
call-by-name, call-by-value and
abstract machines

Author:
Remy Viehoff

Supervisor:
Prof. Dr. Herman Geuvers

Date:
June, 2012

Thesis number:
663

2

Contents

1 Introduction 5
1.1 Exception handling . 6
1.2 Overview . 7
1.3 Acknowledgements . 8

2 Background 9
2.1 The simply typed λ-calculus . 9

2.1.1 Abstract machine . 13
2.2 The λµ-calculus . 14

2.2.1 Exception handling . 16
2.2.2 Abstract machine . 18

3 The λ̄µ-calculus 21
3.1 An isomorphism . 28
3.2 Exception handling . 38
3.3 An environment machine for λ̄µ 39

4 The λ̄µµ̃-calculus 47
4.1 Exception handling . 52
4.2 An environment machine for λ̄µµ̃ 53

5 Conclusion 59
5.1 Future works . 59

3

4 CONTENTS

Chapter 1

Introduction

The Curry-Howard isomorphism is a remarkable correspondence between logic
on the one side and λ-calculi on the other side. Under the isomorphism, formulas
are mapped to types, proofs to terms and proof normalization steps correspond
to reduction.

From a logical perspective, the isomorphism allows us to use terms from a
λ-calculus as a short way to write down proofs. But, since λ-calculi are also
used as a foundation for programming languages, the terms in such calculus can
be interpreted as programs. This provides us with a means to talk about “the
computational content” of a proof.

From a computational perspective, the isomorphism allows us to assign logi-
cal formulae to terms in the λ-calculus. These formulae can then be interpreted
as the specification of the program (term) it is assigned to and, hence, we can
prove that a program implements its specification. In some cases the isomor-
phism even allows us to extract a program from the proof of a logical formula.
This process is known as program extraction.

For quite some time it was thought that only intuitionistic logics could be
related to λ-calculi i.e. that only proofs in intuitionistic logics had computa-
tional content. It is was Griffin’s pioneering work [Gri89] that showed that
Felleisen and Hieb’s control operator C [FH92] could be typed with the dou-
ble negation elimination rule and, hence, that proofs in a classical logic could
have computational content. On the computational level, the control operator
C can be seen as an exception handling mechanism similar to Scheme’s call/cc
(call-with-current-continuation) construct.

Since Griffin’s extension of the Curry-Howard isomorphism to classical logic,
there has been a lot of work on combining various classical logics with theories
of control. In [Her10], Herbelin investigates the intuitionistic quantifier calcu-
lus (IQC) extended with Markov’s principle, which corresponds to a catch and
throw control mechanism at the computational level. In [Par92], Parigot aug-
ments the λ-calculus with a control-like operator called µ. At the logical level,
Parigot has a multi conclusion variant of natural deduction which can prove
Peirce’s law. These are just two examples of work that has been done in this
area, but there are many more e.g. [Cro99, RS94, Nak92, Her95, CH00].

In this thesis we focus mainly on the computational side of the Curry-Howard
isomorphism. On that side, we have λ-calculi that can be seen as stripped-
down versions of functional programming languages, which make them ideal for

5

6 CHAPTER 1. INTRODUCTION

investigating some of the properties and dualities of programming languages
such as input/output and program/context. In [CH00] Herbelin and Curien
introduce the λ̄µµ̃-calculus, which shows that there is also a duality between
the reduction systems call-by-name and call-by-value (also see [Fil89, Sel01]):
call-by-name does not evaluate arguments before copying them into the body of
a function, while call-by-value only copies arguments into the body of a function
if they are first evaluated to a value. In λ̄µµ̃, the call-by-name and call-by-value
reduction systems live side by side. By resolving the non-determinism in its
reduction system we obtain one of those specific systems.

Programming languages, by themselves, are, however, not very useful un-
less we define some sort of machine that can compute/evaluate a program in
that language. In the case of a λ-calculus, we can define an abstract machine
that does this for us (see e.g. [Lan64, Plo75, Kri07, DG98]). Such an abstract
machine is defined in terms of reductions that manipulate the state of an en-
vironment and/or a stack. The machine reductions are usually deterministic
and mimic the weak head reduction strategy that is defined in terms of the
reductions in the λ-calculus.

In [CH00], Herbelin and Curien define an abstract machine for the λ̄µµ̃-
calculus. However, they do not provide a weak head reduction strategy for the
calculus and do not show that the machine is correct and complete for this
strategy. This is what the main contribution of this thesis is: we first define a
weak head reduction strategy for λ̄µ, which is a restriction of λ̄µµ̃. We then
show that the restriction of Herbelin an Curiens machine to λ̄µ is correct and
complete for this strategy. We present a similar result for the full λ̄µµ̃ machine
and the call-by-name and call-by-value specific versions of that machine.

1.1 Exception handling

Many programming languages contain some sort of mechanism that enables
a programmer to handle exceptions that occur during a computation. Such
mechanisms, which are commonly referred to as exception handling or control
mechanisms, allow a programmer to clearly distinguish “normal” behaviour from
“exceptional” behaviour. The canonical example is that of the function assoc,
whose intention is to find the value associated to the label x in lst :

let rec as soc l s t x =
match l s t with
| [] −> Except ionalValue
| (y , v) : : ys −> i f y = x

then v
else (a s soc ys x)

Indeed, in the case where lst is empty or does not contain the label x, we
cannot return the value associated to x since it simply does not exist. However,
we must still return some value. A solution could be to return some fixed value
denoting this erroneous case. A caller of this function must then check, each
time assoc is called, whether it returns the “erroneous value” or a “normal
value”. A nicer solution can be given using Lisp’s control operators catch and
throw.

The intuition behind the notation catch α p is to first evaluate p. If evalua-
tion of p yields a normal result r, then catch α p yields r. If, during evaluation

1.2. OVERVIEW 7

of p, we encounter an exception throw α e, then catch α p yields e. Con-
sider the following version of assoc in which we have incorporated the control
operators:

let as soc l s t x = catch α (assoc throw l s t x)

let rec assoc throw l s t x =
match l s t with
| [] −> throw α e x i t (‘ ‘ Label x not found ! ’ ’)
| (y , v) : : ys −> i f y == x

then v
else (a s soc ys x)

Here, the function exit just exits the program and prints the message in its
first parameter.

We can use the λ-calculus to reason formally about functional programs.
While the λ-calculus itself does not support exception handling, there exist
extensions of the calculus that do incorporate exception handling mechanisms
(such as Herbelin’s λIQCMP [Her10]) or provide the means to define one (e.g.
Parigot’s λµ-calculus [Par92, Kre10]). In this thesis we will show that we can
define an exception handling mechanism for λ̄µ and λ̄µµ̃ that is similar to the
one defined in [Kre10] for λµ.

1.2 Overview

The remainder of this thesis is structured as follows:

• In Chapter 2 we introduce some notions that will be used later on in this
thesis. We do this by first recalling the simply typed λ-calculus in Section
2.1 and then Parigot’s λµ-calculus in Section 2.2. In both cases we define
a weak head reduction strategy and give an abstract machine that can
evaluate terms in the calculus using this strategy.

• Our main contributions are included in Chapter 3 and 4. In Chapter 3
we start by discussing the λ̄µ-calculus, which was originally introduced
by Herbelin in [Her95]. In particular, we show that λ̄µ is isomorphic to
Parigot’s λµ by defining the inverse of the map N , which is defined in
[CH00], and by showing that these maps are, indeed, each others inverse
and preserve reduction and typing.

In Section 3.2 we show that we can define an exception handling mecha-
nism for λ̄µ that is similar to the one defined in [Kre10] for λµ.

In Section 2.2.2, we define the weak head reduction strategy for λ̄µ and
show that a restriction of the abstract machine defined in [CH00] is correct
and complete for this strategy.

• In Chapter 4 we start by introducing the λ̄µµ̃-calculus and show that,
by restricting its reduction system in two ways, we obtain two confluent
reduction systems: one call-by-name and one call-by-value system.

In Section 4.1 we show that we can define an exception handling mech-
anism for λ̄µµ̃ that is similar to the one defined in [Kre10] for λµ. We
moreover show that we can add a reduction to our exception handling

8 CHAPTER 1. INTRODUCTION

mechanism and thereby obtain a mechanism similar to that of λIQCMP

[Her10], since we can now perform call-by-value reduction steps.

In Section 4.2, we show that the notion of weak head reduction for λ̄µ
can be extended to λ̄µµ̃ and that Herbelin and Curien’s machine [CH00]
is correct and complete for this extended notion of weak head reduction.
We moreover show that the weak head reduction system can be restricted,
just like the reduction system, and that we obtain call-by-name and call-
by-value specific strategies. The abstract machine can also be restricted
in two ways to obtain a call-by-name and call-by-value specific version,
which are correct and complete for their respective notions of weak head
reduction.

• We conclude in Chapter 5.

1.3 Acknowledgements

I want thank my supervisor Herman Geuvers for introducing me to the world
of λ-calculi and the Curry-Howard isomorphism. I also want to thank him for
the numerous hours of discussion and his continuous feedback. Without his
supervision, this thesis would surely not have been as it is now.

Chapter 2

Background

In this chapter we introduce some notions that will be used further on in this
thesis. In Section 2.1 we introduce the simply typed λ-calculus along with
its operational semantics in the form of an abstract machine. In Section 2.2
we introduce the λµ-calculus, which is an extension of the λ-calculus, and an
abstract machine which can be seen as its operational semantics.

2.1 The simply typed λ-calculus

In this section we briefly introduce the simply typed λ-calculus. For a more
elaborate discussion of the calculus we refer to [Chu40, BDS12]. The simply
typed lambda calculus (λ→) was introduced to cope with some of the problems
that the untyped λ-calculus (λ) was suffering from. For instance: in λ, functions
work on arbitrary inputs. That is: each functions is, in a sense, polymorphic.
In the λ→-calculus each function has a fixed domain.

Terms in the simply typed λ-calculus are typed by formulas from the minimal
first-order propositional logic. We also call this set of formulas the simple types.

Definition 1. The set of minimal first-order propositional formulas is generated
by the following grammar, where X,Y, . . . range over an infinite set of atomic
propositions.

A,B ::= A→ B | X

Definition 2. The set Λ of λ-terms is generated by the following grammar,
where x, y, . . . range over the infinite set of term-variables X .

M,N ::= x | λx.M | (MN)

We let applications associate to the left i.e. MN1N2 . . . Nk = (((MN1)N2) . . .)Nk.
The construct λx.M binds x in M . A variable is called a free variable if it is not
bound. In λ→, λ-abstraction is the only binding construct. The set of free vari-
ables of a term is determined by the function FV , which is given below. A term

9

10 CHAPTER 2. BACKGROUND

M is called closed if M does not contain any free variables i.e. if FV (M) = ∅.

FV (x) = {x}
FV (λx.M) = FV (M)− {x}
FV (MN) = FV (M) ∪ FV (N)

Throughout this thesis we stick to the convention that the names of bound
variables are chosen maximally fresh and different from the names of free vari-
ables. Moreover, we call two terms M,N α-equivalent (notation M ≡ N) if
they differ only in the names of their bound variables. For example: λx.λy.x ≡
λk.λl.k, but λx.λy.x is not α-equivalent to λk.λl.l. We will identify α-equivalent
terms, that is: we work on α equivalence classes (Λ/ ≡) of terms.

The derivation rules that determine whether some term M has type A are
included in Figure 2.1. We write Γ ` M : A and call M a well-typed term, if
the term M has type A in context Γ. A context is a list of bindings of the form
x : A, y : B, . . ., where x, y, . . . ∈ X and A,B, . . . are formulas.

Γ, x : A ` x : A
ax

Γ, x : A `M : A

Γ ` λx.M : A→ B
→I

Γ `M : A→ B Γ ` N : A
Γ `MN : B

→E

Figure 2.1: Typing rules for λ→

We interpret the notation (λx.M) : A → B as the function λx.M with
domain A and co-domain B, moreover x is an element of the domain A. We let
→ associate to the right i.e. A→ B → C → D = A→ (B → (C → D)).

Example 1. Using the rules in Figure 2.1, we can show that the term (λx.λy.x)(λz.z)
has type B → A→ A:

x : A→ A, y : B ` x : A→ A
ax

x : A→ A ` λy.x : B → A→ A
→I

` (λx.λy.x) : (A→ A)→ B → A→ A
→I

z : A ` z : A
ax

` λz.z : A→ A
→I

` (λx.λy.x)(λz.z) : B → A→ A
→E

In fact, (λx.λy.x)(λz.z) is a closed (well-typed) term of type B → A→ A.

end of example

Definition 3. Reduction on λ-terms is defined as the compatible closure of the
following rule:

(λx.M)N →β M [N/x]

We write →∗ for the reflexive, transitive closure and →+ for the transitive
closure of the reduction in Definition 3. Any term of the form (λx.M)N is
called a redex and the process of reducing such redex is also called contraction.
This process always ends, since reduction in λ→ is strongly normalizing. If N
contains no more redexes, we say that N is in normal form and we write N 9.

2.1. THE SIMPLY TYPED λ-CALCULUS 11

Lemma 1. The reductions in λ→ are strongly normalizing. That is: the process
of reduction always terminates.

Proof. See e.g. [GTL89].

Definition 4. Substitution M [N/x] is defined as follows:

x[N/x] = N

y[N/x] = y (if y 6= x)

(λy.M)[N/x] = λy.M [N/x]

(MN)[P/x] = (M [P/x])(N [P/x])

Moreover, substitution is capture-free, which means that all bound occur-
rences of x in M must be renamed to avoid being captured by the substitution.
For example:

(λx.x)[N/x] ≡ (λy.y)[N/x] = λy.y ≡ λx.x (Capture free substitution)

(λx.x)[N/x] = λx.N (Substitution with capture)

Example 2.

(λx.x)((λy.y)(λz.z))→β (λx.x)(λz.z)→β λz.z , but also

(λx.x)((λy.y)(λz.z))→β (λy.y)(λz.z)→β λz.z

end of example

Remember, from the introduction, that the type of a program (term) can
be seen as the specification of that program. Of course, we want this specifi-
cation to be preserved under reduction; we do not want a program to change
into an entirely different program just by reducing it. To that end, we check
that the reduction(s) satisfy subject reduction. But first we need the following
substitution lemma.

Lemma 2. If Γ, x : A `M : B and Γ ` N : A, then Γ `M [N/x] : B.

Proof. By induction on the structure of M .

• If M = x, then M [N/x] = N and we must have that A = B. Then, by
assumption, we have Γ ` N : B = Γ ` M [N/x] : B. If M = y 6= x,
then M [N/x] = y and we get Γ ` M : B by assumption (note that we
can remove x : A from the context, since it was not used in the proof of
Γ ` y : B).

• If M = λy.M1 (y 6= x since variable names are chosen maximally fresh),
then (λy.M1)[N/x] = λy.M1[N/x] and B = C → D. By the →I -rule we
get Γ, x : A, y : C ` M1 : D and by the induction hypothesis we have
Γ, y : C ` M1[N/x] : D. Then, by the →I rule, we get Γ ` λy.M1[N/x] :
C → D, as required.

• If M = M1M2, then (M1M2)[N/x] = (M1[N/x])(M2[N/x]) and the result
follows immediately from the induction hypothesis.

12 CHAPTER 2. BACKGROUND

Lemma 3. The reductions in λ satisfy subject reduction. That is: if Γ `M : B
and M →M ′, then also Γ `M ′ : B.

Proof. If M = (λx.M1)N , then M →β M1[N/x] and we have:

Γ, x : A `M1 : B

Γ ` λx.M1 : A→ B
→I

Γ ` N : A

Γ ` (λx.M1)N : B
→E

By Lemma 2 we get Γ `M1[N/x] : B.

A term may contain multiple redexes which can all be contracted in an ar-
bitrary order. The choice to contract a particular redex gives rise to a reduction
path. In the case of Example 2 we have two reduction paths and both paths yield
the same result. This is not a coincidence, since λ→ is confluent (see Lemma
4).

Lemma 4. Reduction in λ→ is confluent. That is: if M →∗ M1 and M →∗ M2,
then there exists an N ∈ Λ such that M1 →∗ N and M2 →∗ N .

Proof. We obtain confluence for λ→ by confluence of the untyped λ-calculus
(see e.g. [Tak89]) and Lemma 3.

In Definition 3 we defined a non-deterministic reduction system called call-
by-name. The idea behind the call-by-name reduction is that arguments to a
function are never evaluated before copying them into the body of the function.
The obvious drawback of this strategy is that an argument must be evaluated
multiple times if it occurs more than once in the body of a function.

Another reduction system is called call-by-value. The idea behind call-by-
value reduction is that arguments to a function are evaluated to values before
copying them into the body of the function. The drawback of such system
is that arguments are evaluated independent of whether they are used or not.
Even if a function throws away its argument, the argument is evaluated.

Definition 5. The set V of λ→ values is defined by the following grammar:

V ::= x | λx.N

Now we must also adapt our β-reduction rule, since it allows arbitrary ar-
guments (i.e. not necessarily values) to be copied into the body of the function.

Definition 6. The call-by-value reduction system for λ→ is defined as the
compatible closure of the following reduction:

(λx.M)V →βv
M [V/x]

The difference with the call-by-name system is that arguments must now be
reduced to values. Consider, for example, the term M = (λx.x)((λy.y)(λz.z)),
which may be reduced in two ways using the call-by-name reduction system
(see Example 2). Using the call-by-value system we can only get the following
reduction path: M →βv

(λx.x)(λz.z)→βv
λz.z.

There are other reduction systems like, for instance, call-by-need (see [MOW98]).
We will, however, limit our discussion to the call-by-value and call-by-name sys-
tems.

2.1. THE SIMPLY TYPED λ-CALCULUS 13

2.1.1 Abstract machine

We have already mentioned, in the introduction, that lambda calculi are often
used as a foundation for functional programming languages. A term in a calculus
expresses a program and, like for any other programming language, we want a
machine that can evaluate this program.

While we will encounter machines that are non-deterministic later on in this
thesis, we usually want a machine to be deterministic. To that end one must
first define an reduction strategy. The difference between a reduction system
and a reduction strategy is that the former may be non-deterministic, while the
latter is deterministic.

In the case of the λ→ we define the (call-by-name) weak head reduction
strategy, which is implemented by a machine called K. This machine was first
defined by Krivine [Kri07] and, hence, is also referred to as the Krivine-machine.
For brevity, we will only discuss this call-by-name machine. It is possible, how-
ever, to define a machine that implements a call-by-value reduction strategy (see
e.g. [Lan64, Plo75]). Also see [DF07] for a nice discussion on Krivine machines.

Definition 7. The (call-by-name) weak head reduction strategy for the λ→-
calculus is defined by the following rules:

• (λx.M)N →wh M [N/x]

• M →∗wh M

•
M →wh N

MO →wh NO

•
M →wh N N →∗wh O

M →∗wh O

Indeed, the weak head reduction strategy never reduces under a λ-abstraction.
That is: if t = λx.(λy.y)x, then t9wh even though (λy.y)x is a redex. Accord-
ingly, if the K machine is loaded with the term t, it should halt immediately.

The K machine is defined in terms of reductions on states of the following
form: 〈M, E, S〉. Here, E is an environment mapping variables to closures
〈N,E′〉, where N is a term and E′ is another environment. We write E[x 7→
〈N,E′〉] for the environment mapping x to the closure 〈N,E′〉 and E(x) =
〈N,E′〉. On the stack S we can store closures. We write 〈N,E〉 :: S for the
stack obtained by pushing the closure 〈N,E〉 on of top the stack S.

Definition 8. The K machine is defined by the following reductions:

1. 〈x, E, S〉 → 〈N, E′, S〉, if E(x) = 〈N,E′〉

2. 〈λx.M, E, 〈N,E′〉 :: S〉 → 〈M, E[x 7→ 〈N,E′〉], S〉

3. 〈MN, E, S〉 → 〈M, E, 〈N,E〉 :: S〉

Evaluation of a term always starts with the empty environment “-” and the
empty stack “-”.

14 CHAPTER 2. BACKGROUND

Example 3. Consider the following example, in which we show how the K
machine reduces the term KIΩ, where K = λx.λy.x, I = λz.z and Ω =
(λa.aa)(λb.bb):

〈KIΩ, −, −〉 → 〈KI, −, 〈Ω,−〉〉
→ 〈K, −, 〈I,−〉 :: 〈Ω,−〉〉
→ 〈λy.x, [x 7→ 〈I,−〉], 〈Ω,−〉〉
→ 〈x, [x 7→ 〈I,−〉][y 7→ 〈Ω,−〉], −〉
→ 〈I, −, −〉

end of example

Lemma 5. The K machine is correct for the weak head reduction strategy in
λ→. That is: if M is a machine state and M → M′, then JMK →∗wh JM′K.
Where J−K maps machine states to λ terms.

Proof. This is proven in [Kri07].

Usually we would also like to prove that the machine is complete for its
reduction strategy. That is: if M is a λ term and M →wh M

′, then {{M}} →∗
{{M}}′, where {{−}} maps λ terms to machine states. This, however, is not so
easy to prove. The difficulty is that, for an arbitrary λ term, we simply do
not know which closures should be put in the environment. We will discuss a
solution to this problem in the next section.

2.2 The λµ-calculus

In this section we recall the λµ-calculus, which was first introduced by Parigot
in [Par92]. We use the same presentation as Curien and Herbelin in [CH00],
as this makes it easier to express similarities between λµ and λ̄µ later on. The
syntax of λµ is divided into the following two categories.

Definition 9. The set Λµ of λµ terms is defined by the following grammars:

Terms M,N ::= x | λx.M | µα.c | MN
Commands c ::= [β]M

The syntax uses two sets of variables: we let x, y, . . . range over the set
of term-variables X and let α, β, . . . range over the set of µ-variables A. The
construct λx.M binds x in M and the construct µα.c binds α in c.

The typing system uses two kinds of judgements, one for each syntactic
category:

c : (Γ ` ∆) Γ `M : A | ∆

Here, Γ is a context (see Section 2.1) containing term-variables and ∆ is
a context containing µ-variables. The typing rules are included in Figure 2.2.
Here, the “|” in the judgements serves to single out a specific (active) formula.

2.2. THE λµ-CALCULUS 15

Γ, x : A ` x : A | ∆
ax

Γ, x : A `M : B | ∆
Γ ` λx.M : A→ B | ∆

→I
Γ `M : A→ B | ∆ Γ ` N : A | ∆

Γ `MN : B | ∆
→E

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
µ

Γ `M : A | α : A,∆

[α]M : (Γ ` α : A,∆)
cm

Figure 2.2: Typing rules for λµ

Example 4. Consider the following derivation, which shows that the term
λx.µα.[α]x(λy.µβ.[α]y) can be typed with Peirce’s law.

x : (A→ B)→ A ` x : (A→ B)→ A | α : A
ax

x : (A→ B)→ A, y : A ` y : A | β : B,α : A
ax

[α]y : (x : (A→ B)→ A, y : A ` β : B,α : A)
cm

x : (A→ B)→ A, y : A ` µβ.[α]y : B | α : A
µ

x : (A→ B)→ A ` (λy.µβ.[α]y) : A→ B | α : A
→I

x : (A→ B)→ A ` x(λy.µβ.[α]y) : A | α : A
→E

([α]x(λy.µβ.[α]y)) : (x : (A→ B)→ A ` α : A)
cm

x : (A→ B)→ A ` µα.[α]x(λy.µβ.[α]y) : A |
µ

` λx.µα.[α]x(λy.µβ.[α]y) : ((A→ B)→ A)→ A |
→I

end of example

From a logical perspective, if we look at the typing rules in a bottom-up
fashion, the µ-operator allows us to “store” the formula we are currently proving
into the context ∆. That is: if we have to prove Γ ` µα.c : A, we may store the
formula A under the name α in ∆ and continue with proving c : (Γ ` ∆, α : A).
Now, if we encounter a command and must prove e.g. ([β]M) : (Γ ` ∆) we can
“restore” the formula that was previously saved under the name β in ∆. I.e. a
command allows us to “activate” a formula that we made “passive” earlier on.

Traditionally, λµ is equipped with a call-by-name reduction system. While
there also exists a call-by-value variant of the λµ-calculus (see e.g. [Nak03]), we
will limit our discussion to the call-by-name case.

Definition 10. Reduction in λµ is defined as the congruent closure of the
following rules:

(β) (λx.M)N →M [N/x]
(µ) (µα.c)N → µα.c[[α]MN/[α]M]
(µR) [α](µβ.c)→ c[α/β]

From a computational perspective, a µ-abstraction allows us to pass its
arguments through to one of its sub-terms. This functionality is reflected in
the µ-reduction rule. If we encounter a term like (µα.c)N1 . . . Nk, then we may
pass the arguments N1 . . . Nk to the sub-term named α, i.e. the command
[α]M where M is an arbitrary term, so that we eventually obtain the command
[α]MN1 . . . Nk. In Section 2.2.1 we will see that the µ-operator can also be used
to create an exception handling mechanism.

16 CHAPTER 2. BACKGROUND

Example 5. Consider, for example, the following reduction sequence:

(µα.[α](µβ.[α]x))yz →µ (µα.[α](µβ.[α]xy))z

→µ µα.[α](µβ.[α]xyz)

→µR µα.[α]xyz

end of example

On top of the reductions from Definition 10, we may add the following η-like
reduction:

µα.[α]M →η M if α /∈ FV (M)

The λµ-calculus satisfies all the major properties:

Lemma 6. The reductions in λµ satisfy subject reduction. That is: if Γ `M :
A | ∆ and M →M ′, then also Γ `M ′ : A | ∆.

Proof. See e.g. [Kre10].

Lemma 7. The reductions in λµ are strongly normalizing. That is: the process
of reduction always terminates.

Proof. See [Par97].

Lemma 8. The reductions in λµ are confluent. That is: if M ∈ Λµ and
M →∗ M1 and M →∗ M2, then there exists a term M ′ such that M1 →∗ M ′
and M2 →M ′.

Proof. See [Par92] (also see [Kre10]).

2.2.1 Exception handling

In λµ we can use the µ-abstraction to create an exception handling mechanism.
We can define the control operators catch and throw as follows.

Definition 11. The control operators catch and throw are defined as follows:

catchα M = µα.[α]M

throwβ M = µγ.[β]M if γ /∈ FV (M)

Lemma 9. We have the following reductions for catch and throw [Kre10]:

1. (throwα M)N1 . . . Nk → throwα M

2. catchα (throwα M)→ catchα M

3. catchα (throwβ M)→ throwβ M , provided that α /∈ FV (M)

4. throwα (throwβ M)→ throwβ M

5. catchα M →M , provided that α /∈ FV (M)

Proof.

2.2. THE λµ-CALCULUS 17

1. For reduction (1) we have:

(throwα M)N1 . . . Nk = (µγ.[α]M)N1 . . . Nk with γ /∈ FV (M)

→µ (µγ.[α]M)N2 . . . Nk

→µ . . .→µ (µγ.[α]M)Nk

→µ (µγ.[α]M) = throwα M

2. For reduction (2) we have:

catchα (throwα M) = µα.[α](µγ.[α]M) with γ /∈ FV (M)

→µR µα.[α]M = catchα M

3. For reduction (3) we have:

catchα (throwβ M) = µα.[α](µγ.[β]M) with γ /∈ FV (M)

→µR µα.[β]M = throwβ M if α /∈ FV (M)

4. For reduction (4) we have:

throwα (throwβ M) = µγ.[α](µδ.[β]M) with γ, δ /∈ FV (M)

→µR µγ.[β]M = throwβ M

5. For reduction (5) we have:

catchα M = µα.[α]M

→η M if α /∈ FV (M)

The intuition behind this exception handling mechanism is that we want
a throw to propagate upwards. That is: if some computation results in an
exception throwα M , we want to keep throwing this exception upwards until
we find a suitable catch (i.e. catchα). If, eventually, a suitable catch is
found (reduction (2)), we do not want to remove it, we only want to remove
the exception, since the body of the exception itself may still contain exceptions
that we might want to handle. Reductions (1), (3) and (4) are responsible for
propagating an exception upwards, reduction (2) is responsible for “handling”
an exception and reduction (5) is responsible for removing the top-level catch ,
if there is one.

Example 6. Consider reducing the following term using these new reduction
rules:

catchα ((λx.throwα x)(λy.y))→ catchα (throwα (λy.y))

→ catchα (λy.y)

→ λy.y

end of example

18 CHAPTER 2. BACKGROUND

2.2.2 Abstract machine

Just like for the λ-calculus, we can define an abstract machine that evaluates
λµ-terms. For the call-by-name λµ-calculus it is possible to define an extension
of the Krivine machine K from Section 2.1.1. Accordingly, the machine, which
is defined e.g. in [DG98], is called µK.

Definition 12. The weak head reduction strategy for λµ is defined by the
following rules (also see [DG98]):

• (λx.M)N →wh M [N/x]

• (µα.c)N →wh µα.c[[α]MN/[α]M]

• µα.µβ.c→wh µα.c[α/β]

• µα.[β](µγ.c)→wh µα.c[β/γ]

• µα.[α]M →wh M , if α /∈ FV (M)

• M →∗wh M

•
M →wh N

MO →wh NO

•
M →wh N N →∗wh O

M →∗wh O

•
M →wh N

µα.M →wh µα.N

•
M →wh N

[α]M →wh [α]N

Definition 13. The µK-machine [DG98] is defined by the following reductions:

1. 〈x, E, S〉 → 〈N, E′, S〉, if E(x) = 〈N,E′〉

2. 〈λx.M, E, 〈N,E′〉 :: S〉 → 〈M, E[x 7→ 〈N,E′〉], S〉

3. 〈MN, E, S〉 → 〈M, E, 〈N,E〉 :: S〉

4. 〈µα.c, E, S〉 → 〈c, E[α 7→ S], −〉

5. 〈[α]M, E, −〉 → 〈M, E, S〉, if E(α) = S

Example 7. Consider the following machine reduction:

〈(µα.[α](µβ.[α](λx.x)))(λy.y), −, −〉
→ 〈µα.[α](µβ.[α](λx.x)), −, 〈λy.y,−〉〉
→ 〈[α](µβ.[α](λx.x)), [α 7→ 〈λy.y,−〉], −〉
→ 〈µβ.[α](λx.x), [α 7→ 〈λy.y,−〉], 〈λy.y,−〉〉
→ 〈[α](λx.x), [α 7→ 〈λy.y,−〉][β 7→ 〈λy.y,−〉], −〉
→ 〈λx.x, [α 7→ 〈λy.y,−〉][β 7→ 〈λy.y,−〉], 〈λy.y,−〉〉
→ 〈x, [α 7→ 〈λy.y,−〉][β 7→ 〈λy.y,−〉][x 7→ 〈λy.y,−〉], −〉
→ 〈λy.y, −, −〉

2.2. THE λµ-CALCULUS 19

end of example

Lemma 10. The machine is correct for the weak head reduction strategy in λµ.
That is: if M is a machine state and M→M′, then JMK→∗wh JM′K. Where
J−K maps machine states to λ terms.

Proof. This is proven in [DG98].

In [DG98], De Groote also proves that the µK-machine is complete for the
weak head reduction strategy in λµ. This result is not obtained by defining a
map, {{}} say, from λµ-terms to µKmachine states. Like we mentioned in Section
2.1.1, the difficulty in defining such map is that, for arbitrary terms, we don’t
know what to put into the machines environment. A simplification could be to
concentrate on closed, well-typed terms only, because then we can translate any
such term t to the machine state 〈t, −, −〉. However, this will not work either.
Consider, for example, the closed, well-typed term (λy.λx.x)M →wh (λx.x).
We would like to have that 〈(λy.λx.x)M, −, −〉 →∗ 〈λx.x, −, −〉. However,
this is not the case, since 〈(λy.λx.x)M, −, −〉 → 〈λy.λx.x, −, 〈M,−〉〉 →
〈λx.x, [y 7→ 〈M,−〉], −〉 9. De Groote’s solution is to prove the following
lemma.

Lemma 11. The µK-machine is complete for the weak head reduction strategy
in λµ. That is: for any closed, well-typed term M of type ι, there exists an
environment E such that 〈M, −, −〉 →∗ 〈?, E, −〉. Where ? is a constant of
type ι. Moreover, M →∗wh J〈?, E, −〉K. I.e. the following diagram commutes:

M 〈M, −, −〉

J〈?, E, −〉K 〈?, E, −〉

{{−}}

wh∗

J−K

*

Proof. This is proven in [DG98].

20 CHAPTER 2. BACKGROUND

Chapter 3

The λ̄µ-calculus

In this chapter we investigate some properties of the λ̄µ-calculus, which was
first introduced by Herbelin in [Her95]. The calculus can be seen as a sequent-
calculus version of Parigot’s call-by-name λµ and, hence, has a lot in common
with λµ. In fact, the calculi turn out to be isomorphic [CH00]. In Section 3.1
we will define the inverse of the map N (which is defined in [CH00]) and show
that reduction and typing is preserved.

The syntax of λ̄µ is divided into the following three categories.

Definition 14. The set Λ̄µ of λ̄µ terms is defined by the following grammars:

Commands c ::= 〈v ‖ e〉
Terms v ::= x | λx.v | µα.c
Contexts e ::= β | v · e

We let t range over arbitrary λ̄µ terms i.e. t ∈ Λ̄µ. The syntax uses two
sets of variables: we let x, y, . . . range over the set of term-variables X and let
α, β, . . . range over the set of context-variables A. The construct λx.v binds
x in v and the construct µα.c binds α in c. As usual, we will associate terms
that only differ in the names of their bound variables. That is: we work on α-
equivalence classes (Λ̄µ/ ≡) of terms. Moreover, we adopt the convention that
the names of bound variables are chosen maximally fresh and different from the
names of free variables.

Definition 15. The set of free variables FV (t) of a λ̄µ term t can be determined
by the following function:

FV (ν) = {ν} , where ν is either in X or in A
FV (λx.v) = FV (v)− {x}
FV (µα.c) = FV (c)− {α}
FV (v · e) = FV (v) ∪ FV (e)

FV (〈v ‖ e〉) = FV (v) ∪ FV (e)

The typing system uses three kinds of judgements, one for each syntactic
category:

c : (Γ ` ∆) Γ ` v : A | ∆ Γ | e : A ` ∆

21

22 CHAPTER 3. THE λ̄µ-CALCULUS

The typing rules for λ̄µ are included in Figure 3. Here, again, the “|” serves
to single out a specific (active) formula. For details about the underlying logic
we refer to [CH00, Her95].

Γ | α : A ` α : A,∆
axl

Γ, x : A ` x : A | ∆
axr

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | (v · e) : A→ B ` ∆
→l

Γ, x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

→r

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
µ

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v ‖ e〉 : (Γ ` ∆)
cm

Figure 3.1: Typing rules for λ̄µ

Fact 1. Proofs in λ̄µ will always be closed by either the axl or axr axiom from
Figure 3. In these axioms both Γ and ∆ can be arbitrarily large. This allows
us to show that the following weakening rules are derivable (where x /∈ Γ and
α /∈ ∆):

Γ | e : A ` ∆

Γ, x : B | e : A ` ∆
wkΓl

Γ ` v : A | ∆
Γ, x : B ` v : A | ∆

wkΓr

Γ | e : A ` ∆

Γ | e : A ` α : B,∆
wk∆l

Γ ` v : A | ∆
Γ ` v : A | α : B,∆

wk∆r

A context e can be read as a term with a “hole” ([]) in it. This hole can
be interpreted as the absence of a computation. In that sense, contexts are the
dual of terms: while terms express programs or computations, contexts express
a blocked computation waiting for the result of a sub-computation. We often
write e[t] to denote the term obtained by replacing (filling) the “hole” in e with
the term t, where free variables in t may become bound in e[t].

A command 〈v ‖ e〉 can be read as a term v that is put in the hole of the
context e, it is the equivalent of e[v]. If e = α, then 〈v ‖ e〉 is just another
notation for the naming construct [α]v from the λµ-calculus. The intuition
for the typing of contexts in the cm and →l rules from Figure 3 is as follows:
context e is of type B if the “hole” in e is of type B.

The construction v · e can be interpreted as an applicative context. It is the
λ̄µ equivalent of filling the hole in e with the application of a new hole and v
i.e. e[[]v]. We can now encode a function that is applied to a list of arguments
in context e as follows:

e[(λx1, . . . , xk.N)M1 . . .Mk] = 〈λx1, . . . , xk.N ‖M1 · . . . ·Mk · e〉

Definition 16. We have the following reductions in λ̄µ:

(λ) 〈λx.v1 ‖ v2 · e〉 → 〈v1[v2/x] ‖ e〉
(µ) 〈µα.c ‖ e〉 → c[e/α]

Where substitution is capture-free with respect to both kinds of variables.

23

Definition 17. Substitution t[t′/ν] is defined as follows:

x[t/ν] = t , if x = ν

y[t/ν] = y , if y 6= ν

(λy.v)[t/ν] = λy.v[t/ν]

(µα.c)[t/ν] = µα.c[t/ν]

(v · e)[t/ν] = (v[t/ν]) · (e[t/ν])

〈v ‖ e〉[t/ν] = 〈v[t/ν] ‖ e[t/ν]〉

Remark 1. Note that the λ-reduction indeed conforms to the explanation of
〈M ‖ N · e〉 given above.

On top of the reduction rules from Definition 16 we could add an η-equality
similar to the one of λµ:

µα.〈v ‖ α〉 =η v, if α is not free in v

Let us check that the reductions in λ̄µ satisfy subject reduction. First we
need to establish that typing is preserved under substitution, as the following
lemma shows.

Lemma 12. Typing is preserved under substitution. That is: if

(A) Γ | e′ : A′ ` ∆,

(B) Γ ` v : A | α : A′,∆ and

(C) Γ | e : A ` α : A′,∆

then the following statements hold:

(1) Γ | e[e′/α] : A ` ∆

(2) Γ ` v[e′/α] : A | ∆

Proof. Simultaneously, by induction on the structure of e, v.

• (1) If e = β with β 6= α, then e[e′/α] = β[e′/α] = β and, hence Γ |
e[e′/α] : A ` ∆ by (C) (note that we can use the weakening rule
wk∆l to remove α : A′ from the context).

If e = α, then A = A′ and e[e′/α] = e′ and, hence, we get Γ | e[e′/α] :
A ` ∆ by (A).

(2) If v = x, then v[e′/α] = x and, hence, we have Γ ` v[e′/α] : A | ∆ by
(B). As before, we can remove α : A′ from the context using wk∆r.

• (1) If e = v′ · e′′, then we must have that A = B → C for some B and
C. By (C) and the →l tying rule we get Γ ` v′ : B | α : A′,∆ and
Γ | e′′ : C ` α : A′,∆. By applying the induction hypothesis to these
judgements we get Γ ` v′[e′/α] : B | ∆ and Γ | e′′[e′/α] : C ` ∆.

24 CHAPTER 3. THE λ̄µ-CALCULUS

Applying the →l rule gives us the desired result (e[e′/α] = v′[e′/α] ·
e′′[e′/α]):

Γ ` v′[e′/α] : B | ∆ Γ | e′′[e′/α] : C ` ∆

Γ | v′[e′/α] · e′′[e′/α] : B → C ` ∆
→l

(2) If v = λx.v′, then A = B → C for some B and C. By (B) and the
→r typing rule we get Γ, x : B ` v′ : C | α : A′,∆. By applying the
induction hypothesis we get Γ, x : B ` v′[e′/α] : C | ∆. Then, by
the →r rule, we get the following derivation, as desired (v[e′/α] =
λx.v′[e′/α]):

Γ, x : B ` v′[e′/α] : C | ∆
Γ ` λx.v′[e′/α] : B → C | ∆

→r

• (2) If v = µβ.〈v′ ‖ e′′〉, then we get Γ ` v′ : B | β : A,α : A′,∆ and
Γ | e′′ : B ` β : A,α : A′,∆ by applying first the µ and then the cm
rule for some B. By the induction hypothesis we get Γ ` v′[e′/α] :
B | β : A,∆ and Γ | e′′[e′/α] : B ` β : A,∆. We now arrive at
the following derivation, as desired (v[e′/α] = (µβ.〈v′ ‖ e′′〉)[e′/α] =
µβ.〈v′[e′/α] ‖ e′′[e′/α]〉):

Γ ` v′[e′/α] : B | β : A,∆ Γ | e′′[e′/α] : B ` β : A,∆

〈v′[e′/α] ‖ e′′[e′/α]〉 : (Γ ` β : A,∆)
cm

Γ ` µβ.〈v′[e′/α] ‖ e′′[e′/α]〉 : A | ∆
µ

Corollary 1. From Lemma 12 it easily follows that if Γ | e′ : A′ ` ∆, Γ ` v :
A | α : A′,∆ and Γ | e : A ` α : A′,∆, then 〈v ‖ e〉[e′/α] : (Γ ` ∆) holds, since
〈v ‖ e〉[e′/α] = 〈v[e′/α] ‖ e[e′/α]〉 and:

Lemma 12
Γ ` v[e′/α] : A | ∆

Lemma 12
Γ | e[e′/α] : A ` ∆

〈v[e′/α] ‖ e[e′/α]〉 : (Γ ` ∆)
cm

Remark 2. The results from Lemma 12 and Corollary 1 also hold for substi-
tution with terms for term variables i.e. for v[v′/x] and e[v′/x].

Lemma 13. The reductions in λ̄µ satisfy subject reduction. That is: if 〈v ‖
e〉 : (Γ ` ∆) and 〈v ‖ e〉 → 〈v′ ‖ e′〉, then 〈v′ ‖ e′〉 : (Γ ` ∆).

Proof.

• Suppose 〈v ‖ e〉 = 〈λx.v1 ‖ v2 · e〉, then 〈v ‖ e〉 →λ 〈v1[v2/x] ‖ e〉. We
have:

• Suppose 〈v ‖ e〉 = 〈µβ.c ‖ e〉, then 〈v ‖ e〉 →µ c[e/β]. We have:

c : (Γ ` β : A,∆)

Γ ` µβ.c : A | ∆
µ

Γ | e : A ` ∆

〈µβ.c ‖ e〉 : (Γ ` ∆)
cm

Using Corollary 1 we get c[e/β] : (Γ ` ∆) as desired.

25

Γ, x : A ` v1 : B | ∆
Γ ` λx.v1 : A→ B | ∆

→r
Γ ` v2 : A | ∆ Γ | e : B ` ∆

Γ | v2 · e : A→ B ` ∆
→l

〈λx.v1 ‖ v2 · e〉 : (Γ ` ∆)
cm

−→λ

Remark 2
Γ ` v1[v2/x] : A | ∆ Γ | e : B ` ∆

〈v1[v2/x] ‖ e〉 : (Γ ` ∆)
cm

Lemma 14. The reductions in λ̄µ are strongly normalizing. That is: the process
of reduction always terminates.

Proof. See [Her95].

Corollary 2. The reductions in λ̄µ are trivially locally confluent (there are
no critical pairs). Then, using Newman’s lemma and Lemma 14, we obtain
confluence for well-typed terms in λ̄µ.

So how can we see that the reductions from Definition 16 indeed define a
call-by-name strategy? The intuition is that, in a call-by-name calculus, we do
not have to start by first reducing arguments (to a function) to values before
evaluating the function. Instead we copy arguments directly into the body of
the function. With that in mind, let us take a look at the →λ reduction from
Definition 16. Remember that v · e can be interpreted as the context e[[]v] and
that 〈v ‖ e〉 can be read as e[v].

Following the →λ rule we see that 〈λx.v1 ‖ v2 · e〉, which is equivalent to
e[(λx.v1)v2], reduces to 〈v1[v2/x] ‖ e〉, which is equivalent to e[v1[v2/x]]. So,
indeed, we have the potential to move v2 into the body of λx.v1 without first
reducing it to a value.

We also have the option to reduce arguments to values first, as can be seen
in Example 8. In λ̄µ we are, however, never forced to do that, as is the case
with a call-by-value strategy.

Let us have a look at this from a more formal perspective by defining a map
δ : Λ → Λ̄µ. We then show that this map preserves reduction, which shows us
that λ̄µ is a true call-by-name calculus. We also show that δ preserves types.

Definition 18.

δ(x) = µα.〈x ‖ α〉, with α fresh

δ(λx.N) = µα.〈λx.δ(N) ‖ α〉, with α fresh

δ(MN) = µα.〈δ(M) ‖ δ(N) · α〉, with α fresh

Fact 2. It can be easily seen from the definition above that δ(M) = µα.c, for
all M ∈ Λ and some command c ∈ Λ̄µ.

Lemma 15. For all M,N ∈ Λ, δ(M)[δ(N)/x]→∗ δ(M [N/x]).

Proof. By induction on the structure of M ∈ Λ.

26 CHAPTER 3. THE λ̄µ-CALCULUS

• If M = y 6= x, then

δ(y)[δ(N)/x] = (µα.〈y ‖ α〉)[δ(N)/x]

= µα.〈y ‖ α〉 = δ(y) = δ(y[N/x])

• If M = x, then

δ(x)[δ(N)/x] = (µα.〈x ‖ α〉)[δ(N)/x]

= µα.〈δ(N) ‖ α〉
= µα.〈µβ.c ‖ α〉 (by Fact 2)

→µ µα.c[α/β]

≡ µβ.c = δ(N) = δ(x[N/x])

• If M = λy.M ′, then

δ(M)[δ(N)/x] = (µα.〈λy.δ(M ′) ‖ α〉)[δ(N)/x]

= µα.〈λy.δ(M ′)[δ(N)/x] ‖ α〉
→∗ µα.〈λy.δ(M ′[N/x]) ‖ α〉 (by the induction hypothesis)

= δ(λy.M ′[N/x]) = δ((λy.M ′)[N/x])

• If M = M ′N ′, then

δ(M ′N ′)[δ(N)/x] = (µα.〈δ(M ′) ‖ δ(N ′) · α〉)[δ(N)/x]

= µα.〈δ(M ′)[δ(N)/x] ‖ (δ(N ′)[δ(N)/x]) · α〉
→∗ µα.〈δ(M ′[N/x]) ‖ δ(N ′[N/x]) · α〉 (by the IH)

= δ(M ′[N/x]N ′[N/x]) = δ((M ′N ′)[N/x])

Lemma 16. If t→ t′ then δ(t)→+ δ(t′), for all t ∈ Λ.

Proof. By induction on the structure of t.

• If t = x, then t9 and, hence, the lemma holds trivially.

• If t = λx.N and t → t′, then we must have reduced N → N ′. The
translation of t is δ(λx.N) = µα.〈λx.δ(N) ‖ α〉, for α fresh. By the
induction hypothesis we get δ(N)→+ δ(N ′) and, hence, δ(t)→+ δ(t′) as
required.

• If t = MN and t→ t′, then we have one of the following cases:

– M → M ′ and t′ = M ′N . By the induction hypothesis we get
δ(M) →+ δ(M ′) and, hence, δ(t) = µα.〈δ(M) ‖ δ(N) · α〉 →+

µα.〈δ(M ′) ‖ δ(N) · α〉 = δ(t′).

– N → N ′ and t′ = MN ′. By the induction hypothesis we get
δ(N) →+ δ(N ′) and, hence, δ(t) = µα.〈δ(M) ‖ δ(N) · α〉 →+

µα.〈δ(M) ‖ δ(N ′) · α〉 = δ(t′).

27

– M = λx.M ′, in which case t = (λx.M ′)N →β M
′[N/x] = t′. For the

translation of t we have:

δ(t) = µα.〈µβ.〈λx.δ(M ′) ‖ β〉 ‖ δ(N) · α〉
→µ µα.〈λx.δ(M ′) ‖ δ(N) · α〉
→λ µα.〈δ(M ′)[δ(N)/x] ‖ α〉
→∗ µα.〈δ(M ′[N/x]) ‖ α〉 (by Lemma 15)

= µα.〈µβ.c ‖ α〉 (by Fact 2)

→µ µα.c[α/β] ≡ µβ.c = δ(M ′[N/x]) = δ(t′)

as required.

Example 8. Let us investigate how t = Ix(IyIz) is reduced in λ̄µ, where we let
Ik denote the well-known identity function in the variable k i.e. Ik = λk.k. In a
call-by-value calculus we must first reduce IyIz to a value v before we evaluate
Ixv, hence we are forced to perform the following reduction:

t = Ix(IyIz)→CBV IxIz →CBV Iz

In the call-by-name calculus λ we get the reduction paths in the first diagram
below. Using the map δ, we can also construct its λ̄µ version.

Ix(IyIz)

IyIz IxIz

Iz

β

β

β

β

µα.〈µβ.〈Ix ‖ β〉 ‖ (µγ.〈µδ.〈Iy ‖ δ〉 ‖ (µθ.〈Iz ‖ θ〉) · γ〉) · α〉

µα.〈Ix ‖ (µγ.〈µδ.〈Iy ‖ δ〉 ‖ (µθ.〈Iz ‖ θ〉) · γ〉) · α〉 µα.〈µβ.〈Ix ‖ β〉 ‖ (µγ.〈Iy ‖ (µθ.〈Iz ‖ θ〉) · γ〉) · α〉

µα.〈µγ.〈µδ.〈Iy ‖ δ〉 ‖ (µθ.〈Iz ‖ θ〉) · γ〉 ‖ α〉 µα.〈µβ.〈Ix ‖ β〉 ‖ (µγ.〈µθ.〈Iz ‖ θ〉 ‖ γ〉) · α〉

µα.〈µδ.〈Iy ‖ δ〉 ‖ (µθ.〈Iz ‖ θ〉) · α〉 µα.〈µβ.〈Ix ‖ β〉 ‖ (µγ.〈Iz ‖ γ〉) · α〉

µα.〈Iy ‖ (µθ.〈Iz ‖ θ〉) · α〉 µα.〈Ix ‖ (µγ.〈Iz ‖ γ〉) · α〉

µα.〈µθ.〈Iz ‖ θ〉 ‖ α〉 µα.〈µγ.〈Iz ‖ γ〉 ‖ α〉

µα.〈Iz ‖ α〉

µ

µ

λ λ

µ µ

µ µ

λ λ

µ

µ

end of example

Lemma 17. The map δ preserves types. That is: if Γ ` M : A in λ→, then
Γ ` δ(M) : A | ∅ in λ̄µ.

Proof. By induction on the derivation of Γ `M : A in λ→.

28 CHAPTER 3. THE λ̄µ-CALCULUS

ax We have (x : A) ∈ Γ and we get the following derivation for δ(x) = µα.〈x ‖
α〉:

Γ ` x : A | α : A
axr

Γ | α : A ` α : A
axl

〈x ‖ α〉 : (Γ ` α : A)
cm

Γ ` µα.〈x ‖ α〉 : A | ∅
µ

→I The translation of λx.M is µα.〈λx.δ(M) ‖ α〉 and we get the following
derivation:

IH
Γ, x : A ` δ(M) : B | ∅

Γ, x : A ` δ(M) : B | α : A→ B
wk∆r

Γ ` λx.δ(M) : A→ B | α : A→ B
→r

Γ | α : A→ B ` α : A→ B
axl

〈λx.δ(M) ‖ α〉 : (Γ ` α : A→ B)
cm

Γ ` µα.〈λx.δ(M) ‖ α〉 : A→ B | ∅
µ

→E The translation of MN is µα.〈δ(M) ‖ δ(N) · α〉. We get the following
derivation:

IH

Γ ` δ(M) : A→ B | ∅
Γ ` δ(M) : A→ B | α : B

wk∆r

IH

Γ ` δ(N) : A | ∅
Γ ` δ(N) : A | α : B

wk∆r
Γ | α : B ` α : B

axr

Γ | (δ(N) · α) : A→ B ` α : B
→l

〈δ(M) ‖ δ(N) · α〉 : (Γ ` α : B)
cm

Γ ` µα.〈δ(M) ‖ δ(N) · α〉 : B | ∅
µ

The wk-rules are used to remove α : B from the context. We can safely
do this, because α is a fresh (it does not occur free in δ(M) or δ(N))
context-variable introduced by the map δ.

3.1 An isomorphism

In [CH00], Curien and Herbelin define a map ϕ : Λµ→ Λ̄µ as follows:

Definition 19.

ϕ(x) = x

ϕ(λx.M) = λx.ϕ(M)

ϕ(MN) = µᾱ.ϕ(MN, ᾱ), for ᾱ fresh

ϕ(µα.c) = µα.ϕ(c)

ϕ([α]M) = ϕ(M,α)

ϕ(MN,E) = ϕ(M,ϕ(N) · E)

ϕ(V,E) = 〈ϕ(V) ‖ E〉, where V = x | λx.M | µα.c

Our definition of ϕ differs slightly from the one presented in [CH00] in terms
of naming and notation. Note how µ-abstractions are used to encode nested

3.1. AN ISOMORPHISM 29

applications as in M(NP). We choose to mark the context-variables (ᾱ) over
which we abstract in this case. This will make life a little easier later on, when
we define the inverse of ϕ and have to make a distinction between a “real”
µ-abstraction and one that was introduced by ϕ to encode nested applications.

Example 9.

ϕ(x(yz)) = µᾱ.ϕ(x(yz), ᾱ) = µᾱ.ϕ(x, ϕ(yz) · ᾱ)

= µᾱ.ϕ(x, (µβ̄.ϕ(yz, β̄)) · ᾱ)

= µᾱ.ϕ(x, (µβ̄.ϕ(y, ϕ(z) · β̄)) · ᾱ)

= µᾱ.〈ϕ(x) ‖ (µβ̄.ϕ(y, ϕ(z) · β̄)) · ᾱ〉
= µᾱ.〈ϕ(x) ‖ (µβ̄.〈ϕ(y) ‖ ϕ(z) · β̄〉) · ᾱ〉
= µᾱ.〈x ‖ (µβ̄.〈y ‖ z · β̄〉) · ᾱ〉

end of example

In general we have the following equation for ϕ:

ϕ(MN1 . . . Nk) = µᾱ.〈ϕ(M) ‖ ϕ(N1) · . . . · ϕ(Nk) · ᾱ〉, where M = x | λx.N | µα.c

Lemma 18. The map ϕ : Λµ→ Λ̄µ maps normal terms to normal terms.

Proof. See [CH00].

Furthermore it is noted in [CH00] that if we decompose λ̄µ’s µ-reduction
into:

(µapp) 〈µα.c ‖ v · e〉 → 〈µα.(c[v · α/α]) ‖ e〉
(µvar) 〈µα.c ‖ β〉 → c[β/α]

And restrict the syntax of λµ such that applications in contexts like λx.[]
and M [] are disallowed. I.e. use the grammars in Definition 20 to generate

terms (let us call the resulting system λ̂µ).

Definition 20. The set Λ̂µ of λ̂µ-terms is defined by the following grammars:

v ::= x | λx.v | µα.c
c ::= [β]a
a ::= v | av

Remark 3. Note that this restriction is not really a restriction, since any
application MN can be expanded to µα.[α]MN for α fresh. So we can re-
place M(NP) by M(µα.[α]NP) and similarly λx.NP by λx.µα.[α]NP . All

applications in λ̂µ are now of the form MN1 · · ·Nk = ((MN1) · · ·)Nk with
M,N1, . . . , Nk = x | λx.v | µα.c, which fits exactly with the grammar a in
Definition 20.

Then the restriction of ϕ to Λ̂µ becomes an isomorphism [CH00]. That is: it
is bijective, maps normal forms to normal forms and preserves reductions step
by step. We will now check that this is indeed the case. The proof is twofold:
first we define a map ψ : Λ̄µ → Λ̂µ and show that it is the inverse of ϕ (and
vice-versa). Then we will show that both ϕ and ψ preserve reduction step by
step.

30 CHAPTER 3. THE λ̄µ-CALCULUS

Definition 21.

ψ(x) = x

ψ(λx.v) = λx.ψ(v)

ψ(µα.c) = µα.ψ(c)

ψ(µᾱ.c) = ψ(c)

ψ(〈v ‖ α〉) = [α]ψ(v)

ψ(〈v ‖ ᾱ〉) = ψ(v)

ψ(〈v ‖ v′ · e〉) = ψ(e, ψ(v)ψ(v′))

ψ(α,E) = [α]E

ψ(ᾱ, E) = E

ψ(v · e, E) = ψ(e, Eψ(v))

This definition might look rather odd at first sight, because each time we
encounter a context-variable we make a distinction on whether it is marked (ᾱ)
or not (α). The problem we attempt to solve with this is that µ-abstractions
play two roles: they are “normal” µ-abstractions and they are used by the map
ϕ to encode (nested) applications. In the former case, the translation is what
one would expect. In the latter case ϕ translates any application MN1 . . . Nk,
where M = x | λx.v | µα.c, to µᾱ.〈ϕ(M) ‖ ϕ(N1) · . . . · ϕ(Nk) · ᾱ〉. Now, for
ψ to be the inverse of ϕ, we must retrieve the original application MN1 . . . Nk
i.e. we must “throw away” µᾱ. and ᾱ. This is exactly what we achieve in the
definition above.

Example 10.

ψ(µᾱ.〈y ‖ z · ᾱ〉) = ψ(〈y ‖ z · ᾱ〉)
= ψ(ᾱ, ψ(y)ψ(z))

= ψ(y)ψ(z) = yz

end of example

In general we have the following equations for ψ:

ψ(〈v ‖ v1 · . . . · vk · α〉) = [α](((ψ(v)ψ(v1)) . . .)ψ(vk))

ψ(〈v ‖ v1 · . . . · vk · ᾱ〉) = ((ψ(v)ψ(v1)) . . .)ψ(vk)

Lemma 19. ϕ and ψ are each others inverse. That is: ψ(ϕ(t)) = t, for all

t ∈ Λ̂µ, and ϕ(ψ(t)) = t, for all t ∈ Λ̄µ.

Proof. Let t ∈ Λ̂µ, we proceed by induction on the structure of t.

• If t = x, then ψ(ϕ(x)) = ψ(x) = x.

• If t = λx.M , then ψ(ϕ(λx.M)) = ψ(λx.ψ(M)) = λx.ψ(ϕ(M)). By the
induction hypothesis we have ψ(ϕ(M)) = M and, hence, ψ(ϕ(λx.M)) =
λx.M as required.

3.1. AN ISOMORPHISM 31

• If t = µα.c, then ψ(ϕ(µα.c)) = ψ(µα.ϕ(c)) = µα.ψ(ϕ(c)). By the induc-
tion hypothesis we have ψ(ϕ(c)) = c and, hence, ψ(ϕ(µα.c)) = µα.c as
required.

• If t = [α]t′, then ψ(ϕ([α]t′)) = ψ(ϕ(t′, α)). Now:

– If t′ = x or t′ = λx.M or t′ = µβ.c, then we get ψ(ϕ(t′, α)) =
ψ(〈ϕ(t′) ‖ α〉) = [α]ψ(ϕ(t′)). By the induction hypothesis we get
ψ(ϕ(t′)) = t′ and, hence, ψ(ϕ([α]t′)) = [α]t′ as required.

– If t′ is an application i.e. t′ = MN1 · · ·Nk with M = x | λx.v |
µα.c, then

ψ(ϕ(t′, α)) = ψ(ϕ(MN1 · · ·Nk, α))

= ψ(ϕ(MN1 · · ·Nk−1, ϕ(Nk) · α))

= . . . = ψ(ϕ(M,ϕ(N1) · · ·ϕ(Nk) · α))

= ψ(〈ϕ(M) ‖ ϕ(N1) · · ·ϕ(Nk) · α〉)
= ψ(ϕ(N2) · · ·ϕ(Nk) · α,ψ(ϕ(M))ψ(ϕ(N1)))

= . . . = ψ(α,ψ(ϕ(M))ψ(ϕ(N1)) · · ·ψ(ϕ(Nk)))

= [α]ψ(ϕ(M))ψ(ϕ(N1)) · · ·ψ(ϕ(Nk))

By using the induction hypothesis on all k+1 terms we get ψ(ϕ([α]MN1 · · ·Nk)) =
[α]MN1 · · ·Nk as required.

• Similarly if t = MN1 · · ·Nk, then

ψ(ϕ(MN1 · · ·Nk)) = ψ(µᾱ.ϕ(MN1 · · ·Nk, ᾱ))

= ψ(µᾱ.〈ϕ(M) ‖ ϕ(N1) · · ·ϕ(Nk) · ᾱ〉)
= ψ(〈ϕ(M) ‖ ϕ(N1) · · ·ϕ(Nk) · ᾱ〉)
= ψ(ϕ(N2) · · ·ϕ(Nk) · ᾱ, ψ(ϕ(M))ψ(ϕ(N1)))

= . . . = ψ(ᾱ, ψ(ϕ(M))ψ(ϕ(N1)) · · ·ψ(ϕ(Nk)))

= ψ(ϕ(M))ψ(ϕ(N1)) · · ·ψ(ϕ(Nk))

By using the induction hypothesis on all k+1 terms we get ψ(ϕ(MN1 · · ·Nk)) =
MN1 · · ·Nk as required.

The other way around we also have ϕ(ψ(t)) = t, for all t ∈ Λ̄µ. The proof
is very similar to this one and is therefore omitted. It relies on the fact that
marked context-variables are not originally in Λ̄µ i.e. we can forget about the
cases containing ᾱ in the definition of ψ.

We will now verify that ϕ and ψ preserve reduction step by step. But before
we can do that, we need the following two lemmas.

Lemma 20. Let M,N ∈ Λµ, then ϕ(M [N/x]) = ϕ(M)[ϕ(N)/x].

Proof. By induction on the structure of M .

• If M = x, then ϕ(M [N/x]) = ϕ(N) = x[ϕ(N)/x] = ϕ(M)[ϕ(N)/x].

• If M = λy.M ′, then ϕ(M [N/x]) = λy.ϕ(M ′[N/x]) = λy.ϕ(M ′)[ϕ(N)/x]
(by the induction hypothesis) = (λy.ϕ(M ′))[ϕ(N)/x] = ϕ(M)[ϕ(N)/x].

32 CHAPTER 3. THE λ̄µ-CALCULUS

• If M = µα.c, then ϕ(M [N/x]) = µα.ϕ(c[N/x]) = µα.ϕ(c)[ϕ(N)/x] (by
the induction hypothesis) = (µα.ϕ(c))[ϕ(N)/x] = ϕ(M)[ϕ(N)/x].

• If M = M ′N1 . . . Nk with M ′ = x | λx.N | µα.c, then ϕ(M [N/x]) =
µᾱ.〈ϕ(M ′[N/x]) ‖ ϕ(N1[N/x])·. . .·ϕ(Nk[N/x])·ᾱ〉 = µᾱ.〈ϕ(M ′)[ϕ(N)/x] ‖
ϕ(N1)[ϕ(N)/x] · . . . · ϕ(Nk)[ϕ(N)/x] · ᾱ〉 (by the induction hypothesis)
= (µᾱ.〈ϕ(M ′) ‖ ϕ(N1) · . . . · ϕ(Nk) · ᾱ〉)[ϕ(N)/x] = ϕ(M)[ϕ(N)/x].

Lemma 21. Let M,M ′, N ∈ Λµ, then ϕ(M [[α]M ′N/[α]M ′]) = ϕ(M)[ϕ(N) ·
α/α].

Proof. By induction on the structure of M .

• If M = x, then ϕ(M [[α]M ′N/[α]M ′]) = ϕ(x) = x = x[ϕ(N) · α/α] =
ϕ(x)[ϕ(N) · α/α] = ϕ(M)[ϕ(N) · α/α].

• IfM = λx.M1, then ϕ(M [[α]M ′N/[α]M ′]) = λx.ϕ(M1[[α]M ′N/[α]M ′]) =
λx.ϕ(M1)[ϕ(N) ·α/α] (by the induction hypothesis) = (λx.ϕ(M1))[ϕ(N) ·
α/α] = ϕ(M)[ϕ(N) · α/α].

• If M = µβ.[γ]M1, then we have the following two cases:

– If γ = α, then ϕ(M [[α]M ′N/[α]M ′]) = µβ.ϕ(([γ]M1)[[α]M ′N/[α]M ′]) =
µβ.ϕ([γ](M1[[α]M ′N/[α]M ′])N) = µβ.〈ϕ(M1)[ϕ(N) · α/α] ‖ ϕ(N) ·
γ〉 (by the induction hypothesis) = (µβ.〈ϕ(M1) ‖ γ〉)[ϕ(N) · α/α] =
ϕ(M)[ϕ(N) · α/α].

– If γ 6= α, then ϕ(M [[α]M ′N/[α]M ′]) = µβ.ϕ([γ](M1[[α]M ′N/[α]M ′])) =
µβ.〈ϕ(M1[[α]M ′N/[α]M ′]) ‖ γ〉 = µβ.〈ϕ(M1)[ϕ(N) · α/α] ‖ γ〉 (by
the induction hypothesis) = (µβ.〈ϕ(M1) ‖ γ〉)[ϕ(N)·α/α] = ϕ(M)[ϕ(N)·
α/α].

• IfM = N1N2 . . . Nk withNi = x | λx.M ′′ | µβ.c, then ϕ(M [[α]M ′N/[α]M ′]) =
µβ̄.〈ϕ(N1[[α]M ′N/[α]M ′]) ‖ ϕ(N2[[α]M ′N/[α]M ′])·. . .·ϕ(Nk[[α]M ′N/[α]M ′])·
β̄〉 = µβ̄.〈ϕ(N1)[ϕ(N) · α/α] ‖ (ϕ(N2)[ϕ(N) · α/α]) · . . . · (ϕ(Nk)[ϕ(N) ·
α/α])·β̄〉 (by the induction hypothesis) = (µβ̄.〈ϕ(N1) ‖ ϕ(N2)·. . .·ϕ(Nk)·
β̄〉)[ϕ(N) · α/α] = ϕ(M)[ϕ(N) · α/α].

Corollary 3. Since ϕ is an isomorphism (with inverse ψ), Lemma 20 and
Lemma 21 also hold for ψ. That is: ψ(t[v · α/α]) = ψ(t)[[α]Mψ(v)/[α]M] and
ψ(t[t′/x]) = ψ(t)[ψ(t′)/x], for t, t′ ∈ Λ̄µ and M ∈ Λµ.

Lemma 22. ϕ preserves reduction step by step. That is: for all t ∈ Λµ, if
t→ t′, then ϕ(t)→ ϕ(t′).

Proof. By induction on the structure of t.

• If t = x, then t9.

• If t = λx.M and t→ t′, then M →M ′ and t′ = λx.M ′. By the induction
hypothesis we have ϕ(M) → ϕ(M ′) and, hence, ϕ(λx.M) = λx.ϕ(M) →
λx.ϕ(M ′) = ϕ(λx.M ′).

3.1. AN ISOMORPHISM 33

• If t = µα.c and t → t′, then c → c′ and t′ = µα.c′. By the induc-
tion hypothesis we have ϕ(c) → ϕ(c′) and, hence, ϕ(µα.c) = µα.ϕ(c) →
µα.ϕ(c′) = ϕ(µα.c′).

• If t = [α](µβ.c), then t →µR c[α/β] = t′. We have: ϕ([α](µβ.c)) =
〈µβ.ϕ(c) ‖ α〉 →µvar ϕ(c)[α/β] = ϕ(c[α/β]). Where we can safely do the
last step because context-variables do not get translated by ϕ.

• If t = N1N2 . . . Nk, with Ni = x | λx.M | µα.c, and t → t′, then
Nx → N ′x for some 1 ≤ x ≤ k. By the induction hypothesis we have
ϕ(Nx) → ϕ(N ′x) and, hence, ϕ(N1N2 . . . Nk) = µᾱ.〈ϕ(N1) ‖ ϕ(N2) · . . . ·
ϕ(Nk)·ᾱ〉 → µᾱ.〈ϕ(N ′1) ‖ ϕ(N ′2)·. . .·ϕ(N ′k)·ᾱ〉 = ϕ(N ′1N

′
2 . . . N

′
k) = ϕ(t′),

where N ′i = Ni if i 6= x.

• If t = (λx.M)N1 . . . Nk, then t →β (M [N1/x])N2 . . . Nk = t′ and we
get: ϕ((λx.M)N1 . . . Nk) = µᾱ.〈λx.ϕ(M) ‖ ϕ(N1) · . . . · ϕ(Nk) · ᾱ〉 →λ

µᾱ.〈ϕ(M)[ϕ(N1)/x] ‖ ϕ(N2) · . . . ·ϕ(Nk) · ᾱ〉 = µᾱ.〈ϕ(M [N1/x]) ‖ ϕ(N2) ·
. . . · ϕ(Nk) · ᾱ〉 (by Lemma 20) = ϕ((M [N1/x])N2 . . . Nk).

• If t = (µα.c)N1 . . . Nk, then t →µ (µα.c[[α]MN1/[α]M])N2 . . . Nk = t′.
First observe that the λ̄µ equivalent of c[[α]MN1/[α]M] is c[N1 · α/α].
Then we get: ϕ((µα.c)N1 . . . Nk) = µᾱ.〈µα.ϕ(c) ‖ ϕ(N1) · . . . · ϕ(Nk) ·
ᾱ〉 →µapp µᾱ.〈µα.ϕ(c)[ϕ(N1)·α/α] ‖ ϕ(N2)·. . .·ϕ(Nk)·ᾱ〉 = µᾱ.〈µα.ϕ(c[N1·
α/α]) ‖ ϕ(N2)·. . .·ϕ(Nk)·ᾱ〉 (by Lemma 21) = ϕ((µα.c[[α]MN1/[α]M])N2 . . . Nk).

Lemma 23. ψ preserves reduction step by step. That is: for all t ∈ Λ̄µ if
t→ t′, then ψ(t)→ ψ(t′).

Proof. By induction on the structure of t.

• If t = x, then t9.

• If t = λx.v and t→ t′, then v → v′. By the induction hypothesis we have
ψ(v) → ψ(v′) and, hence, ψ(λx.v) = λx.ψ(v) → λx.ψ(v′) = ψ(λx.v′) =
ψ(t′).

• If t = µα.c and t→ t′, then c→ c′. By the induction hypothesis we have
ψ(c) → ψ(c′) and, hence, ψ(µα.c) = µα.ψ(c) → µα.ψ(c′) = ψ(µα.c′) =
ψ(t′).

• If t = 〈λx.v1 ‖ v2 · . . . · vk · α〉, then t →λ 〈v1[v2/x] ‖ v3 · . . . · vk · α〉 = t′

and ψ(〈λx.v1 ‖ v2 · . . . · vk · α〉) = [α](((λx.ψ(v1))ψ(v2)) . . . ψ(vk)) →β

[α]((ψ(v1)[ψ(v2)/x])ψ(v3) . . . ψ(vk)) = [α](ψ(v1[v2/x])ψ(v3) . . . ψ(vk)) (by
Lemma 20, Corollary 3) = ψ(〈v1[v2/x] ‖ v3 · . . . · vk · α〉).

• If t = 〈µα.c ‖ β〉, then t →µvar
c[β/α] = t′ and ψ(〈µα.c ‖ β〉) =

[β](µα.ψ(c)) →µR ψ(c)[β/α] = ψ(c[β/α]). Where we can safely do the
last step because context-variables do not get translated by ψ.

• If t = 〈µα.c ‖ v1 · . . . ·vk ·β〉, then t→µapp
〈µα.c[v1 ·α/α] ‖ v2 · . . . ·vk ·β〉 =

t′ and ψ(〈µα.c ‖ v1 · . . . · vk · β〉) = [β]((µα.ψ(c))ψ(v1) . . . ψ(vk)) →µ

[β]((µα.ψ(c)[[α]Mψ(v1)/[α]M])ψ(v2) . . . ψ(vk)) = [β]((µα.ψ(c[v1·α/α]))ψ(v2) . . . ψ(vk))
(by Lemma 21, Corollary 3) = ψ(〈µα.c[v1 · α/α] ‖ v2 · . . . · vk · β〉).

34 CHAPTER 3. THE λ̄µ-CALCULUS

Now that we have established that ϕ is an isomorphism that preserves re-
duction, we will investigate whether both ϕ and ψ preserve types.

Lemma 24. If Γ `M : A | ∆ in λµ, then Γ ` ϕ(M) : A | ∆ in λ̄µ.

Proof. By induction on the derivation of Γ `M : A | ∆ in λµ.

ax We have (x : A) ∈ Γ and ϕ(x) = x and, hence, Γ ` ϕ(x) : A | ∆, by the
axr-rule.

→I By the induction hypothesis we get Γ, x : A ` ϕ(M) : B | ∆. Then
we get Γ ` λx.ϕ(M) : A → B | ∆ by the →r-rule, as required since
ϕ(λx.M) = λx.ϕ(M).

µ By the induction hypothesis we get ϕ(c) : (Γ ` β : B,∆) and, hence,
Γ ` µβ.ϕ(c) : B | ∆ by the µ-rule, as required.

→E We get the following derivation:

IH

Γ ` ϕ(M) : A→ B | ∆
Γ ` ϕ(M) : A→ B | ᾱ : B,∆

wk

IH

Γ ` ϕ(N) : A | ∆
Γ ` ϕ(N) : A | ᾱ : B,∆

wk
Γ | ᾱ : B ` ᾱ : B,∆

axl

Γ ` (ϕ(N) · ᾱ) : A→ B | ᾱ : B,∆
→l

〈ϕ(M) ‖ ϕ(N) · ᾱ〉 : (Γ ` ᾱ : B,∆)
cm

Γ ` µᾱ.〈ϕ(M) ‖ ϕ(N) · ᾱ〉 : B | ∆
µ

The wk rules in the above derivation are used to remove ᾱ out of the
context. We can safely do this, because ᾱ is a fresh context-variable (which
is not free in both ϕ(M) and ϕ(N)) introduced by the map ϕ.

cm ϕ([α]M) = ϕ(M,α) = 〈ϕ(N) ‖ ϕ(N1) · . . . · ϕ(Nk) · α〉, where M =
NN1 . . . Nk and N = x | λx.N ′ | µα.c.

IH

Γ ` ϕ(N1) : A1 | α : A,∆

IH

Γ ` ϕ(Nk) : Ak | α : A,∆ Γ | α : A ` α : A,∆
axl

Γ | ϕ(Nk) · α : Ak → A ` α : A,∆
→l

.

.

.

Γ | ϕ(N1) · . . . · ϕ(Nk) · α : A1 → . . .→ Ak → A ` α : A,∆
→l

T

IH

Γ ` ϕ(N) : A1 → . . .→ Ak → A | α : A,∆ T

〈ϕ(N) ‖ ϕ(N1) · . . . · ϕ(Nk) · α〉 : (Γ ` α : A,∆)
cm

Example 11. Consider, for example, the term λx.µα.[α]x(λy.µβ.[α]y), whose
type is Peirce’s law in λµ. It’s translation to λ̄µ is:

ϕ(λx.µα.[α]x(λy.µβ.[α]y)) = λx.µα.〈x ‖ (λy.µβ.〈y ‖ α〉) · α〉

3.1. AN ISOMORPHISM 35

and its type is again Peirce’s law (to save space we do not write down types for
terms in contexts):

x ` x : (A→ B)→ A | α
axr

x, y ` y : A | β, α
axr

x, y | α : A ` β, α
axl

〈y ‖ α〉 : (x, y ` β, α)
cm

x, y ` µβ.〈y ‖ α〉 : B | α
µ

x ` λy.µβ.〈y ‖ α〉 : A→ B | α
→r

x | α : A ` α
axl

x | (λy.µβ.〈y ‖ α〉) · α : (A→ B)→ A ` α
→l

〈x ‖ (λy.µβ.〈y ‖ α〉) · α〉 : (x ` α)
cm

x ` µα.〈x ‖ (λy.µβ.〈y ‖ α〉) · α〉 : A |
µ

` λx.µα.〈x ‖ (λy.µβ.〈y ‖ α〉) · α〉 : ((A→ B)→ A)→ A |
→r

end of example

Fact 3. It follows from the grammars in Definition 14 (definition of Λ̄µ) that,
in λ̄µ, each context e is of the form v1 · . . . · vk · α. Now, if Γ | e : A ` ∆, then
Γ | v1 ·. . .·vk ·α : A ` ∆ and we must have that A = A1 → . . .→ Ak → B. Then,
using the→l typing rule, it easily follows that Γ | α : B ` ∆ and Γ ` vi : Ai | ∆,
for 1 ≤ i ≤ k.

Lemma 25. If Γ ` t : A | ∆ in λ̄µ, then Γ ` ψ(t) : A | ∆ in λµ. Moreover if
c : (Γ ` ∆) in λ̄µ, then ψ(c) : (Γ ` ∆) in λµ.

Proof. By induction on t ∈ Λ̄µ.

• If t = x, then ψ(t) = x and (x : A) ∈ Γ. Hence, Γ ` ψ(x) : A | ∆ as
required.

• If t = λx.v, then A = B → C for some types B and C and Γ, x : B ` v :
C | ∆, by the →r-rule. We have ψ(t) = λx.ψ(v) and we get the following
derivation in λµ:

IH
Γ, x : B ` ψ(v) : C | ∆

Γ ` λx.ψ(v) : B → C | ∆
→I

• If t = µα.〈v ‖ e〉, then we get Γ ` v : T | α : A,∆ and Γ | e : T ` α : A,∆
by applying first the µ and then the cm-rule. By Fact 3, we must have
that T = A1 → . . . → Ak → B, since e = v1 · . . . · vk · β (where possibly
β = α). Moreover Γ ` vi : Ai | α : A,∆ and Γ | β : B ` α : A,∆ are
derivable. For the translation ψ(t) = µα.[β](((ψ(v)ψ(v1)) . . .)ψ(vk)) we
get the following derivation:

IH

Γ ` v : A1 → . . .→ Ak → B | α : A,∆

IH

Γ ` v1 : A1 | α : A,∆

Γ ` ψ(v)ψ(v1) : A2 → . . .→ Ak → B | α : A,∆
→E

.

.

.

Γ ` ((ψ(v)ψ(v1)) . . .)ψ(vk−1) : Ak → B | α : A,∆
→E

IH

Γ ` vk : Ak | α : A,∆

Γ ` ((ψ(v)ψ(v1)) . . .)ψ(vk) : B | α : A,∆
→E

([β](((ψ(v)ψ(v1)) . . .)ψ(vk))) : (Γ ` α : A,∆)
cm

Γ ` µα.[β](((ψ(v)ψ(v1)) . . .)ψ(vk)) : A | ∆
µ

This lemma also holds for commands with 〈v ‖ e〉 : (Γ ` ∆). We get
Γ ` v : T | ∆ and Γ | e : T ` ∆ by the cm-rule. Using Fact 3 we know that

36 CHAPTER 3. THE λ̄µ-CALCULUS

e = v1 ·. . .·vk ·β and, hence, that T = A1 → . . .→ Ak → B, Γ ` vi : Ai | ∆
and Γ | β : B ` ∆. For the translation ψ(t) = [β](((ψ(v)ψ(v1)) . . .)ψ(vk))
we get a derivation very similar to the one for µ-abstractions.

We will now check that the µapp and µvar satisfy subject reduction. Before
we can do that, however, we prove a substitution lemma slightly different from
the one in Lemma 12. We will need this lemma in the subject reduction proof
of the µapp reduction.

Lemma 26. If

(A) Γ ` v : A | α : B → C, ∆,

(B) Γ | e : A ` α : B → C, ∆ and

(C) Γ ` v′ : B | ∆

then the following statements hold:

(1) Γ ` v[v′ · α/α] : A | α : C, ∆

(2) Γ | e[v′ · α/α] : A ` α : C, ∆

Proof. Simultaneously, by induction on e, v.

• (1) If v = x, then v[v′ ·α/α] = x and, hence, Γ ` x : A | α : C, ∆ by (A)
and the fact that α was not cancelled in that proof.

(2) If e = β 6= α, then we get a similar argument as for v = x above. If
e = α, then e[v′ ·α/α] = v′ ·α and we must have had that A = B → C.
Then we have the following derivation, as required:

(C)

Γ ` v′ : B | ∆
Γ ` v′ : B | α : C, ∆

wk∆r

Γ | v′ · α : B → C ` α : C, ∆
→l

• (1) If v = λx.v′′, then v[v′ · α/α] = λx.v′′[v′ · α/α] and A = D → E. We
get the following derivation:

IH
Γ, /x : D ` v′′[v′ · α/α] : E | α : C, ∆

Γ ` λx.v′′[v′ · α/α] : D → E | α : C, ∆
→r

(2) If e = v′′ ·e′, then e[v′ ·α/α] = v′′[v′ ·α/α]·e′[v′ ·α/α] and A = D → E.
We get the following derivation:

IH
Γ ` v′′[v′ · α/α] : D | α : C, ∆

IH
Γ | e′[v′ · α/α] : E ` α : C, ∆

Γ | (v′′[v′ · α/α] · e′[v′ · α/α]) : D → E ` α : C, ∆
→l

3.1. AN ISOMORPHISM 37

• If v = µβ.〈v′′ ‖ e′〉 then (µβ.〈v′′ ‖ e′〉)[v′ · α/α] = µβ.〈v′′ ‖ e′〉[v′ · α/α] =
µβ.〈v′′[v′ · α/α] ‖ e′[v′ · α/α]〉. We get the following derivation, for some
type B:

IH
Γ ` v′′[v′ · α/α] : B | α : C, ∆

IH
Γ | e′[v′ · α/α] : B ` α : C, ∆

〈v′′[v′ · α/α] ‖ e′[v′ · α/α]〉 : (Γ ` α : C, ∆)
cm

Γ ` µβ.〈v′′[v′ · α/α] ‖ e′[v′ · α/α]〉 : A | α : C, ∆
µ

This lemma also holds for commands 〈v ‖ e〉, since (〈v ‖ e〉)[v′ · α/α] = 〈v[v′ ·
α/α] ‖ e[v′ · α/α]〉.

Lemma 27. The µapp and µvar reductions satisfy subject reduction.

Proof.

µapp For some types A and B we have:

c : (Γ ` α : A→ B, ∆)

Γ ` µα.c : A→ B | ∆
µ

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | (v · e) : A→ B ` ∆
→l

〈µα.c ‖ v · e〉 : (Γ ` ∆)
cm

−→µapp

Lemma 26
c[v · α/α] : (Γ ` α : B, ∆)

Γ ` µα.c[v · α/α] : B | ∆
µ

Γ | e : B ` ∆

〈µα.c[v · α/α] ‖ e〉 : (Γ ` ∆)
cm

µvar For some type A we have:

c : (Γ ` α : A, ∆)

Γ ` µα.c : A | ∆
µ

Γ | β : A ` ∆

〈µα.c ‖ β〉 : (Γ ` ∆)
cm

Then we get c[β/α] by Corollary 1.

We will now show that the reductions in λ̄µ, where the µ-reduction is split
into µapp and µvar, are confluent. To this end we first need a lemma to establish

closedness of Λ̂µ.

Lemma 28. Λ̂µ is closed under reduction. That is: for all a ∈ Λ̂µ, if a → a′

then a′ ∈ Λ̂µ.

Proof. By induction on the structure of a ∈ Λ̂µ.

• If a = x, then a9 and the lemma holds trivially.

• If a = λx.v, then we must have reduced v → v′. By the induction hy-
pothesis we have v′ ∈ Λ̂µ and, hence, a = λx.v → λx.v′ = a′ ∈ Λ̂µ as
required.

38 CHAPTER 3. THE λ̄µ-CALCULUS

• If a = µα.[β]a′, then we have the following two cases:

– Either a′ = µγ.c, in which case a = µα.[β](µγ.c) →µR µα.c[β/γ].

Now µα.c[β/γ] ∈ Λ̂µ since c ∈ Λ̂µ and renaming does not change the
shape of c.

– Or a′ = vv1 . . . vn, in which case we must have reduced a′ = vv1 . . . vn →
a′′. By the induction hypothesis we have that a′′ ∈ Λ̂µ and, hence,
µα.[β]a′′ ∈ Λ̂µ as required.

• If a = vv1 . . . vn, then we have the following two cases:

– v = λx.v′ in which case a = (λx.v′)v1 . . . vn →β (v′[v1/x])v2 . . . vn =

a′. Now we also have a′ ∈ Λ̂µ, as it can be shown by an easy induction
that v′[v1/x] ∈ Λ̂µ.

– v = µα.c in which case a = (µα.c)v1 . . . vn →µ (µα.c[[α]a′′v1/[α]a′′])v2 . . . vn =

a′. Now a′ ∈ Λ̂µ as it could be shown by an easy induction that
c[[α]a′′v1/[α]a′′] ∈ Λ̂µ. The intuition is that already c ∈ Λ̂µ and

[α]a′′ ∈ Λ̂µ, by the induction hypothesis. But also [α]a′′v1 ∈ Λ̂µ and,

hence, c[[α]a′′v1/[α]a′′] ∈ Λ̂µ as required.

Lemma 29. The reductions in λ̄µ (where the µ-reduction is split into µapp and
µvar) are confluent.

Proof. By Lemma 28 we have that Λ̂µ is closed under reduction. The reductions

in λ̂µ are confluent since these reductions are the ones of λµ, which are confluent
[Par92]. We obtain confluence for λ̄µ by the ϕ-isomorphism.

3.2 Exception handling

In λ̄µ we can define an exception handling mechanism similar to that for λµ,
which is defined in [Kre10].

Definition 22. We define the control operators catch and throw as folows:

catchα v = µα.〈v ‖ α〉
throwβ v = µγ.〈v ‖ β〉 , where γ /∈ FV (t)

Lemma 30. We have the following reductions for catch and throw in λ̄µ:

1. µα.〈throwβ v ‖ e〉 → throwβ v, provided that α /∈ FV (v)

2. catchα (throwα v)→ catchα v

3. catchα (throwβ v)→ throwβ v, provided that α /∈ FV (v)

4. throwβ (throwα v)→ throwα v

Proof.

1. µα.〈throwβ v ‖ e〉 = µα.〈µγ.〈v ‖ β〉 ‖ e〉 →µ µα.〈v ‖ β〉 = throwβ v, since
α, γ /∈ FV (v).

3.3. AN ENVIRONMENT MACHINE FOR λ̄µ 39

2. catchα (throwα v) = µα.〈µβ.〈v ‖ α〉 ‖ α〉 →µ µα.〈v ‖ α〉 = catchα v.

3. catchα (throwβ v) = µα.〈µγ.〈v ‖ β〉 ‖ α〉 →µ µα.〈v ‖ β〉 = throwβ v,
since α, γ /∈ FV (v).

4. throwβ (throwα v) = µγ.〈µδ.〈v ‖ α〉 ‖ β〉 →µ µγ.〈v ‖ α〉 = throwα v

While the intuition of rules (3)-(4) should be clear, we needs some explana-
tion for rule (1). Rule (1) states that, if a throw occurs in a function position
(the left side of a command), then this throw can be propagated upwards for as
long as the context variable over which we abstract does not occur in the body
of the throw. Consider the following example, which shows a case in which a
throw cannot be propagated upwards:

Example 12. If we let v = µδ.〈λx.x ‖ α〉 in µα.〈throwβ v ‖ λy.y · α〉, then:

µα.〈throwβ v ‖ λy.y · α〉 = µα.〈µγ.〈µδ.〈λx.x ‖ α〉 ‖ β〉 ‖ λy.y · α〉
→ µα.〈µδ.〈λx.x ‖ α〉 ‖ β〉
6= throwβ v , since α ∈ FV (v)

end of example

One might wonder whether or not it is possible to have a reduction similar
to (1), but now for a throw in an argument position i.e. have the following
reduction:

µα.〈λx.v1 ‖ (throwβ v2) · e〉 → throwβ v2 , provided that α /∈ FV (v2)

Unfortunately though, we cannot expect such a reduction to hold in any call-
by-name reduction system. The problem is that the throw will be moved into
the body of v1 and then anything can happen. Consider the following example,
which shows that it is even possible to throw away a throw in such position
completely:

Example 13. If we let v1 = λx.λy.y in µα.〈v1 ‖ (throwβ v2) · e〉, then:

µα.〈v1 ‖ (throwβ v2) · e〉 = µα.〈λx.λy.y ‖ (throwβ v2) · e〉
→λ µα.〈λy.y ‖ e〉

end of example

3.3 An environment machine for λ̄µ

It is the task of an abstract machine to calculate the weak head normal form
of a term in the calculus it is defined on. Such machine can also be seen as the
operational semantics of the calculus, since it explains the meaning of a term in
terms of simple stack and/or environment manipulations.

Herbelin and Curien define an abstract (environment) machine for the λ̄µµ̃
calculus in [CH00], which we will study later on. In this section we will first
introduce the notion of weak head reduction in λ̄µ. Then we will show that a
restriction of Herbelin and Curiens machine to λ̄µ is sound and complete for
this notion of reduction.

40 CHAPTER 3. THE λ̄µ-CALCULUS

Definition 23. The weak head reduction strategy for λ̄µ is defined by the
following rules:

• 〈λx.v ‖ v′ · e〉 →wh 〈v[v′/x] ‖ e〉

• 〈µα.c ‖ e〉 →wh c[e/α]

• t→∗wh t

•
c→∗wh c′

µα.c→∗wh µα.c′

The abstract machine uses machine states of the form 〈v{E1} ‖ e{E2}〉.
Here, E1 and E2 denote environments, which are lists of bindings of the form
x 7→ v{E}, where E is again an environment. We write E(x) = v{E′} if E
contains x 7→ v{E′} and let {} denote the empty environment.

Definition 24. The environment machine for λ̄µ, which is a restriction of the
one presented in [CH00] for λ̄µµ̃, is defined by the following reductions:

1. 〈x{E1} ‖ e{E2}〉 → 〈E1(x) ‖ e{E2}〉 (if E1(x) is defined)

2. 〈v{E1} ‖ α{E2}〉 → 〈v{E1} ‖ E2(α)〉 (if E2(α) is defined)

3. 〈(λx.v1){E1} ‖ (v2 · e){E2}〉 → 〈v1{x 7→ v2{E2}, E1} ‖ e{E2}〉

4. 〈µα.〈v{E1} ‖ e2{E2}〉 ‖ e1{E3}〉 → 〈v{α 7→ e1{E3}, E1} ‖ e2{α 7→
e1{E3}, E2}〉

This machine is non-deterministic. The machine states 〈x{E1} ‖ α{E2}〉
and 〈µα.〈v{E1} ‖ e{E2}〉 ‖ β{E3}〉 can both be evaluated in two ways. The fol-
lowing lemma shows that, in these cases, we can always find a common “reduct”.

Lemma 31. The machine’s reductions are locally confluent. That is: if M is
a machine state and M → M1 and M → M2, then there exists a state M′
such that M1 →∗M′ and M2 →∗M′.

Proof. We must check two cases:

• If M = 〈x{E1} ‖ α{E2}〉 and E1(x) and E2(α) are defined, then M→1

〈E1(x) ‖ α{E2}〉 = M1 and M →2 〈x{E1} ‖ E2(α)〉 = M2. Now if
we take M′ = 〈E1(x) ‖ E2(α)〉, then M1 →2 M′ and M2 →1 M′, as
required.

• If M = 〈µβ.〈v{E1} ‖ e{E2}〉 ‖ α{E3}〉 and E3(α) is defined, then M→2

〈µβ.〈v{E1} ‖ e{E2}〉 ‖ E3(α)〉 = M1 and M →4 〈v{β 7→ α{E3}, E1} ‖
e{β 7→ α{E3}, E2}〉 = M2. Note that β 7→ α{E3} = β 7→ E3(α), since
E3(α) is defined. Now if we take M′ = 〈v{β 7→ E3(α), E1} ‖ e{β 7→
E3(α), E2}〉, then M1 →4 M′ and M2 =M′, as required.

3.3. AN ENVIRONMENT MACHINE FOR λ̄µ 41

In principle, we can only evaluate commands with this machine. This does,
however, make sense, since commands 〈v ‖ e〉 correspond to “complete” pro-
grams (it is the context e whose hole is filled with v). Also note that we can
never evaluate under a λ-abstraction, which is what we want. We do, how-
ever, want to evaluate under µ-abstractions, since applications are necessarily
encoded by a term-context pair (a command).

Evaluation of a term t ∈ Λ̄µ starts in the machine state t{}. Indeed, if
t 6= µα.c and t 6= 〈v ‖ e〉, then the machine immediately halts, as required.
Moreover, if t = µα.〈v ‖ e〉, then (µα.〈v ‖ e〉){} = µα.〈v{} ‖ e{}〉 and if
t = 〈v ‖ e〉, then 〈v ‖ e〉{} = 〈v{} ‖ e{}〉. At the top-level, we may apply the
following equation:

〈(µα.〈v ‖ e〉){E1} ‖ e′{E2}〉 = 〈µα.〈v{E1} ‖ e{E1}〉 ‖ e′{E2}〉

Example 14. Suppose we want to evaluate the term t = µα.〈µβ.〈λx.x ‖ (λy.y)·
β〉 ‖ (λz.z) · α〉 (which is the λ̄µ equivalent of the application ((λx.x)λy.y)λz.z
from the “ordinary” λ-calculus). Then we get the following reduction sequence:

µα.〈µβ.〈(λx.x){} ‖ ((λy.y) · β){}〉 ‖ ((λz.z) · α){}〉
→ µα.〈(λx.x){β 7→ ((λz.z) · α){}} ‖ ((λy.y) · β){β 7→ ((λz.z) · α){}}〉
→ µα.〈x{x 7→ (λy.y){β 7→ ((λz.z) · α){}}, β 7→ ((λz.z) · α){}} ‖ β{β 7→ ((λz.z) · α){}}〉
→ µα.〈x{x 7→ (λy.y){β 7→ ((λz.z) · α){}}, β 7→ ((λz.z) · α){}} ‖ ((λz.z) · α){}〉
→ µα.〈(λy.y){β 7→ ((λz.z) · α){}} ‖ ((λz.z) · α){}〉
→ µα.〈y{y 7→ (λz.z){}, β 7→ ((λz.z) · α){}} ‖ α{}〉
→ µα.〈(λz.z){} ‖ α{}〉

Using the weak head reduction rules from Definition 23, it can be easily checked
that µα.〈λz.z ‖ α〉 is indeed the weak head normal form of t.

end of example

Indeed, the abstract machine correctly implements the weak head reduction
strategy from Definition 23. To prove this we first define a translation that
transforms a term with environment t{E} into a term Jt{E}K ∈ Λ̄µ. Then, we
will show that the machine is correct for its weak head reduction strategy i.e.
that the following diagram commutes, where M and M′ are machine states:

M M′

JMK JM′K

J−K

wh∗

J−K

Definition 25. The map J−K : S → Λ̄µ, where S is the category of machine
states, is defined as follows. We use ν to denote either a term-variable or a
context-variable (i.e. ν ∈ X or ν ∈ A)

Jt{E}K = subs(t, {E})

subs(t, {}) = t

subs(t, {E, ν 7→ t′{E′}}) = subs(t[subs(t′, {E′})/ν], {E})

42 CHAPTER 3. THE λ̄µ-CALCULUS

Lemma 32. The machine is correct for the weak head reduction strategy defined
in Definition 23. LetM be a machine state. IfM→1,2 M′, then JMK = JM′K.
If M→3,4 M′, then JMK→wh JM′K.

Proof.

• IfM = 〈x{E1} ‖ e{E2}〉, thenM′ = 〈E1(x) ‖ e{E2}〉 (if E1(x) is defined
i.e. E1(x) = v{E} for some v and E) and:

JMK = J〈x{E1} ‖ e{E2}〉K
= 〈subs(x, {E1}) ‖ subs(e, {E2})〉
= 〈subs(v, {E}) ‖ subs(e, {E2})〉
= J〈v{E} ‖ e{E2}〉K = JM′K

• If M = 〈v{E1} ‖ α{E2}〉, then M′ = 〈v ‖ E2(α)〉 (if E2(α) is defined i.e.
E2(α) = e{E} for some e and E) and:

JMK = J〈v{E1} ‖ α{E2}〉K
= 〈subs(v, {E1}) ‖ subs(α, {E2})〉
= 〈subs(v, {E1}) ‖ subs(e, {E})〉
= J〈v{E1} ‖ e{E}〉K = JM′K

• If M = 〈(λx.v1){E1} ‖ (v2 · e){E2}〉, then M′ = 〈v1{x 7→ v2{E2}, E1} ‖
e{E2}〉 and:

JMK = J〈(λx.v1){E1} ‖ (v2 · e){E2}〉K
= 〈subs(λx.v1, {E1}) ‖ subs(v2 · e, {E2})〉
= 〈λx.subs(v1, {E1}) ‖ subs(v2, {E2}) · subs(e, {E2})〉
→wh 〈subs(v1, {E1})[subs(v2, {E2})/x] ‖ subs(e, {E2})〉
= 〈subs(subs(v1, {E1}), {x 7→ v2{E2}}) ‖ subs(e, {E2})〉
= 〈subs(v1, {x 7→ v2{E2}, E1}) ‖ subs(e, {E2})〉
= J〈v1{x 7→ v2{E2}, E1} ‖ e{E2}〉K = JM′K

• IfM = 〈µα.〈v{E1} ‖ e1{E2}〉 ‖ e2{E3}〉, thenM′ = 〈v{α 7→ e2{E3}, E1} ‖
e1{α 7→ e2{E3}, E2}〉 and:

JMK = J〈µα.〈v{E1} ‖ e1{E2}〉 ‖ e2{E3}〉K
= 〈µα.〈subs(v,E1) ‖ subs(e1, E2)〉 ‖ subs(e2, E3)〉
→wh 〈subs(v,E1)[subs(e2, E3)/α] ‖ subs(e1, E2)[subs(e2, E3)/α]〉
= 〈subs(subs(v,E1), {α 7→ e2, E3}) ‖ subs(subs(e1, E2), {α 7→ e2{E3}})〉
= 〈subs(v, {α 7→ e2{E3}, E1}) ‖ subs(e1, {α 7→ e2{E3}, E2})〉
= J〈v{α 7→ e2{E3}, E1} ‖ e1{α 7→ e2{E3}, E2}〉K = JM′K

3.3. AN ENVIRONMENT MACHINE FOR λ̄µ 43

This lemma does not hold the other way around! For arbitrary λ̄µ terms
we simply do not know in which environment we must start evaluation. A
simplification could be to focus on closed terms only, since evaluation of any
closed term can be started in the empty environment. The reduct of a closed
term is necessarily, again, a closed term. This suggests that we can use the
following translation from (closed) λ̄µ terms to machine states.

Definition 26. Let t ∈ Λ̄µ be a closed term. Then:

{{t}} = t{}

This, however, still does not work. Consider the following example: we
have 〈λx.v1 ‖ v2 · e〉 →wh 〈v1[v2/x] ‖ e〉 and we would like to have {{〈λx.v1 ‖
v2 ·e〉}} →∗ {{〈v1[v2/x] ‖ e〉}}. But {{〈λx.v1 ‖ v2 ·e〉}} = 〈(λx.v1){} ‖ (v2 ·e){}〉 →
〈v1{x 7→ v2{}} ‖ e{}〉 and {{〈v1[v2/x] ‖ e〉}} = 〈(v1[v2/x]){} ‖ e{}〉. Ideally, we
would get 〈v1{x 7→ v2{}} ‖ e{}〉 →∗ 〈(v1[v2/x]){} ‖ e{}〉, which is not always
the case.

For example, 〈λx.λy.y ‖ v · α〉 →wh 〈(λy.y)[v/x] ‖ α〉, but {{〈λx.λy.y ‖ v ·
α〉}} = 〈(λx.λy.y){} ‖ (v·α){}〉 → 〈(λy.y){x 7→ v{}} ‖ α{}〉 and {{〈(λy.y)[v/x] ‖
α〉}} = 〈((λy.y)[v/x]){} ‖ α{}〉 = 〈(λy.y){} ‖ α{}〉 and, hence, 〈(λy.y){x 7→
v{}} ‖ α{}〉9 〈(λy.y){} ‖ α{}〉.

We can, however, prove that: for any closed, well-typed term t ∈ Λ̄µ, there
exist environments E1 and E2, such that µα.〈t{} ‖ α{}〉 →∗ µα.〈(λx.v){E1} ‖
α{E2}〉 and that, moreover, µα.〈t ‖ α〉 →∗wh Jµα.〈(λx.v){E1} ‖ α{E2}〉K. I.e.
that there exist environments E1 and E2, such that the following diagram com-
mutes:

µα.〈t ‖ α〉 µα.〈t{} ‖ α{}〉

Jµα.〈(λx.v){E1} ‖ α{E2}〉K µα.〈(λx.v){E1} ‖ α{E2}〉

{{−}}

wh∗ *

J−K

Such completeness lemma is proven by De Groote in [DG98] for his abstract
machine that evaluates λµ-terms. We use the same proof technique here. Before
we can prove completeness of the machine, we need an additional lemma.

Definition 27. The size |E| of a machine environment E is defined as follows:

|{}| = 0

|{ν 7→ t{E′}, E}| = |{E}|+ |{E′}|+ 1

Lemma 33. The machine reductions are strongly normalizing for well-typed
terms. That is: if the machine is loaded with a well-typed term, it cannot run
forever.

44 CHAPTER 3. THE λ̄µ-CALCULUS

Proof. An infinite sequence of reductions cannot contain an infinite amount of
(3) or (4) reductions, since, by Lemma 32, that would give rise to an infinite
sequence of→λµ contractions on the unloaded terms, which contradicts Lemma
14.

For reduction (1) we have 〈x{x 7→ v{E}, E1} ‖ e{E2}〉 → 〈v{E} ‖ e{E2}〉
and |{x 7→ v{E}, E1}|+ |{E2}| = |{E1}|+ |{E}|+ 1 + |{E2}| > |{E}|+ |{Ee}|
and, hence, reduction (1) decreases the total size of the environments. The same
holds for reduction (2) and, hence, we cannot have an infinite sequence of (1)
or (2) reductions.

Corollary 4. The machine is confluent for well-typed terms: In Lemma 31 we
have shown that the machine is locally confluent. In Lemma 33 we have shown
that the reductions of the machine are strongly normalizing. Then, by Newman’s
lemma, we obtain confluence.

We are now ready to prove completeness of the machine.

Lemma 34. The machine is complete for the weak head reduction strategy
defined in Definition 23. Let t ∈ Λ̄µ be a closed, well-typed term. Then there
exist environments E1 and E2, such that:

µα.〈t{} ‖ α{}〉 →∗ µα.〈(λx.v){E1} ‖ α{E2}〉 , (for α fresh)

Moreover, µα.〈t ‖ α〉 →∗wh Jµα.〈(λx.v){E1} ‖ α{E2}〉K.

Proof. First note that if t is a closed, well-typed term, then t′ = µα.〈t ‖ α〉 (for α
fresh) is also a closed, well-typed term and, hence, we must show that there exist
environments E1 and E2 such that t′{} = µα.〈t{} ‖ α{}〉 →∗ µα.〈(λx.v){E1} ‖
α{E2}〉. Moreover, by Lemma 32, we must have that each intermediate machine
state in the reduction sequence corresponds to a closed term. Now suppose that
the machine does not reach a stateM = µα.〈(λx.v){E1} ‖ α{E2}〉. Then either
the machine must halt on another state or it must run forever.

The machine cannot halt on another state. We have the following states,
other than M, that the machine can halt on:

1. µα.〈x{E1} ‖ e{E2}〉 where E1(x) is undefined.

2. µα.〈v{E1} ‖ β{E2}〉 where E2(β) is undefined.

However, in state (1), x corresponds to a free-variable and in (2), β corresponds
to a free variable. In both cases we get a contradiction with the fact that t′ is
a closed term.

The machine cannot run forever. By Lemma 33.
So, indeed, the machine eventually reaches a state µα.〈(λx.v){E1} ‖ α{E2}〉,

for some environments E1 and E2. Then, by Lemma 32, we get µα.〈t{} ‖
α{}〉 →∗ µα.〈(λx.v){E1} ‖ α{E2}〉, as required.

3.3. AN ENVIRONMENT MACHINE FOR λ̄µ 45

Example 15. Consider the term t = µα.〈λx.λy.x ‖ (λz.z)·α〉, which is a closed,
well-typed term of type B → (A → A). But then also t′ = µβ.〈µα.〈λx.λy.x ‖
(λz.z) · α〉 ‖ β〉 is a closed, well-typed term (of the same type) and {{t′}} =
µβ.〈µα.〈(λx.λy.x){} ‖ ((λz.z) · α){}〉 ‖ β{}〉. We get the following reduction of
t′ using our machine:

µβ.〈µα.〈(λx.λy.x){} ‖ ((λz.z) · α){}〉 ‖ β{}〉
→4 µβ.〈(λx.λy.x){α 7→ β{}} ‖ ((λz.z) · α){α 7→ β{}}〉
→3 µβ.〈(λy.x){x 7→ (λz.z){α 7→ β{}}, α 7→ β{}} ‖ α{α 7→ β{}}〉
→2 µβ.〈(λy.x){x 7→ (λz.z){α 7→ β{}}, α 7→ β{}} ‖ β{}〉

Now, for this last machine state we have:

Jµβ.〈(λy.x){x 7→ (λz.z){α 7→ β{}}, α 7→ β{}} ‖ β{}〉K
= µβ.〈subs(λy.x, {x 7→ (λz.z){α 7→ β{}}, α 7→ β{}}) ‖ subs(β, {})〉
= µβ.〈subs((λy.x)[subs(β, {})/α], {x 7→ (λz.z){α 7→ β{}}}) ‖ β〉
= µβ.〈subs(λy.x, {x 7→ (λz.z){α 7→ β{}}}) ‖ β〉
= µβ.〈subs((λy.x)[subs(λz.z, {α 7→ β{}})/x], {}) ‖ β〉
= µβ.〈λy.subs(λz.z, {α 7→ β{}}) ‖ β〉
= µβ.〈λy.(λz.z)[subs(β, {})/α] ‖ β〉
= µβ.〈λy.λz.z ‖ β〉

Moreover, using the weak head reduction strategy, we get:

t′ = µβ.〈µα.〈λx.λy.x ‖ (λz.z) · α〉 ‖ β〉
→wh µβ.〈λx.λy.x ‖ (λz.z) · β〉
→wh µβ.〈λy.λz.z ‖ β〉

end of example

46 CHAPTER 3. THE λ̄µ-CALCULUS

Chapter 4

The λ̄µµ̃-calculus

In this chapter we investigate some properties of the λ̄µµ̃-calculus, which was
introduced by Curien and Herbelin in [CH00] (also see [Her05]). The λ̄µµ̃-
calculus is an elegant combination of Herbelin’s λ̄-calculus [Her95] and Parigot’s
λµ-calculus [Par92]. Its sequent calculus foundation makes λ̄µµ̃ ideal to inves-
tigate some of the dualities of computation such as computation/context and
call-by-name/call-by-value.

The λ̄µµ̃-calculus [CH00] is obtained by extending the λ̄µ-calculus with the
new binding operator µ̃ and an appropriate reduction rule. This operator can
be interpreted as a let binding, which can be used, for example, to evaluate
arguments to functions before evaluating the function itself. This allows call-by-
name and call-by-value reduction strategies to live side by side in one calculus.
The syntax is divided into the same three categories as before.

Definition 28. The set Λ̄µµ̃ of λ̄µµ̃ terms is defined by the following grammars.

Commands c ::= 〈v ‖ e〉
Terms v ::= x | λx.v | µα.c
Contexts e ::= β | µ̃x.c | v · e

We let t range over arbitrary λ̄µµ̃ terms i.e. t ∈ Λ̄µµ̃. The new context
construct µ̃x.c binds x in c. The typing system uses the same three judgements
as before, one for each syntactic category:

c : (Γ ` ∆) Γ ` v : A | ∆ Γ | e : A ` ∆

The typing rules are included in Figure 4. For details about the underlying
logic we refer to [CH00]. On top of these typing rules, we can, of course, add
the same weakening rules as for λ̄µ.

In Example 8 from Chapter 3 we already mentioned that, in a call-by-value
strategy, we must first reduce arguments (to a function) to values before we can
apply the function to those arguments. That is: in terms like Ix(IyIz), we are
forced to reduce the application IyIz to the value Iz before applying Ix. So
we must be able to freeze the evaluation of Ix and start reducing its arguments
first.

The well known construct let x = N in M (see e.g. [HZ09]) can be used
to achieve just that. Suppose we want to evaluate the application Ix(IyIz).

47

48 CHAPTER 4. THE λ̄µµ̃-CALCULUS

Γ | α : A ` α : A,∆
axl

Γ, x : A ` x : A | ∆
axr

Γ ` v : A | ∆ Γ | e : B ` ∆

Γ | (v · e) : A→ B ` ∆
→l

Γ, x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

→r

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
µ

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
µ̃

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v ‖ e〉 : (Γ ` ∆)
cm

Figure 4.1: Typing rules for λ̄µµ̃

Then we could start by writing it as let k = IyIz in Ixk, where we intend
to reduce IyIz before passing it to Ixk. In terms of contexts: if Ix(IyIz)
is evaluated in context E, then actually we want to evaluate K[IyIz] where
K = E[let k = [] in Ixk]. This is exactly what the new operator µ̃ allows us to
express: we write µ̃x.〈v ‖ e〉 for e[let x = [] in v]. A context v1·. . .·vk·µ̃x.〈v ‖ e〉
can then be read as e[let x = [[]v1 . . . vk] in v]. So, a µ̃-abstraction can be seen
as a function, waiting for an argument.

Definition 29. We have the following reductions in λ̄µµ̃:

(λ′) 〈λx.v1 ‖ v2 · e〉 → 〈v2 ‖ µ̃x.〈v1 ‖ e〉〉
(µ) 〈µα.c ‖ e〉 → c[e/α]
(µ̃) 〈v ‖ µ̃x.c〉 → c[v/x]

Where substitution is capture-free with respect to both kinds of variables.

We adopt the convention that all names of bound variables are chosen max-
imally fresh and different from unbound variables. Therefore we get that µ̃ only
binds free occurrences of x in v1 in the right hand side of the λ′ reduction.

Note that the λ′ reduction actually differs from the λ reduction we had for
λ̄µ in Chapter 3. The intuition is that we can now freeze the evaluation of a
function λx.v, by encoding it as the context let x = [] in v, and evaluate an
argument to a value first. The set of values is defined as follows:

Definition 30. The set of λ̄µµ̃ values is generated by the following grammar:

V ::= x | λx.v

We let V1, V2, . . . range over values, not to mistake with v1, v2, . . ., which range
over λ̄µµ̃ terms.

Let us check that the reductions in λ̄µµ̃ satisfy subject reduction. As before,
we need the following substitution lemma.

Lemma 35. Typing is preserved under substitution. That is: if

49

(A) Γ | e′ : A′ ` ∆,

(B) Γ ` v : A | α : A′,∆ and

(C) Γ | e : A ` α : A′,∆

then the following statements hold:

(1) Γ | e[e′/α] : A ` ∆

(2) Γ ` v[e′/α] : A | ∆

Proof. Simultaneously, by induction on the structure of e, v. We only need to
check one case, since the other cases are already checked in Lemma 12.

• (1) If e = µ̃x.〈v′ ‖ e′′〉, then we get 〈v′ ‖ e′′〉 : (Γ, x : A ` α : A′,∆)
by (C) and the µ̃ typing rule. Then, by the cm typing rule, we have
Γ, x : A ` v′ : B | α : A′,∆ and Γ, x : A | e′′ : B ` α : A′,∆ for some
B. By applying the induction hypothesis to these two judgements,
we get both Γ, x : A ` v′[e′/α] : B | ∆ and Γ, x : A | e′′[e′/α] : B `
∆. Hence, we have the following derivation, as required (e[e′/α] =
(µ̃x.〈v′ ‖ e′′〉)[e′/α] = µ̃x.〈v′[e′/α] ‖ e′′[e′/α]〉):

Γ, x : A ` v′[e′/α] : B | ∆ Γ, x : A | e′′[e′/α] : B ` ∆

〈v′[e′/α] ‖ e′′[e′/α]〉 : (Γ, x : A ` ∆)
cm

Γ | µ̃x.〈v′[e′/α] ‖ e′′[e′/α]〉 : A ` ∆
µ̃

Remark 4. Note that the contents of Corollary 1 and Remark 2 also hold for
Lemma 35.

Lemma 36. The reductions in λ̄µ satisfy subject reduction. That is: if 〈v ‖
e〉 : (Γ ` ∆) and 〈v ‖ e〉 → 〈v′ ‖ e′〉, then 〈v′ ‖ e′〉 : (Γ ` ∆).

Proof. We only have to check the →λ′ and the →µ̃ reductions, since the →µ

reduction was already checked in Lemma 13.

• Suppose 〈v ‖ e〉 = 〈λx.v1 ‖ v2 · e〉, then 〈v ‖ e〉 →λ′ 〈v2 ‖ µ̃x.〈v1 ‖ e〉〉. We
have:

Γ, x : A ` v1 : B | ∆
Γ ` λx.v1 : A→ B | ∆

→r
Γ ` v2 : A | ∆ Γ | e : B ` ∆

Γ | v2 · e : A→ B ` ∆
→l

〈λx.v1 ‖ v2 · e〉 : (Γ ` ∆)
cm

−→λ′

Γ ` v2 : A | ∆

Γ, x : A ` v1 : B | ∆ Γ, x : A | e : B ` ∆

〈v1 ‖ e〉 : (Γ, x : A ` ∆)
cm

Γ | µ̃x.〈v1 ‖ e〉 : A ` ∆
µ̃

〈v2 ‖ µ̃x.〈v1 ‖ e〉〉 : (Γ ` ∆)
cm

50 CHAPTER 4. THE λ̄µµ̃-CALCULUS

• Suppose 〈v ‖ e〉 = 〈v ‖ µ̃x.c〉, then 〈v ‖ e〉 →µ̃ c[v/x]. We have:

Γ ` v : A | ∆
c : (Γ, x : A ` ∆)

Γ ` µ̃x.c : A | ∆
µ̃

〈v ‖ µ̃x.c〉 : (Γ ` ∆)
cm

Using Remark 4 we get c[v/x] : (Γ ` ∆) as desired.

Lemma 37. The reductions in λ̄µµ̃ are strongly normalizing. That is: the
process of reduction always terminates.

Proof. See [Her05].

Observe that the reductions in λ̄µµ̃ are not confluent: for t = 〈µα.c1 ‖
µ̃x.c2〉 we get t →µ c1[µ̃x.c2/α] and t →µ̃ c2[µα.c1/x]. But the critical pair
(c1[µ̃x.c2/α], c2[µα.c1/x]) does not always converge.

Example 16. Consider, for example, the specific case where t = 〈µα.〈λx.x ‖
β〉 ‖ µ̃y.〈λz.λk.z ‖ β〉〉, which is a reduct of the command 〈λy.λz.λk.z ‖
µα.〈λx.x ‖ β〉 · β〉. We get the following reduction graph, where 〈λy.y ‖ β〉
and 〈λz.λk.z ‖ β〉 do not converge:

〈µα.〈λx.x ‖ β〉 ‖ µ̃y.〈λz.λk.z ‖ β〉〉

〈λx.x ‖ β〉 〈λz.λk.z ‖ β〉

µ µ̃

end of example

We have already mentioned, in the introduction, that the call-by-name and
call-by-value reduction strategies live side by side in λ̄µµ̃. Picking one of the
reduction strategies amounts to giving priority to either the µ reduction, for
call-by-value, or to the µ̃ reduction, for call-by-name, in case one encounters the
“critical command” 〈µα.c1 ‖ µ̃x.c2〉.

But why is that the case? First observe that, if we give priority to the µ̃
reduction, we may adapt the λ′ reduction so that it immediately contracts the
created µ̃ redex. We get: 〈λx.v1 ‖ v2 · e〉 →λ′ 〈v2 ‖ µ̃x.〈v1 ‖ e〉〉 →µ̃ 〈v1 ‖
e〉[v2/x] = 〈v1[v2/x] ‖ e〉, since µ̃ only binds free occurrences of x in v1. So, in
fact, we retrieve the λ reduction from λ̄µ in this way, which is a call-by-name
reduction (see Chapter 3). I.e. the µ̃ redexes, created by the reduction system
itself can be avoided. Furthermore we can perform the µ̃ reduction on any
command of the form 〈v ‖ µ̃x.c〉, independent of the form of v. In particular v
can be a µ-abstraction, which is used to encode applications. But then the µ̃
reduction amounts to performing a call-by-name reduction.

If we give priority to the µ reduction, then any command of the form 〈v ‖ e〉
can be reduced (by performing µ-reduction as many times as possible) to a
command 〈V ‖ e′〉 where V is not a µ-abstraction i.e. V is a value in the sense

51

of Definition 30. Once we have obtained a command 〈V ‖ e′〉, we may perform
a µ̃ reduction whenever e′ = µ̃x.c and, hence, we will substitute a value for x in
c. So, indeed, by giving priority to the µ reduction, we obtain a call-by-value
strategy.

Example 17. Consider the following call-by-value reduction of µα.〈Ix ‖ µβ.〈Iy ‖
Iz · β〉 · α〉, which is the λ̄µµ̃ equivalent of Ix(IyIz):

µα.〈Ix ‖ µβ.〈Iy ‖ Iz · β〉 · α〉 →λ′ µα.〈µβ.〈Iy ‖ Iz · β〉 ‖ µ̃x.〈x ‖ α〉〉
→µ µα.〈Iy ‖ Iz · µ̃x.〈x ‖ α〉〉
→λ′ µα.〈Iz ‖ µ̃y.〈y ‖ µ̃x.〈x ‖ α〉〉〉
→µ̃ µα.〈Iz ‖ µ̃x.〈x ‖ α〉〉
→µ̃ µα.〈Iz ‖ α〉

And its call-by-name counterpart:

µα.〈Ix ‖ µβ.〈Iy ‖ Iz · β〉 · α〉 →λ′ µα.〈µβ.〈Iy ‖ Iz · β〉 ‖ µ̃x.〈x ‖ α〉〉
→µ̃ µα.〈µβ.〈Iy ‖ Iz · β〉 ‖ α〉
→µ µα.〈Iy ‖ Iz · α〉
→λ′ µα.〈Iz ‖ µ̃y.〈y ‖ α〉〉
→µ̃ µα.〈Iz ‖ α〉

end of example

Let us make this “giving priority to µ or µ̃-redexes” more precise. We can
adapt the reduction system to automatically give priority to either µ or µ̃-
redexes. For instance, we could use our definition of values (Definition 30) and
change our µ̃-reduction into:

〈V ‖ µ̃x.c〉 →µ̃′ c[V/x]

If we leave the other reductions unchanged, then we have given priority to µ-
redexes and thereby obtain the call-by-value reduction strategy, since we can
only use the µ̃′ reduction if the left side of the command is not a µ-abstraction
i.e. if it is a value.

The other way around we can adapt the reduction system to automatically
give priority to µ̃-redexes.

Definition 31. The set of restricted contexts is defined by the grammar E:

E ::= α | v · e

Using the above definition we could change our µ-reduction into:

〈µα.c ‖ E〉 →µ′ c[E/α]

If we leave the other reductions unchanged, we have given priority to µ̃-redexes
and thereby obtain the call-by-name reduction strategy, since we can only use
the µ′ reduction if the right side of the command is not a µ̃-abstraction.

In both cases, the adaptation of the reduction system leads to a reduction
system that is confluent for well-typed terms, as the following to lemmas show.

52 CHAPTER 4. THE λ̄µµ̃-CALCULUS

Lemma 38. If we equip the reduction system of λ̄µµ̃ with the µ′ (µ̃′) rule
instead of the µ (µ̃) rule, then we obtain a reduction system that is strongly
normalizing.

Proof. By Lemma 37, the reductions in λ̄µµ̃ itself are strongly normalizing. In
particular the →µ and →µ̃ are strongly normalizing. But, in a trivial way, we
have→µ′⊂→µ and→µ̃′⊂→µ̃. Hence, the µ′ and µ̃′ reductions must be strongly
normalizing.

Lemma 39. If we equip the reduction system of λ̄µµ̃ with the µ′ (µ̃′) rule
instead of the µ (µ̃) rule, then we obtain a reduction system that is confluent
for well-typed terms.

Proof. In either case, there are no more critical pairs. Then, by Lemma 38 and
Newman’s Lemma, we obtain confluence.

Example 17 gives an example of how these reductions work. In the call-by-
value case we must replace all µ̃ reductions with µ̃′ and in the call-by-name case
we must replace all µ reductions with µ′.

4.1 Exception handling

Recall that, in λ̄µ, we were able to define an exception handling mechanism
with the operators catch and throw . For these operators we had the following
reductions:

1. µα.〈throwβ v ‖ e〉 → throwβ v, provided that α /∈ FV (v)

2. catchα (throwα v)→ catchα v

3. catchα (throwβ v)→ throwβ v, provided that α /∈ FV (v)

4. throwβ (throwα v)→ throwα v

Note that we have the same reductions for catch and throw in λ̄µµ̃, since
these reductions were all defined in terms of λ̄µ’s reduction system, which is
a subset of λ̄µµ̃’s reduction system. In λ̄µµ̃, however, we have the option to
perform call-by-value reduction steps due to the modified λ reduction. This
allows us to add the following reduction for catch and throw :

Lemma 40. We have the following additional reduction for catch and throw

in λ̄µµ̃:

µα.〈λx.v1 ‖ (throwβ v2) · e〉 → throwβ v2 , provided that α /∈ FV (v2)

Proof. We have: µα.〈λx.v1 ‖ (throwβ v2)·e〉 = µα.〈λx.v1 ‖ (µγ.〈v2 ‖ β〉)·e〉 →λ′

µα.〈µγ.〈v2 ‖ β〉 ‖ µ̃x.〈v1 ‖ e〉〉 →µ µα.〈v2 ‖ β〉 = throwβ v2

Indeed, we must have that α /∈ FV (v2), as the following example shows:

4.2. AN ENVIRONMENT MACHINE FOR λ̄µµ̃ 53

Example 18. Consider the term t = µα.〈λx.v1 ‖ (throwβ v2) · e〉 with v2 =
µδ.〈y ‖ α〉, then (using our new reduction):

µα.〈λx.v1 ‖ (throwβ (µδ.〈y ‖ α〉)) · e〉
→ µα.〈µδ.〈y ‖ α〉 ‖ β〉
6= throwβ (µδ.〈y ‖ α〉) , since α ∈ FV (µδ.〈y ‖ α〉)

end of example

4.2 An environment machine for λ̄µµ̃

In Section 2.2.2 we already mentioned that the machine we introduced is a
restriction of Curien and Herbelin’s machine for λ̄µµ̃. In this section we first
extend the notion of weak head reduction to λ̄µµ̃ and then introduce the full λ̄µµ̃
machine. Thereafter, we will extend our proofs of correctness and completeness
to this extended machine.

Definition 32. The weak head reduction strategy for λ̄µµ̃ is defined by the
following rules:

1. 〈λx.v ‖ v′ · e〉 →wh 〈v′ ‖ µ̃x.〈v ‖ e〉〉

2. 〈µα.c ‖ e〉 →wh c[e/α]

3. 〈v ‖ µ̃x.c〉 →wh c[v/x]

4. t→∗wh t

5.

c→∗wh c′

µα.c→∗wh µα.c′

Indeed, the above definition of weak head reduction is non-deterministic and
non-confluent (see Example 16). However, using our earlier results of this chap-
ter, we can always make the system confluent (for well-typed terms) by giving
priority to either µ-redexes (which yields a call-by-value evaluation strategy)
or to µ̃-redexes (which yields a call-by-name evaluation strategy). We can now
define a specific call-by-name and call-by-value version of weak head reduction.

Definition 33. The call-by-name weak head reduction strategy for λ̄µµ̃ is ob-
tained by replacing reduction (2) with

〈µα.c ‖ E〉 →wh c[E/α] , with E as in Definition 31

Definition 34. The call-by-value weak head reduction strategy for λ̄µµ̃ is ob-
tained by replacing reduction (3) with

〈V ‖ µ̃x.c〉 →wh c[V/x] , with V as in Definition 30

54 CHAPTER 4. THE λ̄µµ̃-CALCULUS

However, for proving the correctness and completeness properties of a ma-
chine, we do not have to restrict ourselves to one of these deterministic strate-
gies. We can just prove those properties for the non-deterministic strategy of
Definition 32 and then restrict them to one of the deterministic cases later on.

Definition 35. The environment machine for λ̄µµ̃ ([CH00]) is defined by the
following reductions:

1. 〈x{E1} ‖ e{E2}〉 → 〈E1(x) ‖ e{E2}〉 (if E1(x) is defined)

2. 〈v{E1} ‖ α{E2}〉 → 〈v{E1} ‖ E2(α)〉 (if E2(α) is defined)

3. 〈(λx.v1){E1} ‖ (v2 · e){E2}〉 → 〈v2{E2} ‖ µ̃x.〈v1{E1} ‖ e{E2}〉〉

4. 〈µα.〈v{E1} ‖ e2{E2}〉 ‖ e1{E3}〉 → 〈v{α 7→ e1{E3}, E1} ‖ e2{α 7→
e1{E3}, E2}〉

5. 〈v1{E1} ‖ µ̃x.〈v2{E2} ‖ e{E3}〉〉 → 〈v2{x 7→ v1{E1}, E2} ‖ e{x 7→
v1{E1}, E3}〉

Note that reduction (3) actually differs from its λ̄µ analogue and the one
presented in [CH00]: instead of putting v2 in the environment El (i.e. substi-
tuting v2 for x in v1) we give the machine a chance to perform call-by-value
reduction by rewriting λx.v1 to a µ̃-abstraction (a blocked computation). At
the top-level we may apply the following equations:

〈(µα.〈v ‖ e〉){E1} ‖ e′{E2}〉 = 〈µα.〈v{E1} ‖ e{E1}〉 ‖ e′{E2}〉
〈v′{E1} ‖ (µ̃x.〈v ‖ e〉){E2}〉 = 〈v′{E1} ‖ µ̃x.〈v{E2} ‖ e{E2}〉〉

Lemma 41. The machine’s reductions are locally confluent for all machine
states but 〈µα.〈v1{E1} ‖ e1{E2}〉 ‖ µ̃x.〈v2{E3} ‖ e2{E4}〉〉. That is: if M is a
machine state and M→M1 and M→M1, then there exists a state M′ such
that M1 →∗M′ and M2 →∗M′.

Proof. We only have to check the case where M = 〈x{E1} ‖ µ̃y.〈v{E2} ‖
e{E3}〉〉, since all other cases are handled in Lemma 31. So suppose M =
〈x{E1} ‖ µ̃y.〈v{E2} ‖ e{E3}〉〉 and E1(x) is defined, then M →1 〈E1(x) ‖
µ̃y.〈v{E2} ‖ e{E3}〉〉 =M1 andM→5 〈v{y 7→ x{E1}, E2} ‖ e{y 7→ x{E1}, E3}〉 =
M2. Note that y 7→ x{E1} = y 7→ E1(x), since E1(x) is defined. Now if we
take M′ = 〈v{y 7→ x{E1}, E2} ‖ e{y 7→ x{E1}, E3}〉, then M1 →5 M′ and
M2 =M′, as required.

We will now show that the machine is correct with respect to the notion of
weak head reduction in Definition 32. The translation J−K from machine states
to λ̄µµ̃ terms is the same as the one defined in 25.

Lemma 42. The machine is correct for the weak head reduction system defined
in Definition 32. LetM be a machine state. IfM→1,2 M′, then JMK = JM′K.
If M→3,4,5 M′, then JMK→wh JM′K.

Proof. We only need to check the cases whereM→3 M′ andM→5 M′, since
the other cases are covered in Lemma 32.

4.2. AN ENVIRONMENT MACHINE FOR λ̄µµ̃ 55

• Suppose M = 〈(λx.v1){E1} ‖ (v2 · e){E2}〉, then M′ = 〈v2{E2} ‖
µ̃x.〈v1{E1} ‖ e{E2}〉〉 and:

JMK = J〈(λx.v1){E1} ‖ (v2 · e){E2}〉K
= 〈subs(λx.v1, E1) ‖ subs(v2 · e, E2)〉
= 〈λx.subs(v1, E1) ‖ subs(v2, E2) · subs(e, E2)〉
→wh 〈subs(v2, E2) ‖ µ̃x.〈subs(v1, E1) ‖ subs(e, E2)〉〉
= J〈v2{E2} ‖ µ̃x.〈v1{E1} ‖ e{E2}〉〉K = JM′K

• Suppose M = 〈v1{E1} ‖ µ̃x.〈v2{E2} ‖ e{E3}〉〉, then M′ = 〈v2{x 7→
v1{E1}, E2} ‖ e{x 7→ v1{E1}, E3}〉 and:

JMK = J〈v1{E1} ‖ µ̃x.〈v2{E2} ‖ e{E3}〉〉K
= 〈subs(v1, E1) ‖ µ̃x.〈subs(v2, E2) ‖ subs(e, E3)〉〉
→wh 〈(subs(v2, E2))[subs(v1, E1)/x] ‖ subs(e, E3)[subs(v1, E1)/x]〉
= 〈subs(subs(v2, E2), {x 7→ v1{E1}}) ‖ subs(subs(e, E3), {x 7→ v1{E1}})〉
= 〈subs(v2, {{x 7→ v1{E1}}, E2}) ‖ subs(e, {{x 7→ v1{E1}}, E3})〉
= J〈v2{{x 7→ v1{E1}}, E2} ‖ e{{x 7→ v1{E1}}, E3}〉K = JM′K

Before we can prove that the machine is also complete for the notion of weak
head reduction in λ̄µµ̃, we need an additional lemma.

Lemma 43. The machine reductions are strongly normalizing for well-typed
terms. That is: there are no infinite reduction paths.

Proof. It remains to show that reductions (3) and (5) are strongly normalizing,
since the other cases are already covered in Lemma 33. An infinite sequence of
reductions cannot contain an infinite amount of (3) or (5) reductions, since, by
Lemma 42, that would give rise to an infinite sequence →λ′µ̃ contractions on
the unloaded terms, which contradicts Lemma 37.

Lemma 44. The machine is complete for the weak head reduction system de-
fined in Definition 32. Let t ∈ Λ̄µµ̃ be a closed, well-typed term. Then there
exist environments E1 and E2, such that:

µα.〈t{} ‖ α{}〉 →∗ µα.〈(λx.v){E1} ‖ α{E2}〉 , (for α fresh)

Moreover, µα.〈t ‖ α〉 →∗wh Jµα.〈(λx.v){E1} ‖ α{E2}〉K.

Proof. The same as for Lemma 34, but now using Lemma 43 to show that the
machine cannot run forever.

We can now restrict the machine to obtain the call-by-value and call-by-name
specific versions. This is done in the same way as we restricted the reduction
system of λ̄µµ̃ and the notion of weak head reduction before.

Definition 36. The call-by-name machine for λ̄µµ̃ is obtained by replacing
reduction (4) with

〈µα.〈v{E1} ‖ e{E2}〉 ‖ E{E3}〉 →(4)′ 〈v{α 7→ E{E3}, E1} ‖ e{α 7→ E{E3}, E2}〉

56 CHAPTER 4. THE λ̄µµ̃-CALCULUS

Definition 37. The call-by-value machine for λ̄µµ̃ is obtained by replacing
reduction (5) with

〈V {E1} ‖ µ̃x.〈v{E2} ‖ e{E3}〉〉 →(5)′ 〈v{x 7→ V {E1}, E2} ‖ e{x 7→ V {E1}, E3}〉

Lemma 45. The restricted machine from Definition 36 (Definition 37) satisfies
the following properties:

1. The machine reductions are locally confluent,

2. The machine reductions are strongly normalizing,

3. The machine reductions are confluent for well-typed terms,

4. The machine is correct and complete for the weak head reduction strategy
from Definition 33 (Definition 34).

Proof.

1. By restricting machine reduction (4) (or (5) in the case of call-by-value)
we no longer have that 〈µα.〈v1{E1} ‖ e1{E2}〉 ‖ µ̃x.〈v2{E3} ‖ e2{E4}〉〉 is
a “critical” machine state. Then, by Lemma 41, we obtain local confluence
for both machines.

2. We already showed in Lemma 38, that the reductions of the original ma-
chine are strongly normalizing. In particular reductions (4) and (5) are
strongly normalizing. But, trivially, →(4)′⊂→(4) and →(5)′⊂→(5) and,
hence, we must have that both these reductions are strongly normalizing.

3. By the previous two items and Newman’s Lemma we obtain confluence
for the machines with restricted reductions.

4. We will only describe the changes in the existing lemmas. The correctness
lemma stays the same in both cases.

In the call-by-name situation we must take care, however, that in the
translation J〈µα.〈v{E1} ‖ e{E2}〉 ‖ E{E3}〉K = 〈µα.〈subs(v, {E1}) ‖
subs(e, {E2})〉 ‖ subs(E,E3)〉, subs(E,E3) cannot become a µ̃-abstraction.
This is indeed the case because, for such a substitution to become a µ̃-
abstraction we must have that E = β and E3(β) = µ̃x.〈v′{E4} ‖ e′{E5}〉.
This situation, however, cannot occur because that would mean that we
encountered a state 〈µβ.〈v1{Ev} ‖ e1{Ee}〉 ‖ µ̃x.〈v′{E4} ‖ e′{E5}〉〉 and
reduced it to 〈v1{β 7→ µ̃x.〈v′{E4} ‖ e′{E5}〉, Ev} ‖ e1{β 7→ µ̃x.〈v′{E4} ‖
e′{E5}〉, Ee}〉, which we could not have done because reduction (4)′ disal-
lows that move.

Similarly, in the call-by-value situation, we must take care that subs(V,E1)
in J〈V {E1} ‖ µ̃x.〈v{E2} ‖ e{E3}〉〉K = 〈subs(V, {E1}) ‖ µ̃x.〈subs(v, {E2}) ‖
subs(e, {E3})〉〉 does not become a µ-abstraction. This is indeed the case
because, for such a substitution to become a µ-abstraction we must have
that V = y and E1(y) = µα.〈v′{E4} ‖ e′{E5}〉. This situation cannot oc-
cur because that would mean that we encountered a state 〈µα.〈v′{E4} ‖
e′{E5}〉 ‖ µ̃y.〈v1{Ev} ‖ e1{Ee}〉〉 and reduced it to 〈v1{y 7→ µα.〈v′{E4} ‖

4.2. AN ENVIRONMENT MACHINE FOR λ̄µµ̃ 57

e′{E5}〉, Ev} ‖ e1{y 7→ µα.〈v′{E4} ‖ e′{E5}〉, Ee}〉, which we could not
have done because reduction (5)′ disallows that move.

In the completeness lemma (Lemma 44) we must now use Lemma 38 to
prove that the machine cannot run forever.

Example 19. Let us analyse how the term t = µα.〈Ix ‖ µβ.〈Iy ‖ Iz · β〉 · α〉
reduces in both the call-by-name and call-by-value machine. We begin with the
call-by-name case, where:

{E1} = {β 7→ α{x 7→ (µβ.〈Iy{} ‖ (Iz · β){}〉)}}
{E2} = {y 7→ Iz{E1}, E1}

µα.〈Ix{} ‖ (µβ.〈Iy ‖ Iz · β〉 · α){}〉
→ µα.〈µβ.〈Iy{} ‖ (Iz · β){}〉 ‖ µ̃x.〈x{} ‖ α{}〉〉
→ µα.〈x{x 7→ µβ.〈Iy{} ‖ (Iz · β){}〉} ‖ α{x 7→ µβ.〈Iy{} ‖ (Iz · β){}〉}〉
→ µα.〈µβ.〈Iy{} ‖ (Iz · β){}〉 ‖ α{x 7→ (µβ.〈Iy{} ‖ (Iz · β){}〉)}〉
→ µα.〈Iy{E1} ‖ (Iz · β){E1}〉
→ µα.〈Iz{E1} ‖ µ̃y.〈y{E1} ‖ β{E1}〉〉
→ µα.〈y{E2} ‖ β{E2}〉
→ µα.〈Iz{E1} ‖ β{E2}〉
→ µα.〈Iz{E1} ‖ α{x 7→ (µβ.〈Iy{} ‖ (Iz · β){}〉)}〉

In the call-by-value case we get the following reduction, where:

{E1} = {β 7→ µ̃x.〈x{} ‖ α{}〉}
{E2} = {y 7→ Iz{E1}, E1}
{E3} = {x 7→ Iz{E1}}

µα.〈Ix{} ‖ (µβ.〈Iy ‖ Iz · β〉 · α){}〉
→ µα.〈µβ.〈Iy{} ‖ (Iz · β){}〉 ‖ µ̃x.〈x{} ‖ α{}〉〉
→ µα.〈Iy{E1} ‖ (Iz · β){E1}〉
→ µα.〈Iz{E1} ‖ µ̃y.〈y{E1} ‖ β{E1}〉〉
→ µα.〈y{E2} ‖ β{E2}〉
→ µα.〈Iz{E1} ‖ β{E2}〉
→ µα.〈Iz{E1} ‖ µ̃x.〈x{} ‖ α{}〉〉
→ µα.〈x{E3} ‖ α{E3}〉
→ µα.〈Iz{E1} ‖ α{E3}〉

58 CHAPTER 4. THE λ̄µµ̃-CALCULUS

Chapter 5

Conclusion

In Chapter 3 we recalled Herbelin’s λ̄µ-calculus [Her95]. We have defined the
inverse of the map N , which was defined in [CH00], and showed that both map-
pings preserve reduction and typing. This shows that λ̄µ is, indeed, isomorphic
to Parigot’s λµ, as noted in [CH00]. As a consequence of this isomorphism, we
were able to define an exception handling mechanism for λ̄µ similar to the one
defined in e.g. [Kre10] for λµ. Our main contribution to λ̄µ is given in Section
2.2.2, where we showed that a restriction of the abstract machine defined in
[CH00] is correct and complete for the weak head reduction strategy in λ̄µ.

In Chapter 4 we extended λ̄µ with the µ̃ operator and thereby obtained
the λ̄µµ̃-calculus, which was first introduced by Herbelin and Curien in [CH00]
(also see [Her05]). We showed, in Section 4.1, that λ̄µ’s exception handling
mechanism can also be used for λ̄µµ̃. We noted that an extra reduction can be
obtained for the mechanism, since we can perform call-by-value reduction steps
in λ̄µµ̃ (which we cannot do in λ̄µ). We concluded the chapter by showing that
Herbelin and Curien’s (non-deterministic) machine [CH00] is correct and com-
plete for the (non-deterministic) weak head reduction system in λ̄µµ̃. We also
showed that the non-determinism in both machine and (weak head) reduction
system can be solved, by which we obtain, correct and complete, call-by-name
and call-by-value specific versions of the machine and strategy.

5.1 Future works

The machines presented in this thesis use quite big reduction steps - compared
to e.g. a Krivine machine - in that arguments are not pushed to and popped
from a stack. While the syntax of λ̄µ and λ̄µµ̃ allow for these big steps, it
would be interesting to develop machines that do push and pop arguments from
a stack, as this is closer to how “real” machines work.

In Section 7 of [CH00], Herbelin and Curien further extend the λ̄µµ̃-calculus
with the term-construct e ·v (which is the dual of the context-construct v ·e) and
the context-construct βλ.e (which is the dual of the term-construct λx.v). On
the logical side these extensions correspond the the right- and left introduction
of “-”, the dual of →. We have the following typing rules for −:

59

60 CHAPTER 5. CONCLUSION

Γ | e : A ` β : B,∆

Γ | βλ.e : A−B ` ∆
−l

Γ | e : B ` ∆ Γ ` v : A | ∆
Γ ` (e · v) : A−B | ∆

−r

On the computational side we obtain the following reduction:

〈e2 · v ‖ βλ.e1〉 →− 〈µβ.〈v ‖ e1〉 ‖ e2〉

While Herbelin and Curien treat the − connective in a purely formal way, Cro-
lard [Cro04] has initiated research into the computational meaning of −: it
provides us with a way to express coroutines. It would be interesting to develop
a machine capable of evaluating these new language constructs and thereby
obtain an operational semantics for the − connective.

Bibliography

[BDS12] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Cal-
culus with Types. Perspectives in Mathematical Logic. Cambridge
University Press, 2012.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation.
In Proceedings of the Fifth ACM SIGPLAN International Conference
on Functional Programming (ICFP ’00), Montreal, Canada, Septem-
ber 18-21, 2000, SIGPLAN Notices 35(9), pages 233–243. ACM,
2000.

[Chu40] A. Church. A formulation of the simple theory of types. The journal
of symbolic logic, 5(2):56–68, 1940.

[Cro99] T. Crolard. A confluent λ-calculus with a catch/throw mechanism.
Journal of Functional Programming, 9(6):625–647, 1999.

[Cro04] T. Crolard. A formulae-as-types interpretation of subtractive logic.
Journal of Logic and Computation, 14(4):529–570, 2004.

[DF07] R. Douence and P. Fradet. The next 700 krivine machines. Higher-
Order and Symbolic Computation, 20(3):237–255, 2007.

[DG98] P. De Groote. An environment machine for the λµ-calculus. Mathe-
matical Structures in Computer Science, 8(6):637–669, 1998.

[FH92] M. Felleisen and R. Hieb. The revised report on the syntactic the-
ories of sequential control and state. Theoretical computer science,
103(2):235–271, 1992.

[Fil89] A. Filinski. Declarative continuations: An investigation of duality in
programming language semantics. In Category Theory and Computer
Science, pages 224–249. Springer, 1989.

[Gri89] T.G. Griffin. A formulae-as-type notion of control. In Proceedings
of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 47–58. ACM, 1989.

[GTL89] J.Y. Girard, P. Taylor, and Y. Lafont. Proofs and types, volume 7.
Cambridge University Press Cambridge, 1989.

[Her95] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul
des séquents comme calcul de λ-termes et comme calcul de stratégies
gagnantes. Ph.D. thesis, University Paris 7, January 1995.

61

62 BIBLIOGRAPHY

[Her05] H. Herbelin. C’est maintenant qu’on calcule: au cœur
de la dualité. Mémoire d’habilitation, available from
http://pauillac.inria.fr/∼herbelin/habilitation/, 2005.

[Her10] H. Herbelin. An intuitionistic logic that proves markov’s principle.
In Logic in Computer Science (LICS), 2010 25th Annual IEEE Sym-
posium on, pages 50–56. IEEE, 2010.

[HZ09] H. Herbelin and S. Zimmermann. An operational account of call-by-
value minimal and classical λ-calculus in “natural deduction” form.
Typed Lambda Calculi and Applications, pages 142–156, 2009.

[Kre10] Robbert Krebbers. Classical logic, control calculi and data types.
Master’s thesis, Radboud University Nijmegen, 2010.

[Kri07] J.L. Krivine. A call-by-name lambda-calculus machine. Higher-Order
and Symbolic Computation, 20(3):199–207, 2007.

[Lan64] P.J. Landin. The mechanical evaluation of expressions. The Com-
puter Journal, 6(4):308–320, 1964.

[MOW98] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. Journal of functional programming, 8(03):275–317, 1998.

[Nak92] H. Nakano. A constructive formalization of the catch and throw
mechanism. In Logic in Computer Science, 1992. LICS’92., Proceed-
ings of the Seventh Annual IEEE Symposium on, pages 82–89. IEEE,
1992.

[Nak03] K. Nakazawa. Confluency and strong normalizability of call-by-value
λµ-calculus. Theoretical Computer Science, 290(1):429–463, 2003.

[Par92] M. Parigot. λµ-calculus: an algorithmic interpretation of classical
natural deduction. In Logic programming and automated reasoning,
pages 190–201. Springer, 1992.

[Par97] M. Parigot. Proofs of strong normalisation for second order classical
natural deduction. Journal of Symbolic Logic, pages 1461–1479, 1997.

[Plo75] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical computer science, 1(2):125–159, 1975.

[RS94] Jakob Rehof and Morten Heine Sørensen. The lambdadelta-calculus.
In Proceedings of the International Conference on Theoretical Aspects
of Computer Software, TACS ’94, pages 516–542, London, UK, UK,
1994. Springer-Verlag.

[Sel01] P. Selinger. Control categories and duality: on the categorical seman-
tics of the lambda-mu calculus. Mathematical Structures in Computer
Science, 11(2):207–260, 2001.

[Tak89] Masako Takahashi. Parallel reductions in λ-calculus. Journal of
Symbolic Computation, 7(2):113 – 123, 1989.

	Introduction
	Exception handling
	Overview
	Acknowledgements

	Background
	The simply typed -calculus
	Abstract machine

	The -calculus
	Exception handling
	Abstract machine

	The -calculus
	An isomorphism
	Exception handling
	An environment machine for

	The -calculus
	Exception handling
	An environment machine for

	Conclusion
	Future works

