Research number: 659

Radboud University Nijmegen i

MiNe €

[
Yerrer

Belastingdienst

Master’s thesis

Using Formal Methods within the Belastingdienst

August 2012

Author:
Xander Damen
0213845

x.damen@student.science.ru.nl

Supervisors:

Prof. dr. B. Dankbaar b.dankbaar@fm.ru.nl Radboud University Nijmegen, ISIS
Dr. ir. G.J. Tretmans tretmans@cs.ru.nl Radboud University Nijmegen, ICIS
Dr. D. N. Jansen d.jansen@science.ru.nl Radboud University Nijmegen, ICIS
H. Somers h.somers@belastingdienst.nl Belastingdienst/CA

J. van Rooyen jos.van.rooyen@bartosz.nl Belastingdienst /CA, Bartosz

Managementsamenvatting

De stijgende complexiteit van de bedrijfsprocessen en systemen van de Belastingdienst
maakt handmatig testen tot een moeilijke taak. Daarom kijkt de organisatie naar het
uitbreiden van haar skillset, omdat zij van mening is dat de huidige technieken verbeterd
moeten worden om het hoge kwaliteitsniveau dat de organisatie nastreeft te handhaven.
De Belastingdienst neemt formele methoden, wiskundige technieken, in overweging. Twee
formele methoden zijn overwogen: model checking and model based testing. De Belas-
tingdienst heeft een casus rondom het nieuwe Toeslagen systeem aangedragen. Vanwege
de afwijkingen die het systeem vertoond ten opzichte van verwacht gedrag, is gekozen
voor model checking. Dit heeft geleid dit de volgende hoofdvraag:

Welke stappen zijn er benodigd voor een succesvolle implementatie van model
checking in het ontwikkelproces van de Belastingdienst?

Het onderzoek is opgedeeld in drie fasen, omdat er meerdere aspecten van de organisatie
en model checking bekeken moesten worden om juiste aanbevelingen over het gebruik
van formele methoden bij de Belastingdienst te kunnen doen. In de eerste fase wordt een
beeld van de organisatie van de Belastingdienst gegeven. Daarnaast wordt een overzicht
gegeven van de verankering van Toeslagen in de organisatie, en wordt achtergrond in-
formatie van Toeslagen als product gegeven. Ook het ontwikkelproces van de Belas-
tingdienst wordt besproken. Met sleutelfiguren uit het ontwikkelproces zijn interviews
afgenomen. De informatie uit deze interviews wordt gebruikt om aan te tonen hoe model
checking in het ontwikkelproces van de Belastingdienst toegepast kan worden. De resul-
taten van deze interviews zijn gekoppeld aan Kritische Succes Factoren uit de literatuur
over succes en falen van IT projecten.

In de tweede fase is een model checking casus over het systeem van de Kinderopvangtoes-
lag keten van Toeslagen uitgevoerd. In de derde en laatste fase, is kennis opgedaan in
de eerste en tweede fase gebruikt om aanbevelingen te doen over het gebruik van formele
methoden in het ontwikkelproces van de Belastingdienst.

De interviews hebben aangetoond dat de kritische succes factoren uit de literatuur ook
een belangrijke rol spelen in het project van het nieuwe Toeslagen systeem. Verschillende
verbeterpunten zijn geidentificeerd:

e Documentatie actueel houden.
e Werken in multidisciplinaire teams voor korte communicatielijnen.
e Lange leercurve van het nieuwe Toeslagen systeem.

De uitgevoerde casus heeft de volgende resultaten opgeleverd:

e De specificatie van gedrag is op punten onduidelijk en bevat onduidelijke zinnen.
Deze zinnen geven de programmeur ruimte tot eigen interpretatie.

e Functies zijn gespecificeerd door te refereren aan het gedrag van andere functies.
Dit kan tot fouten in deze functie leiden als het orginele gedrag wordt aangepast
en deze functie niet meeveranderd in het product.

e Gebruik van ongedefinieerde termineer events en hetzelfde event wordt met meerdere
benamingen aangeduid.

e Ongedefinieerd gedrag voor de service die het event Cevt_tijdstip_beschikken
afhandelt, in het geval dat er geen concept beschikkingen aanwezig zijn.

Dit soort bevindingen kunnen de volgende impact op de organisatie hebben:

e Door onduidelijkheden in de specificatie moet er opnieuw naar de specificatie
gekeken worden, wat inhoudt dat het gehele proces weer doorlopen moet worden.

e Als deze problemen hun weg naar de software vinden, moeten er patches uitgebracht
worden.

e Problemen in de software kunnen burgers raken. De analyse van een bekend prob-
leem heeft aangetoond dat dit potentieel 500,000 burgers kan raken.

Voor het gebruik van formele technieken, en met name model checking, in de organisatie,
zijn de volgende stappen vastgesteld:

1. Werken in multidisciplinaire teams van domeinexperts, architecten en analysten

2. Architecten en analysten scholen in het gebruik van de formele taal en bijbehorende
gereedschappen

3. Andere betrokkenen een basisscholing geven in de formele taal zodat zij de speci-
ficatie kunnen reviewen

4. Domeinexperts scholen in het opstellen van voorwaarden waaraan de specificatie en
de software moet voldoen. Deze voorwaarden worden gecontroleerd door de model
checker

5. Verificatietijd plannen, zodat de specificatie doorgerekend kan worden. Ook moet
rekening gehouden worden met tijd om problemen die tijdens de verificatie naar
voren komen, te herstellen.

Verder onderzoek is nodig om de winst die door model checking behaald wordt te kwantifi-
ceren, maar dit onderzoek heeft duidelijk gemaakt dat formele methoden van toegevoegde
waarde zijn voor het ontwikkelproces. Zodra de leercurve genomen is, kan het systeem
in een taal zonder ambiguiteit gespecificeerd worden. Dit levert een duidelijkere en ver-
beterde specificatie op ten opzichte van de huidige methode. Daarnaast biedt model
checking mogelijkheden om de analyse van software fouten te ondersteunen.

Management summary

The increasing complexity of the business processes and systems of the Belastingdienst
make manual testing a difficult task. Therefore, the organisation is looking to expand
their skill set, as they feel that current testing techniques need to be improved to achieve
the high quality level the organisation pursues. The Belastingdienst is considering the
use of formal methods: mathematically based techniques. Two formal methods were
considered, model checking and model based testing. The Belastingdienst proposed a
case study of the system of Toeslagen. Because of the nature of the anomalies the system
of Toeslagen is suffering from, the selected formal method was model checking. This has
led to the following question:

What steps are required for a successful implementation of model checking
within the development process of the Belastingdienst’s Toeslagen program?

This research was divided into 3 phases, as several aspects of the organisation and model
checking needed to be examined in order to give proper recommendations on the usage
of formal methods by the Belastingdienst. In the first phase, a clear view of the organ-
isation, the embedding of Toeslagen in the organisation and the development process
used by the Belastingdienst is given. Also background information on the organisation
and Toeslagen as a product are given. An empirical research on the development process
is conducted through structured interviews with key personnel from the development
process. Information gained from these interviews has helped to establish how model
checking can be embedded in the development process of the Belastingdienst. The re-
sults of these interviews are structured with Critical Success Factors (CsF) found in a
study of the literature on success and failure of information system projects.

During the second phase, a case study on the supporting system of the Kinderopvang-
toeslag chain of Toeslagen has been performed. In the third and final phase, knowledge
gained from both the first and second phase is used provide recommendations on the
usage of formal methods in the development process of the Belastingdienst.

The interviews have shown that the critical success factors from the literature play an
important role in the project for Toeslagen and several improvements have been identified:

e Keeping documentation up to date

e Working in multidisciplinairy teams to ensure easy communication
e The long learning curve of the new Toeslagen system

The case study has led to the following results:

e The specification is unclear and contains unclear sentences. These sentences leaves

room for the programmer to give his or hers own interpretation

e Functions are specified referring to specification of other functions. This can lead

to errors when the original function is changed

e Use of terminate events, where the terminate event is not defined and multiple

names for identical events

e Undefined behavior for the service handling the Cevt_tijdstip_beschikken event,

for the case that no concept depositions have been created

These findings can have the following impact on the business organisation:

e Due to ambiguity in the specification, rework has to take place. This means the

entire process is performed once again

e If anomalies find their way into the software, patches must be made
e Anomalies in the software can have impact on citizens. Analysis of a Known Error

has shown that it can potentially have impact on 500,000 citizens

Using formal methods, and mainly model checking, within the organisation requires the

following steps to take place:

1.
2.

Working in multidisciplinairy teams with domain experts, architects en analysts
Educate architects and analysts on the usage of the formal language and accompa-
nying tools

Educate others involved in the basics of the formal language, so they can review
the specification

. Educate domain experts in the scholen in the drawing up of conditions that the

specification should uphold. These conditions are verified by the model checker

. Schedule verification time, so the specification can be verified by the model checker.

If problems are found during verification, their should be enough time scheduled
to analyse and repair these problems

Further research is needed on quantification on the gain provided by model checking, it
is clear that formal methods provide added value to the development process: once the
long learning curve has passed, the system is specified in an unambiguous language, that
can be verified by model checking. This improves the system specification. The model
checking tool can also aid in the analysis of software errors from the production phase,
speeding up the analysis.

Preface

With this thesis I conclude my period as a student of computer science at the Radboud
University Nijmegen.

First of all, I would like to thank Hans Somers. He has provided me with the opportunity
to conduct the research within the Belastingdienst in the form of an internship. He has
supported me during the entire research, even during periods where results were scarce
and the internship needed to be extended.

In particular, I thank Jos van Rooyen of Bartosz for his continuous enthusiasm and exten-
sive reviewing of this thesis. His time investment in this research has been exceptional.
At times when I was struggling to find my way in the research, he gave me the proper
insights which I appreciate enormously.

Furthermore, I could not have completed this research without the supervisors from the
University: Ben Dankbaar, Jan Tretmans and David Jansen. Their advice and feedback
has given this thesis a important quality injection.

The Radboud University has provided me with the opportunity to pursue personal growth
via several extracurricular activities, for which I am thankful. It has helped me to develop
myself on an extra level.

I would to thank everyone at the implementation team Toeslagen for the great time I
had during my internship. I want to specifically acknowledge the support of the follow-
ing: Jurgen van Amerongen, Dennis Geerlink, René Getkate and Tinus Zorgdrager, my
roommates at the Belastingdienst, who spent many hours listening to me talking about
my research, this thesis and many many other things. You have made my time at the
Belastingdienst a very pleasant one.

Finally, I would like to thank my girlfriend, Sophie Verdonschot, for her love and support
during the final years of my study. You have helped me to finally achieve my goals, most
people believed to be impossible.

Xander Damen
Nijmegen, August 2012

Contents

1 Introduction

2 Organisation

3 Toeslagen

4 Development process

5 Modeling Toeslagen

6 Analysis of known errors
7 Application of formal methods within Belastingdienst
8 Related and future work
9 Conclusion

Bibliography

List of figures

List of tables

List of code listings

List of abbreviations

A Business process “process notifications”

12

21

30

40

66

71

76

78

83

91

93

94

95

99

Toeslagen application architecture

Processing notifications

Workprocess handle benefits regulations

Development process at Belastingdienst

RASCI table

Distribution of respondents

List of questions

Transcripts

Model

MSc modification

Known error settings

101

103

104

105

108

110

113

115

116

126

127

Chapter 1

Introduction

The Dutch Tax and Customs Administration (Belastingdienst) is looking for new tech-
niques for testing [1] the software solutions in the organisation. The increasing complexity
of the business processes and systems of the Belastingdienst make manual testing a diffi-
cult task. The organisation feels that current testing techniques need to be improved to
achieve the high quality level the organisation pursues. The Belastingdienst is consider-
ing the use of formal methods: mathematically based techniques. The proposed formal
method is Model Based Testing [1] (MBT). This introduction will look into the current
issues in software testing and into the proposed and closely related techniques. Later in
the introduction, the problem statement will be presented, as well as an approach to the
case study and research.

Testing large, distributed software systems can be problematic: a decent test coverage
is hard to achieve. Looking at Service Oriented Architecture (SOA, one of the software
architectures used within the Belastingdienst), which is intrinsically distributed [14],
using a test coverage of 80% per service in an environment using 3 services will result in
a 50% (80% x 80% x 80%) overall coverage [15]. Combined with the proposed method
by the Belastgindienst, this raises the question how testing in such an environment can
be extended or improved by the use of formal methods. It seems best to start at the
beginning of the development process, as errors that emerge from the specification have
the most impact [16]. When developing any software system, it is important to start with
a clear, unambigious and error-free documented system specification and design. These
design and specification documents play a crucial role in the software development proces
and the maintenance of the system as they form the basis for the system. Problems within
the initial (system) specification or the design of the system are often only noticed during
the System or Acceptance test (which is performed after the realisation, see Figure 1.1) ,
or even later in the production phase. Errors in these specification documents are difficult
and expensive to correct if propagated into the design or implementation phase [17,18].

Errors in the information system can have a large impact on the organisation, as they are
responsible for unsuccessful completion of the process. Have all choices been well thought

Systemdesign Testdesign

1
]

]

|

: Proguction
' ‘ﬁ « - .-‘«-ﬁ:m-.u
1 Contmol 5 -

|

1

1

Acceptation process

A
)
l
]
i
i
]
]
|
" |
LT 1
;5' 1 Process [} :n« :
A | {induding ments '
b ! i
E : Functio ||..n |
O '
[i
| q—r !
' Technic oy i
i
! 1
1 M
1
i -H- '
' Re |I| !
1
! 1
! 1
] 1
v Testpreparation Testexecution |

Figure 1.1: The life cycle development model [19]

through and are all possible situations covered by the specification? Current testing and
review methods cannot keep pace with the construction of larger and more complex sys-
tems [20]. This asks for new technologies to meet these challenges, as is the case for the
Belastingdienst as stated in [1]. Formal methods can aid the designers by formalizing
the requirements before the system design begins. This is done by removing ambiguity
from these specifications, as well as error detection, completeness of requirements [18]
and verification of the implementation with regard to the specification, as the technique
offers a complete view over the specification. However, these formal methods are mainly
applied to reactive systems, typically embedded systems, because these systems provide
a typical input/output response which is suitable for such formal methods: validating
and verifying specification and implementation. Administrative systems typically do not
have such input/output response defined. This makes them less suitable for formal meth-
ods. However, administrative systems can be built as reactive systems. The Toeslagen
program of the Belastingdienst, which the Belastingdienst has proposed [1] as the system
and specification to be researched, is built as a reactive system. Such behavior is created
by using an Event-Driven Architecture, EDA. An EDA is a style of the earlier mentioned
SOA [21,22]. However, as formal methods, and specifically model based approaches, have
not yet been widely adopted in software or systems engineering 23,24, this field is yet
to be explored, especially in administrative environments using EDA. Formal methods
can be used to ensure that the provided specification of a business process or supporting

system is complete and error-free. Specification documents, especially early in the devel-
opment life cycle (Figure 1.1) are written using natural language. This brings a certain
level of ambiguity. Often designers try to take away this ambiguity by using visualization
techniques. To be able to create a model of this specification, the specification should
have as little ambiguity as possible.

As systems using an EDA are event-driven, and business processes are event-driven as
well [25], there is a direct correlation between these business processes and systems. This
implies that both the business processes and systems are specified in the development
process. Faults within this specification will not only affect the software, but the entire
process as the system is built to support the business process. When an error is not
detected during a system or acceptance test, which is often only used to check the system
and not the entire process, this can lead to process failure which affects the workforce
and customer satisfaction [26].

Furthermore, the later an error is detected and changes need to be made to the system,
the higher the cost of change is [16]. This is depicted in Figure 1.2. Formal methods can
help to detect errors in design early, which leads to lower costs in the realisation of the
system as well as less errors in production.

=
3
c 5 o
= 5
o < @
<
cost 3 @, @ @
o O n
of 3 5]
g @ T S Y
change Q a 3 @
=4 o o
= n 3
o 7o) i
=l =3
3 /
L= —

JuswAojdap

Y

time

Figure 1.2: Cost of change curve [16,27]

The Belastingdienst proposed MBT as the formal method to consider [1|. However, a
technique called Model Checking (MC) is closely related to MBT, as both are formal
methods that use modeling techniques for validation and verification. Both techniques

are considered and discussed briefly.

Model checking aims at showing that a model is valid and contains given properties.
Model-based testing starts with an assumed valid model to show that the implementation
under test behaves in compliance with this model [28]. As such, these two techniques are
complementary. This is shown in figure 1.3.

~ Model checking
~ Ty
~ \ py
Y Y

Specification Maodel

~ / *‘-._
s ":: ...\\.
f \
~ [Model |
s (|
~ | based I|
~ \ Testing |
N IH_ 8 /
“ N/

~ VoS

~oh

¥ . AY |

— e
Test cases [q. Testing ¥ Suﬁwarel
— ——"|implementation

h 4

Figure 1.3: Testing, model checking and model based testing

Both techniques share several advantages: they are fast, exhaustive and can be performed
automatically [29]. If errors are found, counter examples are provided [29]. In case of
model checking, the counter example is an error path leading to a situation where the
given property over the model did not hold. For model based testing, it consists of
provided input, expected output and actual output.

One of the disadvantages of these formal methods is that they do not scale well to large
systems [30,31]. The problem that occurs is called the “ space explosion problem” [32,33].
This problem occurs when the complete set of instances of the system is too large and
cannot fit into the memory of the computer system that is used to check the model.
This means that no model is ideal to completely describe a complex or large system [34].
Therefore, among other things, abstractions to the system or selection of parts of the
system have to be made [35].

Despite these disadvantages, model based techniques can be useful in the development
of complex systems [36]. Overcoming these disadvantages is discussed in chapter 5.

1.1 Problem statement

The current system of the Toeslagen program of the Belastingdienst is still under de-
velopment. The system is operational, but not all anomalies have been solved. Some

anomalies lead to the system being unable to make a new decision for the customer and
unable to terminate successfully. It should be noted that this happens in rare cases,
and most of the processing terminates succesfully. System architects and analysts have
not yet been able to find the causes of these anomalies. System analysts believe that
these anomalies occur in cases of high concurrency. They believe that concurrency is
the cause, because the anomalies found in the production environment do not occur in
the low concurrency test environment. In that test environment, the problematic cases
lead to successful termination. The current application of testing techniques (based on
TMAP) has been unable to find these errors.

In this high concurrency environment, identical services are connected to the enterprise
service bus (a part of an EDA) to reach a higher throughput. It is important to note
that in cases where no new decision is made, it is possible that the customer will receive
a wrongful amount. These wrongful amounts are difficult to reclaim [37] and create an
extra work load in the backoffice, as complaints will rise. More on this can be found in
section 1.2.

As stated before, the Belastingdienst is interested in introducing new technology, a formal
method for validation and verification, into the development process. However, it is
unclear what the required characteristics and conditions for the application of these
formal methods are [1]. It has therefore not yet been applied within the development
process. In the literature is described that the introduction of a new technology into the
development process is difficult if it requires fundamental change [38|.

When applying modeling techniques, abstractions or a selection will have to be made to
handle the state space explosion problem. Making the right abstraction and selection is
difficult, as the model must be capable of describing system behavior and possible errors
or problems of the system should not be abstracted from.

1.2 Case study

The Belastingdienst has provided the specifications of the Toeslagen program, which is
the system under investigation in the case study. This case study should provide a basis
for a general solution for the usage of formal methods within the Belastingdienst.

The program currently consists of 4 chains: Zorgtoeslag, Huurtoeslag, Kindgebonden bud-
get (KGB) and Kinderopvang Toeslag (KOT) which operate in the EDA/SOA [21]) envi-
ronment of the Belastingdienst. As it is not feasable to apply formal methods on all
chains simultaneously, validate, verify and document findings within the time frame of
the internship at the Belastingdienst, the scope has been narrowed. Therefore, only one
of these chains has been selected.

There are several things to consider in selecting a chain: current state of implementation,
impact of errors and known errors. The KOT chain is best suited, for several reasons.
This chain has the lowest number of eligible “users”, but the amount of money concerned

per “user” is highest. The system is known to have problems with rollback events (a
rollback event is used to unset data set by previous event), as undefined situations can
occur in those cases. In undefined situations the event-chain stops unexpectedly and no
new decision regarding KOT is made when it in fact should have been made. No new
decision means that the old decision continues and wrongful amounts are paid to an
individual citizen.

Considering the given problems noted above and the concurrency issues mentioned in
section 1.1, the formal method of choice is model checking. This is a proven technique in
the analysis of concurrent programs [29,39,40|. Therefore, the main hypothesis for this
case study is:

Concurrency is the cause of the anomalies in KOT and model checking can
detect these anomalies in the design.

By creating a model of the initial system design and verifying properties over this model,
errors in the design can be ruled out. Although architects and analysts believe that the
current specification of the system is complete, it is crucial to verify the initial design.
This verification is needed as the introduction of concurrency will raise the complexity
due to liveness, fairness and deadlock properties. Therefore, introduction of concurrency
will most likely raise the number of anomalies. By increasing the concurreny of the
model, the errors the system currently experienced, and possibly other anomalies caused
by concurrency, can be detected.

To be able to determine how to embed this model checking technique in the development
process, the current development process must be mapped. This is done by examening
internal documentation at the Belastingdienst, as well as by retrieving a list of people
involved in the development process of the Toeslagen program and conducting an inter-
view with a selection of people from this list. These interviews obtain experiences with
the development process. This will give a good overview over the process, and recom-
mendations on the process can be made. From these findings, recommendations on the
embedding of model based approaches in the development process will be made. This
will be based on findings from the case study, supported by literature.

1.3 Purpose

By means of the case study, the hypothesis stated in section 1.2 will be checked: “Concur-
rency is the cause of the anomalies in KOT and model checking can detect these anoma-
lies”. Although Toeslagen provides a basis for the study, findings will be generalised for
a Belastingdienst wide usage.

Secondly, this study aims to get a clear view on the development process and its or-
ganisation within the Belastingdienst. This is done by examining documents from this
process and conducting interviews with people involved.

Furthermore, this study will show the application of model checking to administrative

systems. In order to do so, a case study is performed. This will reveal possible anomalies
(namely ambiguity, incompleteness and inconsistency [18]) in the specification of (part
of) the supporting system and business processes. The case study also aims at detecting
concurrency problems, following the hypothesis from section 1.2.

Fourthly, this study provides a set of guidelines on specification of business processes
and systems to be suitable for model based approaches to testing. These guidelines come
from the performed case study and literature.

Finally, this study will point out the prerequisites and changes needed for the adoption
of model based techniques, mainly model checking, within the development process used
by the Belastingdienst. This is done by linking findings from the conducted case study
to the development process used in the organisation.

1.4 Questions

Because the Belastingdienst is looking for a general solution for the usage of formal meth-
ods, the case study provides the basis for this study. The hypothesis guides the research
performed in the case study, while the main question guides the research in a broader
view, presenting a broader view on the usage of formal methods. By means of several
subquestions in support of this main question, the general solution the Belastingdienst
is looking for will be investigated and presented.

The main question for this study is:

What steps are required for a successful implementation of model checking within the
development process of the Belastingdienst’s Toeslagen program?

This main question is supported by subquestions, based on [1]. Questions have been

categorized in Belastingdienst, Toeslagen, KOT and model checking. Section 1.5 will

provide the places in this thesis where the seperate questions are answered.
Belastingdienst

1. What is the organisational structure of the Belastingdienst?

2. What prerequisites and changes are needed in the development process of the Be-
lastingdienst for a successful usage of model checking?

10.

11.

12.

13.

14.

15.

16.

Toeslagen

. What departments and units are involved in the Toeslagen program at the Belas-

tingdienst?

. Who was involved in the development process of the Toeslagen program, what role

did they have and how have they experienced this development process?

KOT

. What business processes are involved in KOT?

. Where is the system for KOT described?

Model checking

What specification language and tool is best suited for the modeling and verification
of KOT?

. What level of abstraction is to be used for the modeling of the system supporting

KOT?

What characteristics should the specification of business processes or systems have
to be suitable for model checking?

What kind of errors does model checking detect?

To what extent does model checking improve the specification of the supporting
systems?

What is the education level and knowledge needed for model checking?

What are the general usability, costs and time intensity for model checking within
the Toeslagen program at the Belastingdienst?

Does model checking provide added value to an organisation, taking into account
costs and benefits?

What view does model checking deliver of the supporting system of KOT?

Do stakeholders involved in KOT share the view delivered by model checking?

1.5 Method

This research is divided into 3 phases, as several aspects of the organisation and model
checking need to be examined. The first phase, which will be described in chapters 2, 3
and 4, is meant to give a clear view of the organisation, the embedding of Toeslagen in
the organisation and the development process which is used by the organisation. This

10

will answer questions 1, 3 and 5 of 1.4. Also background information on the organisation
and Toeslagen as a product are given. An empirical research on the development process
is conducted through structured interviews with key personnel from the development
process. This answers question 4. The results of these interviews are structured with the
help of Critical Success Factors (CSF) found in a study of the literature on success and
failure of information system projects. Information gained from these interviews helps
to establish how model checking can be embedded in the development process of the
Belastingdienst.

The second phase, the information system of Toeslagen is modeled in a modeling language
and verified with a model checker. Through this research with model checking, the
hypothesis stated in section 1.1 will be tested. This is described in chapter 5. This
research is expanded by analysing (Candidate) Known Errors (CKE and KE) using the
built model. This analysis is explained in chapter 6. Both chapters 5 and 6 will answer
the questions 6, 7, 8, 9, 10 and 11 stated in section 1.4. By performing an empirical
research, experience of this model checking process can be used to give recommendations
to the Belastingdienst on the embedding of this method in the development process of
the organisation.

In the third and final phase, knowledge gained from both the first and second phase is used
to answer questions 2, 15, 16, 13, 12 and 14 of 1.4. The combination of these questions
will lead to a proposal of steps to take to use model checking within the Belastingdienst.
This is presented in chapter 7. Before answering the main question of section 1.4 and
delivering a final conclusion in chapter 9, chapter 8 will deliver a view of the related
research and research areas to explore.

Please note that some complex figures are in Dutch. As the source images were not
available, translations of these images could not be made in a timely manner.

1.6 Internship

This research is performed as part of an internship within the Central Office of the
Belastingdienst. This internship took place from February 1, 2012 until August 31, 2012.
The performed activities include modeling the system, conducting interviews, writing
research proposal and this report. No Belastingdienst regular duties were performed
during this internship.

11

Chapter 2

Organisation

As stated in the introduction, the research took place through an internship within the
Central Office of the Belastingdienst (see 1.6). Before looking into the details of the
development process of the Belastingdienst, its business processes and the I'T systems
involved in Toeslagen, an overview of the organisation is given. This overview provides
a picture which will help to establish the position of the development proces, Toeslagen
and its business processes within the organisation. Parts of the organisation with little
to no involvement in Toeslagen are discussed briefly. Other, more involved parts of the
organisation will be described in more detail. Within the figures shown in this chapter,
units and departments marked red have involvement in one or more processes concerning
Toeslagen.

2.1 Ministry of Finance

The Belastingdienst is part of the Dutch Ministry of Finance. The Ministry of Finance
consists of four Directorate-Generals, of which the Directorate-General for the Belasting-
dienst (DGBel) is responsible for the Belastingdienst. This Directorate-General ensures,
together with the Belastingdienst, that the national tax policy is implemented. An
overview of the organisational structure of the Ministry of Finance is given in figure 2.1.

12

Minister of Finance

Deputy secretary-
general

Central directorates

Directorate-general Directorate-general
Fiscal affairs {national) budget

General treasuiry

Figure 2.1: Organisational structure of the Ministry of Finance!

2.2 Belastingdienst

As mentioned before, the Belastingdienst is part of the Ministry of Finance. The more
than 30,000 staff members of the Belastingdienst are responsible for a wide range of
activities, but the Belastingdienst is best known for levying and collecting taxes and
national insurance contributions. Each year, the Belastingdienst processes the tax returns
of 10 million private individuals and 1.1 million entrepreneurs. The core duties of the
Belastingdienst are listed below.

e levying and collecting taxes

detecting fiscal, economic and financial fraud

paying out income-related benefits for childcare, rent and health care
e supervising the import, export and transit of goods
e supervising compliance with tax laws and regulation

As can be seen in the core duties, the Belastingdienst not only collects, but also pays
out. The Belastingdienst pays out provisional refunds and benefits (the earlier mentioned

nformation as displayed on the website of the Ministry of Finance. Current structure does not
contain the Deputy secretary general.

13

Toeslagen) that are available to households towards the costs of childcare, rent or health
care. More on Toeslagen can be found in chapter 3.

The Belastingdienst is structured in departments along these core duties (see figure 2.2):

e Customs

e Toeslagen

e Fiscal Information and Investigation Service
e Central Office

e Facility centers

e TaxLine

e National Office Tax Regions

The Belastingdienst considers it self-evident that its staff members are helpful and service
oriented, and that they assume that taxpayers are acting in good faith.

The organisation applies three basic values [41]:

e credibility: the Belastingdienst takes its tasks seriously and stands by agreements

e responsibility: the Belastingdienst exercises its powers in a responsible manner and
is prepared to account for its actions

e care: the Belastingdienst treats everyone with respect and takes everyone’s expec-
tations, rights and interests into account

These three basic values make it clear what the Belastingdienst stands for and what
taxpayers may expect.

2.2.1 Fiscal Information and Investigation Service

When the Belastingdienst suspects fraud, the matter is referred to the Fiscal Informa-
tion and Investigation Service (Fiscale Inlichtingen- en OpsporingsDienst, FIOD). The
FIOD then assesses whether fraud is indeed being committed. If this is the case, the
FIOD, in consultation with the Public Prosecution Service, may decide to start a criminal
investigation.

14

Facilities service

- -
[[|
FIOD Customs Maticnal Office Tax
Regions

9 Customs offices 14 Tax regions

Figure 2.2: Organisational structure of the Belastingdienst

2.2.2 Central Office

The Central Office (Centrale Administratie, B/CA in short) is responsible for the content
of the products and services to citizens and businesses. B/CA supports the other business
units. Most orders and assessments originate from the B/CA. It is also data provider for
the Belastingdienst and other public authorities. Other responsibilites include monetary
transactions, levying and collecting taxes. More on the Central Office can be found in
section 2.3.

2.2.3 Facility Centers

The Belastingdienst has five facility centers to ensure that all its duties are performed
properly:
e Facilities Service Center (Centrum voor Facilitaire Dienstverlening, B/CFD)

e Center for Professional Development and Communication (Centrum voor Kennis
en Communicatie, B/CKC)

e Center for Application Development and Maintenance (Centrum voor Applicatie-
ontwikkeling en onderhoud, B/CAO)

e Center for Infrastructure and Operations (Centrum voor Infrastructuur en Eu-
ploitatie, B/CIE)

15

e Center for Information Service Support (Centrum voor Ondersteuning 1V-keten,
B/COI)

Facilities Service Center
Facilities Service Center is the internal service system of the Belastingdienst. Manage-

ment of emergency and first-aid service, building management, distribution of postal
items and archive management are examples of the duties performed by this center.

Center for Professional Development and Communication

B/CKC supports and advises the Belastingdienst in education and informing, communi-
cation and personnel and organisational development.

Center for Application Development and Maintenance

This center is the system integrator for the Belastingdienst, developer and administrator
of ICT applications, sometimes in collaboration with external parties.

Center for Infrastructure and Operations

B/CIE provides data center services for the Belastingdienst, citizens and entrepreneurs.

Center for Information Service Support

B/COI supports the information services, offering methods, techniques, tools and regula-
tions with regard to information services.

2.2.4 Toeslagen

Belastingdienst/Toeslagen is responsible for execution of the law on benefits. More on
Belastingdienst/Toeslagen is found in section 2.4.

2.2.5 TaxLine

Taxline, or BelastingTelefoon is the unit of the Belastingdienst that private individuals
and entrepreneurs can contact with questions about, for instance, tax returns, national
insurance contributions and benefits.

16

2.2.6 Customs

Customs has 3 core tasks: stop goods at the border, control the proper application of
laws and regulations and to levy and collect taxes.

2.2.7 National Office Tax Regions

The National Office Tax Regions (Landelijk Kantoor Belastingregio‘s) supports the Tax
Regions to work in an unambiguous manner. The regions are specialised in individual
supervision of taxpayers.

2.3 Central Office

The Central Office (Centrale administratie or B/CA) is responsible for the execution of the
bulk and central part of the processes of the Belastingdienst. This involves administrative
duties such as dispatching and processing various tax returns, dispatching notifications
and bulk (supervisory) duties.

The B/CA supervises the automated handling of tax returns, remittances and payments.
Three quarters of the total returns, remittances and payments are handled via auto-
mated systems. The supervision ensures that the various processes remain clear and
manageable. Tax returns and notifications that cannot be handled automatically are
also part of the duties of the B/CA. Furthermore the B/CA regulates the moments when
the computer centre processes the data received from third parties.

For the bulk processes of the Belastingdienst, B/CA provides tailor-made services where
possible. Speed, completion time, continuity and efficiency are key concepts in this
respect.

B/CA combines all processes as regards the collection, registration and storage of data,
the automatic processing of that data and its preparation for the notification process.
This means that the client base consists of 12 million people, which covers a great deal
of the population of the Netherlands.

2.3.1 Corporate identity

The B/CA is responsible for the content and delivery of products and services to citizens
and entrepreneurs and supports the other business units of the Belastingdienst.

2.3.2 Mission

B/CA has responsibility over the handling of clients for Toeslagen, Tax Regions, Customs
and TaxLine. This is carried out in support of the other business units and translated

17

to:

e Responsibility for the client to client (request to disposition) process for many
citizens and entrepreneurs, for data-intensive processes that do not require extensive
client handling and have a short turnaround time. This is a primairy process for the
Belastingdienst with a shared responsibility with Toeslagen, Tax regions, Customs
and TaxLine. This requires a view from citizen and entrepreneur perspective.

e Responsibility for collecting, processing, and timely provision of reliable informa-
tion used within or outside the Belastingdienst. This requires thinking as the
recipient of the data. These recipient are fellow business units, internal units or
citizens.

e Responsibility for payment and collection. This is an important part of the gov-
ernment cash flow.

e Responsibility for corporate administration. This is an facilitating task for the
Belastingdienst.

2.3.3 Vision

The core competencies of the B/CA are the fast, high quality delivery of products and
services. Common characteristics of these products and services include massiveness,
standardization and data-intensity. An increasing part of these products and services
will be dealt with completely automated.

2.3.4 Structure

The Central Office has identified three core businesses: production, information and
business administration. The B/CA is structured along these core businesses, as units
are linked to a core business of the organisation. The business units are made up of
one or more teams, each with their own specific area of expertise. For readability, these
teams are not included in the organisational overview of the B/CA (see figure 2.3).

18

Planning, finance Internal and

and control external
communication

Local infarmation Persannel and
LErvices QOrganisation

Business
administration
PruEESSIng -
1

Collection Law enforcement Customs

Vehicle

Saftware developer
support

Figure 2.3: Organisational structure of the Belastingdienst/Central Office [2]

2.4 Belastingdienst/Toeslagen

Belastingdienst/Toeslagen (B/T) (see figure 2.4 for an overview of the structure of Be-
lastingdienst/Toeslagen) is responsible for execution of the benefits acts. The mission
of Belastingdienst/Toeslagen is to ensure that benefits are granted accurate, timely and
lawfully and payed out in an efficient manner with minimal effort by the citizen.

This mission is translated into 4 core competencies [3]:

e Lawful granting of benefits

e Customer-oriented service

e Working efficiently

e Versatility

To perform its tasks, B/T collaborates with over 15 chain partners from inside and outside
the Belastingdienst [3].

-=Zmn

Figure 2.4: Organisational structure of the Belastingdienst/Toeslagen

1
m

As mentioned, Belastingdienst/Toeslagen is part of the executive body of government.
While the Belastingdienst executes the policy of the Ministry of Finance, Belastingdi-
enst/Toeslagen executes the legislation of benefits, which is created by other ministries.
See chapter 3.

More on Toeslagen as a product, its supporting systems and business processes can be
found in chapter 3.

2.4.1 Conclusion

This chapter has shown an overview of the organisational structure of the Belastingdienst,
answering question 1 stated in section 1.4. As can be seen from this overview, many parts
of the Belastingdienst have involvement in Toeslagen. The figures show which parts of
the organisation exactly have envolvement (see question 3 in 1.4: what departments and
units are involved in the Toeslagen program at the Belastingdienst).

Chapter 3

Toeslagen

In the Netherlands, citizens can be elegible for income-related benefits. These benefits
find their basis in the General Benefits Act (Algemene wet inkomensafhankelijke regelin-
gen, AWIR). Belastingdienst/Toeslagen is responsible for the execution of this law. The
organisation and its structure have been discussed in 2.4. This chapter focusses on Toes-
lagen as a product and service and the processes and information services behind the
delivery of Toeslagen.

As stated in chapter 1, there are currently four income-related benefits:

e Health care benefits (Zorgtoeslag), a compensation to the premium of health care
insurance.

e Rent benefits (Huurtoeslag), intended for people on low incomes. With this benefit,
people can afford to live in a rented accommodation.

e Child budget (Kindgebonden budget), a contribution to the living expenses of chil-
dren.

e Childcare benefits (Kinderopvangtoeslag, KOT). Under the Childcare Act (Wet
kinderopvang), the State, parents and employers together pay the cost of childcare.

These four benefits are established and organised by three different ministeries. This is
done in five different acts: one for each benefit and in a General benefits Act (AWIR).
The Belastingdienst is responsible for execution of these acts:

e The health care benefits fall under the authority of the Ministry of Health, Welfare
and Sport (Ministerie van Volksgezondheid, Welzijn en Sport). These benedits are
arranged in the Health care benefits Act (Wet op de zorgtoeslag).

e Rent benefits are defined in the Rent benefits Act (Wet op de huurtoeslag), of which
the Ministry of the Interior and Kingdom Relations (Ministerie van Binnenlandse
Zaken en Koninkrijksrelaties) is the legislating authority.

21

e The Ministry of Social Affairs and Employment (Ministerie van Sociale Zaken en
Werkgelegenheid) is responsible for the Childcare Act (Wet kinderopvang). This
ministery is also responsible for the Child budget, arranged in the Child budget
Act (Wet op het kindgebonden budget) and the General benefits Act (Algemene Wet
Inkomensafhankelijke regelingen, AWIR).

Benefits are related to the current situation of a citizen. Changes in the every day life of
the citizen, such as changes in income, moving, marriage or death of a partner, can have
impact on the benefits the citizen is entitled to. Most citizens, especially those receiving
rent benefits and health care benefits, are highly dependent on these benefits, and will
have problems covering their expenses if benefits do not arrive correctly and in time. It
is therefore important to get the advance payment right and to work with current data.
This requires an approach different from ex post calculation of due taxes.

The final income for a calendar year determines the actual benefits a citizen was entitled
to. Therefore, an ex post calculation is part of the benefits proces, as final incomes are
known a distinctive period after the calendar year. The difference between the advance
payment by the Belastingdienst and the ex post determined final benefit will have to be
settled. Before looking into the details of these benefits, first some facts on Toeslagen.

3.1 Facts and figures

In the Netherlands, 6.5 million households are eligible for one or more income related
benefits. In total, over €12 billion is paid out each year. The division over the different
benefits is shown in table 3.1. Note that the number of households does not add up.
Households can be eligible for several benefits, these are only included once in the total
number of households.

Benefit H Households* ‘ Amount in €
Zorgtoeslag 5.600.000 5.333.200.000
Huurtoeslag 1.300.000 2.744.900.000
Kindergebonden budget 1.172.000 1.193.300.000
Kinderopvangtoeslag 539.000 3.178.800.000
Total | 7.720.000** | 12.450.200.000 |

* Monthly average
** Monthly average of households receiving one or more benefits

Table 3.1: Advance payments of benefits in 2011 [42]

3.1.1 Development

In 2007, the active information systems for Toeslagen were found to be inadequate for
the job. It was too difficult to work with data depicting the current situation of the

22

citizen and the number of manual actions was too high. A new, event driven information
system using a service oriented architecture was designed to reduce complexity and to
put the citizen at the center of the organisation. The plan was named Programma
Toeslagen 2009 and its information system was named Nieuwe Toeslagen Systeem, NTS.
This information system is made up of three parts: Facts Registration System (Feiten
Registratie Systeem, FRS), Toeslagen (TSL), which forms the heart of the system, and the
Office Portal (Kantoorportaal). A schematic overview of NTS is given in figure 3.1. This
figure shows four different events: Bevent, Fevent, Gevent, and Hevent.

e Bevent is an event that contains a decision by the backoffice (Beslis event).

e Fevent is an event that contains facts about a citizen (Feit event).

e Gevent is an event that contains (Grondslagen event).

e Hevent is an event that requires a manual action by the backoffice (Handmatig

event).

NTS is integrated in the existing IT architecture of the Belastingdienst. Section 3.3 will
show which business processes have common ground with TSL. FRS and TSL are briefly
discussing in sections 3.4.1 and 3.4.2 respectively.

FRS Hevent TSL
kantoor kantoor

Hevent Bevent

Mededelen

samengest

besct .n:.
mhe taak

e

ms || TsL

Betalen

rondslagen
Beslissingen

Figure 3.1: Global overview of NTS [4]

The development of this new information system NTS was estimated to take 2 years with
total costs at €56 million. The planned date to start production in the organisation was
set to November 2008, to calculate the benefits for 2009 (hence the name Programma
Toeslagen 2009). This date was not met, and eventually the project was postponed three
years for several reasons (see i.a. [43-50|). The project ran until July 1, 2012. Total costs
have come to €238 million [51].

23

Herijkingspunten - Kosten

200 rmiln
240 raln
g
e 180 min /’n
(]
2 120 min
=
&0 raln e
0 miln
- w T o —
! o o - i
= =] =] o
% T T % T
— o o — o
T G 5 5 T
= 1—| ™ = ol
e o fa e o
Dratum
Herjkingspunten - Doorooptjd in maanden
70 D
= St
"g_ -
C——
g 42
=]
T 28q O
& 14
u]
I~ o o o —
! o = o 1—|
= = = o o
- T T - T
o ™ o 1—| ™
T T 5 5 T
o ~ ™ o o
o o o o o
Dratunn

Figure 3.2: NTS time and costs 52|

Looking further into these costs, external personnel plays a large factor. In the beginning
of 2011, 190 FTE (fulltime-equivalent) of external personnel per month was involved
in the development and implementation of this NTs. Of this 190 FTE, 110 FTE was
spent on software development and 80 FTE on system integration. Monthly costs for the
development of NTS were €3.8 million each month [53].

As the case study (see 1.2) is focussed on a single benefit, KOT, some background infor-
mation on this benefit is provided.

24

3.2 Kinderopvangtoeslag

Under the Childcare Act (Wet kinderopvang), the State, parents and employers together
pay the cost of childcare. Childcare benefits (Kinderopvangtoeslag, KOT) are the State
component, which is handled by the Belastingdienst.

There are several conditions to be fulfilled for a citizen to be entitled to childcare benefits:

e The citizen receives child benefit (kinderbigslag), foster parent contribution for the
child or the citizen supports the child to a large extent

e The child is registered at the same address as the citizen

e The childcare center (kindercentrum) or host parent agency (gastouderbureau) is
registered. For host parent agencies, the host parent must be registered as well

e A written agreement exists between citizen and childcare center or host parent
agency

e The child is not enlisted in secondary education
e (itizen or partner have childcare expenses.
e (itizen and parent:

— are of Dutch nationality or have a valid residence permit

— have a job or study, or are following a reintegration program or citizenship
course

The maximum income for child care benefits is higher than that of the other benefits
and is based on the number of children for whom the benefits are received. For the first
child, benefits are received for incomes until €117.000 per year. The benefit is however
related to the level of income. The higher the income, the lower the benefit. Furthermore,
the State has determined a maximum number of hours of child care each month and a
maximum hourly rate.

3.3 Business processes

Toeslagen involves several business processes. By analysing these business processes, it
will become clear how Toeslagen are handled in the organisation. Furthermore, these
processes can help to establish which software components are used to calculate the
benefits and are therefore within the scope of this research. Within the B/CA, these
business processes have been registered and visualised (see [5]). These processes are
general processes for each benefit:

25

e Processing notifications (Verwerken meldingen)

e Defaulters (Wanbetalers)

e Residence factor (Woonlandfactor)

e Automatic continuation (Automatisch continueren)
e Decision on Objection (Beslissing op Bezwaar)

e Appeal (Beroep)

e Mass supervision (Massaal toezicht)

e Final awarding (Definitief toekennen)

As the system was meant to put the citizen at the center and through notifications keep
track of the current situation of the citizens, “Processing notifications” seems the most
interesting business process to look at. This is confirmed by figure A.1 (see appendix).
Two distinct parts can be distinguished from this process: Register facts (Feiten reg-
istreren) and settle benefits (Afhandelen toeslagen). Register facts occurs in FRS (See
3.4.1 for information on FRS). Figure A.1 clearly shows that a large part of the settle
benefits process is embedded in TSL (see 3.4.2). This means that this TSL component
is an important part of NTS: this is the component where the concurrency problems
mentioned in chapter 1 occur. TSL is therefore the target of this research, this is were
specific regulations for benefits are used. When looking more closely at figure A.1, several
subprocesses can be identified:

e Workprocess receive notifications (Werkproces Ontvangen meldingen)
e Workprocess destack (Werkproces Ontstapelen)
e Workprocess process notifications (Werkproces Verwerken meldingen)

e Workprocess determine deviant handling (Werkproces Bepalen Afwijkend behande-
len)

e Workprocess AWIR (Werkproces AWIR)
e Workprocess settle benefits regulations (Werkproces Afhandelen Toeslagregeling)
e Workprocess formal decision (Werkproces Formeel beschikken)

e Workprocess determine SVB (Sociale Verzekeringsbank, Social Insurance Bank)
(Werkproces Bepalen SVB)

e Workprocess payment advice (Werkproces Opstellen betaaladvies)

e Workprocess composing content (Werkproces Samenstellen Content)

26

e Workprocess notify (Werkproces Mededelen)
e Workprocess stack (Werkproces Stapelen)

e Workprocess collect (Werkproces Invorderen)

Several workprocesses are embedded in the information system TSL, as can be seen in
figure A.1. Werkproces AWIR and Werkproces Afhandelen Toeslagregelingen make up
the automated part of the handling of notifications as they form the services AWIR and
GBB (Grondslagen, Beslissen en Beschikken - Foundations, Decide and Disposition) of
TSL (see figures 3.3 below and D.1 in appendix D). Figure 3.3 shows that Bepalen AWIR
is part of the TSL component of NTS.

Verwerken
meldingen

Ontvangen v .
Afhandelen
toeslagregeling

Figure 3.3: Workprocess AWIR |[5]

3.3.1 Workprocess handling benefits regulations

Four business functions of the workprocess handling benefits regulations are embedded
in TSL (see figure D.1). Together these business functions make up the GBB service of
TSL as depicted in figures D.1 and 3.4.

These business functions are:

1. Recalculate expenses (Herberekenen lasten)

2. Determine household (Vaststellen huishouden)

27

3. Determine financial capacity (Bepalen draagkracht)

4. Decide on benefit regulation (Beslissen toeslagregeling)

Business functions 1-3 together form the foundations for Toeslagen.

3.4 ICT infrastructure

The Belastingdienst has a large ICT infrastructure. For Toeslagen, over 30 ICT compo-
nents are involved in the delivery and processing of data. See figure B.1.

As stated before, NTS was to be embedded in the existing 1CT infrastructure of the
Belastingdienst, because the current systems needed to function as a data provider to
the new system. While the new system is event driven, the existing systems are batch
oriented. To link these two types of systems stacking and destacking mechanisms (see
figure B.1, Stapelaar / Ontstapelaar) need to be placed. Work processes are in place for
these actions, see 3.3, workprocess stack and destack.

Looking at the communication between the different services of NTS, this requires an
Enterprise Service Bus [54| (EsB). The Belastingdienst has chosen to use Microsoft
BizTalk.

3.4.1 FRS

As seen in figures 3.1 and A.1, the Feiten Registratie Systeem (FRS) registers all facts
(feiten) concerning Toeslagen of which the Belastingdienst is notified by a citizen or
third party. It is the first handler of messages after the receiving process. Because it is
the first handler of messages, FRS also checks the incoming data for inconsistencies or
missing values. If those checks are passed, the new situation is stored. Based on the new
situation, zero to several events are placed on the ESB to be handled by TSL.

3.4.2 TSL

As mentioned earlier, TSL is made up out of several business functions. These business
functions are components of the “Workprocess settle benefits regulations”, part of het
business process processing notifications. The position of these business functions in
TSL is displayed in figure 3.4. This picture clearly shows that the different benefits are
separated within TSL and that AWIR functions are shared throughout all benefits.

28

GrZorg Bsl Zorg BesZorg

Bsl Huur BesHuur

Kantoor
toedeler

service . bedrijsfunctie

Figure 3.4: TSL

3.5 Conclusions

This chapter focussed on the product Toeslagen. Toeslagen involves several business
processes, which are identical for each benefit. The information system components for
the processes are used to distinguish between the different regulations for benefits. The
leading question for this chapter was question 5 of 1.4: what business processes are
involved in KOT? This question was answered in 3.3, showing the relevant processes:
processing notifications, defaulters, residence factor, automatic continuation, decision
on objection, appeal, mass supervision and final awarding. The most relevant business
process was also identified: Processing notifications (Verwerken meldingen).

29

Chapter 4

Development process

As mentioned in the introduction, the research focuses on the usage of formal meth-
ods, mainly model checking, in the development process of the Belastingdienst. This
embedding of model checking in the software development life cycle (SDLC) of the Be-
lastingdienst, requires an overview of the SDLC. To ensure that formal methods provide
added value to this development process through optimisation of this process, experi-
ences of key persons in this development process have been collected. This was done by
conducting interviews with these key persons. These key persons are positioned through-
out the development process, giving a full coverage over the development process at the
Belastingdienst. These interviews, combined with experiences from the case study (see
chapter 5) will form the basis for the recommendations in chapter 7.

Before discussing these interviews, an overview of the process is given. The results from
these interviews are structured along Critical Success Factors (CSF), identified through
a study of the literature. This is presented in section 4.3.

4.1 Development process

The development process of the Belastingdienst is extensively described in [6]. The
organisation uses a layered V-model. It is depicted in figure 4.1. A clearer view of the
process, showing the layered V-model is presented in figure E.1. Figure E.2 also depicts
the process. Each step from this development process is described briefly.

Impulse

Impulse (Impuls) is a change request or change proposal. An impulse can originate
from for example new legislation, the performing organisation, market, partners in the
development process or the unit information management. As the origin of an impulse
is very wide, so are the goals. From improvement of system or process to totally new

30

Actualissren Actualisenen
Concemn Conoern CI
opﬁachhnp-nﬂfobn arc hite ctuur
i Cluster [V
L ki
| Actualiseren bedrijffsonderd:
i en -opdrachtenportiolic
Opstellen . [é:Vraag
"L'r[,'"'""]l s] Ln;nbnln
pauls .]
Casa =
U Opstalien detailon twerp,
: o Opiten| | resbsoren enlsten || ot of Tosargi: (3 S0
1 o Ly Lo L
: — -
1
. Opstelien detailon twerp,
BICAD i realiseren, festen en IM-Aankod
C Hunapplndh:‘
........... :
! h
L il oo il Opachakn FApRTaR Ry
e capacieit exploitatie-
B | ho stingom geving | sorvices

Figure 4.1: Development process [6]

systems all have an impulse as a starting point in the development process. Involved
business units are consulted on the availability of capacity.

Intake impulse

Intake impulse (Intake impuls) registers the change request or proposal and an impact
analysis is performed. Goal of the registration is to determine the deadline for impact
analysis. The impact analysis is performed to give all stakeholders a global assessment
of the full extent of the request. Both tasks are performed by Information Management

(1m).
Drafting outline business case
After the impact analysis of the intake, an outline business case is drafted (Opstellen

outline business case). This intends to determine if it is desirable to invest in the proposed
change. Performed by Information Management, B/CIE and B/CAO.

31

Drafting global design

If the outline business case leads to an order global design (Opdracht globaal ontwerp),
this is performed by 1M and B/CAO. It results in a global design, detailed business case
and Product Risk Analysis (PRA). In case of a project, a Project Initiation Document
(pID) is drafted. Phase plan, control plan, end stage report and highlight report are
delivered as well in case of a project.

Update business architecture components and task portfolio

In “Update business architecture components and task portfolio” (Actualiseren Bedrijf-
sonderdelen Architectuur en -opdrachtenportfolio) changes from intake impulse, outline
business case and global design are put into the architecture. After changes have been
made, a business process release is composed. These tasks are performed by IM and
B/CAO.

Update corporate architecture and corporate task portfolio

The subprocess “Update corporate architecture and corporate task portfolio” (Actualis-
eren concern architectuur en concern opdrachtenportfolio) tests if the proposed changes
to the business architecture fit within the corporate architecture. The architecture board
and the portfolio board of the Belastingdienst is responsible.

Draft design

Changes to the process, business process release, actualising the design of the business
process and determining the functional and non-functional requirements of this business
process make up the Draft design (Opstellen design) phase in the V-model. Performed
by: IM, B/CIE and B/CAO.

Draft detailed design, realise and test automated information services

Draft detailed design, realise and test automated information services (Opstellen detai-
lontwerp, realiseren en testen van 1ICT-services) takes place within or under the authority
of B/cAO. The ICT start architecture is the basis to which details are added. These de-
tails in the design are necessary to start building and testing the software. B/CIE also
plays a role in this phase.

Upscaling hosting capacity

B/CIE and B/CFD are responsible for “Upscaling hosting capacity” (Opschalen capaciteit
hostingomgeving). Despite the name of the process, downscaling the hosting capacity is

32

also considered during this phase.

Draft detailed design, realise and test non automated information pro-
cess components

All non automated information components for the business process are designed in the
“Draft detailed design, realise and test non-automated information process components”
(Opstellen detailontwerp, realiseren en testen niet-geautomatiseerde procesonderdelen)
phase. Forms, letters, education are examples of these components. B/CKC, B/CIE,
B/CFD and all units needed for extra expertise or domain knowledge take part in this
phase.

Test business process

Test business process (Testen bedrijfsproces) tests the 1CT, non-ICT and hosting aspects of
the business process integrally. Performed by B/CAO, together with B/CIE and involved
business units.

Implement operational services

After the testing of the business process and a lifting of an embargo by 1M, the product can
be placed (implemented) on the production environment (Implementeren exploitatieser-
vices) by B/CIE.

Implement business process release

In the Implement business process release (Implementeren bedrijfsprocesrelease) phase,
the business process release is made available to the production crew. Handled by B/cAO,
B/CIE, IM and other delivery parties of non-ICT process components.

Evaluate

Through the results of the process and the business case the development is evaluated
(Evalueren). This is done by IM. Lessons learned are reported to management teams of
involved business units, to be recorded in the management cycle.

Next to this development process, several boards have been initiated to share knowledge,
improve communication between the information management of the different units and
assist the management teams in their decision making process:

33

e Information service board (IV-overleg), 1SB

Provides a frame for Information Service partners to uphold
— Advice on Belastingdienst portfolio

— Alignment Information Services and business goals

Mitigate risks
e Belastingdienst portfolio board (Concernportfolioboard), BD PB

— Optimises allocation of resources for information services on business level

— Optimises information service portfolio

Advices about minimising risks for business continuity

— Creates option scenarios for Belastingdienst management team
e Architecture board Belastingdienst (Architectuurboard Belastingdienst), AB BD

— Advices on architectural products

— Performs architectural control on global designs

— Focusses on professional decision making for the integral business architecture
— Commits participants to the given advices

— Mitigate risks
e Unit portfolioboard (Bedrijfsonderdeelportfolioboard), Unit PB

— Decides on unit task portfolio and balances this portfolio on unit level
— Optimises allocation of resources for information services on unit level
— Mitigate risks

— Commits participants to decisions
e Unit architecture board (Bedrijfsonderdeelarchitectuurboard), Unit AB

— Guards consistency and quality of designs and processes
— Focusses on rational decision making for unit architecture
— Commits participants to decisions

— Mitigate risks

— Is a decision making body considering the coherence of information services
on unit level

To sum up, the processes and tasks are mapped in a responsibility assignment matrix (or
RASCI-table: Responsible, Accountable, Support, Consulted, Informed) for an overview
of the development process within the Belastingdienst. This matrix is shown in table F.1
in appendix F.

34

Some processes indicate a shared accountibility or responsibility shared with a consul-
tancy role in table F.1. This is caused by the different roles these units play in the
subprocesses of these processes.

The development process can be mapped to phases from the PRINCE2 project manage-
ment methodology, which is frequently used for projects within public sector entities [55],
and is the method used for Programma Toeslagen 2009. For this mapping, see figure 4.2.

Actualiseren bedriffsondesdedl-
architechur en
mpuls Intake Outiine
—p| mpuls Business
Evall
> -
Ea g =
A
PRINCEZ:
Project opstarten
Producten Project Proect
- Stage plan = Lessons
- Outline -« End Project
business case report
- Project brief - .
Project en lijn ! - Projectplan { = Div. inhoudelijke producten
* Impact- = Cc:nu-ol_ plan !
analyse | - &E"'R";‘;_‘zéﬁ_g’]
(fungeert i Comm. e
ook ;als | - Hignlightrepor
project- ! E:\d Stage report i
mandaat) 1
= Outline business - Globaal Ontwerp - Planvan aanpak = Bevindingen
case = Business Cass - Bijdrage aan ljnrapportage rapportage
= Opdracht = Opdracht ontwerp - Div. inhoudelijke productan
Globaal Ontwearp enreal..

Figure 4.2: Development process and PRINCE2 phases [6]

4.2 Critical Success Factors

To get a better understanding of the development process besides the formal description
of this process, key persons from this process were interviewed. Besides improving the
understanding of the development process, the goal of these interviews was to identify
experiences with this development process. The selected method of interviewing was a
structured interview. This is presented in appendix H. In order to be able to structure
the results of these interviews, a study of the literature was conducted on the Critical
Success Factors (CSF) for 1CT projects. This study of the literature mainly focussed on
CsSF for public sector entities, but some more general studies were also found to be useful.

From the 1960s project management researchers have been trying to discover which
factors lead to project success (see for example [56]). This has lead to the term Critical
Success Factors [57]. A critical success factor is that factor which must receive on-
going attention from management. Over the last few decades, IT projects have received

35

attention for those critical success factors (for example [58-60]). However, most managers
focus on the control aspects of their project management method. This method is often,
as stated earlier, the PRINCE2 methodology. This method uses management aspects
time, cost, quality and scope for steering. These factors also determine project success:
it has the previously agreed functionality (quality and scope), it is delivered on time
(time) and within the agreed budget (cost). However, from literature, several other
factors come forward that are critical to the success of an information system project, as
steering on time, cost, quality and scope itself is difficult. These CSF are listed below:

e top management support and involvement [55,61-64]

e planning [61,62,64,65]

communication [55,62,64,66,67]

staff (number, skills, involvement) [61-64, 67|

project mission (business case, goals) [55,62,64,66]

While customer involvement is a critical success factor that is found in literature, this
is not part of the list. As the Belastingdienst is a tax and customs organisation, it does
not involve its “customers”, the taxpayer in the development process.

As stated in chapter 3, the Belastingdienst aims to put the citizen at the center of its
organisation. This is a process of becoming customer oriented. Figure 4.3 shows a
fishbone model that specifies the steps that are necessary [68]| to drive the process of
becoming customer oriented:

Management commitment |
and actions Sl
N empowerment
\, N Rewards /
\\ \‘\\ Recognition
M, .
\\ \\ \
L \; 2 L = L -I Customer oriented organisation
i / i
i / i
Vi / Vi
/ ,-"j /
/ : /
/| Benchmarks and /
S Standards S
i i
.I’Jr .I’Jr
Customer research Resources f
Technology

Figure 4.3: The process of becoming customer oriented [68]

36

The aspects from the fishbone closely resemble the cSFs. Management commitment and
actions are similar to top management support and involvement. Employee empower-
ment, training and rewards / recognition are aspects related to staff. Benchmark and
Standard, Resources / Technology and Customer research are all aspects that are in-
cluded in the project mission of the NTS project. So there is a close relationship between
the earlier mentioned CSF and the steps from the transformation process of becoming
customer oriented.

The questions shown in appendix H have been created with formal methods, the develop-
ment process and these CSF in mind. Questions have been grouped in several categories:
personal information, development process, quality, testing, impact and changes to the
process.

4.3 Results

In the following subsections (4.3.1-4.3.6), results from the twenty conducted interviews
are discussed. References to respondents are formatted as [R0X], where X ranges from
01 to 20. Each csF is discussed seperately, discussing the overall experiences of this CSF
by the respondents. Other interesting experiences, that are not related to one of the CSF
are listing in section 4.3.6. The distribution of the respondents over the development
process is shown in table G.1 in appendix G. Translation of the function names is given
in table G.2.

4.3.1 Top management support and involvement

Experience has taught that empowering an Executive Committee (Dagelijks bestuur) and
a Program Board has significantly improved the governance of the NTS project [R001,
R003, R005, R011, R015|. The direct involvement of the top management is experienced
as very positive and was one of the key factors for the successful implementation of NTS.

With the chosen governance structure, it was ensured that the resulting products of NTS
met the expectations of the workforce.

4.3.2 Planning

The scope of the initial PROGRAMMA TOESLAGEN 2009 program was initially small. The
scope of the current program NTS is much larger. This gradual expanding of the scope
in combination with the program target for 2009 has led to extra time pressure ([R011,
RO15|) and costs in the beginning of the project. Later, the program was renamed to
NTS, removing the year from the name. This enabled the organisation to better manage
the expectations of the project.

The experience shows that due to time pressure, new, chosen, methods are left and the
old, known methods are reused (|[R014]).

37

While a respondent [R015] stated that it has been difficult to explain to the contractor
(CapGemini) that the error level should be as low as possible to be acceptable in produc-
tion, timeboxing has lead to the concept to accept a certain level of errors ([R010, R019]).
These errors are handled in production phase via workarounds [R005| and resolved in
future releases.

4.3.3 Communication

Most respondents agree that communication is a point of attention. Issues mentioned
include structure of organisation and project, development issues, customer-contractor
relation, the workforce and documentation.

Several respondents have experienced that due to the large nature of the project, it had to
be split into several subprojects. This has led to an increased intensity in communication
([RO01, R0O02, RO05, R009]).

The Belastingdienst has several basic concepts (Methods, Techniques, Tools and In-
structions - Methoden, Technieken, Hulpmiddelen en Voorschriften, MTHV) for usage in
their development process (see section 4.1). These concepts are constantly optimised and
brought into the organisation. Units have different speed in adoptation of these improved
concepts, which can lead to different approaches being used by different units during the
same time frame ([R001, R002, R0O05]). This requires extra communication between the
units.

Experience of several respondents shows that multidisciplinairy teams help to improve
the communication (as the team contains the needed knowledge) and approaches. This
approach helps to gear the activities to one another and improves the end result, which
better fits the expectations.

4.3.4 Staff

The learning curve of a SOA/EDA system has been longer than originally anticipated.
External knowledge was brought into the organisation to help the organisation use such
a system. However, as external personnel will leave at a defined time, regular personnel
must be able to continue the usage of the system. Intensive knowledge transfer has been
organized and is still going on at this time ([R001, R007]).

Great concern is the dependency on a few people, a concern that is shared by most
respondents. This dependency is mainly on architects, designers and builders. Currently,
this knowledge is being transferred to the organisation.

4.3.5 Project mission

Project NTS was started to create a system that contains data that reflects the current
situation of the citizen. In first instance the main focus of the project was on the 1CcT

38

components needed for this change in data focus ([R004, RO11, R013|). Later in the
project, the translation to the organisation was made (J[R013]).

The initial request for the system contained little requirements with regard to the office
portal. A respondent [R014] states that this portal was therefore built by the contractor
without an initial design provided by the customer. This supply-driven approach has led
to several change requests regarding this portal.

The chain of KOT is very wide, a lot of units have involvement in the chain. This creates
a lot of different requirements for building and testing the system (J[R001, R005, R006]),
making it more difficult to see what are the most important aspects.

4.3.6 Miscellaneous

Testing is an aspect for which many respondents see possible improvements. Tests regard-
ing functional details and non-functionals can be expanded [R001, R003, R007, R00S].
This expansion might require other techniques to be added to the toolkit of the Belas-
tingdienst to cover these issues.

Finally, the documentation of the system is not written down in a central place. This
can be improved by updating the document that should serve as the test basis, the
TSL Service Document, more regularly ([R009, R010, R016, R019]). This will move the
needed information from the seperate places to a main document. This information is
currently found in change requests, emails, memo’s or is tranferred verbally. It requires
an active attitude and depends on the presence of key persons to obtain the relevant
information.

4.4 Conclusion

This chapter focussed on the development process of the Belastingdienst. This was
guided by question 4 of section 1.4: Who was involved in the development process of
the Toeslagen program, what role did they have and how have they experienced this
development process? Via a study of the literature, Critical Success Factors (CSF) were
identified to be able to structure the results from the interviews. The results from the
interviews indicate that the critical success factors from the literature are also relevant
for the NTS project. Several improvements for the project have been identified. Roles of
respondents have been summed up in table G.1 in appendix G. Keeping documentation
up to date, multidisciplinairy teams to ensure easy communication and the learning curve
of the new system for employees of the Belastingdienst are important factors mentioned.

39

Chapter 5

Modeling Toeslagen

This chapter focusses on the activities performed during the case study, as described in
section 1.2. The main goal of the case study was to test the hypothesis: “Concurrency is
the cause of the anomalies in KOT and model checking can detect these anomalies”. Before
these anomalies can be detected with model checking, a model of the system has to be
created. This requires a description of the system. The following section will describe the
process of selecting the proper documents following the development process described
in chapter 4. Then, the choice for SPIN is explained. The next section, 5.3, describes the
model created in PROMELA, along with the abstractions made. The validation process
of the model is described in section 5.6. Verification approaches and results are listed in
section 5.7 and 5.8. These results are translated to reflect the business impact.

5.1 System description

Before being able to model the KOT part of TSL, a description of the system is needed.
This description of the system needs to at least describe the system at the level of the
events, as this is where the anomalies due to concurrency occur. With this description
of the behavior of the events within the system, a model of the system can be created.
In this model, the events behave and move between the different services of the system
as in the actual system.

Several products and artifacts are created in the development process (see chapter 4).
These documents describe the system at different levels. The description needed for
the modeling of the system is preferably as formal as possible, has a certain level of
abstraction with regard to the architecture, and contains conditions as to when each
event is sent.

The Functional Model created by CapGemini in the context of Functional Model Driven
Development (FMDD) describes the system in the most detail. It could therefore be the
best place to start. As mentioned by several respondents (see appendix I), this model is

40

directly translated into C# source code and compiled as the system. This is not the most
optimal test basis. Using this FMDD as a basis for testing will test the translator of this
model, and not the system design. Furthermore, the level of detail of this FMDD is very
high and requires lots of abstractions to be verifiable with model checking (see 5.4). A
more abstract description, is provided by the “Service Document” (see [7]). This provides
a solid basis for a system model and is therefore chosen as the specification document
to base the formal model on. It contains if-then-else statements which describe the
behavior of the system using the incoming events, as well as general comments on the 1T
architecture. As stated before, respondents to the conducted interviews have mentioned
(see appendix I) that this document should be the basis, and test basis, of the system,
but that this document is not completely up to date. This creates an extra opportunity
to apply model checking, as several anomalies that have existed in the system might still
be in place in this document.

5.2 Model checker

As stated in the introduction, the approach chosen is that of model checking, in stead of
model based testing. Model checking is a mature and proven technology to reason about
system specifications. Therefore, there are many tools and languages available to use,
such as CWB-NC [69], DMC [70], Evaluator [71|, Goanna [72], Kronos [73], MCMAS [74],
mCRL2 [75], Mec 5 [76], Mur¢ [77], NuSMV2 [78], PRISM [79], SAL [80], sLAB [81],
SPIN [39] andUPPAAL [82] First, the prerequisites for the model checker are listed.

First of all, the model checker needs to be able to handle concurrent processes, as the
different services of TSL operate independently. Furthermore, preferably, the descriptive
language of the model checker contains support for data structures, as several objects
(citizen and household) can be identified from the system description. Finally, this
descriptive language should be relatively easy to use. This can ensure a fast adoption
rate in the usage of formal methods. State space optimisation and reduction techniques
are also preferable for a quicker verification of the model.

As stated in the introduction (see chapter 1), the Belastingdienst is considering the
usage of formal methods in their development process. In order to be usable within the
organisation, sufficient and mature tooling is needed. As model checking originates from
the acadamic world, and most academic tools are known to be error prone [83], only very
mature model checkers have been considered. From literature, the following tools were
found to be mature enough for consideration: SPIN, UPPAAL, Mur¢ and SAL. These tools
are well established within the academic world and have made their way into industry.
Table 5.1 shows an overview of these tools.

41

SI9YD9TP [opow Jo uostredwo)) :1°G 9[qRT,

uorjoedwoy) ysey
‘SUINOOYD [opowW popunog

[c6] wrems
pue oroonmN ‘[g6] s109
-onaysuoo uonedey ‘[16]
so[nI A[qIsIoAdy ‘(06| A1
-wwAg ‘[68] uworyeoyLIOA
onsiqiqeqoad Jursn Jurygoed
9je)s pue uorpoedurod Ysefy

[88] Surysey 93eIs-41q
‘(28] womonpar Arjourmiks

|98] woryeoyLIOA

urems ‘(68| uworyeoyLIea
9100-1)NW ‘[fg] uoyeroIne
pozruiy - ‘eg] Sur

-ysey ojersyrg ‘[eg] wony
-onpay IopIi()-TerpreJ

sanbruyoo} uory
-estuuigdo pue uoljonpay

punoq 1oddn oN

punoq 1eddn oN

punoq 1oddn oN

punoq 1oddn oN

sassaooad JUSILINIUO))

19SIR[RIS ‘19SII[NUI‘SPIOODT

plooal pue ‘ordng ‘uorpouny | ‘sAerre ‘sod Ay poje JopodAy ‘sAeire ‘poudisun
‘Aeire ‘9fuerqns ‘odAjqns | -Iownuo ‘so8uelrqns sAelre ‘S1080jUl popunoq | ‘yur ‘poys ‘93Lq ‘10oq ‘Hq syoalqo ere(
aden3due Tvs | oFendue] uondiiosep ¢inpy | a8endue] Surepow Tvvddn VIINOdd o8enSue| SUIEPOIN
6006 G661 G661 6861 paysiiqeIsyH
VS gy | Tvvddn NIdS ||

It is important to note that UPPAAL and SAL are a different kind of model checker than
both SPIN and Mur¢. UPPAAL uses timed automata in stead of finite state automata
and SAL is considered a Satisfiability Modulo Theories (SMT) solver. An SMT solver
uses symbolic methods to combat state-space explosion problems. However, within the
domain of software verification, partial order methods tend to give better performance,
and within the domain of hardware verification, the symbolic methods tend to perform
better [84].

Using timed automata for the modeling and verification of TSL does not seem to be
useful, as no clocks are specified in the specification. While the language of SAL provides
excellent constructs to create multiple processes and the complex if-then-else structures
of [7], the other constructs (mainly the TRANSITION and RENAME constructs) of the code
make it less suitable for usage for modeling TSL, as the code of the model would differ
quite a lot from [7]. Furthermore, these construct make it more difficult to quickly
understand how the system works and require an extensive analysis by the reader.

Both Mur¢ and SPIN seem to be equally suitable for the case at hand. Prior knowledge of
SPIN and PROMELA has led to the choice to use SPIN and PROMELA for the case study.
A system specification in PROMELA is easy to read and understand. The language has
basic support for data objects. SPIN is ideal for checking concurrent processes and has
a large set of optimisation and reduction techniques to limit the needed resources and
speed up the verification. It furthermore offers an intuitive, program-like notation in the
form of PROMELA, which aims to specify design choices unambiguously [39]. SPIN offers
a powerful, concise notation for expressing general correctness requirements [39]. Finally,
SPIN offers a methodology for establishing the logical consistency of the design choices
and the matching correctness requirements [39].

Now that both the specification document and the tooling have been decided on, a formal
model of the system can be created.

5.3 Model

Before modeling the system, it is important to consider the way the SPIN model checker
works. Using the proper constructs of PROMELA and options of the SPIN model checker
can optimise the verification runs of the model checker [94]. As modeling and verification
of the model have been a time intensive process, this section will show in detail how the
architecture (5.3.1), services (5.3.2) and environment (5.3.3) have been implemented in
PROMELA. This will create a future reference for the Belastingdienst to be able to quickly
apply the proposed method.

In PROMELA, each statement is atomic. This means that a statement is indivisible, so
within a single statement no other actions can start (interleave). Because each step in
this PROMELA code can be converted into a seperate state (e.g. due to interleaving of
other processes), SPIN offers statements to overcome this behavior by marking a sequence
of statements as indivisible [94]. This is called atomicy. This atomicy can be achieved

43

via the atomic and d_step constructs from PROMELA. By marking the sequence as indi-
visible, less interleaving and variable changes are noticed by the model checker, reducing
the number of states needed for a verification run. This is therefore an useful approach
to cope with the state space explosion problem mentioned earlier in section chapter 1.

These statements cannot be applied at random within the code of the model. Detailed
knowledge of the working of the system is required to be able to place these statement.
Before going into detail on the placement of these statements, an explanation of the differ-
ences in statements is provided. The atomic statement groups a sequence of statements
and marks them as indivisible. Statements within this atomic statement are allowed to
block. In SpPIN, blocking occurs when an if or do statement do not contain an else
clause and all alternatives evaluate to false. Due to interleaving processes, the atomic
behavior is lost when the sequence blocks [84,95|, as the values of (global) variables can
no longer be guaranteed to be unchanged.

d_step is similar to the atomic statement. However, the internal code of d_step is not
allowed to block and deterministic behavior is not allowed. If deterministic behavior is
encountered, the first alternative is chosen [94]|. The application of these two constructs
in the processes of the model is explained in 5.3.2.

5.3.1 Global architecture

As stated in section 3.3, TSL is made up out of different, independent services. These dif-
ferent services communicate through events on an ESB (see 3.4). Independent behaviour
in PROMELA is modeled using processes. From this point on, services and processes
are considered as being identical. PROMELA offers three ways to communicate between
processes: through global variables, rendevous channels and buffered channels. Global
variables are variables that can be accessed and modified by every process from the model.
Channels are a more convenient way to communicate between processes. In rendezvous
channels, messages are sent to the receiving service immediately, and the process will
block if the receiving process is not ready to receive. Buffered channels will store the
message if the channel is not full. The sending process will not block if the receiving
process is not ready, that message will be stored on the channel, and the sending process
can continue. This buffered channel therefore resembles the ESB used for NTS the most: it
can contain multiple events, as long as the channel is not full and processes can continue
to pass events to the channel.

Events contain a name, information on the citizen (burger in Dutch) and possibly on
the household (huishouden) [7]. For events PROMELA offers the mtype construct [84].
This mtype construct is used to give mnemonic names to values [95]. The list of NTS
event names, defined in the mtype can be found in listing J.1 in appendix J. Citizen and
household datastructures (BURGER and HUISHOUDEN respectively can be found in listing
J.2 in appendix J).

The global architecture of NTS contains an ESB. As stated earlier, the buffered channel
construct of PROMELA resembles this ESB entity. In the definition of a channel, the

44

[y

O © 00O Ui W

structure of the message is also defined. The definition of the ESB as a buffered channel,
as well as the event structure, is listing in 5.1.

chan tsl = [CHANNELSIZE] of { mtype, byte, BURGER, HUISHOUDEN, byte };

Listing 5.1: ESB and event definition

The arguments are explained in order of appearance: mtype contains the name of the
event, the first byte argument contains the service id (see 5.3.1.1), BURGER contains
information on the citizen, HUISHOUDEN contains information on the household and final
argument byte contains the number of tries attempted for the event (see 5.3.1.2).

5.3.1.1 Subscription

In a SOA/EDA environment, services subscribe to events |54| published to the ESB. Once
an event is published that a service is subscribed to, this service takes this event off
the ESB and processes the information from that event. The earlier mentioned blocking
feature of PROMELA can implement such a structure. This means once an event that a
PROMELA process is subscribed to via the blocking feature, the process continues and
can handle the event and the information from that event. However, in PROMELA, if
several processes subscribe to the same event, only one of the processes will “wake up”
and process the information. The language offers a construct to leave the event on the
ESB and let other processes read this event via the copy and polling constructs [95]. Usage
of this approach requires that, eventually, one of the processes removes the event from
the ESB. Otherwise processes can infinitely handle the same event over and over again.
To overcome this behaviour, an event subscription administration is implemented. Once
an event is published, it is placed on the ESB for each service (or in this case process)
subscribed. Listing 5.2 displays the basic setup for this mechanism. The listings (5.3-5.9)
list the functions (called inline in PROMELA) and PROMELA data structures created
for usage in the model. For each listing, a brief explanation of the code is given.

registerEvent (EVT_A, TEMPLATE_SERVICEID) ;
registerEvent (EVT_B, TEMPLATE_SERVICEID);
services_inited++;
endtemplate:if
listenForEvent (EVT_A, TEMPLATE_SERVICEID)
listenForEvent (EVT_B, TEMPLATE_SERVICEID)
fi
}

Listing 5.2: Register to events and wait for published events

45

Lines 1 and 2 of listing 5.2 represent the registration to event EVT_A and EVT_B for the
service. The constant TEMPLATE_SERVICEID is uniquely defined for each service of TSL,
ranging from 0 to 8. This is used to subscribe to only one of the instances of an event on
the ESB. The (global) variable service_inited is used to administrate that the service
has registered its incoming events. This is used to stop the environment from sending
events before all services are ready to receive (see section 5.3.3). Lines 4 to 6 make
the PROMELA process block and wait for events to be published on the ESB. Note the
endtemplate on line 4. This is a label. Once the process is done handling an event, it
will jump to this label (see listing 5.10) and is ready to handle a new event. The name
is special: starting a label with end means that it will be marked as a valid end state
in the model. So every process that is waiting for an event, is in a valid state and the
model checker will not mark the system as being in a state of deadlock [95].

inline registerEvent (event, id) {
setOne (eventSubscribers[event].service, id);

}

Listing 5.3: Definition of function registerEvent

Listing 5.3 shows the definition of the function registerEvent. It uses the numeric
representation of the event, as mtype is used to give mnemonic names to values [95]).
This value is used as a key to access an item in the array eventSubscribers. The
definition of this array is found in listing 5.6, the definition of setOne is shown in listing
5.4.

inline setOne(a, p) {
a = setBit(a,p)
}

Listing 5.4: Definition of function setOne

As in PROMELA an array of booleans is translated into an array of bytes, it is far more
efficient to use a list of bits [94,95|. This is done with the function setOne, depicted in
listing 5.4. It assigns the result of the macro setBit (see listing 5.5) to the variable a.

#define setBit(data, p) (data | 1 << p)

Listing 5.5: Definition of macro setBit

The macro setBit sets bit p of the variable data to 1.

46

U W N =

TUk W N =

S © 00>

typedef EVENTSUBSCRIPTION {
unsigned service : MAX_SERVICEID+1;

}

EVENTSUBSCRIPTION eventSubscribers [255];

Listing 5.6: Definition of eventsubscription datastructures

In listing 5.3, an array was accessed. The definition of this array and its underlying
datastructure is shown in listing 5.6. EVENTSUBSCRIPTION is defined as a list of bits,
as an array of bits (or booleans) is not efficiently translated by SPIN. As mtype has a
maximum value of 254, 255 is used as the array length, as arrays in PROMELA start with
key O.

#define listenForEvent (event, serviceid) :: tsl 7?7 event, serviceid,
incoming_burger , incoming_hh, retryCount -> active_event = event

Listing 5.7: ESB and event definition

Once a service is publishing an event, the subscribers are looked up and for each sub-
scriber, the event is placed on the ESB. This is depicted in listing 5.8.

inline generate_event(E, b, hh) {
int j;
for(j : 0 .. MAX_SERVICE_ID) {
if
isOne (eventSubscribers[E].service, j) == 1 ->
assert (nfull(tsl));
tsl ! tmp, j, b, hh, retryCount
else -> skip
fi
}
}

Listing 5.8: Definition of function generate_event

If a service wants to publish an event to the ESB, it calls the function generate_event,
as listed in listing 5.8. It loops through all service ids with the variable j (line 3) and
checks if the service with id j is subscribed to the event the service wants to publish (line
5). If a service is subscribed, and the ESB is not full (line 5), the event is published to
the ESB (line 6). If the service with id j is not subscribed, nothing happens (line 7).

47

#define isOne(data, p) (data >> p & 1)
inline isOne(data, p) (data >> p & 1)

Listing 5.9: Definition of macro isOne

The macro isOne returns the value of the bit on position p, so either 1 or 0.

This concludes the subscribe and publish mechanism for the SOA/EDA environment of
TSL, as implemented in PROMELA for modeling TSL.

5.3.1.2 Round robin

In an EDA/SOA environment, events behave freely. It could very well be the case that
a stop event for a particular citizen situation arrives at a service before a start event
does. The Belastingdienst has designed a round robin feature for these cases. If a stop
event arrives at a service, and the start situation is not known at that time, an event is
“parked” and injected again later. This will not happen infinitely often, the amount of
retries is registered in the service. If the maximum amount of retries is reached, an error
will occur. This round robin behaviour is modeled as follows: the number of retries is
administrated in the event. This is the last argument in the sending (line 6 of listing
5.8) and receiving (line 2 of listing 5.7) of an event. It is also the last argument in the
definition of the ESB and its event in listing 5.1. Further actions regarding round robin
occur within steps of the service itself and are described in 5.3.2.

5.3.2 Services

Each service of TSL is structured in a similar way. This section will describe the global
structure of a service in the form of a template service in PROMELA, using the earlier
described subscribe and publish mechanism (see 5.3.1.1) and other concepts from the
documentation. This will display the general application of PROMELA for services in the
EDA/SOA environment of the Belastingdienst. This provides a structure to go on and
apply the earlier described d_step and atomic constructs to improve model performance
and reduce the state space significantly.

The internal architecture of the services of TSL is best described in the Software Archi-
tecture Document TSL [8]. For a single business function, the data is handled as depicted
in figure 5.1. These 3 steps form the basic structure for the modeling of the business
processes in PROMELA.

The system starts in a state called the “begintoestand”. Within the model, this is stored
in a global variable, as multiple instances of the same service should be able to access
the same data source. This resembles the underlying database of a service. This global
variable is an array that is accessed with the service id. It contains the specifics of the

48

Bedrijfsfunctie

Gebeurtenis Verwerk Pas Beoordeel Resultaat
invoer wet toe verschil

Begin- n| Tussen-
toestand | toestand

Figure 5.1: Handling of data for business functions [9]

citizens and households for that service. See listing 5.11 for its definition. When an event
for a service arrives, the service unblocks and processing continues. As blocking occurs in
the last sequence of template_VerwerkBericht (see lines 4-7 of listing 5.2), processing
will continue with template_Mapping according to lines 13 and 14 of listing 5.10.

Within the template_Mapping function, the data is copied (line 5 of listing 5.13) to a
local variable via the mapping function (see listing 5.12), as multiple instances of the
same service can be active and the service should be able to create an intermediate state
(remember figure 5.1). These local variables are defined on lines 2 and 3 of 5.10) and
relevant data from the event is mapped to the local variable (line 14 of listing 5.10).
More details on mapping can be found in listing 5.13. This mapping leads to a new,
intermediate, state (“tussentoestand”), on line 16 of listing 5.10. Legislation is applied
to this intermediate state. This legislation is modeled in template_bfl-template_bfN,
using the if-then-else constructs from |7]. This leads to the final state (“eindtoestand”).
If data was changed in mapping or during the application of legislation (“Beoordeel ver-
schil”), a new event is published (see line 36 of listing 5.10). Note that terminate events
(Tevt_X) are not published, as they only exist to see that processing has ended. Within
the actual information system, these events are used in the Logische meetpunten adminis-
tratie (LMA). Also, manual events (Hevt_X) are not published within the model. In TSL,
these events are published to the Kantoortoedeler for manual handling in the backoffice.
Manual handling of events is outside the scope of this research.

49

© 00 3O Ui Wi+

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38
39
40
41

proctype template() {
BURGER burgers [MAXBURGERS], incoming_burger; // local burger

HUISHOUDEN hh, incoming_hh; // local huishouden

mtype active_event; // what event to handle
mtype publish_event; // event to publish

byte retryCount;

bool data_changed = 1;
bool rr = 0;

atomic {
template_VerwerkBericht () ;
template_Mapping () ;

}

if
rr -> goto endtemplate;
else -> skip

fi;

d_step {
template_bf1();
template_bf2();
template _bfN();
}

d_step {
if
data_changed == 0 -> skip
else -> sync_data (TEMPLATE_SERVICEID)
fi;

if
publish_event == Evt_end_template ->
generate_event (publish_event, burgers[incoming_burger.BSN], hh)
publish_event == Tevt_template_gereed -> skip; // ready to
handle next event
publish_event == Hevt_template_uitval -> skip; // ready

fi;

}
goto endtemplate; // event handling done, listen for incoming events

Listing 5.10: Template of TSL service structure

50

Each piece of code is explained briefly below, to explain the underlying functions of listing
5.10:

typedef TSLGS {
BURGER burgers [MAXBURGERS];
HUISHOUDEN hh[MAXHH];

}

TSLGS tslgs[MAX_SERVICEID+1];

Listing 5.11: Datastructures for service information storage

The type TSLGS contains an array of citizens (burgers) of size MAXBURGERS. Information
of these citizens is accessed based on the identification number (BSN, Burger Service
Nummer or Citizen Service Number). The same holds for households, only households
are accessed via a unique identification number, not via a BSN. tslgs defines an array of
TSLGS. Services access this array via their service id.

inline template_Mapping() {
mapping (TEMPLATE_SERVICEID) ;
}

Listing 5.12: Definition of function template_Mapping

The template_Mapping function calls the general mapping (see listing 5.13 function with
the service id of the service). This to access the right structure in tslgs.

ol

0~ O U Wi

Ne

11

12
13
14

15

16
17
18

19
20

inline mapping(service_id) { // no non-determinism in this inline,
because mapping is called from within each service!
data_changed = 1;
rr = 0; // reinit
get_data(service_id);
if
active_event == Evt_A -> burgers[incoming_burger .BSN].fieldA =
incoming_burger.fieldA
active_event == Evt_start_B -> if
burgers[incoming_burger .BSN].fieldB == 1 ->
data_changed = 0 // no new information
else -> burgers([incoming_burger .BSN].fieldB
=1
fi
active_event == Evt_stop_B -> if
burgers[incoming_burger .BSN].inkomsten_uit_werk
== -> workflowRoundRobin(service_id)
else ->
burgers[incoming burger .BSN].inkomsten uit_werk
=0
fi
active_event == Evt_Z -> burgers[incoming_burger .BSN].fieldZ =
incoming_burger.fieldZ
fi
}

Listing 5.13: Definition of function mapping

The mapping function retrieves the data from the global variable via get_data (line 5
of listing 5.13). For the active event (lines 7-19 of listing 5.13), relevant fields of the
incoming data are copied (mapped) to the local data structure of the citizen relevant to
the event (burgers[incoming_burger.BSN]). The relevant fields are identified from [7]).
For start events (line 9 of listing 5.13), a check for new information is in place (lines 9-12
of listing 5.13). If no new information is found, the boolean data_changed is set to 0.
For stop events (line 13 of listing 5.13), behavior is different, the earlier mentioned round
robin behavior is implemented here (see section 5.3.1.2). If the start is unknown, the
event is parked and will be injected again later (see listing 5.16).

92

ST W N

N OOk W N

TUk W N =

N o

inline get_data(id) {
int i;
for(i : 1 .. MAXBURGERS) {
copy_burger (burgers[i], tslgs[id].burgers[i]);
}

}

Listing 5.14: Definition of function get_data

When fetching data from the global variable tslgs with the function get_data, informa-
tion of all citizens is copied. This action has to take place, because due to partnerships
and other events, not only information on the citizen the event belongs to is needed, but
more information needs to be accessed by the service. As stated earlier, this information
needs to be available locally.

inline copy_burger(localB, externalB) {
localB.fieldA = externalB.fieldA;
localB.fieldA = externalB.fieldA;
localB.fieldZ = externalB.fieldZ;

}

Listing 5.15: Definition of function copy_burger

The copy_burger function copies all fields from the BURGER datastructure from the global
variable (externalB) to the local variable (1ocalB).

inline workflowRoundRobin(service_id) {
if
retryCount < MAX_RR_RETRIES -> retryCount = retryCount + 1;
rr = 1;
tsl !! active_event, service_id,
incoming_burger , incoming_hh, retryCount
retryCount == MAX_RR_RETRIES -> data_changed = O;
fi
}

Listing 5.16: Definition of function workflowRoundRobin

If an event cannot be handled, the function workflowRoundRobin is called. In the case
that the maximum number of retries is reached, the event is dropped and no data is
changed (line 6 of listing 5.16). This is analog to the real system behavior, where an
event that has maxed out the number of retries is send to the error handling service for
manual recovery. If the number of retries has not been reached yet, the retryCount is

93

[\V]

ot

© 00O

incremented (line 3 of listing 5.16), the variable rr is set to 1 to register the round robin
in the service and stop further processing (line 4 of listing 5.16, see lines 17-20 of listing
5.10 for the stopping of the processing) and the event is placed on the ESB. Note that in
this case, the generate_event is not used. This because this function generates events
for all subscribed services, while the active event only failed for the active service.

N.B. As encountered during the creation of the model, PROMELA has some peculiarities

For example, programmers might want to replace the line

retryCount = retryCount + 1; rr = 1; tsl !! active_event, service_id, incoming_burger, incoming_hh,
retryCount

by

rr = 1; tsl !! active_event, service_id, incoming burger, incoming_hh, retryCount + 1

or

rr = 1; tsl !! active_event, service_id, incoming burger, incoming_hh, retryCount++

Note that this is not possible!l The value of retryCount will not get incremented due to PROMELA semantics.

Therefore, the RoundRobin behavior will not stop if the start event is never received.

5.3.3 Environment

The business process “process notifications” (the process which showed that TSL is an
important component, see section 3.3) depicted in figure A.1 shows that events for TSL
originate from either the backoffice (“ Kantoorportaal”) or FRS. The events that originate
from these sources are the (valid) inputs for the model.

do
fill_channel == 0 -> if
:: send_event [Evt_A] < MAX_EVT_COUNT ->
send_event [Evt_A]++; generate_event(Evt_A, b, h);
send_event [Evt_Z] < MAX_EVT_COUNT ->
send_event [Evt_Z]++; generate_event(Evt_Z, b, h);
: else -> fill_channel = 1;
fi
else -> break;
od;

Listing 5.17: Sending events to TSL

The first line of listing 5.17 defines a loop. This loop is exited when £ill_channel is
not equal to 0 (line 8). As long as fill_channel is equal to 0, events that have not
reached their maximum value of MAX_EVENT_COUNT are generated non-deterministic way:
the model checker is free in the choice for each of the valid alternatives. When an event
is selected, its counter is raised so only MAX_EVT_COUNT events are generated. The values
for b and h have already been determined. This is done as listed in 5.18.

o4

0~ O UL W N+

inline huishoud_situations(h) {
nonDetermine (h.fieldA);

nonDetermine (h.fieldZ) ;

}

inline burger_situations(b) {

if
true -> b.fieldA = 1

true -> b.fieldA =
fi

=

nonDetermine (b.fieldB) ;

nonDetermine (b.fieldZ);

}

Listing 5.18: Random citizen and household values

A citizen can contain two types of fields: byte, short or int fields (ranging to N de-
pending on the type of variable) and boolean (or bit) fields which can be either 0 or
1. By determining the value of each variable non-deterministically, all possible com-
binations of values is tested by the model checker. For byte, short or int fields, this
non-determination is shown on lines 8-12 of listing 5.18. Other fields are determined
by the function nonDetermine (lines 2, 4, 14 and 16 of listing 5.18). More on this
nonDetermine function is found in listing 5.19.

inline nonDetermine(nd) {
if
true -> skip // nd = 0 (default value)
true -> nd = 1
fi

}

Listing 5.19: Definition of function nonDetermine

The function nonDetermine selects the value 0 or 1 for the variable nd.

Due to the implementation of generate_event, all services will have to be initialised
before events are sent to the ESB. For each service, this is done in the following way:

run template();
services_started++;

Listing 5.20: Init service

95

The process for the service is started, and a counter services_started is incremented.
This counter is used to stop the environment from sending any events to the ESB before
all services are waiting for events (see listing 5.21).

// block, wait for all services to init, before sending out events

(less interleaving, so less states);
if

services_inited == services_started -> skip;
fi;

Listing 5.21: Block until all services are initialised

The environment will block until services_inited is equal to services_started. This
is the case when all Promela processes have passed the registration for events part of the
process (see listing 5.10).

init {
byte services_started = 0;
BURGER b, bl, b2;
HUISHOUDEN h;
byte retryCount ,send_events;
bool send_event [255] = O0;

bool £fill_channel = O0;

init services

block

send events

Listing 5.22: Environment initialisation

5.4 Abstractions

To reduce the amount of space needed for a state, and to lower the total number of
states, several abstractions were made. This section will describe these abstractions.
The abstractions made involved the BSN, income and the time model of TSL.

The first abstraction made was that of BSN. This service number normally is made up
out of 9 digits. As it is not needed to model all citizens (the model checker will check
all possible situations), a shorter number can be used to identify a citizen. On a side
note, only one or two citizens are insufficient to oversee all relationships that can exists
between citizens, for example a mother, father and child already require three citizens.

o6

A byte variable, which can contain a number up to 255, is large enough for this, as a
maximum of 255 citizens can be identified this way. This will save at least 24 bits per
state, as all variables are included in the state vector. Given that for citizens the number
of states is over 204 (64 fields which can contain at least two values), this is a significant
amount, while still being able to uniquely identify a citizen.

Another second abstraction that was made was regarding addresses. These are also
modelled using a byte variable, in stead of for example a zip code containing four digits
and 2 letters. This again provides an unique identification number, while lowering the
number of bits needed.

As stated before, the benefits are income related. Representing these incomes will dras-
tically increase the state space due to the enormous number of values such a variable
can have. The business functions of TSL translate these incomes to boolean values, such
as income above limit, household income zero. In stead of using incomes, these boolean
expressions are attributes of the citizen. The same holds for several other values, such
as hours of childcare received.

A rather important feature of the system is that of “time travelling”. This concept is
used for retroactive calculation if a notification of a situation in the past is provided
to the system. To be able to use this concept in a model would require an extensive
administration of current and previous situations of a citizen. In a model checker, this
would lead to an enormous explosion in state space. As this study is a pilot study for
the usage of formal methods, only current situations are administrated in the model. As
the same business functions are used in retroactive and current calculation, the method
will show these business functions are complete and error-free. This will show the added
value of formal methods to the development process. More on the added value of formal
methods is described in chapter 7.

Finally, events from civil servants (G-events, AB-events, B-events) have not been mod-
elled. These AB events jump over the processing of the service, as these events already
contain a result for this service, decided by the civil servant. These events have no other
impact on the KOT chain. Same holds for the H-events as well as decisions on objections,
these events only occur in special cases where a civil servant needs to verify or check
certain data from the citizen or when a citizen has objected against a decision. These
are outside the scope of this research.

5.5 Bundling services

In the model described in the previous sections, each business function is created as a
separate service. This is analogous to the initial system design. However, during the
first system tests, this design imposed some serious performance issues, mainly on the
ESB. The proposed solution was a bundling of services, to reduce the number of messages
being transferred via the ESB. This bundling merged the four AWIR services into an AWIR
service and the services for grondslagen (draagkracht, huishoudsamenstelling and lasten),

o7

beslissen and beschikken into a GBB service. In stead of 9 seperate services within TSL,
the KOT chain now only contains two services.

This bundling of services has been embedded in the original model. Following the in-
struction from [10-12], changes have been made to the model. Whenever a change is
made, the original code is kept intact via the following construct:

#ifdef UNBUNDLED
original code
#else
new code
#endif

Listing 5.23: Bundled and unbundled structure

5.6 Validation of the model

Before verifying the model with SPIN, it needs to be ensured that be model is build
correctly. In order to visualize the working of the model, SPIN offers the possibility to
create a Message Sequence Chart (MSC). Such a MSc displays the movement of messages
between the different processes, or in the case of the model of TSL: the movement of events
between services. However, the default MSC created by SPIN for the created model is not
readable (see figure 5.2), due to the high number of variables inside a message (event).
Luckily, the MSC is created as a PostScript file, and is therefore plaintext. As the content
of the message is not relevant to the overview of the events, this content is removed from
the events. When generating a MSC, SPIN creates a bounding box around the events and
its content. As the event contained many variables, this bounding box was very large.
By removing the content from the event, this box has become redundant. Therefore, the
bounding box is removed from the MSC. This makes the MSC readable and uncluttered,
see figure 5.3.

Furthermore, if one MSC would be created for all incoming events at one, the MSC will
significantly grow. Therefore, for readability, a MSC is created for all incoming events
seperately. This MSC is compared with the overview provided by [13]. The modification
procedure can be found in the appendix K. The validation of the model has shown that
the model behaves as the system and is therefore valid.

o8

3 | 1gbb_ |

50 |

1! Fevt_sth¥t gereg reerd partnerschap
el Fevt at:‘&@!. streerd partnerschap

108 tsl!Ewt _start A partnenschap
1182 tsl?E‘v%IR_partmrschap

2128 tinﬁaut

J:randomDatazenarator |

Figure 5.3: Improved MSC

5.7 Verification of the model

Verifying a PROMELA [96] model with SPIN is a two-step process. First, the model is
translated into a pan verifier (see [97]) describing the system in C source code (pan.c and
related files) . This C source code is then compiled into a runable verifier (pan). This
first step is done by calling spin with the command line parameter -a:

spin -a model.pml

This generates several C source code and header files. These files are compiled into an
executable verifier pan:

99

gcc -0 pan pan.c

Several command line options can be given to the compiler to improve the performance
of the verifier. Options include reduced memory usage through compression, minimized
automaton, hashtables and bitstate searching. One of the options that this model requires
is the VECTORSZ option. Because of the large number of variables, the default size of the
state vector is insufficient for this model. A vectorsize of 16384 bytes was found to be
sufficient to fit the state vector.

gcc -DVECTORSZ=16384 -0 pan.c

Because of the large number of states (due to the high number of messages and variables)
and the large state vector, memory requirements are very high. To help to cope with
these memory requirements, several options can be used to reduce these requirements.
The COLLAPSE (memory compression) and MA (minized automaton) options are used for
this:

gcc -DVECTORSZ=16384 -DMA=8300 -DCOLLAPSE -0 pan.c

For a optimized verfication run, the compiler can be called with an optimization flag.
This increases the compilation time, but improves the performance of the verification
run. As the verification run is improvement significantly, this option is advisable. The
optimization flag is used as follows:

gcc -02 -DVECTORSZ=16384 -DMA=8300 -DCOLLAPSE -0 pan.c

The SAFETY option optimizes the code of the verifier for the case where no cycle detection
is needed. This is the case when no linear temporal logic (LTL) properties or never claims
are used.

gcc -02 -DSAFETY -DVECTORSZ=16384 -DMA=8300 -DCOLLAPSE -o pan.c

The compilation and verification of the model takes up a lot of time. A single compilation
takes around 30 minutes and verification runs for several days, due to the high number
of states. SPIN offers several approaches to speed up this verification. These approaches
are discussed in the section 5.7.1.

The model is verified by invoking the pan executable. This verifier contains several
command line options. Two of these options were used in the verification process: -n to
hide listing of unreached states and -q to require an empty channel in valid end states.
This means that an end state is only valid if all events are handled.

60

./pan -n -gq

This is the default way SPIN can be used for verification of the stated properties of model.
However, there are several extensions to SPIN which can help to speed up the verification
or reduce the state space. These are discussed in section 5.7.1.

On a side note, there are Windows interfaces to SPIN available, which improve the us-
ability of SPIN.

5.7.1 Other approaches

SPIN has several other approaches to cope with memory issues. First of all, there is the
option of Stack Cycling (SC), which lowers the amount of memory used by the verifier.
This has however, influence on the performance, as part of the stack is stored on disk.
Furthermore, this approach is only useful for verifications that require an unusually large
depth-limit, which is not the case for the model of TSL.

Another option is the usage of multiple cores or processors of a system, via the MULTICORE
option. However, this option requires that the user running the verifier is able to raise
the amount of shared memory of the system. On Linux, this requires root priviliges.
As these priviliges were not available on the machine used for verification (4 quadcore
processors with 128G RAM), this option was tried unsuccesfully.

Another option that can speed up the verification process, is a bitstate search (BITSTATE).
It should be noted that such a search does not provide a full state search, and a full prove
over the model is therefore not garantueed. By using Swarm [86,98], the coverage over
the model can be raised, by creating several executables with alternating variations of the
REVERSE and T_REVERSE options and including randomize options P_RAND and T_RAND.
Using this method, errors in the model such as assertion violations are found relatively
quickly, but runs without errors can execute for a very long time (> day).

5.7.2 Extensions to SPIN

From literature, several extensions to SPIN are available to improve performance or lower
memory requirements. Some interesting extensions that provide improvements to the
verification runs are discussed.

TOPSPIN [99] uses computational group theory to determine a group of component sym-
metries. It automatically modifies the model checking algorithm to exploit these symme-
tries during verification. This can result in significantly reduced memory consumption,
and a faster verification time. However, the latest version of this tool originates from
2010, and does not feature the new SPIN features employed in the model. This makes it
impossible to use this tool.

61

DTSPIN [100] is another extension to SPIN. It extends SPIN with discrete time. This
enables SPIN to be used for verification of concurrent systems that depend on timing
parameters. These timing aspects are not relevant for the verification of the system as
timing aspects are not part of the specification.

CPOR-SPIN [101] exploits the hierarchy of the verified system for more efficient verifi-
cation. The tool features an improved version of the Partial Order Reduction algorithm
called Clustered Partial Order Reduction. The tool is however not compatible with some
of the newer features of PROMELA that are used in the model and does not seem to be
actively maintained.

LTSMIN [102] is a toolset for manipulating labelled transition systems and model check-
ing. It allows to reuse existing tools with new state space generation techniques. LTSMIN
uses SPINJA [103] as an interface for the PROMELA languge. Several features employed
in the model (typedef, random receive and d_step communication) are not yet available
in the tool. The tool is therefore not suitable for usage.

5.7.3 Properties

For a verification run, several properties can be created in the model that the verifier
can check. Default properties include safety and liveness properties. These properties
are created by adding valid end states to the model. These valid end states have already
been shown in listing 5.2.

Within the model, assertions can be added, which are checked at runtime. These as-
sertions can check the values of variables. If the comparison fails, this is reported. An
application of this approach is shown in chapter 6. Other assertions include that after
the processing of the event and the legislation, one or more events should be published
by the service.

Another interesting property is that there exists a possibility to be eligible for a benefit.
In the state space this would require a path to a state where a benefit is given. Or math-
ematically: 3¢ benefit == 1. However, this is a property that is part of Computation
Tree Logic (CTL). SPIN only supports Linear Temporal Logic (LTL). This LTL is best
used in fairness properties, defined as constraints on cyclic executions, which state, for
example, that every cyclic execution either must traverse or may not traverse specific
types of states infinitely often [84]. CTL can express properties which state that from
every state there exists at least one execution to an accepting state. Fairness in TSL is
already expressed in the model, via the empty channels and end states.

While there has been an attempt to add CTL to SPIN [104], there is currently no support
for this.

62

5.8 Findings

During the creation of the model several findings for the system design and specification
[7] have come forward. First of all, the structure of the document has made it very
difficult to fully understand the design of the system, for example the decision of the
AWIR partnership. The functions for deciding this AWIR partnership are described using
an article from the legislation on AWIR, to which a large list of bullets is added. These
bullets describe extra requirements for the function. Because it is an extensive list, this
makes it difficult to fully understand the working of this function.

In the document, the names of events is not consistent. For example, Evt_hh_kinderopvangtoeslag,
Evt_HH_kinderopvangtoeslag and Evt_huishouden_kinderopvangtoeslag are used to

represent the same event. Furthermore, not all business functions are completely specified

in [7] (see the listing below). The following listing shows findings from [7]:

e Textual

— “some details are mentioned”

Such sentences should not be part of a specification. It is very unclear if
the specification is correct and complete. Furthermore, it leaves room for the
programmer to give his or hers own interpretation.

— “this function has the same behavior as function X, with the following excep-
tions”
Such a specification should be avoided. It highly depends on the specification
of function X. While the specification of X might be a complete specification,
specifying a function this way leaves lots of room for human error. Further-
more, if function X is changed, a lot of rework might have to be done.

— “the Hevt_X is replaced with a terminate event”
It is important to fully specify behavior, including event names. As terminate

events are using in the LMA, it is important to have the correct event names
in the specification.

— “Evt_X or Evt_Y (both) and Evt_2Z”

This is an unclear specification. Evt_Y is known to have two variations, Evt_-
Y1 and Evt_Y2. What is meant with “both”? Is it X||(Y1&&Y2) or X||Y1]|Y2.
These are not logically equivalent, and as a programmer can give its own in-
terpretation to the specification, the system can show unwanted behavior.

e Verification

— Through verification of the model, it has come forward that for a Cevt_-
tijdstip_beschikken event, no behavior is specified for the case that no
concept depositions have been created. A verification run showed an assertion

63

violation for this case. This problem occurred in the disposition (Beschikken)
service.

These findings have not shown any issues regarding concurrency. Therefore, the stated
hypothesis: “Concurrency is the cause of the anomalies in KOT and model checking can
detect these anomalies” is not validated.

Furthermore, the documentation contains an extensive list of change requests. This
can imply that the specification has been incomplete or contained errors. However,
to substantiate this statement, a detailed analysis of the changes to the specification
document [7] is needed. However, change requests have only come into existence after
the production date. Therefore, many changes to the document have not been properly
documented in change requests. This makes is hard to see if anomalies as incompleteness
have been removed from the specification.

5.9 Conclusions

This chapter was guided by questions 6, 9, 7, 8, 10 and 11 of 1.4. Question 6, where
is the system for KOT described, can not be answered unequivocally. There are several
levels on which the system is described. However, the Service Document [7] is regarded
as the basis of the system.

The next question, 9, what characteristics should the specification of business processes
or systems have to be suitable for model checking, is easier to answer. Findings from
the case study show that the specification should be clear and unambigious, and should
contain the abstract behavior of the system or business function.

Question 7, what specification language and tool is best suited for the modeling and
verification of KOT, is answered with PROMELA and SPIN. This pairing is chosen due to
the C-like structure of PROMELA and the maturity of SPIN.

What level of abstraction is to be used for the modeling of the system supporting KOT,
question 8, is difficult. The current abstractions made, make it possible to see a working
model the behavior of the events. But the aspects of the Time Object Model (regarding
the start and end time of data) is removed. This abstraction lowers the state space, but
also reduces the funtionality of the model, as only the current situation of the citizen is
stored. Time travelling is not possible. This has some influence of the validity of the
model.

The errors found by model checking are diverse. The errors found include ambiguity in
the specification and incompleteness of the specification. This answers question 10.

The final question this chapter aimed to answer was question 11: to what extend does
model checking improve the specification the supporting systems? By using model check-
ing ambiguity and incompleteness is removed, the working of the system can be visualised

64

and simulated. This helps designers to see what they have created and what issues can
occur.

65

Chapter 6

Analysis of known errors

Within NTS, several errors are known. These errors are registered as Candidate Known
Errors (CKE) or Known Errors (KE). This chapter will show that these errors can be
detected with model checking and could therefore have been prevented. Note that as
these errors have already been identified, workarounds are available and the errors can
therefore not be exploited.

For the chain used in this study, KOT, a total of over 10 (C)KE were identified. After
careful investigation, most errors originate from databases behavior. This is outside the
scope of this study. One KE, 111, and one CKE, 190, were selected for investigation as
the description includes ordening of events and calculation errors.

6.1 KE 111

Known Error 111 is an error that leads to an event ending up in the Error Handling
Service (EHS). The event that ends up in this EHS is an event regarding the ending of
a partnership: Evt_einde_AWIR_partnerschap. The analysis in this KE describes the
situation and shows that the error occurs when a start event overtakes an end event.
The end event is given to the EHS because the partnership the event is trying to end is
not found. Listing L.1 in appendix L shows the initial situation for the error (lines 6-31)
and the data for the events (line 36-53). According to the description of the error, only
two services, namely the AWIR partner service and the household service play a role in
this error. To improve speed and rule out behavior by other services, only the AWIR and
household service are started for the analysis of this Known Error. The initializing of
these service in PROMELA is depicted in listing 6.1.

66

run F_bepalen_AWIR_partner_gevolgen();
services_started++;

run F_vaststellen_huishoudsamenstelling_kinderopvangtoeslag();
services_started++;

Listing 6.1: Starting relevant services for KE 111

To show that the system shows correct behavior when the events arrive in order, an
analysis with a first-in, first-out (FIFO) ESB is performed. This is done by modifying
the listening to events part of the receiving service, in this case the household service
(Vaststellen huishoudsamenstelling) to make the queue FIFO. In stead of using random
receive [95] (The “7?” construct in PROMELA) for the implementation in the model),
receive (“7” in PROMELA) is used to create a FIFO ESB, as the initial idea of the de-
signers was that the ESB would function in a FIFO way. See listing 5.7 for the initial
implementation of the random receive.

#define listenForEvent(e,s) :: tsl 7 e, s, incoming_burger, incoming_hh,
retryCount -> active_event = e

Listing 6.2: FIFO ESB

The existence of the error is shown by adding an assertion to the mapping function:

assert (burgers[incoming_burger .BSN].AWIR_partnerschap ==
incoming_burger . AWIR_partnerschap);

Listing 6.3: Assertion for KE 111

This assertion checks if the partnership the events is ending, is indeed the current part-
nership of the citizen known to the service that is processing the request.

A full state space search of the model, given the input described in the KE document,
shows no violations of this assertion. The model, and therefore the design, have defined
correct behavior with respect to these events and the ordening of events.

However, when adding an extra household service (see listing 6.4), the error does occur
due to the possible simultaneous retrieving of the events from the ESB. This is in line
with the stated hypothesis in section 1.1 that anomolies in KOT occur due to concurrency.
Listing 6.4 shows how this extra service is started.

run F_vaststellen_huishoudsamenstelling_kinderopvangtoeslag();
services_started++;

Listing 6.4: Starting an extra service

67

A verification run shows that the assertion in the model now violated, even if no extra
household service is in place.

6.1.1 Extension of the error

Looking at the underlying behavior of the AWIR partnership, it shows that several levels of
this partnership exist. The partnership that is ended is a partnership based on paragraph
1C of article 3 of AWIR, while the new partnership is based on paragraph 1A of article 3
of AWIR (see [7]). Partnerships based on paragraph 1B of article 3 (see [7]) will also end
the partnership based on paragraph 1C of article 3. This means that the statement that
this error only occurs in a specific case is possibly false. Therefore input for the model
is extended to check partnerships based on paragraph 1B. While the analysis states that
two input events are required (handtekeningrelatie and geregistreerd partnerschap), this
extension uses single events for the cases states in paragraph 1B of article 3. A verification
run shows that indeed the known error marked as KE 111 can occur for these cases: for
all events that lead to a partnership based on paragraph 1B of article 3 of AWIR the error
can occur.

While this extension shows that the error is larger than depicted in the Known Error
report, it should be noted that in the real system this problem will only occur for similar
timestamps for the events. As timestamps have been abstracted from the model, each
event has an identical timestamp.

Looking into numbers regarding AWIR partnerships, there are for example currently
287,480 AWIR partnerships! for people with a common child (gemeenschappelijk kind)
that do not have a registered partnership. This means that 2 x 287,480 = 574,960
citizens. Highly theoretical, every one of those citizens could have started a registered
partnership with another person on the same date as the birth of their child. Each of
those registered partnerships could lead to known error 111, given that the birth of the
child arrives before the registered partnership.

6.1.2 Solution

The known error 111 occurs when a stop event of the current partnership is overtaken
by a start event of the new partnership. A possible solution is to use the round robin
mechanism described earlier in 5.3.1.2. This is done by replacing the mapping behavior of
Evt_start_AWIR_partnerschap. A partnership can only be registered as started when
no current partnership is registered at the service. If another partnership is registered,
round robin will be used to wait for the stop event.

"Numbers retrieved April 11, 2012

68

if
:: burgers[incoming_burger .BSN].AWIR_partnerschap ==

incoming_burger . AWIR_partnerschap -> data_changed = 1
else -> if
burgers[incoming burger .BSN].AWIR_partnerschap == 0 -> map
fields
else -> if
rr == MAX_RR_RETRIES ->
assert (burgers[incoming_burger .BSN].AWIR_partnerschap
== 0);
map fields
else -> workflowRoundRobin(service_id);
fi
fi

Listing 6.5: Fix for KE 111

The verification run that was performed after this change to the model showed no viola-
tions of the assertion.

6.2 CKE 190

Candidate Known Error 190 is an error in the calculation of the AWIR partnership. It is
an error that has occurred during the regression test. The situation is complex, and as
stated in the description of the error, it is not likely to occur in real life. The starting
situation contains 8 citizens, which have several relationships, including partnerships,
shared households and children. The details of this CKE are listed in appendix L.2. The
AWIR function states that when a new partnership is formed, all citizens affected by this
partnership, such as previous partners, should be rechecked for a partnership. The error
that has been found is that not all citizens influenced by the partnership are rechecked
and not all valid partnerships are created for the given test situation.

To verify this, a Itl property has been created:

1t1 {
1<> tslgs [AWIR_PARTNER].burgers[4].AWIR_partnership == 5

“w

Listing 6.6: Property for CKE 190

This property means that eventually the citizen with BSN 4 should have AWIR partner
5 registered in service identified by AWIR_PARTNER. A verification run shows that this
property is satisfied. This means that all partnerships are started and ended correctly.
The conclusion from the report that this is an implementation issue is correct, given that
the model is valid.

69

6.3 Conclusion

The analysis of KE 111 and CKE 190 shows that model checking can aid to prevent errors
in system design. It can also help in the analysis of the error, by adding assertions as done
for KE 111. The fact that these errors did not occur in a full verification run as described
in chapter 5 is two-way: first of all, the assertion in the mapping of the partnership was
not in place when the full verification run was performed. Furthermore, due to the usage
of Swarm and bitstate verification techniques, this error might have been missed.

Furthermore, the analysis of KE 111 has shown that concurrency is the cause of this
known error, given that the ESB is FIFO. This shows that the hypothesis: “Concurrency
is the cause of the anomalies in KOT and model checking can detect these anomalies in
the design” is valid for the given case.

70

Chapter 7

Application of formal methods
within Belastingdienst

Chapter 5 and 6 have shown the application of model checking on the specification of KOT
and in the analysis of some known errors. But how can this technique be applied within
the development process of the Belastingdienst? This chapter will show the experience of
applying model checking to the existing specification of an information system. From this
experience, recommendations on the application of model checking in the development
process of the Belastingdienst are given. These recommendations are guided by questions
2, 12 and 13 (stated in 1) regarding the requirements and changes to the development
process, the knowledge and education level and the general usability of model checking.

7.1 Case study experience

Creating the model from the current specification has, among others, given insight into
the effort needed to create such a model. These experiences are discussed in this section.

First of all, the time intensity is something that should not be underestimated. The
creation of a model from an existing specification can take up a lot of time. As model
checking is known to benefit from abstractions, the system has to be well known to be
able to make these abstractions. The abstraction will have to be made before the system
is actually modeled, because abstraction in an existing model is a hard thing to do.

Furthermore, the knowledge of the model checking tool and modeling language by the
modeler determine the amount of time needed for the creation of the model. Creating
such a model requires detailed knowledge of the modeling language, the verification tool
and the system under investigation. For such a vast system as TSL, abstractions have
to be made in order to be able to complete a verification run once the model has been
fully created. But in order to create such abstractions, knowledge of both the system
design under investigation and the model checker is needed to be able to make the right

71

abstractions. Only experts in the domain of Toeslagen are able to do so.

Verification of the current model is a time consuming process. The generation of C
source code from Promela is fast, and takes a couple of seconds. Compiling the model to
a runnable verifier is a more time consuming process. Without compiler optimizations,
this process takes about twenty minutes. With this optimizations flag (-02) enabled,
around 30 minutes pass by until a runnable verifier is available. A run of the verifier
can take up to several days, depending on the number of starting instances of citizens
chosen. Even with optimizations enabled and using Swarm, the final verification runs
have taken up to several days (runs have shown runtimes of 5.63 x 10 seconds, checking
1.469532 x 108 states) for a single run.

Using Swarm for parallization of the search has shown to be significantly quicker in the
detection of errors. However, as Swarm uses four different verifiers, the compile time
increases slighty. But this small overhead is paid back when looking at the time saved in
verification. Errors are found relatively quickly compared to the single, full state space
search (around 1 hours versus several days). If no errors are found, this process can also
take up to several days, and the seperate runs of the verifiers will eventually end up
checking the same states.

7.2 The position of Model Checking in the development pro-
cess

From literature [105, 106], the position of model checking in the traditional waterfall
method can be identified. This is shown in figure 7.1.

Verification of the model takes places after the design phase in the model, while debugging
is done in the analysis and design phases. Note that while figure 7.1 shows debugging
after the Code phase as well, this is not part of model checking, as the code is not part of
the model. The position of model checking makes perfect sense, as a model is, as stated
before, (a representation of) the design.

Although the Belastingdienst uses the V-model and not the waterfall development model
for its development process, these analysis and design phases can still be identified (re-
member figure 1.1). Looking at the V-model (see figure E.1 of appendix E) of develop-
ment process the Belastingdienst and the description of this development process in 4.1,
these analysis and design phases are part of this V-model as “ Opstellen globaal ontwerp”
(Analysis) and “ Detailontwerp Service” (Design). These phases are the best fit for model
checking to be embedded in the development process of the Belastingdienst.

72

(System \I debugging
\Englneermg)
\a(Analysis ’
' verification

_ debugging

j/\/‘ /
il)

-

.,_\H__- Test _____
L esting fj i

\~| Maintenance
— A

Figure 7.1: Position of model checking in the traditional waterfall process for software
development [105, 106]

7.3 Level of usability

Within the first phases of the development process of the Belastingdienst, products are
reviewed as part of the quality process. This can be seen in the V-model (see figure E.1
in appendix E)This is depicted as Toetsen in the image, the Dutch term for such reviews.

As PROMELA models are for the most part easy to read and understand, these formal
models can be reviewed in the development process, as is currently done with all doc-
umentation that is created in the first phases. The important difference between the
current documentation and the formal model is that the level of ambiguity is decreased,
due to the languages used. While the model language PROMELA, like many other pro-
gramming languages, has features to add comments to code, these comments should be
kept very brief. These comments should be a short clarification of the code, longer texts
will not add clearification as ambiguity of the comment is likely to rise.

In addition to the reviewing of documents as part of the development process, verification
of the model with SPIN can be added to this development process. This implies that the
currently identified phases of the development process do not need to be altered. An
extra step, the verification of the model, can be added. To be able to perform such a
verification, it is important that the properties that need to be checked, are available
and have been reviewed and approved by others. Only domain experts can do so. This
to ensure that the properties are valid and specify a situation that needs to be checked.
The creation of the properties requires knowledge of Linear Temporal Logic. As LTL is
currently mainly used in academic and higher education areas, it is wise to say that it
requires a higher or academic level to be able to use this logic.

73

Finally, if the system suffers from an anomaly, the model can aid in the analysis of this
anomaly. If provided a start condition, relevant event and condition of the anomaly,
these events and conditions can be entered into the model. Verification will lead to one
or more error paths to the error. If this is the case, an error in the design is identified.
If no errors are found, the most likely cause is an error in the software, as the design
did not include the error. Using this technique can speed up the analysis of errors, less
manual work is needed for the analysis. This will eventually lower the personnel costs,
as external personnel is used for this analysis.

7.4 Level of knowledge and education

As the case study has shown, detailed knowledge of the architecture is needed to create
a model of the system. Knowledge of the architecture alone will create a very abstract
version of the system. Details of the services will have to be added as well, which
requires in-depth knowledge of the business logic of the services. Both knowledge of the
architecture and of the business logic of the services is available in the organisation, as
the system specification [7] already contained this information.

To be able to create a model, a low level degree of programming knowledge is required.
While PROMELA is in fact not a programming language, its syntax resembles the C/C++
language. Prior experience with such a language can help to create the model. As
PROMELA itself as several peculiarities, a set of best practices is to be shared among
thosee employees that will create model, in order to escape these peculiarities.

Specifying properties is another important aspect to consider. Properties need to be
specified that can be checked in the verification of the model. Knowledge of the archi-
tecture, model and application domain is needed to do this. Without knowledge of the
domain, it is difficult to create valid or important properties, as exit criteria need to be
known. For example, a citizen is not allowed to receive child care benefits for year 1" if
this citizen has been in detention during the entire year T'. This knowledge is only known
by domain experts.

Finally, knowledge of the SPIN and its command line and compilation options is required
to generate and compile the optimal model for verification. Without these options,
verification is less likely to complete or succeed in a timely fashion.

7.5 Implementation in the development process

To embed model checking in the development process, several things are required. First
of all, people using the technique will require time to get to know the language and tool,
as the learning curve is long. The case study has shown that the transformation of current
documentation into a formal model as an useful approach in this learning process.

74

As knowledge is spread throughout the organisation, several people will work on the
model simultaneously. This requires extra efforts in version management, as well as
communication between the modelers with respect to the abstraction level and data
objects.

Finally, an extra step, the verification of the model, will have to be added to the devel-
opment process. As the “Detailontwerp service” is the final step of the V-model in which
model checking is applied, the verification can be performed after this phase.

The modeling will be performed by the architects and analysts from these phases: Lead
architect, Tactical architect, Project & ict architect, Strategic architect and Functional
analyst (see table G.1 in appendix G), together with domain experts, forming a multi-
disciplinairy team. The responsibilty for the verification will be in the hands of B/CcAO
(see F.1)

7.6 Conclusion

This chapter was guided by three questions from 1.4. These questions have been answered
in the previous sections. The most important aspects for each question are mentioned in
this conclusion.

The prerequisites and changes needed in the development process of the Belastingdienst
for a successful usage of model checking (question 2 of section 1.4) are the usage of the
formal language in the system design and the addition of a verification step next to the
review process.

The needed education level and knowledge for model checking (question 12 of 1.4) is
high. Modeling a system requires a lot of knowledge of the architecture, domain and
business logic of the services. For verification, detailed knowledge of the model checker,
as well as Linear Temporal Logic is needed. This requires a higher or academic level of
education.

The usage of model checking (question 13 of section 1.4) is wide. Formal methods can
be used in the analysis and design phases of the development process, to specify system
behavior. This resulting formal design is to be used to verify behavior and properties
of this design with model checking. While experience from the case study has shown
that modeling is a time consuming process, it does not seem to be more time consuming
then the time needed for the creation of the documentation in the current format. As
the system design has been extensively described in the specification, this has been a
time consuming process as well. Using a formal language as PROMELA will therefore not
increase the time by a relevant factor. However, the formal model can aid in the analysis
of errors from the software, as well in the prevention of errors through verification.

75

Chapter 8

Related and future work

This chapter will show the added value of this research to the current literature. Rec-
ommendations on future work in the research areas are also suggested. The research is
divided into three key areas: TSL and administrative systems, software design verification
and the embedding of new technology in the development process.

8.1 TSL

TSL and the underlying technology have been the subject of several scientific studies. The
FMDD technology has been investigated in [107,108]|. Both [107] and [108] have focussed
on the language aspects of the FMDD.

Other administrative systems seem to have received little attention with regard to formal
methods. The research performed on a pension administration system [19] shows that
formal methods can be applied to such a system. This research has not analysed the
development process nor gathered experiences on the used development process.

One of the important aspects of TSL that is interesting to investigate is the Time Object
Model. This feature of TSL is an essential component of the system, and is used exten-
sively. Because of the abstractions made (see 5.4), this TOM was not part of the model,
due to state space explosion and complexity. By adding the TOM, the state space is likely
to rise. But the Swarm technique has proved itself useful to cope with the problems this
brings in. The larger similarity the model will have when ToM is included, can help to
increase the coverage of the software tests performed.

8.2 Software design verification

Software design verification through model checking is an area that has received a lot of
attention by researchers. Its application include protocol verification, control software

76

[109], compilers [110], operating system kernels [111] and e-voting system. These are all
embedded systems or systems with a defined input range.

Model checking merely reasons over a model, without any regard for the software im-
plementation of the specification. It is however possible to link model checking to the
software implementation. For example, model checking can be used to generate test
cases [112|. Furthermore, SPIN can include C code to link the model to a software im-
plementation. This is a simple form of Model Based Testing, a method closely related to
model checking (described in chapter 1). MBT is another interesting area of research for
the Belastingdienst, as it can help to further automate the testing process and increase
the test coverage.

8.3 Embedding new technology in a development process

The application of formal methods in industry has received little attention. Some re-
cent studies [113-115] have looked into aspects of the usage of formal methods in an
industrial setting, but there are many things to explore in this area. Therefore, another
point of investigation is the embedding of the model checking method in the development
process.This report positions the model checking technique in the process and contains
recommendations on the usage of this technique. However, these recommendations are
global and abstract. Further research is required on the change management aspects of
embedding this technology in the organisation to give detailed recommendations regard-
ing the usage of the technique within the Belastingdienst.

7

Chapter 9

Conclusion

This research was guided by a main question and hypothesis. In support of this question,
several subquestions were created. The results of these questions will be discussed and
the main question will be answered. This main question was:

What steps are required for a successful implementation of model checking within the
development process of the Belastingdienst’s Toeslagen program?

Before providing an answer to this main question, the subquestions will be discussed
briefly.

1 What is the organisational structure of the Belastingdienst?
The Belastingdienst is part of the Ministry of Finance. The Belastingdienst is divided
into several units. The Central Office supports the other units of the Belastingdienst.

2 What prerequisites and changes are needed in the development process of the Belasting-
dienst for a successful usage of model checking?

In order to be able to use model checking in the development process of the Belasting-
dienst, the formal language needs to be used in the system design. To utilize the model
checking technique, an extra step needs to be added to the development process. This can
be done in the review process of the detailed design of the system, to which a verification
step is added.

8 What departments and units are involved in the Toeslagen program at the Belasting-
dienst?

Belastingdienst/Toeslagen is the execution body of government for benefits (Toeslagen),
while these benefits are established and organised by three different ministeries, which
do not include the Ministry of Finance.

78

Within the Central Office (B/CA), most units have involvement in processes of Toeslagen.

4 Who was involved in the development process of the Toeslagen program, what role did
they have and how have they experienced this development process?

A lot of people have involvement in the development process of the Toeslagen program.
Their experience was gathered via interviews and the results were structured along Crit-
ical Success Factors from literature. The results from the interviews indicate that the
Critical Success Factors play an important role in the NTS project and several improve-
ments have been identified. Keeping documentation up to date, multidisciplinairy teams
to ensure easy communication and the learning curve of the new system are important
factors mentioned.

5 What business processes are involved in KOT?
The relevant processes for Toeslagen, looking at KOT are: processing notifications, de-
faulters, residence factor, automatic continuation, decision on objection, appeal, mass
supervision and final awarding. The most relevant business process was also identified:
Processing notifications (Verwerken meldingen).

6 Where is the system for KOT described?
There are several levels on which the system is described. However, the Service Document
[7] is regarded as the basis of the system.

7 What specification language and tool is best suited for the modeling and verification of
KOT?

For this case, PROMELA and its tool SPIN are best suited for the modeling and verification
of the system of KOT. This pairing is chosen due to the C-like structure of PROMELA
and the maturity of SPIN.

8 What level of abstraction is to be used for the modeling of the system supporting KOT ?
The current abstractions made in the case study, make it possible to see a working model
of the behavior of the events. But the aspects of the Time Object Model (regarding the
start and end time of data) is removed. This abstraction lowers the state space, but also
reduces the funtionality of the model, as only the current situation of the citizen is stored.
Time travelling is not possible. This has some influence of the validity of the model. For
a model which contains full system behavior, a higher level of detail is needed.

9 What characteristics should the specification of business processes or systems have to
be suitable for model checking?

The specification should be clear and unambigious, and should contain the abstract
behavior of the system or business function.

10 What kind of errors does model checking detect?
The errors found by modeling and model checking are diverse. The errors found include
ambiguity in the specification and incompleteness of the specification.

11 To what extent does model checking improve the specification of the supporting sys-
tems?
By using model checking ambiguity and incompleteness is removed, the working of the

79

system can be visualised and simulated. This helps designers to see what they have
created and what issues can occur.

12 What is the education level and knowledge needed for model checking?

The needed education level and knowledge for model checking is high. Modeling a system
requires a lot of knowledge of the architecture, domain and business logic of the services.
For verification, detailed knowledge of the model checker, as well as Linear Temporal
Logic is needed. This requires a higher or academic level of education.

18 What are the general usability, costs, time intensity for model checking within the
Toeslagen program at the Belastingdienst?

Model checking can be used in the analysis and design phases of the development process,
to specify system behavior. While experience from the case study has shown that model-
ing is a timely process, it does not seem to be more time consuming then the time needed
for the creation of the documentation in the current format. As the system design has
been extensively described in the specification, this has been a time consuming process
as well. Using a formal language as PROMELA will therefore not increase the time by
a relevant factor. However, the formal model can aid in the analysis of errors from the
software, as well in the prevention of errors through verification.

14 Does model checking provide added value to an organisation, taking into account costs
and benefits?

Considering the effort needed for a change request to be drawn up and implemented,
the organisation can benefit from the model checking technique. Every prevented change
request will save on the organisational costs, as these request require a lot of time for
analysis and review which is expensive. Of course, not all errors due to incompleteness
can be prevented, for example unknown features. But of known features the checking
the completeness of the design via model checking is helpful. Furthermore, the technique
can aid in the analysis of errors found in the system. And finally, using the formal
specification language helps to clearify the specification documents.

15 What view does model checking deliver of the supporting system of KOT?

Model checking an abstract, formal model of the supporting system of KOT has shown
that the specification contains several anomalies. However, these anomalies are relatively
small compared to the system and were already known to the organisation. This shows
that the supporting system of KOT is currently a stable system. This is shared by the
organisation, as the number of problems that occur in the production system is low.

16 Do stakeholders involved in KOT share the view delivered by model checking?
Stakeholders share the findings from the case study. The specification is known to contain
anomalies due to time shortage. However, these anomalies from the specification do not
have an effect on the production software. Most problems have been eliminated during
pre production and testing phases.

The analysis of Known Errors has shown that concurrency can indeed be the cause of the
anomalies in the system of KOT. This means that the hypothesis that guided the case
study: “Concurrency is the cause of the anomalies in KOT and model checking can detect

80

these anomalies in the design” upholds. Model checking could have prevented problems
due to concurrency as currently occur within the communication between the AWIR and
household service. As this anomaly has a wide range of potential occurrences (over
500,000 citizens involved the stated situation of the error), it is important to overcome
these anomalies.

To sum up, and answer the main question, the following steps are required for a successful
implementation of model checking in the development process of the Belastingdienst:

1. Working in multidisciplinairy teams with domain experts, architects en analysts

Multidisciplinairy teams ensure easier communication. The domain experts are
needed to embed specific knowledge in the specification of the system

2. Educate architects and analysts on the usage of the formal language and accompa-
nying tools

Detailed knowledge of the specification language, model checking tool and domain
knowledge is needed for a successful usage of the technique. This requires architects
and analysts to obtain knowledge over the language and tools.

3. Educate others involved in the basics of the formal language, so they can review
the specification

The review process within the development process ensures that the system is
specified to behave as all users expect. To be able to review the specification,
knowledge on the formal language is required

4. Educate domain experts in the drawing up of conditions that the specification
should uphold. These conditions are verified by the model checker

A model checker can verify stated conditions. This is a powerfull aspect of a model
checker, but the language it requires is not an easy concept. Domain experts should
be taught on this language, as they have the needed domain knowledge to specify
the conditions

5. Schedule verification time, so the specification can be verified by the model checker.
If problems are found during verification, their should be enough time scheduled
to analyse and repair these problems

Model checking can be a time consuming operation. But as it can aid in the
detection of errors, it is important to verify the specification, before starting the
software implementation of this specification

Further research is needed on quantification on the gain provided by model checking. It
is clear that formal methods provide added value to the development process: once the
long learning curve has passed, the system is specified in an unambiguous language, that

81

can be verified by model checking. This improves the system specification. The model
checking tool can also aid in the analysis of software errors from the production phase,
speeding up the analysis, which can also reduce the costs of the analysis.

82

Bibliography

1]

2l

3]

4]
15]
(6]

17l

8]

19]
[10]

[11]

[12]

[13]

— Internal documents —

Somers, H. and van Rooyen, J. Model based testen - Pilot voor Definitief toekennen.
Onderzoek opzet (in Dutch).

Belastingdienst. Organisatiestructuur Belastingdienst /Centrale administratie, Jul
2011.

Belastingdienst/Toeslagen. MLTP Toeslagen 2012-2015. Internal Belastingdienst
document.

Project Toeslagen 2009 and Foederer, R. Verzamelen raakvlakken, Sep 2007.
Belastingdienst. BiZZdesigner Navigator Toeslagen Nieuw. B/CA intranet.

Cluster IV, DGBel, Belastingdienst. Kaderdocument I'V-keten - Strategie, struc-
tuur en inrichting van de IV-keten van de Belastingdienst. .

Nissink, P. and Groot, M. de and Fernandez, S. and Maathuis, M. Services Toes-
lagen, versie 5.3, Jun 2011.

Veenstra, Erik and others. Belastingdienst Toeslagen, TSL Software Architecture
Document, 2010.

Capgemini, A-team TSL. Bedrijfsfunctie bepaal AWIR-partnerschap, Nov 2007.

Albert Chung, Sjoerd Perfors, Vincent Kappert, and Wim Wentink. Fo — bundelen
services, 2011.

Albert Chung, Sjoerd Perfors, Vincent Kappert, and Wim Wentink. To — bundelen
services, 2011.

Gert Veldhuijzen van Zanten and Erik Veenstra. Ontwerp samenvoegen services,
2011.

B/CPP. Service Toeslagen (TSL) / Bedrijfsservice: Kinderopvangtoeslag, 2011.

83

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]
[27]

28]

— Miscellaneous —

Canfora, G. and Di Penta, M. Service-oriented architectures testing: A survey.
Software Engineering, pages 78-105, 2009.

Solstice Software, Robert Carmichael. Assuring Quality Business Processes through
Service-Oriented Architecture Testing, 2006.

Boehm, BW. Software engineering economics. I[EFEE transactions on software
engineering, 10(1):4-21, 1984.

Atlee, J.M. and Gannon, J. State-based model checking of event-driven system
requirements. Software Engineering, IEEE Transactions on, 19(1):24-40, 1993.

Bharadwaj, R. and Heitmeyer, C.L.. Model checking complete requirements speci-
fications using abstraction. Automated Software Engineering, 6(1):37-68, 1999.

Bosma, T., van Rooyen, J., van der Zee, B. To prevent or to cure? In Proceedings of
the 19th International Conference on Software and Systems Engineering and their
Applications, 2006.

Tretmans, J. Model based testing with labelled transition systems. Formal methods
and testing, pages 1-38, 2008.

Michelson, B.M. Event-driven architecture overview. Patricia Seybold Group,
2006.

Laliwala, Z. and Chaudhary, S. Event-driven service-oriented architecture. In
Service Systems and Service Management, 2008 International Conference on, pages
1-6. IEEE, 2008.

Amaélio, N. and Kelsen, P. and Ma, Q. The visual contract language: abstract mod-
elling of software systems visually, formally and modularly. Univ. of Luzemboury,
Tech. Rep. TR-LASSY-10-01, 2010.

Miller, S.P. and Whalen, M.W. and Cofer, D.D. Software model checking takes off.
Communications of the ACM, 53(2):58-64, 2010.

Scheer, A.W. and Thomas, O. and Adam, O. Process Modeling using Event-Driven
Process Chains. Process-Aware Information Systems, pages 119-145.

Drury, C.G. Service, quality and human factors. Al & Society, 17(2):78-96, 2003.

Murphy, C. Improving application quality using test-driven development (TDD).
Methods € Tools, 13(1):2-17, 2005.

Tretmans, J. A theory of model-based testing and how ioco goes eco. FElectronic
Notes in Theoretical Computer Science, 264(3):86-89, 2010.

84

[29] Muccini, H. Software architecture for testing, coordination and views model check-
ing. PhD thesis, Universta degli Studi di Roma ‘La Sapienza’, 2002.

[30] Clarke, E.M. and Wing, J.M. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys (CSUR), 28(4):626-643, 1996.

[31] Ostroff, J.S. Formal methods for the specification and design of real-time safety
critical systems. Journal of Systems and Software, 18(1):33-60, 1992.

[32] Lin, F.J. and Chu, PM and Liu, M.T. Protocol verification using reachability
analysis: the state space explosion problem and relief strategies. ACM SIGCOMM
Computer Communication Review, 17(5):126-135, 1987.

[33] Alur, R. and Brayton, R. and Henzinger, T. and Qadeer, S. and Rajamani, S.
Partial-order reduction in symbolic state space exploration. In Computer Aided
Verification, pages 340-351. Springer, 1997.

[34] El-Far, LK. and Whittaker, J.A. Model-Based Software Testing. FEncyclopedia of
Software Engineering, 2001.

[35] Pelanek, R. Fighting state space explosion: Review and evaluation. Formal
Methods for Industrial Critical Systems, pages 37-52, 2009.

[36] Hall, A. Realising the benefits of formal methods. Formal Methods and Software
Engineering, pages 1-4, 2005.

[37] Tweede Kamer der Staten-Generaal. Kamerstuk Tweede Kamer, vergaderjaar
2010-2011, 31 322, nr. 123. https://zoek.officielebekendmakingen.nl/kst-31322-123.
pdf.

[38] Larsen, P.G. and Fitzgerald, J. and Brookes, T. Applying formal specification in
industry. Software, IEEFE, 13(3):48-56, 1996.

[39] Holzmann, G.J. The model checker SPIN. Software Engineering, IEEE Transac-
tions on, 23(5):279-295, 1997.

[40] Holzmann, G.J. and Smith, M.H. A practical method for verifying event-driven
software. In Proceedings of the 21st international conference on Software engineer-
ing, pages 597-607. ACM, 1999.

[41] Belastingdienst. — Basic Values. http://www.belastingdienst.nl/wps/wcm/
connect/bldcontenten/standaard_functies/individuals/organisation/basic_
values/.

[42] Belastingdienst. Kamerstuk Tweede Kamer, Vergaderjaar 2011-2012, 33000-I1XB
nr. 24, Bijlage bij Kamerstuk 33000-IXB nr. 24, Beheerverslag Belastingdienst
2011. https://zoek.officielebekendmakingen.nl/blg-168696.pdf.

85

[43] Tweede Kamer der Staten-Generaal. Kamerstuk II, Vergaderjaar 2008-2009, 31066
nr. 61. https://zoek.officielebekendmakingen.nl/kst-31066-61.pdf.

[44] Tweede Kamer der Staten-Generaal. Kamerstuk II, Vergaderjaar 2008-2009, 31066
nr. 64. https://zoek.officielebekendmakingen.nl/kst-31066-64.pdf.

[45] Tweede Kamer der Staten-Generaal. Kamerstuk II, Vergaderjaar 2009-2010, 31066
nr. 78. https://zoek.officielebekendmakingen.nl/kst-31066-78.pdf.

[46] Tweede Kamer der Staten-Generaal. Bijlage bij Kamerstuk II - Vijfde halfjaarsrap-
portage vereenvoudigingsoperatie Belastingdienst, Vergaderjaar 2009-2010, 31066
nr. 82. https://zoek.officielebekendmakingen.nl/blg-47836.pdf.

[47] Tweede Kamer der Staten-Generaal. Bijlage bij Kamerstuk II - Halfjaarsrap-
portage Belastingdienst, Vergaderjaar 2009-2010, 31066 nr. 90. https://zoek.
officielebekendmakingen.nl/blg-70107.pdf.

[48] Tweede Kamer der Staten-Generaal. Bijlage bij Kamerstuk II - Halfjaarsrapportage
Belastingdienst november 2009, Vergaderjaar 2010-2011, 31066 nr. 98 Herdruk.
https://zoek.officielebekendmakingen.nl/kst-31066-102.pdf.

[49] Tweede Kamer der Staten-Generaal. Kamerstuk II, Vergaderjaar 2010-2011, 31066
nr. 102. https://zoek.officielebekendmakingen.nl/kst-31066-102.pdf.

[50] Tweede Kamer der Staten-Generaal. Bijlage bij Kamerstuk II - 8° Halfjaarsrap-
portage Belastingdienst mei 2011, Vergaderjaar 2010-2011, 31066 nr. 103. https:
//zoek.officielebekendmakingen.nl/blg-116908.pdf.

[51] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties. Kamerstuk Tweede
Kamer, vergaderjaar 2011-2012, 41490, nr. 88 - Rapportage grote en risicovolle
ICT-projecten, Bijlage bij de Jaarrapportage Bedrijfsvoering Rijk 2011. https:
//zoek.officielebekendmakingen.nl/blg-167549.pdf.

[52] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties. Toeslagen Nieuw |
Rijks ICT dashboard. https://www.rijksictdashboard.nl/content/project/
toeslagen-nieuw.

[53] Tweede Kamer der Staten-Generaal. Kamerstuk Tweede Kamer, vergaderjaar
2010-2011, 31 066, nr. 106. https://zoek.officielebekendmakingen.nl/kst-31066-106.
pdf.

[54] Maréchaux, J.L. Combining service-oriented architecture and event-driven archi-
tecture using an enterprise service bus. IBM Developer Works, 2006.

[55] Martijnse, N. en Noordam, P. . Projectmanagement: lessen uit falende en suc-
cesvolle ICT-projecten. Controllers moeten vanaf de start een rol spelen. Manage-
ment Control en Accounting, (3), April 2007.

86

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

Kloppenborg, T.J. and Opfer, W.A. The current state of project management
research: Trends, interpretations, and predictions. Project Management Journal,
33(2):5-18, 2002.

Rockart, J.F. Chief executives define their own data needs. Harvard business
review, 57(2):81, 1979.

Pinto, J.K. and Slevin, D.P. Critical factors in successful project implementation.
IEEFE transactions of engineering management, (1):22-27, 1987.

Pinto, J.K. and Prescott, J.E. Variations in critical success factors over the stages
in the project life cycle. Journal of management, 14(1):5-18, 1988.

Sumner, M. Critical success factors in enterprise wide information management
systems projects. In Proceedings of the 1999 ACM SIGCPR conference on Com-
puter personnel research, pages 297-303. ACM, 1999.

El Emam, K. and Koru, A.G. A replicated survey of IT software project failures.
Software, IEEE, 25(5):84-90, 2008.

Rosacker, K.M. and Olson, D.L. Public sector information system critical success
factors. Transforming Government: People, Process and Policy, 2(1):60-70, 2008.

Shokri-Ghasabeh, M. and Kavoousi-Chabok, K. Generic project success and project
management success criteria and factors: Literature review and survey. WSFEAS
Transactions on business and economics, 6(8):456-468, 2009.

Pankratz, O. and Loebbecke, C. Project managers’perception of is project success
factors—a repertory grid investigation. 2011.

Verhoef, C. Politieke deadlines: dodelijk voor IT. Digitaal bestuur, January 2007.

Groep, P. and Beenker, N. Studie naar succes-en faalfactoren van complexe ICT
projecten.

Rampersad, H.K. Total Quality Management; an executive guide to continuous
im-provement. 2001.

Roberts, M. Readings in Total Quality Management, chapter 30, pages 459-473.
Dryden Press, 2 edition, 1999. Becoming customer oriented By Mary Lou Roberts.

Cleaveland, R. and Parrow, J. and Steffen, B. The Concurrency Workbench: A
semantics-based tool for the verification of concurrent systems. ACM Transactions
on Programming Languages and Systems (TOPLAS), 15(1):36-72, 1993.

Sipma, H. and Uribe, T. and Manna, Z. Deductive model checking. In Computer
Aided Verification, pages 208-219. Springer, 1996.

87

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

Mateescu, R. and Sighireanu, M. FEfficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255-281,
2003.

Fehnker, A. and Huuck, R. and Jayet, P. and Lussenburg, M. and Rauch, F.
Goanna—a static model checker. Formal Methods: Applications and Technology,
pages 297-300, 2007.

Yovine, S. Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer (STTT), 1(1):123-133, 1997.

Jones, A.V. and Lomuscio, A. A BDD-based BMC approach for the verification of
multi-agent systems. Organizing and Program Committee, page 253, 2009.

Groote, J.F. and Mathijssen, A. and Reniers, M. and Usenko, Y. and Van Weer-
denburg, M. The formal specification language mCRL2. Methods for Modelling
Software Systems (MMOSS), 6351, 2007.

Griffault, A. and Vincent, A. The Mec 5 model-checker. In Computer Aided
Verification, pages 248-251. Springer, 2004.

Dill, D. The Mur¢ verification system. In Computer Aided Verification, pages
390-393. Springer, 1996.

Cimatti, A. and Clarke, E. and Giunchiglia, E. and Giunchiglia, F. and Pistore,
M. and Roveri, M. and Sebastiani, R. and Tacchella, A. Nusmv 2: An opensource
tool for symbolic model checking. In Computer Aided Verification, pages 241-268.
Springer, 2002.

Kwiatkowska, M. and Norman, G. and Parker, D. PRISM: Probabilistic symbolic
model checker. Computer Performance Evaluation: Modelling Techniques and
Tools, pages 113-140, 2002.

Shankar, N. Combining theorem proving and model checking through symbolic
analysis. CONCUR 2000—Concurrency Theory, pages 1-16, 2000.

Drager, K. and Kupriyanov, A. and Finkbeiner, B. and Wehrheim, H. SLAB: A
certifying model checker for infinite-state concurrent systems. Tools and Algorithms
for the Construction and Analysis of Systems, pages 271-274, 2010.

Bengtsson, J. and Larsen, K. and Larsson, F. and Pettersson, P. and Yi, W. UP-
PA AL—a tool suite for automatic verification of real-time systems. Hybrid Systems
111, pages 232-243, 1996.

Hoffmann, V. and Lichter, H. and Nyfsen, A. Processes and Practices for Quality
Scientific Software Projects. In Proceedings of 3rd International Workshop on
Academic Software Development Tools WASDeTT-3, pages 95108, 2010.

88

[84]

[85]

[36]

[87]

[38]

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]
197]

98]

Holzmann, G. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

Holzmann, G.J. and Bosnacki, D. Multi-core model checking with SPIN. In Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1-8. IEEE, 2007.

Holzmann, G.J. and Joshi, R. and Groce, A. Swarm verification. In Proceedings
of the 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 1-6. IEEE Computer Society, 2008.

Hendriks, M. and Behrmann, G. and Larsen, K. and Niebert, P. and Vaandrager,
F. Adding symmetry reduction to uppaal. Formal Modeling and Analysis of Timed
Systems, pages 4659, 2004.

Behrmann, G. and Bengtsson, J. and David, A. and Larsen, K. and Pettersson, P.
and Yi, W. Uppaal implementation secrets. In Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 3-22. Springer, 2002.

Stern, U. and Dill, D.L. Combining state space caching and hash compaction.
Methoden des Entwurfs und der Verifikation digitaler Systeme, 4:81-90, 1996.

Norris Ip, C. and Dill, D.L. Better verification through symmetry. Formal methods
in system design, 9(1):41-75, 1996.

Ip, C.N. and Dill, D.L. State reduction using reversible rules. In Proceedings of
the 33rd annual Design Automation Conference, pages 564-567. ACM, 1996.

Ip, C. and Dill, D. Verifying systems with replicated components in Mur¢. In
Computer aided verification, pages 147-158. Springer, 1996.

Stern, U. and Dill, D. Parallelizing the Mur¢ verifier. In Computer Aided Verifi-
cation, pages 256-267. Springer, 1997.

Ruys, T. Low-fat recipes for SPIN. SPIN Model Checking and Software Verification,
pages 287-321, 2000.

Ben-Ari, M. Principles of the Spin model checker. Springer-Verlag New York Inc,
2008.

Holzmann, G.J. Design and validation of computer protocols. 1991.

Holzmann, G.J. PAN: a protocol specification analyzer. Technical report, Technical
Report TM81-11271-5, AT&T Bell Laboratories, 1981.

Holzmann, G. and Joshi, R. and Groce, A. Swarm verification techniques. Software
Engineering, IEEE Transactions on, (99):1-1, 2010.

89

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Alastair F. Donaldson and Alice Miller. A computational group theoretic symmetry
reduction package for the SPIN model checker. In Proceedings of the 11th Interna-
tional Conference on Algebraic Methodology and Software Technology (AMAST’06),
volume 4019 of Lecture Notes in Computer Science, pages 374-380. Springer, 2006.

D. Bosnacki and D. Dams. Discrete-time promela and spin. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages 307-310. Springer, 1998.

T. Basten, D. Bosnacki, and M. Geilen. Cluster-based partial-order reduction.
Automated Software Engineering, 11(4):365-402, 2004.

S. Blom, J. van de Pol, and M. Weber. Ltsmin: Distributed and symbolic reacha-
bility. In Computer Aided Verification, pages 354-359. Springer, 2010.

M. de Jonge and T. Ruys. The spinja model checker. Model Checking Software,
pages 124-128, 2010.

W. Visser and H. Barringer. Ctl* model checking for spin. Software Tools for
Technology Transfer, LNCS, 1999.

Ruys, T.C. Towards effective model checking. PhD thesis, Universiteit Twente,
2001.

R.S. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill
Science/Engineering/Math, 2010.

B Lamers. Een functionele aanpak voor taalcreatie & transformatie. Master’s
thesis, Radboud University Nijmegen, 20009.

Albert Gerritsen. Functional debugging. Master’s thesis, Radboud University
Nijmegen, 2011.

P. Kars. The application of promela and spin in the bos project. In The Spin
Verification System: The Second Workshop on the SPIN Verification System: Pro-
ceedings of a DIMACS Workshop, August, volume 5, page 51, 1996.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107-115, 2009.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, et al. seld: Formal verification of an os

kernel. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pages 207-220. ACM, 2009.

P.E. Ammann, P.E. Black, and W. Majurski. Using model checking to generate
tests from specifications. In Formal Engineering Methods, 1998. Proceedings.
Second International Conference on, pages 46-54. IEEE, 1998.

90

[113]

[114]

[115]

R. Alexander. Deployment of formal methods in industry: the legacy of the fp7 ict
deploy integrated project. ACM SIGSOFT Software Engineering Notes, 5, 2012.

R. Calinescu, S. Kikuchi, and M. Kwiatkowska. Formal methods for the develop-
ment and verification of autonomic it systems. Formal and Practical Aspects of

Autonomic Computing and Networking: Specification, Development and Verifica-
tion. IGI Global (to appear, 2011), 2011.

M. Mazzolini, A. Brusaferri, and E. Carpanzano. Model-checking based verification
approach for advanced industrial automation solutions. In Emerging Technologies
and Factory Automation (ETFA), 2010 IEEE Conference on, pages 1-8. IEEE,
2010.

91

List of Figures

1.1
1.2
1.3

21
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3

7.1

Al

The life cycle development model 4
Cost of change curve)
Testing, model checking and model based testing 6
Organisational structure of the Ministry of Finance! 13
Organisational structure of the Belastingdienst 15
Organisational structure of the Belastingdienst/Central Office 19
Organisational structure of the Belastingdienst/Toeslagen 20
Global overview of NTS 23
NTS time and costs 24
Workprocess AWIRo 27
TSL . o v v o e 29
Development process 31
Development process and PRINCE2 phases 35
The process of becoming customer oriented 36
Handling of data for business functions 49
Default MSC 59
Modified MSC 59

Position of model checking in the traditional waterfall process for software
development L 73

Business process Process notifications 100

92

B.1

C.1

D.1

E.1
E.2

Toeslagen application architecture 102

Business process Processing notifications 103
Workprocess handle benefits regulations 104
Development process at Belastingdienst (V-model) 106
Development process at Belastingdienst (Venturi model) 107

93

List of Tables

3.1

5.1

F.1

G.1
G.2

Advance payments of benefits in 2011 L. 22
Comparison of model checkers 42
Responsibility assignment matrix of the development process of the Be-

lastingdienst e 109

Coverage of respondents over development process 112

Translation of functions in development process

94

List of code listings

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
6.1
6.2
6.3
6.4
6.5
6.6
J.1
J.2
L1
L.2

ESB and event definition L 45
Register to events and wait for published events 45
Definition of function registerEvent 46
Definition of function setOne 46
Definition of macro setBit 46
Definition of eventsubscription datastructures 47
ESB and event definitiono 47
Definition of function generate_event 47
Definition of macro isOne, 48
Template of TSL service structure 50
Datastructures for service information storage 51
Definition of function template_Mapping. 51
Definition of function mappingo 52
Definition of function get_data 53
Definition of function copy_burger 53
Definition of function workflowRoundRobin 53
Sending events to TSL 54
Random citizen and household values 55
Definition of function nonDetermine 55
Init service 99
Block until all services are initialised 56
Environment initialisation L. 56
Bundled and unbundled structure oL 58
Starting relevant services for KE 111 67
FIFO ESB o it et 67
Assertion for KE 111 67
Starting an extra service Lo 67
Fix for KE 111 e 69
Property for CKE 190 69
Events L 116
Citizen and household datastructure 122
Settings for KE 111 127
Settings for CKE 191 128

95

Lists of abbreviations

AB
AWIR
B/CA
B/CAO
B/CFD
B/CKC
B/CIE

B/CIO

BD
BOAB
CSF
EDA
ESB
FIOD
FTO

FTE

Architecture board

Algemene Wet Inkomensafhankelijke Regelingen
Belastingdienst/Centrale Administratie
Belastingdienst/Centrum voor Applicatie-ontwikkeling en onderhoud
Belastingdienst/Centrum voor Facilitaire Dienstverlening
Belastingdienst/Centrum voor Kennis en Communicatie
Belastingdienst/Centrum voor Infrastructuur en Ezxploitatie
Belastingdienst/Centrum voor IV-keten ondersteuning
Belastingdienst/Toeslagen

Belastingdienst

Bedrijfsonderdeel architectuur board (Unit architecture board)
Critical Success Factors

Event-Driven Architecture

Enterprise Service Bus

Fiscale Inlichtingen- en OpsporingsDienst

Funtionele Test Omgeving

FullTime-Equivalent

96

FRS

GBB

GO

ICT

IM

ISB

KGB

KOT

MBT

MC

MTHV

NGIV

PB

PRA

PRINCE2

NTS

SOA

SDLC

SMT

SVB

TMAP

TSL

Feiten Registratie Systeem, component of NTS
Grondslagen, Beslissen en Beschikken
Globaal ontwerp (Global Design)

Information and Communication Technology
Information Management

Information Service Board

Kindgebonden budget

Kinderopvangtoeslag

Model Based Testing

Model Checking

Methoden, Technieken, Hulpmiddelen en Voorschriften
Niet-Geautomatiseerde Informatie Voorziening
Portfolio Board

Product Risk Analysis

PRojects IN Controlled Environments 2
Nieuwe Toeslagen Systeem

Service Oriented Architecture

Software Development Life Cycle
Satisfiability Modulo Theories

Sociale Verzekerings Bank

Test Management Approach

Toeslagen, component of NTS

97

VTA Verbeterde Test Aanpak (Improved Test Approach)

wv(s) Wijzigingsvoorstel(len) (Proposal(s) for change)

98

99

Appendix A

Business process “process notifications”

Papier
ongestructureerd

pesh T Afhandelen Toeslagen

Werkproces
HIP/Balie/Betel Ontvangen meldingen

L Betaling

Bestanden uit
spoor 1 &2

Werkproces 3
e e

Ontvang:r:{l;eshndm GEN-PP GEN-PP

Mutaties.
uit BvR

t
v

Antwoordbericht
uit BVR

g
§ o
TR EHHE
L

Late meldingen

Figure A.1: Business process Process notifications [5]

100

Appendix B

Toeslagen application architecture

101

Poort in (BICA)

I ——

Wanbetalers /

m_‘"ﬂ—@!@ii“ i "~ Kinderbijshg
gegevens
ﬂ a

Aanvragen [wijzigingen
via fiscaal intermediair

Toaslag!

mutsties

Telingen

HIP / FI

Telingen
T,

\raaghestand

_zoguerzekerden
\

burger informaite VHA

Tallingen (Poort)
|__Tellingen FRS/TSL/LMA/SCIPS
Stuur- productieinfo VHA

Clustermutaties
& Betaaladviezen
| _Moorin, ilde informatie
- -
Hlpwws_
|
Burger en niet-burger i
gerelateerde meldingen
Werhui b i
|
= Informatieverzoek i
1
i [‘ H
| | overment husotjectn ! i
| i J

Gaclasterds batlingan

Figure B.1: Toeslagen application architecture [5]

102

BAPI
kanaal ’
Burgerportal
Papier
ongestructureerd J
Papier
gestructureerd ’
|

v

HIP/Balie/Bettel i—b

Appendix C

Processing notifications

Verwerken
meldingen

Rek

Feiten Registreren

Werkproces
Ontvangen meldingen

Bestanden uit \

Werkproces

spoor 1 &2 J

Ontvangen bestanden
SVB)
Mutaties

uit BvR ’ 4.’

> p— —>

Verwerken Meldingen

GEN-PP

GEN-PP

Werkproces

informatieverzoak BvR

Afhandelen Toeslagen

Besls en grondslagen events
Werkproces Bepalen I 9 :

afwijkend behandelen]

—»

Werkproces

Werkproces Afhandelen
AWIR L2

Toeslagenregeling

—»

Feit-events Feit-events

S a——

Werkproces
bepalenSVE

Werkproces
Opstellen Betaaladvies

7

Werkproces Formeel
Beschikken

l Werkproces Samenstelien
—»

T Content

Dubbele meldingen

—® Werkproces | _ Werkproces

» Stapelen Invorderen

SAM-CON-PP

» Invorderen

j o
Werkproces .
—@—p Medadeling

Ontstapelen

Antwoordbericht
uit BVR

Late meldingen

Figure C.1: Business process Processing notifications [5]

103

Appendix D

Workprocess handle benefits regulations

H_event
[I i3
. Herberekenen Be
Evt_Schatting_ T palen
% > Toetsingsinkomen) e + lasten L draagkracht [
\m
Cevt_Herberekenen
> T L Rx i Cewt_Jaarvrijgave_ Cevt_Herberekenen_
- Draagkracht_Rx Beslissen_Rx
-
Fevi Einde.)\ vans
Aanvraag_ToeslagX)‘ + o Servica GEB

Figure D.1: Workprocess handle benefits regulations [5]

104

105

Appendix E

Development process at Belastingdienst

Testproducten

Applicatieservice(s)
andere bedrijfsonderdelen

AT/ SIT

=
— |
Afstemmen

met andere Q

bedriffsonderdelen

Afstemmen
met andere
bedrijffsonderdelen

Realeeron & Tedon / \
Applicatieservice
L[| | OTIS
Realiseren & Testen ‘

\p service

AT/ SIT

Gelaagd V-model

oTIST

>« >4

Ontwikkelomgeving Testomgeving Acceptatiecomgeving

¥» TESTEN _ -

Figure E.1: Development process at Belastingdienst (V-model) [6]

Afstemmen Bedrijisprocesrelease
imet Systeemarchitectuur & Applicatie ontwerp

Implementatie

Opdracht |5
planning |2

1
|
1
|
|
1
1
1
it
1
1
1
Wi

' Realisatie & Testen _ S St |Vrijgave & ‘ I i
Applicatieservice N . W - % Y M

|

~ Vﬂjg'ave |

* Opdracht % ' _~" __, Realisatie & Testen : =i e e '8 ,
ﬁplanmﬂg [=—=—— | | Applicatieservice | W Test/Acceptatie I
: schalen Capaciteit |

Proces Implementatie

edriffsprocesrelease | "%

‘ Bedrijfsprocesrelease

Opdracht |5 i i S) i ar F oy
plgnning i Hostingservice(s) CIE Vriigave

Pre Productie Test

B e ease Implementatie

INFRASTRUCTUUR INFRASTRUCTUUR,/
nell) I Implementatie

Hostingservice(s)

GEBRUIK & BEHEER BEDRIJFSPROCES NIVEAU . ;\ ; '_ gs BEDRIJFSPROCES NIVEAU GEBRUIK & BEHEER

VENTURI MODEL 1 VENTURI MODEL

Testen in de Voortbrengingsketen V2.71

Figure E.2: Development process at Belastingdienst (Venturi model) [6]

Appendix F

RASCI table

108

7suatpburysviag o) jo ssenold juowdo[eAsp oY) JO XLIjewl juotnugdisse AIqsuodsoy] -, o[qeL,

joedwr sey osndwl [RIHIUL 9} YIIYM UO SYIU[)

d

sl

v

gsl

sl

ayenyeAr]

av

kS|

osesal1 ssevoad

SsauIsT(quateTduuy

SOOIAIOS
reuorjerodo juowerduuy

qv

ssoooxd SSaUIsNq 3597,

sjuau
-oduwoo ss9001d pojeuro)
-I'e UOU 9$9) pUR OSI[eal

‘uSrsep po[reIep Jri(g

Vd

Ayoed
-ed Jurpsoy sureosd)

Vi

Vd

S901A
-I9S UOIJRULIOJUI pajeul
-ojne 13S0} pue osIfeal
‘udrsep po[reIep Jri(g

od

vy

Vd

UuSIsop Jel(]

Vd

orjojjrod yse)
9je1odiod pue oInjoe)
-Tyoae ojerodioo ojepdn

orjojjrod yse)
pue syusuoduiod 21nj09)
IR ssoulsng oyepdn)

ugIsep [RqO[S Surei(]

I

Vv

v

9)

el

d

el

9seD SSOl
-ISN QUIINO FUIYPRI(]

9

A4

D

el

d

Vd

ostndwur oxeyu]

| sy | ag av | ad yup | av s [oo | ag on | agoa | odo/d | ado/d | @o/d | ovo/d |

Appendix G

Distribution of respondents

Phase Role ‘ Code ‘
Intake impulse Tactical architect 002
Programme Manager 003
Implementation manager 004
Incident manager 008
Strategic architect 009
Quality monitor 011
Service manager 012
Consultant primary process 013
Implementation manager 015
Team leader development team | 016
General Programme Manager 020
Drafting outline business case Tactical architect 002
Programme Manager 003
Strategic architect 009
Quality monitor 011
Consultant primary process 013
Team leader development team | 016
Drafting global design Tactical architect 002
Implementation manager 004
Project & 1CT architect 007
Strategic architect 009
Quality monitor 011
Consultant primary process 013
Team leader development team | 016
Update business architecture Tactical architect 002
components and task portfolio Project & 1CT architect 007
Strategic architect 009

110

Consultant primary process 013
Update corporate architecture and Tactical architect 002
corporate task portfolio Strategic architect 009
Consultant primary process 013
Draft design Tactical architect 002
Programme Manager 003
Implementation manager 004
Incident manager 008
Strategic architect 009
Quality monitor 011
Team leader development team | 016
Draft detailed design, realise and test Qual.lty mom.t o 001
automated information services Tactical architect 002
Project & 1CT architect 007
Strategic architect 009
Quality monitor 011
Team leader development team | 016
Functional analyst 017
Lead architect TSL 018
Upscaling hosting capacity Quality monitor 001
Draft detailed design, realise and test | Quality monitor 001
non automated information process Tactical architect 002
components Incident manager 008
Strategic architect 009
Quality monitor 011
Analyst 014
Test business process Quality monitor 001
Project manager test 010
Quality monitor 011
Test co-ordinator and manager | 019
Implement operational services Quality monitor 001
Programme Manager 003
Chain co-ordinator 005
Project & 1CT architect 007
Project manager test 010
Quality monitor 011
Service manager 012
Analyst 014
Implementation manager 015
Test co-ordinator and manager | 019
Implement business process release Quality monitor 001
Programme Manager 003
Implementation Manager B/CA | 004

111

Chain co-ordinator 005
Process designer 006
Project & 1CT architect 007
Project manager test 010
Quality monitor 011
Service manager 012
Analyst 014
Implementation manager 015
Test co-ordinator and manager | 019
Evaluate Quality monitor 001
Programme Manager 003
Implementation Manager B/CA | 004
Chain co-ordinator 005
Quality monitor 011
Implementation manager 015

Table G.1: Coverage of respondents over development process

[English | Dutch
Analyst Analist
Chain co-ordinator Ketenregisseur
Consultant primary process Consultant primair proces
Functional analyst Functioneel analist
Project & 1CT architect Project & 1CT architect
Incident manager Incidentmanager
Implementation manager Implementatiemanager
Implementation manager b/ca | Implementatiemanager
Lead architect TSL Lead architect TSL
Programme Manager Programmamanager
Project manager test Projectmanager test
Quality Monitor Kwaliteitsmonitor
Process designer Procesontwerper
Service manager Servicemanager
Strategic architect Strategisch architect
Tactical architect Tactisch architect

Team leader development team | Teamleider ontwikkelteam

Table G.2: Translation of functions in development process

112

Appendix H

List of questions

H.1 Betrokkenheid bij Toeslagen

1.
2.

3.

Sinds wanneer ben u betrokken bij het programma Toeslagen?
Welke rol vervult u binnen het programma Toeslagen?

Wat houdt deze rol in?

. In welke stap of stappen uit het V-model zou u zichzelf plaatsen? (Toon model aan

geinterviewde)

. In welke perioden was dit? (Alleen in geval van meerdere stappen uit model/functies

binnen het programma Toeslagen)

H.2 Ontwikkelproces

. Kunt u het ontwikkelproces binnen de Belastingdienst beschrijven, terugkijkend

naar het programma Toeslagen? (Identificeerbare stappen in het proces, slagbomen,
voortgangsrapportages, V-model bekend?)

. Wat is uw ervaring met dit ontwikkelproces binnen de Belastingdienst? (Doorvra-

gen naar ervaringen/voordelen/nadelen)

. Wat kan er verbeterd worden aan dit ontwikkelproces?

. Welke type fouten bent u tegengekomen die zijn ontstaan tijdens het ontwikkel-

proces? (FEwventueel doorvragen naar kennis genomen van fouten die niet zelf is
tegengekomen)

Op welke manier hadden deze fouten voorkomen kunnen worden?

113

H.3 Kwaliteit

1. Wat vindt u van de kwaliteit die in de verschillende fasen van het ontwikkelproces
geleverd is en wordt?

2. Welke methodes of technieken kunnen deze kwaliteit verbeteren?

H.4 Testen

1. Welke testtechnieken worden er binnen de Belastingdienst, kijkend naar het pro-
gramma Toeslagen, toegepast?

2. Wat vindt u van deze testtechnieken? (Dekkingsgraad, voldoen de technieken?)

3. Op welk niveaus in het ontwikkelproces wordt er getest? (Toon V-model wederom,
hierin staan de stappen c.q. niveaus)

4. Is de huidige manier van testen voldoende om de gevraagde kwaliteit te leveren?

5. Wat kan hier aan veranderd worden?

H.5 Impact

1. Wat was de impact van de gevonden fouten op de bedrijfsvoering? (extern/intern)
2. Welke maatregelen zijn er genomen om deze fouten op te lossen?

3. Wat wordt er gedaan om gelijksoortige fouten te voorkomen?

H.6 Veranderingen
1. Welke veranderingen hebben er de afgelopen jaren plaatsgevonden in het ontwikkel-
proces? (Extra stappen in V-model, slaghomen, testtechnieken, VTA?)

2. Op welke wijze zijn deze veranderingen doorgevoerd in het ontwikkelproces? (7'-
jdsduur, opgelegd/inspraak)

3. Wat had hier beter in gekund?

4. Terugkijkend naar deze veranderingen, de wijze waarop deze zijn doorgevoerd in
het ontwikkelproces en uw eigen ervaringen hiermee, op welke wijze denkt u dat
veranderingen in het ontwikkelproces het best en meest eenvoudig ingevoerd kunnen
worden?

114

Appendix I

Transcripts

The transcripts of the interviews have been marked as confidential, and have been re-
moved from this report.

115

Appendix J

Model

J.

1 Events

// List of all events
/* Internally, the values of the mtype are represented as positive byte
values,
so there can be at most 255 walues of the type.
*/
5 mtype = {

10

15

20

25

// start FRS

// Aanvang_ partnerschap, // FRS melding 3

Fevt_start_geregistreerd_partnerschap, // Start events following
melding 3

Fevt_start_samenlevingscontract,

Fevt_handtekeningrelatie_lopend_partner, // End events following

melding 3

//Beeindiging_partnerschap, // FRS melding 4
Fevt_einde_geregistreerd_partnerschap, // Event following FRS

melding 4
Fevt_einde_samenlevingscontract, // Event following FRS melding 4

//Burger _overleden, // FRS melding 5

Fevt_overlijden, // Events following FRS melding 5
//Fevt_eind_geregistreerd_partnerschap, // (see FRS melding 4)
//Fevt_eind_samenlevingscontract, // (see FRS melding 4)

//Burger_verhuist, // FRS melding 6
Fevt_burger_inschrijven_ op_adres, // Event following FRS melding

6

Fevt_meerdere_burgers_inschrijven_op_adres, // Event following FRS

melding 6

//Verblijfsstatus_burger_ verandert, // FRS melding 7
Fevt_verblijfsstatus, // Event following FRS melding 7
Fevt_einde_verblijfstitel, // Event following FRS melding 7

116

30

35

40

45

50

55

60

65

70

75

//Burger vraagt_toeslag aan, // FRS Melding 8
Fevt_aanvraag_kinderopvangtoeslag,

Fevt_handtekeningrelatie_medebewoner, // Events following FRS

melding 8
//Burger_zet_toeslag_stop, // FRS melding 9

Fevt_einde_aanvraag_kinderopvangtoeslag, // Event following FRS

melding 9

//Burger _gaat_weer_naar_school, // FRS melding 12
Fevt_burger_gaat_naar_school, // Event following FRS melding 12

//Burger gaat_niet_meer_naar_school, // FRS melding 13
Fevt_burger_gaat_niet_meer_naar_school, // Event following FRS

melding 13

//Burger_ontvangt_inkomsten_uit_werk, // FRS melding 16
Fevt_burger_ontvangt_inkomsten_uit_werk, // Event following FRS

melding 16

//Burger_ontvangt_geen_inkomsten_meer_uit_werk, // FRS melding 17
Fevt_burger_ontvangt_geen_inkomsten_uit_werk, // Event following FRS

melding 17

//Gegevens_kinderopvang worden_opgegeven, // FRS melding 18

Fevt_kinderopvanggebruik, // Event following FRS melding 18

// TODO source??
Evt_lasten_kinderopvangtoeslag,

Evt_normen_kinderopvangtoeslag,

Cevt_dataset_proefberekening_kinderopvangtoeslag,

Bevt_beslissing_kinderopvangtoeslag,

//Wijziging ouder_kind_relatie, // FRS melding 20
Fevt_relatie_ouder_kind_wijzigt, // Event following FRS melding 20

Fevt_einde_ouder_kind_relatie, // Event following FRS melding 20

//Burger_wordt_gedetineerd, // FRS melding 27
Fevt_burger_gedetineerd, // Event following FRS melding 27

//Burger _is _niet_meer_gedetineerd // FRS melding 28
Fevt_burger _niet_gedetineerd, // Event following FRS melding 28

//Inkomen_voor_burger is_opnieuw_vastgesteld, // FRS melding 48
Fevt_verzamelinkomen, // Start Events following FRS melding 48

Fevt_fiscaal_jaarloon,

Fevt _NINBT,

Fevt_beschreven_IB,

Fevt_beschreven_NINBI,

Fevt_niet_beschreven_IB,

Fevt_niet_beschreven_NINBI, // End Events following FRS melding 48

//Burger meldt_inkomenswijziging, // FRS melding 49
Fevt_geschat_toetsingsinkomen, // Event following FRS melding 49

//Burger krijgt uitstel IB, // FRS melding 52

117

80

85

90

95

100

105

110

115

120

125

Fevt_burger _heeft_uitstel IB, // Event following FRS melding 52

//Burger krijgt_fiscaal_partner, // FRS melding 53
//Fevt_start_fiscaal_partnerschap, // Event following FRS melding 53
Fevt_start_fiscaal_partner,

//Burger _beeindigt_fiscaal_partnerschap, // FRS melding 54
//Fevt_einde_fiscaal_partnerschap, // Event following FRS melding 54
Fevt_einde_fiscaal_partner,

//Burger_verjaart, // Fake, non-existing event

//Fevt_verjaring_x_jaar, // Event following FRS melding 59
(non-existent)

Fevt_verjaring_5_jaar,

Fevt_verjaring_13_jaar,

Fevt_verjaring_18_jaar,

//Aanvang_duurzaam_gescheiden_partnerschap, // FRS melding 65
Fevt_aanvang_duurzaam_gescheiden_partnerschap, // Event following

FRS melding 65

//Einde_duurzaam_gescheiden_partnerschap, // FRS melding 66
Fevt_einde_duurzaam_gescheiden_partnerschap, // Event following FRS

melding 66

//Start_gezamenlijke_schuld, // FRS melding 67
Fevt_start_gezamenlijke_schuld, // Event following FRS melding 67

//Einde_gezamenlijke_schuld, // FRS melding 68
Fevt_einde_gezamenlijke_schuld, // Event following FRS melding 68

//Start_partners_in_pensioenregeling, // FRS melding 69
Fevt_start_partners_in_pensioenregeling, // Event following FRS

melding 69

//Einde_partners_in_pensioenregeling, // FRS melding 70
Fevt_einde_partners_in_pensioenregeling, // Event following

3]
0

melding 70

//Start_gezamenlijk _huishouden, // FRS melding 71
Fevt_start_gezamenlijk_huishouden, // Event following FRS melding 71

//Einde_gezamenlijk_huishouden, // FRS melding 72
Fevt_einde_gezamenlijk_huishouden, // Event following

]
}=o]
[}

melding 72

Fevt_burger_krijgt_kind,

//Burger_tekent_als_toeslagpartner of _medebewoner, // FRS melding 77
//Fevt_handtekeningrelatie_lopend_partner, // (see FRS melding 3)

118

130

135

140

145

150

155

160

165

170

Fevt_handtekeningrelatie_lopend_medebewoner, // Event following FRS

melding 77

Fevt_handtekeningrelatie_kinderopvangtoeslag, // TODO source

//Burger_verzoekt_wisseling_toeslagaanvrager_en_partner, // FRS

melding 78
Fevt_rolwisseling_kinderopvangtoeslag, // Event following FRS

melding 78

//Burger _heeft_onderhuurder, // FRS melding 79
Fevt_start_onderhuurder, // Event following FRS melding 79

//Burger_heeft_geen_onderhuurder, // FRS melding 80
Fevt_einde_onderhuurder, // Event following FRS melding 80

//Burger_ontvangt_aanvullende_bijdrage_voor_Kinderopvang, // FRS

melding 82
Fevt_burger_ontvangt_aanvullende_bijdrage, // Event following FRS

melding 82

//Burger_ontvangt_geen_aanvullende_bijdrage_voor_Kinderopvang, //

FRS melding 83
Fevt_burger_ontvangt_geen_aanvullende_bijdrage, // Event following

FRS melding 83

// end FRS

// Start AWIR F_bepalen AWIR partner gevolgen
Gevt_start_AWIR_partnerschap,

Gevt_einde_AWIR_partnerschap,

Hevt_bepalen_AWIR_partnergevolgen_uitval,

Hevt _AWIR_partner_niet_uniek_te_bepalen,

Tevt_bepalen_AWIR_partnergevolgen_gereed,

//Cevt_geen_loon_vrijgegeven,
//Cevt_genereer_schatting_toetsingsinkomens,
Gevt_geschat_10pct_toetsingsinkomen,

Gevt_definitief_10pct_toetsingsinkomen,// end AWIR

F_bepalen_toetsingsinkomen (incoming)
Evt_geschat_toetsingsinkomen ,// start AWIR

F_bepalen_toetsingsinkomen (outgoing)
Evt_definitief_toetsingsinkomen,

Evt_schatting_10pct_toetsingsinkomen,

Evt_definitief_10pct_toetsingsinkomen,

Hevt_bepalen_toetsingsinkomen_uitval,

Tevt_bepalen_toetsingsinkomen_gereed, // end AWIR

F_bepalen_toetsingsinkomen (outgoing)

// start AWIR F_bepalen_vermogen (incoming)
Fevt_voordeel_sparen_en_beleggen,

Fevt_end_voordeel_uit_sparen_en_beleggen,

119

175

180

185

190

195

200

205

210

215

220

Gevt_vermogen,
// end AWIR F_bepalen_vermogen (incoming)

// start AWIR F_bepalen_vermogen (outgoing)
Evt_vermogen,

Hevt_vermogen_uitval,
Tevt_bepalen_vermogen_gereed,

// end AWIR F_bepalen_vermogen (outgoing)

// start F_bepalen_schatting_draagkracht_kinderopvangtoeslag
(incoming)

//Evt_HH_kinderopvangtoeslag,

Evt_hh_kinderopvangtoeslag,

//Evt_huishouden_kinderopvangtoeslag,

//Evt_schatting_toetsingsinkomen,
Gevt_draagkracht_schatting_kinderopvangtoeslag,
//Evt_definitief_toetsingsinkomen,
//Evt_definitief_10pct_toetsingsinkomen,
//Evt_schatting_10pct_toetsingsinkomen,

Fevt_geboorte_kind,

//Fevt_burger_overleden,
Cevt_jaarvrijgave_draagkracht_kinderopvangtoeslag,

// end F_bepalen_schatting_draagkracht_kinderopvangtoeslag (incoming)

// start F_bepalen_schatting_draagkracht_kinderopvangtoeslag
(outgoing)

//Evt_draagkracht_schatting_kinderopvangtoeslag,

Hevt_bepalen_schatting_draagkracht_kinderopvangtoeslag_uitval,

Hevt_bepalen_draagkracht_kinderopvangtoeslag_uitval,

Tevt_bepalen_schatting_draagkracht_kinderopvangtoeslag_gereed,

Tevt_bepalen_draagkracht_kinderopvangtoeslag_gereed,

// end F_bepalen_schatting_draagkracht_kinderopvangtoeslag (outgoing)

// start F_vaststellen_draagkracht_kinderopvangtoeslag
Evt_draagkracht_definitief_kinderopvangtoeslag,
// end F_vaststellen_draagkracht_kinderopvangtoeslag

// start F_beslissen_kinderopvangtoeslag
Evt_draagkracht_schatting_kinderopvangtoeslag, // Gevt 7
// Evt_draagkracht_definitief_kinderopvangtoeslag
//Evt_normen_kinderopvangtoeslag,
//Cevt_dataset_proefberekening_kinderopvangtoeslag,
//Fevt_verblijfsstatus,
//Fevt_burger_ontvangt_inkomsten_uit_werk,
//Fevt_burger_ontvangt_geen_inkomsten_uit_werk,
//Fevt_burger_ontvangt_aanvullende_bijdrage,
//Fevt_burger_ontvangt_geen_aanvullende_bijdrage,

//Fevt_burger_gedetineerd,
//Fevt_burger_niet_gedetineerd,

120

225

230

235

240

245

250

255

260

265

270

275

//Fevt_geboorte_kind,
//Bevt_beslissing_kinderopvangtoeslag,
//Fevt_burger_inschrijven_op_adres,
//Fevt_meerdere_burgers_inschrijven_op_adres,

// AWIR: bepalen toetsingsinkomen
Cevt_geen_loon_vrijgeven,

Cevt_genereer_schatting_toetsingsinkomens,

//Gevt_geschat_10pct_toetsingsinkomen,
//Gevt_definitief_10pct_toetsingsinkomen,

// AWIR: toeslagbetrokkenheid
Evt_burger_toeslagbetrokkene,

Hevt_bepalen_toeslagbetrokkenheid_uitval,

Tevt_bepalen_toeslagbetrokkenheid_gereed,

// Uitgaande events F_beslissen_kinderopvangtoeslag
Evt_beslissing_kinderopvangtoeslag,

Hevt_beslissen_kinderopvangtoeslag_uitval,

Tevt_beslissen_kinderopvangtoeslag_gereed,

// Incoming events F_bepalen_lasten_kinderopvangtoeslag,
// Fevt_kinderopvanggebruik,

// Fevt_burger_inschrijven_op_adres,

// Fevt_meerdere_burgers_inschrijven_op_adres,

// Fevt_geboorte_kind,

// Fevt_verjaring_5_jaar,

// Fevt_verjaring_13_jaar,

// Fevt_overlijden,
Cevt_herbereken_1l_kinderopvangtoeslag,

Gevt_lasten_kinderopvangtoeslag,

// Outgoing events F_bepalen_lasten_kinderopvangtoeslag
//Evt_lasten_kinderopvangtoeslag,
//Evt_lasten_kinderopvangtoeslag_rekenkosten_per_uur_kc_do,
//Evt_lasten_kinderopvangtoeslag_rekenkosten_per_uur_kc_bso,
//Evt_lasten_kinderopvangtoeslag_rekenkosten_per_uur_go_do,
//Evt_lasten_kinderopvangtoeslag_rekenkosten_per_uur_go_bso,
Hevt_bepalen_lasten_kinderopvangtoeslag _uitval,

Tevt_bepalen_lasten_kinderopvangtoeslag_gereed,

Evt_burger_krijgt_behandelsoort_gezinsbijslag,

// Incoming events F_beschikken_kinderopvangtoeslag
Evt_ambtelijke_conclusie_kinderopvangtoeslag,

Cevt_tijdstip_beschikken,

Evt_AWIR_indicatie_meerderjarigheid_jonger_dan_meerderjarigheidsleeftiijd,

Evt_verzoek_toelichting_beschikking_kinderopvangtoeslag,

121

280

285

290

295

300

305

310

5

10

Fevt_burgerkrijgt_behandelsoort_gezinsbijslag, // TODO
// Outgoing events F_beschikken_kinderopvangtoeslag

Evt_beschikking_kinderopvangtoeslag,
Evt_toelichting_beschikking_kinderopvangtoeslag,
//Evt_beschikking BoB_kinderopvangtoeslag,
Evt_concept_beschikken_kinderopvangtoeslag,
Tevt_beschikken_kinderopvangtoeslag_gereed,
Hevt_beschikken_kinderopvangtoeslag_uitval,

Evt_start_AWIR_partnerschap,
Evt_einde_AWIR_partnerschap,

//
Evt_AWIR_indicatie_meerderjarigheid_jonger_dan_meerderjarigheidsleeftiijd,
//Hevt_bepalen_ AWIR_partnergevolgen_uitval,
//Tevt_bepalen_AWIR_partnergevolgen_gereed,

//Evt_draagkracht, // 7.5.3

// Outgoing events F_vaststellen_draagkracht_kinderopvangtoeslag
//Evt_draagkracht_definitief_kinderopvangtoeslag,
Tevt_vaststellen_draagkracht_kinderopvangtoeslag_gereed,
Hevt_vaststellen_draagkracht_kinderopvangtoeslag_uitval

// F_vaststellen_huishouden_kinderopvangtoeslag
Tevt_vaststellen_huishoudsamenstelling_kinderopvangtoeslag_gereed,
Hevt_vaststellen_huishoudsamenstelling_kinderopvangtoeslag_uitval,
Gevt_hh_kinderopvangtoeslag,
//Gevt_hh_kinderopvang_toeslag

Listing J.1: Events

J.2 Citizen and household

// Burger variables

/¥

typedef Inkomenssoort {
bool NINBI = 0;
bool werzamelinkomen = 0;

bool fiscaal_jaarloon = 0;

}

typedef Inkomensstatus {
bool aangifte = 0;
bool definitief = 0;
bool herzien = 0;

122

15

20

25

30

35

40

45

50

55

60

bool onbekend = 0;
bool tn_onderzoek = 0;
}
*/

typedef HUISHOUDEN {

bool som_inkomen_positief = 0; // "Som van alle geschatte inkomens

alle leden huishouden < 0"

bool draagkracht = 0; // voorlopig bool, draagkracht van huishouden

bool geen_recht_op_kinderopvangtoeslag = 0; // recht op
kinderopvangtoeslag
bool lasten_kinderopvangtoeslag = 0;

typedef BURGER {
//bool partmner = 0;
byte AWIR_level = O;
byte AWIR_sublevel = O0;
byte AWIR_partnerschap = 0;
byte handtekening = O0;
byte BSN = 0;

// bool handtekeningrelatie = 0;

// bool handtekening_lopend_partner = O0;

// bool handtekening_lopend_medebewoner = 0;
byte geregistreerd_partnerschap = 0;
bool lopende_aanvraag_met_ander_persoon = 0; // TODO: store burgerId
(fake BSN) 7
bool lopende_eenpersoonsaanvraag = 0;
bool lopende_gezamenlijke_tweepersoonsaanvraag = 0;
byte samenlevingscontract = 0;
bool overleden = O0;

bool verblijfsstatus = 0;
bool kinderopvangtoeslag = 0;

bool nationaliteit[2] = 0; // EU or not (see TODO)
//bool nationaliteit2 = 0; // NL of niet?
bool gaat_naar_school = 0;

// opvangsoort (5.4.1 SD)

bool dagopvang = O0;

bool buitenschoolseopvang = O0;

// opvangvorm (5.4.1 SD)

bool gastouderopvang = O;

//bool kindercentrum = 0; //not used??

123

65

70

75

80

85

90

95

100

105

110

115

//bool thuisopvang = 0; //not used??

// TODO uitzoeken waar dit vandaan komt

bool lasten_kinderopvang_bekend = 0;
byte niveau_van_behandeling = 1;
bool gebruikt_uren_kinderopvang = 0;

byte huishouden = 0; // burger is (voor deel van het jaar) deel van
een of meerdere huishoudens

bool geschat_inkomen_bekend = 0; // geschat inkomen bekend

bool geschat_10pct_inkomen_bekend = 0; // geschat 10% inkomen bekend

bool definitief_inkomen_bekend = 0; // definitief inkomen bekend

bool definitief_10pct_inkomen_bekend = 0; // definitief 10% inkomen
bekend

byte aanvraagnummer = 0;

bool aanvrager = O0;

bool uren_kinderopvang_geclaimd = O0;
bool over_norm_max_uren_KOT = O0;

byte adres = 0;
bool voor_1_juli_op_adres = O0;

byte heeft_kind = O;
byte heeft_kind _met = O;
//bool is_kind_van = 0;

byte moeder = 0;
byte vader = 0;

//bool zelfde_ouder = O0;

bool beschreven_IB = 0;

bool beschreven_NINBI = 0;

bool verzamelinkomen_bekend = O0;

bool NINBI_bekend = 0;

bool toetsingsinkomen_bekend = O0;
bool toetsingsinkomen_negatief = O0;
bool fiscaal_jaarloon_bekend = O0;
bool is_onderhuurder = O

bool heeft_onderhuurder 0;

124

120

125

130

135

bool
byte

bool

byte
byte

bool
bool
bool
bool
bool
bool

bool
bool
byte

uitstel_IB = 0;
fiscaal_partnerschap = 0;

duurzaam_gescheiden 0;

gezamenlijke_schuld = 0;
partners_in_pensioenregeling = 0;

gedetineerd = 0;
inkomsten_uit_werk = 0;
aanvullende_bijdrage = 0;
ouder_dan_vijf = 0;
ouder_dan_dertien = 0;
ouder_dan_achttien = 0;

vader_overleden = 0;
moeder_overleden = 0;

getrouwd = 0;

Listing J.2: Citizen and household datastructure

125

Appendix K

MSC modification

#!/bin/bash

remove all wvariables from ewvents

sed -i ’s/\(,[0-9]1\)*//g’ model.pml.ps
5

massive replace, easier in php

/usr/bin/php5-cgi replace.php

#create pdf
10 ps2pdf model.pml.ps

../eclipse/msc.sh

<?7php

$regexp = ’(stroke\n){1}[\-17([0-9]1* [0-9]=*
moveto\n) {1} ([\-1{0,1}[0-9]* [0-9]% lineto\n){4}([0-9]\.[0-9]x*
O0\.[0-9]* O\.[0-9]* setrgbcolor AdjustColor\n){1}(closepath
£fill\n) {1} ([\-17[0-91* [0-9]1* moveto\n){1}([\-1{0,1}[0-91* [0-9]=*
lineto\n){4}’;

$content = file_get_contents(’model.pml.ps’);

$content = preg_replace(’/’.$regexp.’/e’, ’’, $content, -1, $matches);
10 $fp = fopen(’model.pml.ps’, ’w+’);
if ($fp) {
furite($fp, $content);
fclose ($fp);
15 }

7>

../eclipse/replace.php

126

Appendix L

Known error

inline KE111() {

settings

_ID) { // set same burger info on all service

int i;
for (i 0 MAX_SERVICE
databases

// burger A

b.handtekening = 2;
b.BSN = 1;
b.AWIR_partnerschap
b.adres = 1;
b.ouder_dan_achttien
b.voor_1_juli_op_adr

// handtekeningrelatie with B

= 2; // AWIR-partner with B

1;
es = 1;

copy_burger (tslgs[i]

.burgers[b.BSN], b);

//copy_huishouden (ts

lgs[il.hh, h);

/ burger B
.handtekening
.BSN 2;
.AWIR_partnerschap
.ouder_dan_achttien

1;

.adres 1;
.voor_1_juli_op_adr

// handtekeningrelatie with A

=1

// AWIR-partner with A

1;

es 1;

o o oo o ot ot

opy_burger (tslgs[i]

.burgers[b.BSN], b);

/ burger C

.BSN = 3;
.AWIR_partnerschap
.adres 1;
.ouder_dan_achttien

.voor_1_juli_op_adr

0;

1;
es = 1;

o oo oo o

opy_burger (tslgs[i]

.burgers [b.BSN], b);

127

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

w N

© 00~ D U

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

bl.handtekening = 3; // handtekeningrelatie A-C

b1.BSN = 1;

//bl.partner = 1;

bl.ouder_dan_achttien = 1;

bl.voor_1_juli_op_adres = 1;

if
true -> b2.getrouwd = 3; // partnerschap A-C
true -> b2.samenlevingscontract = 3; // partnerschap A-C
true -> b2.fiscaal_partnerschap = 3; // partnerschap A-C
true -> b2.heeft_kind met = 3; // partnerschap A-C

: true -> b2.partners_in_pensioenregeling = 3; // partnerschap A-C

£i;

b2.BSN = 1;

b2.ouder_dan_achttien = 1;

b2.voor_1_juli_op_adres = 1;

Listing L.1: Settings for KE 111

inline CKE190() {

same burger info on all

service

int i;
for(i : O MAX_SERVICE_ID) { // set
databases

// burger 3450

.BSN = 1;
.AWIR_partnerschap = 2;
.adres = 1;

.moeder = 0;

.vader = 0;

.heeft_kind = 4;
.ouder_dan_achttien = 1;
.voor_1_juli_op_adres = 1;
.fiscaal_partnerschap = O0;
.handtekening = 0;

.lopende_gezamenlijke_tweepersoonsaanvraag

o o oo o o o o o o o o

b.samenlevingscontract = 0;
copy_burger (tslgs[i].burgers[b.BSN],
//copy_huishouden(tslgs[i].hh, h);

b);

// burger 3462

b.BSN = 2;
b.AWIR_partnerschap = 1;
b.adres = 1;

b.moeder = 0;

b.vader = 0;

b.heeft_kind = 4;
b.ouder_dan_achttien = 1;
b.voor_1_juli_op_adres = 1;

128

0;

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"
78
79
80
81
82
83

.fiscaal_partnerschap = 0;
.handtekening = 0;

.lopende_gezamenlijke_tweepersoonsaanvraag

.samenlevingscontract = 0;

o |o|o oo

// burger 3474

opy_burger (tslgs[i].burgers[b.BSN],

.lopende_gezamenlijke_tweepersoonsaanvraag

.samenlevingscontract = 0;

b.BSN = 3;
b.AWIR_partnerschap = 0;
b.adres = 1;

b.moeder = 0;

b.vader = 0;

b.heeft_kind = O;
b.ouder_dan_achttien = 1;
b.voor_1_juli_op_adres = 1;
b.fiscaal_partnerschap = 0;
b.handtekening = 0;

b

b

c

opy_burger (tslgs[i].burgers[b.BSN],

// 3401 (kind van 3450 en 3462)

.BSN = 4;
.AWIR_partnerschap = 7;
.adres = 2;

.moeder = 1;

.vader = 2;

.heeft_kind = 8;
.ouder_dan_achttien = 1;
.voor_1_juli_op_adres = 1;
.fiscaal_partnerschap = O;
.handtekening = 7;
.lopende_gezamenlijke_

tweepersoonsaanvraag

.samenlevingscontract = 5;

o oo o o o o o o o o o o

~
~
w
s
[=
w

.BSN = 5;
.AWIR_partnerschap = 6;
.adres = 2;

.moeder = 1;

.vader = 2;

.heeft_kind = 0;
.ouder_dan_achttien = 1;
.voor_1_juli_op_adres = 1;
.fiscaal_partnerschap 6;
.handtekening = 6;

opy_burger (tslgs[i].burgers[b.BSN],

.lopende_gezamenlijke_tweepersoonsaanvraag

.samenlevingscontract = 4;

o oo oo o o o o o o o o

// 3425
b.BSN = 6;
b.AWIR_partnerschap = 5;

opy_burger (tslgs[i].burgers[b.BSN],

129

0;

0;

1;

1;

84 b.adres = 2;

85 b.moeder = 0;

86 b.vader = 0;

87 b.heeft_kind = 0;

88 b.ouder_dan_achttien = 1;

89 b.voor_1_juli_op_adres = 1;

90 b.fiscaal_partnerschap = 5;

91 b.handtekening = 5;

92 b.lopende_gezamenlijke_tweepersoonsaanvraag = 1;
93 b.samenlevingscontract = 0;

94 copy_burger (tslgs[i].burgers[b.BSN], b);
95

96 // 3437

97 b.BSN = T7;

98 b.AWIR_partnerschap = 4;

99 b.adres = 2;

100 b.moeder = 0;

101 b.vader = 0;

102 b.heeft_kind = 8;

103 b.ouder_dan_achttien = 1;

104 b.voor_1_juli_op_adres = 1;

105 b.fiscaal_partnerschap = 0;

106 b.handtekening = 4;

107 b.lopende_gezamenlijke_tweepersoonsaanvraag = 1;
108 b.samenlevingscontract = 0;

109 copy_burger (tslgs[i].burgers[b.BSN], b);
110

111 // 3777

112 b.BSN = 8;

113 b.AWIR_partnerschap = 0;

114 b.adres = 2;

115 b.moeder = 7;

116 b.vader = 4;

117 b.heeft_kind = O0;

118 b.ouder_dan_achttien = 1;

119 b.voor_1_juli_op_adres = 1;

120 b.fiscaal_partnerschap = 0;

121 b.handtekening = 0;

122 b.lopende_gezamenlijke_tweepersoonsaanvraag = 0;
123 b.samenlevingscontract = 0;

124 copy_burger (tslgs[i].burgers[b.BSN], b);
125

126 }

127

128 // event data

129 b2.getrouwd = 3; // partnerschap 3425-3474
130 b2.BSN = 6;

131 b2.ouder_dan_achttien = 1;

132 b2.voor_1_juli_op_adres = 1;

133

134 }

Listing L.2: Settings for CKE 191

130

