
Software Quality Assessment
in an Agile Environment

Master’s Thesis

Falk Martin Oberscheven

Software Quality Assessment
in an Agile Environment

Master’s thesis

submitted to the Faculty of Science
of Radboud University in Nijmegen

for the degree of

Master of science

in

computing science

by

Falk Martin Oberscheven
born in Düsseldorf, Germany

Software Quality Assessment
in an Agile Environment

Author: Falk Martin Oberscheven
Student Number: s0721956
E-mail: M.Oberschev@arcor.de

Abstract

Continuous improvement is a key factor for survival in today’s turbulent busi-
ness environment. This counts for civil engineering and even more so in the
fast-paced world of information technology and software engineering. The agile
methodologies, like scrum, have a dedicated step in the process which targets the
improvement of the development process and software products. Crucial for pro-
cess improvement is to gain information which enables you to assess the state of
the process and its products. From the status information you can plan actions for
improvement and also assess the success of those actions. This study constructs
a model which measure the software quality of the development process. The
software quality is dependent on the functional and structural quality of the soft-
ware products, as well as the quality of the development process itself. Functional
quality covers the adherence to user requirements, whereas the structural quality
addresses the structure of the software product’s source code concerning its main-
tainability. The process quality is related to the reliability and predictability of
the development process. The software quality model is applied in a business con-
text by collecting the data for the software metrics in the model. To evaluate the
software quality model we analyze the data and present it to the people involved
in the agile software development process. The results from the application and
the user feedback suggest that the model enables a fair assessment of the software
quality and that it can be used to support the continuous improvement of the
development process and software products.

Keywords Software metrics, Software Quality, Agile software development.

University Supervisors: Dr. Arjan van Rooij
Dr. Joost Visser

Company Supervisors: André Grothues
Kai Müller

I

Contents

Contents II

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Questions . 2
1.3 Research Context . 3
1.4 Research Method . 4
1.5 Thesis Outline . 5

2 Background 6
2.1 Agile Methodologies . 6
2.2 Scrum . 8
2.3 Issue Tracking Systems . 9

3 Constructing a Software Measurement Model 11
3.1 Prerequisites for Software Metrics 11
3.2 Approach to Define a Software Measurement Model 13
3.3 Linking Business Goals To Measurement Goals 14
3.4 Method to Calibrate Metric Thresholds 20

4 Software Quality Model for Agile Environments 24
4.1 Overview . 24
4.2 Goals . 27
4.3 Questions . 28
4.4 Metrics . 34

5 Evaluation of the Software Quality Model 41
5.1 Model Calibration . 41
5.2 Model Application . 45

5.2.1 Evaluation of Sprint Performance 45
5.2.2 Tracking of Team Performance 48

II

5.2.3 Team Comparison . 49
5.3 Model Evaluation . 52

5.3.1 User Feedback Questionnaire 52
5.3.2 Results . 54

6 Conclusion and Future Work 57
6.1 Conclusions . 57
6.2 Contributions . 60
6.3 Threats to Validity . 61

6.3.1 Construct Validity . 61
6.3.2 Internal Validity . 62
6.3.3 External Validity . 63

6.4 Future Work . 64

Bibliography 67

Glossary 71

A Software Quality Model (GQM) 73

B Feedback Questionnaire 75

III

Chapter 1

Introduction

1.1 Problem Statement

Software engineering is defined as “. . . the discipline of developing and main-
taining software systems that behave reliably and efficiently, are affordable
to develop and maintain, and satisfy all the requirements that customers
have defined for them” [1]. Today, software engineering is faced with rapid
change in user requirements, technology. To cope with the rapid change in
the business environment, the software development process must be assessed
and adapted frequently. According to Fowler, the traditional methodologies
or engineering methodologies, like the waterfall methodology, are not suit-
able for environments with rapid change, “Engineering methods tend to try
to plan out a large part of the software process in great detail for a long
span of time, this works well until things change. So their nature is to resist
change” [20].

Agile methodologies evolved to promote continuous improvement. Scrum
belongs to the agile methodologies and defines frequent feedback loops for im-
provement. Although continuous improvement is a pivotal element of Scrum
and other agile methodologies we are faced with the problem to identify po-
tential for improvement. The identification of improvement potential should
be done in an objective rather than subjective way. Software metrics can
be used to fill this gap. A variety of software metrics exist that provide
information about resources, processes and products involved in software de-
velopment. Software metrics provide factual and quantitative information.

The introduction of software metrics alone is not sufficient. Many software
measurement programs have failed because they don’t respect important
success factors [35]. Niessink and van Vliet state that “. . . for a measurement
program to be successful within in its larger organizational context, it has to

1

Chapter 1 Introduction

generate value for the organization. This implies that attention should also
be given to the proper mapping of some identifiable organizational problem
onto the measurement program, and the translation back of measurement
results to organizational actions” [35].

Thus, a measurement program has to reflect specific organizational prob-
lems or goals in order to deliver data which can be used to find solutions to
the organizational problems that relate to the organizational goals. In other
words, the measurement program will only able to deliver relevant informa-
tion if a link between the business goals and the performance measurements
is established.

But even if the measurement program reflects the goals of the organiza-
tion, it is difficult to classify the measurement results. A person trying to
interpret a software measurement is confronted with the question, whether
a specific metric value is an indication of improvement or deterioration with
respect to a certain objective.

All these problems need to be solved to successfully establish a software
measurement program. The purpose of this thesis is to investigate ways to
solve the above mentioned problems of software measurement. The research
is specially targeted at an agile environment.

1.2 Research Questions

The problems stated in the previous section lead to the main research ques-
tion of how software measurements can be incorporated in an agile software
development process to support continuous improvement. The following re-
search question were derived to find an answer to the main research question.

RQ1 : What approach should be followed to define a software measurement
model in an agile environment?

RQ2 : What prerequisites must be fulfilled to ensure that the software mea-
surement model delivers significant information?

RQ3 : What are the measurement goals in an agile software development
process?

RQ4 : How can the metrics be effectively incorporated in an agile software
development process?

RQ5 : How useful is the proposed software measurement model in an agile
environment?

2

Chapter 1 Introduction

1.3 Research Context

AUTOonline was founded in 1996 to offer the first professional Internet-based
platform to determine the salvage value of damaged vehicles as well as to buy
and sell vehicles which were involved in an accident.

Vehicle assessors and insurance companies put damaged vehicles on the
platform. Interested professional dealers submit their bid. The bids are
placed hidden, which means that the dealers don’t see the bids of other
dealers. On the basis of the bids, an expert can determine the damaged car’s
salvage value. The expert opinion is sent to the vehicle owner who can then
decide if he wants to sell the car to the bidder or not.

AUTOonline is not only the leading market place for vehicles involved in
accidents in Europe but has obtained an important role in the advertisement
of fleet vehicles as well. AUTOonline operates in over 28 countries and is
part of Solera Holdings Inc. since October 2009.

Solera uses the principles Think 80/20, Act 30/30 and Live 90/10 to
communicate the vision within the organization. The 80/20 principle sets
the guideline that “. . . the focus should be on the 20 percent of the work
that drives 80 percent of the value to our customers and employees” [6].
“The 30/30 principle emphasizes reducing waste and wasteful processes by
30 percent while improving throughput by the same amount” and the 90/10
principle prescribes to take 90 percent of the accountability and leave only 10
percent to others. These principles also form the basis for decision-making
at AUTOonline.

The software products and services offered by AUTOonline are devel-
oped in an internal software development department. AUTOonline uses the
.NET framework, the programming language C# and other state of the art
technologies for software development. Rich client applications are developed
using Windows Presentation Foundation and web applications are developed
with ASP.NET.

The in-house software development enables AUTOonline to react to new
or changed requirements in a timely manner and tailored to the specific needs
of the different customer groups (vehicle assessors, garages, fleet marketers,
buyers and insurance companies). To further improve the software develop-
ment with a strong customer orientation, AUTOonline has introduced the
agile software development methodology Scrum. During the introduction of
Scrum the software development department was split into two teams. The
teams have the responsibility for particular products and services of AU-
TOoonline. Each team consists of a product owner, a scrum Master and
the software developers. The customer role is taken by sales representatives
of AUTOonline. The sales representatives prioritize in cooperation with the

3

Chapter 1 Introduction

product owner the enhancements of the software products and services.
Since the introduction of Scrum a lot of experience has been gained with

the new iterative development process. In order to further improve the
process, AUTOonline wants to employ software performance measurements.
Therefore, AUTOonline is faced with the same problems and question, as
addressed in the problem statement. The research questions of this master
thesis are aimed to find solutions to the problems. A measurement model
will be established and validated in the business context of AUTOonline.

1.4 Research Method

The first step towards answering the main research question is to find a
theoretical basis for the definition of a measurement model (RQ1). For this
purpose, we study the literature. During the literature study we will also
investigate how to choose and combine the metrics appropriately (RQ2).
The implications from the first two research questions help to ensure that
measurement models deliver significant data and that the data can effectively
be used by the stakeholders involved in the software measurement.

RQ3 regarding the measurement goals in an agile software development
process we will partly explore by means of the literature. The exploration
tries to find out what industry experts define as the main goals in an ag-
ile software development process. The other part consists of the analysis of
the AUTOonline business context. By looking at the implementation of the
Scrum methodology, we will investigate what are the specific needs in prac-
tice. The analysis of the business context will be used to find answers to RQ4.
We will analyze how exactly the development process is executed. What data
is available? What data can be collected with respect to the implications of
RQ2 and how can the information gained from the measurements be used
effectively in the Scrum process? The results of the investigation of the first
four research question constitute the basis to define a measurement model
for the use in an agile environment.

Subsequently, we will apply the software measurement model to the busi-
ness context. The application of the model will then be used to evaluate the
software measurement model (RQ5). The evaluation contains the analysis
of the usefulness of the software quality model and the collected data. For
the purpose of the usefulness analysis, we will conduct interviews with the
stakeholders of the measurement model.

4

Chapter 1 Introduction

1.5 Thesis Outline

Chapter 2 will provide background information relating to context of this
master thesis. The common ground of the agile methodologies will be de-
scribed. Following, an introduction is given to the Scrum methodology which
represents the agile methodology that is employed at AUTOonline. Then we
will discuss the term issue tracking system and how the issue tracking system
is used at AUTOonline with special attention to the application in an agile
environment.

Chapter 3 shows the approach which is followed to define a software mea-
surement model for the use in an agile environment. Also an explanation of
the prerequisites which must be adhered to when choosing metrics and com-
bining them to a software measurement model. To support the interpretation
of particular measurement scores, they are categorized using a ranking sys-
tem. The method to calibrate the ranking system is also presented in Chapter
3.

Chapter 4 illustrates how the measurement goals for the software devel-
opment department were derived from the business goals. Subsequently, the
software measurement model is defined in this chapter. The presentation
of the model contains all the metrics involved, as well as their relationship
among one another.

Chapter 5 presents the results from the application of the proposed soft-
ware measurement model at AUTOonline. Furthermore, the results of the
validation from the stakeholder perspective are given.

Chapter 6 discusses the findings of the master thesis’ research, recom-
mendations and suggestions for future work are given.

5

Chapter 2

Background

This chapter gives information on which the study is founded. First of all, we
give a summarizing description of the agile methodologies. Next, we discuss
Scrum which is the agile methodology which is employed in the business
context of our study. The last section of this chapter addresses the issue
tracking system and how it is incorporated in the agile software development
process.

2.1 Agile Methodologies

Traditional software development methodologies were deduced from engineer-
ing disciplines such as civil or mechanical engineering [20]. But the adopted
concepts are not suitable for every software engineering project, because of
the lack of flexibility.

The engineering disciplines have a clear separation between design and
construction [20]. The separation can be made in construction because de-
sign is mainly an intellectual activity whereas the construction is foremost a
physical activity. A comparable segregation is not possible in software engi-
neering because a continuum exists between design and construction where
both are thoroughly intellectual activities [42].

In civil engineering both phases are executed sequentially which means
that once the design phase is finished it is not reentered. Projects which are
strictly executed according to such a sequential process are predictable. Tra-
ditional software development methodologies try to plan out a large part of
the software process in great detail for a long span of time [20]. The require-
ments are collected in the beginning of a project and then these requirement
pass in one big bulk through all the steps in the development process (de-
sign, implementation and verification). But the same level of predictability

6

Chapter 2 Background

can’t be achieved in software development as in construction because of the
inconstancy of design.

The traditional software development methodology is the waterfall model.
In this model UML diagrams are sometimes created as design documents.
Although you can use peer review to check the design, errors in the design
are often times only uncovered during coding and testing [20]. Furthermore,
requirements often change even late in a project. These circumstances show
that a high risk exists of the design becoming obsolete. Once the design
must re-engineered a lot of the invested time becomes wasted effort. The
high risk of wasted effort constitutes one reason why a detailed planning is
very inefficient.

But there is another reason for the inefficiency of a detailed planning.
Jim Highsmith states that “Projects may have a relatively clear mission,
but the specific requirements can be volatile and evolving as customers and
development teams alike explore the unknown” [24]. This fact adds to the
risk of producing waste. Either time is wasted planning requirements or
time is wasted on implementing requirements which the customer no longer
needs. From the desire to cope with the unpredictability the agile software
development methodologies emerged.

Agile methods are adaptive rather than predictive [20]. Agile methods
are not only able to adapt to changes in the customer requirements but are
also able to react to changes in the environment by adapting the software
development process. Through these properties they are very effective in
changing environments.

Several different agile methodologies exist. Scrum and Extreme Program-
ming are only two examples but they all have the four guidelines of the Agile
Manifesto in common [10]:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

The agile manifesto was created by the founders of the several agile soft-
ware development methodologies, like Kent Beck (Extreme Programming),
Ken Schwaber and Jeff Sutherland (Scrum). The guidelines result from the
experience which they have gained with agile software development and are
intended to improve software development.

7

Chapter 2 Background

Figure 2.1: The Agile Scrum Process (Trustman and Davis1 2006)

The authors of the agile manifesto derived several principles from the four
main guidelines. One of these principles is “Our highest priority is to satisfy
the customer through early and continuous delivery of valuable software” [11].

2.2 Scrum

Scrum is an agile software development framework which also has the four
principles of the agile manifesto at its core. In a scrum environment a team
develops software in sprints. The length of a sprint is consistent but different
teams may use different sprint lengths. Usually sprint lengths of 2 to 4 weeks
are used.

A sprint is an iteration which consists of several steps as illustrated in
Figure 2.1. At the beginning of each sprint stands the sprint planning. In
the sprint planning meeting the development team meets with the product
owner who is responsible for the business value of a project. Together with
the product owner the development team chooses a set of work items from
the product backlog to implement during the sprint. The product backlog
contains all the work items for a specific software product ordered by their
priority.

8

Chapter 2 Background

Before the selection of the work items, a measure of complexity is assigned
to each work item by the development team. The measure of complexity also
known as story points is an estimation of the complexity to realize a particular
work item. On the basis of the user story estimations and the statistic about
the number of user story points completed in the last sprint (velocity), it is
determined how many and which work items can be completed in the next
sprint.

The selected work items constitute the sprint backlog. Once the team
has committed to a sprint backlog the sprint starts. Every day the devel-
opment team holds up a daily scrum meeting. In this short meeting it is
discussed which progress has been achieved concerning the sprint backlog
and if roadblocks exists which threatens the fulfillment of the sprint target.

At the end of each sprint all the completed work items are presented to
the product owner. The product owner determines whether the work item
are implemented according to the requirements. If the sprint was accepted
by the product owner the product increment can be delivered/deployed.

The sprint is concluded by the sprint retrospective. Here the development
teams looks back on the sprint and determines aspects of the product and
process which need improvement. The scrum master is responsible for re-
moving obstacles which were found during the sprint or in the retrospective.
The regular feedback loop ensures constant improvement and a functional
and productive development team.

2.3 Issue Tracking Systems

An Issue Tracking System (ITS) is a software tool which is used in the
change management of software engineering projects. Issue tracking capabil-
ities enable a project team to record and track the status of all outstanding
issues [37]. In the context of this master thesis an issue is either of the type
enhancement, bug or task. In addition to issue recording and status tracking
of issues, ITSs are used for project planning.

Issue tracking systems, like Jira, offer extensions for agile software devel-
opment. In the ITS context a work item is named issue. At AUTOOnline
the issue in the ITS are either of the type User story, Bug or Task.

A user story describes a software enhancement from the user perspec-
tive. Usually, it contains the user requirements and the acceptance criteria
which are used to evaluate whether an enhancement has been implemented
according to the requirements. An issue of type bug is created if a deviation

1http://www.1dot0.com

9

http://www.1dot0.com

Chapter 2 Background

Figure 2.2: Issue Life Cycle

from the specified behavior is discovered in a software product or an error
occurred during the execution of a software product. A task is a work item
which doesn’t influence the source code. An example of a task is a perfor-
mance analysis of a software product or an investigation on new technology
which could be used for the software product or process.

The different issue types go through the same life cycle states. The life
cycle of an issue is shown in Figure 2.2.

If an issue is reported, it is linked to a product. At this point the issue
has the Open state. All the issues in the Open state linked to a product
constitute the product’s backlog.

The issues which were selected in the sprint planning are transferred from
the backlog to the sprint backlog. Once the sprint has started the software
developers pick up issues from the sprint backlog and put them in the In Work
state. On a daily basis, the progress of the issues in work is discussed and the
plan for the day is presented. If the work on an issue is finished, the developer
transfers the issue to the In Testing state. Issues in this state are picked up
by the testing department. If the implementation of an issue successfully
passes the test phase, the issue is moved to the Ready for Deployment state.
After a product increment with the particular issue has been deployed on the
production system the issue enters the Closed state.

ITSs often offer burndown-charts. Burndown charts are used in a scrum
environment to display progress towards the sprint target. The sprint burn-
down chart relates the quantity of work remaining in story points (on the
vertical axis) and the time elapsed since the start of the sprint (horizontal
axis). In this context work remaining considers every issue which is on the
sprint backlog and resides in the Open, In Work or In Test state.

Another variant of the burndown chart is the product burndown. Instead
of putting the focus on the current sprint, it focuses on progress of the entire
project.

10

Chapter 3

Constructing a Software
Measurement Model

This chapter is focused on the research questions RQ1: What approach should
be followed to define a software measurement model in an agile environment?
and RQ2: What prerequisites must be fulfilled to ensure that the software
measurement delivers significant information? We explain which aspects are
important to pay attention to when implementing a software measurement
program successfully. The rest of the chapter addresses some of the chal-
lenges connected to implementing a software measurement program. First,
the approach is described which was employed to establish a software mea-
surement program. Afterwards, the method is presented which is used to
compare the performance of different sprints.

3.1 Prerequisites for Software Metrics

The choice and combination of metrics is important in order to support
decision making. There are several things to consider when establishing a
software measurement program. One pitfall is named Metric in a Bubble [14].
This situation arises when you look at a metric in isolation. You need to
put the metric in a context in order to derive useful information from the
collected data. The context can, e.g., be achieved by relating the most recent
metric value of a software product to historical values of the same metric and
software product. Only then you are able to see if the software product is
improving or declining on the metric. On this basis you can then identify
possible reason for the trend.

The most common pitfall, according to Bouwers et al., is what they call
Treating the Metric. This describes a situation in which alterations in behav-

11

Chapter 3 Constructing a Software Measurement Model

ior are solely done to score better on a metric and not to improve towards
a goal, “At this point, the value of the metric has become a goal in itself,
instead of a means of reaching a larger goal” [14]. In order to inhibit such a
disadvantageous change in behavior, it is important that the people involved
in the software measurement program understand how the software metrics
relate to the measurement goals. This way the people being measured see
the relevance of the measurement and they can use the results of the software
measurement to adjust their behavior to the organizational benefit.

Moreover, not only the relationship between the metric and the mea-
surement goal should be apparent but the nature of your goal should be
accommodated in the choice of metric. Often times there are several aspects
to a goal which need to be measured. In situations where some aspects are
left out of considerations, you rather hinder than support decision making.
For example, measuring the productivity of developers in lines of code and at
the same time leaving out a measure for code quality promotes the treating
of the metric. The reason is that the developer is inclined to focus on pro-
ducing lines of code and disregards the importance of good design. Bouwers
et al. refer to the one-dimensional representation of a multi-dimensional goal
as the One-Track Metric [14].

The opposite of too few metrics is also obstructive. If you include too
many metrics in your measurement program, it becomes impossible to assess
the progress towards measurement goals. The improvement of one metric
score always causes the decline in another metric score. The person who is
being measured starts to reject the metrics and its goals altogether because
he can’t see how to improve on them. This is called Metrics Galore [14].
Another risk of metrics galore is that you introduce metrics which can’t
directly be influenced by the people responsible to reach the measurement
goal. This threatens the acceptance of the measurement program, too.

All the metrics for your measurement program should be chosen with
respect to the ease of collection and degree of validity. Metrics should be
collected automatically as much as possible. Manual interactions required
to collect measurements impedes frequent measurement execution and is
counter-productive because the invested time goes to the expense of time
available to produce value for the company. Additionally, the manual involve-
ment in the measurement threatens the validity of the data. The validity of
the measurement data is important because wrong or imprecise data can lead
to wrong interpretations and eventually to wrong decisions. Hence, the un-
certainty of a measurement must be considered when interpreting its result.
Measurements with a very high uncertainty must be neglected because no
valuable information can be derived from them.

For the purpose of supporting the improvement of the software devel-

12

Chapter 3 Constructing a Software Measurement Model

Figure 3.1: Goal Question Metric Approach

opment process and products, the metrics should enable root-cause analy-
sis [23]. In other words, by looking at the measurements, it should become
obvious which part of the process or product causes a problem concerning
the achievement of the measurement goals. In Chapter 5 we will show how
the software quality model can be used to identify potential problems. Once
the cause of the problem is identified, actions can be planed to solve the
problem and to improve the software development process.

3.2 Approach to Define a Software Measure-

ment Model

During the long existence of software metrics, there has always been a strong
debate if software metrics can fulfill the desired purpose. Fenton and Neil say
that traditional metric approaches have failed in supporting decision making
adequately [19]. As a reason for the failure, Fenton and Neil identified the
lack of an explanatory framework [19].

The Goal Question Metric (GQM) approach which was defined by Basili
is used in this study to define the measurement model and serves as an
explanatory framework for the performance assessment. Basili says, “for
an organization to measure in a purposeful way it must first specify the
goals for itself and its projects, then it must trace those goals to the data
that are intended to define those goals operationally, and finally provide
a framework for interpreting the data with respect to the stated goals” [8].
The GQM approach, illustrated in Figure 3.1, derives software measurements
from specific performance goals. These performance goals are also referred
to as measurement goals.

For each measurement goal, one or more questions are posed which char-

13

Chapter 3 Constructing a Software Measurement Model

acterize how the goal can be achieved. In order to assess the achievements
towards defined goals, we need to answer these questions. For this purpose,
we select metrics which provide us with the information required to answer
the questions. In other words, the metrics quantify a factor which influ-
ences the performance achievements towards our measurement goals. To
support the interpretation of a specific metric, Basili advises to create an in-
terpretation model and provide it to the people involved in the measurement
program [9].

The top-down approach to define a measurement program combined with
an interpretation model solves the problem described by the Metric in a
Buble.

3.3 Linking Business Goals To Measurement

Goals

Goldratt says, “Every action taken by any part of the organization - should
be judged by its impact on the overall purpose. This immediately implies
that, before you can deal with the improvement of any section of a system,
you must first define the system’s global goal; and determine the measure-
ments that will enable us to judge the impact of any subsystem and any
local decision, on this global goal” [32]. This same position is also taken by
Basili, “This linkage [between software measurement goals and higher-level
goals of the organization] is important, as it helps to justify software mea-
surement efforts and allows measurement data to contribute to higher-level
decisions” [9].

This master thesis considers measurement goals from the perspective of
a profit-oriented business. Although the mission, values and strategies of
profit-oriented business differs from company to company, they share the
same overall purpose. The overall purpose of a profit-oriented business is
expressed by the word profit in the categorization of the business. The mis-
sion, values and strategies determines how a particular company targets to
achieve the overall purpose.

Net Profit (NP) and Return On Investment (ROI) are common measure-
ments to assess the profitability of a company. But NP and ROI are not
practical for managers in day-to-day operations. Traditionally, cost account-
ing is used by managers as a tool to support day-to-day decision-making.
But Corbett states that cost accounting is obsolete, because it is based on
erroneous assumptions [18].

According to Anderson the problem with cost accounting is that the focus

14

Chapter 3 Constructing a Software Measurement Model

on cost efficiency leads to erroneous conclusions, “Cost accounting assumes
that local efficiency leads to global efficiency. The problem with this is easily
exposed. Because inactive men or machinery are not truly variable, the costs
they incur are placed in a bucket known as ’overhead’. Overhead is cost
assigned to the system as a whole. Hence, local efficiency is no indicator of
global efficiency” [5].

Although the shortcomings of cost allocation might be fixable, Corbett
goes further and questions the need to allocate cost to products in order to
make good decisions [18]. He also criticizes that cost accounting emphasizes
cost efficiency. Performance measurement leads to behavior adaption of the
people being measured or, as Goldratt formulates it: “Tell me how you will
measure me, and I will tell you how I will behave”[22]. Knowing this, it
is not desirable to put the focus solely on cost efficiency because it is an
one-dimensional representation of a multi-dimensional goal. Applying cost
accounting therefore relates to the one-track metric concept which needs to
be prevented. In order to prevent a one-track metric cost efficiency metrics
need to be complemented with other metrics.

Corbett advocates the usage of Throughput Accounting (TA) instead of
cost accounting. TA builds on the Theory of Constraints (TOC) which was
proposed by Goldratt. Anderson states that “. . . TOC assumes that a value
chain is only as strong as the weakest link in the chain. The capacity of the
weakest link is the current system constraint” [5]. Hence, in order to improve
the throughput of a system we need to focus our effort on the utilization and
improvement of a system’s constraint. TOC uses the measures Throughput
(T), Operating Expense (OE) and Investment (I). These measures are defined
as follows:

• Throughput: “is fresh money that has two sides, Revenue and the
Totally Variable Costs (TVC) . . . TVC is that amount incurred when
one more product is sold. You have product and company’s throughput.
A product’s throughput is its price minus its Totally Variable Cost. A
product’s contribution to the company’s throughput is its throughput
multiplied by the number of units sold.” [18].

• Investment: “is the name given to the money tied up in the sys-
tem.” [39]

• Operating Expense: “is the name given to all the money (other than
TVC) incurred to turn investment into sales this includes wages etc.” [39]

On the basis of these three measurements, the NP and ROI can be cal-
culated as followed:

15

Chapter 3 Constructing a Software Measurement Model

Figure 3.2: Throughput Accounting applied to a Software Development Pro-
cess (Anderson 2004)

Net Profit = Throughput−Operating Expense

Return On Investment = Net Profit
Investment

By looking at the measurement formulas you can see that NP can be
increased by increasing the Throughput or by decreasing the Operating Ex-
pense. The ROI can be increased by increasing the NP as described or by
decreasing the Investment. The NP and ROI calculations from throughput
accounting enable managers to assess the profitability of the company and
moreover represent a starting point to plan actions for improvement.

The concept described by TA is a high level perspective on a company’s
performance and the challenge remains to apply this theory to lower organi-
zational levels. Anderson applied throughput accounting to software devel-
opment. For this purpose Anderson looks at a software development process
and defined what throughput, operating expense and investment means in
this context. Figure 3.2 shows a simplified model of a software develop-
ment process which illustrates how a single idea/requirement passes through
the system. Additionally, he defines which steps in the development pro-
cess contribute to which measurement (Investment, Operating Expense or
Throughput) from TA. The effort used to create an idea or receive a user
requirement is considered as investment. The costs which accrue during the
transformation steps develop, test and error reports make up the operating
expense. Finally, throughput is the monetary value of the working code.

As Anderson shows, throughput accounting can be applied to the soft-
ware development process to assist decision-making. But in practice it is
often a challenge to obtain valid data to assign to I, OE and T. Especially,
the assignment of a monetary value to working code is a problem. In soft-
ware development we can calculate what throughput was generated by a

16

Chapter 3 Constructing a Software Measurement Model

Figure 3.3: Levels of Decision Making

particular product or service for a given time period. Whereas we can’t cal-
culate what the implementation of a particular user requirement into working
code contributes to the product’s throughput. Therefore, the application of
throughput accounting has its limitations.

Although throughput accounting is able to support decision-making un-
der the mentioned conditions, it is not applicable to decision-making on all
levels. Decision making takes place on three levels (strategic, tactical and
operational). The Figure 3.3 conveys the hierarchical structure in which
organizational goals and strategies relate. The strategies on the lower lev-
els follow from goals and strategies which were defined on the levels above.
Throughput accounting can be used to set goals on the strategic and tactical
level. In the review of the past performance, throughput accounting can be
used to assess if the employed strategies were successful to reach the pre-
defined goals. But on the operational level throughput accounting can’t be
used to set goals and assess the achievements towards these goals.

In an agile environment a lot of decision-making is delegated to the self-
organizing development teams. Development teams need information from
software measurement as assistance in their day to day operations. At the
organizational level the development teams are faced with planning, progress
evaluation and retrospective of an iteration. Throughput accounting doesn’t
deliver the information required to support these tasks.

Hence, in order to be able to define measurement goals and metrics for the
operational level, we need to analyze how software development contributes
to the creation of business value.

Business value is an informal term. The value of a business is determined
by its tangibles but also by its intangibles. Highsmith says that these intan-
gibles are important for a company’s long term success,“. . . intangibles are

17

Chapter 3 Constructing a Software Measurement Model

critical to long-term success, and the ability to capitalize on the flow of op-
portunities is a critical intangible capability for most companies” [27]. The
ability to capitalize on the flow of opportunities is connected to the Agility
from a software development point of view. Agility is defined by Highsmith
as “. . . the ability to both create and respond to change in order to prosper
in a turbulent business environment. It means we have to build and sustain
a continuous value delivery engine, not one that bangs out many features
the first release and then rapidly declines in ability thereafter. The ulti-
mate expression of agility from a software perspective is continuous delivery
and deployment” [26]. Therefore, a high agility is key to business success.
Disregarding the need to assess and improve the agility will lead to missed
opportunities and consequently will result in financial loss. Hence, intangible
factors like agility have an immense effect on tangibles. The software quality
model focuses on the intangible components of business value.

Chappell sees software quality as an important intangible contributing
to the business value, “Every organization builds custom software for the
same reason: to create business value. An essential part of that value stems
from the quality of the software”[15]. The consequences of low software
quality over time are obstructive to the business. According to Chappell low
software quality will lead to financial loss from lost business, financial loss
from customer reparations, financial loss from lost customers, financial loss
from lawsuits and eventually lower brand equity [15].

Hence, to guarantee that software development adds to the business value
creation, we need to assess and improve the software quality. For this pur-
pose we need to break the software quality aspects down into measurable
components. Chappell specifies several factors having an influence on the
software quality aspects (see Table 3.1).

Functional quality deals with factors which are particularly important for
stakeholders with an external view on the software development. Stakehold-
ers with an external view evaluate the value of a software product along the
functional quality attributes. For example, a user analyzes if a software prod-
uct offers the functionality which she/he needs. If the functionality doesn’t
adhere to the user’s requirements, the value of the software is diminished to
that customer. Consequently, the functional quality influences the adoption
or rejection by users.

Process quality refers to the state of the development process. Compliance
with release and budget plans is do to the quality of the software development
process.

Structural quality is an internal view on the quality of a software product.
Relevant for the internal view is the testability or maintainability of the
software product’s source code. Although structural quality is an internal

18

Chapter 3 Constructing a Software Measurement Model

Table 3.1: Factors influencing Software Quality (Chappell)

Factors
Functional
Quality 1. Meeting specified requirements

2. Creating software with few defects

3. Good enough performance

4. Ease of learning and ease of use

Structural
Quality 1. Code testability

2. Code maintainability

3. Code understandability

4. Code efficiency

5. Code security

Process
Quality 1. Meeting delivery dates

2. Meeting budgets

3. A repeatable development process that reli-
ably delivers quality software

view, it still is perceived on the outside. Bad structural quality may result
in more defects in the software products or in longer development waiting
times for enhancements because it is simply more difficult to make changes
in the source code of a software product. Hence, structural quality has great
influence on the functional and process quality.

Highsmith mentions similar factors in his Agile Triangle which contribute
to the business value and determine the success of software development [25].
The agile triangle in Figure 3.4 has the dimension Value, Quality and Con-
straints. The goals of agile software development are defined along these
three dimension. Highsmith states that the goals of software development
are, “. . . producing value that delights customers, building in quality that
speeds the development process and creates a viable platform for future en-
hancements, and delivering within constraints (which are scope, schedule,
and cost)” [25]. The agile triangle especially emphasize the importance of
the creation of value in the form of releasable software product. The empha-
size is inline with the principles behind the agile manifesto, like “Working

19

Chapter 3 Constructing a Software Measurement Model

Figure 3.4: The Agile Triangle (Highsmith 2010)

software is the primary measure of progress” [11].
Following the reasoning of Highsmith and Chappell, we conclude that

high software quality with a strong focus on the creation of value in form
of working software is crucial to ensure that software development is con-
tributing to business value creation. In other words, software quality is the
key enabler to Agility. The higher the agility of software development, the
higher is the ability of software development to support the capitalization of
business opportunities and to contribute to the business value.

3.4 Method to Calibrate Metric Thresholds

Heitlager et al. use a rating system to rank the maintainability of software
systems [23]. In the SIG Maintainability Model source code properties are
mapped to maintainability characteristics. On the basis of the metrics relat-
ing to the source code properties, ratings are assigned to a software system
representing the degree of maintainability. The ratings range from one star
to five stars. One star meaning very bad maintainability and five stars very
good maintainability. Such a ranking system enables us to measure sys-
tem characteristics and moreover supports the interpretation of a metric.
Alves et al. have continued the research of Heitlager et al. by proposing
a method which derives thresholds from a benchmark to rank source code
metric scores [4].

Using a benchmark is a way to create a context in which a metric score
is interpreted. Putting a metric in a context prevents the principle of the
metric in a bubble, as mentioned in the previous section. Although the

20

Chapter 3 Constructing a Software Measurement Model

method is used to compare values of source code metrics between different
software systems, it still can be applied to other type of metrics. The reason
for this is the foundation on statistical analysis of the distribution and scale
of a metric.

According to Alves et al., it is important that metrics thresholds, for
example thresholds for the star ratings, are chosen so that they “bring out
the metric’s variability” [4] and “help focus on a reasonable percentage of the
source code volume” [4]. The latter quotation relates to source code metrics,
but the principle also applies to other metrics. Generally, it is important to
appreciate the things that went well during a sprint, but when it comes to
continuous improvement you are especially interest in the things that didn’t
go so well during a sprint. Hence, to be able to distinguish good from bad
sprint performance, we must choose the metric threshold according to the
metric’s variability. For example, a one star rating is a sign of very bad
performance. The rating system should be calibrated so that only a low
amount of metric scores get a one star rating. In the retrospective of a sprint
we can analyze reasons for the one star ratings and thereby identify potential
for future performance improvements. If we fail to choose the thresholds
appropriately, too many scores will be rated with one star and the search
after impediments for a better performance is hampered.

Given that this study is focused on agile software development environ-
ments, every metric will be calculated for a sprint (sprint level). This enables
us to rate a specific sprint performance against the benchmark of all sprint
performances. Consequently, the benchmark will consist of the past sprint
performances. Some metrics in the software quality model are directly mea-
sured for the sprint level, like the enhancement rate. Others, like the cycle
time, are calculated on the issue level and must be lifted to the sprint level.
To arrive at a sprint rating for the cycle time metric, we must aggregate the
cycle times of the user stories completed in the sprint.

In order to aggregate a metric to the sprint level, we first establish four
risk categorize (low, moderate, high and very high) to classify a metric value.
These categories are also derived from the analysis of the metric’s data dis-
tribution in the benchmark. Figure 3.5 shows the distribution of the cycle
time metric in a quantile plot. As can be taken from the quantile plot, the
cycle time metric follows power laws.

The most variability of the cycle time metric takes place in the tail of
the distribution. Consequently, we need to choose quantiles from the tail of
the distribution. In the case of the cycle time metric, we use the 60, 85 and
90 percentiles for the risk category thresholds. The thresholds were slightly
adjusted to arrive at whole days. The resulting risk categories can be seen
in Table 3.2.

21

Chapter 3 Constructing a Software Measurement Model

Table 3.2: Risk categories for cycle time

Category Thresholds
Low 0 - 7 days
Moderate 7 - 21 days
High 21 - 28 days
Very high >28 days

The risk categories are used to create a quality profile for a sprint. The
quality profile for the cycle time metric is created by calculating how many
percent of the user stories fall in each category. For example, the risk profile
for sprint 10 of team blue is 〈100.0, 42.11, 10.53, 10.53〉. 100.0% of all issues
fall into the low risk category, 42.11% into the moderate risk category, 10.53%
into the high risk category and 10.53% into the very high risk category. The
percentages for the different categories are cumulative which means that, for
example, for the percentage calculation of issues in the High category we
count the number of issues in the High and Very High category and divide
by the total amount of resolved issues in the sprint.

The risk profile of a sprint is then used to assign a rating between 1 and
5 stars (the more stars, the better). Table 3.3 shows the rating scheme for
the cycle time metric which was derived from the benchmark.

Table 3.3: Rating scheme for cycle time

Rating Moderate High Very high
? ? ? ? ? 25.0% 0.0% 0.0%
? ? ?? 46.7% 14.3% 11.1%
? ? ? 53.3% 20.0% 20.0%
?? 57.1% 40.0% 26.7%
? - - -

Using this rating scheme, sprint 10 of team blue would receive a four
star rating. A star rating is not fine-grained enough to adequately compare
sprints. To improve comparability, linear interpolation is applied to receive a
continuous scale between 0.5 and 5.5. After applying interpolation, the cycle
time rating of team blue for sprint 10 is 3.55.

22

Chapter 3 Constructing a Software Measurement Model

Figure 3.5: Distribution of Cycle Time

23

Chapter 4

Software Quality Model for
Agile Environments

In this chapter we address RQ3. First, we will elaborate on what the main
goal of software development is. It will be shown how the software quality
model formed outgoing from the main goal using the GQM approach. We
explain the sub-goals which were derived from the main goal and how they
are refined with question until they are measurable with concrete software
metrics.

4.1 Overview

The GQM approach, described in Section 3.2, is applied to define the model
to assess the software quality. In Table 4.1 the main goal of agile software
development is presented using the GQM definition template [40].

Table 4.1: Main Goal of Software Development

Analyze Software Development
For the purpose of Assessing and Improving Performance
With respect to Software Quality
From the viewpoint of Management, Product Owner, Scrum

Master and Development Team
In the context of Agile Environment

The analysis in the previous section already characterized the three as-
pects which contribute to the software quality. Figure 4.1 shows the GQM
schema with Software Quality Improvement as the main goal and the derived
sub-goals Functional Quality Improvement, Structural Quality Improvement

24

Chapter 4 Software Quality Model for Agile Environments

Figure 4.1: The application of the GQM approach to define the software
quality measurement model

and Process Quality Improvement, as well as the questions and metrics which
were derived from the sub-goals.

The different stakeholders in an agile development department put differ-
ent emphasis on the characteristics of software quality. For example, a devel-
opment team cares most about the structural quality, whereas the product
owner cares most about the functional quality. It is important to note that
a software development project often has additional external stakeholders,
such as customer and/or user, which are not represented in the viewpoints
of the model. These stakeholders are left out because they don’t use this
model, although it is important to incorporate their viewpoint in decision
making.

The characteristics of software quality are interdependent. In certain
situation a decision to improve on one characteristic may result in a tempo-
rary decrease in another characteristic. For example, the decision to refactor
source code in order to improve the structural quality of a software product
leads to reduced amount of features in this period. In an agile development
environment, the development team has to make these trade-off decisions in
cooperation with the product owner. The software quality model enables the
team to assess the state of the software quality and thereby judge the effect

25

Chapter 4 Software Quality Model for Agile Environments

of their decisions.
Heitlager et al. [23] used a matrix to visualize the mapping of software

maintainability characteristics onto source code properties. This method is
adopted in this study to visualize the mapping of the software quality sub-
goals onto product and process properties, as seen in Table 4.2.

product and process properties

E
n
h
an

ce
m

en
t

R
at

e

V
el

o
ci

ty

L
ea

d
T

im
e

C
y
cl

e
T

im
e

S
of

tw
ar

e
M

ai
n
ta

in
ab

il
it

y

D
ef

ec
t

R
em

ov
al

R
at

e

D
ef

ec
t

R
em

ov
al

E
ff

ec
ti

ve
n
es

s

E
n
h
an

ce
m

en
t

T
im

e
R

at
io

S
of

tw
ar

e
Q

u
al

it
y Functional Quality x x

Structural Quality x
Process Quality x x x x x

Table 4.2: Mapping of Software Quality Characteristics to Process and Prod-
uct Properties

The software quality sub-goals are represented in the rows and process
and product properties are represented in the columns of the matrix. A
cross in the matrix symbolizes that the process and product property was
determined to have a strong influence on the software quality sub-goal.

The characteristics functional quality and structural quality defined by
Chappell can also be found in the ISO/IEC 25010, shown in Figure 4.2.
Functional quality and structural quality of Chappell maps to the Func-
tional Suitability or Maintainability, respectively. The functional suitability
is defined as the “degree to which a product or system provides functions that
meet stated and implied needs when used under specified conditions” [28] and
maintainability is defined as the “degree of effectiveness and efficiency with
which a product or system can be modified by the intended maintainers” [28].

It is important to note that the other characteristics in the ISO 2510 prod-
uct quality model, like Performance Efficiency and Usability, are of value.
But the chosen characteristics are the most important to assess if software
development is “producing value that delights customers, building in quality

26

Chapter 4 Software Quality Model for Agile Environments

Figure 4.2: Product Quality model (ISO/IEC 25010)

that speeds the development process and creates a viable platform for future
enhancements, and delivering within constraints (which are scope, schedule,
and cost)” [25]. Another important fact is that the chosen characteristics can
be assessed without much additional effort in an agile development environ-
ment, like AUTOonline. Most of the data for the assessment already exist in
software tools, like an ITS which is commonly used in an agile development
environment. Additional tools required for the analysis of a software prod-
uct’s maintainability can be integrated in the continuous build process of a
software product. The continuous build is part of the Continuous Integration
practice which is also commonly used in an agile development environment.
This makes it possible to automate the data collection which greatly con-
tributes to the efficiency of the software quality assessment.

If special requirements exist in a project which justify the additional
effort required to assess further characteristics, like performance efficiency,
the model can be extended to accommodate these requirements.

4.2 Goals

The GQM approach proposes to derive the metrics of a measurement from
the goal of the measurement program. The main goal is to assess the software
quality. The software quality characteristics Functional Quality, Structural
Quality and Process Quality form the basis for the measurement program.
Following the goals are described in more detail.

27

Chapter 4 Software Quality Model for Agile Environments

Functional Quality

The functional quality of a software deals with the quality perceived on the
outside of a software. The higher the level of functional quality is the greater
the value which the user receives from using a software product. The value
which the customer receives from the software product determines if a per-
son/company decides to use a certain product or service and sign a contract.
Therefore, it is essential to promote a high level of functional quality to
ensure the sale of your products and services.

Structural Quality

The structural quality, also referred to as technical quality, of a software is
related to the structure of the software’s source code. Hence, it is an internal
view of a software’s quality. Especially, the software developers care about
this part of software quality because they are affected by the problems of low
quality in this aspect [16].

Process Quality

The process quality considers aspects related to the delivery process. In order
to assess the delivery process the adherence to delivery dates and budgets
is analyzed. Chappell emphasizes that it is not sufficient to deliver features
in time and on budget at one point in time, but you need to be able to
consistently deliver features on time and in budget. The higher the process
quality the higher is the ability to deliver features in time and on budget.

4.3 Questions

Following the GQM approach we formulated questions which help us to assess
goals from the previous section. The defined questions are presented in this
section.

Questions relating to Functional Quality

In order to assess the functional quality goal we use the factors of functional
quality which were defined by Chappell. In section 3.1 we presented the
obstructive influence of Metrics Galore. This situation occurs when a large
amount of metrics overwhelms the stakeholders of a measurement program.
Consequently, we concentrate on the most important factors Meeting the
specified requirements and Creating software that has few defects which were

28

Chapter 4 Software Quality Model for Agile Environments

defined by Chappell. These factors relate to sub-characteristics of functional
suitability in ISO 25010, shown in the following list:

• Functional completeness: “degree to which the set of functions covers
all the specified tasks and user objectives” [28]

• Functional correctness: “degree to which a product or system provides
the correct results with the needed degree of precision” [28]

The assessment if requirements are met is connected to the Functional
completeness. The factor whether the software products have few defects is
bound to the Functional correctness. As mentioned earlier, the model can
be extended with questions and metrics concerning other functional quality
factors like Good enough performance and Ease of learning and ease of use
if this is deemed beneficial. These last two factors are also part of ISO
25010. They constitute the discrete characteristics Performance efficiency
and Usability.

The questions derived from the functional quality goal are as follows:

Q1.1 How many user requirements were delivered in the sprint?

Context: The more user requirements are delivered to the
customer, the higher is functional completeness.
The benefit, which users receive from software us-
age, increases with the degree of the software’s
functional completeness. The delivery rate of user
requirements is also considered to be the through-
put of the software development process.

Metrics: Enhancement Rate

Interpretation: The higher the amount of user requirements that
are implemented and delivered, the higher the func-
tional quality.

Q1.2 How many bugs were removed in the sprint?

Context: A bug (or defect) is an error which occurs dur-
ing the execution of a software. Every bug in a
software degrades its functional correctness. The
benefit, which users receive from software usage,
is closely related to the functional correctness of
the software [15]. Therefore, it is important that
effort is expended to remove software bugs.

29

Chapter 4 Software Quality Model for Agile Environments

Metric: Defect Removal Rate

Interpretation: The higher the amount of defects that are fixed,
the higher the improvement of the functional qual-
ity.

Questions related to Structural Quality

According to Chappell, the structural quality is related to the internal struc-
ture of a software. In order to assess the structural quality we analyze the
maintainability of the software’s source code. In ISO 25010 maintainability is
defined as the “degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers”. Already by the defini-
tion we can see that the software maintainability has influence on the other
characteristics of software quality. ISO 25010 lists several sub-characteristics
contributing to the software’s maintainability. The most influential on the
other software quality characteristics are

• Analysability: “degree of effectiveness and efficiency with which it is
possible to assess the impact on a product or system of an intended
change to one or more of its parts, or to diagnose a product for defi-
ciencies or causes of failures, or to identify parts to be modified” [28]

• Modifiability: “degree to which a product or system can be effectively
and efficiently modified without introducing defects or degrading exist-
ing product quality” [28]

• Testability: “degree of effectiveness and efficiency with which test crite-
ria can be established for a system, product or component and tests can
be performed to determine whether those criteria have been met” [28]

The software quality will focus on the analysability, modifiability and
testability in order to assess the maintainability of a software. The other
aspects of software maintainability are left out for now to prevent the detri-
mental situation of Metrics Galore. But additional maintainability charac-
teristics can be added to the model later on, if this is deemed appropriate.

The question derived from the structural quality goal is the following:

Q2 How is the maintainability of the software products?

Context: Research has shown that the maintainability as-
pects of structural quality has a positive correla-
tion with issue resolution times [13]. This finding

30

Chapter 4 Software Quality Model for Agile Environments

relates to implementing new features, as well as
fixing bugs. In other words, the higher the main-
tainability of a software the faster issues from the
backlog can be resolved. From this fact, we can see
that the structural quality has a great influence on
functional and process quality because bugs fixes
and features can be delivered quicker and the re-
quired effort is better predictable.

Metric: SIG Software Maintainability

Interpretation: The higher the maintainability of a software, the
higher is the structural quality of the software.

Question related to Process Quality

The assessment of the process quality goal is concentrated on the Meeting
delivery dates aspect of Chappell’s definitions. The assessment of the Meet-
ing budgets is not applicable in the proposed measurement model because
of the focus on the sprint level. Usually, you don’t have budget plans for
individual features on this level. Nevertheless, the metrics which are defined
to assess the meeting of delivery dates, can be used to assess the efficiency of
software development concerning the expended developer effort. By improv-
ing the efficiency, more features can be implemented with the same amount
of developer effort.

The aspect A repeatable development process that reliably delivers quality
software will in part be accommodated by the combination and formulation of
the metrics. For the assurance that the development process consistently de-
livers software enhancements with good quality, we emphasize the critical role
of how the information gained from the model is used for decision-making.
If you rigorously aim to increase the amount of delivered features, you will
most likely disregard the structural quality of the software. Although you
may observe an improvement in the rate of new features on the short term,
you will lose the ability to adopt to environment changes in the long term.
The reason being, that the maintainability of a software is negatively corre-
lated with the required developer effort to make changes to a software [13].
Therefore, it is important to be aware of the trade offs you make along the
software quality aspects.

The questions derived from the process quality goal are as follows:

Q3.1 What is the capacity of the software development process?

Context: The capacity is defined as “The maximum rate of
output of a process, measured in units of output

31

Chapter 4 Software Quality Model for Agile Environments

per unit of time” [17]. The capacity of a software
development process relates to the rate in which
user requirements are implemented.

Metric: Velocity

Interpretation: The higher the capacity of the software develop-
ment process, the higher is the process quality.

Q3.2 What is the lead time?

Context: The lead time originates in Lean Manufacturing,
where it measures the time elapsed between order
placement and delivery. If we transfer the lead
time concept to the agile software development,
it describes the time between the identification of
requirement until the requirement is implemented
and delivered. The lead time is what the customer
sees[30].

Metric: Lead Time

Interpretation: The lower the lead time of the software develop-
ment process, the higher is the process quality.

Q3.3 What is the cycle time?

Context: The cycle time is related to the lead time. It mea-
sures the time between identification of an require-
ment and the time the requirement is implemented
and ready for delivery. Therefore, it measures the
requirement implementation process from a devel-
oper point of view. Often times, an implemented
requirement isn’t directly delivered after its com-
pletion. In an Scrum development process the
product owner decides when an implemented re-
quirement is delivered. In combination with the
lead time, you can analyze where problems in the
delivery process exist. You can distinguish if the
time elapsed to implement a requirement or the
time elapsed to provide the implementation to the
customer is a problem.

Metric: Cycle Time

Interpretation: The lower the cycle time of the software develop-
ment process, the higher is the process quality

32

Chapter 4 Software Quality Model for Agile Environments

Q3.4 How much effort was expended on enhancements in relation to the total
expanded effort?

Context: During the sprint planning the product owner and
the development team must plan which issues are
going to be handled in the sprint and how the
available developer time is expanded on software
enhancements, bug fixes and tasks. It is impor-
tant to ensure a constant stream of software en-
hancements to satisfy the user requirements. But
at the same time it is also important to fix bugs
to reestablish the intended benefits for software
users and spend time on task, like the analysis
of new software technology, to find potential im-
provements for the software products and process.
Hence, it is important to balance the expanded
effort on the three different issue types with a pri-
ority on the constant stream of software enhance-
ments.

Metric: Enhancement Time Ratio

Interpretation: The higher the enhancement time ratio, the higher
is the process quality.

Q4.4 How many bugs were fixed before delivery?

Context: Software development is done by knowledge work-
ers and not machines. Although developers don’t
intend to introduce bugs to the software it is in-
evitable that they do. As mentioned earlier, the
functional correctness and benefit which a user re-
ceives from a software is related to the number
of bugs in the software. Knowing this, it is im-
portant that during quality assurance activities as
many bugs as possible are identify and fixed before
the software is delivered.

Metric: Defect Removal Effectiveness

Interpretation: The higher the amount of bugs that are detected
and fixed before the delivery of the software, the
higher the improvement of the functional quality.

33

Chapter 4 Software Quality Model for Agile Environments

4.4 Metrics

The metrics that were selected as indicators of software quality are defined
and described in the following.

Enhancement Rate

The Enhancement rate is a measure of process throughput. The throughput
of a process is the amount of units which flow through the process in a given
time period. In software development we consider user requirements as in-
put to the development process. A user requirement (idea) passes through
the different stages of the software development process, as depicted in Fig-
ure 3.2. The output of the development process is the implementation of
an user requirement in form of working code. The implementation of a user
requirement constitutes a software feature or enhancement.

TA emphasizes that the output of the production process doesn’t add
value to the business until it is sold. We adapt this notion of TA to software
development. Consequently, we only consider enhancements which are deliv-
ered to the customer/user to calculate the enhancement rate metric. This is
also in line with the principles behind the agile manifesto, e.g. “Our high-
est priority is to satisfy the customer through early and continuous delivery
of valuable software” [11] and “Working software is the primary measure of
progress” [11].

In an agile development the focus lies on the development iteration or
sprint, as it is called in the Scrum methodology. Planning is executed for the
length of a sprint and at the end of every sprint a retrospective is conducted
with the intention to find improvement potentials for the development pro-
cess. The chosen metrics are intended to support the analysis of potentials for
performance improvements. For this reason, we use the length of a sprint as
the time period for which we measure the amount of delivered enhancement.

In the ITS enhancements or user stories, as they are called in this context,
are allocated to a specific sprint and the resolution state is also accessible
for each user story. Hence, all the information required for this metric can
easily be retrieved from the ITS. The enhancement rate metric is defined as
follows:

Enhancement Rate =
User stories resolved in sprint

Working days in sprint

34

Chapter 4 Software Quality Model for Agile Environments

Defect Removal Rate

Software developers strive to reduce the injection of defects during devel-
opment, but they can’t completely eliminate defects in software products.
Defects present in a software diminish the value gained from using it. There-
fore, it is important to remove as many defects as possible.

The Defect removal rate metric is used to analyze the amount of soft-
ware defects which were successfully removed from the software products in
particular sprint. Only bugs which were found/created before the sprint are
counted against this metric. This calculation closely connects to the Defect
Removal Effectiveness.

The data for the metric calculation is taken from the ITS, as well. Defects
are marked in the ITS with the issues type Bug and are assigned to the
particular sprint in which they are fixed. The following formula is taken to
distinguish which bugs were found before the sprint:

Bug found before sprint = Bugs with creation date < Sprint Start Date

It is important to note that the naming doesn’t convey that in this case
only bugs are considered which were found before the sprint and are resolved
in the sprint.

On the basis of the Bug found before sprint, the formula for the defect
removal rate looks as the following:

Defect Removal Rate =
Bugs found before sprint

Working days in sprint

Defect Removal Effectiveness

The Defect Removal Efficiency (DRE) was proposed by Jones to assess the
effectiveness1 of the quality assurance activities during software develop-
ment [29]. The DRE metric calculates the percentage of defects which were
found and fixed during development before the software is delivered. Jones
claims that the level of defect removal efficiency has a great influence on cus-
tomer satisfaction, “. . . high levels of customer satisfaction strongly correlate
with high levels of defect-removal efficiency. Conversely, software firms whose
defect-removal efficiency levels sag below 85 percent almost never have really
happy clients because their software is too unreliable” [29]. DRE is defined
as follows:

1Contrary to the name defect removal efficiency, the metric measures the effectiveness
instead of the efficiency because the metric doesn’t include a measure of expended effort
or cost.

35

Chapter 4 Software Quality Model for Agile Environments

DRE =
Development defects

Total defects
where Development defects is the number of defects found and fixed dur-

ing a development iteration before the software is delivered to the customer
and Total defects is the sum of development defects and the number of defects
which were found by user or clients after the software has been delivered.

The Defect removal effectiveness metric is based on the DRE metric.
As mentioned earlier, we concentrate on the evaluation of the sprint perfor-
mance. Consequently, we take the sprint as the time period for the metric
calculation. Comparable to DRE, we want to distinguish the defects which
were found during development from the defects which were found after de-
livery. For this purpose we once again look at the ITS data. In the ITS
defects have the issue type Bug. Defects which were found in the sprint or
during development, respectively, can be identified by relating the creation
date of the issue to the sprint start date. The resulting formula is as follows:

Bug found and fixed in sprint = Bugs with creation date > Sprint Start Date

The defect removal effectiveness is then calculated by relating the amount
of defects found in the sprint to the total amount of bugs which were fixed
in the sprint. The formula looks as follows:

DRE =
#Bugs found and fixed in sprint

Total#bugs fixed in sprint

Enhancement Time Ratio

Fixing software defects is a form of corrective maintenance. As mentioned
in the description of the defect removal rate, it is desirable to have as little
defects in your software as possible. But of course, there is a down-side to
spending effort in bug fixing which is that less time can be spent on perfective
maintenance in form of software enhancement. Bijlsma has proposed the
Enhancement ratio metric to monitor the balance between corrective and
perfective maintenance. The enhancement ratio is defined as the following:

Enhancement Ratio =
RE

RD + RE

where RE is the number of resolved enhancements for a certain time pe-
riod, and RD is the number of resolved defects for that same time period [12].
The data for the metric calculation can easily be retrieved from the ITS for
each sprint, as we did for the previous metrics.

36

Chapter 4 Software Quality Model for Agile Environments

Bijlsma confirmed in his study the hypothesis that “Developers of soft-
ware systems with higher maintainability will implement more enhancements
(relative to their total effort), compared to developers of systems of lower
maintainability” [12].

The Enhancement Time Ratio is an extension of the original enhancement
ratio metric. The enhancement time ratio metric considers the time effort
which was expanded by the development on the particular issues. Further-
more, the metric considers User story, Bug and Task. In the enhancement
ratio metric only issues of type User story and Bug are considered. The
adjustments enable us to better analyze how developer time was expanded
during the sprint. The enhancement time ratio is calculated as follows:

Enhancement Time Ratio =
Logged time on user stories in sprint

Logged time on user stories, bugs and tasks

Software Maintainability

Heitlager et al. have developed the SIG Quality Model to assess the main-
tainability of a software product [23]. This model uses the definition of
maintainability in the ISO/IEC 9126 to assign a maintainability rating to
software product. Later the model was adjusted when ISO/IEC 9126 was
replaced by ISO/IEC 25010. The ISO/IEC 25010 breaks down the product
quality into eight characteristics, as shown in Figure 4.2.

In ISO 9126 the maintainability characteristic had the sub-characteristics
Analysability, Changeability, Stability and Testability. The SIG quality model
defines source code properties which are map to the sub-characteristics of
maintainability. The following list shows the source code properties which
are mapped to the sub-characteristics of ISO 9126 in the original quality
model [23]:

Volume: The overall volume of the source code influences the analysability
of the system.

Complexity per unit: The complexity of source code units influences the
systems changeability and its testability.

Duplication: The degree of source code duplication (also called code cloning)
influences analysability and changeability.

Unit size: The size of units influences their analysability and testability
and therefore of the system as a whole.

37

Chapter 4 Software Quality Model for Agile Environments

Unit testing: The degree of unit testing influences the analysability, sta-
bility, and testability of the system.

The source code properties can be measured through source code metrics.
For example, the Lines of code (LOC) is used to measure the volume and the
McCabe Cyclometic Complexity is used to measure unit complexity. Using
the method to rate metrics, described in Section 3.4, a rating is determined
for the different source code properties. The ratings for the code metrics
are derived as described in Section 3.4. The code metrics ratings are then
averaged following the maintainability mapping in Figure 4.3 to arrive at a
score for the maintainability sub-characteristics.

source code properties
V

ol
u
m

e

C
om

p
le

x
it

y
p

er
u
n
it

D
u
p
li
ca

ti
on

U
n
it

si
ze

M
ai

n
ta

in
ab

il
it

y
su

b
-

ch
ar

ac
te

ri
st

ic
s

analysability x x x
modifiability x x
testability x x

Table 4.3: Mapping of Maintainability Sub-characteristics to Source Code
Properties

The mapping of system characteristics onto source code properties is
accomplished using ISO 25010. The source code mappings to the sub-
characteristics are chosen using the definitions of analysability, testability
and modifiability as mentioned in Section 4.3.

The scores for the maintainability sub-characteristics are aggregated us-
ing averaging to arrive at an overall maintainability rating for a software
product. Finally, all the maintainability ratings for the software products of
a development team are averaged again to arrive at an overall maintainability
score for the team’s software products.

Velocity

In a Scrum environment, story points are assigned to requirements which rep-
resents the effort required to implement the particular requirement. For the

38

Chapter 4 Software Quality Model for Agile Environments

Figure 4.3: Lead time of an issue

capacity of the software development process from the development team’s
perspective we consider story points as the unit of output. As the time unit
we consider the sprint length in working days. The required data for the
metric calculation is taken from the ITS and looks as follows:

Velocity =
Story points of resolved user stories in sprint

Working days in sprint

This way of measuring the velocity simplifies the sprint planning. Some-
times sprints vary in length, for example because of statutory holidays. Sprint
planning is simplified because you can easily distinguish the amount of user
story points which a development can implement during a sprint by mul-
tiplying the velocity metric with the amount of working days in a sprint.
Moreover, is the comparability between teams for this metric improved be-
cause the metric accounts for the different sprint lengths.

Lead Time

The Lead time measurement originates in Kanban. Kanban is a method
to control the flow of production. It was introduced at the Toyota Motor
Corporation to improve the efficiency of the production process. The Kanban
concept was adjusted by Anderson for the use in software development [31].

Anderson says, “The lead time from input to output will show how long
Investment was committed within in the system” [5]. Accordingly, we define
the lead time in software development as the time period beginning with the
identification of an user requirement and ending with the fulfillment of the
requirement in form of working code. In the ITS context, user requirements
are have the issue type User Story. The identification of an user requirement
is signified by the creation date of the user story or in other words the point
in time when it enters the Open state. The point in time when the user story
enters the Close state constitutes the fulfillment of the user requirement.
Hence, the lead time covers the whole life cycle of an issue, as illustrated in
Figure 4.3.

Each user story has story points assigned to it which represents an es-
timation of the effort required to implement the particular user story. A
user story with more story points takes longer than a user story with fewer
story points. We account for the effort in the lead time metric, in order to

39

Chapter 4 Software Quality Model for Agile Environments

Figure 4.4: Cycle time of an issue

achieve a better comparability between user stories. Therefore, the lead time
is calculated as follows:

Lead Time =
User story closed date− User story open date

Story points of user story

Cycle Time

In contrast to the lead time, cycle time refers only to a part of the whole
life cycle. As depicted in Figure 4.4, cycle time covers the time period in the
life cycle of a user story from the Open state until the user story enters the
Ready for Deployment state. The Ready for Deployment signifies the point
in time when the implementation of the issue is finished and all tests by the
testing department have been passed successfully. The development team
is only accountable for this particular time period because the decision if a
product increment is delivered/deployed lies outside his responsibility.

Ideally, you should use the point in time when the developer starts his
work on a requirement for the cycle time calculation. But this way of measur-
ing would lead to undesirable behavior adoption in practice. If the cycle time
starts with the In Work date, developers are inclined to delay the transfer
of the ITS issue in order to receive better metric values. This obstructs the
analysis of progress towards the sprint target.

Just as for the lead time, we use the story points for normalization to
gain comparability among user stories. Therefore, the formula for cycle cal-
culation looks as follows:

Cycle time =
User story ready for deployment date− User story open date

Story points of user story

40

Chapter 5

Evaluation of the Software
Quality Model

The software quality model was evaluated in a business context which is con-
stituted by AUTOonline. This chapter presents the results of the evaluation
of the software quality model. The first part of this chapter addresses the
calibration of the metrics in the software quality model. Subsequently, we
will analyze how the collected can be just to gain insight about the software
development performance. Finally, we will discuss the results of the evalua-
tion from the user’s point of view. This chapter is aimed to provide answer
for RQ4 and RQ5.

5.1 Model Calibration

AUTOonline implemented the Scrum methodology in the software develop-
ment process. The performance of two development teams is going to be
assessed using the software quality model. The teams are responsible for the
maintenance of different software products and services. Each team plans
and executes their sprint separately. The team sizes are comparable con-
cerning the amount of developers in each team. However, the sprint length
differs between the development teams. This fact was taken into account
during the definition of the metrics in the software quality model.

The rating system for metric scores, which was presented in Section 3.4, is
used during the application of the software quality model. For this purpose,
a benchmark is established consisting of the data collected at AUTOonline.
The data consists of the metric scores from each team over 6 sprints.

In Section 3.4 we mentioned that all metrics are aggregated to the sprint
level using the rating system. Some of the metrics are already calculated on

41

Chapter 5 Evaluation of the Software Quality Model

the sprint level. The thresholds for these metrics are shown in Table 5.1. For
all of these metrics applies that the higher the metric score the better the
rating.

Table 5.1: Rating Thresholds for Sprint Level Metrics

Metric ? ? ? ? ? ? ? ?? ? ? ? ?? ?
Enhancement Rate 2.38 1.64 1 0.87 -
Defect Removal Rate 1.38 0.53 0.29 0.13 -
Velocity 8.57 5.63 4.47 2.69 -
Enhancement Time Ratio 69.0% 65.0% 39.0% 33.0% -
Defect Removal Effectiveness 85.7% 70.6% 60.0% 42.1% -

The thresholds are interpreted as the minimum value to receive a certain
star rating. An example for this type of metrics is the Enhancement Rate
which measures the number of completed user stories in relation to the sprint
length or workings days in the sprint, respectively. A software development
team which delivered in average one user story per working day in the sprint
will receive three star rating for this metric. Whereas, a team which only
delivered in average 0.9 user stories per working day in the sprint will only
get a two star rating.

Other metrics, like the Cycle Time, are measured for the issue level and
need to be aggregated to the sprint level. For this purpose, we use the
risk categories and the quality profiles to arrive at a rating for the sprint
level. Table 5.2a shows the thresholds for the cycle time risk categories and
Table 5.2b shows the quality profiles which were derived using the calibration
method described in Section 3.4. Note that the lower bound of the Moderate
and High category are not included. For example, a user story with a cycle
time of 21 days will fall into the Moderate category and not the High category.
The categories are then used to create the quality profiles. The quality
profiles in Table 5.2b are also obtained using the calibration method.

The same calibration method was applied to receive the risk category
thresholds for lead time which are shown in Table 5.2c. The associated
quality profiles which are used to assign a lead time rating for a sprint are
documented in Table 5.2d.

For the software maintainability we assess the maintainability of a team’s
software products at the end of a sprint. The software maintainability model
has metrics which are measured for the software as a whole (system level).
For example, the percentage of duplicated source code lines is calculated in
relation to the software’s total number of source code line. For the code met-
rics, which are measured for the system level, we derived the rating threshold

42

Chapter 5 Evaluation of the Software Quality Model

Table 5.2: Calibration Result for Cycle Time and Lead Time

Category Thresholds
Low 0 - 7 days
Moderate 7 - 21 days
High 21 - 28 days
Very High > 28 days

(a) Risk Category Thresholds

Rating Moderate High Very High
? ? ? ? ? 25.0 0.0 0.0
? ? ?? 46.7 14.3 11.1
? ? ? 53.3 20.0 20.0
?? 57.1 40.0 26.7

(b) Quality Profiles Thresholds

Category Thresholds
Low 0 - 14 days
Moderate 14 - 28 days
High 28 - 35 days
Very high ¿ 32 days

(c) Risk Category Thresholds

Rating Moderate High Very High
? ? ? ? ? 0.0 0.0 0.0
? ? ?? 36.0 16.7 14.3
? ? ? 42.9 20.0 20.0
?? 46.7 40.0 22.2

(d) Quality Profiles Thresholds

presented in Table 5.3.
The unit size and complexity metric are measured on the unit level. In

this case we consider the method code construct as the unit. The unit size
metric counts the number of statements in a method. The risk category
thresholds for the unit size metric can be found in Table 5.4a. The complexity
metric measures the number of execution paths through a method. The
calibration provided us the complexity risk category which are presented in
Table 5.5a. The usage of quality profiles help us to aggregate the unit level
code metrics to the system level. The quality profiles for unit size (Table 5.4b)
and complexity (Table 5.5b) tell us how many percent of the source code may
lie in the various risk categories to obtain a certain rating.

43

Chapter 5 Evaluation of the Software Quality Model

Table 5.3: Rating Thresholds for System Level Code Metrics

Metric ? ? ? ? ? ? ? ?? ? ? ? ?? ?
Volume 3453 6329 39644 75001 -
Duplication 0.01 0.025 0.044 0.144 -

Table 5.4: Calibration Result for Unit size

Category Thresholds
Low 0 - 20 statements
Moderate 20 - 40 statements
High 40 - 110 statements
Very high 110 statements or more

(a) Risk Category Thresholds

Rating Moderate High Very High
? ? ? ? ? 0.0 0.0 0.0
? ? ?? 26.2 14.6 2.7
? ? ? 32.6 18.8 4.8
?? 75.2 65.6 51.3

(b) Quality Profiles Thresholds

Table 5.5: Calibration Result for Unit Complexity

Category Thresholds
Low 1 - 5 complexity
Moderate 5 - 10 complexity
High 10 - 35 complexity
Very high 35 complexity or more

(a) Risk Category Thresholds

Rating Moderate High Very High
? ? ? ? ? 1.9 0.0 0.0
? ? ?? 24.0 11.5 2.9
? ? ? 34.1 24.1 7.1
?? 72.8 64.8 53.3

(b) Quality Profiles Thresholds

44

Chapter 5 Evaluation of the Software Quality Model

5.2 Model Application

This section shows how the what information can be gained from the software
quality model and how it can be used to assess the software development
performance.

5.2.1 Evaluation of Sprint Performance

One purpose of this model is to assess the performance of a sprint. After ev-
ery sprint the development together in cooperation with scrum master takes
a look back onto the sprint in the sprint retrospective. In this meeting they
try to identify things that impedes the software development performance.
The metrics from the software quality model support the analysis for sources
of improvements and can also be used to assess if decisions in prior retro-
spectives had a positive effect on the development performance.

The starting point of the sprint analysis is the software quality overview,
as depicted in Table 5.6. In the overview you see the rating for the software
quality together with the ratings of the software quality sub-characteristics.

Table 5.6: Software Quality for Team Blue (Sprint 10)

Metric Name Rating Rating (Interpolated)
Functional Quality ? ? ? 3.22
Structural Quality ? ? ? 2.51
Process Quality ? ? ?? 3.56
Software Quality ? ? ? 3.1

If the team wants to inspect a certain characteristic in more detail, they
can drill down to view the concrete metric values for the characteristic. The
Table 5.7 shows the scores of functional quality metrics of Team Blue for
sprint 10. The team’s performance on the functional quality dimension was
average in sprint 10 compared to all sprints in the benchmark. It is noticeable
that the rate of new enhancements, which were delivered in this sprint, was
above average. The rating for the defect removal rate pulls the functional
quality rating down but it is still a solid score compared to the other sprints.

Table 5.8 breaks down the process quality along its related metric scores.
The overall process quality of the team was average for sprint 10. It is notice-
able that the lead time and cycle time are on the very low end of three star
rating. At this point the team may consider to drill down even further and
look at individual issues to find reason which explain the low score. For this
purpose, they can concentrate on the issues which fall into the High and Very

45

Chapter 5 Evaluation of the Software Quality Model

Table 5.7: Functional Quality for Team Blue (Sprint 10)

Metric Name Score Rating Interpolated Rating
Enhancement Rate 1.73 ? ? ?? 3.62
Defect Removal Rate 0.36 ? ? ? 2.81
Functional Quality - ? ? ? 3.22

High risk category of the two metrics. If the team find impediments which
deferred the implementation or deployment of these issues, they can plan
steps to resolve the impediment and to improve future sprint performances.

Table 5.8: Process Quality for Team Blue (Sprint 10)

Metric Name Score Rating Rating (Interpolated)
Velocity 5.55 ? ? ? 3.27
Lead Time - ? ? ?? 3.62
Cycle Time - ? ? ?? 3.55
Enhancement Time Ratio 67.0% ? ? ?? 4.0
Defect Removal Effectiveness 69.23% ? ? ? 3.37
Process Quality - ? ? ?? 3.56

Table 5.10 shows the overall structural quality rating which is aggregated
by averaging the maintainability ratings of the team’s software project. Sev-
eral projects only receive a two star rating. These low scores could be an
explanation why some of the issues took a longer time to implement, if we
can trace the issues back to these software projects. If low maintainability
is indeed an impediment to the sprint performance, they can plan to invest
time into refecatoring the project to increase the maintainability and thereby
improving future performance.

Table 5.9: Structural Quality for Team Blue (Sprint 10)

Software product Rating Rating (Interpolated)
Project 1 ? ? ? 3.27
Project 2 ?? 2.16
Project 3 ?? 2.06
Project 4 ?? 2.08
Project 5 ? ? ? 3.27
Project 6 ?? 2.23
Structural Quality ? ? ? 2.51

46

Chapter 5 Evaluation of the Software Quality Model

Table 5.10: Structural Quality for Team Blue (Sprint 10)

Metric Name Rating Rating (Interpolated)
Volume ?? 2.46
Duplication ? ? ? 3.18
Unit Size ? ? ?? 3.51
Unit Complexity ? ? ? 3.42

(a) Structural Quality of Project 1

Metric Name Rating Rating (Interpolated)
Volume ?? 1.54
Duplication ?? 1.81
Unit Size ?? 2.28
Unit Complexity ? ? ? 2.54

(b) Structural Quality of Project 2

Metric Name Rating Rating (Interpolated)
Volume ? ? ?? 3.98
Duplication ? ? ? 2.55
Unit Size ? 1.48
Unit Complexity ? 1.49

(c) Structural Quality of Project 3

Metric Name Rating Rating (Interpolated)
Volume ?? 2.41
Duplication ?? 2.38
Unit Size ?? 1.93
Unit Complexity ?? 1.83

(d) Structural Quality of Project 4

Metric Name Rating Rating (Interpolated)
Volume ? ? ? 3.47
Duplication ? ? ? ? ? 4.5
Unit Size ?? 2.68
Unit Complexity ? ? ? 2.66

(e) Structural Quality of Project 5

Metric Name Rating Rating (Interpolated)
Volume ? ? ? 3.08
Duplication ?? 2.19
Unit Size ?? 2.07
Unit Complexity ?? 2.11

(f) Structural Quality of Project 6

47

Chapter 5 Evaluation of the Software Quality Model

Figure 5.1: Performance Trend of Team Blue

For this purpose, they can take a look at the code metrics of the indi-
vidual project. Table 5.10 shows the code metric scores for all project of
the team. If we take a look at the score for project 2, which has the low-
est structural quality rating, we see that it has a high amount of duplicated
code. Refactoring the software by removing these code duplications can be
a starting-point to increase the software’s maintainability.

5.2.2 Tracking of Team Performance

Another important function of the software quality model is to track a team’s
performance over time. This enables a development team to analyze whether
their decisions led to an performance improvement in the long run. Figure 5.1
shows a performance trend for Team Blue. In the diagram we recognize a
slight increase in the software quality over the period of six sprints. Further-
more, we see that the change in the software quality over the six sprints is
due to the variation in the functional and process quality. The structural
quality only shows a small change over time.

For a more detailed analysis of the software quality and its related sub-
characteristics, we refer to table 5.11 and Table 5.12 which contains the
ratings for the functional and process quality of team blue.

48

Chapter 5 Evaluation of the Software Quality Model

Table 5.11: Functional Quality Trend of Team Blue

Metric Name Rating 7 Rating 8 Rating 9 Rating 10
Enhancement Rate 2.81 3.5 4.5 3.62
Defect Removal Rate 3.5 3.62 4.5 2.81
Functional Quality 3.16 3.56 4.5 3.22

We observe the consistent improvement in the functional quality from
sprint 7 to 9. The peak in the functional quality trend in sprint 9 is due
to an outstanding 4.5 rating on the enhancement and defect removal rate.
Although the functional quality dropped in sprint 10 again, it still represents
an improvement in relation to sprint 7. The upward trend is due to the
improvement in the enhancement rate rating which increased from sprint 7
to 10 by about 29%.

Table 5.12: Process Quality Trend of Team Blue

Metric Name Rating 7 Rating 8 Rating 9 Rating 10
Velocity 1.94 3.0 3.5 3.27
Lead Time 3.08 1.49 2.75 3.62
Cycle Time 3.49 2.17 2.6 3.55
Enhancement Time Ratio 2.0 3.5 2.5 4.0
Defect Removal Effectiveness 2.25 2.5 1.05 3.37
Process Quality 2.55 2.53 2.48 3.56

But while the enhancement rate shows an improvement, the defect re-
moval rate is declining. The team should analyze the reason for the decline.
It could be the case that the quality assurance ambition is improved and con-
sequently less bugs are reported after the delivery of a software product. In
this case, no additional attention is required by the development. Whether
this is really the case, you can check by comparing defect removal rate with
the defect removal effectiveness from the process quality dimension (see Ta-
ble 5.12). By looking at the defect removal effectiveness, we can indeed find
an increase of the metric rating by about 30%.

5.2.3 Team Comparison

The software quality can also be used to compare the performance between
teams. Information gained from this analysis can be used to justify the
expending of extra effort on the knowledge transfer between teams, consider
the composition of the teams etc. Figure 5.2 shows the software quality

49

Chapter 5 Evaluation of the Software Quality Model

Figure 5.2: Team comparison on the basis of the software quality trend

trends over 6 sprints. The depicted diagram reveals that the software quality
rating for Team Orange is fluctuating more heavily than for Team Blue. In
the software quality trend of Team Orange we also notice a significant drop
in sprint 10 which has a lower rating than sprint 5. The software quality
trend of Team Blue shows a slight improvement over the period of 6 sprints.

For a more detailed comparison, we analyze the ratings of the software
quality sub-characteristics. The functional quality of Team Orange in Ta-
ble 5.13 also shows a high fluctuation which is the reason for the high fluctu-
ation in the software quality. The differences between sprints are at times as
high as two star ratings. The functional quality of Team Orange (Table 5.11)
doesn’t fluctuated as much.

Table 5.13: Functional Quality Trend of Team Orange

Metric Name Rating 7 Rating 8 Rating 9 Rating 10
Enhancement Rate 1.5 3.29 2.0 2.5
Defect Removal Rate 1.55 4.35 1.97 3.5
Functional Quality 1.52 3.82 1.98 3.0

Huge performance fluctuations are not desirable because it reduces the
predictability of the software development process. In some cases, this might

50

Chapter 5 Evaluation of the Software Quality Model

lead to the deferral of promised functionality which is going to lower the
satisfaction of your customer. Team Blue better manages to keep a constant
stream of new functionality.

If we compare the trend in the process quality of team orange (Table 5.14)
with Team Blue (Table 5.12), we observe that in sprint 7 to 9 both teams have
a constant process quality rating of three stars. Although, team orange scores
a half star rating higher than team orange in these sprints. Furthermore, we
notice that the process quality performance of Team Blue increased greatly
in sprint 10, whereas the process quality performance dropped by one star
rating. The decline of team orange is mainly due to the low velocity, lead
time and cycle time ratings. This observation can be explained by a lower
amount of available developer hours in sprint 10. In contrast to team blue,
the sprint 10 of team blue expanded over the Christmas holidays and in this
period some of the developers took a holiday break. The metric calculation
doesn’t account for individual holidays only for statutory holidays.

Table 5.14: Process Quality Trend of Team Orange

Metric Name Rating 7 Rating 8 Rating 9 Rating 10
Velocity 3.02 2.5 2.38 1.39
Lead Time 3.57 3.5 5.5 1.64
Cycle Time 3.50 1.49 4.5 2.36
Enhancement Time Ratio 3.5 3.23 1.17 1.83
Defect Removal Effectiveness 2.68 4.2 1.5 2.5
Process Quality 3.25 2.99 3.009 1.95

When we look at the trend of structural quality in Table 5.15, we see that
the structural quality of the teams’ software products only changes slightly for
the period of the 4 sprints. There are several things which explain this. First
of all, the teams are fairly small and the sprint lengths are short which reduces
the amount of changes in the source code during this period. Secondly, some
of the projects have a high volume (number of statements) which reduces the
effect of small changes in the source code on the overall structural quality of
the software product.

Although, the structural quality rating for both teams are steady, we
want to remark that the structural quality of Team Orange is rated with
four stars. This is more than a star higher than the structural quality of
Team Blue.

51

Chapter 5 Evaluation of the Software Quality Model

Table 5.15: Structural Quality Trend

Team Rating 7 Rating 8 Rating 9 Rating 10
Blue 2.5 2.51 2.51 2.51
Orange 3.88 3.87 3.83 3.83

5.3 Model Evaluation

The software quality model is also evaluated from the user’s point of view.
For this purpose, we create a feedback questionnaire which is answered by
employees from the software development department at AUTOonline in a
semi-structured interview. The following section will discuss the design of
the questionnaire. In the subsequent section we will examine the results from
user feedback.

5.3.1 User Feedback Questionnaire

Riemenschneider et al. [38] have analyzed the acceptance of tools/methodologies
by developers. In the study several theoretical models were analyzed con-
cerning determinants of tool/methodology acceptance. Below you find a list
of the identified acceptance determinants. The definition of the determinants
were adopted from Riemenschneider et al. [38].

Usefulness “. . . the extent to which the person thinks using the system will
enhance his or her job performance . . . ”

Ease of use “. . . the extent to which the person perceives using the system
will be free of effort.”

Compatibility “. . . refers to the degree to which an innovation is perceived
as being consistent with the existing values, needs, and past experiences
of potential adopters.”

Result Demonstrability “. . . refers to the degree to which an innovation
is perceived to be amenable to demonstration of tangible advantages.”

Perceived Behavioral Control “. . . refers to one’s perceptions of internal
or external constraints on performing the behavior . . . ”

Subjective Norm “. . . the degree to which people think that others who
are important to them think they should perform the behavior . . . ”

52

Chapter 5 Evaluation of the Software Quality Model

Image “. . . refers to the degree to which use of an innovation is perceived to
enhance one’s image or status in one’s social system.”

Voluntariness “. . . defined as the extent to which potential adopters per-
ceive the adoption decision to be nonmandatory. . . ”

Visibility “. . . refers to the degree to which the results of an innovation are
observable by others.”

Career Consequences “. . . refers to outcomes that have a payoff in the
future, such as increasing the flexibility to change jobs or increasing
the opportunities for more meaningful work.”

Some of the determinants of the original research are neglected because
they are deemed not applicable for the assessment of the software quality
model in this study. The reason why they are not applicable is that the
determinants don’t directly relate to the structural quality of the model, like
Usefulness. For example, they relate to social factors which promote accep-
tance/adoption, like Subjective Norm or Image, or they relate to conditions
during or after introduction, like Voluntariness or Visibility.

Questions Aspects
The software quality model will enhance your job per-
formance?

Usefulness

The software quality model provides information
which supports your decision-making?

Usefulness

The metrics in the software quality model doesn’t
require much manual effort to measure?

Ease of use

The information which is relevant for you can easily
be retrieved from the software quality model?

Ease of use

The goals of the software quality model reflect the
goals of an agile software development environment?

Compatibility

The goals of the software quality model reflect the
goals and principles of AUTOonline?

Compatibility

The software quality model can be used with my cur-
rent knowledge?

Perceived Behavioral
Control (External)

Do you think there are aspects of software quality
missing in this model?

Completeness

Table 5.16: Evaluation Questions from the Feedback Questionnaire

The Table 5.16 shows the determinants and the related question which
were selected for the feedback questionnaire. For each of the question with

53

Chapter 5 Evaluation of the Software Quality Model

Figure 5.3: Excerpt of Feedback Questionnaire

the exception of the question relating to completeness, we provide a five-point
Likert scale. Figure 5.3 shows an example of a question from the feedback
questionnaire. The question related to the completeness may be answered
by the respondent with YES or NO. A complete version of the feedback
questionnaire can be found in the appendix.

5.3.2 Results

This section we will discuss the feedback which was given by employees of
the software development department at AUTOonline. A Product Owner,
Scrum Master and the Head of Software Development took part in the feed-
back meeting. All participants have a background as software developer and
know the scrum methodology. At the beginning of the meeting, the software
quality model was presented to the participants. After the presentation the
questionnaire was used to receive the feedback about the applicability of the
model.

The first aspects which was covered in the interview was related to the
Usefulness of the software quality model. The first statement, which was
posed to the respondents, was “The software quality model will enhance
your job performance”. All three respondent agreed with this statement.
The head of software development highlighted the possibility to observe the
trend of the development process, team and software projects. The scrum
master remarked that the model gives good possibilities to discover potential
improvements which leads to faster software development.

A further statement concerning the Usefulness was “The software qual-
ity model provides information which supports your decision-making”. The
feedback on this statement was a little more diverse. The product owner
rated the statement with strongly agree which leads to the conclusion that
the model provides the information which is required by a product owner to
plan a sprint. The head of software development agreed with the statement,

54

Chapter 5 Evaluation of the Software Quality Model

as well, and he further remarked that it provides the information required
to decide about additional staff training or refactoring of specific software
products. The scrum master responded neutral to this statement because in
his opinion the scrum master isn’t a decision-maker which is consistent with
the traditional definition of the scrum master role.

The next aspect of the interview was the topic Ease of use. The first
statement to which the respondents had to react was “The metrics in the
software quality model doesn’t require much manual effort to measure”. All
the respondents uniformly agreed with this statement. Although the product
owner added that in general time logging is considered as waste by developers
in an agile environment. The next statement for the same aspect was “The
information which is relevant for you can easily be retrieved from the software
quality model”. The respondents uniformly agreed with this statement. The
product owner mentioned that it is able to reveal interesting information but
you might need additional information from outside the model to explain
certain measurement results. For example, it is important to know the point
in time in which team composition changed, because this has an influence on
the team’s velocity.

The first statement for the Compatibility aspect was “The goals of the
software quality model reflect the goals of an agile software development
environment”. The opinion of the respondents about this statement differs.
The head of software development strongly agrees with this statement. The
scrum master agrees with this statement because he sees that it supports
continuous improvement which is an agile development goal. Whereas the
product owner responds with neutral to this statement. He explained that the
measurement goals were deduced from the company’s goals but this may not
coincide with agile development goals in general. With the other statement
for this aspect “The goals of the software quality model reflect the goals and
principles of AUTOonline” all respondents uniformly agreed again.

The next statement posed to the interviewees was “The software quality
model can be used with my current knowledge”. The head of software devel-
opment and scrum master agree with this statement and the product owner
even rates the statement with strongly agree.

The last statement “Do you think there are aspects of software quality
missing in this model” relates to the Completeness of the software quality
model. The scrum master mentioned that you could add metrics relating
to test coverage in the structural quality part of the model. The head of
software development proposed to measure the cycle time metric differently.
He said that it is better to measure the cycle time from the In Work date
instead of the Creation Date because sometimes user stories aren’t picked up
for a while because they have a low priority. Furthermore, did he propose to

55

Chapter 5 Evaluation of the Software Quality Model

measure how many percent of the known bugs were fixed in a sprint.
From the feedback meeting we conclude that the model was deemed to

be useful to increase the job performance of the respondents and it delivers
information required for the daily operations of the respondents. Only the
scrum master rated lower than the other two respondents. But this is due
to perception that the scrum master isn’t a decision-maker. This is true for
the sprint planing in which it is decided what user requirements are going to
be implemented. But he also has the responsibility to identify impediments
which obstruct team performance. Information about impediments can be
taken from the model, like low software maintainability. We think that the
scrum master will realize this potential once he uses it for a longer period of
time.

Furthermore, can we conclude that the respondents judge the software
quality model as easy to use. The data for the software quality metrics are
already available at AUTOonline and therefore the additional effort required
for the measurements are minimal. In addition, the participants perceive
that they can easily retrieve and interpret the data which they need from
the model. The only criticism relates to the logging of expended developer
hours. Although this is not a problem at AUTOonline, because the expanded
developer hours are already being logged, you might need to spend additional
effort for logging in other companies where this information is not available
in the ITS.

The measurement goals of the software quality model are perceived to be
compatible with the AUTOonline goals and principles. Two of the respon-
dents also see the compatibility with the agile principles. Only the product
owner deviates from this judgment. In practice, you will always find small
deviation from the Scrum methodology which explains the differences be-
tween the general agile software development goals and the concrete goals
of a company. After all, Scrum is a methodology with a set of tools and
guidelines which are supposed to improve the software development perfor-
mance of a company. The components of the Scrum methodology are taken
by companies and adjusted to the specific needs of company.

Concerning the perceived behavioral control, can we conclude that all re-
spondents feel that they can use the model with their current knowledge
without much extra learning effort. Finally, we can summarize that three
changes and extensions of the model were proposed. It was proposed to ex-
tend the structural quality measurement with metrics to rate the test quality,
to add a metric to analyze how many percent of the known bugs were fixed
in a sprint and to change the measurement of the cycle time.

56

Chapter 6

Conclusion and Future Work

The main objective of this thesis was to find an answer to the question how
software measurements can be incorporated in an agile software development
process to support continuous improvement. For this purpose we investigated
an approach that can be followed to define a measurement model. The iden-
tified approach was used to define a model to assess the software quality of
an agile software development process. Furthermore, we applied the software
quality model in the business context of the AUTOonline organization in or-
der to evaluate the usefulness of the model. In this chapter, we summarize
the findings of this study and we indicate possible areas for future research.

6.1 Conclusions

This section summarizes the findings of this study and provides answers to
the research questions.

RQ1: What approach should be followed to define a software mea-
surement model in an agile environment?

The first goal was to identify a structured approach which can be used to
establish a software measurement program. The GQM approach proved to
be suitable to design a software measurement program in this study. The
pivotal factor is that the GQM approach follows a top-down fashion for the
definition of a measurement model. The construction of a measurement
model starts with the identification of the business goals. The business goals
are then linked to measurement goals. From the measurement goals we derive
questions which need to be answered to assess the development performance
against the measurement goals. The answers to these questions are provided
by software metrics. The consideration of the business goals in the choice of

57

Chapter 6 Conclusion and Future Work

the metrics makes the GQM approach suitable because it guarantees that the
model measures something that is relevant for the success of the company.

In this study the GQM approach was combined with a rating system that
facilitates the interpretation of metric scores and helps to identify parts of
a system which may cause a problem. The method to establish the rating
system in this study is based on previous research of SIG. The ratings in
this method are assigned according to statistic analysis of a metric’s data
distribution.

RQ2: What prerequisites must be fulfilled to ensure that the soft-
ware measurement model delivers significant information?

During the selection of metrics we have to pay attention to certain factors
which influence the success of a measurement model. Some of these factors
relate to the selection and combination of the metrics in a measurement
model. These factors can be described in the form of pitfalls by the names
of Metric in a Bubble, Treating the Metric, One-Track Metric and Metrics
Galore.

Metric in a Bubble describes a situation in which the stakeholders of a
measurement model aren’t able to determine what a metric score means.
Treating the Metric occurs when the people that are being measured alter
their behavior just to score well on a metric without really satisfying the
business goal. Every business goal consists of several dimensions. The mea-
surement model won’t support an improvement with respect to the business
goals if you fail to adequately cover all dimensions(One-Track Metric). But
at the same time the measurement model must prevent the Metrics Galore.
In this situation stakeholders of the measurement model get overwhelmed
with a huge amount of metrics. This bears the risks that the measurement
model is ignored entirely.

Further prerequisites are that the data collection for the selected metrics
can be automated as far as possible and that the presentation of the metrics
enables a root-cause analysis.

RQ3: What are the measurement goals in an agile software devel-
opment process?

The goal of software development is to ensure high quality software. Software
quality is associated on the one hand with the quality of the software products
and with the quality of the development process on the other hand.

The quality of the software products can be further broken down into
their functional and structural quality. The functional or external quality

58

Chapter 6 Conclusion and Future Work

is the quality which is perceived on the outside of a software product. The
functional completeness and correctness constitute the functional quality and
determine the value which a user receives from a software product. The
structural or internal quality is related to the source code of the software
products. The higher the structural quality of a software product, the easier
the software product can be maintained.

Process quality is connected to the goal of speeding up the develop-
ment process and establishing a viable platform for future software enhance-
ments [25]. The higher the process quality, the higher is the ability to react
to changes in technology or user requirements in a timely manner.

RQ4: How can the metrics be effectively incorporated in an agile
software development process?

Using a measurement model, software quality can be reviewed at the end
of every iteration. In the review the development team should analyze the
performance of the past iteration, identify potential impediments to a better
performance and plan actions to remove these impediments in order to im-
prove future performance. Moreover, the software quality model can be used
in regular intervals to assess the performance trend of a team to see whether
the taken actions led to a performance improvement in the long perspective
or not. Managers can also use this model to compare the performance of
the development teams. Information gained from the team comparison can,
for example, be used to change the composition of the development teams,
decide on investments in staff training or knowledge transfer.

RQ5: How useful is the proposed software measurement model in
an agile environment?

We have conducted a user feedback interview, after the application of the
software quality model to the business context of this study. The result of
the feedback suggests that the software quality model and the related metrics
are applicable to the business context. Some extension and adjustment in
the metrics of the model were mentioned, but the respondents deemed that
the model enables a fair assessment of software quality. The user feedback
interviews have to be repeated with a higher amount of respondents in order
to confirm the results.

From the feedback we also conclude that the prerequisites for a successful
introduction of the software quality model are fulfilled and therefore the soft-
ware quality model is applicable to other software development environments.
Some adjustment on the metric level may be necessary to accommodate the

59

Chapter 6 Conclusion and Future Work

special circumstances in a different development environment. The flexibility
of the model enables us to make the required changes.

Moreover, do we need to recalibrate the rating system of the measurement
model with more data to receive more viable metric thresholds.

6.2 Contributions

In this section we discuss the contributions of this study. We defined three
contributions: A framework for the definition of a software measurement
program, definition of a model to measure the software quality of an agile
development process and performing a case study to analyze the applicability
of the model in practice. These contributions are explained in more detail in
the following list:

A framework for the definition of a software measurement pro-
gram. We have shown how a measurement model can be defined in
a top-down fashion based on the GQM approach. For the choice of
the metrics we have provided a guideline concerning the combination
of metrics which help to ensure the successful implementation and in-
troduction of a measurement program.

Definition of a model to measure the software quality of a agile
development process.

In this study we have used the framework for the definition of a soft-
ware measurement program to establish a model to measure the soft-
ware quality in an agile software development environment. The GQM
approach which was used to define the software quality model together
with the rating system facilitates the interpretation of the metrics
scores. The facilitated interpretability of the metric scores prevents
the undesirable consequences of the Metric in a Buble and Treating
the Metric. The software quality model contains the break down of
software quality into sub-characteristics which can be measured using
the proposed metrics and the corresponding rating system. During the
selection of the metrics, we paid attention not to cover only one aspect
of software quality (One-Track Metric) and at the same not to include
too many metrics (Metrics Galore). The flexibility to add or remove
characteristics and metrics to the model ensures that we can adjust
the model to the specific needs of a software development environment.
All the afore mentioned factors increase the probability of a successful
application of the software quality model.

60

Chapter 6 Conclusion and Future Work

Performing a case study to analyze the applicability of the model
in practice. We conducted a case study by applying the software qual-
ity model to the business context of this study. The case study showed
how useful information can be retrieved from the model. The infor-
mation from the model was used to assess the team performance for a
particular sprint, analyze the performance trend of a development team
and compare the performance of different development teams. More-
over, we elaborated how this information can be utilized to identify
impairments of the product and process quality. The identified im-
pairments serve as a starting point for a team to improve their future
performance.

6.3 Threats to Validity

During the course of this study we have identified factors which can po-
tentially weaken the validity of the information that is retrieved from the
software quality model and limit the generalizability of the software quality
to other environments. The discussion of the validity threats will be sep-
arated into Construct Validity, Internal Validity and External Validity as
proposed by Perry et al [36].

6.3.1 Construct Validity

Does the proposed measurement model accurately model software quality in
a software development environment?

Software Quality Measurement

The software quality model was established by using the GQM approach.
The aspects which are attributed to software quality were identified from
the literature. The software quality model concentrates on the most impor-
tant aspects which were identified. During the selection we paid attention
to the prerequisites for software metrics described in Section 3.1. This way
we guarantee a fair assessment of software quality and at the same prevent
that the users of the model get overwhelmed by the amount of available met-
rics. Nevertheless, the model is not complete. Additional measurements can
be integrated into the model, once the software quality is successfully inte-
grated into the development process and the development team has become
acquainted with using the software quality to improve their performance. A
potential extension of the structural quality aspects with metrics for test code

61

Chapter 6 Conclusion and Future Work

quality was already mentioned during the user feedback. The flexibility of
the model can be seen as strength of the model because no one environment
completely equals another. Through the ability to add and remove metrics
we can adjust the model to the specific needs of an environment.

Quality of Data

Some of the metrics from the software quality model were calculated using
data from ITS. The accuracy of the data in the ITS is dependent on the
usage of the ITS. Some metrics, like the cycle time, relate to the issue life
cycle. In some cases issues (user stories) skipped over some stages in the life
cycle. For example, they didn’t enter the Ready for Deployment state but
were directly transferred to the Closed state. This could be due to a mistake
of the ITS user but can also occur intentionally. An implementation of a user
story can happen alongside with the deployment. For example, the change of
a configuration in a software doesn’t require an additional deployment step.
Implementing changes in the configuration and saving them is equivalent
with their deployment. This is the reason why we took the date when the
issue entered the Closed date for the calculation of the cycle time.

Furthermore, it is important to note that we only analyzed the source code
which was written in C#. For example, JavaScript was not considered in the
source code metrics. Thus, software that which has a significant amount
of program logic implemented in JavaScript, scores better in the structural
quality than if that logic was implemented in C#. A detailed analysis showed
that most JavaScript code consists of standard libraries which were not devel-
oped by AUTOonline. Most projects use a negligible amount of JavaScript
code that was implemented at AUTOonline. The only two projects that use a
significant amount of internally developed JavaScript is Project 4 and Project
7. Project 4 contains 10916 lines of JavaScript code and Project 7 contains
5710 lines of JavaScript code. This circumstance has to be considered when
comparing the maintainability of the software products.

6.3.2 Internal Validity

Can changes in the dependent variables be safely attributed to changes in
the independent variables?

Confounding Factors

In the metric calculation of software quality we account for certain factors,
like the sprint length. The reason for this is that not sprints have the same

62

Chapter 6 Conclusion and Future Work

amount of working days. The length of a sprint clearly has an effect on the
amount of user story points which a development team can accomplish dur-
ing a sprint. By normalizing the metrics with the sprint length, we achieve
a better comparability between sprints. But in order to draw the right con-
clusion from the measurement data we need to consider other factors. An
important factor to regard is change in the development staff. Sometimes a
development team accomplishes less user story points during a sprint, if a
member of the team is replaced by new developer. The number of developers
on the team stayed the same but the team needed to spent time for the train-
ing of the new team member which leaves less time for the implementation
of user stories. Therefore, the development team isn’t directly responsible
for the decrease in the performance trend.

When the software quality model is used to compare the performance of
different development teams, we need to consider another factor. This factor
is the experience of a development team. For example, a highly experienced
team is able to accomplish more user story points than a lesser experienced
team.

Yet another factor which influences the comparability of development
teams is the difference in user story point estimations. A team which tends
to overestimate the complexity of user story, will implement more user story
points than a team which underestimates the complexity.

Low Amount of Data Points in Benchmark

For the calibration of the metric thresholds we used the data for 6 sprints of
two development teams which were taken from AUTOonline. This gives us
12 data points in the benchmark for the metrics which are directly calculated
for the sprint level, like the velocity metric. The low amount of data points
has the consequence that outliers have greater effect on the selection of the
metric thresholds. Consequently, the thresholds may change considerably
when the model is recalibrated with additional data points.

6.3.3 External Validity

Can the study results be generalized to settings outside the study?

Generalization to other Agile Methodologies

The software quality model uses terminology of the Scrum methodology in
the definition of the metrics. Although, these terms may be unique to Scrum
environments, we can find the concept behind them in all agile environments.

63

Chapter 6 Conclusion and Future Work

The term sprint is a special Scrum term to describe the iteration concept in a
software development process. Some of the agile methodologies don’t explic-
itly include the iteration concept, like Kanban, but they still don’t neglect
the concept. The 7th Annual State of Agile Development Survey conducted
by VersionOne with 4,048 respondents showed that 75% use iteration plan-
ning [41].

The term user story is also used in other agile methodologies, like Extreme
Programming, but we could also replace it with the term user requirement.
The calculation of the development capacity (velocity) in the software quality
is based on story points. Story points are unique to Scrum where they are
used to assign complexity estimations. Other agile environments use ideal
programming days or hours as a unit for estimations. If the software quality
model is applied to these environments, the cycle time metric can use the
ideal programming days as normalizing factor instead of story points.

Hence, when the software quality model is applied to other agile envi-
ronment the general structure of the model can be adopted but some of the
metric’s calculation need to be adjusted.

Generalization to other Development Environments

The functional and process quality metrics were derived from the research
based on the ITS which is used in the business context. The existence of an
ITS is therefore a prerequisite for using the functional and process metrics
from the software quality model. Furthermore, the enhancement time ratio
uses the logged hours of an ITS issue as a normalizing factor. This was done
to analyze the actual effort that was expended on user stories, bugs and
tasks. In an environment in which this information is not available or costly
to retrieve we can replace it with the enhancement ratio metric.

6.4 Future Work

In this section we will discuss how the research of this study can be continued.

Model Extensions

We already indicated that the software quality model enables a fair assess-
ment of the software quality by considering the most important aspects of
software quality. But the model can be extended with additional metrics to
accommodate additional aspects of software quality.

The structural quality assessment concentrates on a subset of the main-
tainability characteristics which are included in the SIG Maintainability

64

Chapter 6 Conclusion and Future Work

Model and ISO 25010. Additional metrics can be integrated to analyze ad-
ditional characteristics, like Modularity and Reusability, as well as to gain a
more profound insight into the characteristics of the software maintainability
that are already present in the model. A starting point for the extension was
already identified in the user feedback interview. One respondent mentioned
that the assessment of test coverage was missing in the model. This aspect
relates to the Testability characteristic of software maintainability. For this
purpose, our research can be joined with the research of Athanasiou about
the construction of a test code quality model [7].

Further metrics could be integrated to complement functional and process
quality. For example, the functional quality characteristic could be extended
with a metric to measure the amount of bugs left in the product backlogs at
the end of a sprint. The process quality model could then be extended with a
metrics which calculates how many percent of the bugs from a backlog were
fixed in a sprint. These last two examples were proposals coming from the
respondents in the user feedback.

Data Set Extension and Correlation Testing

The calibration of some metric thresholds was based on a small amount
of data points in the benchmark. Data points of additional sprints should
be collected and integrated into the benchmark. Consequently, the metric
thresholds should be recalibrated. The reliability of metric thresholds can be
increased this way. In a next step correlation tests can be executed. In the
correlation tests it would be interesting to analyze correlations between the
different software quality sub-characteristics. For example, the correlation of
structural quality with process quality or the correlation of process quality
and functional quality.

Repeating User Feedback

The feedback interviews should be repeated with additional respondents to
confirm the results from the user feedback presented in this study. It would
also be interesting to fully integrate the model into the development process
and then reevaluate the applicability of the software quality model. The cur-
rent evaluation was based on the estimations of the respondents concerning
the ease of use. If the respondents have actually used the model in the daily
operations, they could give a more profound assessment.

65

Chapter 6 Conclusion and Future Work

Linking Measurement Goals to Throughput Accounting

In the beginning of the study we discussed the linkage between the business
goals and the software measurement goals. The software quality model con-
centrates on the intangibles which the software quality adds to the business
value. Further research can extend the link to the tangibles by incorporating
the monetary value (throughput) which the implementation of a particular
user requirement adds to the business value.

66

Bibliography

[1] ACM. Computing degrees & careers. http://computingcareers.acm.
org/?page_id=12, 2006. Retrieved: 16 March 2013.

[2] Agile Alliance. Guide to agile practices. http://guide.

agilealliance.org/.

[3] Scrum Alliance. Scrum’s three roles. http://www.scrumalliance.org/
pages/scrum_roles. Retrieved: 11 October 2012.

[4] T L Alves, C Ypma, and J Visser. Deriving metric thresholds from
benchmark data, 2010.

[5] D. J. Anderson. Agile management for software engineering: applying
the theory of constraints for business results. Prentice Hall, 2004.

[6] Tony Aquila. Communicate your vision. http://www.nyse.com/pdfs/
ForStakeholders.pdf, 2008. Retrieved: April 2013.

[7] Dimitrios Athanasiou. Constructing a test code quality model and em-
pirically assessing its relation to issue handling performance. Master’s
thesis, Delft University of Technology, Netherlands, 2011.

[8] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal
question metric approach. In Encyclopedia of Software Engineering.
Wiley, 1994.

[9] V.R. Basili, M. Lindvall, M. Regardie, C. Seaman, J. Heidrich, J. Munch,
D. Rombach, and A. Trendowicz. Linking software development and
business strategy through measurement. Computer, 43(4):57 –65, April
2010.

[10] Kent Beck et al. Agile manifesto. http://agilemanifesto.org/

principles.html, 2001. Retrieved: 9 October 2012.

67

http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://guide.agilealliance.org/
http://guide.agilealliance.org/
http://www.scrumalliance.org/pages/scrum_roles
http://www.scrumalliance.org/pages/scrum_roles
http://www.nyse.com/pdfs/ForStakeholders.pdf
http://www.nyse.com/pdfs/ForStakeholders.pdf
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html

Chapter 6 BIBLIOGRAPHY

[11] Kent Beck et al. Principles behind the agile manifesto. http://

agilemanifesto.org/, 2001. Retrieved: 9 October 2012.

[12] Dennis Bijlsma. Indicators of issue handling efficiency and their relation
to software maintainability. Master’s thesis, University of Amsterdam,
Netherlands, 2010.

[13] Dennis Bijlsma, MiguelAlexandre Ferreira, Bart Luijten, and Joost
Visser. Faster issue resolution with higher technical quality of software.
Software Quality Journal, 20(2):265–285, 2012.

[14] Eric Bouwers, Joost Visser, and Arie van Deursen. Getting what you
measure. ACMQUEUE, 2012.

[15] David Chappell. The business value of software quality. http://www.

davidchappell.com/writing/white_papers.php.

[16] David Chappell. The three aspects of software quality: Functional,
structural, and process. http://www.davidchappell.com/writing/

white_papers.php.

[17] W. Bruce Chew. Basic operations self-instructional workbook. http:

//hbswk.hbs.edu/archive/1460.html, April 2000. Retrieved: 10 Oc-
tober 2012.

[18] Thomas Corbett. Making better decisions. CMA Management, 73(9):33,
1999.

[19] Norman E. Fenton and Martin Neil. Software metrics: roadmap. In
Proceedings of the Conference on The Future of Software Engineering,
ICSE ’00, pages 357–370, New York, NY, USA, 2000. ACM.

[20] Martin Fowler. The new methodology. http://martinfowler.com/

articles/newMethodology.html. Retrieved: 10 September 2012.

[21] Martin Fowler. Continuous integration. http://www.martinfowler.

com/articles/continuousIntegration.html, May 2006. Retrieved:
April 2013.

[22] E.M. Goldratt. The Haystack Syndrome: Sifting Information Out of the
Data Ocean. North River Press, 2006.

[23] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A Practical Model for
Measuring Maintainability. In International Conference on the Quality
of Information and Communications Technology, pages 30–39, 2007.

68

http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.davidchappell.com/writing/white_papers.php
http://www.davidchappell.com/writing/white_papers.php
http://www.davidchappell.com/writing/white_papers.php
http://www.davidchappell.com/writing/white_papers.php
http://hbswk.hbs.edu/archive/1460.html
http://hbswk.hbs.edu/archive/1460.html
http://martinfowler.com/articles/newMethodology.html
http://martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

Chapter 6 BIBLIOGRAPHY

[24] Jim Highsmith. What is agile software development? CrossTalk,
15(10):32, October 2002.

[25] Jim Highsmith. Beyond scope, schedule, and cost:
The agile triangle. http://jimhighsmith.com/

beyond-scope-schedule-and-cost-the-agile-triangle/, Novem-
ber 2010. Retrieved: 24 October 2012.

[26] Jim Highsmith. Velocity is killing agility! http://jimhighsmith.

com/velocity-is-killing-agility/, November 2011. Retrieved: 10
October 2012.

[27] Jim Highsmith. Determining business value. http://jimhighsmith.

com/determining-business-value/, January 2013. Retrieved: 24
February 2013.

[28] ISO. Iso/iec 25010: Systems and software engineering systems and soft-
ware quality requirements and evaluation (square) system and software
quality models, March 2011.

[29] C. Jones. Software defect-removal efficiency. Computer, 29(4):94–95,
Apr.

[30] Corey Ladas. Lead time vs cycle time. http://leanandkanban.

wordpress.com/2009/04/18/lead-time-vs-cycle-time/, 2009. Re-
trieved: 3 April 2013.

[31] Klaus Leopold. Das etwas andere kochrezept. http://www.heise.de/

developer/artikel/Software-Kanban-im-Einsatz-1235465.html,
2011. Retrieved: December 2012.

[32] Eliyahu M. Goldratt. What is this thing called Theory of Constraints
an how should it be implemented? The North River Press, 1990.

[33] William F. Nazzaro and Charles Suscheck. New to user stories? http:

//www.scrumalliance.org/articles/169-new-to-user-stories,
April 2010. Retrieved: 11 October 2012.

[34] B.E. Needles, M. Powers, and S.V. Crosson. Principles of accounting.
Houghton Mifflin, 2008.

[35] Frank Niessink and Hans van Vliet. Measurement program success fac-
tors revisited. Information and Software Technology, 43(10):617 – 628,
2001.

69

http://jimhighsmith.com/beyond-scope-schedule-and-cost-the-agile-triangle/
http://jimhighsmith.com/beyond-scope-schedule-and-cost-the-agile-triangle/
http://jimhighsmith.com/velocity-is-killing-agility/
http://jimhighsmith.com/velocity-is-killing-agility/
http://jimhighsmith.com/determining-business-value/
http://jimhighsmith.com/determining-business-value/
http://leanandkanban.wordpress.com/2009/04/18/lead-time-vs-cycle-time/
http://leanandkanban.wordpress.com/2009/04/18/lead-time-vs-cycle-time/
http://www.heise.de/developer/artikel/Software-Kanban-im-Einsatz-1235465.html
http://www.heise.de/developer/artikel/Software-Kanban-im-Einsatz-1235465.html
http://www.scrumalliance.org/articles/169-new-to-user-stories
http://www.scrumalliance.org/articles/169-new-to-user-stories

Chapter 6 BIBLIOGRAPHY

[36] Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. Empirical
studies of software engineering: a roadmap. In In Proc. of the conference
on The future of Software engineering, 2000.

[37] Roger S. Pressman. Software Engineering: A Practioner’s Approach.
McGraw-Hill, 2005.

[38] C.K. Riemenschneider, B.C. Hardgrave, and F.D. Davis. Explain-
ing software developer acceptance of methodologies: a comparison of
five theoretical models. Software Engineering, IEEE Transactions on,
28(12):1135–1145, 2002.

[39] Goldratt UK. Throughput accounting. http://www.goldratt.co.uk/

resources/throughput_accounting/index.html. Retrieved: April
2013.

[40] R. Van Solingen and E. Berghout. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill, 1999.

[41] VersionOne. 7th annual state of agile develop-
ment survey. http://www.versionone.com/pdf/

7th-Annual-State-of-Agile-Development-Survey.pdf, 2013.
Retrieved: May 2013.

[42] Joost Visser. How does your software measure up?, 2012.

[43] Bill Wake. Invest in good stories, and smart tasks. http://xp123.com/
articles/invest-in-good-stories-and-smart-tasks/, August
2003. Retrieved: 11 October 2012.

70

http://www.goldratt.co.uk/resources/throughput_accounting/index.html
http://www.goldratt.co.uk/resources/throughput_accounting/index.html
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

Glossary

Backlog grooming: Backlog grooming is an activity to clean up the prod-
uct backlog. In the process of backlog grooming new issues are created
according to newly identified requirements. Moreover, issues from the
issue tracking system are revisited. Issues that have become obsolete
are removed. Effort estimates and priorities are added or updated if
necessary.

Continuous Integration “Continuous Integration is a software develop-
ment practice where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to multiple inte-
grations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible” [21].

Customer Value: Customer value is the value received by the end-customer
of a product or service.

Product Owner: The product owner (PO) is responsible for the business
value of a project. The PO decides in cooperation with the customer
what will be built.

Refactoring: Refactoring is a technique for improving the structure of ex-
isting source code without altering the external behavior.

Scrum Master: “The Scrum Master is a facilitative team leader who en-
sures that the team adheres to its chosen process and removes blocking
issues” [3].

Sprint: A sprint is an iteration of work in agile software development during
which an increment of a software product is implemented.

Story point: Is an unit to represent the complexity of a user story. In the
planning meeting, the development team assigns story points to a user
story to show how complex it is to implement this particular user story.

71

Chapter 6 BIBLIOGRAPHY

User story: “User stories are actually narrative texts that describe an in-
teraction of the user and the system, focusing on the value a user gains
from the system” [33]. Wake has created the acronym INVEST to de-
scribe the characteristics of a good user story [43]. Wake’s definitions
for the INVEST attributes are as follows:

Independent Stories should be independent from each other, so that
they can be scheduled and implemented in any order.

N egotiable A story captures the essence, not the details. The details
will be worked out by the development team in cooperation with
the customer.

V aluable A story needs to provide value to the customer.

Estimable A story needs to contain the information required to pri-
oritize and schedule the story.

Small A story should be small as possible to make the story’s scope
palpable and to make estimations easier.

Testable Acceptance criteria help understand the goal of the user
story.

Variable Cost: “A variable cost is a cost that changes in direct propor-
tion to a change in productive output (or some other measure of vol-
ume” [34].

Velocity: “At the end of each iteration, the team adds up effort estimates
associated with user stories that were completed during that iteration.
This total is called velocity” [2].

72

Appendix A

Software Quality Model (GQM)

73

74

Appendix B

Feedback Questionnaire

75

76

77

	Contents
	Introduction
	Problem Statement
	Research Questions
	Research Context
	Research Method
	Thesis Outline

	Background
	Agile Methodologies
	Scrum
	Issue Tracking Systems

	Constructing a Software Measurement Model
	Prerequisites for Software Metrics
	Approach to Define a Software Measurement Model
	Linking Business Goals To Measurement Goals
	Method to Calibrate Metric Thresholds

	Software Quality Model for Agile Environments
	Overview
	Goals
	Questions
	Metrics

	Evaluation of the Software Quality Model
	Model Calibration
	Model Application
	Evaluation of Sprint Performance
	Tracking of Team Performance
	Team Comparison

	Model Evaluation
	User Feedback Questionnaire
	Results

	Conclusion and Future Work
	Conclusions
	Contributions
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Future Work

	Bibliography
	Glossary
	Software Quality Model (GQM)
	Feedback Questionnaire

