
Master Thesis Computer Science

Reacting to concurrent changes
in shared data sources

Radboud Universiteit Nijmegen

Author:
Bob van der Linden

Supervisor:
M.J. Plasmeijer

Assisted by:
Steffen Michels

December 1, 2012
Thesisnumber: 656



Contents

1 Introduction 2

2 Background 5
2.1 iTasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Shared data sources . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Notifying on changes of shared data sources 15
3.1 Requirements of notifications . . . . . . . . . . . . . . . . . . 15
3.2 Polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Callback on writing . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Waiting for changes . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Using atomic properties for waiting . . . . . . . . . . . 20
3.4.2 Analyzing the waiting mechanism of shared data sources 26
3.4.3 Exploiting the waiting mechanism of shared data sources 27
3.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Callback functions . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1 Storing callback functions . . . . . . . . . . . . . . . . 30
3.5.2 Queueing callback functions . . . . . . . . . . . . . . . 32

3.6 Queueing messages . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Change notifications in iTasks 46

5 iTasks simulation 53

6 Related work 59

7 Conclusion 62

1



Chapter 1

Introduction

Large software systems often use huge amounts of data. This data is retrieved
from and stored to many different sources. Frequently, these sources are also
used by many different systems. Many of these systems are web applications.
Web applications used to be strictly request-response mechanisms, where the
user requests a page and the server responds with the page. Nowadays web
applications tend to become more ‘real-time’. A page is requested, the server
responds with the page and afterwards the page is being kept up-to-date with
the latest data the server has.

This approach is great for interactivity, but it can often be hard to imple-
ment. The problem of communication between server and browser has been
solved by new web standards. The WebSocket API [1] allows for two way
communication next to the traditional request-response mechanism. The
EventSource API [2] allows a server to send events to a browser. Both of
these APIs are implemented in most modern browsers. Now, next to the
browsers being able to send data to the server at any time without these
APIs, it is possible for servers to send data to the browsers at any time too,
using one of these standards. This makes it possible to efficiently keep a
webpage up-to-date with a server.

This is quite different between the server and its data. Whereas we have
now a standard for communicating with browsers, there are many different
ways to store and retrieve data. Some data is stored as text files to be easily
accessible, some data is in memory to be accessed efficiently and some is on a
central database to be accessible from different locations. The different ways
of storage all use their own interface to store and retrieve the data. Data
which is accessed concurrently also use different methods to synchronize, such

2



as locks or transactions. Lastly, for a real-time system to work, there need to
be ways for the server to know when data has changed. The technique to do
this also varies greatly between the different types of data storages. For files
the operating system needs to tell your program when a file has changed.
For databases it depends greatly on the type of database that is used. For
memory one has to implement such functionality for themselves.

Existing real-time systems have shown their ability to handle real-time
changes made by users quite efficiently. One example is Etherpad [3]. This
web-application is an online text-editor that lets multiple users edit the same
text-document in real-time. In this application the system interacts with a
database that contains the text-documents. All changes happen through the
same application, which makes it possible for the application to know of all
changes that are being performed. In this thesis we focus on ways to know
of changes of multiple data-sources, which could be in different locations and
are changed by different systems.

The concept of shared data sources [4] tries to solve the problem of storing
and retrieving data from different sources in a reliable way from within a
functional language, so that operations on the different data keep all data
consistent all the time. It provides a concrete type of the actual data so that
it is easy to swap out one data source for another, while still using the same
interface.

This still leaves open the problem of being notified of changed data. In
this thesis we extend the concept of shared data sources with a way to be
kept notified of changes. We show the different methods of doing so and
conclude with a method that should work both reliably and efficiently.

iTasks [5] is a system that relies on shared data sources. It is a web
application to manage tasks which can be handled by different users and
systems. The system has a concurrent nature. Different tasks can be handled
at any time where the tasks rely on different internal and external data
sources. iTasks makes use of shared data sources to access data that is
needed from different tasks. However, the concurrent nature of iTasks asks
for real-time up-to-date data that the users can interact with.

Since iTasks uses shared data sources to access its data, we want to
have some way for iTasks to know when data from a shared data source
has changed. This requires an extension to the existing concept of shared
data sources which provides a way of notifying user-code when a shared data
source has changed.

In this thesis we look for different ways to define and ways to implement

3



such an extension. We show what requirements we have for the extension
to be usable in iTasks, but the extension is still separate from iTasks. This
means shared data sources and the extension should both be usable in other
applications.

We also show how we used the change notifications in iTasks to explore
and show the problems that arise when actually using the notifications in a
task-oriented system. We use a simulation of iTask to simplify our problem
so that tests are more easily made and problems become clear more quickly.
The actual implementation in iTasks itself will not be part of this thesis.

In chapter 3 we show what options we have found in regard to ways to
notice and notify changes. In chapter 4 we show how we used the notifications
in our iTasks simulation. We show how the simulation is implemented in
chapter 5. In chapter 6 we show what work there has been done in the area
of concurrent and real-time systems in regard to change notifications. We
conclude in chapter 7 with a summary of our findings and recommendations.
First however, we will give some background on iTasks and shared data
sources in chapter 2.

4



Chapter 2

Background

In this thesis we refer to a number of existing systems that we make use of.
In this section we give a short introduction to what these systems are and
how they are used.

2.1 iTasks

iTasks is a system that relies on shared data sources. It is a task oriented
programming framework which allows users to generate complete workflow
applications using a workflow specification that is embedded in the general
purpose functional language Clean [6]. This enables the specification to in-
herit from the state-of-the-art programming language concepts that the func-
tional language provides.

When workflows are specified and the application is generated, users can
use the application via a web-interface, as shown in Figure 2.1. In the web
interface users get a list of tasks which they can perform, like filling out a
form.

Because workflows are defined within the Clean programming language,
it uses different functions that can be combined. These functions include
functionality to enter, update and show information. What kind of data can
be entered, updated or shown is defined by the type-system. This means lists,
tuples, records and algebraic data types can be used to describe what kind
of data the user can interact with. iTask generates a graphical user-interface
that fits the data-type.

Since the type-system of Clean can infer the types of its expressions for

5



Figure 2.1: The web-interface of iTasks

most cases, it is often not necessary to explicitly annotate the workflows with
type information. This can be seen in the later examples.

First we show a very simple workflow that only shows data to the user.
We define the workflow using the built-in function showInformation, which
needs a description, a list of options and the data to be shown. At runtime,
the user sees the description, followed by a representation of the data. In
this example the description and the data shown are both fixed Strings:

welcome= showInformation "Welcome" [ ] "This is some data"

This example only shows how to report data to the user, but since the
data is constant the example is somewhat contrived. A more interesting
example would show data that depends on user input.

In the following example we use the function enterInformation to ask the

6



user to fill in their name. This function requires a description and a list of
options. It results in data that the user has entered. Thereafter we greet
the user, with their entered name, using showInformation. To combine these
two functions we use the combinator >>=, which makes the two tasks run in
sequence. It also allows us to retrieve the value that enterInformation results
in and use that value as an argument of showInformation.

welcome=
enterInformation "Please enter your name" [ ]

>>=λname → showInformation "Welcome" [ ] ("Hello "+++name)

In this example we can see the use of the combinator >>= as well as a
lambda function. In Clean a lambda function is declared asλ, followed by ar-
gument names, followed by→, followed by the body of the function. Using>>=
combined with the lambda function, we name the result of enterInformation:
name. Thereafter we use name to make the String that is shown to the user
by concatenating name to "Hello ". Because we do such a concatenation, the
type-system knows that name should be of the type String. The type system
also infers that therefore the argument name is of type String and therefore the
result of enterInformationmust, in this case, also be a String. This makes iTask
generate a user-interface to enter a String when enterInformation is executed.

Tasks can also rely on data that is shared with other tasks, which are
being performed by other users. It does this through shared data sources.
To illustrate this, we extend the previous example by adding the name to a
shared list of welcomed users:

welcomedUsers= sharedStore "Welcomed Users" [ ]

welcome=
enterInformation "Please enter your name" [ ]

>>=λname → update (λusers → users++ [name]) welcomedUsers

>>| showInformation "Welcome" [ ] ("Hello "+++name)

Here welcomedUsers is the shared data where we store and retrieve our list
of users. update is used to atomically add the name to the list of users. After
updating we greet the user again like before.

With the example above welcomedUsers is only updated and never shown
to any user. We can use the following task to show the list of users that we
have welcomed:

showWelcomedUsers=
get welcomedUsers

7



>>= showInformation "Welcomed users:" [ ]

In these examples data is used from a shared data source, whereas previ-
ous examples only used local data. Local data is data that is only accessed
and changed from the same task. When using shared data sources the data
cannot only come from different tasks and users of iTasks itself, but also
from other (external) systems through the same interface. The data could
be stored in a file or in a database. Other processes can use the that same
file or database to access and alter the list of users.

Because some data is shared between tasks, the state of tasks can change
when the data, on which the task relies, is changed. This is a very important
aspect since it allows users to cooperate and interact, each through their own
task, but on the same data. In the above example the data is first retrieved
from ‘welcomedUsers’ and after that the retrieved data is shown to the user.

A more interesting example is an alternative of ‘showWelcomedUsers’
which retrieves and shows the data from ‘welcomedUsers’ every time the
user visits the task:

showWelcomedUsers= showSharedInformation "Welcomed users:" [ ] welcomedUsers

This task retrieves, instead of retrieving the data once, the data every
time the information is needed to be shown. The user then always receives
up-to-date data from the shared data.

At the time of writing iTasks is not showing changes of its data to the
user in an efficient real-time manner yet. When a piece of data (like the list
of welcomed users) is changed while a user is watching that data (directly
through showInformation or via some other method that depends on the data),
the user only sees these changes when the user had enabled an option on the
web-interface to ‘poll’ the website for changes. iTasks then uses a short time
interval to check whether the server still has changes and refreshes its user-
interface once there are any changes pending. This is not very efficient, since
the server needs to retrieve all data that is visible to the user. Using this
data it needs find out whether it has changed comparing to the previous data
it has sent. This can be a bottleneck when a great number of users are using
the same iTasks system. It becomes more of a problem when external data
sources are used, which all need to be checked for changes every time-interval
for each user.

This is where the extension to the concept of shared data sources comes
into play. It should enable iTasks to support efficient real-time updates of
its tasks and forward those changes in a presentable manner to the user.

8



2.2 Shared data sources

In the previous sections we touched on the concept of shared data sources
and showed how we use it in iTasks. In this section we look more closely
how shared data sources can be used. Additionally we show what different
characteristics the concept of shared data sources has.

The concept of shared data sources is a solution, implemented in Clean,
that allows a uniform and reliable way of accessing data. It has a number of
characteristics that makes them reliable to work with under many different
conditions.

• A shared data source has its actual storing and retrieving abstracted.
This makes it possible to work with data the same way, independent of
the physical locations where the data could be stored (such as memory,
disk or network).

• A shared data source is always accessed in a type-safe way. The type of
the data is predefined and the type-system of Clean can check whether
this condition holds.

• The type that is used for writing and reading can differ. This allows
for access control so that only parts of the data can be written through
the data source. It also allows for hiding information when exposing
less for the reading-type compared to the writing-type.

• The data sources can be accessed concurrently while keeping them con-
sistent. We accomplish this behavior using locks, but also using atomic
transactions.

• Each data source has a version number. The version can be compared
to earlier read versions to determine whether the data has changed
without comparing the whole data structure.

• Two data sources can be composed into a new data source. This allows
data from different sources to be combined into a data source that can
be used just like any other.

With the right implementation of a shared data source, it is possible to
reliably read and write data between applications or different machines the
same way as we would with data from memory. It is also possible to compose

9



data from different sources. This is all possible without the fear of accessing
the data concurrently and without deadlocks.

Figure 2.2: Overview of shared data sources being used on different machines

Figure 2.2 gives an overview of the shared data source-system. A program,
which runs inside a process, can access data from many different sources. It
does this through shared data sources. The data can originate from its own
process (memory), its own machine (files) or other machines over the network
(databases). These are some examples of such sources, however it is possible
to implement more using the same interface that the shared data source-
system provides.

By accessing the data through shared data sources it is possible to access
multiple sources of data safely. This means that the data can be read and
written without concurrency problems or deadlocks. When data is being
accessed through a shared data source and the same data is being written
through another shared data source, the accessing process waits until the
writing process has finished with its operations.

This also applies when multiple shared data sources are composed into
one data source. These composed data sources behave just like normal shared
data sources. In figure 2.2 a composed data source is shown which combines
data from a file and data from memory. Just like normal shared data sources,
it is possible to safely access these without concurrency problems. The same
sort of mechanism applies where the accessing shared data source waits when
another is writing to one or both of the data sources.

10



Figure 2.2 also shows that a single program can use multiple data sources,
such as some basic data sources and some composed data sources.

Basic data sources are the core mechanism that retrieves and writes data
from and to physical locations. The basic data source is an abstraction
that can have any implementation. Therefore the physical location of the
data is determined by its implementation. The implementations that are
already planned are memory, file and database. The abstraction allows for
reading, writing, locking, versioning and notifying for atomic operations. It
has a type for reading (reading-type), a type for writing (writing-type) and
a type how the data is stored (storing-type). The storing-type is only used
internally within the specific implementation. When writing a value, the
value is converted from the writing-type to the storing-type and send/written
to the physical location. When reading a value, a value is retrieved from the
physical location as the storing-type and is converted from the storing-type
to the reading-type.

Composed data sources are a combination of two arbitrary data sources
with projections on how the two data sources are combined, one for read-
ing, one for writing. Multiple basic data sources can be combined into one
composed data source by using multiple composed data sources, as shown in
figure 2.3.

Note that the ‘users’ in this example are all in the same process as they
have direct references to the composed and basic data sources. When other
processes access the same physical data through the concept of shared data
sources, those processes must also create their own basic and composed
sources. Processes that do not use the concept of shared data sources can still
access the physical data locations directly. Even though this is possible, for
some of the data sources the processes must follow the same protocol as the
shared data sources do so that features like concurrent access and versioning
will still be intact.

It is also possible that basic sources are used in different parts of the
program, either via the use of composed data sources or by using a basic
data source directly. An example of such a situation is shown in figure 2.4.

To reliably read from and write to multiple data sources, operations on
these data sources are performed in a single atomic operation. The function
readWrite, which is provided with the implementation of shared data sources,
is used to accomplish this:

:: RWRes w a state= YieldResult a | Write w a | Redo state

11



Figure 2.3: Multiple basic data sources (the leafs) are combined to a single
combined data source, which is used by the user.

readWrite :: !(r Version state → (RWRes w a state)) (RWShared r w *World) state

*World → (a, *World)

In this definition we use RWShared to describe the type of a shared data
source. Here r is the type of data that can be read and w is the type of the
data that can be written. state is the type of data for a value that is held
across the transaction of the read or write operation. Finally, World is the
global state in Clean.

A RWShared contains all functionality of a shared data source, specifically
for the type of data source. This means that when a file-based shared data
source is made, the result is a RWShared that contains functionality to read,
write, version and lock files.

readWrite uses RWShared as its second argument to have all of the needed
functionality for the specific type of shared data source. The first argument
of the readWrite function is the atomic function. This function defines what
action readWrite should take once the atomic function is finished executing.
The evaluation of the atomic function and the action that readWrite takes all
happen without other processes being able to change the data.

When executing readWrite, it first locks all basic data sources, then reads

12



Figure 2.4: Multiple users can access different compositions of basic data
sources, or access them directly.

the data and versions of the data from the physical locations. Thereafter it
executes the projections of the basic sources and composed sources to get a
value of the right type. The resulting value and version are passed into the
atomic function, which is then executed. The atomic function is user-defined
and results in YieldResult a, Write w a or Redo state. readWrite acts on that
result: YieldResult a unlocks the data and make readWrite result in the value
that is passed to YieldResult. Write w a first writes the passed value (w) to
the data source and unlocks right after that. The value a is passed back as
the result of readWrite, just like YieldResult does. Redo state makes readWrite

unlock and waits until the data has changed and reruns the atomic function
when that happens. The state that is passed to Redo will be passed to the
atomic function the next time it is executed.

This behaviour is visualized as an activity diagram in Figure 2.5.

13



Figure 2.5: Visualized mechanism of readWrite

14



Chapter 3

Notifying on changes of shared
data sources

In this chapter we explore the different possibilities of knowing when a shared
data source has changed. We also explore the possibilities of delegating the
notification to user-code.

For our purposes we use shared data sources mainly for iTasks. However,
since we want our system to be general enough to be used in other systems,
we refer to the application using shared data sources as ‘user-code’.

We start by describing the properties we want our system to have. This
is followed with solutions which we have found during our experiments. For
each solution we describe how it works and summarize which of the described
properties hold for the particular solution. We finally conclude by summa-
rizing the main points of interest with our system of choice.

3.1 Requirements of notifications

Our system will be an extension to the existing concept of shared data
sources. In this section we describe a number of characteristics which we
think should apply to our extended system. In the later sections we refer
back to these characteristics so we can determine what solution has most of
our defined properties.

First we want our extended system to still be compatible with the prop-
erties as described for shared data sources in section 2.2. To summarize these
properties:

15



• Data sources can be read

• Data sources can be written

• Basic data sources can read and write independent of the physical lo-
cation of the data

• Data sources can be composed into new data sources through projec-
tions

• Data sources have a version, which is increased each time data is written

• Data sources can be accessed concurrently

• Data sources always access their underlying data consistently: changes
to multiple pieces of data can be performed atomically

For our extension to work, we need some way for the user-code to be
notified when the data in a data source has changed. A solution without this
property is not really a solution, so all solutions in the later sections have
this property.

Next we need some way for the user-code to know what shared data source
has changed when the user-code is notified. Without knowing what shared
data source has changed, it is hard for user-code to efficiently know what
exactly it should do. In the case of iTasks it would not know what tasks it
should evaluate.

Keeping track of all data-sources that exist in the system is not very
beneficial for the user. The user is often only interested in changes of specific
data sources. Letting the user know about all changes in the system would
only cause the user to do extra work by filtering the changes, which only
causes overhead. Therefore we need some way for the user-code to specify
what data sources it wants to be notified of.

The notifications that are passed to user-code must be handled within
a certain timespan. This timespan will depend on the type of application
that the data is used for. Often these types of applications require that the
notification to the user must be seemingly instant, which means within a
second [7]. This means that our system needs to be able to pass notifications
faster than that. This is independent of the retrieval of the specific data
sources, since some data is easier to retrieve than others (memory is faster

16



than a off-site database). The type of data source should be chosen wisely
by the user to meet the required timespan.

We are only interested in the latest state of the data and not the individual
changes. Therefore the notifications may miss some of the changes. However,
when there is a change, the user-code must be notified within the timespan
described previously. This means when there are multiple changes to a data
source shortly after each other, the user only needs to be notified about the
last of those changes. With this mechanism, the user-code cannot keep track
of all states of the data, but is still always notified about the latest state of
the data.

We also do not mind multiple notifications for a single change. The goal
is to have the user know about the latest state of the data. When multiple
notifications are send to the user without any actual change, the user can
still find out that there is indeed no change by comparing the current version
of the data source with the previously read version.

Lastly we want our system to run smoothly along with other code. There-
fore the notification-system may not induce too much overhead. Not only
must the notification system not require too many of the system resources,
but the user-code that handles the notification must also not be forced to
use many resources. For instance the notification system may not notify the
user too often about a single change. This property depends greatly on the
exact resource requirements of the system, but we elaborate for each of the
solutions whether this property is satisfied.

To summarize the additional requirements we want our system to have:

• User-code must be notified of changes of data

• User-code must know which data source has changed

• User-code must be able to specify what data-source to track

• Execution of user-code must not be blocked

• Notifications must be received within a reasonable timespan after a
change

• The system must be conservative with system resources

In the next sections we describe the possible solutions we have found and
which properties are satisfied or not.

17



3.2 Polling

We mentioned earlier that iTasks makes use of a technique called ‘polling’
between the server and the client. This technique is widely used in web-
oriented applications where request-response queries are common.

This technique works by getting data from its source at regular intervals.
Changes are found by keeping a copy of the data from a previous ‘poll’ and
comparing this with the newly retrieved data.

Polling is widely used because most webservers only support request-
response queries. Data is retrieved by requesting it from the webserver. The
webserver responds with the requested data. Doing this at regular intervals
can keep the data on clients up-to-date.

For shared data sources this technique can also be used. Data can be
retrieved from the data source by reading its data through the interface of
the shared data source. Doing this at regular intervals gives us the ability
to notice changes by comparing the data. We can optimize this by not
retrieving the data itself, but retrieving the version of a data source. One
of the properties of shared data sources describes that when the data has
changed, the version is also changed.

Polling can however have a number of downsides. First, the time until
the next poll must be predetermined. It is often not clear how long before
the next change will occur. Choosing this wrongly can affect performance or
user-interactivity badly.

Secondly, retrieving the data (or version) of shared data sources can be
a demanding operation when used on certain sources (like disk). It becomes
a problem when this is performed frequently. Therefore the time between
polls needs to be balanced so it does not cost too much performance, but
still gives a reasonable rate of noticing changes. Balancing these properties
greatly depends on the use of the data.

Another problem is the performance impact of polling multiple data
sources. When a user wants to be notified of changes across the system,
many data sources need to be polled. This makes polling even more heavy
on the system resources, since every poll requires getting data from multiple
data sources. Having their data on different systems requires the application
to query all of these systems every poll.

With these downsides we think polling is not a suitable technique for
most of our uses.

18



3.3 Callback on writing

In iTasks we have a number of possible operations that we can use on shared
data sources. In the earlier examples we showed some of these operations:
‘get’, ‘update’ and ‘showSharedInformation’. All queries or alterations that
tasks perform on data sources go through similar operations like these.

This property makes it plausible to add functionality to these operations
for the user to notice when a data source is being updated. We could for
example add functionality to the update operation that notifies the user that
the data source has changed after the actual data was written.

However this approach only works for some types of data sources that are
only altered by our program. We show why this is the case using an example.

Suppose we access a file through a data source. We do this from two dif-
ferent programs, program A and program B. Program A accesses its data
sources using our proposed altered operations which notifies the user of
changes, however program B does not. When program A writes to the files,
it is possible to notify the code of program A of that change. However the
problem becomes more complex when program B is needed to be notified
without program A knowing about program B. Next to that, program B can
write to that same file. In this case both program A and program B are not
notified about the change of their data source.

The type of data source where this method does work is memory that
is only accessed by one program, since the program is the only one reading
and writing its own memory. Therefore this problem does not apply to these
types of data sources.

Enforcing all systems that are using a certain data-source to implement
the same notification-system is a solution. However, since there often already
are programs in place to handle the data it becomes hard to extend or replace
these with such a notification system.

Since we attempt to solve the problem of notifications of changes in shared
data sources independent of the type of data source, this solution is not
sufficient on its own.

3.4 Waiting for changes

In this section we explore the possibilities of waiting for data sources that
will change. We will show the different methods we have found with which

19



we can wait for changes. We also show what to do when we have waited for
a change. We conclude each waiting-method with its positive and negative
aspects.

3.4.1 Using atomic properties for waiting

In section 2.2 we spoke about the mechanisms of the core function in the
Clean implementation of shared data sources, named ‘readWrite’. We showed
that readWrite performs the read, write and redo operations depending on
the atomic function being used as shown previously in Figure 2.5.

As a first solution we attempt to implement change-notifications of shared
data sources using the existing implementation of readWrite and in particular
using the mechanism that is provided by Redo. We call a user-defined function
after readWrite when the atomic function notices a change. readWrite and the
atomic function can achieve this using the Redo operation.

To better understand what Redo does, we show an example that imple-
ments a message-queue using shared data sources. In this example, the
message-queue is a shared data source that contains a list of messages. The
only two operations that we can perform on that list are sendMessage and
receiveMessage. sendMessage adds an element to the end of the list. receiveMessage
removes the first element from the list and return that element as the result
of the function. When receiveMessage finds that there are no elements on the
list, it waits until an element is added.

// A MessageQueue is a data source that contains a list of messages
:: MessageQueue msg st :==Shared [msg] st

// sendMessage adds a message (msg) to the end of a message-queue (queue).
sendMessage :: msg (MessageQueue msg *World) *World → *World

sendMessage msg queue st

# (_, world) = readWrite addMessage queue Void st

= world

where
addMessage messages version _ = Write (messages++ [msg]) Void

// receiveMessage removes the first message from the message-queue (queue) if
// there is at least one message in the list.
// If there are no messages in the message-queue, the function waits until
// the list is changed.

20



receiveMessage :: (MessageQueue msg *World) *World → (msg, *World)
receiveMessage queue st = readWrite popOrRedo queue Void st

where
popOrRedo [ ] _ _ = Redo Void

popOrRedo [msg:msgs] _ _ = Write msgs msg

First we defined the type MessageQueue for our queue. We define it as an
Shared type, which makes it an shared data source that has the same type for
its read data as the written data. The data of the queue is a list of msg as
defined with [msg]. In this case msg can be of any type. This MessageQueue is
used in sendMessage and receiveMessage.

sendMessage uses readWrite to get the list of messages and add the message
that is passed as the argument of sendMessage to that list. It puts the new list
back to the source using Write.

We can see the use of Redo in receiveMessage. When the list that is stored
in the data source is empty ( [ ]) the atomic function (recF) results in a Redo.
This causes readWrite to wait until the list is changed. When this happens,
the atomic function (recF) is rerun and executes the second case ( [msg:msgs])
where the first element of the list is returned and the tail is written back to
the data source.

In this example Redo is used to wait for a change, which is exactly what
we want to do. However, the example relies on the type and data of the
shared data sources. In this case it relies on the data source being a list and
only use Redo when that list is empty.

For our case we want readWrite to be waiting for a single change of the
data. To do this, we need the atomic function to return Redo only once.
Unlike receiveMessage we cannot check for the data. For this we need to make
use of the state that readWrite allows us to pass along with a Redo.

In the following example we use the state of readWrite in combination with
Redo to have readWrite wait for a change of a data source, named exampleShare.

example :: (RWShared r w *World) *World → *World

example exampleShare world

# (_, world) = readWrite atomicFunction exampleShare True world

# world= print "Done" world

= world

where
atomicFunction data version state= if state

(Redo False)
(YieldResult Void)

21



First readWrite is called. Along with the atomic function and the share,
an initial state is passed to readWrite. In this example the value that we pass
as the initial state is True. Next readWrite calls atomicFunction instantly. The
state is passed to this function. Since the initial state is True, Redo False is
the result of the first execution of atomicFunction. With Redo False we not only
instruct readWrite to rerun atomicFunction, but also set the state to False. The
next run of atomicFunction only happens when exampleShare is being written to
as described in the properties of shared data sources. Presuming some other
process does indeed write to exampleShare, atomicFunction is called a second
time by readWrite. This time the state is False. Therefore atomicFunction

results in YieldResult Void. This instructs readWrite to return nothing as the
result of readWrite and does not cause readWrite to rerun atomicFunction again.
Quickly thereafter "Done" is printed. Figure 3.1 visualizes this mechanism.

Figure 3.1: Visualized mechanism of a single redo

Now that we have established the core mechanism, we need to have some
way for user-code to register for changes of some shared data source. We
allow the user-code to register a function (*World → *World), which gets called
when the data source is changed. We can define a new function to be able
to register for changes as the following:

:: Callback :==*World → *World

subscribeForChange :: Callback (RWShared r w *World) *World → *World

22



We can supply the function two arguments. The first is a function that is
called when such a change occurs. We call this function a callback-function.
The second argument is the share we want to track changes of. We also want
subscribeForChange to be non-blocking. This means that we can continue to
evaluate right after subscribeForChange is called without being required to wait
for changes. This is in line with the requirement to not block execution of
user-code. It allows the user to register for changes without sacrificing the
thread on which the user is currently executing code.

We can allow user-code to continue executing while we wait for changes by
creating a separate thread on which we use the waiting-mechanism described
before. On that thread we wait for changes and afterwards call the callback
function. This mechanism is shown in Figure 3.2.

Figure 3.2: Visualized mechanism of subscribeForChange using readWrite
and Redo

In Clean new threads can be created using fork. Here a function is sup-
plied to fork and that function is executed on a new thread. We can imple-
ment the desired mechanism shown in 3.2 using the following code:

subscribeForChange :: (RWShared r w World) (*World → *World) *World → *World

23



subscribeForChange share callback world

(_, world) = fork notificationThread world

= world

where
notificationThread :: *World → *World

notificationThread world

# (_, world) = readWrite atomicFunction exampleShare True world

# world= callback world

= notificationThread world

atomicFunction data version state= if state

(Redo False)
(YieldResult Void)

In this function we use fork execute the function notificationThread on a
new thread. There, we use readWrite in combination with atomicFunction to
wait for a change, using Redo once. After readWrite has executed, we call the
callback function and start over waiting for changes.

subscribeForChange can be used in other programs as follows:

example :: (RWShared Int Int *World) *World → *World

example exampleShare world

# world= subscribeForChange exampleShare printOnChange world

// Do something else in the program.
# world= writeShare 3 exampleShare

= world

where
printOnChange world= print "exampleShare has changed" world

This example program prints "exampleShare has changed" when the program
writes to exampleShare. It shows that this method does detect changes, how-
ever the described implementation does have a number of issues.

First we have the problem that the function starts waiting for changes
later than we would expect. We create a thread where we wait for changes
using readWrite, but continue without waiting for the readWrite function to be
actually started. This would cause the user-code to miss changes.

The following example is quite similar to the previous one. The differ-
ence is that writeShare is evaluated directly after calling subscribeForChange.
It causes a bigger chance that the change being made by writeShare is not
triggering printOnChange to be executed. writeShare can be executed before the
separate thread is executing readWrite:

24



example exampleShare world

# world= subscribeForChange exampleShare printOnChange world

# world= writeShare 3 exampleShare

= world

where
printOnChange world= print "exampleShare has changed" world

Therefore the example sometimes does print "exampleShare has changed"

and sometimes it does not. This problem is however solvable using proper
locking.

Another problem is that we can miss changes of the data source that
happen between calls of readWrite. After each change, we call the callback-
function and afterwards call readWrite again. During the time between the
calls to readWrite we are not waiting for any changes, thus those changes are
missed. Most of these missed changes can be checked by using the version
number of the data source that we can retrieve in the callback-function,
however there is still a period where we actually miss changes, like the time
between the callback and readWrite. This problem is a lot harder to solve.

Lastly we have a problem of system resources. If we would want to be no-
tified of multiple shared data sources, we would need to call subscribeForChange
for each of those shared data sources. For each call a new thread is created.
For example if we want to wait for changes of 10 different data sources, which
is not uncommon, we would need to create 10 threads.

Figure 3.3: Each registered callback gets its own thread

In Figure 3.3 the threads are visualized. The program first calls
subscribeForChange to register 3 callback functions: 2 callback functions to
wait for data source A, 1 callback function to wait for data source B. Thus

25



the number of threads in this example is equal to the number of callback
functions that the user wants to register. Such number of threads costs our
system quite some memory. Each of them need a stack, a heap and operating-
system specific data, like security context. When those threads are created,
they mostly are waiting for changes, so this would be a waste of resources.

These problems all go against our requirements and so this solution is not
sufficient enough to be used in iTasks.

To get a better understanding of how we could solve these problems we
must look how shared data sources work under the hood and see whether
we can exploit that mechanism to get a more reliable and efficient way to
implement subscribeForChange.

3.4.2 Analyzing the waiting mechanism of shared data
sources

At the time of writing this document the implementation of shared data
sources is only compatible with the Windows operating system. Therefore
we only focus on this implementation.

Under the hood, all shared data sources use Windows event-objects to
notify waiting readWrite operations. This happens when the atomic func-
tion instructs readWrite to perform a redo when the shared data source has
changed. It accomplishes this with three Windows API calls: CreateEvent,
EventSet [8] and WaitForSingleObject [9]. Calling CreateEvent results in a HANDLE

that represents an event-object. Calling WaitForSingleObject, with the HANDLE

as argument, waits until EventSet is called on that same HANDLE.
When the atomic function returns Redo, it first creates a new event-object

using CreateEvent. Thereafter it registers that event-object with the shared
data source and use WaitForSingleObject to wait for the event-object to be
signaled. Once the shared data source changes, it signals all event-objects
registered to the shared data source using SetEvent. The waiting readWrite

operation is signaled and re-evaluates the atomic function.
To wait for changes we can also use WaitForSingleObject, just like readWrite

does when the atomic function results in a Redo.
Because waiting for changes works very similar, it also shares the char-

acteristic of blocking while waiting for changes. To work around this prob-
lem a thread can be started where we wait using WaitForSingleObject. After
WaitForSingleObject has returned the callback can be evaluated.

26



This method works reliably, but one outstanding issue is that it needs one
thread per shared data source. When we want to be notified of a combined
shared data source, we need to create a thread for each basic shared data
source the combined shared data source consists of. Since there can be many
shared data sources, this is not an acceptable solution. Reducing the number
of threads needed can result in a better solution.

3.4.3 Exploiting the waiting mechanism of shared data
sources

In this section we show some of the ways we can exploit the use of event-
objects in the implementation of the data sources. We can use different
Windows API calls that allow us to wait for signals of the event-objects in
different ways.

Waiting for multiple events at once

The problem of needing one thread for each event-object to wait on comes
from making use of WaitForSingleObject. Windows also provides another API
which is called WaitForMultipleObjects [10]. This function accepts an array of
up to 15 HANDLEs which can be waited on. It returns when one of those HANDLEs
is signaled. This allows us to wait for 15 data sources on a single thread.

Until now we tried to handle the threads which were used for waiting. It
is quite a complex task to implement this safely and efficiently. Windows has
a few functions in its API that helps us implement waiting on event-objects
more easily.

Registering for changes of shared data sources

The first approach is using the function called RegisterWaitForSingleObject [11].
This function uses a global thread pool to wait for HANDLEs. It accepts a pointer
to a callback function that is called when the HANDLE is signaled. However in
this section we refer to this callback function as a ‘native callback function’,
since it requires a function pointer.

RegisterWaitForSingleObject works as follows. When a HANDLE is registered
to be waited for, a wait-thread is picked from the thread pool. Windows
handles what threads it uses as wait-threads from the thread pool. Here
a single wait-thread can be used to wait for multiple HANDLEs. The default

27



behavior picks, once the HANDLE is signaled, another free thread from the
thread pool to execute the native callback-function on. This thread is called
the work-thread. This mechanism is shown in Figure 3.4.

Figure 3.4: The threads of RegisterWaitForSingleObject

The advantage compared to WaitForMultipleObjects is that it already makes
multiple threads when needed to wait for a large number of HANDLEs. Another
advantage of Windows handling all that work for us, is that Windows could
do this more efficient than we can. We only need to pass a HANDLE and a
function, instead of a whole array. With WaitForMultipleObjects the whole
array needs to be supplied every call, which means every time we got a signal
we need to call the function again to wait for the rest of the HANDLEs. For
RegisterWaitForSingleObject however, only a single HANDLE and function needs
to be supplied each time we want to register once at the time of registration.

For most cases this method is suffice. However one aspect of Clean is that
it does not have a global heap like most languages have. Clean has one heap
per thread to enforce thread safety. For every thread requiring to run Clean
code, the thread first needs to have its Clean environment initialized. Similar,
we want to clean up the Clean environment once the thread has finished its
execution. This becomes a problem with RegisterWaitForSingleObject. We do
not care on what thread the HANDLE is being waited on, but we do care on what
work-thread the callback is executed. Usually the same thread is used for all
callbacks, but when the work-thread is busy handling a previous callback,
a new work-thread is picked. This is problematic, since we have very little
control when these threads are created or destroyed.

As a workaround we can detect whether the callback is executed on a
thread that does not yet have an initialized Clean environment and initialize
the environment on that moment. This however leaves ‘dangling’ Clean
environments when another work-thread is picked, since we do not know
when the earlier work-thread is finished.

28



What we need for this approach to work is more control over when and
on what threads callbacks are being executed. From the documentation it
did not seem possible to reliably enforce the desired method of allocating
threads.

Registering for changes of shared data sources in Windows Vista

With the release of Windows Vista a new API for thread pools was introduced
[12]. This API gives its user more control over what threads it should use for
waiting and what threads to use for executing callbacks. First it allows the
user to create thread pools themselves, so that there can be multiple thread
pools inside a single process, each made for a specific task, as opposed to
having one global thread pool.

This allows us to know beforehand what threads are used for waiting and
what threads for working. This should solve most of the problems we had
with RegisterWaitForSingleObject.

However this API is only available in Windows Vista and higher. Since we
are aiming for iTasks to be run on any server, including Windows 2003 servers
and Windows XP, we did not attempt to implement the desired mechanism
using this thread pool API.

3.4.4 Conclusions

We have shown that waiting mechanisms can be used to detect when changes
in data sources happen. The various methods to implement a waiting mech-
anism vary between their ease of implementation, resource efficiency and
operating system requirements.

Waiting for changes using ‘readWrite’ is easy to implement, but costs a
high amount of threads. Using Windows APIs we can reduce the number
of threads by a factor of 15, however this is complex to correctly implement
and still costs more threads as the program grows without these threads
actually executing code. All of the shown methods suffer from excessive use
of threads, which is the main negative aspect of the waiting mechanisms
which we cannot work around.

29



3.5 Callback functions

Waiting for changes has shown to be hard to implement efficiently. In this
section we try a very different approach. We show how callback-functions
can (directly or indirectly) invoke user-code on noticing changes of data.

First we describe the basic idea how we are going to use callback functions
and how we store these functions for later use. We show what problems arise
when these stored functions need to be invoked and show how to use a queue
to avoid these problems.

3.5.1 Storing callback functions

In the previous sections we already introduced callback functions. These
functions were used to notify the user about the changes. We would wait
for changes and we would call such a callback function when such a change
occurred. We showed that waiting for multiple data sources can get complex,
which is why we try to simplify our approach in this section.

Instead of using callback functions to be called after waiting, we allow
each type of data source to handle its own detection of changes and execute
the callback functions from there. This way we can implement notifications
more efficiently while we do not need to wait for event-objects. However,
without the use of event-objects, there can be different ways of noticing
changes. This differs per type of data source. This means that each type of
data source needs to implement its own way of noticing changes.

Shared data sources reading and writing memory of the program itself can
make use of the write-operation of the data source. Changes are in this case
always performed through this operation, therefore changes of that mem-
ory can be detected by hooking into the write-functionality of the program.
This applies to memory specifically, because it is not shared across multiple
processes.

For file data sources this is different. Multiple processes can write to the
same file. Detecting changes of such a file needs to rely on operating system
APIs to pass those changes to our program. The operating system APIs for
doing this do exist which makes this is a solvable problem. Therefore we will
not go into detail of implementing change-detection of file data sources.

Data sources that are retrieving data from other systems use different pro-
tocols to read and write data. Change detection should have been built into
such protocols for our data source implementation to detect such changes.

30



One example is external databases, where change detection is not always ob-
vious or even possible. Detecting changes depends on the database-system
being used. When such an external database is not able to supply us with
changes in real-time, polling can always be used as a fallback mechanism.
Examples of database systems supporting change notifications are Microsoft
SQL Server 2005 through query notifications [13] and CouchDB through the
continuous changes API [14].

In this and further sections we show the global mechanism that can be
used in combination with a data source specific implementation. We show
how this global mechanism works by defining an API that the user can use
to register for changes and the specific data source implementation to notify
the registered users.

Like before, we want our user-code to know when a change has happened.
We use the same callback function and subscribeForChange definition that we
defined in 3.4. The implementation of subscribeForChange will now however
not create threads nor will it wait for changes.

When subscribeForChange is called we want the callback function to be
stored into all basic data sources so that the implementation of such a data
source can access the callback functions that are registered. We add a func-
tion to the basic data source called addCallback that stores the callback func-
tion. addCallback is called for all basic data sources contained in the supplied
RWShared.

Now each basic data source contains a list of registered callback functions.
The specific implementations of the data source can now access this list
making sure the callback functions can be called.

For our test we implemented this for shared memory. In the case of shared
memory, EventSet is called right after new data is written to memory. This
is where we add the functionality to call the stored callbacks. This approach
did work, however it had a reliability problem.

When shared data sources are being read or written, all basic data sources
first are locked in a specific order. The specific order is used to avoid causing
deadlocks. There is a situation when executing callbacks where the data is
not locked in the correct order. This can happen when a callback function is
being executed just after writing data to memory and before unlocking the
data. When the callback itself needs to write to different data sources, of
which the one already locked is one of them, locking them all in the specific
order to avoid deadlocks is no longer possible. This could in some cases cause
deadlocks.

31



Another problem we found is that the callback function is executed on
the thread where the data is being written. It is not executed on the thread
the user expected. This can lead to problems, since the heap in Clean is not
shared between threads. Values required during execution of the callback
need to be serialized at all times. Even though this is not a huge problem,
it is still something to avoid.

To keep the API reliable we need a way to solve these two problems. This
is described next.

3.5.2 Queueing callback functions

To resolve the problem of deadlocks we need a way to execute the callbacks
after all basic data sources are unlocked. To resolve the problem of executing
callback functions on undesired threads, we need some way for the user to
specify what thread we can execute the callback function on.

We attempt to solve these two problems by creating a queue of functions.
The queue is used on an ‘execution thread’ where it empties and executes
the functions from the queue. On the other end the queue is used by the
data source by adding the callback function that needs to be executed on the
queue.

For this implementation we defined a new type Work:

:: Work :==*World → *World

This is similar to the previously defined Callback, but since we can use these
functions in this sections for other purposes than just callbacks, we have
called these Work. The callback type will be reintroduced and extended later
in this section.

We have called the queue where the work is queued on WorkQueue. The
WorkQueue is defined as a MessageQueue, which is defined in section 3.4.1. With
the cross-thread MessageQueue we can define our specific queue where we store
Work:

:: WorkQueue :==MessageQueue Work World

Next we need a thread to be getting the work from the queue and execute
that work. To do this, we have implemented a function run that is needed to
be called on some thread. This function loops endlessly:

run :: WorkQueue !*World → *World

run workQueue world

32



// Retrieve work from the queue. This function
// waits when there is no work on the queue yet.
# (work, world) = receiveMessage workQueue world

// Execute the work.
# world= work world

// Loop.
= run workQueue world

To queue Work on the WorkQueue we can use sendMessage as follows:

sendMessage (print "I am doing work") workQueue world

In this example print "I am doing work" is the work that is performed on the
execution thread where the run function is looping.

Now that we have an execution-thread and a way to queue work onto
that thread, we need to make this work with the callback system we defined
earlier.

Earlier we only needed one function *World → *World for a callback. Now
we also need a WorkQueue to specify where that function is needed to be put
once a shared data source has changed. We redefine Callback as follows:

:: Callback :== (Work, WorkQueue)

As a convenience we also define a function that queues the Work onto the
WorkQueue for a particular Callback:

scheduleCallback :: Callback !*World → *World

scheduleCallback (work,workQueue) world= sendMessage work workQueue world

We can use this function, when a data source is changed, to queue the callback
onto the execution thread. Note that we now have to store a function (Work)
and a reference to the WorkQueue, where before we only stored a function.

In Figure 3.5 we can see how the different functions work. The execution
thread loops in run, where it dequeues work from the workQueue by removing
the first entry (workA) from the workQueue. Other threads can at any time
schedule work to be run by queuing the work onto the workQueue.

To integrate this in the shared data sources we use the function
subscribeForChange like we defined before, but now with the new Callback def-
inition. The rest of the implementations are the same.

We also use sharedMemory to create a shared data source in memory. This
part of the standard functionality of shared data sources in Clean. We use it
for the workQueue, so that the queue is created in memory, and for exampleShare,

33



Figure 3.5: WorkQueue with its execution thread and thread using schedule-
Work.

which we use as an example data source. We pass a value to sharedMemory,
which becomes the initial data of the shared data source.

Another function we use is sleep. This function waits for a specified
amount of milliseconds. It is only used in this example to illustrate multiple
changes that have some time in between them.

Now we can make use of all the defined functions as the following example
shows:

Start :: *World → *World

Start world

# (workQueue, world) = sharedMemory [ ] world
# (exampleShare, world) = sharedMemory 0 world

# world= subscribeForChange (printOnChange,workQueue) exampleShare world

# world= fork (exampleThread 0 exampleShare) world

= run workQueue world

where
exampleThread :: Int (RWShared Int Int World) World → World

exampleThread counter exampleShare world

# world= sleep 1000 world

# world= write counter exampleShare world

= exampleThread (counter+1) exampleShared world

printOnChange= print "exampleShare has changed!"

In this example first the workQueue and the shared data source where we
want to be notified of changes (exampleShare) are created. Then the func-
tion printOnChange is registered to be called when exampleShare is changed.
Thereafter a new thread is started, which writes to exampleShare every sec-
ond. Lastly run is used to start retrieving and evaluating the work that is on

34



the workQueue.
Every time write is called from exampleThread the data in exampleShare is

changed. This triggers code in sharedMemory that calls scheduleWork, that puts
the function printOnChange onto workQueue. run was waiting for work to be
put onto workQueue and is now triggered. run removes the printOnChange from
workQueue and evaluates it. Then the message "exampleShare has changed!" is
printed.

printOnChange is being executed on the thread where run is being executed.
exampleThread only writes to the shared data source. This is the behavior we
wanted.

Note however that printOnChange is being executed for all changes of
exampleShare until the whole program terminates. At the moment there is no
way to stop listening for changes.

To stop listening for changes using a certain callback, we need to have
a function that can actually cancel the callback. We call this function
cancelCallback. It also requires us to distinguish between the different sub-
scriptions that have been made. This is not the case with (Work, WorkQueue):
WorkQueue is most of the time the same instance and Work is a function that
is not uniquely identifiable. The following example shows that this can not
work:

example workQueue exampleShare world

# world= subscribeForChange (printOnChange,workQueue) exampleShare world

# world= subscribeForChange (printOnChange,workQueue) exampleShare world

# world= cancelCallback (printOnChange,workQueue) exampleShare world

= world

In this example it is unclear whether we want to cancel the first sub-
scription, the second or both. Therefore we need subscribeForChange to give
us a unique identifier for the subscription we created. We call this type a
CallbackId.

To make the CallbackId unique we have different options. One option is
to have some globally stored number in our program that we increase every
time a CallbackId is needed to be made. In this case CallbackId would be
a number. Another option is to store such a unique number in each basic
data source. When we need to get the CallbackId of that basic data source,
we can increase that number and return that new number. This means the
number is only unique for that particular basic data source. When we want
to have a unique number of a composed data source, we can take all basic

35



data sources, increase all their numbers and the result of the function is a
list of those numbers. The type of CallbackId in this case would be a list of
numbers.

In our case we chose for the second option, since we want to depend on
global variables as little as possible. Therefore the definition of CallbackId is:

:: CallbackId :== [Int]

Next we have to alter the definition of subscribeForChange so we can get
that CallbackId to be used in cancelCallback:

subscribeForChange :: Callback (RWShared r w *World) *World → (CallbackId, *World)

The of cancelCallback is extended with this CallbackId:

cancelCallback :: CallbackId (RWShared r w *World) *World → *World

Now we can indeed distinguish between the different subscriptions, as the
following example shows:

example :: (RWShared [Work] [Work] World) (RWShared Int Int World) World → World

example workQueue exampleShare world

# (callbackidA, world) = subscribeForChange (printOnChange,workQueue) exampleShare world

# (callbackidB, world) = subscribeForChange (printOnChange,workQueue) exampleShare world

# world= cancelCallback callbackidA exampleShare world

= world

For our use case in iTasks we also wanted to only wait for a single change,
instead of waiting for all changes indefinitely. Tasks in iTasks depend on
certain data sources. When a task reevaluates, its dependencies changes.
This means that there is a chance a callback is not needed to be subscribed
to when the task is reevaluated. For this reason we want to wait for a single
change and resubscribe when needed. We explore how to do this based on
subscribeForChange and cancelCallback. There are different possibilities to solve
this. What we found intuitive was canceling the callback when the callback
is first being executed. To implement this intuitively, we need to have the
CallbackId in the callback-function, so that we can cancel the next callbacks
using cancelCallback and the passed CallbackId.

This asks for another extension to subscribeForChange. Instead of passing a
function World → World, which we named Work, we need an extra argument to
pass the CallbackId to the callback function. We can define this new callback
function as CallbackId *World → *World, which is equal to CallbackId → Work.
For convenience we create a new type, much like Callback to be used in
subscribeForChange as follows:

36



:: CancellableCallback :== (CallbackId → Work, WorkQueue)
subscribeForChange :: CancellableCallback (RWShared r w *World) *World

→ (CallbackId, *World)

With this redefinition, we need to alter the function printOnceOnChange in
our example to be able to accept the introduced CallbackId:

printOnceOnChange callbackid world

# world= cancelCallback callbackid exampleShare world

# world= print "exampleShare was changed" world

= world

Figure 3.6 illustrates how the system works with one shared data source,
one callback and one time the data is changed.

Figure 3.6: Subscription and execution of a callback

As seen in Figure 3.6, this approach seems to be working reliably. How-
ever, there is an edge case where the callback is still executed multiple times.

When the shared data source is being written to twice (or more) very
fast in succession, it will often happen that the callback is not yet picked
up by the execution thread. When that occurs there are multiple callbacks
on the workQueue. These are both executed and therefore the callback is
executed multiple times. Even though multiple callbacks for a single change

37



is permitted, it can be confusing to still see callbacks being executed after
the CallbackId was already canceled using cancelCallback. For this reason we
will eliminate further callbacks that happen after calling cancelCallback.

Figure 3.7 illustrates this problem. The second time cancelCallback is
called, it essentially does not remove any callbacks, since all related callbacks
are already removed by the first time cancelCallback is called. We can exploit
this knowledge by only continue executing if there were actually callbacks
removed by cancelCallback.

Figure 3.7: The shared data source is written twice before the work could be
executed.

To achieve this, we alter cancelCallback such that it returns whether
it has found and removed the specified CallbackId. The new definition of
cancelCallback then becomes:

cancelCallback :: CallbackId (RWShared r w *World) *World → (Bool, *World)

The result of cancelCallback becomes True when the callback was indeed
found and canceled and False when it did not find the specified callback.

We alter the previous example to make use of the new definition of
cancelCallback:

38



printOnceOnChange callbackid world

# (found, world) = cancelCallback callbackid exampleShare world

| found= world

| otherwise= print "exampleShare was changed" world

Now the actual user-code (printing a message) is not executed a second
time, even though the ‘work’ itself is still executed twice. Since this only
happens in edge cases, it does not matter in terms of performance.

The example shows how users can implement this mechanism themselves.
It is better to create a function that does all the work consistently. We
introduce the function subscribeForOneChange:

subscribeForOneChange :: !Callback (RWShared r w *World) !*World

→ (CallbackId, *World)

Note that the callback in this function is still cancelable from outside
the callback itself, but not from within the callback. It is defined like this
since the callback is already canceled before the actual user-work is being
executed.

The implementation of subscribeForOneChange is:

subscribeForOneChange (work, workQueue) share world

= subscribeForChange (workWrapper share work, workQueue) share world

where
workWrapper :: (RWShared r w *World) Work CallbackId *World → *World

workWrapper share work callbackid world

# (found, world) = cancelCallback callbackid share world

| found= world

= work world

We can rewrite the previous example to make use of subscribeForChange:

example workQueue exampleShare world

# (callbackidA, world) = subscribeForOneChange

(printOnceOnChange,workQueue) exampleShare world

= world

where
printOnceOnChange world= print "exampleShare was changed" world

In Figure 3.8 the new mechanism is visualized. It shows that the work is
now only executed once. The workWrapper will not execute the work when
it has not found the callbackid while canceling the callback.

With this approach we still maintain all properties of shared data sources,
since the user-code is executed on the execution thread outside a lock of the

39



Figure 3.8: The share is written twice before the work could be executed and
workWrapper will not execute the work a second time.

resources. Because the data sources are designed to be thread-safe we do not
have to worry about concurrency problems when reading or writing.

We do miss some of the changes when they are performed in fast succes-
sion, but will not miss the latest state of the data. As we can see in Figure
3.8, two write operations are being performed and only one callback is being
executed. The callback that is executed does however execute after the last
of the two write operations. Therefore we did not miss that latest state of
the data.

Changes that happen after the callback is executed are ‘ignored’. Either
the subscription was removed from the data-sources, or the workWrapper sees
its callbackid was already canceled. Therefore the callback function is always
executed at most once, but not more.

The resource-usage of this system is still something to be concerned about.
The functions we need to store in the list of callbacks and the workqueue
always need to be serialized. All data that is curried in that function is also
stored inside that serialization. This is required, since the function and its
curried data are going to be accessed and used by other threads. In Clean,

40



the heap is not shared between threads, therefore all data needs to be stored
into one serialization.

Another related point is the fact that we now define what we want to do
on subscription: we supply a function with all of its required data curried
into that function when we subscribe for changes. What we actually would
like to do is figure out what to do when the change has happened. This could
minimize the amount of data that is shared between threads, since data is
not needed to be curried into a function that needs to be executed on another
thread.

3.6 Queueing messages

In the previous sections we were storing functions. These functions had some
of their required data curried into them so that this data could be used upon
execution of the function. This approach is not very efficient, since that data
plus the type-information of the function needs to be serialized to be usable
across the multiple threads.

If we can let the user-code stay in the same thread as we were subscribing,
we would not need to serialize as much data, since most data is already
available in the heap of the execution thread.

This is where messages come into play. Messages are data from which we
can determine what to do, opposed to functions, which describe what to do.

Instead of the earlier WorkQueue, which consist of functions, we can have a
MessageQueue which consist of messages. A message can be of any type. The
user determines what type a message should be, so the user is also in control
of the creation of messages.

Upon subscription the user creates a message and passes the message
alongside a MessageQueue to subscribeOnChange. This pair is then stored in each
basic shared data source. When a subscribed shared data source changes, the
messages are sent to the MessageQueue. The message is then picked up by user-
code that constantly receives messages from that queue. It then determines
what it should do, for instance using pattern-matching.

In the case of iTasks we only need to store the id of the task we want to
re-evaluate on changes. We create a message that only contains an id and
on receiving such a message, we can find the task. In this scenario a message
could be defined as:

:: ITaskMessage= ReevaluateTask TaskId

41



Just like the solutions earlier, we would have a function where we can
subscribe for changes to a certain shared data source:

subscribeForChange :: (a, MessageQueue a *World)
(RWShared r w *World) *World → (CallbackId, *World)

In this function a determines the type of the message and MessageQueue a *World

determines the queue to which the message can be sent. As an example, in
the case of iTasks, we would pass in (ReevaluateTask 3, itaskMessageQueue), so
that we can later retrieve ReevaluateTask 3 from itaskMessageQueue to know we
should re-evaluate task 3.

Retrieving messages from the MessageQueue is much like retrieving functions
from the WorkQueue. This also happens in an loop. However instead of exe-
cuting functions, we can now pattern-match the messages and execute code
depending on their contents. We can define such a mechanism as follows:

run :: (a *World → *World) (MessageQueue a *World) !*World → *World

run messageHandler messageQueue world

# (message, world) = receiveMessage messageQueue world

# world= messageHandler message world

= run messageHandler messageQueue world

This function accepts a messageHandler and a messageQueue. The queue is where
the message is put and where run gets its messages from. The messageHandler

is where the actual pattern-matching is going to happen. This function
determines what should happen when a certain message is received.

For iTasks such a messageHandler could look as follows:

handleMessage (ReevaluateTask taskId) world= evalTask taskId world

This function matches for ReevaluateTask and determines what to do on re-
ceiving such a message. In this example it always executes evalTask, which is
an example function that evaluates a task in iTasks.

This implementation of subscibeForChange is very similar to the implemen-
tation of the earlier defined subscribeForChange using functions. Now, instead
of storing a function, we now store messages. There is however one part
of the previous implementation that we can not accomplish using arbitrary
messages. In the previous solution we wrapped the callback function with a
function that would cancel the callback. With arbitrary messages we cannot
wrap messages with other messages from within subscribeForChange, since the
type of a message is only known in user-code.

42



The naive solution to this problem is to cancel the callback just before
we send the message to the queue. This, however brings stability problems
for certain types of data sources. In the case of SharedMemory we notice the
change of data inside the write-operation. When this operation is working,
the data source is locked. When we want to cancel the callback might need to
be removed from several different data sources, since the subscription can be
made on a composed data source. In this case, these data sources all need to
be locked before we can remove the callback. One of these data sources is the
data source we are writing to. This data source is already locked. When we
lock the other data sources we might end up with a deadlock, since locking
of the basic data sources will not be performed in a fixed order any more.

Figure 3.9: Deadlock situation when subscribing and writing SharedMemory

In Figure 3.9 we see an example of the situation that can occur. User
A subscribes to a composed data source. The data source is composed of 3
basic data sources: BS1, BS2 and BS3. They are also numbered in this order
and will therefore be locked in that order (BS1, BS2 and BS3). User B writes
a new value to BS3. While BS3 is locked, we want to remove the callbackid
from the other basic data sources (BS1 and BS2). This would cause the
locking to occur in this order: BS3, BS1, BS2. This order is incorrect and
causes dead-locks when yet another user is going to lock BS2 and BS3.

To solve this situation we need to first unlock the basic data source we are
writing to. However in that case, we also need to unlock all other basic data
sources that were part of the same write-operation. Afterwards we would
need to relock all basic data sources that are part of the subscription and
remove the callback from those.

43



The reason callback functions do not suffer from this problem is because
they can execute arbitrary functions at a later time. At a later time the data
sources are not locked anymore and the callback function can relock the basic
data sources in the correct order.

After measurements, we decided this was not worth the effort of the
efficiency-gain we would get when moving from callback functions to callback
messages. For this reason we did not implement this method and kept using
callback functions. However, this solution is worth looking into for later
research.

3.7 Conclusion

In the previous sections we discussed the different ways of doing change
notifications we have found.

Polling has shown to be a concept applicable to any sort of readable data
source. It is suitable for tracking changes of small sets of data. However it
becomes inefficient when multiple sources needs to be tracked.

Detecting changes inside write-functions of iTasks works very efficient, but
will only notice changes performed by the application itself. When multiple
programs or systems alter the data, other solutions must be found.

Waiting for changes is a solution that can make good use of the atomic
properties of shared data sources. It does however require threads to be
created to wait on. It has many different possibilities when it comes to
implementation to make it more efficient, but that makes the system very
complex and in the end still not efficient enough.

Callback functions by themselves, as seen in the previous sections, are
unreliable in the sense that they invoke user-code on threads that the user
might not suspect. Queueing callback functions resolves this problem. Han-
dling the queue requires a minimum of one thread. Due to the strictness of
functions, resources that are required to handle the notifications need to be
curried into the callback function. Curried data and functions needs to be
serialized to be used on other threads. This can become inefficient.

Queueing messages makes the queue reusable for the user, so that other
kinds of messages can be put on the queue to be handled. It also gives
the user more control by letting it handle messages its own way, without
the need of currying needed resources into a function. However the increase
of control for the user makes the queue less flexible. In our approach the

44



change notification system will not have enough control to reliably handle
the notifications.

The use of callback functions on a queue has shown to be the most flexible
and reliable solution that we have found. Even though a message queue can
be more efficient, we have not found a good way to make it flexible enough.
For these reasons we use callback functions on a queue in iTask to handle
change notifications.

45



Chapter 4

Change notifications in iTasks

Now that we have established a way to detect changes and notify user-code
about them, we can start looking at how we have integrated this into iTask.

In iTasks, when users operate on a task, the task is evaluated using its
current state with the added input. While evaluating, the task can also use
(read and write) shared data sources. This means that the task not only
depends on its own local state and user-operations, but also on the contents
of the shared data sources it uses. What we want is to reevaluate a task
when the data sources have changed that the task depends upon.

First we need some way of determining what data sources a task is de-
pending on. This can be achieved in several ways. One way would be to let
the developer of the task specify explicitly which data sources the task relies
on. This could be done by annotating workflows with the depending data
sources. Another way is to determine this from the behavior of the task, so
that the system can know implicitly on what data sources the task depends.
We chose the latter so that tasks can be defined more easily. We found that
manually specifying what data sources the task relies on is a burden for the
user and the user could also make mistakes.

To do this we want to extract the depending data source of a task by
tracking the operations the task uses on data sources during its evaluation.
iTask has a fixed set of operations that a task can perform on data sources.
These range from simple operations like readShared and writeShared, which just
reads and writes data respectively, to more complex operations like
showSharedInformation, which reads and shows the information to the user.

Next we want the task to be reevaluated when those depending data
sources have changed. This means we want to reevaluate the task when

46



the data sources have changed during or after the evaluation of the task.
However, we do not want the task to be reevaluated when the task itself is
changing its data sources during its evaluation. We only want to reevaluate
the task when the data sources have changed by other tasks or programs
during the evaluation.

To accomplish this we introduce a list in which we keep track of what
shared data sources we have used during the evaluation of a task. We extend
operations that can be executed by a task on data sources like showSharedInformation
to add the data source it operates on to that list.

After the evaluation of the task, we can subscribe to the data sources
in the list using subscribeForOneChange. This way we can reevaluate the task
when any of its depending data sources have changed. This works well for
circumstances where we only have a single data source that needs to be
subscribed to. However when there are multiple data sources, we need to
make sure all data sources are unsubscribed before we begin the evaluation
of the task: we do not want to be notified of the changes of the task itself.

A simple way of doing this is canceling all subscriptions of the task to
be evaluated. We use cancelCallback on all existing subscriptions to make
sure there are no subscriptions when the task itself is evaluating. Doing
this however raises another problem: the changes from other programs while
evaluating the task are now missed, since there are no subscriptions anymore.
This behavior is shown in 4.1.

Figure 4.1: Changes of data sources will not be picked up during task eval-
uation without comparing versions after evaluation

For this reason we use the version number of each of the depending shared
data sources. The version is already part of the existing specification of
shared data sources. It can be used to tell us at what version we have last
seen the value of the shared data source. This makes it possible, when the
task is evaluated, to compare the last seen version to the latest version of

47



each shared data source. This way we can know whether the data source has
changed, since all data sources have the property to always increment their
version when they change.

Each operation that a task can use on a shared data source also assign
the version of the last-seen value of that shared data source to the list of
depending data sources. It depends on the kind of operation when to add
a shared data source to the list of depending shared data sources and what
last-seen version is assigned. For instance, reading operations always add
a new entry to the list when the shared data source is not yet in the list.
The last-seen version that is assigned to the shared data source is always
the version it reads from the data source. When the shared data source is
already in the list, it only updates the last-seen version with the one it just
read.

On the other hand writing operations never add a new entry to the list,
but only updates existing entries. Writing a shared data source without
reading its value, means that the task does not depend on the data of that
data source: it did not do anything based on its value. For this reason all
write operations only update the version of existing depending shared data
sources to the version of the data sources after a new value was written.
When the shared data source being written to does not yet exist in the list
of depending data sources, it will not be added by this operation. This
way the version of the depending shared data sources can always be used
to see whether the data sources have changed compared to their last-seen
operations.

Figure 4.2 displays the process of handling a task evaluation in graphical
form. Before a task is evaluated, all its subscriptions are first canceled. Then
we start evaluating the task with an empty list of depending shared data
sources. When an operation is used on a data source, the operation adds or
updates an entry in the list of depending data sources with the respective
version number. When the task has finished evaluation, we compare the
last seen versions to the actual versions of the depending data sources and
reevaluate when these do not match: the shared data source was modified by
another task or program while the task was evaluating. When the versions
do match, we can subscribe to those data sources to wait for future changes.

This mechanism can work well, however we still have to fill in the details.
There is still a way to miss changes and those are the changes that happen
between execution of version comparison and subscription. Suppose at this
point the versions have matched, but right after the comparison one of the

48



Figure 4.2: Task evaluation with the list of depending shared data sources

data sources changes and notify all subscriptions. Now this notification is
missed, since subscribeForOneChange has not been called yet: the change goes
by unnoticed. These two steps need to be combined into one operation that
executes within a lock, so that changes in between these steps can not occur.

Another problem we found are the number of subscriptions this mech-
anism results in when a task uses multiple composed data sources. At the
moment we only talk about data sources in the general sense, which means
basic data sources as well as composed data sources. However, changes of
data can only occur to basic data sources, where the actual data resides.
This also means that we only need to subscribe to those basic data sources.

As shown in Figure 4.3 one task (TaskA) can use multiple composed
data sources. When denoting the basic data sources of these composed ones,
we can see a lot of overlap. For example, CS1 and CS2 both contain BS1.
Therefore BS1 is indirectly referenced twice. This means that when we sub-
scribe for changes of CS1 and subscribe for changes of CS2, we are actually
subscribing for changes of BS1 twice.

In the example this would mean that we would create 9 subscriptions (2
for BS1, 3 for BS2, 3 for BS3 and 1 for BS4), where we would only need 4
subscriptions.

For this reason we would like to reduce this number to the number of
basic data sources that we used. To do this, we introduce a new function
(getBasicShares) that will result in a list of all basic data sources contained in
a specified data source. Using this function we can change our dependency

49



Figure 4.3: TaskA uses multiple composed data sources with overlapping
basic data sources

mechanism: instead of keeping a list of general data sources, we can keep a
list of basic data sources. Removing duplicates from this list will result in a
minimal set of the basic data sources that the task depends on. Subscribing
to these will then result in a potential reduction of subscriptions.

Now we need to use these basic data sources and we still need a so-
lution for the unnoticed changes. We define a new alternative function
for subscribeForOneChange that we can use in iTasks. We call this function
subscribeForOneChangeBS:

subscribeForOneChangeBS :: Callback [(BasicShare *World, Version)] !*World
→ (CallbackId, *World)

Here we use ‘BasicShare’ so that we can only pass in basic data sources
and not combined ones. This is a type of the shared data source-implementation
in Clean.

subscribeForOneChangeBS accepts a list of basic data sources combined with
their last-seen version. The function compares the last-seen version of each
shared data source with the current version for all passed shared data sources
in the list. When one of the data sources have a newer version, the callback
is used instantly and the callback-function is pushed directly to the WorkQueue.
When the data sources did not change and their version numbers match, a
subscription is made for all these basic data sources. The CallbackId can then
be used to cancel the subscription when needed. This all happens within a
lock on all passed basic data sources. It makes sure no changes can happen
between comparing the versions and making the subscription.

50



With these changes our mechanism for evaluating a task has changed.
In Figure 4.4 the new mechanism is visualized. Here we have a task that
uses a composed data source named ‘Share B’. This composed data source
consists of two basic data sources, ‘BS1’ and ‘BS2’. Notice that the basic
data sources are added to the list of depending shares. The version numbers
are the versions of those basic data sources. Also notice that the comparison
of versions and the subscription for changes to the data sources now happen
in a single operation.

Figure 4.4: Task evaluation with the list of depending basic data sources

In this section we have seen how we used our previously defined notifi-
cation system in iTasks. For our needs it was required to alter a number of
aspects to get the desired behavior. These aspects include:

• Ignoring changes from the task itself

• Subscribing based on a version, so that subsequent cancellations and
subscriptions can be made reliably without missing changes

• Reducing the number of subscriptions by subscribing to basic data
sources instead of data sources in general

Even though these are important aspects for our needs, they also come
with a cost. To be able to ignore changes from the task itself we need to
be able to cancel existing subscriptions. In turn that requires us to use the
subscribing-mechanism based on a version. The downside of this mechanism

51



is that a version number is needed to be retrieved from the data source at
the end of task evaluation, so that we could compare the last seen version
with the latest version. Depending on what type of data source we use,
this can take some time. For example, a version can be stored inside a file
and reading a file is costly. This downside was worth the cost for our needs,
though this will not apply to all other applications of data sources and change
notifications.

The other aspect that we changed was subscribing to basic data sources
instead of general data sources. Knowing what basic data sources are residing
in a composed data source allows us to more effectively know what changes
to track without overlap of data sources. This results in less subscriptions.
Even though this is more efficient it also results in the program knowing
more about the inner workings of data sources. This can result in unwanted
circumstances when security plays a more prominent role: it is possible to
know from and to what basic data sources it is being read from and written
to, even though that data should be hidden. Again, for our purposes that
was worth the cost, but this will not apply to all applications.

We have seen how elements of change notifications can be used in a system
like iTasks. The simple way of subscribing to a data source is replaced by a
more feature-rich functionality allowing user-code to get basic data sources
and use basic data sources, along with their versions, to subscribe to. We
have also shown that this applies to our needs for iTasks, but not without
costs. Other applications might have different requirements and might need
another variation of the solution shown here.

52



Chapter 5

iTasks simulation

In the previous section we have shown how we used change notifications in a
system like iTasks. iTasks has been worked on for a number of years. It has
gone through a great number of iterations. It now has a web-server to deliver
content to its users, a web-interface to represent tasks in a GUI through the
browser and a number of other systems to facilitate the process. Needless
to say, the system as a whole is complex. At the time of writing the system
also did not include a recent version of the Clean implementation of shared
data sources and did not yet support threads. These aspects make it hard
to integrate the system for change notifications we have shown.

To be able to find what was needed for change notifications to do in
iTasks we developed a very simplified version of a task oriented framework
like iTasks. This test-system makes it easier to make changes and easier to
find the problems that would happen when we use change notifications to
evaluate tasks.

This system includes a minimal set of iTasks features. The system has a
way of defining simple tasks, a way to evaluate tasks and a way for tasks to
interact with shared data sources. We also use the same kind of structure as
iTasks has to implement these features.

To operate, the existing iTask implementation uses a global state to store
and access its tasks and store the currently evaluated task. Next to that, it
uses a list of read shared data sources that it fills while evaluating its task,
similar to the list of depending data sources from section 4. In our simulation
we use a similar global state to match the implementation of iTasks.

We have defined our global state as follows:

:: *IWorld= {

53



tasks :: Shared (Map TaskId Task) World,
currentTask :: Maybe TaskId,
readShares :: ReadShares,
scheduler :: WorkQueue,
world :: *World,
}

We first have the defined tasks, each named using a TaskId. This is accessed
as a shared data source, so it can be accessed from different threads. Next
we have the currently evaluating task, which is identified using its TaskId.
Because most of the time there is no task being evaluated, the value is of
type Maybe. readShares is similar to the implementation of iTasks and contains
the data sources the currently evaluating task is depending on. The scheduler
is the queue where the callbacks are pushed onto. Lastly we have the global
state World which is used by Clean to access external operations, like file IO.

The tasks in iTasks are very complex structures that are hard to use as-is
in our simulation. For this reason we simplified tasks to only a name (TaskId)
and an action. The action in our case is just a function that passes the
global state. In such a function we define what a task would do when it was
evaluated.

We also need some way to keep track of what subscriptions have been
made for each shared data source. This is needed to be able to cancel the
subscription at the start of each evaluation. On creating a task this list is
empty.

We end up with the following definitions:

:: TaskId :==String

:: InnerCallbackId :==Int

:: Task= {
taskid :: TaskId,
action :: (IWorld → IWorld) ,
shares :: [(BasicShare *World, InnerCallbackId)]
}

Note that we use InnerCallbackId for callback-identifiers that relate to basic
data sources. In section 3.5.2 we defined CallbackId as a list of Int, where each
element is a version of a basic data source. Here we split that list up so that
each element is paired with their related basic data source.

The above definition makes it possible to define tasks, like the following
example of a task named taska:

54



taska :: Task

taska= {taskid= "taska", action= (log "TaskA is executing") , shares= []}

Now that we can define tasks we need a function that implements the
evaluation process as described in section 4. This function would require a
task to be evaluated and use it on the global state as defined before. This
results in the following declaration:

evalTask :: !Task !*IWorld → *IWorld

This function essentially executes the action that is defined within the
task, however it also handles the subscriptions for that task. It makes sure
that the field readShares is empty before executing the action. The readShares

field is filled while the task is evaluating. How this works will be explained
in this section while we describe the process of reading and writing shares.
After executing the action, the list in readShares is used to subscribe for later
changes. These subscriptions are stored inside the field shares of the task.
When the task is evaluated later using evalTask again, the field shares is used
to know what subscriptions are made for the task so that it can cancel all
these subscriptions.

Now a task can be evaluated, however until now we have not yet been able
to interact with shared data sources as a task. We define two new functions
that emulate some of the interactions performed by a real iTasks-system, like
showSharedInformation and updateSharedInformation:

readShare :: (RWShared r w *World) *IWorld → *(r, *IWorld)
writeShare :: w (RWShared r w *World) *IWorld → *IWorld

Naturally these functions read and write a shared data source respectively.
Internally these functions use the functions of shared data sources to read
and write their data, like readWrite. However these functions also need to keep
track of the data sources they have read and written. They need to record
at what version they are read and what version is written to the shared
data sources. This means these functions add the shared data source to the
list readShares of the global state. The basic data sources as well as their
versions are put in the list. Later this list can be used by evalTask afterwards
to create subscriptions for these data sources. Creating the subscriptions
happens after the execution of the task’s action-function.

Now we have everything in place to define tasks, evaluate tasks and have
the tasks interact with shared data sources. To illustrate the workings we are
going to show an example with a single shared data source and three tasks.

55



One task reads the data source, another only writes to the data source and
the third first reads and then writes to the data source. First we define the
shared data sources as follows:

(testShare, world) = sharedMemory 0 world

This shared data source contains an integer, initially with the value 0. Next
we define the three tasks, all within the context of the same function (testTasks)
to share testShare more easily:

testTasks testShare world= /∗ . . . ∗/
where

taskA :: Task

taskA= {taskid="taskA",action=eval,shares=[]}
where

eval :: !*IWorld → *IWorld

eval w

# (v,w) = readShare testShare w

# w = log ("TaskA read value "+++toString v) w

= w

taskB :: Task

taskB= {taskid="taskA",action=eval,shares=[]}
where

eval w

# w = log "TaskB writes value 3" w

# w = writeShare 3 testShare w

= w

taskC :: Task

taskC= {taskid="taskC",action=eval,shares=[]}
where

eval w

# (v,w) = readShare testShare w

# w = log ("TaskC is increasing value from "+++
toString v+++" to "+++toString (v+1)) w

# w = writeShare (v+1) testShare w

= w

Here we see that taskA reads the value from the shared data source and logs
its read value. taskB writes value 3 to the shared data source. taskC increases
the value of the data source by one and logs its read and to be written values.

56



To increase the value it first does a read operation and later a write operation
with the increased read value.

Now we have to simulate users triggering an initial evaluation of the tasks.
To do this, we execute evalTask for the different defined tasks in different
orders to see their outcome in the log. As a first example of a user interaction,
we first evaluate taskA, then wait for a second and thereafter evaluate taskB:

userInteraction1 w

# w = evalTask taskA w

# w = sleep 1000
# w = evalTask taskB w

= w

This function results in the following logged output:

TaskA read value 0

[Waiting 1 second]

TaskB writes value 3

TaskA read value 3

As we can see, taskA, waiting and taskB are all executed like we defined in our
user interaction. However, taskA is executed again after taskB has executed.
This is the behavior we wanted. Since taskA first reads testShare, it becomes
dependent on that shared data source. Therefore a subscription is created,
so every time testShare changes, taskA is reevaluated. When taskB writes the
value 3 to testShare, a change notification is generated and the callback of the
subscription is invoked. The callback in turn evaluated taskA using evalTask.
Therefore taskA reads the shared data source again and prints its new value,
which is now 3.

A more interesting example is one where we use taskC, which both reads
and writes. We show this using another user interaction:

userInteraction2 w

# w = evalTask taskA w // User-action 1
# w = sleep 1000
# w = evalTask taskB w // User-action 2
# w = sleep 1000
# w = evalTask taskC w // User-action 3
# w = sleep 1000
# w = evalTask taskB w // User-action 4
= w

57



We have annotated the different user-actions with numbers, so that we can
refer to them more easily. This user-interaction results in the following out-
put:

TaskA read value 0

[Waiting 1 second]

TaskB writes value 3

TaskA read value 3

[Waiting 1 second]

TaskC is increasing value from 3 to 4

TaskA read value 4

[Waiting 1 second]

TaskB writes value 3

TaskA read value 3

TaskC is increasing value from 3 to 4

TaskA read value 4

Here the first three actions are the same as in the earlier example, taskA
gets evaluated (User-action 1), then taskB is evaluated (User-action 2) and
taskA is reevaluated right thereafter. Now taskC is evaluated in User-action
3. This results in taskA being reevaluated, since taskC has changed the value
of testShare. Notice that taskB is not reevaluated right thereafter: it is not
depending on the value of testShare, since it has not read the value of the
shared data source.

Now due to user-action 4 we evaluate taskB for a second time. This re-
sults in taskA and taskC being reevaluated. taskA was, just like the previous
interactions, depending on the value of testShare, but taskC is now also de-
pending on its value: it has read testShare. Right after taskC evaluated, taskA
is reevaluated once again, since taskC has increased, and therefore changed,
the value of testShare.

This process works as expected. All tasks that read a data source are
evaluated once the data source has changed. The tasks always evaluate with
the latest value in the data source.

58



Chapter 6

Related work

In this thesis we touched a number of topics: noticing changes in a reliable
way, notifying user-code about changes and reacting to the changes efficiently.
We only focused on shared data sources and iTask to get to a solution that
fits these systems. Many contributions have been made about notifications
for changing data and notifying other systems. We show related work that
can be used alongside the information in this thesis.

There are different database systems that support change notifications
in different ways[13][15][14]. In [16] the workings of versions and change no-
tifications are documented for a database-system called ORION. ORION is
a object-oriented database that features change notifications on objects by
handling updates, deletions and creation of those objects as well as changes
of references between objects. Their contribution shows how they have in-
tegrated the change notifications into ORION and show what overhead this
can incur.

We showed in this thesis how we defined an abstraction for the change
notifications so that change notifications can be implemented across differ-
ent data-systems, like databases or files. This is different from the men-
tioned works. These explain how to define change notifications specifically
for one database system. These contributions can help to apply our concept
of change notifications to the different databases, since one still has to im-
plement the specific functionality to make change notifications work for a
specific type of shared data source. When one has a database system that
still needs to support change notifications, and not just following our abstrac-
tion, the work that has been researched for ORION can give a good insight
in how this is achieved and what problems might occur.

59



The solution for change notifications that we have shown in this thesis
is similar to a messaging-system called publish-subscribe. There are many
contributions about this technique [17][18][19]. It is used often in distributed
systems where multiple systems want to know when new information is pub-
lished. Therefore protocols have been described to implement a publish-
subscribe system across large networks. In [20] it is described how to ef-
ficiently send notifications to multiple subscribed systems using multi-cast.
This method can be used to efficiently publish notifications to a huge amount
of subscribers from a central server. In [21] a publish-subscribe protocol is
described that uses a peer-to-peer approach. This makes such a protocol
suitable for networks of systems that have no central server and are self-
organizing. This increases the stability of such a network, since there is no
single point of failure.

These contributions describe network protocols to distribute messages in
a networked publish-subscribe system. This thesis describes how to handle
change notifications, that can be described as messages, on the side of the
consumer. The contributions could be used for implementing such messaging-
systems over the network. Using our abstraction these systems could be
used for change notifications the same way as any other change notification,
independent of its source.

Apart from these network protocols, there is also work on how to han-
dle publish-subscribe mechanisms in general. In [22] filtering method is de-
scribed. This method can be used to filter messages in publish-subscribe
systems efficiently. In this thesis we showed how to subscribe for changes
of any data in data sources. When however we are only interested in parts
of the data, like a section of a text-file, it would be more efficient to only
be notified of changes we are interested in. In such case efficient filtering of
notifications is needed. This work on filtering messages can be helpful to give
insight into such problems.

A more general view on publish-subscribe mechanisms is given in [23].
It describes and classifies the many different variants of publish-subscribe
mechanisms. Each of these variants have different benefits and shortcomings,
in terms of their interfaces as well as their implementations. In our thesis we
described a number of solutions to handle change notifications in our systems
and have chosen a solution that turns out to be publish-subscribe. Future
usage of the system will show whether there need to be more requirements,
in which case investigation of different publish-subscribe systems may be
needed.

60



These contributions give information about optimizing and categorizing
publish-subscribe messaging systems. In this thesis we described how a mes-
saging system could be used to send change notifications safely, but also
showed the problems that we have found. When one wants to learn about
improving the messaging system for change notifications, these contributions
may be of help.

Linda [24] is a language which is used to model parallel systems. The
language aims to simplify problems that occur when constructing highly con-
current systems. This includes multi-threaded programs, where components
need to act among each other using multiple threads or processors, but it can
also be used for systems that communicate via a network. Linda is also re-
ferred to as a coordination language, as it is responsible for coordination and
communication between the systems. Because it is such a domain specific
language, it can be embedded in other languages, like Java or C, where it
uses a few simple operations to more easily express how the program should
communicate in a safe manner.

Linda can be used to better model how our described system works. De-
scribing the communication between the different threads within the program
could give better insight in the workings of the system. It might reveal other
solutions to the problems that we have shown. Apart for using it directly for
the internal system, it can also be used to describe the change notifications
over many different systems that need to communicate the changes over a
network. This could be useful when systems need to be build that handle
data from different external systems.

61



Chapter 7

Conclusion

In this thesis we have shown a number of ways how one can detect and react
to real-time changes of shared data sources in a system like iTasks. We
have split this problem into two parts. First the detection and notification of
changes and second how to use change notifications to evaluate tasks reliably
without losing information.

For change detection and notification we have found and shown many
different methods. These include polling, notifying on writes, various ways of
waiting, notifying by pushing callbacks onto a queue or notifying by pushing
messages onto a queue. Each of these methods has different advantages and
disadvantages. We chose to use notifying by pushing callbacks onto a queue
for our extension of the iTasks system.

We have shown how we used the notification system to know when to
evaluate tasks and how to evaluate tasks in a system like iTasks. A way was
needed to know for what shared data sources change notifications should be
received and also how to handle these change notifications. We have shown
how we have solved these problems in our system.

Using the knowledge gathered from the change notification system and the
ways to know when and how to evaluate tasks, we have created a simulation
that is a simplified version of the iTasks system, but also includes the different
aspects which we use to react to changes in real-time. We have shown how we
defined the simulation, touched on how it works and have shown the results
that can we gathered from using the simulation.

62



This all should give a good indication of what problems need to be solved
and some of the solutions that we have found to be working when creating a
real-time task oriented framework that can react to changes of shared data
sources in a pure functional language.

63



Bibliography

[1] Ian Hickson, Google, Inc., “The WebSocket API,”
http://dev.w3.org/html5/websockets/.

[2] ——, “Server-Side Events,” http://dev.w3.org/html5/eventsource/.

[3] E. Foundation, “Etherpad Foundation,” http://etherpad.org/.

[4] S. Michels and R. Plasmeijer, “Multi-purpose
shared data sources in a functional language,”
http://wiki.clean.cs.ru.nl/images/3/3c/Sharing Data Sources.pdf.

[5] R. Plasmeijer, P. Achten, and P. Koopman, “An introduction to itasks:
defining interactive work flows for the web,” Central European Func-
tional Programming School, pp. 1–40, 2008.

[6] T. Brus, M. van Eekelen, M. van Leer, and M. Plasmeijer, “Clean—a
language for functional graph rewriting,” in Functional Programming
Languages and Computer Architecture. Springer, 1987, pp. 364–384.

[7] T. Butler, “Computer response time and user performance.” in Pro-
ceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, 1983, pp. 58–62.

[8] Microsoft, “SetEvent function,” http://msdn.microsoft.com/en-
us/library/windows/desktop/ms686211.aspx.

[9] ——, “WaitForSingleObject function,” http://msdn.microsoft.com/en-
us/library/windows/desktop/ms687032.aspx.

[10] ——, “WaitForMultipleObjects function,”
http://msdn.microsoft.com/en-us/library/windows/desktop/ms687025.aspx.

64



[11] ——, “RegisterWaitForSingleObject function,”
http://msdn.microsoft.com/en-us/library/windows/desktop/ms685061.aspx.

[12] ——, “Thread Pool API,” http://msdn.microsoft.com/en-
us/library/windows/desktop/ms686766.aspx.

[13] ——, “Using Query Notifications,” http://msdn.microsoft.com/en-
us/library/ms175110.aspx.

[14] J. L. J. Chris Anderson and N. Slater., “Continuous Changes,”
http://guide.couchdb.org/draft/notifications.html.

[15] P. G. D. Group, “PostgreSQL: Documentation: Manuals: NOTIFY,”
http://www.postgresql.org/docs/8.1/static/sql-notify.html.

[16] H. Chou and W. Kim, “Versions and change notification in an object-
oriented database system,” in Proceedings of the 25th ACM/IEEE design
automation conference. IEEE Computer Society Press, 1988, pp. 275–
281.

[17] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White, “To-
wards expressive publish/subscribe systems,” Advances in Database
Technology-EDBT 2006, pp. 627–644, 2006.

[18] A. Gupta, O. Sahin, D. Agrawal, and A. Abbadi, “Meghdoot:
content-based publish/subscribe over p2p networks,” in Proceedings of
the 5th ACM/IFIP/USENIX international conference on Middleware.
Springer-Verlag New York, Inc., 2004, pp. 254–273.

[19] Y. Huang and H. Garcia-Molina, “Publish/subscribe in a mobile envi-
ronment,” Wireless Networks, vol. 10, no. 6, pp. 643–652, 2004.

[20] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and
D. Sturman, “An efficient multicast protocol for content-based publish-
subscribe systems,” in Distributed Computing Systems, 1999. Proceed-
ings. 19th IEEE International Conference on. IEEE, 1999, pp. 262–272.

[21] W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. Buchmann, “A peer-
to-peer approach to content-based publish/subscribe,” in Proceedings
of the 2nd international workshop on Distributed event-based systems.
ACM, 2003, pp. 1–8.

65



[22] F. Fabret, H. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha,
“Filtering algorithms and implementation for very fast publish/sub-
scribe systems,” in ACM SIGMOD Record, vol. 30, no. 2. ACM, 2001,
pp. 115–126.

[23] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2,
pp. 114–131, 2003.

[24] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Communications of the ACM, vol. 35, no. 2, pp. 97–107, 1992.

66


