:

1. determine the current state of the organization’s software development processes in
the model

2. identify actions that can be taken to improve the organization’s software development
processes relative to the model

It's important that the model not only measures the current state of the team, but also mea-
sures the environment in which it has to operate. The lack of customer- or management
buy-in can severely hamper the agility of a software development team.

In this chapter, | will discuss a few proposed agile maturity/improvement models with re-
spect to these two requirements. | will begin by discussing the 4-dimensional analytical tool
in section 5.1. The agile adoption and improvement model -which uses the 4-dimensional
analytical tool for its measurements- is analysed in section 5.2. In section 5.3, the agile
maturity map will be described. Finally, in section 5.4 | will discuss the Agile Adoption
Framework, which combines ideas from some of the previously mentioned agile maturity
models.

| will also determine the usefulness of these models for large organizations with a hybrid
software development methodology.

15

5.1 4-Dimensional Analytical Tool

The 4-Dimensional Analytical Tool (4-DAT) [35] is an analytical tool to measure the agility
and adoptability of agile software development methods in practice. It is meant to be used
by organizations to make decisions about the selection or adoption of agile methods.

4-DAT facilitates the analysis and comparison of agile methods from four perspectives:

1. Method scope characterization: this first dimension provides a set of key scope
items on which methods can be compared at a high level. These items pertain to var-
ious environmental factors in which the methodology has to work, such as business
culture, project- and team sizes, styles of development and coding, technology- and
physical environments.

2. Agility characterization: the second dimension provides a set of agility features
with an agility measurement approach. Combined, these can be used to check the
agility of methods at both a process level and a method practices level. This is the
only dimension in the 4-Dimensional Analytical Tool that is quantitative.

3. Agile values characterization: in the third dimension, methods are compared by
their support for the Agile values described in the Agile Manifesto (see page 8). Ma-
turity in this dimension is determined by looking for practices that support the values
described in the Agile Manifesto, as well as practices to keep the process agile and
cost effective. In practice, hybrid methodologies are usually not completely compati-
ble with the values from the Agile Manifesto, since they incorporate several processes
from a more plan-based approach.

4. Software process characterization: the last dimension examines the practices
that support product engineering processes and process management processes.
This dimension is basically a very simple version of CMMI (see page 26).

16

5.2 Agile Adoption and Improvement Model

The Agile Adoption and Improvement Model (AAIM) [36] is a model for the adoption, as-
sessment and improvement of agile software development processes. It can be used as
a gradual road map for the adoption of an agile approach so that the required agile level
can be achieved and improved over a period of time. Contrary to the Agile Maturity Map
(see page 19), in the Agile Adoption and Improvement Model each level contains specific
agile practices that need to be implemented successfully to achieve that level.

The AAIM consists of 6 maturity levels, ordered in three agile blocks, from basic to ad-
vanced. At each block the agility measurement modelling approach of the 4-Dimensional
Analytical Tool (see section 5.1 on page 16) is used to measure the degree of agility of the
agile processes.

Agile Block: Agile-Prompt

Agile-Prompt is a starting point for basic Agile process practices in an organization.

1. Agile Infancy: At this level, only the basic Agile properties (speed, flexibility and
responsiveness) in a software development process are established in practice. Im-
provement is focused on implementing iterative and incremental development and
preparing the team and environment for further changes in the software development
processes.

Agile Block: Agile-Crux

The Agile-Crux block consists of the core of the AAIM levels and is focused on the estab-
lishment of key agile practices and properties in a software process.

What’s immediately noticeable is that the levels of the Agile-Crux block can be easily
mapped to the points from the Agile Manifesto (see page 8).

2. Agile Initial: At this level the organization should focus on enabling communication
and collaboration with developers, stakeholders and customers. This corresponds
with the "Customer collaboration over contract negotiation” value from the Agile Man-
ifesto.

3. Agile Realization: This level emphasizes the production of software over compre-
hensive documentation. This is almost literally the value "Working software over com-
prehensive documentation” from the Agile Manifesto.

4. Agile Value: At this point, the practices are established and focused on develop-
ers and customers without ignoring tools and processes. This level corresponds to
the agile value "Individuals and interactions over processes and tools“ of the Agile
Manifesto.

Agile Block: Agile-Apex

In this block, the focus is on further reducing production costs while maintaining or improv-
ing the production quality.

5. Agile Smart: This level focuses on the establishment of a learning environment.
Various agile methodologies provide guidance on how to integrate learning with the

17

software development process. Scrum does suggest implementing Communities of
Practice and some organizations have had a lot of success with that [21].

6. Agile Process: At this level, the practices are focused on the establishment of qual-
ity production with minimal resources and within a minimum time frame.

18

5.3 The Agile Maturity Map

The Agile Maturity Map [34] is a way of thinking about Agile adoption in terms of goals for
Agile software development teams to help them assess the current maturity of their Agile
processes and to provide them with a clear roadmap for implementing and improving Agile
practices.

The Agile Maturity Map consists of the following five maturity levels:
1. Awareness: the team understands the improvement goals and their value

2. Transformation: the team demonstrates commitment towards achieving the im-
provement goals

3. Breakthrough: the team now consistently uses Agile practices that satisfy the goals
4. Optimizing: the team makes continuous improvements in the goal area
5. Mentoring: the team is mentoring other teams in the goal area

While the Agile Maturity Map does not explicitly name the Agile practices belonging to
each maturity level, it does provide five categories in which the use of Agile practices can
be improved:

e Acceptance Criteria: increasing the quantity and quality of information communi-
cated to the developers just in time for them to use that information in development

¢ Green-Bar Tests and Builds: automated development builds and tests
¢ lterative Planning: continuous planning
¢ Learning and Adapting: focus on improving skills and learning from doing

¢ Engineering Excellence: implementing or improving practices that improve the
quality of the software

Each Agile software development team in the organization is tasked with assessing their
maturity level for each of these categories and creating user stories based on these cate-
gories which each present an improvement in the use of Agile practices within the team.

Letting the software development teams decide on the improvement goal user stories
helps the teams overcome their resistance to change and lets them implement the Check-
and Act parts of the Deming cycle for continuous improvement on which Agile software
development is based. However, many improvements in Agile practices are dependent
on environmental factors, management or customers. The implementation of these agile
practices or concepts requires organizational changes which in large organizations are
hard to implement from the bottom up. However, since agile is a collaboration-oriented
approach to software development, grassroots level buy-in is very important [39]. The
Agile Maturity Map could therefore be used as a way to introduce new agile practices and
concepts to existing agile teams.

19

5.4 Agile Adoption Framework

The Agile Adoption Framework [38] combines various aspects of the previously discussed
maturity models and is intended as a structured process to guide organizations in adopting
agile practices. As a part of this framework, the Agile Measurement Index contains clear
indicators [50] for determining the agility of a specific software development process. The
other part of the Agile Adoption Framework is a four stage plan to adopt additional agile
practices. This plan gives organizations a clearly defined method of introducing new agile
practices to teams to improve agility.

The five agility levels in the Agile Measurement Index are inspired from the core agile values
and beliefs as

1. Collaborative: This level focuses on making the software development process
more collaborative through enhancing communication and cooperation between stake-
holders. Communication and collaboration lies at the foundation of agile software
development and as such is represented by the “Individuals and interactions over
processes and tools” and the “Customer collaboration over contract negotiation”
values of the Agile manifesto (see page 8) .

2. Evolutionary: Evolutionary software development deals with the early and continu-
ous delivery of software. Delivering software early and often is an important aspect
of all agile methodologies as it corresponds with the “Working software over com-
prehensive documentation” value of the agile manifesto (see page 8).

3. Effective: This level improves the development of high-quality working software in
an efficient and effective manner.

4. Adaptive: The objective of this level is to make the software development process
more responsive to change through multiple levels of feedback. This is related to the
agile value “Responding to change over following a plan” from the agile manifesto
(see page 8).

5. Ambient: This agility level focuses on establishing the ideal agile environment, a
vibrant environment needed to sustain and foster agility in an organization.

The following five dimensions are a distillation of the twelve principles from the agile man-
ifesto (see page 8): Each dimension contains a number of agile concepts and practices,
essential characteristics that must be included in the software development process before
that process can be considered agile.

e Embrace change to deliver customer value: Agile methodologies measure the
success of a software development effort on the extent to which it helps deliver
customer value. Since some requirements that realize additional customer value can
not be known beforehand, an attitude of embracing and welcoming change should
be maintained throughout the software development process. This is reflected in the
value of “Responding to change over following a plan” the agile manifesto (see page
8).

- Reflect and tune process: Reflecting about the process and tuning it are the
check- and act steps of the Deming cycle and as such an important part of any
agile methodology. This agile practice concerns whether management and de-

20

velopers are willing and able to reflect and tune the process after every iteration
and release [50].

- Evolutionary requirements: Instead of gathering all requirements upfront and re-
fusing changes when implementing them, agile teams try to decide on require-
ments and features as late as possible. This agile concept deals with whether
managers and developers can deal with the uncertainty associated with decid-
ing on features and requirements as late as possible and whether managers
and developers are willing to accept changes from the customer [50].

— Client driven iterations: Whether or not the customer has the power to dictate
the scope of the iterations [50].

- Continuous customer satisfaction feedback: \Whether the customer is encour-
aged continually give feedback/criticism and rethink their requirements during
the development process [50].

- Low process ceremony: Process ceremony is the level of paperwork involved
with a process. It is important to keep the amount of process ceremony low
to maintain agility. Large organizations may need to maintain a high process
ceremony due to audits or regulations (see section 3.6 on page 11). This agile
concept covers whether or not developers are trusted to make decisions on
their own without explicit management approval [50].

¢ Plan and deliver software frequently: Delivering working software early and fre-
quently is reflected in the agile value “Working software over comprehensive docu-
mentation” from the agile manifesto (see page 8). This provides the customer with a
functional piece of the product to review and provide feedback on, which in turn is
essential for planning the scope and direction of upcoming iterations.

— Collaborative planning: Whether or not customers, developers and manage-
ment plan together [11, 50].

- Continuous delivery: Incremental and iterative development [22] is an important
part of any agile methodology. It means that the team has to deliver a working
product after very iteration. This agile practice deals with whether or not man-
agement and developers can handle and are willing to use an incremental and
iterative development approach [50].

- Planning at different levels: Whether or not management is willing to commit
to the process of continuously planning instead of developing a one-time plan
upfront [50].

- Risk driven iterations: Whether the developers and managers agree to have
risks drive the scope of each iteration [50].

- Plan features not tasks: In agile methodologies, planning implemented through
the product backlog, a list of features that need to be implemented. This forces
the agile team to think about the product at the feature level before separating
the features in to tasks for the sprint backlog. This agile concept deals with
whether the high-level agile planning is based on features instead of tasks.

- Maintain a list of features and their status (backlog): Whether or not manage-
ment is willing to maintain an up-to-date list of all the remaining features for the

21

project and their status [50].

— Smaller and more frequent releases: Smaller and more frequent releases are an
important part of any agile software development methodology since they give
the customer quicker feedback, allowing him to intervene early in case require-
ments are implemented incorrectly. This agile concept deals with whether the
team delivers a fully functional release after every iteration [50].

- Adaptive planning: Adaptive planning is part of the act step from the Deming
cycle and allows planning for the next iteration to be based on the customer’s
feedback from the current iteration. This agile practice deals with whether or
not management is willing to plan immediately before the iteration instead of
earlier to allow the customer’s feedback to be incorporated into the planning
[50].

- Agile project estimation: Whether or not developers are estimating the effort
and duration of various user stories themselves [50].

¢ Human centric: The reliance on people and the interactions between them is a
fundamental part of all agile methodologies [11].

- Collaborative teams: Whether or not people are willing to work in teams and
help others [50].

- Empowered and motivated teams: This agile concept covers whether or not
management has empowered teams with decision making authority and whether
or not team members are motivated [50, 23].

- Self organizing teams: This agile concept is about whether management agrees
to have self-organizing teams and employees feel comfortable working in self-
organizing teams [50Q].

- Frequent face-to-face communication: Frequent face-to-face communication
is one of the cornerstones of any agile methodology. This agile concept in-
volves whether frequent face-to-face communication between team members
is achievable [11, 50, 23].

- Ideal agile physical setup: Whether all the developers are in a common room,
furnished to facilitate the agile process (i.e. whiteboards) [50, 23].

¢ Technical excellence: High-quality code is essential in an agile, fast-paced devel-
opment environment.

- Coding standards: Whether or not coding standards exist and developers see
the benefit and are willing to apply them [50].

- Knowledge sharing tools: Whether or not knowledge sharing tools, such as
wikis are available and are used by the whole team [50].

- Task volunteering: Whether employees volunteer for tasks instead of being as-
signed to them [50].

— Software configuration management: \Whether or not the organization has tools
for software configuration management [50].

22

- Tracking iteration progress: Whether or not a mechanism exists to monitor the
iteration progress [50].

- No big design up front: Whether design is a continuous process or done once
at the beginning of the development process [50].

- Continuous integration: Continuous integration [45] means that the product is
automatically integrated and tested every time new code is added, which allows
developers to find defects early. This agile practice is about whether or not the
developers are willing and able to use continuous integration [50].

- Continuous improvement (refactoring): Refactoring is the discipline of improving
the quality of code by modifying the internal structure of existing code without
changing the external behavior. This agile practice deals with whether or not
developers agree to adopt an approach of continuous software improvement
and whether or not they are competent enough to refactor code without jeop-
ardizing the quality of functionality of the code [50].

— Unit tests: Unit tests are tests of small individual parts of code. In agile software
development, unit tests are very important, since they ensure that functional-
ity doesn’t break when refactoring code. This agile practice is about whether
developers are willing to write unit tests during development and have the com-
petence and previous experience to do so [50].

- 30% of level 2 and level 3 people: Level 2 people are at the point of learning to
break the rules, i.e. they have a level of software development method under-
standing and use which enables them to tailor a method to fit a precedented
new situation by using heuristics [7]. In addition, level 3 people are able to re-
vise a method (i.e. break its rules) when they encounter an unprecedented new
situation [7]. While level 2 people can function well when managing a small,
precedented agile or disciplined project, they need the guidance from level 3
people on large, unprecedented projects [7].

- Daily progress tracking meetings: Whether or not management and developers
are willing to meet daily to discuss the progress of the project [23, 50].

- Agile documentation: Since agile methodologies value “working software over
comprehensive documentation” (see page 8), an agile approach to documen-
tation entails writing minimal or “just enough” documentation. In large organi-
zations, this might not be possible due to regulatory requirements (see section
3.6 on page 11). This agile concept involves whether developers are willing and
able to take an agile approach to documentation [50].

— User stories: User stories are an elicitation method/form for high level require-
ments which in a few sentences capture the who, what and why of a require-
ment [9]. Regulatory requirements for the elicitation of requirements may pre-
vent teams from using user stories. This agile practice is about whether man-
agement and developers are willing and able to use user stories [50].

- Test-driven development: In test-driven development [13], a developer writes
a failing automated test case that defines the requirement before implementing
code to pass the test. This agile practice deals with whether or not the devel-
opers are motivated and willing to apply test driven development and whether

23

or not management will encourage test-driven development and tolerate the
learning curve [50Q].

- Pair programming: Pair programming [43, 14, 44] is a technique in which two
programmers work on one workstation. This allows one programmer to review
the code and design of the other programmer while the code is being typed in.
Pair programming is an important element of extreme programming but can also
be used within other software development methodologies. This agile practice
deals with whether management can see the benefit of pair programming and
whether or not developers are willing to try pair programming.

— No/minimal number of level -1 or 1b people on team: Level -1 people are un-
able or unwilling to collaborate or follow shared methods [7]. Since collabora-
tion and following shared methods are very important for the effectiveness of
an agile team, level -1 people need to be identified to be able to get rid of this
counterproductive mindset. Level 1 people are are still learning and need pro-
cedures, heuristics or a set of rules to follow. Level 1b people can perform well
in straightforward software development in a stable situation but are likely to
slow down an agile team when dealing with rapid change [7]. This makes level
1b people ideal for work in a traditional software development environment but
counterproductive in an agile team.

e Customer collaboration The agile manifesto value “Customer collaboration over
contract negotiation” emphasizes the importance of significant and frequent inter-
action between customers, developers and all other stakeholders of the project to
ensure that the agile project satisfies the requirements of the customer.

- Customer commitment to work with developing team: Whether the customer
is willing to dedicate time to take an active role in the project [50, 23].

- Customer contract reflective of evolutionary development: Whether or not the
contract with the customer reflects that the system is developed in an iterative
and incremental fashion [50].

- Customer immediately accessible: Whether a knowledgeable customer repre-
sentative that is authorized to make decisions on the spot regarding the product
is immediately accessible to the development team if needed [50].

— Customer contract revolves around commitment of collaboration: \Whether in-
stead of features, the customer contract revolves around commitment of inter-
action and collaboration [50].

- Frequent face-to-face interaction between developers & users (collocated): Whether
the frequent face-to-face interaction between developers and customer is achiev-
able [50, 23].

The Agile Measurement Index contains indicators for every maturity level of a dimension
[60]. This sets this maturity model apart from the previously mentioned models and gives
organizations an easy way to objectively measure the agility of software development pro-
cesses.

24

Agile Principles

Embrace Change Plan and Deliver Human Centric Technical Customer
to Deliver Software Excellence Collaboration
Customer Value Frequently
Level 1: Reflect and tune Collaborative Collaborative Coding standards | Customer
Collaborative process planning teams commitment to
Know|edge work with
Enhancing Empowered and sharing tools developing team
communication motivated teams
and collaboration Task \/o|unteering
Level 2: Evolutionary Continuous Software Customer contract
Evolutionary requirements delivery configuration reflective of
management evolutionary
Delivering software Planning at development
early and different levels Tracking iteration
continuously progress
No big design up
front
Level 3: Risk driven Self organizing Continuous
Effective iterations teams integration
Developing high Plan features not Frequent Continuous
quality, working tasks face-to-face improvement
software in an communication (refactoring)
efficient and Maintain a list of all
effective manner features and their Unit tests
status (backlog)
30% of level 2 and
level 3 people
Level 4. Client driven Smaller and more Daily progress Customer
Adaptive iterations frequent releases tracking meetings immediately
accessible
Responding to Continuous Adaptive planning Agile
change through customer documentation Customer contract
multiple levels of satisfaction revolves around
feedback feedback User stories commitment of
collaboration
Level 5: Low process Agile project Ideal agile physical | Test-driven Frequent
Ambient ceremony estimation setup development face-to-face
interaction
Establishing a Pair programming | between
vibrant developers & users
environment to (collocated)

sustain agility

No/minimal
number of level -1
or 1b people on
team

Table 5.1: The 5 Levels of agility populated with agile practices and concepts (from [38])

Chapter 6

Agile and CMMI

The Capability Maturity Model Integration (CMMI) for Development [51] is a model for soft-
ware development process management. CMMI is comprised of a set of process areas,
organized into maturity levels. Each process area consists of a number of goals An orga-
nization has to implement practices to satisfy the goals of all process areas of a specific
maturity level in order to claim its software development processes are at that maturity level.
The CMMI document contains example practices for each goal but since these practices
are based on traditional plan-based software development they are often in conflict with
the values of agile software development.

Just like agile software development, the CMMI is based on the Plan-Do-Check-Act cycle
popularized by Deming. Using this cycle, CMMI can be used as a model for continuous
improvement of software development processes. However, CMMI is not intended to be
used as a standard, and not all organizations will benefit from reaching the highest CMMI
maturity level [47]. Instead, organizations should consider whether there is business value
in satisfying the goals of a specific process area.

Since both Agile and CMMI are based on the Plan-Do-Check-Act cycle and CMMI and
Agile share many of the same values [47], we can use this information to map agile practices
to CMMI process areas [3].

Where CMMI describes what should be done, the various agile methodologies describe
how this could be achieved[47]. For each CMMI goal there are multiple possible imple-
mentations from agile methodologies such as Extreme Programming and Scrum, but also
from plan-based approaches such as waterfall. Since all these practices have their own
advantages and trade-offs, organizations need to find a combination that fits their situation.

To determine which approach is most suitable, organizations first need to determine their
situation with respect to the obstacles to agile improvement [38, 7]. With that information
they can choose a practice that matches each factor to fill in each CMMI goal. A few
common approaches to choosing these practices can be found in chapter 4 on page 13.
By mixing and matching CMMI goals with a combination of agile and waterfall practices,
organizations can choose their own trade-off between agility and discipline.

To improve their methodology, they can try to eliminate roadblocks, which allows the or-
ganization to implement more agile practices and work more efficiently. To help guide this
improvement process, one of the agile improvement models (described in chapter 5 on

26

page 15) can be used.

The check- and act steps of the Deming cycle can be used to continuously improve the
agile software development process by allowing experimentation with various possible im-
plementations of the CMMI goals. This means we can use CMMI roadmaps to guide
process improvement while using an Agile improvement roadmap to continually improve
the agility of the software development practices implementing the CMMI roadmap.

On the next few pages, | will describe an agile implementation of CMMI process areas,
showing how agile principles relate to IT- and business processes. For each CMMI pro-
cess area, relevant agile practices and concepts are emphasized. In order to meet the
requirements of a CMMI process area, an organization must have practices implementing
the goals of that process area. However, these practices do not need to be the ones de-
scribed in the CMMI specification as the organization is free to propose alternative practices
and appropriate evidence to meet a CMMI appraisal [3, 47].

27

6.1 Causal analysis and resolution

This process area deals with the identification of problematic or exceptional process per-
formance and their consequences for process improvement. This corresponds strongly
with the check and act steps from the Deming cycle.

The analysis of past performance to implement continual improvement is a crucial part
of any Agile methodology [43]. CMMI mentions that everyone should be empowered to
propose improvements, which is in line with the Agile way of thinking about optimizations.
This is reflected in the reflect and tune process practice from the agile adoption framework
(see page 20). In Scrum for example, this is implemented as the Sprint retrospective. After
each sprint, all team members reflect on the questions of what went well during the past
sprint and what could be improved.

6.2 Configuration management

Software configuration management (see page 22) involves establishing and maintaining
the integrity of work products. In agile projects, such configuration items are code, design,
tests, requirements, drawing and specifications [14]. An example of a software configura-
tion management tool is version control software such as Subversion or Git.

While configuration management is not specifically called out in any agile methodology, it is
even more important in Agile than in more traditional software development methodologies
due to the frequently changing environment.

To reduce the amount of work this process area takes for Agile teams, large parts of con-
figuration management can be automated, especially when combining it with continuous
integration (see page 23) [14].

6.3 Decision analysis and resolution

This process area involves the analysis of possible decisions using a formal evaluation
process that evaluates identified alternatives against established criteria.

The focus on establishing specific processes for team functions in the practices of this
process area is in conflict with the spirit of “Individuals and interactions over processes
and tools” from the Agile Manifesto (see page 8). Decision making in agile projects is
more complex than in traditional development environments since in agile projects decision
making is a collaborative process.

Furthermore, agile projects should be able to adapt quickly to the situation rather than
be bound to preconceived criteria, a strict evaluation of alternatives or decision analysis
process [43].

In large organizations, having a formal process for taking difficult decisions can be very ben-
eficial, especially if the issue being decided on can pose significant risks for the project or
organization. The risk-based approach to establishing an Agile methodology (see section
4.2 on page 13) can help an organization decide whether a more traditional implementation
of this process area’s goals is needed.

28

6.4 Integrated project management

The purpose of integrated project management is to establish and manage the project and
the involvement of relevant stakeholders.

CMMI explicitly mentions the coordination and collaboration with relevant stakeholders. In
an agile software development process, the continuing involvement of stakeholders and
customer commitment to work with the developing team (see page 24) is very important.
This is why the customer contract should be reflective of evolutionary development (see
page 24) and revolve around commitment of collaboration (see page 24). The integrated
project management process area deals with processes that make sure that the con-
cerns of relevant stakeholders are addressed. Since Agile methodologies are focused on
responding to change, it is easier to respond to stakeholders’ concerns than in more tra-
ditional development methods. However this requires stakeholders to actively participate
in the development process [33]. Frequent face-to-face interaction between developers
& users (see page 24) -especially when collocated- ensures that the customer is imme-
diately accessible (see page 24) to validate the product, clarify requirements and answer
questions.

Agile software development methodologies embrace the empowerment of the software
development team, which changes the role of the project manager from planning and
controlling to facilitating the collaboration of team members [33].

6.5 Measurement and analysis

The purpose of this process area is to make sure that sufficient measurement capability
is available to make informed management decisions. Measurement and analysis are the
check part of the Deming cycle and as such well represented in both CMMI and Agile.
Agile software methodologies continually measure both the product and the process used
to create it to allow improvement.

Hartmann and Dymond [17] point out that traditional measuring methods such as used in
the waterfall method can hamper performance in agile development. They propose that the
key metric with which organizations measure agile performance is the amount of business
value created for the organization.

Another useful and often used diagnostic is velocity, the amount of story points an agile
team can process in a single iteration.

Another thing to measure is the agility and maturity of the software development process
itself. This is described in more detail on page 15.

6.6 Organizational process definition

The purpose of the organizational process definition process area is to establish and main-
tain organizational process assets, work environment standards, and rules and guidelines
for teams.

Some people [43] consider an agile methodology as being essentially an informal process
asset repository. For establishing an agile process asset repository, large organizations
can use one of the approaches described in chapter 4 on page 13.

29

The work environment of agile teams needs to facilitate various agile processes. In the ideal
agile physical setup (see page 22) all the developers are in a common room, furnished with
e.g. whiteboards to facilitate the agile process.

The rules and guidelines for agile teams differ significantly from those applicable to teams
in more traditional software development environments. Self organizing teams (see page
22) can organize again and again in various configurations to meet challenges as they arise
[11].

In a highly dynamic environment, team members in an agile team need to be able to re-
spond to change quickly by being empowered to make some decisions without seeking
explicit managerial approval. Therefore, empowered and motivated team members (see
page 22 are important underlying concepts in the agile manifesto (see page 8.

The agile concept collaborative teams (see page 22) states that even more so than in
traditional software development, agile practices require developers to work in teams and
help each other.

6.7 Organizational process focus

This process area deals with planning, implementing and deploying organizational pro-
cess improvements based on an analysis of the strengths, weaknesses, opportunities and
threats of the organization’s processes and process assets. These process improvements
improvements occur in the context of the organization’s needs and should be used to
address organizational objectives.

The traditional infrastructure implied by the goals of this process area conflict with a more
agile way of working [43]. Within a team or a project, Agile processes evolve under their
own experience as part of the check- and act steps of the Deming cycle. An Agile example
of soliciting input for this analysis is the sprint retrospective. However, in large organiza-
tions it can become challenging to make sure these improvements are shared with all other
projects. This problem can be solved by establishing organization-wide repositories con-
taining best practices of previous projects [14] or creating communities of practice [21].

6.8 Organizational performance management

The organizational performance management process area is another manifestation of the
check- and act steps from the Deming cycle, in this case specifically for the organization’s
performance to meet its business objectives. To that end, organizations need to iteratively
analyze performance data and implement improvements to close the performance gaps.

Continually improving processes based on the performance to meet organizational goals
is an important aspect of most Agile methodologies and the focus of the reflect and tune
process agile concept (see page 20. For example, in Scrum the sprint retrospective pro-
vides an opportunity for team members to identify practices that could be improved in the
next sprint.

CMMI Level 5 advocates that the organization looks at where they are overdoing processes
like documentation and then trim those back [27]. Examples of such agile software devel-
opment process improvements are lowering the amount of process ceremony (see page

30

21) and taking a more agile approach to documentation (see page 23), so that only “just
enough” documentation is written.

6.9 Organizational process performance

Organizational process performance deals with establishing and maintaining process per-
formance baselines and models needed for quantitative project management (see section
6.15 on page 33).

The idea of measuring a process and maintaining baselines and models conflicts with the
spirit of “Individuals and interactions over processes and tools” from the Agile Manifesto
(see page 8). However, Scrum has metrics which could be characterized as process met-
rics [43] and can be used by large organizations to implement the goal of this process
area.

6.10 Organizational training

The purpose of this process area is to develop the knowledge and skills of team members
so they can perform their roles effectively and more efficiently.

Many authors agree that sufficiently training people is critical to agile project performance
[27, 33, 6, 7]. The agile concepts of 30% level 2 and level 3 people (see page 23) and
no/minimal level 1 or 1b people on team (see page 24) ensure that the team members are
sufficiently qualified and capable to work in an agile way.

Since Agile methodologies value individuals and interactions over processes and compre-
hensive documentation, organizational knowledge sharing should reflect this. Therefore,
an Agile implementation of organizational training should focus on training and mentoring
[43]. Frequent face-to-face communication (see page 22) is essential for sharing knowl-
edge between developers. This requires an ideal agile physical setup (see page 22) in
which developers are located closely together in a common room.

Agile practices for sharing tacit knowledge are for example communities of practice [21]
for organization-wide knowledge sharing and pair programming (see page 24) for sharing
code-related knowledge.

Knowledge sharing tools (see page 22) such as wikis can help teams codify and share
knowledge. By adopting these technologies organizations can overcome knowledge shar-
ing challenges created by geographical distribution (see section 3.2 on page 9).

6.11 Product integration

Product integration is the assembly of the product from the product components and
consequent delivery.

In software development projects following traditional software development methodolo-
gies such as the waterfall model, the product is integrated and shipped at the end of
development. This is in stark contrast with agile methodologies, which features smaller
and more frequent releases (see page 22). In agile projects, product integration is a fre-
quent -at least daily- activity and the agile concept of continuous delivery (see page 21)

31

means that working software is shipped early and often. In extreme programming for ex-
ample, continuous integration (see page 23) is an important practice to find defects early.
Research [52] shows that while the agile discipline of always checking in working code to
make sure the automated build doesn’t break is not easy to adopt, it will quickly pay off
since it catches defects early and often. Since integration steps are performed very often,
a thorough preparation of the continuous integration environment is critical [14].

To make sure interfaces between different components match, test-driven development
(see page 23) can be used. In this practice, tests are written before implementation to de-
scribe how the interfaces should behave but without focussing on implementation details.
When combining test-driven development with continuous integration, the continuously
decreasing amount of failing tests can provide a powerful metric on the amount of imple-
mentation work that remains to be done.

6.12 Project monitoring and control

This process area involves providing an understanding of project progress so that correc-
tive actions can be taken when the project gets behind schedule.

While monitoring and taking corrective actions are crucial to the progress of any project,
the practices CMMI suggests for doing so seem very oriented to traditional project man-
agement [43]. However, agile methodologies provide excellent support for implementing
this process area.

For example, Scrum uses burn-down or burn-up charts to show how much functionality
is left to complete, while the project task board is used to track the progress of individual
user stories. During the iteration, there are daily progress tracking meetings (see page 23)
such as Scrum stand-ups to allow developers and management assess the progress of
the individual team members and overall progress of the project. Due to the strict system
of short iterations and the regular commitments to the plan, monitoring an agile project
against the baseline is relatively easy [14].

Another relevant agile practice is tracking iteration progress through working software (see
page 23). Most agile methodologies state that the ultimate measure of project progress
should be whether working software is released with improvements for the end-user.

Stakeholder involvement can be crucial to the success of agile projects when the collab-
oration with the customer and potential end users replaces detailed requirements. In this
case, stakeholder involvement in project activities should be monitored.

6.13 Project planning

The purpose of project planning is establishing and maintaining plans defining project tasks.

In agile methodologies project planning is an activity that is performed more frequently than
in traditional software development environments due to the short incremental iterations. In
addition, most agile methodologies require a level of start-up planning and risk assessment
[43].

It is easy to interpret the specific CMMI practices in this process area as requirements for
big planning up front, something that is in direct opposition to the agile way of working.
However, in large organizations some degree of planning up front is usually required to

32

coordinate separate teams and departments. In order to allow agile teams some degree of
adaptability to environmental factors, up front planning should be kept to a bare minimum.

Planning at different levels (see page 21) means that instead of developing a detailed plan
up front, management commits to a process of continuous planning. Anderson [3] pro-
poses that organizations provide a loose project plan to approximate the scope of a project
and lay out a plan for a series of iterations that provides an outline of what will be devel-
oped in each one. The agile concept plan features not tasks (see page 21) states that the
low-level planning should be done by maintaining a list of features and their status (see
page 21) and letting developers volunteer for tasks (see page 22) instead of planning the
tasks explicitly.

In addition, the agile practice of collaborative planning (see page 21) means that managers,
developers and the customer plan together.

Since scrum is focused on project management, it specifically has a number of practices
which can easily be used to replace the waterfall-based practices from CMMI for project
planning [28]. The concept of agile project estimation (see page 22) means that team
members themselves estimate the effort and duration of the user stories. An example of
this is planning poker [30], a technique based on consensus to estimate the amount of
time and effort a user story should take. In Scrum, story points are the preferred way to
estimate how much time the implementation of a requirement should take. Estimates for
stories and tasks are established and can be corrected during the project. The precision
of the estimates is increased through a short planning horizon due to short iterations [14].

As part of the act step from the Deming cycle, the agile concept of adaptive planning (see
page 22) states that planning for the next iteration should be based on the customer’s
feedback from the current iteration.

6.14 Process and product quality assurance

The purpose of this process area is to objectively evaluate processes and associated work
products to gain insight in their quality.

Since the emphasis of this process area lies on processes and work products instead of
the end product, the process and product quality assurance process area is not completely
applicable to agile projects [43]. However, objectively evaluating the maturity and agility of
the software development process can reveal new insights on how to improve it.

In agile methodologies there is no explicit evaluation of processes, work products and
services against the applicable process descriptions [14]. In Scrum, some basic quality
assurance activities are performed by the Scrum Master when he checks that the Scrum
process is being followed. In XP, the main method of controlling that the method is applied
in the right way is the XP coach [14]. Using this agile CMMI framework to measure agility
and maturity is another way to evaluate the software development process.

6.15 Quantitative project management
The purpose of this process area is to achieve the project’s established quality and process

performance objectives by monitoring performance and quality and addressing deficien-
cies in achieving the quality and performance objectives of the project.

33

While measuring and analysing performance and quality is an important part of agile soft-
ware development (see section 6.5 on page 29), Agile methodologies do not contain spe-
cific practices for implementing quantitative project management since statistical methods
focus on defined processes instead of individuals [14] which is in conflict with the spirit of
the agile manifesto (see page 8). However, the agile manifesto does not preclude imple-
menting this process area, as long as the resulting processes are kept light-weight [43].

Due to the short iterations in agile software development, project performance issues
quickly become apparent when team members fail to implement the requested functionality
in the course of one iteration. This allows project managers to address project performance
issues after each iteration.

6.16 Requirements development

Requirements development is the process of eliciting, analyzing and establishing require-
ments.

This CMMI process area supports the Agile concepts of close customer relationships,
customer-based requirements elicitation and stakeholder involvement [43].

In plan-based software development methodologies such as waterfall, requirements are
elicited at the start of the project and are relatively stable. This is in stark contrast with most
agile methodologies, where the agile concept of evolutionary requirements (see page 21)
means requirements are defined incrementally, rather than trying to get them all in advance.

In agile projects requirements are written down as a few sentences in a user story (see
page 23) which concisely captures the who, what and why of a requirement [9]. In ex-
treme programming, test-driven development (see page 23) means that requirements are
communicated as automated acceptance tests. In both cases however, the requirements
specification remains quite vague [14].

The requirements are finally analysed and specified when a developer starts working on a
specific task [14].

Which way of requirements development is more appropriate for a specific project can be
determined using Boehm and Turner’s risk-based approach (see page 13).

6.17 Requirements management

The purpose of requirements management is to make sure that the project’s plans and
products are aligned with the customer’s requirements.

While the goal of this process area is completely applicable in an agile project environ-
ment, the plan-based practices CMMI suggests are not [43]. Fortunately, several agile
methodologies contain practices to implement requirements management. In agile soft-
ware development maintaining a list of features and their status (see page 21) or product
backlog plays a huge part in the management of requirements. The Product owner and
team jointly review the product backlog to help the team develop an understanding of the
requirements. The traceability of requirements is not an explicit goal of most agile method-
ologies, but is nonetheless supported by artifacts such as stories, tasks and tests [14].

34

Another important aspect of any agile methodology is the ordering of requirements by pri-
ority. This ensures that the requirements with the highest business value are implemented
first.

6.18 Risk management

The purpose of risk management is identifying potential issues so they can be prevented
or their effect mitigated.

Most agile methodologies are designed to mitigate certain types of risks — particularly those
from changing requirements and schedules [43]. For example, the agile mantra of releasing
early and often, combined with customer involvement means that the effect of the risk of
delivering the wrong product to the customer is relatively small compared to waterfall-
based projects.

When using risk driven iterations (see page 21), risks for the organization determine the
scope of each iteration. If -for example due to regulations- there is a risk for the organization
when something is not delivered on time or is of poor quality, it should be prioritized to make
sure the organization is not fined or missing out on large opportunities.

Organizations can manage the amount of risk in a project upfront by combining an agile
methodology with plan-based practices as described by Boehm and Turner in their risk-
based methodology for creating a hybrid software development process (see section 4.2
on page 13).

6.19 Supplier agreement management

The purpose of this process area is to manage the acquisition of products and services
from suppliers.

It can be difficult to combine communication with a supplier with the agile way of working
in an organization. For example, suppliers often require planning upfront to get artifacts in
time. These kind of issues are left largely ignored in agile methodologies [43, 14] so the
practices CMMI proposes can be a welcome addition to agile projects in large organiza-
tions.

6.20 Technical solution

The purpose of this process area is to select, design and implement solutions to require-
ments.

In agile development, the concept of no big design up front (see page 23) means that an
initial design is kept as simple as possible and instead, code is used as a design document
[14]. After the initial design, design is carried out iteratively.

Having coding standards (see page 22) helps ensure that the created code is of sufficient
quality. To improve code quality, continuous improvements (refactorings) (see page 23) to
the internal structure of the code can be made.

In test-driven development (see page 23) implementing the product means developing the
minimum viable product to stop the tests from failing.

35

The CMMI practices in this process area can help agile teams make higher quality im-
plementation decisions by making the rationale for selection and trade-offs more explicit.
Whether this is necessary depends on the amount of risk that is involved with these deci-
sions. The risk-based approach to creating an agile methodology can help organizations
determine whether implementing the recommended practices from this process area is
beneficial for a specific project (see section 4.2 on page 13).

6.21 Validation

The purpose of validation is to demonstrate to the customer that the product will fulfill
its intended use. This is consistent with the spirit of customer collaboration in the agile
manifesto [43] (see page 8).

In agile projects, the main criterion for validation is acceptance by the customer. Smaller
and more frequent releases empower the customer to participate and constantly perform
validation [14] through continuous customer satisfaction feedback (see page 21). In Scrum,
the sprint review meeting after each iteration features a demonstration of the product to
the stakeholders, allowing the stakeholders to check whether the developers “built the
right thing”. This is especially important in agile software development when only high-
level requirements are communicated to the developers. The participation of the customer
improves the chance that the product will fulfill its intended use.

6.22 Verification

The purpose of verification is to check that the product meets its requirements.

Writing unit tests (see page 23) during development can help developers verify that the
software works as planned and ensure that refactorings do not break any functionality.

Evidence [13] suggests that the practice of writing tests before implementing can lead to
productivity gains and quality improvements. When using test-driven development (see
page 23), the lack of failing acceptance tests can be used as an indicator that all require-
ments are sufficiently implemented. Behavior-driven development [48] is an extension of
test-driven development with a strong focus on business value and collaboration with var-
ious stakeholders. To that end, test cases are written in a natural language. Whatever
method of testing is used, is especially important to verify that the implemented business
logic is correct since since these mistakes can be costly and it’s quite easy to miscommu-
nicate business rules or e.g. forget to implement a specific edge case.

The CMMI verification goal of peer reviews is closely aligned with pair programming (see
page 24). Various studies [26, 12, 10, 44] have demonstrated that pair programming can
result in better design and fewer defects, at the expense of total developer effort. Research
[4, 25] shows that pair programming can be especially bengficial for novice programmers.
Organizations need to carefully examine the costs and benefits of pair programming for a
specific project and team, since pair programming is not always beneficial or effective [16].
Experience [23] shows that the knowledge sharing benefits are greatest when developers
regularly switch programming pairs.

36

Maturity level 2:
Managed

Maturity level 3:
Defined

Maturity level 5:
Optimizing

Agility level 1:
Collaborative

Task volunteering

Collaborative planning

Collaborative teams

Empowered and motivated teams
Coding standards

Knowledge sharing tools

Customer commitment to work
with developing team

Reflect and tune process

Agility level 2:
Evolutionary

Tracking iteration progress
Planning at different levels

Software configuration
management

Continuous delivery
Evolutionary requirements
No big design up front

Customer contract reflective of
evolutionary development

Agility level 3:
Effective

Maintain a list of all features and
their status (backlog)

Plan features not tasks

Risk driven iterations
Self organizing teams

Frequent face-to-face
communication

Continuous integration

Continuous improvement
(refactoring)

Unit tests

30% of level 2 and level 3 people

Agility level 4.
Adaptive

Daily progress tracking meetings

Client driven iterations

Continuous customer satisfaction
feedback

Smaller and more frequent
releases

Adaptive planning
User stories
Customer immediately accessible

Customer contract revolves
around commitment of
collaboration

Agile documentation

Aqgility level 5:
Ambient

Agile project estimation

Ideal agile physical setup
Test-driven development
Pair programming

No/minimal number of level -1 or
1b people on team

Frequent face-to-face interaction
between developers & users
(collocated)

Low process ceremony

Table 6.1: The 5 Levels of agility and relevant CMMI levels, populated with agile practices and concepts (from [38])

37

Chapter 7

Applying the Agile CMMI
Framework at a large energy
company

The company where | held my case study is one the biggest suppliers of energy in the
Netherlands.

The energy sector is a very dynamic market in which new chances, challenges or regula-
tions appear very often. For example, green energy, increasing globalization of the energy
market, increased competition, more demanding customers and new technological devel-
opments pose new challenges to the organization every day. This requires that the organi-
zation can rapidly implement changes in its organization and create or change associated
software. An Agile software development methodology should be beneficial for software
changes in this dynamic environment and as such the organization has started implement-
ing Agile methodologies in their software development process. At this organization, the
customer of the agile software development process is usually another department in the
same organization.

To measure the presence of the various agile principles and concepts (see page 20) |
interviewed employees at various positions within the agile software development process.
The entire interviews can be found in appendix B on page 62.

| focused my interviews on the B2C (Business to Consumer) department since they have
been developing software using scrum for about 2 years, making it the department with
the most mature agile implementation. Within B2C there are a number of projects and
corresponding teams. While these teams should be at about the same level of agility,
small differences still exist.

In the rest of this chapter, | will describe the results of this series of interviews. In section 7.1
on page 39, | will discuss the results of the interviews in the context of the agile principles
from the agile adoption framework (see section 5.4 on page 20). In section 7.2 on page
47 1 will examine the agility and maturity of the software development process at the B2C
department in the context of the agile CMMI framework.

38

7.1 Results of the interviews on agile principle level

711

Results

In this section the agile concepts and practices belonging to the various agile principles
are listed along with the level of support found in the interviews with various employees of
a large energy company. The interviews can be found in appendix B on page 62 and are
annotated with the various agile practices and concepts that are mentioned in the answers
to the interview questions, along with whether they provide evidence for a full implemen-
tation of the agile practice or concept (+), a partly implemented agile concept or practice
(+/-) or lack of an implementation (-), which are worth respectively 1, 0.5 and O points in
the tables below. Any agile practice or concept with an implementation percentage of 75
percent or higher is counted as present.

Embrace Change to Deliver Customer Value

Level 1

Level 2

Level 4

Level 5

Agile practice or concept Score | Max | Percentage | Present?
Reflect and tune process 3 3 100% Yes
Agile practice or concept Score | Max | Percentage | Present?
Evolutionary requirements 4 5 80% Yes
Agile practice or concept Score | Max | Percentage | Present?
Client driven iterations 4.5 6 75% Yes
Continuous customer satisfaction feedback 3.5 6 58% No
Agile practice or concept Score | Max | Percentage | Present?
Low process ceremony 1 3 33% No

39

Plan and Deliver Software Frequently

Level 1

Level 2

Level 3

Level 4

Level 5

Agile practice or concept Score | Max | Percentage | Present?
Collaborative planning 4.5 6 75% Yes
Agile practice or concept Score | Max | Percentage | Present?
Continuous delivery 3 3 100% Yes
Planning at different levels 2 2 100% Yes
Agile practice or concept Score | Max | Percentage | Present?
Risk driven iterations 1.5 3 50% No
Plan features not tasks 2 2 100% Yes
Maintain a list of all features and their status 6 6 100% Yes
(backlog)

Agile practice or concept Score | Max | Percentage | Present?
Smaller and more frequent releases 3 3 100% Yes
Adaptive planning 6.5 8 81% Yes
Agile practice or concept Score | Max | Percentage | Present?
Agile project estimation 2.5 3 83% Yes

40

Human centric

Level 1

Level 3

Level 5

Agile practice or concept Score | Max | Percentage | Present?
Collaborative teams 3 3 100% Yes
Empowered and motivated teams 4 6 67% No
Agile practice or concept Score | Max | Percentage | Present?
Self organizing teams 4 5 80% Yes
Frequent face-to-face communication 3 3 100% Yes
Agile practice or concept Score | Max | Percentage | Present?
|deal agile physical setup 1.5 3 50% No

41

Technical Excellence

Level 1

Level 2

Level 3

Level 4

Agile practice or concept Score | Max | Percentage | Present?
Coding standards 2 3 67% No
Knowledge sharing tools 2.5 3 83% Yes
Task volunteering 2.5 3 83% Yes
Agile practice or concept Score | Max | Percentage | Present?
Software configuration management 2.5 3 83% Yes
Tracking iteration progress 3 3 100% Yes
No big design up front 3 3 100% Yes
Agile practice or concept Score | Max | Percentage | Present?
Continuous integration 1 3 33% No
Continuous improvement (refactoring) 2 3 67% No
Unit tests 3 3 100% Yes
30% of level 2 and level 3 people 1 1 100% Yes
Agile practice or concept Score | Max | Percentage | Present?
Daily progress tracking meetings 2.5 3 83% Yes
Agile documentation 3.5 4 88% Yes
User stories 6.5 7 93% Yes

42

Agile practice or concept Score | Max | Percentage | Present?
Test-driven development 0 4
Level 5
Pair programming 0.5 3
No/minimal number of level -1 or 1b people on 3.5 6 58%
team

43

Customer Collaboration

Level 1

Level 2

Level 4

Level 5

Agile practice or concept Score | Max | Percentage | Present?
Customer commitment to work with 2.5 8 31% No
developing team

Agile practice or concept Score | Max | Percentage | Present?
Customer contract reflective of evolutionary 2 2 100% Yes
development

Agile practice or concept Score | Max | Percentage | Present?
Customer immediately accessible 4.5 7 67% No
Customer contract revolves around 0.5 6 8% No
commitment of collaboration

Agile practice or concept Score | Max | Percentage | Present?
Frequent face-to-face interaction between 1 6 17% No

developers & users (collocated)

44

7.1.2 Level of agility

As can be seen in table 7.1 on page 46, there is a huge discrepancy between the agility
levels according to the agile adoption framework (see section 5.4 on page 20) and the per-
centage of implemented agile concepts or practices. This means that implementing only a
few more agile practices or concepts would greatly increase the agility scores. However,
some agile concepts -such as empowered teams- can be difficult to implement in a large
organization. | have decided to use percentages in figure 7.1 on page 46 since this gives
a more faithful representation of the level of implementation of the various agile principles.

7.1.3 Suggestions for improvements

As can be seen in figure 7.1 on page 46, the agile principle which implementation is the
most lacking is Customer Collaboration. According to the agile adoption framework, the
Customer commitment to work with developing team concept is a constraining practice
[38, 50], meaning it will impede progress on the other agile principles if not implemented.
Since this agile principle has the lowest implementation percentage and can impede the
agility of the other agile principles, finding a way to increase customer commitment should
be the number one priority in the improvement process.

Another customer related practice is continuous customer satisfaction feedback which -if
implemented- could increase the agility level of the Embrace Change to Deliver Customer
Value principle from 2 to 4.

On the Technical Exellence front, implementing Coding standards could raise the score of
this agile principle from O to 2.

Risk driven iterations is the only agile concept not implemented on the Plan and Deliver
Software Frequently agile principle. Implementing it would mean an agility level increase
from 3 to 5.

These suggestions are described in more detail in section 7.2.

45

Agile Principle Adgility level Number of Total number of Percentage
implemented agile practices or | implemented
agile practices or | concepts
concepts

Embrace Change to 2 3 5 60%

Deliver Customer

Value

Plan and Deliver 2 8 9 89%

Software Frequently

Human centric 0 3 5 60%

Technical Excellence 0 10 16 63%

Customer 0 1 5 20%

Collaboration

Table 7.1: The level of implementation of the various agile concepts and practices at the B2C department

Customer Collaboration

Plan and Deliver Software Frequently

Embrace Change to Deliver Customer Value

Technical Excellence

Human Centric

Figure 7.1: The level of implementation of the various agile concepts and practices at the B2C department

46

7.2 Results of the interviews on CMMI process area level

7.2.1 Results
Causal analysis and resolution

The organization is constantly reflecting about and tuning the software development pro-
cess at B2C. It’'s important to involve stakeholders in this process to make sure that sug-
gested improvements are feasible and make sure everyone is aware of the new way of
working. Currently, this is not always the case (see the answer to question 46 on page
105). While involving lots of stakeholders creates a lot of conflicting interests (see question
3 on page 63), this is the only way to create buy-in for the proposed changes.

Configuration management

Software configuration management is not yet thoroughly performed in all fields (see ques-
tion 27 on page 70) but overall this process area has been implemented in most fields.

Integrated project management

As can be seen in figure 7.1 on page 46, customer collaboration is the most important
aspect to be improved as it's currently hindering agile improvement in other dimensions.
The interview answers show that while the customer may be willing to work with the agile
teams, in practice it’s very difficult for the business to allocate time for collaboration with
developers (see the answer to question 41 on page 104).

The specific situation at this company makes it hard to make all business representatives
available to the agile teams full-time, since projects often have many different business units
as request owners (see the answer to question 45 on page 114 and question 15 on page
90). However, keeping developers waiting on answers of requirement elaborations can
waste a lot of time. The customer accessibility differs, depending on which department
is the request owner (see question 43 on page 93). In general, the time it takes for the
customer to answer a question should decrease to improve productivity of the agile teams.

While there are key performance indicators [KPIs] for the agile teams to deliver software
every 3 weeks (see question 42 on page 73), there is no obligation to collaborate with the
agile teams (see the answer to question 44 on page 73 and question 44 on page 93).

Organizational process definition

While the work environment is sufficiently furnished for day-to-day agile software develop-
ment, there are some things that can be improved to make it an ideal agile physical setup.
Working from home erects a small barrier to face-to-face communication, decreasing the
amount of tacit knowledge sharing (see the answer to question 23 on page 76 and ques-
tion 23 on page 98). When multiple people have to work at the same desk, the lack of
workspace can limit productivity (see question 23 on page 76 and question 23 on page
69).

While the teams are self organizing and collaborative they are not fully empowered. This
is due to the challenges system complexity (see section 3.4 on page 10) and enterprise
focus (see section 3.9 on page 12) which are to be expected in a large organization with

47

a complex IT landscape (see the answer to question 18 on page 68). When the workload
increases, the developers become less motivated and collaborative (see the answers to
question 17 on page 67 and question 19 on page 68).

Organizational performance management

Two ways in which agile methodologies can improve software development process per-
formance is by lowering the amount of process ceremony and taking an agile approach to
documentation.

Since this organization is pretty large, a certain amount of bureaucracy is unavoidable (see
the answers to question 7 on page 64 and question 7 on page 95).

The concept of agile documentation -writing only the bare minimum of documentation,
only when needed- should not be abused as an argument to write no documentation at all
(see question 35 on page 71). However, most of the time the developers write a sufficient
amount of documentation (see the answers to question 34 on page 78 and question 35
on page 100).

Organizational training

Frequent face-to-face communication helps spread tacit knowledge within agile teams.
Team members at the B2C department have a lot of face-to-face communication (see
question 22 on page 69 and question 22 on page 97). However, when people are working
from their home, the geographical distribution (see section 3.2 on page 9) makes the barrier
to face-to-face communication higher (see the answer to question 22 on page 76).

Knowledge sharing tools can be used to store and share explicit knowledge. The agile
teams at B2C store a lot of information in wikis (see the answer to question 25 on page
70). However, since each team has its own wiki, the knowledge is spread over a number
of knowledge sharing tools (see question 25 on page 77).

Pair programming can help tacit knowledge sharing and helps create knowledge of an
unfamiliar codebase. While pair programming is currently not commonly used for this
purpose at the B2C department, some developers are already occasionally using pair pro-
gramming (see question 38 on page 101) and the interviewees were generally favorable
about implementing it (see the answer to question 36 on page 79).

Product integration

The answers to the interview questions show that the agile teams of the B2C department
use smaller and more frequent releases to continuously deliver working software after every
iteration (see the answer to question 9 on page 65).

However, they currently do not use continuous integration in most fields (see the answers
to question 30 on page 70 and question 30 on page 85). Continuously building and testing
software automatically can quickly give developers feedback when introducing bugs into
the codebase and can therefore be a valuable tool for agile teams.

48

Project monitoring and control

The answers to the interview questions show that project monitoring is sufficiently imple-
mented by the daily progress tracking meetings (standups) and fracking iteration progress
(burnup charts) agile practices (see questions 28 on page 91 and 34 on page 92).

Project planning

All agile principles and concepts related to the CMMI project planning process area are
sufficiently implemented. Since the organization is pretty large, it is to be expected that
the amount of planning that is actually left to the agile teams is limited.

A high-level planning is actually made by the business board by means of a prioritization of
projects (see the answer to question 8 on page 65 and question 15 on page 66). However,
teams will have to slightly deviate from that plan to make sure that team members from all
fields have some work to do (see question 8 on page 88).

The team members themselves estimate how much time and effort a specific user story is
going to take (see the answer to question 16 on page 67.

Requirements development

Since customers at can’t create user stories on their own due to lack of technical knowl-
edge (see question 2 on page 102), creating the requirements should be a collaborative
process. The principle “Customer collaboration over contract negotiation” of the agile
manifesto (see page 8) is based on the fact that it's nigh impossible to know all require-
ments of a project in advance and the concept of evolutionary requirements means that
requirements get clarified during development. While this should not be used as an ex-
cuse for scope creep (see question 4 on page 87 and question 46 on page 114), one of
the big advantages of agile software development is that requirements can change and
new requirements can surface during development to ensure that the ultimately delivered
software fits the needs of the customer. However, this requires close collaboration with
said customer to elaborate requirements, since things that can be obvious to the customer
might be interpreted differently by the developers (see question 2 on page 102).

Requirements management

The answers in the interviews show that maintaining a list of features and their status or
backlog works pretty well as a way of managing requirements at the B2C departement.
However, some issues with the backlog being either too small (see question 4 on page
87 and question 12 on page 83) or too big (see the answer to question 4 on page 63) do
exist.

Risk management

The answers to the interview questions show that sprints at the B2C department are usually
not based on the amount of risk for the organization (see the answer to question 11 on page
66). The organization has to deal with a lot of regulatory compliance (see section 3.6 on
page 11). Risk driven iterations can help ensure that changes that can cost the organization
a lot of money if implemented incorrectly of not delivered on time are prioritized.

49

Supplier agreement management

The organization works with a lot of external parties which often don’t work with an agile
software development methodology (see question 2 on page 62). This requires a lot of
planning up front to make sure the right software is delivered at the end, especially if agile
teams at the organization are dependent on functionality that is implemented by external
parties. The supplier agreement management process area of CMMI describes a num-
ber of practices that can be implemented to ensure that dealing with external parties is a
trouble-free experience, such as creating and executing agreements, acceptance testing
the released products and providing a smooth transition.

Technical solution

While no big design is made up front, due to enterprise focus (see section 3.9 on page
12) and system complexity (see section 3.4 on page 10) some degree of design up front
is required (see the answers to question 2 on page 62, question 18).

Since at this organization, external developers come and go on a regular basis, having
coding standards becomes extra important to ensure a consistent quality of the code
base. Not all agile teams at the B2C department have coding standards or are actively
using them. Since this is an agility level 1 concept, introducing coding standards and
making sure they are used should be a high priority.

While developers generally react favorably to the idea of continuous improvement (refac-
toring), it is rarely done in practice. The reason for this is the lack of time and the fact that
it is not a priority for the business. However, improving code quality does not contribute
directly to customer value but does make future changes easier and can prevent bugs from
being introduced, which both indirectly contribute to customer value in the long term.

Validation

Continuous customer satisfaction feedback can help customers ensure that what devel-
opers are building actually corresponds with their needs. This allows customers to notice
discrepancies between the software being built and their actual wishes early in the devel-
opment process and prevent costly 180 degree turns late in the project (see the answer to
question 4 on page 87). At this organization, this requires the customer to allocate more
time to be present at demos. Currently, the customer is not always present at demos (see
question 42 at page 104). Agile teams should agree with the customers upon a specific
day at the end of every sprint for the demo, allowing all parties to allocate time for it far in
advance. This prevents issues where customers can not be present at the demo because
of lack of time or because they were only notified a few days in advance (see the answer
to question 41 on page 108).

Verification

Agile teams at the B2C department are all writing a sufficient amount of unit tests (see
question 32 on page 71 and 36 on page 79). However, they are currently not working with
test-driven develoment and are only occasionally pair programming (see question 38 on
page 101. The developers are not big fans of test-driven development, as can for example
be seen in the answer to question 37 on page 100.

50

7.2.2 Suggestions for improvements

To implement a CMMI level 3 software development process using agile practices and
concepts, there are still a few practices and concepts that need to be implemented.

As could be read in section 7.1, the area that is currently most lacking and should be im-
proved first deals with the collaboration between business and IT. As part of the integrated
project management CMMI process area, stakeholder involvement should be managed.
In the case of the B2C department, this means that the customer commitment to work
with the developing team should be improved. Since customer input is very important in
evolutionary development, the customer should be immediately accessible to for example
clarify requirements. Since the business board has given a high priority to a specific project
instead of other projects, delivering high-quality software on time should be in the interest
of the customer which should motivate them to collaborate with the agile teams as much
as possible.

The integrated project management CMMI process area provides a number of practices
that can be implemented to improve stakeholder involvement. As mentioned in the causal
analysis and resolution process area, the improvement process for this should involve both
parties to create buy-in and ensure that the resulting process is practical.

Continuous customer satisfaction feedback helps the team ensure that what they are build-
ing corresponds with what the business actually wants. Therefore it is very important that
the customer frequently visits demos to see the current state of the software and give his
feedback. One way to ensure customer feedback is by putting KPIs on customer presence
at demos.

Since customer collaboration is crucial to deliver a high-quality product on time, the project
monitoring and control CMMI process area advises to monitor customer involvement as
well and take action if the customer is not allocating sufficient time to collaboration with
the agile team.

Since the organization deals with a lot of risk, implementing risk-driven iterations, can help
ensure the prioritization of changes that can cost the organization the largest amount of
money if not implemented correctly on time.

Another area that can benefit from the implementation of additional agile practices is Tech-
nical Excellence. Improvements in the technical maturity of the software development pro-
cess start with improving the quality of the code base. To improve code quality coding stan-
dards need to be drafted and all teams should start using them. In addition, time should
be allocated for continuous improvement (refactoring) of the existing code to improve the
quality of the code base and make the code more maintainable. Pair programming im-
proves knowledge sharing and code quality and can also be a valuable improvement to
the organizational training and verification CMMI process areas.

Another practice that can improve the implementation of the verification CMMI process
area is test-driven development. Test-driven development requires a continuous integra-
tion infrastructure to continuously test the current state of the software so this should be
implemented before attempting to use test-driven development.

Since both test-driven development and pair programming are level 5 practices, imple-
menting lower level concepts and practices should be prioritized.

51

7.3 Validation of the suggestions at a large energy company

To check whether the advice from the agile CMMI framework (see section 7.2.2 on page
51 is applicable in practice and can be useful for large organizations, I've asked an agile
coach at the company to give his opinion about the proposed improvements. The entire
interview can be read in appendix B.9 on page 115.

Not all suggested improvements proved to be applicable in practice. Some of the chal-
lenges mentioned in chapter 3 on page 9 are responsible for the fact that it’s very hard
to achieve a high agility level in large organizations. Nevertheless, introducing new agile
practices and concepts into an existing software development process can help increase
productivity and software quality.

Some improvements can be implemented by the agile teams themselves without customer
involvement. Increasing the use of coding standards and taking into account the risks of a
specific user story during the planning are relatively low level agility concepts which can help
reduce risks for the organization. Pair programming and test-driven development are both
level 5 agility practices which means they should only be implemented when lower level
practices and concepts are already present. The answer to question 8 on page 117 shows
that the agile teams at the B2C department currently don’t have sufficient technical know-
how to implement test-driven development but that implementing test-driven development
is a long-term plan. Since pair programming does not require any additional technical skill,
it can already be implemented and is in fact already occasionally done (see question 9 on
page 117).

System complexity (see section 3.4 on page 10) prevents the organization from imple-
menting continuous integration (see question 4 on page 115).

The most important point on which the software development process at the B2C de-
partment can be improved is the collaboration with the customer. The amount of contact
between business and IT should be increased to for example elaborate requirements and
check that what is being built corresponds with the business needs. While the maturity
and agility of the agile teams are pretty good, an analysis of the interview answers (see
section 7.1 on page 39) makes it clear that most of the agile practices and concepts that
interface with the customer show problems. The improper functioning of agile practices
and concepts that deal with the customers has a negative effect on the productivity of the
agile teams. This shows that it's important that the improvement process is not limited to
the IT departement, but is actually done in consultation with other stakeholders. To im-
prove this situation, the entrenched culture (see section 3.3 on page 10) of the business
needs to be changed. The answers to question 1 on page 115 and question 6 on page
116 show that the agile consultant at the organization agrees with this analysis.

Overall, the views of the agile coach agree fairly well with the suggestions from the agile
CMMI framework.

52

Chapter 8

Reflection

From the various agile improvement models (see chapter 5 on page 15), | chose the agile
adoption framework (see section 5.4 on page 20) to combine with CMMI and use in my
case study. This has proven to be a good choice since the various agile practices and con-
cepts from that framework map clearly to the different CMMI practices and the indicators
make measuring the agility of a software development process easy. The concrete agile
practices and concepts result in a clear advice and roadmap for improvement of software
development agility.

The results in section 7.1 on page 39 show that the lower levels are often implemented
while the highest levels lack an implementation. While this one case study is not enough
to state that this is the case for all organizations, it does suggest that the levels of the
agile adoption framework reflect the order in which organizations adopt agile practices
and concepts in practice and it therefore is a good roadmap for the improvement of the
software development process agility.

While the views of the agile coach agree fairly well with the suggestions from the agile CMMI
framework, challenges to agility improvement (see chapter 3 on page 9) prevent some
suggestions from being applied in practice, in which case the default CMMI practices of a
process area need to be implemented to achieve a certain maturity level. Further research
could combine the current framework with the list of challenges described in chapter 3
on page 9 and a hybrid methodology model (see chapter 4 on page 13) to get a more
comprehensive list of agile constraining practices and their implications for the software
development process.

My case study was mainly focused on the agility aspect of the agile CMMI framework. While
| did not do a full CMMI appraisal, the information | got from the interview questions based
on the agile indicators was enough to provide some useful suggestions for improvements.
Further research should combine the CMMI appraisal process with the agility measure-
ment process to get a more comprehensive image of the software development process
maturity.

53

Chapter 9

Conclusion

In this master thesis I've looked at software development process improvement in large
organizations.

My research question was: Can an agile CMMI framework help a large organization im-
prove their software development processes?

To that end, I've mapped specific agile practices and concepts to CMMI process areas.
Hereafter I've applied this agile CMMI framework in a case study at a large energy company.

While there are some CMMI process areas where CMMI and agile software development
methodologies conflict, it's possible to implement a CMMI level 3 software development
process using agile practices and concepts. The resulting agile CMMI framework can
provide useful advice about next steps to take in the journey to more agility and maturity
in the software development process of large organizations.

54

Chapter 10

References

10.1 Academic peer-reviewed papers

[1] P. Abrahamsson, K. Conboy, and X. Wang. Lots done, more to do: The current state
of agile systems development research. European Journal of Information Systems,
18(4):281-284, 2009.

[2] S. Ambler. Agile software development at scale. Balancing Agility and Formalism in
Software Engineering, pages 1-12, 2008.

[3] D.J. Anderson. Stretching agile to fit cmmi level 3 — the story of creating msf for
cmmi process improvement at microsoft corporation. In Proceedings of the Agile
Conference, 2005, pages 193-201. |EEE, 2005.

[4] E. Arisholm, H. Gallis, T. Dyba, and D.I.K. Sjgberg. Evaluating pair programming
with respect to system complexity and programmer expertise. |[EEE Transactions on
Software Engineering, 33(2):65-86, 2007.

[5] R.D. Austin and L. Devin. Weighting the benefits and costs of flexibility in making
software: Toward a contingency theory of the determinants of development process
design. Information Systems Research, 20(3):462-477, 2009.

[6] B. Boehm. Get ready for agile methods, with care. Computer, 35(1):64-69, 2002.

[7] B. Boehm and R. Turner. Observations on balancing discipline and agility. In Pro-
ceedings of the Agile Development Conference, 2003. ADC 2003. |IEEE, 2003.

[8] B. Boehm and R. Turner. Using risk to balance agile and plan-driven methods. Com-
puter, 36:57-66, 20083.

[9] B. Boehm and R. Turner. Management challenges to implementing agile processes
in traditional development organizations. Computer, 22(5):30-39, 2005.

[10] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. Visaggio. Evaluating per-
formances of pair designing in industry. The Journal of Systems and Software,
80(8):1317-1327, 2007.

[11] A. Cockburn and J. Highsmith. Agile software development: The people factor. Com-
puter, 34:131-133, 2001.

55

[12] A. Cockburn and L. Williams. The costs and benefits of pair programming. In eXtreme
Programming and Flexible Processes in Software Engineering — XP2000, pages 33—
42, 2000.

[13] H. Erdogmus, M. Morisio, and M. Torchiano. On the effectiveness of the test-first
approach to programming. /EEE Transactions on Software Engineering, 31(3):226—
237, 2005.

[14] M. Fritzsche and P. Keil. Agile methods and cmmi: Compatibility or conflict? e-
Informatica Software Engineering Journal, 1(1):9-26, 2007 .

[15] H. Glazer. Love and marriage: Cmmi and agile need each other. CrossTalk, pages
29-34, 2010.

[16] J. Hannay, T. Dyba, E. Arisholm, and D. Sjoberg. The effectiveness of pair pro-
gramming: A meta-analysis. Information and Software Technology, 51(7):1110-1122,
2009.

[17] D. Hartmann and R. Dymond. Appropriate agile measurement: Using metrics and
diagnostics to deliver business value. In Proceedings of AGILE 2006 Conference,
pages 126-134. IEEE, 20086.

[18] C.R. Jakobsen and K.A. Johnson. Mature agile with a twist of cmmi. In Agile, 2008.
AGILE08. Conference, pages 212-217. IEEE, 2008.

[19] C.R. Jakobsen and J. Sutherland. Scrum and crmmi — going from good to great. In
Agile Conference, 2009. AGILE’09, pages 333-337. IEEE, 2009.

[20] F. Karlsson and P. Agerfalk. Exploring agile values in method configuration. European
Journal of Information Systems, 18(4):300-316, 2009.

[21] T. Kéhkodnen. Agile methods for large organizations — building communities of practice.
In Agile Development Conference, 2004, pages 2-10. IEEE, 2004.

[22] C. Larman and V.R. Basili. lterative and incremental development: A brief history.
Computer, 36(6):47-56, 2003.

[23] A. Law and R. Charron. Effects of agile practices on social factors. ACM SIGSOFT
Software Engineering Notes, 30(4):1-5, 2005.

[24] M. Lindvall, D. Muthig, A. Dagnino, C. wallin, M. Stupperich, D. Kiefer, J. May,
and T. Kéhkonen. Agile software development in large organizations. Compurter,
37(12):26-34, 2004.

[25] K.M. Lui and K.C.C. Chan. Pair programming productivity: Novice-novice vs. expert-
expert. International Journal of Human-Computer Studies, 64(9):915-925, 2006.

[26] K.M. Lui, K.C.C. Chan, and J.T. Nosek. The effect of pairs in program design tasks.
IEEE Transactions on Software Engineering, 34(2):197-211, 2008.

[27] M. Lutz, T. DeMarco, and B. Boehm. The agile methods fray. Computer, 35(6):90-92,
2002.

[28] A. Marcgal, B. Freitas, F. Soares, and A. Belchior. Mapping cmmi project management
process areas to scrum practices. In Software Engineering Workshop, 2007. SEW
2007. 31st IEEE, pages 13-22. |EEE, 2007.

56

[29] J. McAvoy and T. Butler. The role of project management in ineffective decision making
within agile software development projects. European Journal of Information Systems,
18(4):372-383, 2009.

[30] K. Molokken-Ostvold and N. C. Haugen. Combining estimates with planning poker—
an empirical study. In Software Engineering Conference, 2007. ASWEC 2007. 18th
Australian, pages 349-358. IEEE, 2007 .

[31] P. Naur and B. Randell. Software engineering: Report on a conference sponsored
by the nato science committee. In NATO Software Engineering Conference. NATO
Scientific Affairs Division, 1968.

[32] M.K. Nayak and M.R. Patra. Agile project management — redefining the role of man-
agers. In Proceedings of the 2nd National Conference; INDIACom-2008, 2008.

[33] S. Nerur, R.K. Mahapatra, and G. Mangalaraj. Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5):72-78, 2005.

[34] J. Packlick. The agile maturity map — a goal oriented approach to agile improvement.
In AGILE 2007, pages 266-271. |[EEE, 2007.

[35] A. Qumer and B. Henderson-Sellers. Measuring agility and adoptability of agile meth-
ods: A 4-dimensional analytical tool. In Proceedings IADIS International Conference
Applied Computing, pages 503-507, 2006.

[36] A. Qumer, B. Henderson-Sellers, and T. McBride. Agile adoption and improvement
model. In Proceedings European and Mediterranean Conference on Information Sys-
tems 2007, pages 1-9, 2007.

[37] W. Royce. Managing the development of large software systems: Concepts and
techniques. In Proceedings of IEEE WESCON, pages 328-339. |EEE CS Press, 1970.

[38] A. Sidky and J. Arthur. A disciplined approach to adopting agile practices: The agile
adoption framework. Innovations in systems and software engineering, 3:203-216,
2007.

[39] M. K. Spayd. Evolving agile in the enterprise: Implementing xp on a grand scale. In
Proceedings of the Agile Development Conference, 2003, pages 60-70. IEEE, 2003.

[40] J. Sutherland, C. Jacobsen, and K. Johnson. Scrum and cmmi level 5: The magic
potion for code warriors. In Proceedings of the 41st Annual Hawaii International Con-
ference on System Sciences, pages 466-466. |[EEE, 2008.

[41] J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov. Distributed scrum: Agile project
management with outsourced development teams. In Proceedings of the 40th Annual
Hawaii International Conference on System Sciences. |IEEE, 2007.

[42] R. Turner. Agile development: Good process or bad attitude? Product Focused
Software Process Improvement, pages 134-144, 2002.

[43] R. Turner and A. Jain. Agile meets cmmmi: Culture clash or common cause? In Extreme
Programming and Agile Methods-XP/Agile Universe 2002, pages 153-165. Springet,
2002.

[44] L. Williams, R. R. Kessler, W. Cunnningham, and R. Jeffries. Strengthening the case
for pair programming. Software, 17:19-25, 2000.

57

10.2 Other

[45] M. Fowler and M. Foemmel. Continuous integration, 20086.

[46] M. Fowler and J. Highsmith. The agile manifesto. Software Development, 9(8):28-35,
2001.

[47] H. Glazer, J. Dalton, D. Anderson, M.D. Konrad, and S. Shrum. Cmmi or agile: Why
not embrace both! Technical report, Software Engineering Institute, 2008.

[48] D. North. Introducing bdd. Better Software, 20086.

[49] R. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill Sci-
ence/Engineering/Math, 6th edition, 2005.

[60] A. Sidky and J. Arthur. Agile adoption process framework — indicators document,
2006.

[51] CMMI Product Team. Cmmi for development, version 1.3. Technical report, Software
Engineering Institute, 2010.

[62] D. West and T. Grant. Agile development: Mainstream adoption has changed agility.
Technical report, Forrester Research, 2010.

58

Appendix A

Interview questions

1.

2.

What is your job at [company] and how does it relate to the agile software develop-
ment process of the B2C department?

What are in your opinion the most important problems with the agile software devel-
opment process of the B2C department?

Embrace change to deliver customer value

3.

7.

Are management and developers willing and able to reflect and tune the process
after every iteration and release?

. Are managers and developers wiling and able to deal with evolutionary require-

ments?

. Has the customer the power to dictate the scope of the iteration?

. Is the customer encouraged to continually give feedback/criticism and rethink their

requirements during the development process?

Can developers make decisions on their own without explicit management approval?

Plan and deliver software frequently

8.
9.

10.

11.

12.
13.

Do customers, developers and managers plan together?

Are management and developers willing to use an incremental and iterative devel-
opment approach?

Is management willing to commit to the process of continuously planning instead of
developing a one-time plan upfront?

Do the developers and managers agree to have risks drive the scope of each itera-
tion?

Is the high-level agile planning based on features instead of tasks?

Is management willing to maintain an up-to-date list of all the remaining features for
the project and their status?

59

14.
15.

16.

Does the team deliver a fully functional release after every iteration?

Is management willing to plan immediately before the iteration instead of earlier to
allow the customer’s feedback to be incorporated into the planning?

Are developers estimating the effort and duration of various user stories themselves?

Human centric

17.
18.
19.
20.
21.
22.
23.

Are people willing to work in teams and help others?

Has management empowered teams with decision making authority?
Are team members motivated?

Does management agree to have self organizing teams?

Do employees feel comfortable working in self organizing teams?

Is there frequent face-to-face communication between team members?

Are all the developers are in a common room, furnished to facilitate the agile process?

Technical excellence

24.
25.
206.
27.
28.
29.

30.
31.
32.
33.

34.

35.
36.
37.
38.
39.

Are developers using coding standards?

Are the team members using knowledge sharing tools?

Do employees volunteer for tasks instead of being assigned to them?
Does the organization have tools for software configuration management?
Does a mechanism exist to monitor the iteration progress?

Is design a continuous process or done once at the beginning of the development
process?

Are the developers willing and able to use continuous integration?
Are the developers successfully refactoring code?
Are the developers successfully writing unit tests during development?

How many team members have a level of software development method under-
standing and use which enables them to tailor a method to fit a new situation?

Are management and developers willing to meet daily to discuss the progress of the
project?

Are developers willing and able to take an agile approach to documentation?
Are management and developers willing and able to use user stories?

Are the developers successfully using test-driven development?

Are the developers successfully using pair programming?

How many employees are unable or unwilling to collaborate or follow shared meth-
ods?

60

40. How many employees are unable to deal with rapid change?

Customer collaboration

41. |s the customer willing to dedicate time to take an active role in the project?
42. Is the customer contract reflective of evolutionary development?

43. |s the customer immediately accessible?

44. Does the customer contract revolve around commitment of collaboration?

45. Do the developers and customer frequently interact face-to-face?

46. Did you think of any other problems with the agile software development process of
the B2C department during the course of this interview?

61

Appendix B

Interviews

B.1 Interview 1

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| work at [company] as solution architect specializing in integration and
SOA [service oriented architecture]. | am also the team leader of the com-
plete integration team; around 25 people who do the development work
here.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
The largest challenge we have here at [company] is that we are doing
agile in a 5-layer architecture and development regularly impacts multiple
different applications which are not in the scope of a specific epic or maybe
even not in the same business unit.
Another challenge | see with the way we are doing agile is that we involve
external parties. Those often don’t work with an agile software develop-
ment methodology so they only release at the end of development. This
creates problems when agile teams at [company] are dependent on func-
tionality being implemented by external parties. It's possible to encounter
issues during the sprint and if you haven’t integrated them in your agile
team - which is often impossible because you’re working with an external
party- then the issue might not be picked up adequately which forces you
to add the issue to the backlog. This can result in you being unable to
deliver what the customer asked and you may not even be able to run the
software in production because it doesn’t work correctly.

62

Embrace change to deliver customer value

. Are management and developers willing and able to reflect and
tune the process after every iteration and release?

The teams do have retrospectives in which they discuss what went right
and what went wrong. | notice that this does not result in a lot of process
adjustments but instead it mostly deals with how should pick up certain
things next time however the process is not or barely adjusted because
of this.

What does happen however is that once in a while people from delivery
and team leaders meet and reflect about the process to see whether there
are shortcomings or opportunities for optimization but this is not after every
sprint. For example, we started out with backend-, frontend- and online-
teams, which we changed to mixed teams and now we are working with
chameleon teams so we are constantly changing.

The problem with people from different fields helping to drive the process
is that you have mixed interests. For example, my focus is to get people
who have nothing to do within their team to support other teams because
a team does not have to be fixed and if there is no work for a certain
employee on his field he can easily help another team. Other people have
the another point of view on this and think that we should implement more
T-shaping which means that a developer who doesn’t have anything to
do should start testing. These are different views on how to implement
such a process. This shows that due to this conflict of interests process
adaptations sometimes go left and sometimes go right.

. Are managers and developers willing and able to deal with evolu-
tionary requirements?

Features and requirements for the sprint are decided on as late as pos-
sible. In most cases, the customer can request changes during devel-
opment and those will be picked up provided they fit within the borders
of the epic. If the change request is too big -which will be decided on
by the team immediately upon request of the change- then most often
will be decided to implement the features and requirements as they were
and implement the requested changes in the following sprint, provided the
change gets enough priority since the backlog is currently quite big.

63

Reflect and tune
process (+)

Evolutionary
requirements (+)

5. Has the customer the power to dictate the scope of the iteration? Client driven
No, the scope of the sprint is not dictated by the customer. Instead, iterations (+/-)
the scope is determined by the product owner, in cooperation with the
team and potentially the attached project leader but the customer does
not determine the entire scope. This would not be possible because we
deal with a lot of customers and consequently a lot of conflicting interests
which requires an umbrella body to determine the scope of the iteration.

6. Is the customer encouraged to continually give feedback/criticism Continuous
and rethink their requirements during the development process? customer
We’'re seeing that the customer -the requester of specific functionality- is satisfaction
not sufficiently involved. In practice the product owner by proxy is trying to feedback (+/-)

represent the interests of the customer and the customer only gets back
in the picture at the very end.

7. Can developers make decisions on their own without explicit man- Low process
agement approval? ceremony (+/-)
In the past the team decided themselves how to implement the changes
in the IT landscape based on the epic. We are currently rolling that back
because at [company] we are working with a lot of external developers.
The average external developer is only at [company] for about half a year
to a year after which they leave and are replaced by another external de-
veloper. You can’t expect from everybody to know the entire architecture
when they start at [company]. As some articles about agile software de-
velopment mention there’s the concept of a “pre game” in which a part of
the design is implemented. This phase -which we call “IT readiness”- we
reintroduced at [company] In this phase we receive the customer requests,
look at which architectural principles go with them and start implementing
a small part of the design based on those architectural principles. After
that phase, we hand over the design to the team and tell them to stay
within the bounds of that design. Within the bounds of the previously
created design the team has complete freedom.

64

10.

Plan and deliver software frequently

Do customers, developers and managers plan together?

No, we have the business board for that so that doesn’t involve the cus-
tomer. Indirectly the customer is involved because he is in the business
board as well but that is not the real request owner, instead the managers
and representatives of the various departments decide on the planning.
The developers gat a list of epics that need to be picked up in the sprint
and they can state which epics they want to pick from the backlog and
want to commit themselves to. However, nowadays there is a planning
for some sprint items as well because for example legal requirements and
market changes can dictate deadlines. Therefore sometimes teams are
scheduled to pick up specific items in a specific sprint, but this is based
on certain priorities.

Are management and developers willing to use an incremental and
iterative development approach?

Yes, after every sprint we release working software. In the two years we
are working with an agile software methodology, it only only once occurred
that we could not release and had to extend the sprint with two weeks.
Other than that one time we have always delivered working software after
three weeks.

Is management willing to commit to the process of continuously
planning instead of developing a one-time plan upfront?

The big one-time plan is basically for what the project leaders want picked
up. In practice this is sometimes too much to fit in one single sprint. This is
one of the big challenges we see with big projects versus agile, how do you
handle this when you are running multiple big projects at the same time?
This requires you need to assign a priority to a certain project of certain
change that needs to be picked up quickly to find the right balance per
team and keep the right priority for the team. We find this very hard.

65

Collaborative
planning (+/-)

Continuous
delivery (+)

Smaller and more
frequent releases

(+)

Planning at
different levels (+)

11.

13.

15.

Do the developers and managers agree to have risks drive the
scope of each iteration?

A project leader looks at the date it needs to be released to fulfill legal
requirements or a business case and this is calculated back to how many
epics they need. These epics are the features, the separate pieces of
functionality that need to be developed. A project leader then states how
many epics he needs within a certain amount of sprints to achieve the
project goals. The team itself decides on how the work within the epic is
handled.

Is management willing to maintain an up-to-date list of all the re-
maining features for the project and their status?

Working with a backlog works well for us but at the moment it’s quite
large. There are a lot of items on the backlog because a lot of new work
is submitted and we only have 7 teams, which currently can’t handle the
amount of work coming our way. This is caused by the number of very
large projects that are currently supplying us with their requests.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

The customer’s feedback is incorporated into the planning because the
customer is in the business board and thus the customer can participate
in discussions about what the priority of the project is. This shows that
there is a good cooperation between customer and IT. However, it should
be noted that we are talking about the customer representative here, not
the request owner himself, so we are usually not talking with the person
who requested the work but the person responsible that the customer
goals are met.

66

Risk driven
iterations (+/-)

Maintain a list of
all features and
their status (+)

Adaptive planning
(+)

16. Are developers estimating the effort and duration of various user

17.

stories themselves?

The teams themselves determine how much time and effort a specific user
story will take.

The business board decides on a higher level that a certain change is
worth more to them according to a certain value they gave to it or that
a certain project is worth more to them. Based on that value they will
determine whether a team should give priority to a certain change instead
of another epic.

The team ultimately decides about the amount of time and effort an epic
should take when they are playing planning poker. So when a project
manager indicates that in this sprint 10 epics need to be finished and the
team gets those 10 epics on their plate, the team themselves poker with
those epics to see what they can commit to in that sprint and all other
epics will have to be postponed to the next sprint.

Human centric

Are people willing to work in teams and help others?

I’'m currently working on the concept of swapping out people between
teams but also between agile projects and projects using a traditional
software development methodology. A close team works well but they
shouldn’t become too close because it becomes counterproductive when
they start working like an autonomous island within the organization.
That’s why I'd rather have people supporting each other from time to time.
At the moment there are very little problems with the willingness of people
to work in teams and help others. It is noticeable that if all teams are very
busy, the willingness to help each other out drops quite a bit because
everyone is too busy with his own work.

67

Agile project
estimation (+)

User stories (+)

Collaborative
teams (+)

18.

19.

Has management empowered teams with decision making author-
ity?

It’s not only management that determines the framework within which the
project should stay but the architecture should be taken into account as
well. We simply do have a SOA architecture and you need to consider that
agile is designed for monolithic applications where actual development
work occurs with 2 to 3 developers per team, with the testers, customer
and documenters collocated. However, 2 to 3 developers is nice if you
would simply need java programmers. We have many different types of
programmers and that often brings some challenges.

You have to make sure that developers don’t go for the “quick win” in a
5 layer architecture but that they instead look for a good solution. You
do not want business logic in your integration, you want your data stored
in your backend applications, you want your front end to remain free of
business logic so that only a small amount of content management is per-
formed there. The “readiness team solution architecture” guards against
these kind of mistakes, we create a design based on the 3-5 year archi-
tectural plan and tell the team they have to stay within that framework to
keep the architecture landscape stable for the next few years. If you don’t
do that, you will have a problem later because in that case you’ll have a
hodgepodge of business logic in all layers, services which unnecessarily
are duplicated, that kind of things. You can only prevent that by keeping
a focus on the architecture.

Maybe the most important obstacle I'm seeing with agile in that context is
that textbook agile gives teams almost complete freedom. In my opinion
this may work in a software development house with internal developers,
all facing the same direction and knowing the same architectural princi-
ples. However if you have multiple applications in your IT landscape, are
working with external developers that are replaced regularly, | think it be-
comes much harder to do proper agile and the organization needs to keep
an eye on the architecture.

Are team members motivated?

Motivation in itself is pretty good, but you do notice that when a dispropor-
tionate amount of work is expected from people, so the amount of poker
points that needs to be done in a sprint is more than they are able to do,
that motivation is impacted.

Motivation is also impacted when specialists are asked to for example test
instead of applying their development specialism for 2-3 sprints, so 6 to 9
weeks. You can notice that this results in a severe drop in motivation.
However, on the whole everyone is pretty satisfied with the concept of
agile.

68

Empowered and
motivated teams
(+/-)

Empowered and
motivated teams

(+)

20.

21.

22.

23.

24.

Does management agree to have self organizing teams?
Yes.

Do employees feel comfortable working in self organizing teams?
Yes, they are pretty happy to be working in self organizing teams. Once
in a while a tester supports a developer or vice versa.

Is there frequent face-to-face communication between team mem-
bers?

Yes, I'm seeing that team members are having a lot of face-to-face meet-
ings. In addition, every morning there’s a standup and each afternoon
the team members are having a meeting about the question whether they
are going to play planning poker -which they do twice a week- and once
in a while to talk about complications that are occurring, something they
obviously do in the standups as well. So there is a lot of face-to-face
communication between team members.

Are all the developers are in a common room, furnished to facilitate
the agile process?

Yes, all facilities are available. However, | have to admit | personally think
that the office space here is pretty bad. For example, I've seen 2 people
work at the same desk. The concept of “anders werken” [telecommuting,
hot desking] provides some challenges.

Technical excellence

Are developers using coding standards?

In integration we have standard guidelines and those are used. | know that
in other fields they aren’t there yet of are still in development. We also have
a quality assurance review at the end to check whether we stayed within
those guidelines. We check that because integration is the backbone of
our organization and if we make a small mistake the complete interface
between A and B is jammed so we keep a close eye on it.

69

Self organizing
teams (+)

Self organizing
teams (+)

Task volunteering

(+)

Frequent
face-to-face
communication

(+)

Ideal agile
physical setup
(+/-)

Coding standards
(+/-)

25.

27.

28.

29.

30.

Are the team members using knowledge sharing tools?

Yes, we are using our wiki fulltime, for example you can find our coding
standards there. Our service catalog is on there as well and that is always
updated when changes occur. Basically we have a lot of information on
the wiki currently.

Does the organization have tools for software configuration man-
agement?

Yes, in integration we have subversion for that, which in itself works pretty
well. We have yet to have problems checking in code or checking out
code.

The only disadvantage is that we don’t have software configuration man-
agement when for example you have a dependency between a backend
system and an integration.

Software configuration management is currently mainly used in the web
field.

Does a mechanism exist to monitor the iteration progress?

Yes, we are using burnup charts and Jira for tracking epics. Furthermore
we have the delivery board and the like to monitor that the epics that are
delivered are what was requested. So in that way we try to keep an eye
on things.

Is design a continuous process or done once at the beginning of
the development process?

This also unfortunately depends on which field you are talking about.
When I'm talking about my own department, we create the design before-
hand and check afterwards to see whether we stayed within that design.
Basically we ensure that design is a continuous process. Designs might
get adapted at then end as well when needed. When it’s obvious that a
solution doesn’t fit within the current design this is communicated with the
designer who will change the design.

Are the developers willing and able to use continuous integration?

We are using the term continuous integration but when I’'m looking at the-
ory versus practice than we are not fully using it. We use only a part of
the concept behind continuous integration; we don’t do automated test-
ing and automated building but we are currently implementing a part of
continuous improvement, so we're constantly challenging our landscape.

70

Knowledge
sharing tools (+)

Software
configuration
management (+/-)

Tracking iteration
progress (+)

No big design up
front (+)

Continuous
integration (-)

31.

32.

33.

34.

35.

Are the developers successfully refactoring code?
Yes, we'’re constantly refactoring code. We always make sure we adapt
existing code to fit the new standards.

Are the developers successfully writing unit tests during develop-
ment?

Yes, we create unit tests ourselves. We have a tool for unit tests we are
currently not using that much but we are soon going to roll it out further
within the organization.

How many team members have a level of software development
method understanding and use which enables them to tailor a
method to fit a new situation?

| think that 30 to 40 percent of the team members is capable of doing that
and others basically try to follow that 30-40 percent.

Are management and developers willing to meet daily to discuss
the progress of the project?

Managers actually play no role in the agile process, they are pretty much
on the sidelines but are for example as delivery lead responsible for what
is delivered. Occasionally they are present at standups but there is no
structured meeting between managers and developers.

Are developers willing and able to take an agile approach to doc-
umentation?

| think this is a big downside of agile, because this point is often abused for
not having to write documentation. | deliberately call this abuse because
| know agile says you must provide minimal documentation, only when
needed. However, this is often interpreted as that documentation is not
necessary.

| think people still need to deliver towards administration what one has
modified, how it was changed and what needs to be administered. This
way system administration always knows what’s gonna be their delta.
The documentation we are still producing ourselves are design documents
up front, the solution architectures and at the end for example our service
catalogus is updated.

Occasionally | have the feeling that too little is documented or documen-
tation is not updated because there is too much coding work in a sprint
and too little time is freed up for decent documentation of what has been
delivered. | think documentation belongs in the “definition of done” tasks
but this is currently often not the case.

71

Continuous
improvement (+)

Unit tests (+)

30% of level 2
and level 3 people
(+)

Daily progress
tracking meetings
(+/-)

Agile
documentation
(+/-)

37.

38.

39.

40.

49,

Are the developers successfully using test-driven development?
Not yet, but they are working on it. Just like automated testing, which is
also something we want to do.

Are the developers successfully using pair programming?

No, we’re not using pair programming but we are using another concept
in which people from different fields sit next to each other to for exam-
ple quickly determine what will be the input and what will be the output.
For example, a SAP guy indicates how the IDocs are going to look, the
integration guy that sits next to him immediately starts making the map-
ping and when he encounters issues he can easily ask his neighbour to
re-route something and he can immediately change it to fix the mapping.
That concept of pair programming we do have.

How many employees are unable or unwilling to collaborate or fol-
low shared methods?

There are a few developers that are pretty dominantly present in the teams
and when they are of the opinion that something is not supposed to be
done in a specific way they will simply not pick that up.

That is not agile because another way to deal with that would be picking
it up as is this sprint and correcting it in the following sprint. | think that
the opinion of one person should never influence the entire landscape.

How many employees are unable to deal with rapid change?

Here as well the answer is some can and some can’t. Some people have
a lot of difficulty with changes -especially testers- while others have no
problems at all with change and can adapt quickly.

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project?

The product owner does, but the request owner 9 out of 10 times doesn’t
want to dedicate time to take an active role in the project. The request
owner should play an important role since he’s the one requesting the
change. In practice the request owner actually throws it over the fence
and basically says: I'll find out what you’ll deliver at the end, keep me
posted. That’s not the commitment you would expect from a request
OWner.

72

Test-driven
development (-)

Pair programming

()

No/minimal
number of level -1
or 1b people on
team (-)

No/minimal
number of level -1
or 1b people on
team (-)

Customer
commitment to
work with
developing team

()

42.

43.

44,

45.

46.

Is the customer contract reflective of evolutionary development?
Since the customer is actually a department in the same organization there
is no customer contract. There are KPIs [Key Performance Indicators]
about that every 3 weeks something new needs to be released and if we
don’t make that delivery deadline then we will be judged by that.
Previously we had big releases and believe me, the business wasn’t happy
we only delivered something after half a year of development.

Is the customer immediately accessible?

This depends on the customer because we have a lot of different cus-
tomers and his accessibility depends on the person. Often the request
owner is also someone who is extremely busy and if he’s very busy then
it would often happen dat he says he has no time that week for the agile
team.

Does the customer contract revolve around commitment of col-
laboration?
No, as far as | know there are no KPIs or contract for the customer.

Do the developers and customer frequently interact face-to-face?
There’s the product owner by proxy, who is actually the representative of
the business. When I'm talking about the concept of the customer I'm ac-
tually talking about the request owner, the person who requested to apply
a certain change in the landscape. In my experience that person is very
little present because he feels that he has delegated his responsibilities
to the product owner by proxy and has transferred the work to the agile
team.

The current debate is about whether the product owner by proxy can
represent the customer well enough because how can a product owner
determine the right priorities for all processes in the landscape and make
the right decisions?

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

No.

73

Customer
contract reflective
of evolutionary
development (+)

Customer
immediately
accessible (+/-)

Customer
contract revolves
around
commitment of
collaboration (-)

Frequent
face-to-face
interaction
between
developers &
users (-)

B.2 Interview 2

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| am application consultant and functional consultant in the area of SAP
IS-U.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
| think the most important problem is the costs model, the way we pass
on costs to the customer, the IT as cost center, which basically means
that we get money and don’t make a profit. All the money we get we
put in IT. However, what we're currently seeing is that the business side
is still working project based which means that a budget is allocated for
a specific project and subsequently it’s intended that somewhere along
the way the budget is transferred to the agile teams. However, the agile
principle is: we have a certain capacity during this period and everyone
-so all customers- pays the same amount. That’s not the way it's currently
going, now people are saying: | have a budget for this project so | want
people to work on it. According to the agile theory you should not do
that and in practice we’re seeing that that doesn’t work very well because
you’re quickly regressing to project teams, which is what we’re doing now.
| think it's unfortunate that we are creating project teams instead of agile
teams.

74

Embrace change to deliver customer value

. Can developers make decisions on their own without explicit man-
agement approval?

What I'm experiencing is that the team can make many decisions on their
own but in practice the priority definition is often overruled by a manager
because an arrangement has already been made on another level which
the team didn’t know about. I've already seen this happen quite a few
times. | think this is just a process we have to go through. In practice it
occasionally happens that a manager from the business side has already
made a deal, didn’t communicate this and then tells the team what needs
to be picked up in a specific sprint. For example, in the NTA project,
suddenly the deadline was July 1st and that deadline had to be made at
all cost because the agreement with the business was already there so 5
teams were needed, working overtime, evenings and weekends simply to
ensure that the promised functionality could be delivered by July 1st. The
teams couldn’t say that the didn’t want to do that because there was a
fair amount of pressure from the business to make it happen.

Plan and deliver software frequently

. Do customers, developers and managers plan together?

No, actually this is done by the customer, what you see is that in the back-
ground there are already agreements on management level, but basically
the planning is made by the customer, that’s what the business board is
for. The contribution of the developers in this is that when they see tech-
nical dependencies or a certain order in the things they need to develop
then they will point it out, it's the responsibility of the developer to do that.

75

Low process
ceremony (+/-)

Collaborative
planning (+/-)

22.

23.

Human centric

Is there frequent face-to-face communication between team mem-
bers?

Yes, I’'m seeing this happen more and more, it takes some getting used to
because a lot of people were used to sending a quick email but I'm trying
to coach people to make sure they just do it face-to-face or make a quick
phone call so that at least they have an answer quickly. This is done more
and more so | expect that this will be fine.

There’s also the teleworking program we have -“anders werken” it’s called-
which means you’re not here for 2 days a week and these are different
days for all team members so there’s always a few people on the team
who are not available on location and the threshold for communication
is just a little higher because you have to consciously call someone on
Communicator.

Are all the developers are in a common room, furnished to facilitate
the agile process?

If you’re working working from home you’re not close to the other devel-
opers but apart from that, 2 days a week all developers are here so then
everyone is sitting closely together. In fact, there a 3 people who sit at the
same desk, there are 3 desks with 6 people in total sitting at them, which
is not good but is necessary due to lack of space. At least we’re all sitting
closely together and if you're working at home you’re just one button click
in Communicator away so that all works fine.

76

Frequent
face-to-face
communication

(+)

Ideal agile
physical setup
(+/-)

24.

25.

26.

31.

Technical excellence

Are developers using coding standards?

Yes, there have been coding standards for quite a while and every de-
veloper here knows them. A while ago maintenance checked the confor-
mance to coding standards of existing code but the costs for that checkup
were very high and they found very few problems. Currently each team
has a colleague -1 happen to be that in our team- that knows all cod-
ing standards and overlooks the work of the developer, you can’t have a
better quality check than that.

Are the team members using knowledge sharing tools?
Knowledge sharing tools are available and are used for transferring knowl-
edge but every team has their own wiki site or their own Sharepoint site
so the information is spread over a number of places. After development
the changes are documented and that documentation is put in GForge
-that’s another knowledge sharing tool- and all other teams can access
and view that documentation so when they are going to continue devel-
opment they will firs read about what’s currently there and how it looks,
that information is available in the documentation. So knowledge sharing
tools are used quite a bit. Gl documents on wikis but other than that the
same story applies.

Do employees volunteer for tasks instead of being assigned to
them?

Well, what you often see in practice -and that is different from the agile
theory- is that tasks rely on rather specific knowledge and expertise. That
means than when you hire a Gl developer he has accumulated, i don’t
know, 10 years of Gl knowledge and experience. That's not something
about which you can say to the team: in 2-3 sprints we can all do the same
he can, that just doesn’t work. So his specific skills require him to work on
all stories that are Gl related. So in that sense he can’t really choose what
he wants to do, it just depends on someone’s skills. You can still do a
little T-shaping because everyone in the team can have global knowledge
about an application but once you have to develop something it’s almost
impossible to do that without detailed knowledge.

Are the developers successfully refactoring code?

No, we don’t really do that. All changes we make are related to requests
for changes in functionality. We don’t really do IT driven development at
all since it’s not a priority for the business.

7

Coding standards
(+)

Knowledge
sharing tools (+)

Task volunteering

(+)

User stories (+)

Continuous
improvement (-)

32.

33.

34.

Are the developers successfully writing unit tests during develop-
ment?

Yes, of course it varies from person to person but if | look at our team then
I’'m seeing some very extensive unit testing. This means that testers really
have to search for things they can still test because we already covered
most of it. This means the testers can focus on the really rare exceptions.

How many team members have a level of software development
method understanding and use which enables them to tailor a
method to fit a new situation?

The steps in the process are really solid, which is good in my opinion
because without prioritization from the business you don’t know if what
you’re working on is actually the right thing. So the process is just a few
steps that should be followed. In terms of requirements, you’ll see that
many people still follow the “old” way: a business support engineering
will talk with the customers, then a list of requirements is produced which
are given to the agile teams. For all requests I'm involved in, | try to do
things differently. | begin with a session with the business, the business
support engineer, the people of the team that will be involved; the tester,
a developer etc. Then | just ask the business again what they want to
have exactly. Every time I've done that new requirements have surfaced,
or ambiguities that the business needs to deliberate about. So you can
see we still have to grow in this aspect.

Are developers willing and able to take an agile approach to doc-
umentation?

Yes, if | look at my area we do. We just create functional and technical de-
signs. Gl has wikis where they put their information and | think that works
well. As far as I'm seeing it’s all going well but you only miss something
when you need it but can’t find it of course but this hasn’t happened yet.

78

Unit tests (+)

Agile
documentation

(+)

35.

36.

Are the developers successfully using test-driven development?
We don’t do it yet but [company] wants to implement it because they want
to rise in agile maturity.

I’'m seeing some disadvantages of test-driven development and | don’t
know whether we should really want to do that because you would be
focussing on very specific situations. However, at [company] currently the
biggest problems are exactly in the odd exceptional situations you didn’t
think of. Those are precisely the things yo can not think of beforehand and
the business can’t think of these situations either so if you’re immediately
going to say what things we should be testing that would probably result
in around 50 percent of the cases we would have normally done so that’s
only half, the other halve usually comes gradually during development and
preparation. We really need that time of preparation and such and you
can’t just say well we’re going to see what test cases we think we should
have and after that we know how the program should work. | think the
situation is a little more complex and therefore test-driven development is
not really going to work.

Are the developers successfully using pair programming?

We don’t do it yet but [company] wants to implement it because they want
to rise in agile maturity.

| think pair programming will happen but it currently isn’t often done, partly
because of pressure to finish things and pair programming is still consid-
ered ineffective, 2 people doing 1 thing, that can’t be efficient. In the long
run you will be more efficient but long-term vision is also something that’s
lacking at [company]. [company] is very good in putting out fires in the
short term. When you would propose pair programming to a team then
everyone would say they wouldn’t want to do that because it’s not effi-
cient at all, that would mean I'm only sitting there, watching somebody
else make something. Then | think, very good, that is exactly the point
and then you can do it yourself in a couple of weeks, plus you prevent
some mistakes, spark some discussions and help create better structure
S0 yes, | do believe in pair programming but it currently isn’t done, partly
because of the time pressure and the belief that it’s inefficient.

79

Test-driven
development (-)

Pair programming

()

37.

38.

41.

How many employees are unable or unwilling to collaborate or fol-
low shared methods?

There are some but in my current team there are none so that’s nice. In
my last team there were two of them.

You have varying degrees of course, you have people who are aware of
this and for example say: agile is nice but I’'m external and I’'m hired here
for SAP so I'll work on just SAP. The percentage of such people is not that
large, | think 5 to 10 percent. In addition, you also have a big group that
just leans back and thinks: you want me to do this that way so I'll do it
that way but those people show very little initiative regarding agile. Those
people are just along for the ride and are fine with that but they are not
really the pioneers of agile. | think this is a fairly large group, | think about
70-80 percent.

How many employees are unable to deal with rapid change?

Most employees are able to deal with rapid change. You hear the occa-
sional complaining of course when something has been changed again
but most of the can handle it and are pretty flexible. | think that it's not that
much of a problem at [company] because we work with a lot of external
hires, these people already have quite a flexible nature because they are
already flexible in terms of work and location. They don’t really care who
hires them and what they’ll have to do so maybe that plays a part because
rapid change does not really affect us.

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project?

That depends on what you consider an active role. If you call them with a
question then they will answer it, although this might take a day.
However, for example for the NTA project | told them | want business peo-
ple here on the floor because we had a lot of time pressure, only 3 weeks,
1 sprint in which we had to do a tremendous amount of development work
so we really didn’t have time for delays or to wait for the answers to ques-
tions, etc. That’s why | told them | wanted business people here on the
floor. Finally this didn’t happen because they could not or did not want to
allocate time. So that shows that the business still needs to improve their

agility

80

No/minimal
number of level -1
or 1b people on
team (+/-)

No/minimal
number of level -1
or 1b people on
team (+)

Customer
commitment to
work with
developing team
(+/-)

43.

44,

45.

46.

Is the customer immediately accessible?

It depends but what you often see is that they don’t immediately know
the answer to a question. So if you pose a question then they will have
to discuss it with 10 other people first before they can make a decision.
So you can see that there isn’t really an agile mindset there. The decision
power is there because they are the ones who take the decisions, however
they only take the decision after discussing it with 3, 5 or 10 people. It
seems like they first need to approach a lot of people before they dare
give an answer so there is definitely a loss of time. They are certainly
accessible, if you call them they will pick up their phone.

Does the customer contract revolve around commitment of col-
laboration?

No, not currently. In fact, their own managers just say that they’d rather
have that they sit there and answer the questions by phone. They always
ensure that those people don’t have to sit on our floor because that would
hinder them in their daily work they have as well.

Do the developers and customer frequently interact face-to-face?
| would prefer the customer to be here, if you are working on something
for him, let him sit here but I’'ve noticed that that’s still a bridge too far for
[company].

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

No.

81

Customer
immediately
accessible (+/-)

Customer
contract revolves
around
commitment of
collaboration (-)

Frequent
face-to-face
interaction
between
developers &
users (-)

B.3 Interview 3

1. What is your job at [company] and how does it relate to the agile

software development process of the B2C department?
| am tester in one of the agile teams and also the scrum master of that
team.

Embrace change to deliver customer value

. Are management and developers willing and able to reflect and
tune the process after every iteration and release?

Yes, we have a retrospective every sprint and each time this results in
actions which we try to pick up.

. Are managers and developers willing and able to deal with evolu-
tionary requirements?

Basically, very small changes we sometimes accept but if there are re-
ally big changes then we might stop development or tell the customer to
create a new story which we will pick up next sprint.

. Has the customer the power to dictate the scope of the iteration?
No, but they of course determine what gets on the backlog so in that
sense they do dictate what we pick up, they can indicate what has the
highest priority but they can’t tell us what we have to do next sprint, that’s
for the team to decide.

. Is the customer encouraged to continually give feedback/criticism
and rethink their requirements during the development process?
Yes, that occasionally happens. Of course you often start when 80 per-
cent of the requirements are know and 20 percent aren’t. When those
20 percent become known that’s of course okay but when that 80 per-
cent starts to change then we usually estimate as a team how much work
the change will be and whether we want to do that. Of course we want
to think along with the business but if it’s a really big change then -like |
said earlier- we stop working on it if it makes no sense to continue of we
continue building it as it was originally designed and tell the customer to
create a new epic for the change request.

82

Reflect and tune
process (+)

Evolutionary
requirements (+)

Client driven
iterations (+/-)

Maintain a list of
all features and
their status (+)

Continuous
customer
satisfaction
feedback (+)

10.

11.

12.

Plan and deliver software frequently

Are management and developers willing to use an incremental and
iterative development approach?

| can’t really judge from a business standpoint but | can imagine that not
everyone from the business is happy with it. Of course we are on the IT
side and we all work this way so | think that we are all pretty happy with
it but it's difficult to gauge what the business thinks of incremental and
iterative development.

Is management willing to commit to the process of continuously
planning instead of developing a one-time plan upfront?

On the business side they run projects and for that they undoubtedly have
a certain planning but on our team we prepare what’s coming and we play
per sprint so for three weeks what we pick up so we don’t plan far ahead.

Do the developers and managers agree to have risks drive the
scope of each iteration?

No, usually in that case it has a high priority so we only pick it up earlier,
but we don’t pick up less. Something that's more complex gets more
poker points so we don’t pick up fewer poker points but we do pick up
less different stories for the same amount of story points.

Is the high-level agile planning based on features instead of tasks?
Yes, that is mainly done by the business, they are running the projects and
planning the features.

Is management willing to maintain an up-to-date list of all the re-
maining features for the project and their status?

We have people from multiple fields in our team and sometimes the back-
log is too small or not enough differentiated, so there’s a lot of work for
people in 1 field but too little work for people in other fields, so there’s not
an even work balance for the team members so that’s pretty unfortunate
but usually working with a backlog works well.

83

Continuous
delivery (+)

Planning at
different levels (+)

Risk driven
iterations (-)

User stories (+)

Plan features not
tasks (+)

Maintain a list of
all features and
their status (+)

13.

14,

15.

17.

18.

19.

20.

Does the team deliver a fully functional release after every itera-
tion?

We will always release something at the end of a sprint but we of course
commit to building multiple things and it sometimes happens that we don’t
release something that we committed to but we always release something.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

No, we get feedback from the customer but it doesn’t influence our plan-
ning.

Are developers estimating the effort and duration of various user
stories themselves?

Yes, not only do the developers estimate but the entire team participates
so that includes testers and that works well.

Human centric

Are people willing to work in teams and help others?
Yes, | think that’s one of our strengths. | think that works very well.

Has management empowered teams with decision making author-
ity?

Yes and no, as a team you’ll make decisions but there are always delivery
managers that have ultimate decision power so in the end the decisions
our team makes are never final.

Are team members motivated?
Yes, certainly.

Does management agree to have self organizing teams?
No, we don’t have self organizing teams.

Technical excellence

84

Smaller and more
frequent releases

(+)

Adaptive planning
(-)

Agile project
estimation (+)

Collaborative
teams (+)

Empowered and
motivated teams
(+/-)

Empowered and
motivated teams

(+)

Self organizing
teams (-)

28.

29.

30.

35.

46.

Does a mechanism exist to monitor the iteration progress?
Yes, mainly what'’s on the scrum wall, the epics and stories that have been
picked up and the burn-up chart we make based on that.

Is design a continuous process or done once at the beginning of
the development process?
Yes, it’s mainly a continuous process.

Are the developers willing and able to use continuous integration?

No, we don’t currently do that, we do our builds and tests manually. |
know they are currently trying to implement it for regression tests.

Are management and developers willing to meet daily to discuss
the progress of the project?

Project managers have a daily meeting with product owners but they don’t
have a daily meeting with developers.

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

No, not really.

85

Tracking iteration
progress (+)

User stories (+)

No big design up
front (+)

Continuous
integration (-)

Daily progress
tracking meetings

(+)

B.4 Interview 4

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| am a delivery manager, | map the demand on the supply. | make sure that
we work conform the priorities set by the business board and | connect
the teams, the capacity on the back end to that. | also do the overall
escalations so when decisions about the availability of the system have to
be made | do so because I'm also owner of the OT environment. | also
make sure that | keep out the hassle that goes on outside of the team as
much as possible.

2. What are in your opinion the most important problems with the Adaptive planning
agile software development process of the B2C department? (+)
The first one is that planning is pretty difficult because we are dealing with a
quite often changing prioritization. Last time two weeks before the sprint it
became known that the deadline was Juli 1st so that changes everything.
The constant rescheduling brings a fair amount of unrest on the back end.
Another point is of course what we don’t have a high level portfolio that
describes what is about to arrive and how full our capacity is.

Embrace change to deliver customer value

3. Are management and developers willing and able to reflect and Reflect and tune
tune the process after every iteration and release? process (+)
Yes, we do have a retrospective. The result doesn’t have to be improve-
ments to the software development process, it can be general improve-
ments, it doesn’t by definition be related to the software development
process. In my opinion the retrospective is meant to get improvements
in productivity, quality, the three pillars basically and whether those im-
provements are for the software development process or for example the
team, that doesn’t matter to me.
The retrospective is a precondition, the last sprint there wasn’t a retro-
spective because of a lack of time, well | think that’s a mortal sin, | think
we should begin each Thursday at the end of the sprint and the start of
the new one with a retrospective.

86

4. Are managers and developers willing and able to deal with evolu- Evolutionary
tionary requirements? requirements (+/-)
You know what, | think that’s the fourth one from the agile manifesto: “Re-
sponding to change over following a plan”. Yes and no, let’s say it this

way: we would actually want our features that need to be built known two Maintain a list of
sprints ahead of time which allows the teams to compose their sprints all features and
from a variegated backlog. If you only have a backlog for one sprint for their status (+)

example then it's possible that there’s a lot of Gl work and very little SAP
work due to which the team can’t be optimally used so | certainly don’t
want it a month ahead or two months because you have to build what the
business currently wants but if you want to get efficiency then you have
to make sure that you have at least 1.5 or 2 sprints of backlog.

Do you want a change within a sprint? Actually by definition no since at the
moment you commit to the contents of a sprint that’s basically the piece
you are going to deliver but in my experience in practice the business
does change things during the sprint and if you ignore that and tell them
we don’t change anything during the sprint then you deliver software but
the software doesn’t do what the business wants so the principle is that
we don’t change anything during the sprint but in practice it does happen.
However in that case it only happens provided | and others know about it
because we don’t want people to change everything under the radar and
the business must know that the need to think carefully about what they
want and not want to change everything at the last moment. If the cus-
tomer wants to change something it usually isn’t only a quarter turn, they
really want a 180 degree turn the other way which completely changes
the IT solution.

5. Has the customer the power to dictate the scope of the iteration? Client driven
They do. Through the backlog they have they determine the scope of the iterations (+)
sprint.

Maintain a list of
all features and
their status (+)

87

7.

10.

Is the customer encouraged to continually give feedback/criticism
and rethink their requirements during the development process?
That’s exactly the problem and it’'s in line with what | said previously, |
think the business commitment varies so we get more commitment from
one customer than from another. We do have a mandatory demo, so
on the O or T environment -that will be predominantly T because we can
show an integral solution there- we want to show a demo directly to the
business and within that demo there is time -because we do that as early
as possible- for the demo to put the finishing touches on it. If they see a
letter there and there is a word they want to change then we can quickly
change it while sitting next to them and ask them what way they want
it. We want the demo to be as early as possible so that the customer
feedback is as early as possible on what we are going to deliver.

Plan and deliver software frequently

Do customers, developers and managers plan together?

You should actually prioritize from agile on the lowest possible level and
that’s the epic. However, our business prioritizes on project or on theme
within a project, well that are usually big things so if you subsequently
put that into a planning, which you then have to use which doesn’t work
on a project level. NMM is an example which has a lot of Gl work but if
you don’t prioritize and plan anything for other fields then there wouldn’t
be any work for the SAP people so -and there’s the crux- you have to
translate from prioritization from the business on project level to a piece
from delivery in which you will see things that not always correspond with
the prioritization made by the business board which has everything to do
with using our capacity.

Is management willing to commit to the process of continuously
planning instead of developing a one-time plan upfront?

Planning is a continuous process because today may turn out on the
last day of the sprint that something could not be realized which leads
to overflow to the next sprint. You could have a planning moment but that
wouldn’t work because during the sprint you start to see more clearly what
will be delivered and what won’t which influences what we are going to
do next sprint and then there’s also the last Thursday when the definitive
planning for the next sprint is made but that takes a lot of interaction in
the three weeks prior.

88

Continuous
customer
satisfaction
feedback (+/-)

Collaborative
planning (+/-)

Continuous
planning (+)

11.

12.

13.

Do the developers and managers agree to have risks drive the
scope of each iteration?

Our principle is: one epic, so the smallest thing, should be such that it can
be built, test, demoed, all in 1 sprint, well we are occasionally seeing some
problems with when they get bigger so they require 2 sprints. Another
point is the particular risks in the area of Cl [Configuration Item] locking,
so we know from what is requested which Cls, which configuration items
we use so which software components are going to be changed and the
issue is that the longer you are keeping something in a sprint, if something
takes multiple sprints then that Cl is locked for a longer period of time for
a certain part and then it’s not usable for another part so that’s a risk that
has to be looked into and then it’s always the one with the highest priority
which initially creates the lock.

Is the high-level agile planning based on features instead of tasks?
In the end the planning is created per team on story level. A story is
basically a part of an epic so you could see that as a task because what
we’'re currently doing is that an epic is always associated with a chameleon
team. A chameleon team can handle all aspects so what you’ll see is that
to realize something end-to-end you need something from streamserve,
something from SAP, something from G, a little bit of test work. Well this
is all worked out in stories, tasks, under an epic and then the entire team
starts working on it so the planning is made by the team on story level.

Is management willing to maintain an up-to-date list of all the re-
maining features for the project and their status?

We are dealing with an often changing backlog and the problem is -and
| think that is one of the issues that using agile brings with it- we have
a complex organization with multiple business units that are on the same
backlog. What you would want ideally is that you have one product owner
on one team that simply prioritized on epic level however here they priori-
tize on a much higher level, on project level so there’s the crux, you would
actually want that prioritization is on epic level but | don’t think you could
ask that from the deputy directors, who are absolutely not going to be
planning on that level so that’s a bit related to agile. | think agile is ba-
sically if you have one team, one product owner, one bag of money, |
think that is the most ideal situation, we currently have one bag of money
but that are actually 3 bags of money divided by 3 business directors that
need to compete over priorities in a set amount of teams, which is difficult.

89

Risk driven
iterations (+)

Software
configuration
management (+)

Plan features not
tasks (+)

User stories (+)

Maintain a list of
all features and
their status (+)

14,

15.

Does the team deliver a fully functional release after every itera-
tion?

Well, like | said, ideally we would have one epic within one sprint and
yes, we do release working software after every sprint but it certainly hap-
pens that we bring things technically live because it simply needs multiple
sprints to get something fully functional and so it is deployed but it is for
example never invoked so it’s technically live and not functionally. So yes
it does happen that we release non-working software but there will be no
sprint in which we don’t deliver anything functional at all because we are
S0 big that we can deliver multiple things every sprint.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

Feedback is requested from the customer, we do have a post implemen-
tation review but that doesn’t involve feedback on the planning because
there’s continuously feedback on the planning. The product owner by
proxy -the business representative- is certainly at the sprint retrospective
but it happens that a team delivers work in a sprint for 4-5 business units
-who are the request owners here- and those request owners are not
present at a retrospectives but they do give their feedback on coopera-
tion, quality and applicability of the functionality we deliver through a post
implementation review on Jira, this could be feedback on a team, a prod-
uct or whatever and that feedback is used but not really for the planning.
The product owner by proxy is a business representative who basically
guards the prioritization for the business. They ultimately decide what the
team will do but it isn’t the real user, they are actually process consultants
of the business who do this here, this is related to the diversity of business
units we have here. Like | said, ideally we would have one business rep-
resentative who is responsible for the budget but that’s the rift between IT
on the one hand and business on the other, the business needs to want
and be able to allocate people for that, well the actual manager isn’t going
to do it, I'll tell you that.

90

Smaller and more
frequent releases

(+)

Adaptive planning
(+/-)

28.

Technical excellence

Does a mechanism exist to monitor the iteration progress?
Burndown gives the complication that you have to extend the Y-axis at
the underside of the chart, which is very unpractical so we have burnup
charts which show how far along in a sprint you are and | must say that
this is strongly dependent on the team’s ability to cut up tasks in small
pieces so they can burn up small amounts.

What you will often see is that if a team is not capable of doing that, the
burnup is very even in the beginning and at the end you’ll see it quickly
rising so this results in the fact that you know your liability only at a very
late point in the process which can create quite a few problems but basi-
cally the mechanism is simply the standups and | make rounds. | simply
ask random team members what their progress is, so | ask a tester or
a developer how it's going and then you get a feeling what the progress
of the sprint is. You would want to measure it by that burnup but like |
said, the burnup isn’t very reliable until the very end. We have a reliabil-
ity which must be higher than 95 percent so from everything we commit
to at the start we have to deliver 95 percent of at then end which goes
pretty well so based on that we have a little certainty that the teams will
actually deliver what the promise but the problem with the burnup charts
is that you won't see a lot in the beginning and then suddenly it goes up.
That’s because things are often tested later, writing a technical design and
a functional design is part of our definition of done, which can be done in
the regression so we say we deliver the software and then we create the
documentation since documentation is less important than software but
because it's a part of your burn process all those burn points are only
counted at the end so that’s why | pay little attention to the burn rate.
For us it’s also much more important that there’s a long-term trend up-
wards in quality, productivity -they call that your velocity-, quality, reliabil-
ity. That’s pretty hard because we have to deal with KPIs which are pretty
black and white, if you tell a team to increase productivity then you’ll get
poker inflation because they have to get as many points as possible. If
you tell them to increase quality then you’ll see that productivity lessens.
So you have this axis of reliability, quality and productivity and those three
indicators you have to keep an eye on to make sure they rise evenly. If you
push and focus excessively on one of them then that will have a negative
influence on the other aspects.

91

Tracking fteration
progress (+)

agile
documentation

(+)

34. Are management and developers willing to meet daily to discuss

41.

the progress of the project?

Every day the teams do a standup in which the progress and deliverables
are discussed so if we are working on something than we will discuss who
will deliver what and then we also know right away what the impediments
are. Every day after all teams have had their own standup we have a scrum
of scrums every day in which the overarching impediments are discussed,
so if a team is unable to resolve an impediment on their own then hopefully
they won'’t always wait but then can request assistance so if the team for
example could deliver something extra if they had one additional testers
then they can ask for help during the scrum of scrums, whether the other
teams have excess capacity or knowledge about how to deal with this
situation.

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project?

Partly yes and partly no. For example, last sprint | heard: yes, we also
have other projects and operational work. Yes, that’s right but if we have
to deliver something on July 1st and we need you to do that then you will
have to raise this to a very high priority, but that rarely happens. There
is a huge language barrier between business and IT and | think that the
business might not realize that IT is a core competence for them and |
don’t know whether we can and may expect that.

Business testers so user acceptation are now simply team members, they
used to be in completely separate teams but now they are right next to
us. We also have the demo that’s given directly to the business people,
they come to us for that but it’s not like -what | would preferred last sprint
as well- there are business people permanently in the teams, it usually be-
comes a compromise, for example two days a week, | don’t know whether
you can expect more from the business.

92

Daily progress
tracking meetings

(+)

Customer
commitment to
work with
developing team
(+/-)

42.

43.

44,

Is the customer contract reflective of evolutionary development?

The business has KPls, for example about prioritization, e.g. how many
times the prioritization can change.

| just had a conversation with someone from the business about the last
sprint and he told me that they are not yet ready for agile so | told him:
we’ve been doing agile for two years, how can you tell me you aren’t ready
for it yet? There is still a lot of progress to be made, especially with mar-
keting, who are much less committed. We’ve seen that marketing does
their own software development for certain things, so without involving IT.
There’s clearly something wrong with the perception and expectations on
both sides.

Is the customer immediately accessible?

Yes, by means of escalation, so if we really need answer to this question
because otherwise we can’t deliver this at the end of this sprint then we will
escalate the question. It's very diverse, if you for example look at payment
processing and back office things, they are usually more willing then for
example marketing to make someone available continuously. Marketing
expects to give us the specs, have us build is and they’ll come look at
what we’ve made at the end while others are more accommodating and
| think see the advantages as well of working together.

Does the customer contract revolve around commitment of col-
laboration?

No, we do have KPIs but conversely, the business doesn’t have KPlIs.
They have KPIs about communication, provision of information -which
means for example that the business boards gets the minutes- but they
don’t have KPIs about the mount of time they allocate to working with us
or that they must have had a demo of all the software they get from us.
It's difficult to measure the collaboration with a team, it differs per team
and per person from the business.

93

Customer
contract reflective
of evolutionary
development (+)

Customer
immediately
accessible (+/-)

Customer
contract revolves
around
commitment of
collaboration (-)

45.

46.

Do the developers and customer frequently interact face-to-face?
Yes, but it's hard to answer whether it's enough. It depends on the team,
whether or not they are going to make and on the business. | think there’s
never enough face-to-face interaction. | think we could act a lot better in
this and | think it’s not only the supply but also the demand. We should in-
sist on frequent interaction, we should tell the customer we will not deliver
if they don’t come and look tomorrow. | think where we could really im-
prove is that currently our testers are only involved when the requirements
are almost finished. Actually | would like that the testers start thinking
along at the start about which scenario’s they should test and when the
software is successful so that you are basically using your test scripts as
requirements for your software and then you are doing test-driven devel-
opment, | would like to do that. However, currently you see developers
and requesters communicating while | think that a lot of process and busi-
ness knowledge is available from the testers and if you involve the testers,
you can do a risk analysis in an early stadium, define your scripting, match
your scripting with the requirements so that you’ll know you are testing the
right things. It's currently quite often a problem that what we are testing
and what is requested do not match and test-driven development is one
of the ways to prevent that.

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

| think we’re pretty complete alreadly.

94

Frequent
face-to-face
interaction
between
developers &
users (+/-)

Test-driven
development (-)

B.5 Interview 5

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| am SAP developer and also scrum master for chameleon 5 so | have a
double role but mainly I'm a developer within an agile team.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
As an external consultant I’'m very used to working on a project basis and
after the last sprint and all the hectics we had | noticed that working on
a project basis is a somewhat smarter way of working, a little bit more
focused on one thing, making sure all your tests run correctly, testing
smartly, that sort of thing. In my experience in an agile way of working,
due to the fact you release small components which you test individually
you miss the complete picture of what you are actually making. For small
changes | think agile is ideal, but for the large projects which we have here
| think agile is a bit of a mismatch.

Embrace change to deliver customer value

7. Can developers make decisions on their own without explicit man- Low process
agement approval? ceremony (-)
If it's about implementation specific details then nobody is stopping me.
However, before the project is brought to the teams the entire process

has to go through so many different steps that | think this is all way too Customer
bureaucratic. The same applies to communication with the business. | immediately
think business is still not used to agile. Of course you would want the accessible (-)

business to be available semi full-time for questions and such. However,
here they would like you to send an email or contact them through another
person so that’s all pretty bureaucratic. That [company] used to be a public
company might have something to do with it in my opinion.

95

16.

17.

Plan and deliver software frequently

Are management and developers willing to use an incremental and
iterative development approach?

Yes, it has its advantages and its disadvantages but | certainly see the ad-
vantages of agile, especially because it forces you to think smarter about
how you are going to do things in advance and that can make a lot of
difference which allows you to create business value much earlier so it
definitely has its advantages. It also has a few disadvantages but devel-
opment wise | would say that agile certainly has its advantages.

For managers there’s a division between types of managers. Project man-
agers are still thinking in projects so aren’t big agile fans. However, de-
partment managers are pretty involved with the agile process so they do
like the fact that we develop incremental and iterative. | think that de busi-
ness is still not used to agile and likes the advantages, that they get things
earlier but they dislike the disadvantages, so that it possibly is a bit less
efficient. They don’t really get agile and are themselves not thinking that
way.

| think that the agile teams basically know what they are doing but busi-
ness and management and especially project management are not always
thinking about agile in the right way.

Are developers estimating the effort and duration of various user
stories themselves?

Yes, there’s an estimate made in advance by -I think- IT readiness which
describes how much time a request will approximately take. The agile
team prepares a story and based on that we indicate how many poker
points it will take and those poker points can be converted to the amount
of work we will pick up in a sprint so then you’ll know how much time it
will approximately take.

Human centric

Are people willing to work in teams and help others?

On average people are definitely ready to help each other, especially within
teams. Like | said, the communication with the business could be im-
proved in my opinion but within the teams people certainly help each other
out a lot.

96

Continuous
delivery (+)

Agile project
estimation (+/-)

Collaborative
teams (+)

18.

19.

20.

21.

22.

Has management empowered teams with decision making author-
ity?

In certain areas they have, such as the order of delivery but as soon as
it’s about whether or not we are going to deliver something or a deadline
we’re not going to make then usually management gets involved to tell us
that we have deliver everything in time and to make sure everyone gives
their best to make sure that we manage to get it done. But usually we can
decide many things ourselves about the daily affairs.

Are team members motivated?

It differs, a number of people are a little less comfortable working with agile
and need a little bit more motivation but on average | would say that more
than half of team members are pretty motivated.

Does management agree to have self organizing teams?

Yes, basically the teams are self organizing. Management -as in the imme-
diate manage layer above the teams- is not really involved in that. Organi-
zation is done in the team itself, mostly by scrum masters in cooperation
with the rest of the team. This involves how they organize things, when
people will work remotely, where they are going to sit, etc. This basically
all works well. We don’t actually have a lot of difficulty with it but | think
you shouldn’t be too strict in this aspect.

Do employees feel comfortable working in self organizing teams?
As far as | know they do like it.

Is there frequent face-to-face communication between team mem-
bers?

We try to do as much as possible face-to-face and that’s usually works
best and it works definitely much better than through emails and such,
that’s an advantage | see of agile, people are now talking with each other
more instead of just sending a quick email. The development and test de-
partments are now setting together, that used to be two separate depart-
ments but this way is much easier because now everyone knows exactly
what everyone is working on and there is a lot more cooperation.

97

Empowered and
motivated teams
(+/-)

Empowered and
motivated teams
(+/-)

Self organizing
teams (+)

Self organizing
teams (+)

Frequent
face-to-face
communication

(+)

23.

24.

25.

26.

Are all the developers are in a common room, furnished to facilitate
the agile process?

People are actually asked here to work two days a week at home due
to the occupancy of the building. | personally don’t do that, I'm actu-
ally here 90 percent of the time. A number of people in my team does
do that and except from the fact that there are sometimes some small
technical issues with teleworking we do have technical resources to our
disposal such as Communicator with which you can use a webcam to
call each other. Okay, it has its occasional hiccup but it really helps for
communicating with people who work remotely. Still, | think that normal
face-to-face communication works much better.

Technical excellence

Are developers using coding standards?

There are coding standards but they are from a pretty distant past, they
are not used very actively but | know that currently a number of people
are busy to start using coding standards again and create new coding
standards. In principle | as a developer am basically in favor of coding
standards but a little bit more pragmatic, certain solution guidelines are
fine but | don’t think standardizing all naming and such is going to work.

Are the team members using knowledge sharing tools?

Within TIPCO as far as | know they do, they use a wiki, everything they
have built is on there and a lot of other stuff as well. Within SAP develop-
ment we currently have 4 or 5 people sitting here and | have a reasonable
amount of contact with 4 of them, we talk a lot with each other but we
use few to no tools to share knowledge.

Do employees volunteer for tasks instead of being assigned to
them?

No, since we only have one developer within a team it means that auto-
matically all development work ends up with that developer. However, I've
noticed lately that if I'm too busy then | can ask a colleague of mine who
sits here as well to help me and he will pick up some things for a while.
We exchange work from time to time, which is on a purely individual basis:
Hey do you have some free time, then I'll help you for a bit. So basically
we can decide that for ourselves if there is time.

98

Ideal agile
physical setup
(+/-)

Coding standards
(+/-)

Knowledge
sharing tools (+/-)

Task volunteering
(+/-)

27.

29.

30.

31.

32.

Does the organization have tools for software configuration man-
agement?

It’'s a very large area, SAP doesn’t have many problems with it because
it does a lot of software configuration management internally so a lot of
things are already covered by the transport mechanism which also ensures
that two people don’t work on the same item and such so basically SAP
does need little to no external software configuration management tools.

Is design a continuous process or done once at the beginning of
the development process?

The high level design is created before the sprint, that’s on a high level
how the process is roughly supposed to go but the design -including
documentation- is actually done during development in the three week
sprint.

Are the developers willing and able to use continuous integration?
That’s actually a standard mechanism within SAP so you don’t actually
have to do anything. When we make a change, that will go into what’s
called a transport file, which will be automatically transferred to the test
system and compiled after which you have your actual new build.

At TIPCO they usually communicate to all testers and as far as | know they
must manually install a new build on the target system.

Are the developers successfully refactoring code?

| would love to do it and when I’'m working on a big change then | will do it
but | won’t do it all the time because you can’t guarantee afterwards that
the code works the same so you would have to retest everything, which
could of course be solved by automatic testing.

Are the developers successfully writing unit tests during develop-
ment?

| think we have a pretty limited development system in which we can test
only a little but the amount of testing we do differs per change but we
create a fair amount of unit tests with wich we try to cover a reasonable
basis. For the more difficult cases and integration you’ll go to the next
system but we’ll do a few unit tests for each change.

99

Software
configuration
management (+)

No big design up
front (+)

Continuous
integration (+)

Continuous
improvement (+)

Unit tests (+)

33.

35.

36.

37.

How many team members have a level of software development
method understanding and use which enables them to tailor a
method to fit a new situation?

If we look at the previous sprint in which we actually did a small project,
that’s really exceptional, you wouldn’t usually be able to do that. Usually
we do normal changes during a sprint and require large chunks to be cut
up in to smaller pieces. Possibly we’ll go what they call “technically live”
which means you build something and pretend to bring it to production
but it doesn’t do anything and you will later continue working on it within
agile.

Are developers willing and able to take an agile approach to doc-
umentation?

| think we keep ourselves to the relevant documentation. I'm talking about
the functional design and the technical design of how it all fits together
and | think that’s the minimal basis and apart from that little to no useless
documentation is created.

Are management and developers willing and able to use user sto-
ries?

| think that the user stories should come from the users but it’s often the
case that we have to create the user stories ourselves, they will tell us
what they approximately want which is a pretty big request so we have to
cut it up into smaller pieces and that finally arrives at our desks and that
shouldn’t be the way it works because actually the business should create
small stories themselves.

We do not do something for one department, we do something for for
example twenty departments so it’s very difficult to appoint one user who
should design it and that’s the problem but | still think that one of the layers
between the business and the developers should be a little bit more clear
and should create the stories based on functionality they want because
now the stories are usually technical in nature.

Are the developers successfully using test-driven development?
No, we don’t actually do that here and | must say that I'm not a huge
fan of it myself. | think that in that case you would program with the goal
of making these few cases work well and there’s too little thought about
the functionality, it's reasoning too much from the developer’s standpoint
and not from the point of we want certain functionality so | think that’s a
disadvantage of test-driven development.

100

Agile
documentation

(+)

User stories (+/-)

Test-driven
development (-)

38.

39.

40.

46.

Are the developers successfully using pair programming?

We do it sometimes but mostly for the short, complex things. It’s not like
we sit next to each other all day but we do do short code reviews but
never real pair programming all day long, that’s done very little.

How many employees are unable or unwilling to collaborate or fol-
low shared methods?
| can’t say that’s a problem.

How many employees are unable to deal with rapid change?

Most developers are able to deal with rapid change but | occasionally think
that the business is abusing that fact by requesting a lot more things during
the sprint or changing requirements during the sprint. Up until 30-40 per-
cent of the functionality should be able to change a little bit while working
on a sprint but there’s a certain base that needs to be solid. Sometimes
it's like let’s do A, oh no we're going to do B instead and yews that means
we have to start over again if you are in a sprint so then you have a prob-
lem so | think that most developers can handle rapid change, sometimes
there’s a little resistance, especially in the area of letters, where they mess
a lot with the requirements while you are almost finished so they first want
to see something and they the tell you they want it a different way and
then you have to change it, which causes resistance but in most cases
you try to deal with it as best you can.

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

No, like | said at the start | think that it’s mostly the integration between
business and IT which could be improved a little and | think that should
come naturally if the business was a little bit more involved with what hap-
pens in IT and vice versa, | think that would make the agile software de-
velopment process a lot more successful.

101

Pair programming
(+/-)

No/minimal
number of level -1
or 1b people on
team (+)

No/minimal
number of level -1
or 1b people on
team (+)

Customer
commitment to
work with
developing team

()

B.6 Interview 6

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| am a business process consultant, we are the ones creating the epics.
I’'m also gatekeeper for billing.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
An often occurring problem is that you have a requirement but completely
specifying it is difficult for the business because that requires a level of
IT understanding. It sometimes happens that you are specifying require-
ments but IT interprets them differently and because of that the end result
is something unexpected or you don’t mention a requirement because it
seems obvious to you from a business perspective. A good example of
this is the usage feedback, customers who own a smart meter are given
a bimonthly usage feedback which includes charts. Only the customers
with return supply would get a chart for consumption feedback (CMB)
because there is no data supplied for the rest. However, the developers
created a chart for all customers. For me that requirement is obvious, be-
cause a customer that doesn’t get a restitution does not get a chart while
IT says that we supply NULL data and NULL is also a value so they make
a chart. So then you get the discussion: was this built as designed or was
the requirement not clear. That'’s the kind of problems we are facing.

Embrace change to deliver customer value

3. Are managers and developers willing and able to deal with evolu-
tionary requirements?
We always try to submit changes during development as well but we often
experience that the agile teams are of the opinion that the requirements
are final. Once a specific solution is chosen then it’s difficult to deviate
from the chosen path, while | think that agile should be about stopping
when we’re on the wrong path and starting again with another solution. |
miss that in the agile software development methodology of B2C.

102

5.

15.

Has the customer the power to dictate the scope of the iteration?
No, the agile team determines the scope of the iteration based on the
amount of work they think they’ll be able to do so the amount of poker
points they think they’ll be able to process. However, as the business we
can indicate the priority but what will be delivered at the end of a sprint is
determined by the agile teams.

Is the customer encouraged to continually give feedback/criticism
and rethink their requirements during the development process?
Yes, we try to give feedback but it is hard to stay connected from the
business because for us it is only a small part of our job while agile teams
are working on it for the entire day. We are not always available on the
right moments and we don’t always have the time to answer questions
directly. However, we did voice our intention to answer an issue within 4
ours but this is not always possible.

I've been a product owner by proxy for half a year at which team | was
a real part of the agile team and because | know the business processes
it was pretty easy for me to arrange things but that job is not sustainable
because you basically have 2 functions at the same time. That’s currently
a bit of a handicap, because we don’t know exactly who has which role
within the agile process. There’s the gatekeeper -that’s me currently- who
decides whether a release goes live, there’s the product owners by proxy
who represent the business but in my opinion they side too much with
IT so they actually represent the interests of IT and then you have the
business solution engineer that creates the stories for us.

They want to change some of this but we think that’s not workable be-
cause we business consultants don’t have the time or the knowledge to
create all user stories.

Plan and deliver software frequently

Do customers, developers and managers plan together?
Yes, on a high level we do.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

Yes, our feedback is certainly used. We have discussed some things but
often there’s a lack of communication. | don’t know how to improve this
because we can’t fulfill the needs of the agile team.

103

Client driven
iterations (+)

Continuous
customer
satisfaction
feedback (+/-)

User stories (+)

Collaborative
planning (+)

Adaptive planning
(+)

41.

42.

43.

44,

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project?

We are certainly willing but because of everything that’s happing it’s just
not feasible to take an active role in the project. You have to understand
that we have a fulltime job and next to that we try to answer all issues from
the agile team and clarify requirements.

Is the customer contract reflective of evolutionary development?
We’re quite happy with the concept of evolutionary development. We of-
ten get demos of what is built and what is being delivered. This is different
for each agile team and also depends a bit on what is being built.

The business involvement could certainly be better but considering the
amount of time it takes | sometimes rather use the time to work on some
other things instead of going to a demo. | would expect the product owner
by proxy to play a more prominent role, he should really start represent-
ing the business side more because | think that I’'m currently not having
enough contact with the product owner by proxy. He knows exactly what
is being built by the agile team and which issues did arise. | would like to
have a weekly meeting of an hour with the product owner to discuss the
progress of the agile team.

Is the customer immediately accessible?

I've sometimes had the request to come sit close to the agile team. | did
that a few times in the last few months but | only got 2-3 questions a day
and the downside is that I’'m sitting in a hectic environment and doing my
other work is more difficult.

| can be reached by phone, email and Communicator, that should really
be sufficient for the agile teams.

Does the customer contract revolve around commitment of col-
laboration?

No, we only voiced our intention that we would try to answer issues within
4 hours. We strive to do that but it isn’t always possible because some-
times you're not at the office and as a result don’t look at your email that
much, making responding in time a challenge.

104

Customer
commitment to
work with
developing team
(+/-)

Customer
immediately
accessible (+)

Customer
contract revolves
around
commitment of
collaboration (+/-)

45.

46.

Do the developers and customer frequently interact face-to-face?
Yes, often when there are issues we sit together to discuss things but
actually more time should be freed up for that. However, we don’t have
more free time so that’s really the bottleneck here.

The agenda of the agile teams does not fit with our calendars. For exam-
ple, on Thursday I’'m never in Den Bosch and that’s the day that usually a
demo is given so that’s providing a challenge. | regularly follow that demo
by using Office Communicator which works pretty well except when the
demo is given to a larger group, so for 2-3 people it works well but with
10 people usually start talking over each other and then it becomes much
more difficult to follow. This is sometimes prevented by someone who
manages the demo very strict in which case demos with large groups as
easy to follow as well.

Another problem is that we are working with a lot of Infosys people [In-
dians] and they can be somewhat difficult to understand through Com-
municator. It's very strange, when you talk with them face-to-face then
they can easily be understood but sometimes when using Communicator
| have no idea what the other party is talking about, so the language barrier
can play a role as well.

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

| think we need more clarity about who has what role and what is expected
of everyone. | feel that perhaps it is defined somewhere but it was never
really clearly communicated. We currently don’t really know who has what
role.

They also devised a hew method of working, | don’t know who approved
it but it certainly wasn’t us. It could have been senior management but
we have expressed that we currently can’t work that way, it just doesn’t
fit within our daily activities. The will is there but it just can’t work this way.
There should be more alignment about how we work together instead of
imposing a way of working on us.

106

Frequent
face-to-face
interaction
between
developers &
users (+/-)

B.7 Interview 7

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
Since april I'm the product owner by proxy for two chameleon teams.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
In my opinion currently the biggest problem is that we are saying we are
working agile and we’re saying we’re using an agile methodology but ac-
tually we are only using the pieces that we like. If you look at how the team
is really working and how for example the cooperation between projects
and agile teams is going then it looks a lot like waterfall to me. I'm won-
dering to what extent we are working according to an agile methodology
or whether we call something agile but have created our own “[company]”
methodology.

Embrace change to deliver customer value

3. Are managers and developers willing and able to deal with evolu- Evolutionary
tionary requirements? requirements (+/-)
You can submit changes until the moment we start playing planning poker
and when the planning poker game is finished then the scope of the sprint
is fixed. If it so happens that in a sprint something very small like a dot or
a comma needs to be changed it depends on capacity whether or not it
is possible to change it in the same sprint. When we have time to make
the change then we do, otherwise we tell the requester that we can’t. In
practice you see that the scope is pretty fixed at the moment we start the
planning poker so that at that time the estimates can be made about the
amount of work.

106

5.

15.

Has the customer the power to dictate the scope of the iteration?
Not directly but is does happen indirectly. A team has a certain back-
log and a team decides what they pick up from that backlog so a team
does not meet with a customer directly who tells them what he wants to
change, except that the product owner by proxy may indicate a certain
preference in the order that things are picked up. However, you can see
that projects try to exert influence from the outside on [company] devel-
opment management about when they can expect their change requests
to be fulfilled.

Besides whether or not a team commits to or plans something, you see
that a variety of forecasts are made about the contents of the next few
sprints.

So directly the customer doesn’t have a lot of influence over the scope of
the sprints but indirectly they have some influence.

. Is the customer encouraged to continually give feedback/criticism

and rethink their requirements during the development process?
They do not constantly give feedback but this is due to the fact that they
are not constantly involved in the development process. They often know
that we are starting a certain epic and it depends on the person how much
interaction the team has with the customer.

The customers do not give feedback on their own initiative but after every
story we ask someone to fill out a survey of 3-4 questions about how
satisfied they are with the solution, how it fits, how they experienced the
collaboration and so on.

Plan and deliver software frequently

Do customers, developers and managers plan together?
Yes.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

| can recall no situation in which the business said they were unhappy with
how things were going and that that feedback was incorporated into the
planning for the next sprint. However, the content of sprints is discussed,
for example when the customer needs something changed with a much
higher priority than other things so he asks whether we can make that a
priority. Things like that occur a lot more than discussions about the way
we work.

107

Client driven
iterations (+/-)

Continuous
customer
satisfaction
feedback (+/-)

Collaborative
planning (+)

Adaptive planning
(+)

41.

42.

43.

44,

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project? No. The business is in my experience involved with the
agile team in a number of ways. We have 6 chameleon teams here which
all have half a dedicated product owner by proxy so we have 3 proxies
on 6 teams. This is the fulltime involvement of the business. The request
owner -the applicant of a particular epic- is sitting somewhere else entirely
and for him the answer is no, the customers are not sufficiently involved
and they do not have enough time to take an active role in the project.
Basically the product owners by proxy look at what is required in an epic
and then try to involve those people from the business that submitted the
initial request by for example asking them if they want to come by to get
a demonstration but that does not happen a lot. Sometimes that’s simply
because we are too busy and therefore announce 3 days in advance that
someone can come by and see the result but at such short notice people
may not be able to allocate time for that.

It’s not as black and white as that they are unwilling to dedicate time to
take an active role in the project, sometimes it’s simply because we are
too late in making the appointment.

Is the customer contract reflective of evolutionary development?
As far as | know the customer is pretty happy with this way of working.

Is the customer immediately accessible?

Yes, usually the customer is immediately accessible for answering ques-
tions but often these questions are simply about whether he wants left or
right so then you can call him to ask that and most of the time after a short
deliberation he can give you the answer. So yes, the customer is certainly
accessible but | doubt he’s involved enough.

Does the customer contract revolve around commitment of col-
laboration?
Not as far as | know.

108

Customer
commitment to
work with
developing team

()

Customer
immediately
accessible (+)

Customer
contract revolves
around
commitment of
collaboration (-)

45. Do the developers and customer frequently interact face-to-face? Frequent

No, not enough. face-to-face
interaction
between
developers &
users (-)

46. Did you think of any other problems with the agile software devel- Customer
opment process of the B2C department during the course of this commitment to
interview? work with
Basically it all comes down to the point | made at the beginning of this developing team
interview, we say we’re doing agile but what we’re doing is not completely (-)

agile. In the meantime there are -just like in any other large organization-
a lot of other things that are being changed and due to all these changes
you can see that we as an organization do not fit with the theory of agile. Adaptive planning
Due to this you can see that agile is not always as efficient and effective (+)

as a method at [company].

The business is expected to show involvement with the agile team next
to their normal job. If | had a number of KPIs for delivering processes
than | would make sure | was working on that, at the expense of people
developing software and wanting to ask questions.

It would actually be in the interest of the business to be more involved.
Ultimately, they need the best possible product. Currently the business is
depending a lot on other people to determine that the product is good.

| see improvement opportunities on both sides, sometimes everything is
very hectic here, for example we are still working on the preparations for
the next sprint, which starts next Friday, so that’s all pretty last minute.

109

B.8 Interview 8

1. What is your job at [company] and how does it relate to the agile
software development process of the B2C department?
| am the manager of the business process support department, we are
responsible for managing IT insofar that we have budget responsibility. We
actually determine where the money goes that is spent on IT on what we
spend it and we monitor that as well. We also prioritize the work that enters
the agile process, on processes but also changes, small changes but also
large projects. In addition, | also manage the UAT department. We do
User Acceptance Tests as part of B2C, we test what is actually delivered
by the agile teams. We do that from a business perspective because we
believe that we are the ones that have to work with the software and we
know our processes best. We test the new functionality to make sure it
does what it should do and whether the existing functionality still works
after completion of the sprint. So basically | am responsible for the front
of the agile process, so everything that goes in. Then | make sure that it
is delivered on time and within budget and | keep monitoring it until finally
we acceptance test what comes out.

2. What are in your opinion the most important problems with the
agile software development process of the B2C department?
A number of things that stand out at the moment in our experience. The
most important is that large changes or large projects do not currently
match with the agile way of working. When you’re starting a large project
involving multiple sprints then to deliver the final product on time it's very
important to define precisely what pieces of work there are, what needs
to be done and in what order. The risk is that if you don’t correctly es-
timate the number of sprints needed and specify how many teams and
poker points are needed, the deadline will slip because your estimate and
consequently the planning was wrong, which results in not being able to
finish the project in time.
Another problem we see is that because we currently have many projects
that need to be finished, we’re increasing capacity but this leads to a de-
crease in quality of the deliveries. Those who build the functionality actu-
ally have little affinity with the system and processes so they are mostly
just creating code without understanding the rationale. We try to improve
that situation with the product owners by proxy which are in the teams
at B2C but we’re experiencing that that takes a lot of time to pass down
knowledge like this, especially when you create completely new teams
consisting of new external people, many of them Indian and having no
knowledge of the energy market at all.

110

Embrace change to deliver customer value

. Are managers and developers willing and able to deal with evolu-
tionary requirements?

A team should only commit to the work they are going to deliver in a sprint
when the requirements are formulated clearly. If that isn’t the case then the
developers don’t really know what to build so a team should say that the
requirements aren’t specific enough and they won’t pick them up because
of that, even if the change or project has the highest priority from the
business. This is a field of tension between business and IT because at
the moment we’re seeing that we need stuff really quickly because it has a
lot of business value for us and/or can help us save a lot of time or money
or can help another project progress more quickly then it’s possible that
we say that we want it at all costs while the team isn’t completely clear on
what needs to be done, how much time it's gonna take etc. At such times
you’ll see that during a sprint the pressure is increased and people have
to work overtime because the task turns out to be much bigger, more
coordination is required, etc.

On the other hand, you sometimes see that the requirements are not
completely clear and during the sprint some customer contact is required
about whether to turn left or right or color something green or blue. |
don’t find this much of a problem because this is the power of agile or
at least should be the power of agile because you have a team which in-
cludes a business representative it should be possible to do such things
as long as it's small things and no big changes so it should be specified,
no large chunks but whether there should be two spaces in an invoice line
or whether a green or a red text needs to be added, such things could in
my opinion still be changed during the sprint, as long as it's a small change
or a small choice that needs to be made and it doesn’t influence the rest
of the delivery. However, sometimes something looks small from a busi-
ness perspective but actually has a huge impact and for example results
in double the amount of work to make it happen. At that point you should
question whether you did specify your request sufficiently beforenand and
at this point the team should say that since it's not in the requirements,
they can’t build it. They can build it in a separate epic if it still needs to be
delivered.

111

Evolutionary
requirements (+)

5. Has the customer the power to dictate the scope of the iteration? Client driven
Yes, because very simply: we are the ones paying for it. | always say: iterations (+)
the customer is paying, if we weren’t here, T didn’t have a job. It’s pretty
black and white, but ultimately it comes down to that. That’s why we
decide on the scope per sprint based on priorities we give to all changes
and projects that are in the pipeline It may just be that we think that we
want to do a certain project next sprint but that next week something else
becomes more important so we give that a higher priority so it has to be
picked up earlier. In the end the business board determines the definitive
priority.

6. Is the customer encouraged to continually give feedback/criticism Continuous
and rethink their requirements during the development process? customer
Yes and no, it very much depends on the person requesting the change. satisfaction
| see that some people have a higher involvement than others and it is feedback (+/-)

exactly the role of the product owner by proxy to involve the person who
submitted the change request when necessary. On the other hand, if the
requirements are good and clearly specified and are simply implemented
without problems then basically the applicant does not need to be involved
during the software development process. At the moment that fundamen-
tal choices need to be made -for example whether something needs to
be green or blue- he needs to be present.

We try to make sure the applicant is present during demos to show him
how it looks and ask him whether this is what he actually wanted but that
is not always necessary.

Plan and deliver software frequently

8. Do customers, developers and managers plan together? Collaborative
No, the developers basically don’t make a planning, to the extent that we planning (+)
indicate priorities and when something should be finished and then it's
up to the preparing party -so in this case business alignment- to create
a specification and ultimately the development teams that declare what
they will deliver at the end of a sprint.

112

15.

41.

42.

Is management willing to plan immediately before the iteration in-
stead of earlier to allow the customer’s feedback to be incorpo-
rated into the planning?

Yes, that’'s mandatory. We also have a KPI on the business side for the
people in my team that control IT about the prioritization effectiveness, so
how effective they are in the prioritization. In other words: if we have a
top 10 that needs to be picked up, how many items from that top 10 are
actually included in the next sprint?

Customer collaboration

Is the customer willing to dedicate time to take an active role in
the project?
Yes.

Is the customer contract reflective of evolutionary development?
We are happy with evolutionary development when requirements are suf-
ficiently specified and business alignment indicates if this isn’t the case as
well. The risk is that for example we say we want a car and when business
alignment then says they will build it and finally they deliver a green Fiat
while we actually wanted a red Ferrari then something is wrong.

What | would like is that during the intake, IT is much more assertive when
it’s not exactly clear what is requested. We are currently losing too much
money because we build something that’s ultimately not what was actually
requested or something is just slightly different or an essential part was not
included. This means we spend money on something we don’t really want
and | think it's the responsibility of IT to make sure they understand the
requirements when they accept a request, that they implement it correctly
and tell us when something is not completely clear. That's not weakness,
that’s just being professional. They should be saying: listen, you requested
this, it isn’t clear, | need this specification now or | won’t pick up the request
and that can be done in a very normal businesslike manner.

This is something which is currently still a problem and then subsequently
you get a discussion about whether it was not clearly specified. Yes, but
listen for a moment, we said we wanted a car but you should have asked
what kind of car it should be. You should not want to conduct this dis-
cussion with each other.

113

Adaptive planning
(+)

Customer
commitment to
work with
developing team

(+)

43.

44,

45.

46.

Is the customer immediately accessible?
Yes, in my experience that is the case and we try to leave the customer
communication to the product owners by proxy.

Does the customer contract revolve around commitment of col-
laboration?
No.

Do the developers and customer frequently interact face-to-face?
No, actually only at demos.

The product owner by proxy is in this case also an extension of the cus-
tomer because otherwise you would have 8 customers around the table
when 1 team is working on 8 separate functionalities, such as for example
payment, billing, collections, customer acquisition, marketing and smart
energy. Since we don’t want that, we have a product owner by proxy, the
business representative in the teams.

Did you think of any other problems with the agile software devel-
opment process of the B2C department during the course of this
interview?

We often encounter large projects you would actually do in a waterfall
structure. Doing these projects in an agile way means that you need to
be very focused from the very beginning and you should be very clear
about the requirements. In this case the process starts to look a bit more
like waterfall but it's impossible to work on one project for 10-20 sprints
without having very clear requirements otherwise the project will never
finish.

114

Customer
immediately
accessible (+)

Customer
contract revolves
around
commitment of
collaboration (-)

Frequent
face-to-face
interaction
between
developers &
users (-)

B.9

1.

Interview 9

Do you agree that the amount of continuous customer satisfaction feedback
should be improved?

Indeed one of the important things we want to achieve with our move to an agile way
of working is the close cooperation and visibility between business and IT. If you have
a sprint of 3 weeks then you should know that there is a demo after ever sprint so
you could put the demo in your agenda for the rest of the year. The business could
already know for the rest of the year on what days they should be present at the IT
department to check that what they requested corresponds with what is delivered.

Do you agree that risks should be taken into account when planning sprints?

Yes, it’'s one way to look at the question of how to arrive at priorities. What | think is
really nice and what you actually suggest is that you take risks as the starting point
to determine the priority order of things. So a risk can be either indeed something
is very business critical and technically difficult, so let’s try to finish this one as early
as possible or indeed a high risk as in if we leave this one we are going to miss out
on a lot of money. So it’s prioritizing but it also feels a bit like it's from a negative
undertone.

. Do you agree that coding standards should be used more?

Yes, | think this is true for the [company] case. It depends on how broad you want to
stretch the subject or theme. If you are talking about wanting to work in an agile way,
a high level of software development maturity and experience on that level is indeed
an important precondition to have in place, so that you have experienced people
who can look with a certain standard -also in quality- to code and technology.

So what you notice is that agile and Scrum at a certain point have the power to show
that this is a problem so that actually your software development maturity is too low
and you need to improve the technical skills. | think that at [company] this is one of
the things we need to improve in.

. Do you agree that continuous integration should be implemented?

We decided not to implement this. This is related to the technical landscape we
have. We have a 5-layer architecture -or decoupled architecture as it’s actually now
called- with SAP components, intermediate layers, TIBCO, iProcess on the frontend
and what you notice is that various teams are working on different parts of the code
and creating one new integrated build is a lot of work, which is also related to the
technology behind it whether this can be continuously integrated or not. | don’t think
we currently have the technology in place to implement that milestone and there is
no energy at [company] to grow towards that goal, it’s simply accepted as that’s it’s
actually one of the suggestions or preconditions that the books prescribe but we are
not going to implement it now.

1156

5. Do you agree that continuous improvement (refactoring) should be done
more often?

Yes, that is a good one because there are proponents and opponents and what
you’ll see is that interests within the company are divided on this and | find it difficult
in my role as agile coach to deal with this in this organization. If you ask the business
what they need they don’t care whether the code is maintainable, they want as much
software for as little money to help them carry out their business. So the pressure
from them to finish a project and start something new is enormous. What you'll
notice is that the effect of this is that the teams don’t feel the freedom or are willing
to take the time to work on this kind of things. | actually think that they shouldn’t
explain it and just organize it themselves. So that’s a pretty difficult discussion so if
you ask whether [company] will go there in the short term, if you ask me we have to
create the air and space in the work so that teams are going to do it. | don’t think
it's necessary for the business to know that this takes a certain amount of time and
money because it's part of the IT job. However, on the short term we probably won'’t
be able to implement it.

6. Do you agree that the customer should be more committed to collaboration
with the agile team?

What | actually see is that -and I'm appealing to my lean background here- there is
still one large form of waste left and that’s the amount of work we have in stock. This
means that the business is currently working on other things that the request they
asked of IT roughly half a year to a year ago. That effect is reinforced by that we are
now in 2011-2012 mostly dealing with compliance projects so eighty percent of our
IT projects involve complying with laws and regulations from outside of [company],
such as the new market model, SEPA. Those are all not thought up by ourselves
but we have to do them because otherwise we are fined or not licenced anymore
and have to stop as a company. This means that the business asked IT to take care
of it for them and in the meanwhile they are busy with thinking up new campaigns,
new rates, a new form of customer centricity. This means they are talking with each
other about these kind of things and if we are asking a question about how they see
something in the new market model or how to we implement specific SEPA rules,
they have to make a context switch. What | think is important is the question: how do
we ensure that that cooperation is optimal, so how do we ensure that IT is working on
the same things that are topical for the business. If the business is currently talking
about what they want to do with the new campaign then IT has to be sparring partner
and immediately think with them -build- about the implementation of campaigns. So
if they say: this is how it's going to look that the software is finished as well and
they can put the campaign live and that’s currently not going well because there is
too much stock between the projects IT is working on and the business is already
working on the next thing.

116

7. Do you think that there should be KPIs on the amount of customer collabo-
ration?

No, | don’t believe in that kind of KPIs. What | think is important is -and that’s an
important we are currently actively implementing- measuring and demonstrating how
much work there is in the pipeline, where the stock is and how big the gap between
the agenda of business and [T is, which should be as close to each other as possible
because in that case you can talk with the same people about the same topics,
which means that as an organization you have to consciously choose about where
time is allocated. We currently aren’t that far, there are now a few people working on
important things and a lot of other people around them working on less important
things and creating noise. It could be a lot leaner.

8. Do you agree that test-driven development should be implemented?

Yes, | believe in the power of test-driven development but I'm also afraid -and that
is related to the software development maturity | was talking about earlier- that we
have an insufficient amount of people who have knowledge and experience about
that to do this well in the short term. | think this is currently a bridge too far.

9. Do you agree that pair programming should be implemented?

We are currently do it already in certain places, in particular you'll see that the people
from Infosys that are sitting here are doing it a lot and that works. | also have very
good personal experience from early 2000 with pair programming at ABN Amro bank.
| love working that way and really believe in it.

117

	Problem Statement
	Research methodology
	Literature Review
	Case Study

	Theoretical Framework
	Software Engineering
	Waterfall
	Agile

	Challenges to Agile improvement
	Team size
	Geographical distribution
	Entrenched culture
	System complexity
	Legacy systems
	Regulatory compliance
	Organizational distribution
	Degree of governance
	Enterprise focus

	Hybrid Agile
	Adapted Base
	Risk based
	Cost/Benefit analysis

	Agile improvement models
	4-Dimensional Analytical Tool
	Agile Adoption and Improvement Model
	The Agile Maturity Map
	Agile Adoption Framework

	Agile and CMMI
	Causal analysis and resolution
	Configuration management
	Decision analysis and resolution
	Integrated project management
	Measurement and analysis
	Organizational process definition
	Organizational process focus
	Organizational performance management
	Organizational process performance
	Organizational training
	Product integration
	Project monitoring and control
	Project planning
	Process and product quality assurance
	Quantitative project management
	Requirements development
	Requirements management
	Risk management
	Supplier agreement management
	Technical solution
	Validation
	Verification

	Applying the Agile CMMI Framework at a large energy company
	Results of the interviews on agile principle level
	Results
	Level of agility
	Suggestions for improvements

	Results of the interviews on CMMI process area level
	Results
	Suggestions for improvements

	Validation of the suggestions at a large energy company

	Reflection
	Conclusion
	References
	Academic peer-reviewed papers
	Other

	Interview questions
	Interviews
	Interview 1
	Interview 2
	Interview 3
	Interview 4
	Interview 5
	Interview 6
	Interview 7
	Interview 8
	Interview 9

