
Radboud University Nijmegen

Kerckhoffs Institute

Master Thesis

High-throughput implementations
of lightweight ciphers in the AVR

ATtiny architecture.

Author:
Kostas
Papagiannopoulos

Supervisors:
Dr. Peter Schwabe

Dr. Lejla Batina

November 18, 2013

1

Contents

1 Introduction 3
1.1 Lightweight ciphers . 3
1.2 AVR ATtiny architecture . 5

2 The PRESENT cipher 9
2.1 Introduction . 9
2.2 Implementation motivation 12
2.3 Lookup tables for the PRESENT cipher 14
2.4 The bitslicing technique . 17
2.5 Bitslicing the PRESENT cipher 20

2.5.1 Substitution layer under bitslicing 20
2.5.2 Efficient software implementation of boolean functions 22
2.5.3 Permutation layer under bitslicing 26
2.5.4 Key precomputation and update under bitslicing . . . 28
2.5.5 Key XORing under bitslicing 30

2.6 Performance . 32

3 The KATAN cipher 36
3.1 Introduction . 36
3.2 Implementation motivation 38
3.3 Implementing KATAN cipher 39

3.3.1 Key precomputation of the KATAN cipher 39
3.3.2 Parallel bit operations on fa, fb non-linear functions . 40

3.4 Performance . 43

4 PRINCE cipher 45
4.1 Introduction . 45
4.2 Implementation motivation 47
4.3 Nibble-slicing the PRINCE cipher 47

5 Conclusions 51

2

1 Introduction

During the recent years, our society experienced large changes in the IT
landscape. Starting from the development of wireless connectivity and em-
bedded systems, we have observed an extensive deployment of tiny comput-
ing devices in our environment. Mundane, everyday objects transform into
sophisticated appliances, enhanced with communication and computation
capabilities. Ubiquitous computing is gradually becoming a reality and re-
searchers have already identified a wide range of security and privacy risks
stemming from it.
In this new fully-interconnected, always-online environment, we rely heav-
ily on a huge number of daily transactions that are carried over a large
distributed infrastructure and can be security-critical or privacy-related.
RFID tags on commercial products, cardiac pacemakers, fire-detecting sen-
sor nodes, traffic jam detectors and vehicular ad-hoc communication systems
have one thing in common: they need to establish a secure and privacy-
friendly modus operandi, under a particularly restricted environment (e.g.
limited processing capabilities, low energy consumption, demanding network
protocols).
To provide sufficient security in such a setting, we need security primitives
that have a small footprint (low gate number and construction complexity),
reduced power consumption (since we often rely on a limited battery or on
an external electromagnetic field to supply the required energy) and suffi-
cient speed (to be able to communicate in real time).
The new pervasive computing requirements, in combination with the lack
of a suitable candidate (AES is usually too expensive, despite various ap-
proaches that have been proposed to reduce the costs of hardware and soft-
ware implementations [41]), has led researchers to establish new ciphers
that are tailor-made for pervasive computing and are often referred to as
lightweight ciphers.

1.1 Lightweight ciphers

Lightweight cryptographic primitives add a new dimension in cryptographic
primitive construction; hardware cost becomes now an important design ele-
ment. Ciphers still need to address cryptographic security (attack resilience)
but they must not ignore the hardware implementation cost.
These ciphers have drawn considerable attention during the recent years.
Among the best studied algorithms are the block ciphers CLEFIA [57],
Hight [37], KATAN, KTAN-TAN [15], Klein [30], mCrypton [46], LED [33],

3

Piccolo [56], PRESENT [10], NEOKEON citeneokeon, the stream ciphers
Grain [34], Mickey [6], and Trivium [16] and more recently lightweight hash
functions such as SPONGENT [9], PHOTON [32] and QUARK [5].
It is of particular interest to point out that the above-mentioned primi-
tives present several similarities and differences in the way their primary
components are constructed. For instance, KATAN designers attempted a
minimalistic design (inspired by stream ciphers) resulting in hardware im-
plementations that are extremely low in gate count, yet not particularly
fast. The PRESENT designers opted for an Substitution-Permutation (SP)
structure that can achieve fairly low gate count but also scalability with
respect to hardware performance and they provide us with a gate number
vs. speed tradeoff. More recently, a new class of ciphers emerged, that of
high-speed hardware ciphers like PRINCE [12], which attempts to include
the low execution latency parameter into cipher construction.
In order to address those three different hardware-related goals (security,
size, speed, see Figure 1), researchers proposed several constructs with dif-
ferent capabilities that either combine features or attempt to maximize spe-
cific goals.

Figure 1: The three goals that affect the design of cryptographic primi-
tives. High security relates to traditional cryptography, low area/power to
lightweight cryptography and high speed to low-latency goals.

To complicate matters even further, we point out that all those crypto-
enabled hardware devices often need to communicate with components that
run software and thus, we can introduce the software implementation di-
mension in our discussion. Unfortunately, hardware-related properties such
as the speed or size of a cipher developed with hardware implementations in

4

mind do not automatically or conclusively translate to software implementa-
tion features. In fact, we have observed some hardware-oriented ciphers to be
substantially slower in software than AES. Design choices that achieve hard-
ware performance, like 4-bit-based diffusion matrix components in PRINCE
do not inherently imply software performance. For instance, using 8-bit-
based diffusion matrix components in KLEIN can achieve better software
performance due to the instruction capabilities of 8-bit microcontrollers. In
addition, the extent to which we can construct fast lookup tables for the
cipher is directly linked to software performance, despite the fact that it is
not very important when implementing ASICs1.

Our contribution

This work examines thoroughly two lightweight, hardware-oriented block
ciphers (PRESENT and KATAN) from a software perspective (chapters 2,
3). Specifically, we construct software implementations of these two ciphers
on AVR ATtiny microcontrollers that achieve higher throughput than the
current state of the art. In addition, under the same perspective, we exam-
ine the structure of the fairly new PRINCE cipher (chapter 4) and establish
a fast implementation of the core SP PRINCE network (excluding matrix-
based diffusion from our analysis). We conclude in chapter 5.

1.2 AVR ATtiny architecture

A very common target for lightweight cipher implementations is the AVR
architecture due to its small cost, reasonable performance and high versatil-
ity. Thus, in the current section, we provide the reader with an overview of
the AVR architecture and its instruction set, analyzing specific focal points
that are important in our work scope.
The AVR is a modified Harvard architecture2 8-bit RISC3 single chip micro-
controller which was first developed by Atmel in 1996. There exist several
classes of AVR microcontrollers, namely ATtiny, ATmega, ATXmega, AVR
with FPGA and more recently, even 32-bit oriented AVR devices. Our im-
plementations target the AVR ATtiny class, due to its particularly low cost
which can assist and enable secure ubiquitous computing in a large range of
applications via efficient implementation of lightweight ciphers.

1Application-specific integrated circuits.
2A computer architecture with physically separate storage and signal pathways for

instructions and data.
3Reduced instruction set computing

5

The AVR ATtiny architecture [22, 21] contains several components, most
importantly:

• ALU, the arithmetic-logic unit.

• Flash memory storage.

• SRAM, the static random-access memory.

• Input/output memory

• EEPROM, the electrically erasable programmable read-only memory.
Due to its low speed it is not of implementation interest in this work.

• 32 internal general-purpose registers.

A schematic giving an overview of the ATtiny basic blocks is given in the
Figure 2.

Figure 2: The main components of an AVR ATtiny microcontroller.

6

ATtiny instruction fetch

As mentioned, in order to maximize performance and parallelism, the AVR
uses a Harvard architecture with separate memories and buses for program
and data. Instructions in the program memory (reprogrammable flash mem-
ory) are executed with a two-stage pipelining, i.e., while one instruction is
being executed, the next instruction is pre-fetched from the program mem-
ory. This concept enables instructions to be executed in every clock cycle,
since normally fetching from flash memory is much slower.

ATtiny ALU

The ATtiny ALU register file contains 32 8-bit general-purpose registers
(r0. . . r31) with a single-clock-cycle access time. This allows single-cycle
arithmetic logic unit operation with two operands, i.e. instructions have this
form: operator registerA, registerB.Computation-wise, two operands
are output from the register file, the operation is executed, and the result
is stored back in the register file, all within one cycle. Most common logic
and arithmetic operations can be performed in the AVR ATtiny architecture
(including operations between a register and a constant) with the notable
exception of the multiplication operation.
Six of the 32 registers (r26. . . r31) can be used as three 16-bit indirect ad-
dress register pointers for data-space addressing enabling efficient address
calculations that pertain to SRAM access. These added function registers
are the 16-bit X (r26,r27), Y (r28,r29), and Z (r30,r31), where only the
Z register pertains to flash memory access.
A flags register is also included and contains information about the result
of the most recently executed arithmetic instruction (such information is
usually used for altering program flow in order to perform conditional op-
erations). Of particular interest to this work is the status register flag T,
used for bit-copy storage. The bit copy instruction bld and bit storage in-
struction bst use the T-bit as source or destination for the operand bit. A
bit from a register in the register file can be copied into T by the bld in-
struction, and a bit in T can be copied into a bit in a register in the register
file by the bst instruction, effectively generating bit-extract and bit-deposit
operations that can permute bits.
Moreover, ATtiny supports IO with an global-interrupt-enable bit in the
status register for flexibility and also provides us with a stack memory space
that uses SRAM and enables subroutine calls.

7

AVR memories

The ATtiny25/45/85 microporcessor models contain 2/4/8KB of on-chip
reprogrammable flash memory for program storage. Since all AVR instruc-
tions are 16 or 32 bits wide, the flash memory is organized as 1024/2048/4096
× 16 bits. It is of special interest to point out that constant tables are often
allocated within the entire program-memory address space and fetched via
the lpm command, which costs 3 clock cycles to execute.
Moving on to SRAM, the lower 224/352/607 data memory locations (bytes)
address both the register file, the I/O memory and the internal data SRAM.
The first 32 locations address the register file, the next 64 locations the
standard I/O memory, and the last 128/256/512 locations address the in-
ternal data SRAM. We note that the SRAM is used for easy access of
relatively small amount of information compared to flash memory; if cer-
tain data fits into SRAM, it can be stored there on-the-fly and be re-used,
altered or deleted in the future. Several instructions access the SRAM
(ld,st,ldd,lds,sts). They all manage access with the same time frame
(2 clock cycles).
Finally, the ATtiny25/45/85 contains 128/256/512 bytes of data EEPROM
memory, which is slower compared to SRAM and flash memory and will not
be examined in our current line of work.

8

2 The PRESENT cipher

The first section of this work aims at suggesting a new bitsliced PRESENT
cipher implementation that achieves high throughput performance, namely
2.9× the throughput of the fastest non-bitsliced implementation (Papa-
giannopoulos, Verstegen [50, 49]) and 2.1× the throughput of the fastest
bitsliced implementation to our knowledge (Rauzy, Guilley, Najm [53]).
We commence by introducing the PRESENT cipher and its components and
we continue by providing sufficient motivation towards a bitsliced approach
(sections 2.1,2.2,2.4). We provide extensive insight to all PRESENT com-
ponents inside the bitsliced implementation (section 2.5) and conclude with
the performance metrics (section 2.6).
We use the following methodology: we offer a step-by-step examination and
rebuttal of implementation choices, reaching the choice that we deem op-
timal. Note that this method is intuition-based and does not guarantee
optimality in the strict sense.

2.1 Introduction

PRESENT [10] is an ultra-lightweight, 64-bit symmetric block cipher, us-
ing 80-bit or 128-bit keys. It is based on a substitution/permutation net-
work and it is named as a reference to Serpent [4] due to the similarity
between the constructs. As of 2012, PRESENT (among other ciphers) was
adopted by ISO as a standard for a lightweight block cipher (ISO/IEC 29192-
2:2012 [2]). The full algorithm has so far been resistant to attempts at
cryptanalysis, although the most successful attack has shown that up to 15
of its 31 rounds can be broken with 235.6 plaintext-ciphertext pairs in 220

operations [3, 17, 48].

Algorithm outline

PRESENT uses exclusive-or as its round key operation, a 4-bit substitu-
tion layer, a bit permutation network with a 4-bit period, over 31 rounds
and a final round key operation. Key scheduling is a combination of bit rota-
tion, S-box application and exclusive-or with the round counter. Constructs
found in PRESENT are also encountered in SPONGENT [9], in hash func-
tion constructs based on block ciphers as proposed by Hirose [11, 35, 36]
(H-PRESENT) and in the similar Maya [28] or generalized SMALLPRE-
SENT [42]. Thus the optimizations presented here can also be of interest
with respect to the implementations of these ciphers. In our approach, we

9

have implemented PRESENT for the recommended 80-bit key size on AVR
in bitsliced mode, attempting to achieve increased throughput.
The cipher’s key register is supplied with the 80-bit cipher key and in ev-
ery encryption round the first 64 bits of the 80-bit key register form the
round key. To encrypt a single 64-bit block, during each encryption round,
PRESENT applies an exclusive-or (XOR) with the current round key fol-
lowed by a substitution and a permutation layer. The substitution layer
applies nibble-wise (4-bit) S-boxes to the state, while the permutation layer
re-arranges the bits in the state following a 4-bit period. Key scheduling is
done by rotating the key register 61 bit positions to the left, applying the
S-Box to the top nibble of the key register and XORing bits 15 through 19
with the round counter. There is a total of 31 such rounds and finally the
round key is XORed one last time (see also Figure 3).

Figure 3: Schematic of the PRESENT cipher. It consists of 31 rounds,
including XOR round key application, nibble-wise substitution, bit position
permutation and key update.

10

Cipher components

addRoundKey. Given round key Ki = ki63, k
i
62, . . . , k

i
0, i ∈ {1, 2, . . . , 30},

round number i and current state b63, b62, . . . , b0 the add round key compo-
nent consists of the following XOR operation:

bj = bj ⊕ kij , ∀j ∈ {0, 1, . . . , 63}

sBoxLayer. The S-box used in PRESENT is a 4-bit to 4-bit S-box S:
GF (2)4 → GF (2)4. We display the substitution rules in the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 1: The original S-Box of the PRESENT cipher.

pLayer. The bit permutation used in present is given by by table 2. Bit i
of state is moved to bit position P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 2: PRESENT bit permutation table.

keySchedule. PRESENT can take keys of either 80 or 128 bits, yet our
implementation is focused on 80-bit keys. Note that this does not largely
affect our implementation choices (for 128 bit schedule see Bogdanov et
al. [10], Appendix I). The user-supplied key is stored in a key register K
and represented as k79k78 . . . k0. At round i the 64-bit round key consists
of the 64 leftmost bits of the current contents of register K (namely bits
79, 78, . . . , 16). After extracting the round key, register K is updated below:

1. k79k78 . . . k1k0 = k18k17 . . . k20k19

2. k79k78k77k76 = S[k79k78k77k76]

3. k19k18k17k16k15 = k19k18k17k16k15 ⊕ roundCounter

11

2.2 Implementation motivation

As we have demonstrated in the previous section, the PRESENT cipher
(and most ciphers based on substitution-permutation networks) employ a
permutation layer to achieve cryptographic resistance versus known attacks.
Specifically, PRESENT uses solely a bit permutation operation for the lin-
ear diffusion layer to achieve hardware efficiency, since bit permutations are
simple re-wirings in hardware and increase the area only when the imple-
mentation is taken to the place-and-route step. Thus, it avoids the less
hardware-friendly AES-like diffusion techniques such as the MixColumn op-
eration [20]. The PRESENT permutation layer was crafted to provide re-
sistance to differential cryptanalysis by ensuring that any five-round differ-
ential characteristic of present has a minimum of 10 active S-boxes. This
is achieved with the bit permutation structure described in Figure 4, where
the 16 S-boxes are divided into four groups while maintaining the following
properties: a) the input bits to an S-box come from 4 distinct S-boxes of
the same group, b) the input bits to a group of four S-boxes come from 16
different S-boxes, c) the four output bits from a particular S-box enter four
distinct S-boxes, each belonging to a distinct group of S-boxes and d) the
output bits of S-boxes in distinct groups go to distinct S-boxes (see [10],
Section 5.1). The resulting pattern of the permutation is the following:

For i, j : old, new position,

j = f(i) = 16 · (i mod 4) + (i/4) (1)

Figure 4: PRESENT cipher permutation layer. The layer ensures resistance
vs. differential cryptanalysis by maintaining the afore mentioned properties
a,b,c,d. It is bit-oriented and can be efficiently implemented with hardware
wirings.

12

Having described the distinct hardware characteristics of PRESENT,
we proceed with our motivation towards a software implementation that
takes into account the cipher’s structure. Obviously, we can implement the
permutation layer naively, using in-place rotations, shifts and bitwise logical
operations resulting in a very compact yet inefficient implementation (as
described by Verstegen and Papagiannopoulos [50], Section 4). However,
two factors will largely limit our throughput capabilities.

• The high structural complexity of the permutation layer, stemming
from the design choice to optimize the cipher’s hardware size, while
sufficiently retaining resistance vs. differential cryptanalysis. The
PRESENT bit permutations are efficient hardware wires and not par-
ticularly suited for software, unlike nibble permutations as encountered
in AES and PRINCE shiftRows operations [20, 12].

• The low performance of the AVR architecture when computing per-
mutations naively, i.e. when computing an operation which contains
a large number of shifts or rotations. Specifically, calculating an n-bit
shift, requires n clock cycles in an AVR microcontroller, creating a
performance bottleneck. To overcome this, Hutter and Schwabe [38]
suggested the usage of multiplication instructions in ATmega micro-
controllers, i.e. multiplying by a constant to achieve shifting (costing
2 clock cycles per rotation/shift). However, since we solely focus on
the ATtiny architecture, multiplication instructions are not available,
hence we explore different alternatives.

We also note that there exists ongoing research that attempts to reduce
the computational cost inflicted by software permutations. Permutation as
a diffusion method is widely used in cryptography, thus the need to add
general-purpose permutation instructions to either general-purpose proces-
sors or application-specific cryptographic coprocessors. The desired effect is
that processors are capable of executing cryptographic functions at network
link speeds, or at least with insignificant performance degradation. So far,
permutations were usually examined from the scope of fast processing of
digital multimedia information, using subword-parallel instructions (multi-
media instructions [44, 43]), since multimedia processing required permuta-
tions on subwords of typically 8 bits or 16 bits. However cryptography (e.g.
PRESENT cipher) may require permutations on bit level, tailored for 64-bit
blocks.
Under this motivation, Ruby Lee et al. [45, 55], suggested extension to exist-
ing instruction sets to compute arbitrary n-bit permutations. Unfortunately,

13

we have not encountered such extensions in the AVR ATtiny architecture,
with the exception of the efficient yet narrow-focused AVR DES instruction
(an extension to the AVR ISA consisting of a built-in implementation of the
DES cipher, costing 1 clock cycle per DES round). Still, we maintain that
future effort in the area can result in both fast and compact cipher imple-
mentations, resolving the major cipher implementation hindrance that we
have identified in AVR.
To our knowledge, the only general method to compute bit-level permuta-
tions in AVR is via the bld, bst instructions which load/store one bit a
time from/to a specific register position in conjunction with register flag T,
resulting in 2n clock cycles for an n-bit permutation (similar to the EX-
TRACT/DEPOSIT instructions described by Lee [44, 43]; note that the
traditional approach to EXTRACT/DEPOSIT without bld,bst for direct
bit addressing costs 3n + shift cycles per bit permutation). The resulting
performance for the PRESENT cipher is very efficient memory-wise (no ad-
ditional memory or registers are required) but it amounts to 2 · 64 = 128
clock cycles for a single 64-bit permutation and a total of 31 · 128 = 3968
clock cycles for a full PRESENT encryption, which is subpar compared to
both the existing lookup table approach [50] and to the bitsliced method
presented in this work.

Number of instructions Memory Total cost

mask 3n + shift 0 ca. 12K cc

bld,bst 2n 0 3968cc

Table 3: Instruction-set-based approaches to permutation implementa-
tion. Both techniques implement EXTRACT/DEPOSIT functionality, al-
beit AVR ISA provides bld,bst to increase performance. Memory require-
ments are minimal, yet in section 2.5 we discuss that the total permutation
cost (3rd column) via bld, bst is greater than that of the bitsliced ap-
proach.

2.3 Lookup tables for the PRESENT cipher

There exists a fairly wide spectrum of implementation choices with respect
to latency, throughput and code size. For the PRESENT cipher, the first
attempt to tackle the low performance of ATtiny regarding permutations
was to fully replace them with lookup tables. The naive approach would
be the following: to achieve a fixed permutation of n input bits with one

14

table lookup, we would need a table with 2n entries, each entry being n bits.
For a 64-bit permutation, this method would require 267 bytes, an infeasible
number for high-end systems, let alone AVR microprocessors.
Bishop [8], suggested an alternative method in order to compute permuta-
tion lookup tables for the DES algorithm. The technique presents structural
similarities to programmable logic arrays (PLA), albeit from a software per-
spective. Namely, in this method, the source is divided into several sections.
Then, the bits in each section are permuted simultaneously by looking up a
table and finally, we combine the result of each section to obtain the result
of the permutation. The number of instructions in this method is dependent
on how many sections we divide the source into fewer sections require fewer
instructions but more memory. For instance, a 64-bit permutation can be
carried out as follows: divide the source into 8 sections, and build 8 tables
where each table has 2K bytes (256 entries and 8 bytes in each entry). Now,
only 8 bits are permuted within a single lookup, each table entry has 64 bits,
and bits not permuted with that table are set to 0. In order to compute the
final result, we need OR instructions that recombine the lookups (Figure 5).
This line of approach is not unfeasible in a modern, high-end processor chip
with a 64-bit architecture. Still, the AVR ATtiny uses an 8-bit architecture
and since each table entry consists of 64 bits, we would require 8 AVR flash
memory lookups for a single table lookup, which will largely diminish any
speed benefits of this method. In addition, the size of the lookup tables is
fairly large and requires 16KBytes of flash storage, a size that not even the
newest ATtiny1634 can handle.

Figure 5: Permutation layer, using partitioned lookup tables. Each table
computes 8 bit permutations and sets the remaining 56 bits to zero. The
partitioned lookups are recombined via OR operations.

15

The best implementation of PRESENT lookup tables that we have iden-
tified so far is based on the observations by Gong and Zhu [29, 31]. As
described in section 2.2, a property of the permutation layer of PRESENT
is the following: every output of a 4-bit S-box will contribute one bit to
the cipher; the first 2 bits of the output are derived from the first two 4-bit
S-Boxes, i.e. from the first byte of the previous state (see Figure 6). Since
every input byte contributes 2 bits to the output, we have the basis to form
byte-oriented lookup tables for the PRESENT permutation layer. Using
this basis, Gong and Zhu crafted four 256-byte lookup tables (1024 bytes in
total) that merge the S-box and the permutation layer and as a result, the
whole PRESENT SP network is performed via table lookups.

Figure 6: Zoom-in to the two leftmost nibbles (half-bytes) of the PRESENT
64-bit block. According to the permutation pattern, input bits 0,4 (high-
lighted in bold) get substituted-permuted and result in output bits 0,1 (also
highlighted in bold). Concluding, a single input byte, contributes 2 bits to
the output, setting the basis for 8-bit-based lookup tables.

This approach is also feasible in the AVR ATtiny architecture and was
discussed by Papagiannopoulos and Verstegen in [50]. Performance-wise,
the 1024 byte lookup tables eliminate the need for an independent permu-
tation layer, providing us with a fairly fast and low-latency performance,
namely 8721 clock cycles if the lookup tables are stored in flash memory, or
7729 clock cycles if tables are stored in SRAM, where the slow load from
flash, using lpm instruction (3 clock cycles) is replaced by the faster SRAM
load instruction (ld, 2 clock cycles). We note that this is feasible only in
ATtiny1634, the only AVR ATtiny microcontroller with 1KByte of SRAM
to this date. Another downside of the technique is the large number of
memory accesses; a 64-bit block requires 32 memory lookups (each lookup

16

returning 8 bits), limiting the throughput.

2.4 The bitslicing technique

As discussed, the large number of table lookups, combined with the large
storage space required for them, led to different approaches towards perfor-
mance.
Bitslicing was first introduced by Biham [7] in order to improve the perfor-
mance of bit permutations in software. We note that there exist structural
similarities between DES and PRESENT; although DES is a Feistel network
instead of an SP network, both are hardware-oriented ciphers that rely heav-
ily on bit permutations which are efficient with wirings, yet slow in software.
Bitslicing views a 64-bit processor (i.e, a processor capable of manipulating
64-bit operands) as a SIMD4 computer with 64 single-bit processors (i.e. 64
processors, running in parallel, manipulating one bit at a time).
A bitsliced DES implementation uses a different representation: the cipher
block is not represented as a single 64-bit register. Instead, it uses 64 regis-
ters, consisting of 64 bits each, in order to represent 64 independent cipher
blocks consisting of 64 bits each. To clarify, we use the notation bitij , where
i indicates the cipher block (i ∈ I = 0, . . . , 63) and j indicates the bit num-
ber (j ∈ J = 0, . . . , 63), for instance bit37 represents bit in position 7 of the
block 3. Thus, in our representation, register 0 contains bit 0 of all 64 cipher
blocks, register 1 contains bit 1 of all 64 cipher blocks etc.

Register 0 Register 1 . . . Register 63

bit00, bit
1
0, . . . , bit

63
0 bit01, bit

1
1, . . . , bit

63
0 . . . bit063, bit

1
63, . . . , bit

63
63

Table 4: Bitsliced representation of cipher block in DES algorithm, Each
register stores a single ‘bit’, i.e. 64 bits from 64 different blocks representing
the same conceptual bit position.

As a result, the DES expansion and permutation do not cost any opera-
tions, since instead of changing the positions of several bits within a 64-bit
register, we simply reorder or rename the registers. For instance if we need
to permute bit 6 to bit 27 we can simply address register 6 as register 27.

4Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn’s
taxonomy [25]. It describes computers with multiple processing elements that perform the
same operation on multiple data points simultaneously.

17

Every time we permute a single bit, we permute in fact 64 bits in parallel
(hence the SIMD nature of bitslicing).

Figure 7: DES permutation operation. Despite being different to PRESENT
Player, structural similarities exist since both are bit-based, hardware-
oriented permutations. Under bitslicing, the whole operation is reduced
to mapping registers,e.g. register 1 → register 9, register 2 → register 17
etc.

Note that two factors define the range of the bitslicing parameters i, j:

• The number of bits j is directly determined by the size of the cipher
block we are trying to manipulate. In the case of DES, we need bit
permutations on a cipher block of size 64 bits, hence we use 64 bits in
our representation. If the cipher used 32 bit blocks, or if the permuta-
tion consisted of two symmetrical parts, i.e. the permutation on the
32 low bits was same with the permutation on the 32 high bits, then
number of bits j ∈ J = 0, 1, . . . , 31.

• The number of blocks i that are permuted in parallel is related to the
processor architecture. A 64-bit processor can manipulate 64 bits in
parallel if viewed as a SIMD computer, thus Biham suggests 64 DES
blocks being computed in parallel. Parameter i is often called the
‘bitslice factor’ and defines the upper bound of parallelism when using
bitslicing. A 32-bit processor can have maximum parallelism of 32
blocks, while the AVR ATtiny (with an 8-bit architecture) can process
8 cipher blocks in parallel.

18

In general, we can apply the following formulas when tailoring bitslicing for
a cipher in a given platform:

Max parallelism = |I| = register size5 (2)

Registers used = |J | = cipher block size (3)

The bitsliced DES implementation (or any bitsliced cipher implementation
in general [54]) presents several limitations that can can lead to applica-
tions where bitslicing excels over traditional encryption. For intance, it can
be used to encrypt large plaintext messages, i.e. encrypting 64 plaintext
blocks in parallel with the same key (if using a parallel mode of operation).
In addition, Biham points out that alternating plaintext and keys, namely
encrypting a single plaintext with multiple keys, can produce a bitsliced
exhaustive key search. As discussed, the permutation layer of ciphers is
largeley simplified and increased throughput is achieved.
However, despite the advantages of bitslicing with respect to the permuta-
tion layer of ciphers, we also encounter several issues. The substitution layer
becomes more complex due to the fact that we can no longer use lookup
tables under bitsliced representation, forcing us to either un-bitslice tem-
porarily or implement the S-boxes via software boolean functions. Moreover,
bitslicing can limit our options of cipher modes. While CBC6 decryption
mode can be carried efficiently in parallel, the sequential nature of CBC,
CFB7 and OFB8 encryption, poses hindrances to this technique, requiring
64 parallel CBC encryptions to maintain the parallel SIMD potential ([7],
Section 2, page 6). Last but not least, we must always note that any bit-
sliced cipher implementation is inherently a high-latency implementation,
since it carries out several encryptions in parallel. Thus, it may be rendered
inviable in high-speed, low packet size network scenarios.

5Note that by register size we mean the size which is directly operable by the processor,
excluding certain architectures where instructions operate on register sub-components

6Cipher-block chaining.
7Cipher feedback.
8Output feedback.

19

2.5 Bitslicing the PRESENT cipher

In this section we offer a full insight into all the implementation details of the
bitsliced PRESENT cipher. Bitslicing this cipher has been attempted before
both in C language(Albrecht et al. [47]) and AVR assembly (Rauzy, Guilley,
Najm [53]). We commence with an in-depth exploration of the cipher’s S-
box under the bitsliced approach (sections 2.5.1,2.5.2). We continue with
the permutation layer (section 2.5.3) and conclude with sections pertaining
to key precomputation, update and XOR operation (sections 2.5.4,2.5.5).

2.5.1 Substitution layer under bitslicing

Assuming 4-bit S-boxes, a cipher block size of 64 bits and an 8-bit archi-
tecture (these parameters pertain to the PRESENT cipher in AVR ATtiny
architecture), performing a substitution directly via lookup tables becomes
impossible. With a bitsliced representation, we need to perform a lookup
based on 4 registers (instead of 4 bits), i.e. 4 · 8 = 32 bits, which is not
possible given a) the 16-bit addressing capabilities of AVR ATtiny (the lpm

instruction operates using a 16 bit address in registers ZH, ZL) and b) given
the fact that the resulting lookup table would be infeasible in size.
A more viable alternative would be to first extract the bits required out of the
bitsliced representation, in other words, temporarily revert to the original
form, perform a lookup and then store back in the bitsliced representation.
However, there exists a large performance overhead when performing such an
operation: un-bitslicing 8 bits from 8 registers (e.g. extracting bit40, bit

4
1, . . .

, bit47), performing a lookup based on those 8-bits (using the AVR-friendly
squared S-boxes [50, 23]) and restoring the substituted bits back to the bit-
sliced representation will cost circa 20 clock cycles9, thus 20 · 64/8 = 160
clock cycles for a single block and 1280 clock cycles for 8 blocks (8 being the
bitslice factor). The technique is visible in Figure 8 .

9Note that this holds if we perform multiple 8-bit extractions, lookups and reconstruc-
tions; we also need to interleave rotations that input bits to ZH,ZL and rotations that
output bits back to the registers.

20

Figure 8: Temporarily un-bitslicing the representations to perform memory
lookups. Performance is circa 1280 clock cycles for 8 blocks.

The best solution that we have identified so far for computing efficiently
the substitution layer of a cipher in bitsliced representation is by viewing the
S-box as a boolean function. Bitslicing is essentially a simulation of hard-
ware operations in software, and it has partitioned the representation into
‘bits’ (more correctly: registers). When implementing any boolean func-
tion under bitslicing, we still maintain the SIMD parallelization – unlike
the approach based on temporarily un-bitslicing. For instance, performing
a binary AND operation between two AVR registers, performs the opera-
tion with 8-bit operands simultaneously (see Figure 9). We discuss software
boolean functions more extensively in the following section and we produce
an implementation that computes the substitution layer of PRESENT ci-
pher in 304 clock cycles per 8 cipher blocks.

Figure 9: SIMD parallelization is maintained when computing a logical ex-
pression. The AND gate represents the instruction AND bitA, bitB, where
bitA, bitB are bitsliced registers.

21

2.5.2 Efficient software implementation of boolean functions

In section 2.5.1 we have established a strong argument of implementing the
bitsliced cipher’s S-box using the equivalent boolean function in software.
We henceforth refer to boolean functions implemented in software as ‘soft-
ware boolean functions’ and to boolean functions implemented in hardware
as ‘hardware boolean functions’.
In order to efficiently implement a software boolean function we point out
its close resemblance to hardware construction of optimal circuits; in fact,
we will demonstrate that software boolean function implementation can be
solved using the same techniques, albeit with slightly different constraints.
Constructing optimal combinational circuits and ‘technology mapping’ in
general is an intractable problem under almost any meaningful metric (gate
count, depth, energy consumption, etc.). It interfaces with NP-complete
algorithmic problems such as set cover and best variable ordering in binary
decision diagrams [18]. In practice, even a boolean function with as few as 8
inputs and a single output would require searching over a space of 2256 such
outputs.
The first crucial step of hardware (and respectively software) boolean func-
tion construction is logic minimization and decomposition, i.e. the process
of finding an equivalent representation of the specified logic circuit under
one or more specified constraints - usually area or delay - and translating
the logic network into some primitive cells to create a simple structure that
aids the whole mapping process.

Boyar-Peralta heuristic

In 2008, Boyar and Peralta introduced an efficient new heuristic methodol-
ogy to minimize the complexity of digital circuits [13, 14, 1], with the focal
point being efficient cipher implementation. The heuristic is based on the
notion of Multiplicative Complexity (MC) which is a deep fundamental no-
tion of complexity invariant with respect to affine transformations. More
specifically, Boyar and Peralta attempted to minimize the logic of boolean
functions over the logically complete basis {⊕,∧, 1}, i.e. the circuit opera-
tions can be viewed either as performing boolean logic or arithmetic modulo
2. They define the multiplicative complexity of the circuit being the number
of AND (∧) gates and decompose the circuit into linear components (not
containing ∧), and non-linear components (containing ∧). The suggested
heuristic is based on the following conjecture:

22

“it is plausible that a two-step process, which first reduces multiplicative com-
plexity and then optimizes linear components, leads to small circuits, since
circuits with low multiplicative complexity will naturally have large sections
which are purely linear (i.e. contain only ⊕ gates).”

Boyar and Peralta applied the heuristic to the AES substitution layer (mod-
eled by an 8-bit to 8-bit boolean function), first by reducing the multiplica-
tive complexity (step 1) and subsequently by minimizing the linear compo-
nents (step 2), resulting in a very efficient hardware implementation of AES
S-boxes, consisting solely of AND and XOR gates.

Courtois extension and application of Boyar heuristic

Courtois, Hulme and Mourouzis [19] extend this conjecture and apply
the heuristic to several S-boxes modeled by GF (2)4 → GF (2)4 boolean
functions (including the PRESENT cipher S-boxes), which are particularly
interesting for lightweight cryptography (PRESENT [10], PRINCE [12],
KLEIN [30],etc.). We continuing by discussing a) the additional definition-
s/premises upon which they construct their heuristic, b) the methodology
they introduce and its capabilities and c) the results that are of interest
with respect to the bitsliced PRESENT implementation that we have con-
structed for the AVR platform.

Bitslice Gate complexity

In addition to the existing multiplicative complexity metric, Courtois et
al. introduce the notion of Bitslice Gate complexity as the minimum num-
ber of 2-input gates of types XOR,OR,AND and single-inpute gates of type
NOT needed to construct the circuit. For a silicon implementation this
notion is helpful but definitely non-optimal: certain gates are more costly
to implement, given the fact that silicon mapping often tries to minimize
the number of the cheap NAND gates. However, at this point we are
able to observe a case where software-efficient boolean functions differenti-
ate from hardware-efficient boolean functions. AVR ATtiny instructions for
XOR,OR,AND,NOT operations cost a single clock cycle whereas there exists
no native NAND operation. Consequently, mapping the PRESENT S-boxes
to XOR,OR,AND,NOT gates and translating to software instructions out-
performs any hardware-oriented mapping to NAND gates and subsequent
translation to software operations. In the ‘technology mapping’ context, we
can view these two approaches as mappings to different cell libraries, where

23

the different component cost indicates the difference between hardware and
software implementation.
To compute minimal boolean representations of the PRESENT S-boxes,
Courtois et al. use multiplicative complexity instead of bitslice gate com-
plexity as the heuristic, due to the fact that with Bitslice Gate Complexity
we are not in general able to determine its value, algorithms which find such
optimizations are typically random stochastic explorations of large trees of
solutions [27] and we are not sure if the optimizations are final or if they
can still be improved. However, as we will show in the next paragraphs,
after using the Boyar-based heuristic, Courtois attempts to minimize the
bitslice gate complexity of the PRESENT S-box via affine transformations
of gates. This is not directly applicable to hardware due to the underlying
assumption of gate cost equivalence (i.e. all gates cost the same), it is of
particular interest for a bitsliced software approach that can employ equiv-
alent XOR,OR,AND,NOT instructions.

Courtois methodology and optimality

Another point of particular interest is the efficiency of the Courtois method-
ology and to which extent the heuristic yields optimal results for PRESENT.
An important assistance to optimality is the fact that we deal with GF (2)4 →
GF (2)4 S-boxes, hence 4-to-4 boolean functions. Finding the optimal repre-
sentation of such functions is not computationally infeasible with exhaustive
search, despite the general intractability of the problem. The methodology
used in PRESENT S-boxes is the following:

1. Compute the multiplicative complexity and minimize the non-linear
parts [13].

2. Optimize the number of XORs (linear parts) separately [13, 26].

3. At the end do additional optimizations to decrease the circuit depth,
and possibly additional software optimizations.

Steps 1 and 2 are similar to the Boyar methodology and both are optimal.
Optimality is achieved due to SAT solver software; Courtois et al. converted
the problem to SAT and it either outputs SAT10 and a solution, which they

10SAT is the problem of determining if there exists an interpretation that satisfies a
given boolean formula. In other words, it establishes if the variables of a given boolean
formula can be assigned in such a way as to make the formula evaluate to TRUE

24

convert to a concrete circuit optimization, or it outputs UNSAT11, provid-
ing certainty that there is no solution. Although in general the SAT solver
software may run for a very long time and the problem may be hard, the
boolean functions are fairly small (4-to-4) so SAT decidability is always com-
putationally feasible.
Steps 1 and 2 essentially result in an optimal representation using the ba-
sis {⊕,∧, 1}, yet not optimal with respect to the bitslice gate complexity
metric. Step 3 uses an additional heuristic: it observes that AND gates and
OR gates are affine equivalents and it is likely that if we implement certain
AND gates with OR gates we might be able to further reduce the overall
complexity of the linear parts. Thus, it employs exhaustive search alternat-
ing between AND and OR gates, resulting in a very efficient, yet not rigidly
optimal implementation with XOR,OR,AND,NOT gates.

Results of the Courtois approach

The results of the approach discussed form the basis of an efficient software-
based bitsliced implementation of the PRESENT cipher, both for the AVR
architecture (this work) and C-based implementations [47]. Steps 1 and
2 result in a PRESENT S-box with 25 gates: 4 AND, 20 XOR, 1 NOR
which is optimal with respect to the Boyar-Peralta 2-step methodology but
not optimal in overall gate complexity. After the application of step 3, the
representation becomes the following:

T1=X2^X1; T2=X1&T1; T3=X0^T2; Y3=X3^T3; T2=T1&T3; T1^=Y3; T2^=X1;

T4=X3|T2; Y2=T1^T4; X3=~X3; T2^=X3; Y0=Y2^T2; T2|=T1; Y1=T3^T2;

where Xi=input, Yi=output and Ti=intermediate values.

This is the final form that we use for computing the PRESENT substi-
tution layer in the AVR ATtiny architecture and it requires 14 gates. Note
that translating the afore mentionoperator destination, source instead
of operator destination, sourceA, sourceB. The inherent result is that
it is not possible to reuse an computed value, unless we store it temporarily
elsewhere. For instance, we compute T1 in the first step of the computation
and we need to reuse it (as is) in steps 2 and 5, thus we need to store it
temporarily. With careful register usage, we maintain this penalty to a min-
imum and our final implementation requires 19 clock cycles to compute the

11UNSAT is a boolean function that is unsatisfiable, i.e. no variable assignment exists
to make the function TRUE.

25

output of a single PRESENT S-box (i.e. a penalty of 5 clock cycles). As a
result, the 16 S-box operations used in the bitsliced representation require
19 · 16 = 304 clock cycles on 8 blocks in parallel.

2.5.3 Permutation layer under bitslicing

In general, the permutation layer under a bitsliced representation has zero
cost. Unfortunately, that does not imply zero clock cycles. Since we are
bitslicing a 64-bit cipher block with a bitslice factor of 8, we would nat-
urally require 64 registers (8 bits each) and permutation would result in
simple register renaming or reordering. However, the AVR ATtiny archi-
tecture provides us with 32 8-bit registers, rendering this impossible and
forces us to use the SRAM for storing the cipher state, whose size is 64 · 8
bits= 64 bytes. The implementation we propose uses the following iteration:

1. Fetch 4 bitsliced ‘bits’ from SRAM to the registers, i.e. transfer 4
bytes, each representing a ‘bit’, to the registers.

2. Use the conclusions of the Courtois approach in the previous section
(2.5.2) to compute the 4 byte output of the S-box, also in bitsliced
form.

3. Store the substituted ‘bits’ back to SRAM. In this step, we integrate
the PRESENT permutation inside the memory stores. Integrating the
permutation is not de facto required but storing without any consider-
ation for the permutation would require us to hard-code all 31 rounds
of PRESENT in order to implement the permutation logic.

We provide an example (also visible in Figure 10). Bitsliced ‘bits’ 0,1,2,3
are fetched from SRAM and get substituted via the S-box boolean function
computation. Subsequently, they are stored back to SRAM in permuted
form, namely ‘bit’ 0 gets stored in the position of ‘bit’ 0, ‘bit’ 1 in the position
of ‘bit’ 16, ‘bit’ 2 in the position of ‘bit’ 32 and ‘bit’ 3 in the position of
‘bit’ 48, according to the PRESENT cipher permutation pattern explained
in section 2.2. Note that we have to repeat the exact same procedure for
all the 16 ‘bit’-quartets that construct the 64-‘bit’ cipher block and the only
way to do this is sequentially. Thus, after we have fetched and substituted
the first ‘bit’-quartet, we have to store in positions 16,31,48 which would
overwrite the non-substituted values stored there. To avoid this we increase
the used memory space from 64 bytes to 128 bytes. Essentially, we partition
those 128 SRAM bytes in two. The first partition contains all the ‘bits’ we

26

are going to fetch, while the second partition is free to store all permuted
‘bits’ according to the pattern that we want. For example, in round i the
implementation will fetch from the first partition, substitute and store to the
second partition in a permuted fashion. In round i+1 the roles alternate: we
fetch from the second partition and store to the first partition in a permuted
fashion.
It is important to know that the memory transaction cost is non trivial;
every single round of the bitsliced PRESENT cipher will require 64 memory
fetches and 64 memory stores.

Figure 10: A running example of the implementation. From left to right:
four ‘bits’ (more correctly: 4 bytes) are fetched from the SRAM partition
1, the boolean function is computed and the result is stored to the SRAM
partition 2, including the required permutation. In the next round the pro-
cedure remains similar albeit it executes from right to left and the partitions’
functionality is exchanged.

Efficient memory accesses

Having demonstrated that the computational cost of the permutation layer
is not trivial in our architecture (since a) we need memory to store the
bitsliced state and b) we need to integrate the permutation in the storage
function), we proceed by identifying the optimal way of constructing it.
Regarding the memory fetch from partition 1, we observe that all required
memory accesses are aligned linearly. Thus, we can use the instruction ld

destination, X+, where X is the starting address of partition 1 and ‘+’
denotes that the starting address is linearly increased by 1 after the instruc-
tion, giving access to the next byte (or bitsliced ‘bit’) in partition 1. The
memory access cost is 2 clock cycles which we identify as the minimum cost
when accessing the AVR ATtiny SRAM, in the sense that no other instruc-

27

tion can access SRAM with less than this threshold.
The same technique will not work efficiently for storing bytes in SRAM parti-
tion 2 in permuted fashion. The access pattern is well-defined, yet it requires
memory addressing that begins from the starting address of partition 2 and
has offset i ∈ {0, 1, . . . , 63}, where i denotes the ‘bit’ position that will be
accessed and i is not sequential. In order to maintain the cost at 2 clock cy-
cles, we avoid the usage of ldi YL,i and subsequently st Y,destination.
Instead, we can opt to either use direct memory addressing via the sts in-
struction or store indirect from register to data space using index Y, via the
std instruction.

2.5.4 Key precomputation and update under bitslicing

A standard technique for increasing throughput and decreasing latency in ci-
pher implementations consists of precomputing the key for all cipher rounds
and storing it in memory for fast access. Although this often holds (espe-
cially when re-keying is rare), in the bitsliced case the technique becomes
less practical.
Storing 31 keys in bitsliced form requires 31 · 80 = 2480 bytes for the 80-
bit key version of PRESENT, thus it can only be stored in flash memory.
Although the size is manageable, a bitsliced key needs to be XORed with
the cipher state every round, while fetching each bitsliced ‘bit’ costs 4 clock
cycles (ldi ZL,position; lpm register,Z) and in total 64 ·4 = 256 clock
cycles per round12, a considerable overhead. The advantage of this method
is that if applied, it can achieve encryption with multiple keys, namely each
block can be encrypted with a separate key, however this server-like scenario
is not often encountered in AVR applications - usually there is a single client
to communicate with, using a single shared key.
The option left is to store/use the key in a non-bitsliced form. We can either
opt to perform precomputation or perform the key update at runtime.

• If we choose to precompute, we need to store 80 ·31 = 2480 bits or 310
bytes which cannot be stored in SRAM unless we use a device with at
least 512 bytes of SRAM (ATtiny8x or above), given the fact that 128
SRAM bytes are also demanded by the permutation layer. Since we
only need to fetch 64 bits per round, the cost is 8 · 2 = 16 clock cycles
if fetching from SRAM or 8 · 4 = 32 clock cycles if fetching from flash
memory, resulting in a total cost of either 31 · 16 = 496 (SRAM) or

12Note that we do not need to fetch the whole 80 ‘bits’ since only 64 are being used per
round.

28

31 · 32 = 961 (flash) clock cycles in total.

• If we do not precompute the key values, we need to perform the key
updates while iterating the PRESENT cipher. The cost amounts to 61
clock cycles per round, or 31 · 61 = 1891 in total. Our implementation
currently uses this approach.

Efficient key update

This subsection focuses on implementing the key scheduling/update pro-
cess of the PRESENT cipher efficiently. The key update function of the
PRESENT cipher consists of three operations, namely, key rotation, key
substitution and key XORing with the round counter. The optimizations
described in the following paragraphs have also been demonstrated in the
AVR context by Eisenbarth et al. [23] and by Verstegen & Papagiannopou-
los [50]. We also present them here for the sake of completeness.
Key Rotation The cipher key must be rotated by 61 bits to the left. Having
discussed the fact that rotations/shifts are computationally expensive in the
AVR architecture (an n-bit shift costs n clock cycles), we transform 61 left
rotations to 19 right rotations, which can be further reduced to 16 right
rotations and 3 right rotations. The 16 right rotations can be efficiently im-
plemented by using the mov instructions on register level (unless we use the
less feasible hard-coding approach), i.e. rotate all the bits inside a register
by moving the contents to the previous register used in our representation,
an approach which is preferable to single rotations via the bit-level instruc-
tions. The 3 remaining rotations are carried out with the logical instructions
for right rotation and shifting (ror and shr).
Key Substitution. The highest 4 bits of the 80-bit key used by the PRESENT
cipher, must be substituted via the S-box. To avoid 4-bit memory access or
redundancy, we use the special-purpose Squared S-Box [50] that substitutes
the 4 high bits of the 8-bit input, while the low 4 bits remain unchanged.
The resulting table applies a substitution operation on the upper nibble
which takes only a single lookup operation. Note that if we have limited
flash memory space, it is possible to replace the squared S-box with the
original, unpacked one; the key substitution occurs only once per round, so
the performance loss incurred by the unpacked S-box is relatively small.
Key Exclusive-OR Operation. The algorithm specifies that the key bits 15,
16, 17, 18, 19 must be XORed with the round counter. The issue is that—
under the current non-bitsliced key representation—bits 0. . . 7 will be stored
in register0, bits 8. . . 15 will be stored in R1 and bits 16. . . 23 will be stored in

29

R2. As a result parts of the round counter need to be XORed with different
parts of two separate registers, namely the counter needs to be XORed with
both R1 and R2. To avoid this, we perform the XOR operation before the
key rotation, thus the bits that are operated on are bits 34,35,36,37,38 which
span a single register (under the previous representation they are located in
R4). This form of register re-arrangement in order to group bit values to-
gether will also be used in order to improve the speed of the KATAN cipher
(section 3).

2.5.5 Key XORing under bitslicing

The last implementation section focuses on the XOR operation between the
cipher state and the cipher key. In a straightforward, non-bitsliced imple-
mentation the XOR step is fairly trivial, while under bitslicing it becomes
more complex.
In the previous section (section 2.5.4), we provide a strong argument of stor-
ing the key in a non-bitsliced form (the argument pertaining to the increased
cost of memory fetches). However, the cipher state employs the bitsliced
representation, rendering it difficult to perform the XOR operation. Once
again, it is possible to use the temporary un-bitslicing method (explained in
section 2.5) to revert the plaintext back to traditional representation, XOR
with key and reconstruct the bitsliced form, yet we have identified better
alternatives.
We base our implementation on the following observation:

if (key_bitj == 1)

XOR bitij with 1;

∀ i ∈ {0, 1, . . . , 63}
else

XOR bitij with 0;

∀ i ∈ {0, 1, . . . , 63}

where key bit j denotes the jth bit of the key and bit ij denotes the bit at
position j, related to block i.
The observation demonstrates that if the key bit at position i is equal to 1,
we need to XOR every single element of the bitsliced ‘bit’ i with the value 1
or, in other words, XOR the register containing ‘bit’ i with the value 0xFF .
Similarly, if the key bit at position i is 0, we would need to XOR the register
containing ‘bit’ i with the value 0x00. Attempting to implement this via the

30

compare/jump commands of AVR is not efficient and additionally, it can-
not exploit the fact that else clause does in fact nothing, since x ⊕ 0 = x.
Any attempt to remove the else clause to increase speed can result in seri-
ous time invariance that is directly related to the key values and should be
avoided at all times.
Fortunately, the AVR ISA provides us with an instruction that can perform
the if-else clause, while being resistant to timing attacks. The sbrc com-
mand tests a single bit in a register and skips the next instruction if the bit
is cleared. Thus, it checks the value of the key bit i and if it is set, it executes
the next instruction, i.e. the XOR with value 0xFF. In case bit i is zero,
sbrc parses the XOR instruction but does not execute it, running, thusly,
in constant time regardless of the key value both in ATtiny and ATmega.

31

2.6 Performance

In this section we focus on measuring the attained latency, throughput and
size of the suggested implementation. In addition, we provide comparison
with other previous attempts to implement the PRESENT cipher on AVR
architecture and we demonstrate that we achieve the highest throughput to
date. Despite that, we must point out that a) the memory requirements
are quite large, forcing us to develop for the ATtiny85 microprocessor and
that b) the suggested implementation is bitsliced, thus it is automatically
rendered less useful in low-latency application scenarios.

Component cost

The following table provides us with an overview of the costs of individ-
ual cipher components (substitution, permutation, key update). Note that
there are two ways we can view the measurements. The second column
demonstrates the cost of component per round per block, thus, the cost of
the component after dividing with the bitslice factor of 8. The third col-
umn offers the component cost per round per 8 blocks, which reflects more
accurately the actual round iteration.

Component Cost per block Cost per round (8 blocks)

S-layer 38 304

P-layer 32 256

Key update 61 61

Total (31 rounds) 2967 23736

Table 5: Component cost (in clock cycles) of the proposed PRESENT bit-
sliced implementation.

We can observe that the substitution layer has the highest computational
requirement, although the permutations—which were expected to decrease
rapidly via bitslicing—are on par with it. This stems from the fact that
we are using SRAM to store the cipher state, which in turn, results from
the complex bit permutations of the PRESENT cipher. While discussing
the SP network of the PRINCE cipher (section 4), we will demonstrate that
reducing the complexity of the pLayer can result in increased performance
with alternative bitslicing-like methods.

32

Throughput

PRESENT implementation Throughput (cc/block) Bitsliced

AVR Crypto-Lib [52] 105796 no

Eisenbarth et al. [23] 10723 no

Papag. [50, 49] 8721 no

Rauzy et al. [53] 6473 yes

This work 2967 yes

Table 6: Throughput of PRESENT cipher implementations for AVR archi-
tecture, i.e., clock cycles required for a single encryption round.

The suggested implementation manages to outperform all existing imple-
mentations with respect to throughput. Comparing this work with the non-
bitsliced work by Eisenbarth, we can draw several conclusions regarding
bitsliced representations. Eisenbarth’s substitution layer is extremely effi-
cient consisting of a single flash memory lookup (4 clock cycles) per 8 bits
(0.5 cc per bit). Our implementation requires 19 clock cycles for an S-box
computation, i.e. 0.59 cc per bit, so slightly slower. However, this hin-
drance is unimportant when considering the very slow P-layer of Eisenbarth
(154 cc per round) compared to ours (32 cc per round). Thus, despite the
SRAM penalty on the P-layer and the lower performance on S-layer, we can
outperform both Eisenbarth. We also outperform Papagiannopoulos and
Verstegen due to the fact that they replace the SP network with lookup
tables that result in a large number of flash memory accesses (1 access per
2 bits).
Comparing our bitsliced version with Rauzy et al., we observe that we
achieve a 2.1× boost in throughput. Since the authors do not elaborate
on the implementation of the boolean function in use, memory access opti-
mizations and XOR operation techniques, we cannot identify the source of
this speed-up, although we observe that the authors managed this perfor-
mance at a lower size.

Latency

Unfortunately, our implementation does not fare well regarding latency.
All bitsliced implementations perform inherently multiple blocks in parallel
(equal to the bitslice factor), so in our case we perform 8 block encryptions in
parallel 23736 clock cycles. Thus, we are outperformed by Papagiannopou-

33

los and Verstegen with 8721 clock cycles or circa 7700 clock cycles when
using an AVR ATtiny with 1024 KBytes of SRAM.

Throughput-size ratio

This works aims at improving the throughput of the PRESENT cipher,
thus it is not efficient size-wise. Still, we do maintain that a bitsliced im-
plementation is less reliant on lookup tables than a traditional one; thus, it
is possible to tweak it in a size-efficient manner, while preserving relatively
high throughput and this intended to be part of future work.

PRESENT implementation Flash (bytes) SRAM (bytes)

Eisenbarth et al. [23] 1000 18

Papag. [50, 49] ATtiny45 1794 0

Papag. [50, 49] ATtiny1634 770 1024

Rauzy et al. [53] 1194 144

This work 3816 256

Table 7: Size of PRESENT cipher implementations for AVR architecture
in bytes, pertaining to flash and SRAM. No stack memory is used in those
applications.

Last, since we have established metrics for both throughput, size and la-
tency, it is of particular interest to observe the trade-offs that exist between
these three variables, in order to be able to tailor given requirements to
a specific implementation. We provide two figures: The first figure (11)
demonstrates the throughput-size trade-off, while the second (12) shows the
throughput-latency trade-off. Apart from those metrics, we note that there
exist very slow, yet highly minimized implementations for PRESENT in
AVR by Papagiannopoulos and Verstegen [50].

34

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

2

·10−2

Eisen.
Papag.

Rauzy

This work

Size (Flash & SRAM)

T
h

ro
u

gh
p

u
t

(b
it

s/
cc

)

Figure 11: Throughput vs. Size diagram for various implementations.

0 1 2 3 4 5

·104

0

0.5

1

1.5

2

·10−2

Eisen.
Papag.

Rauzy

This work

Latency (cc)

T
h

ro
u

gh
p

u
t

(b
it

s/
cc

)

Figure 12: Throughput vs. Latency diagram for various implementations.

35

3 The KATAN cipher

The second section of this work examines a different type of cipher that is not
related to SP networks and resembles a stream cipher. We begin by intro-
ducing the 80-bit keyed KATAN cipher (Section 3.1) and by motivating our
implementation choices (Section 3.2). We proceed by proposing two novel
ideas to improve performance (Section 3.3) and conclude with performance
metrics (Section 3.4).

3.1 Introduction

The outline is provided in Figure 13. The KATAN cipher [15] was designed
as a secure 80-bit block cipher with a minimal number of gates. Following
the design of KeeLoq [24] the designers chose a structure similar to a stream
cipher, resembling the two-register variant of Trivium [16], known as Bivium.

Algorithm outline

The cipher’s plaintext is loaded into two linear feedback shift registers
(LFSR) L1 and L2. Each round several bits are taken from the registers
and the cipher key. Those bits enter two non-linear boolean functions (fa
and fb), while the output of the boolean functions is loaded to the least-
significant bits of the registers after they are shifted (or ‘clocked’). Com-
puting the two boolean functions fa, fb requires AND and XOR operations
between the state bits, the cipher keys and a constant value IR (irregular
update) that increases diffusion. The KATAN cipher executes a fairly large
number of rounds (254) and comes in three variants: KATAN32, KATAN48
and KATAN64 (the suffix denotes the size of the cipher state – the key size
is always 80 bits). Our implementation focuses solely on the 64-bit version,
thus the following paragraphs that describe the cipher’s components pertain
only to KATAN64.

Cipher components

Non-linear functions fa, fb and bit rotation. KATAN64 uses two non-
linear function fa and fb in each round which are computed as follows.

fa(L1) = L1[24]⊕ L1[15]⊕ (L1[20] · L1[11])⊕ (L1[9] · IR)⊕ ka (4)

36

fb(L2) = L2[38]⊕ L2[25]⊕ (L2[33] · L2[21])⊕ (L2[14] · L2[9])⊕ kb (5)

where L1[i] and L2[i] denote bit positions on the two LFSR registers, IR
denotes the irregular update (constant) and ka, kb denote the two subkey
bits of every KATAN64 round. After the computation of the non-linear
functions, the registers L1 and L2 are shifted. The MSB falls off into the
corresponding non-linear function and the LSB is loaded with the output of
the second non-linear function, i.e., after the round, the LSB of L1 is the
output of fb and the LSB of L2 is the output of fa.
A specific feature of the KATAN64 construction with respect to the non-
linear functions is the following. In KATAN64, each round applies fa and fb
three times with the same key bits ka, kb. An efficient implementation can
implement these three steps in parallel, if it spends some extra gates.

Figure 13: The core operation of the KATAN cipher. The two LFSR L1, L2 store
the cipher state. Several bits are extracted from L1, L2, from the cipher key (ka, kb)
and from IR in order to compute the non-linear functions fa, fb (via XOR/AND
operations) and to update the cipher state.

Key schedule. The key schedule of the KATAN64 cipher loads the 80-bit
key into an LFSR (the least signicant bit of the key is loaded to position 0
of the LFSR). Every round, positions 0 and 1 of the LFSR are used as the
round’s subkey k2i and k2i+1, and the LFSR is clocked twice. The feedback
polynomial that was chosen is a primitive polynomial with minimal hamming
weight of 5 and is the following:

x80 + x61 + x50 + x13 + 1 (6)

37

The subkey of round i can be described as ka||kb = k2i||k2i+1 where
ki = Ki for i ∈ {0, 1, . . . , 79} (K being the 80-bit input key) or alternatively
ki = ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13.

3.2 Implementation motivation

Having discussed the construction of the KATAN cipher, we proceed by of-
fering motivation towards a high-throughput implementation. To this date,
the only implementation of the KATAN cipher for AVR devices is demon-
strated by Eisenbarth et al. [23] and attempts to minimize code size by
avoiding both flash and SRAM, instead of throughput. KATAN is a ci-
pher optimizing for low-throughput and small hardware fingerprint: it uses
a large number of single-bit operations and a large number of rounds (254),
resembling the structure of a stream cipher. The large number of rounds, in
combination with its bit-oriented structure, suggest that even small speed
improvements on a single round can yield a large improvements overall.
In general, our implementation is motivated by two factors:

• The stream-like construction of the iteration function has the following
side-effect: relatively small key size over the 254 rounds (especially
when compared to e.g. PRESENT, which produces a different 64-bit
subkey for each one of the 31 rounds). This observation can lead to key
precomputation techniques which are not heavily reliant on memory
accesses due to the low key size.

• The KATAN cipher has an interesting hardware-related property that
has not been yet translated to software implementations. During each
cipher round, the 64-bit version of KATAN applies the non-linear func-
tions fa, fb three times and these computations can be carried out
in parallel (if the extra hardware gates are available in our budget).
Eisenbarth et al. suggest that implementing this property may result
in complicated shifting/masking that will increase the code size with
little or no performance gain, yet we attempt to rebut this statement.

38

3.3 Implementing KATAN cipher

In this section we provide a new KATAN64 implementation for AVR ATtiny
architecture. We propose two ideas (sections 3.3.1 and 3.3.2 correspond-
ingly) that increase KATAN64 throughput while keeping the cipher code
size relatively small.

3.3.1 Key precomputation of the KATAN cipher

As discussed, the key schedule of the KATAN cipher (all three variants)
loads the 80-bit key into an LFSR and during round i it generates the
round’s subkey k2i and k2i+1, while the LFSR is clocked twice. Every round
needs 2 key bits for the iteration function and generates only 2 additional
bits. The total key size used for a full 64-bit KATAN encryption is 508 bits,
i.e. 80 bits of starting key and 248 of generated key bits (63 bytes in total).
The key size is relatively small and unless re-keying is a very common pro-
cedure, the key can be precomputed in advance and stored in SRAM for
consecutive future use. The low overall key size results in a) small number
of memory fetches regarding the key and b) low key-storage requirements.
Given the fact that AVR can fetch one byte from SRAM per load instruc-
tion (2 clock cycles), precomputing and fetching the key costs a total of 64
SRAM loads13 (508/8 ≈ 64 bytes), i.e. 128 clock cycles for a full 64-bit
encryption. Note that such an approach was less attractive in SP networks.
For instance, PRESENT requires 31 64-bit subkeys for a total of 248 key
bytes stored in SRAM, which either demands a more expensive AVR ATtiny
model (with 512 or more bytes of SRAM if we use the implementation sug-
gested in chapter 2) or implies using flash storage which is slower roughly by
a factor of 2, compared to SRAM. Similarly to the key, the irregular update
sequence is also stored and fetched from SRAM.
The alternative to a precomputed key is computing the round key during
the cipher iteration. Although the AVR architecture provides us with bit-
oriented instructions such as bld,bst, key update will cost 9 bit extracts
(bld), 9 bit deposits (bst) and 6 XOR operations per round, pertaining
to at least 6096 = 254 · 24 clock cycles for a full encryption. As a result,
key precomputation yields a large performance boost, albeit at the cost of
increased SRAM usage (74 bytes).

13We assume that the original 80-bit key is already in place. If not, total cost becomes
148 clock cycles per full encryption.

39

3.3.2 Parallel bit operations on fa, fb non-linear functions

As discussed in section 3.2, KATAN contains 3-way parallelizability when
computing the new cipher state in the 64-bit version. Computing the func-
tions fa, fb sequentially via the bld,bst bit-level instructions is very time-
consuming. A single run of fb would require 7 extract, 7 deposit, 2 AND,
3 XOR operations and as a result 3 · 19 · 254 = 14478 clock cycles for a
full encryption (the factor 3 due to the 3-way parallelizable step being done
sequentially). Analogously, fa costs 3 · 19 · 254 = 14478 clock cycles (with
the operation fa also costing 19 clock cycles per single bit computation).
Achieving 3-way parallelizability involves using masking and instructions
that operate on register level and not bit-level operations. In addition, it
involves a slightly different representation of the cipher state: instead of
storing the 64 bit state in 8 registers (each containing 8 bits), we employ
9 registers that store the representation in a slided fashion (see Figure 14).
First, observe that there exist several triadic bit groups that contribute to
the computation of the next cipher state. For instance, KATAN64 uses
(among others) bit 9 of the the L2 LFSR to compute a single bit of the
next state and since this operation has to be carried out 3 times within a
KATAN64 round, the same procedure is applied to bits 8 and 7 correspond-
ingly. There exist 6 such triads in the L2 LFSR (9/8/7, 14/13/12, 21/20/19,
25/24/23, 33/32/31, 38/37/36) and 5 such triads in the L1 LFSR (9/8/7,
11/10/9, 15/14/13, 20/19/18, 24/23/22). This non-standard representation
displayed in Figure 14 attempts to arrange all bit triads used for the new
state computation in a way that never splits a triad between two separate
registers. Having established that, we can use register-level operations that
carry out the new state computations, while maintaining 3-way paralleliz-
ability.
Under the new representation, computing 3 parallel output bits costs 19
clock cycles for function fb and 19 clock cycles for function fa. Compared to
the sequential approach of the previous paragraph, we observe a 3× perfor-
mance boost when parallelizing the operations in software; fa and fb used
to cost 57 = 3 ·19 cycles each for a 3 bit output. Note also that the new rep-
resentation does not fully utilize all registers, since registers r0, r5 and r8

have bits indicated as null (i.e. non-relevant in our representation). A side-
effect is that bit rotation (also denoted as LFSR clocking) becomes slightly
slower; it costs us 39 clock cycles in order to carry out 3 bit rotations to all
9 registers that is transparent to the null register positions, i.e. sliding all
registers to the right and transferring overflow bits from L2 to L1 and L1
to L2 correspondingly while taking into account the null bits. A standard

40

representation (using 8 registers without null bit elements) would rotate in
24 clock cycles (24 = 3 · 8, i.e. 3 single bit rotations carried on 8 registers).

Figure 14: Cipher state of KATAN64, stored in a slided manner, using 9
registers. The bit triads required for computing the new cipher state are
highlighted in bold.

41

function fb function fa

mov t1,s1 mov t3,s6

swap t1 lsr t3

lsr t1 eor t3,s8

and t1,s1

mov t2,s2 eor t3,s8

swap t2 lsr t3

and t2,s4 eor t3,s7

eor t1,t2 mov t4,s7

eor t1,s3 lsr t4

and t4,s6

swap t1 swap t4

lsl t1 eor t4,t3

eor t1, s4

Figure 15: Register-oriented code to compute fa, fb, while performing op-
erations in parallel (excluding key XOR operations and irregular update
XORing). Variables si denote cipher state (Figure 14 register i corresponds
to si), and variable tj denotes temporary values.

42

3.4 Performance

In this section we present benchmarking results of our implementation.
Specifically, we give the attained latency, throughput and size of the im-
plementation and compare to previous implementations. We show that for
the price of increased memory consumption, we can increase throughput
and decrease latency. The results were obtained on the Atmel Visual studio
simulator that allows us to examine the behavior and performance of AVR
ATtiny45.

Component cost

The component cost of the KATAN cipher can be viewed in the follow-
ing array (Table 8). Components include the two non-linear functions and
rotation (clocking) of the LFSRs. The key schedule is not computed on
the fly, but it is precomputed, stored in SRAM and fetched when needed
via 8-bit memory lookups. We note that the non-traditional representation
we use has an impact on the rotation layer (increasing it to 39 clock cycles
instead of 24 clock cycles, achievable in a standard representation). Still,
the non-standard representation allows us to reduce the cost of fa, fb by a
factor of 3 (38 cc in non-standard for both vs. 114 in non-standard for both).
Thus, we can achieve increased throughput and latency.

Component Cost per round Total cost

fa 19 4826

fb 19 4826

Rotation 39 9906

Key update precomputed fetched in 128

Total (254 rounds) 95 23671

Table 8: Component cost (in clock cycles) of the proposed KATAN64 im-
plementation.

Throughput, latency and size

The only known implementation of KATAN64 in AVR architecture is pre-
sented by Eisenbarth et al. [23] and it focuses on low size, not high through-
put. Our implementation manages a full KATAN64 encryption in 23671
clock cycles, while Eisenbarth et al. manages a full encryption in 72063
clock cycles, i.e. we improve the throughput by a factor of 3. Although the

43

two implementations are not directly comparable (due to different imple-
mentation objectives) it is still useful to compare and observe the tradeoffs.
Specifically, we disagree with the statement that the 3-way KATAN64 par-
allelizability cannot be sufficiently exploited in software; with the penalty
of a single extra register, we manage to increase the throughput of the non-
linear layer threefold. With regards to key precomputation, the penalty is
more steep; we need 74 bytes of SRAM storage to reduce the key update
to 64 SRAM memory fetches. The results can also bee seen in Table 9. In
addition, we note that the KATAN64 implementation is not bitsliced, thus,
any improvement in throughput, automatically translates to lower latency.
To conclude, we also include the size metrics in Table 9. Eisenbarth et al.
result in an implementation that requires 338 flash memory bytes and 18
bytes of SRAM for both encryption and decryption. This work requires 380
flash memory bytes and 96 SRAM bytes (32 for IR and 64 for precomputed
key) for encryption only.

KATAN64 implementation Throughput (cc) Size (bytes)

Eisenbarth et al. [23] 72063 338 flash, 18 SRAM

This work 23671 380 flash, 96 SRAM

Table 9: Throughput of KATAN64 cipher implementations for AVR archi-
tecture, i.e., clock cycles required for a single encryption round. Size of the
second row applies to encryption only.

44

4 PRINCE cipher

In this section, we present part of on-going research pertaining to the PRINCE
cipher [12]. Specifically, we solely focus on the substitution and nibble14 per-
mutation operations of the PRINCE cipher. We suggest a novel idea, namely
a variation of the bitslicing technique, in order to efficiently compute these
operations. We commence with an overview of the required PRINCE cipher
operations (Section 4.1), we motivate our choice in section 4.2 and suggest
the new technique in section 4.3.

4.1 Introduction

PRINCE is a 64-bit block cipher with a 128-bit keys, based on the F–X
construction15 [12, 40]. The key k is split into two parts of 64 bits each, i.e.
k = k1||k2 and extended to 192 bits via the following mapping:

k0||k1 → k0||k′0||k1 = (k0||k0 >>> 1)⊕ (k0 >> 63||k1) (7)

Now, k0 and k′0 are used as whitening keys, while k1 is the main 64-bit used
by the 12 rounds of the cipher. Figure 16 demonstrates the usages of the
whitening keys, while Figure 17 shows the 12 rounds of encryption. We
also note that PRINCE was crafted with involution16 in mind, such that
reversing the procedure (i.e. decrypting) did not cost additional hardware
gates.

Figure 16: PRINCE core and whitening keys.

141 nibble = 4 bits.
15Francois-Xavier standaert.
16An involutary function, is a function f that is its own inverse.

45

Figure 17: The 12 rounds of the PRINCE cipher. k1 denotes the core cipher
key, RCis are constants, S the S-box and M the diffusion layer.

Cipher components

S-layer. The cipher uses a 4-bit S-box, the action of which is given by the
following table (Table 10). We also note that the designers of the PRINCE
cipher provide us with alternative S-boxes (acquired via affine transforma-
tions) that have the same security properties but may be less or more efficient
in hardware implementations.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

Table 10: The S-Box of the PRINCE cipher.

Diffusion layer. The diffusion layer, denoted by M , is constructed by
two parts: SR and M ′. The SR operation behaves similarly to the AES
ShiftRows and permutes the 16 nibbles in the a specific pattern (see Figure
18). The M ′ part is a matrix multiplication; the current cipher state is
multiplied by a 64×64 bit matrix which was constructed from 4-bit-based
components. The M ′ operation is an involution and can be viewed in Figure
19.

Old 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
New 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Figure 18: Nibble permutation of the PRINCE cipher in the SR operation
(from old nibble position to new nibble position).

46

M ′ =


Ma 0 0 0
0 Mb 0 0
0 0 Mb 0
0 0 0 Ma



Ma =


M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

 Mb =


M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3



M0 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 M1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 M2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 M3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


Figure 19: The M ′ operation, analyzed from top to bottom.

4.2 Implementation motivation

For the PRINCE cipher, we have identified a single motivation point: the
structural similarities between the the PRESENT S and P-layer and the
PRINCE S and R operations. In fact we attempt to exploit the fact that
PRINCE R operation is a permutation with fewer ‘degrees of freedom’ com-
pared to the PRESENT P-layer.
We show in the following section that relaxing the permutation requirements
(i.e. PRINCE operation R being simpler than the PRESENT P-layer) can
offer us new implementation choices, leading to better overall performance.

4.3 Nibble-slicing the PRINCE cipher

When comparing the substitution-permutation network of PRESENT with
that of PRINCE we can observe similarities and differences. The substitu-
tion operation is fairly identical in nature; it consists of a 4-bit S-box that
gets a plaintext nibble (half byte) and returns the substituted nibble. As in
PRESENT, we could opt to either implement it with lookup tables or via a
multi-output boolean function.
Moving to the linear diffusion part, we observe the following difference be-
tween the PRESENT P-layer and the PRINCE R operation (note that we do
not discuss the matrix multiplication used for diffusion in PRINCE, named
operation M. Efficient implementation of M is intended as future work). The
PRESENT P-layer consists of permutations on a bit level, while PRINCE
permutations always address 4-bit chunks or nibbles. Recalling our dis-
cussion in section 2.5, we note that although implementing the PRESENT

47

P-layer with bitslicing would cost zero cycles in theory, we cannot achieve
this in reality. Storing and maintaining 64 state ‘bits’ in bitsliced form
(namely, maintaining a 64-byte state) was not possible without using the
SRAM and as a result, costly memory fetch/store operations.
While there is no alternative way to implement bitslicing if the permutation
layer operates on single bits, we observed that PRINCE permutations are
always carried on nibbles. Thus, we have identified a technique stemming
from bitslicing (we call it nibble-slicing) that is custom-made for nibble-
oriented permutation layers and manages to avoid memory accesses, despite
the fact that we operate on a 64-bit cipher state (both in PRINCE and
PRESENT).
Nibble-slicing uses the following representation: every 8-bit register is split
in two parts (high and low, 4 bits each) and we use a total of 16 regis-
ters. The whole representation consists of 128 bits, i.e. two separate cipher
states (we refer to them as block 1 and block 2 – see Figure 20). Block 1
is stored in all high parts of the 16 registers and block 2 in all low parts
of the corresponding registers. Nibble-slicing presents similarities with vec-
torized computations on larger processors and to digit-slicing or byte-slicing
techniques used to improve speed of AES [39] or Groestl [51], albeit our
technique applies on half-bytes.

Figure 20: Nibble-sliced representation of the PRINCE cipher.

At this point we observe that we have lost our maximum parallel pro-
cessing capability; instead of storing 8 different cipher states within a single
register (bitslice factor of 8) we store only two (bitslice factor of 2). How-
ever, this novel representation is faster when implementing PRINCE in the
AVR context compared to the original bitslicing method for the following
reasons:

• First, nibble-slicing in 16 registers results in an implementation that
fully avoids usage of SRAM and the penalty associated with it. Storing
two separate cipher states in such a way fits into registers and thus
avoids spills to SRAM.

• Second, although it is still possible, we no longer have to compute the

48

S-box via a boolean function and we can use the more efficient lookup
tables.

Although we demonstrated in chapter 2 that boolean functions are fairly
efficient for S-box computation, we remind that they are still slower than
direct flash memory lookups. Bitsliced PRESENT could not use lookup
tables for the substitution layer, but that is not the case for nibble-sliced
PRINCE. Each register contains two separate 4-bit values. Based on the
guidelines by Eisenbarth [23] and Papagiannopoulos and Verstegen [50], we
use a variation of the squared lookup table for S-box computation. During
the lookup, each one of the 4-bit halves is substituted separately. The whole
process is carried out efficiently via 8-bit flash memory lookups from 256-
byte tables in flash memory.
The nibble-sliced representation is also constructed to simplify nibble per-
mutations. For instance, assume that nibble 1 is permuted to the position
of nibble 5 during the R operation. To perform this, we no longer have to
compute shifts, bit extractions/deposits or such operations; we need only to
move the contents of the register that contains nibble 1 to the register con-
taining nibble 5. As a result, both the high and the low nibble are permuted
within a single clock cycle (1 mov instruction), i.e. we achieve single nibble
permutation on two cipher blocks within a single clock cycle.
In fact, we can further decrease it (to zero cycles) if we observe that the
permutation operation R can be combined with the substitution opera-
tion before. During substitution, we use the instruction lpm destination,

address in Z that substitutes the values on ZL according to the S-box, via
the lookup. Subsequently, the result is stored in the destination register.
Assuming that value 0x3 is stored in the lower half of the register pertain-
ing to nibble position 1 and the value 0x6 is stored in the higher half of
the register also pertaining to nibble position 1, we do the following: we
substitute the value 0x63 with 0x92 (according to the S-box) and the lpm

instruction stores it in the register pertaining to nibble position 5. A side-
effect is that this procedure may rewrite values while permuting (e.g. if the
nibble position 5 is not substituted yet). To tackle this, we use a similar
technique as in section 2.5.3: we double the register space and use 32 regis-
ters for the operation, while alternating between the two register parts (part
1 being registers r15. . . r30 and part 2 being registers r0. . . r15).
Using the afore mentioned representation and techniques, we manage to
perform the substitution and nibble-permutation of two PRINCE cipher
blocks (due to the nibble-slice factor 2) in 64 clock cycles. Measurements
again use the Atmel Visual Studio Simulator. The operations S,SR cost

49

only 32 = 64/2 clock cycles. Future work intends on including an efficient
implementation of the matrix multiplication M used in the PRINCE cipher.

50

5 Conclusions

Having reached the conclusion section, we aim at providing a knowledge
recap and pointers towards interesting future work topics.
This work has managed to achieve increased throughput in both PRESENT
and KATAN64 ciphers for AVR ATtiny. The bisliced PRESENT imple-
mentation manages a full 64-bit block encryption in 2967 clock cycles, al-
beit with increased memory requirements (3816 flash memory bytes and
256 SRAM bytes for encryption). The implementation achieves the highest
known throughput, outperforming the fastest bitsliced implementation by
a factor of 2.1 and the fastest non-bitsliced implementation by a factor of
2.9. The improved KATAN64 implementation outperforms the only known
KATAN64 AVR implementation by a factor of 3 and it executes in 23671
clock cycles, while requiring 380 flash memory bytes and 96 SRAM bytes
for encryption. Last, we manage to perform the first two core operation of
the PRINCE cipher (substitution and nibble permutation) in 32 clock cycles
per round with fairly small memory consumption (256-byte lookup table in
flash memory).
With respect to future work, it is useful to examine more lightweight ci-
phers under the bitslicing prism and construct additional high-throughput
implementations; an natural extension is PRINCE. An additional target for
future work revolves around examining computationally efficient side chan-
nel countermeasures on the AVR ATtiny architecture. We have observed
that several different side-properties arise from the various representations
or techniques used, thus we can research into how different implementation
methods interface with the various countermeasures, e.g. if countermeasures
become more or less computationally intensive. Last, this line of work can
also be attempted in different platforms, such as AVR ATmega, ARM, etc.
in order to be able to ‘power’ a large range of devices.

51

References

[1] Circuit minimization results obtained at Yale University. http:

//cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html.
URL retrieved: 15-11-2013.

[2] ISO/IEC 29192-2:2011, Information technology - Security techniques -
Lightweight cryptography - Part 2: Block ciphers. 2011.

[3] Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob
Wenzel. Biclique cryptanalysis of the PRESENT, LED and KLEIN.
IACR Cryptology ePrint Archive, 2012:591, 2012. URL retrieved: 18-
11-2013. http://eprint.iacr.org/2012/591.pdf.

[4] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Proposal for
the Advanced Encryption Standard. NIST AES Proposal, 1998. URL
retrieved: 18-11-2013. http://www.cl.cam.ac.uk/~rja14/Papers/

serpent.pdf.

[5] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Mara Naya-
Plasencia. Quark: A lightweight hash. Journal of Cryptology,
26(2):313–339, 2013. URL retrieved: 18-11-2013. https://131002.

net/quark/quark_full.pdf.

[6] Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0,
ECRYPT stream cipher. 2006. URL retrieved: 18-11-2013. http:

//www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.

[7] Eli Biham. A Fast New DES Implementation in Software. Tech-
nion, Technical Report CS0891, 1997. URL retrieved: 18-11-
2013. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.52.5429&rep=rep1&type=pdf.

[8] Matt Bishop. An application of a Fast Data Encryption Standard Im-
plementation. Computing Systems, (3):221–254, 1988. URL retrieved:
18-11-2013. http://www.cs.dartmouth.edu/reports/TR88-138.pdf.

[9] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz,
Kerem Varici, and Ingrid Verbauwhede. SPONGENT: A lightweight
hash function. In Bart Preneel and Tsuyoshi Takagi, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2011, volume
6917 of Lecture Notes in Computer Science, pages 312–325. Springer,

52

http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://eprint.iacr.org/2012/591.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
https://131002.net/quark/quark_full.pdf
https://131002.net/quark/quark_full.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5429&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.5429&rep=rep1&type=pdf
http://www.cs.dartmouth.edu/reports/TR88-138.pdf

2011. URL retrieved: 18-11-2013. http://homes.esat.kuleuven.be/

~abogdano/papers/spongent_ches11.pdf.

[10] Andrey Bogdanov, Lars Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew Robshaw, Yannick Seurin, and Charlotte
Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Pas-
cal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes
in Computer Science, pages 450–466. Springer, 2007. URL retrieved:
18-11-2013. http://homes.esat.kuleuven.be/~abogdano/papers/

present_ches07.pdf.

[11] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann,
Matt JB Robshaw, and Yannick Seurin. Hash Functions and RFID
Tags: Mind the Gap. In Elisabeth Oswald and Pankaj Rohatgi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2008, volume
5154, pages 283–299. Springer, 2008. URL retrieved: 18-11-2013. http:
//www.iacr.org/archive/ches2008/51540279/51540279.pdf.

[12] Julia Borghoff, Anne Canteaut, Tim Guneysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Soren S.
Thomsen, and Tolga Yalcin. PRINCE – a low-latency block cipher for
pervasive computing applications. IACR Cryptology ePrint Archive,
2012:529, 2012. URL retrieved: 18-11-2013. http://eprint.iacr.

org/2012/529.pdf.

[13] Joan Boyar and Peralta. A new combinational logic minimization tech-
nique with applications to cryptology. In Paola Festa, editor, Ex-
perimental Algorithms, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010. URL retrieved: 18-11-2013.
http://eprint.iacr.org/2009/191.pdf.

[14] Joan Boyar and Peralta. A small depth-16 circuit for the AES S-box.
In Furnell Dimitris Gritzalis, Steven and Marianthi Theoharidou, edi-
tors, Information Security and Privacy Research, volume 376 of IFIP
Advances in Information and Communication Technology, pages 287–
298. Springer, 2011. URL retrieved: 18-11-2013. http://eprint.iacr.
org/2011/332.pdf.

[15] Christophe De Canniere, Orr Dunkelman, and Miroslav Knezevic.
Katan and ktantan - a family of small and efficient hardware-oriented

53

http://homes.esat.kuleuven.be/~abogdano/papers/spongent_ches11.pdf
http://homes.esat.kuleuven.be/~abogdano/papers/spongent_ches11.pdf
http://homes.esat.kuleuven.be/~abogdano/papers/present_ches07.pdf
http://homes.esat.kuleuven.be/~abogdano/papers/present_ches07.pdf
http://www.iacr.org/archive/ches2008/51540279/51540279.pdf
http://www.iacr.org/archive/ches2008/51540279/51540279.pdf
http://eprint.iacr.org/2012/529.pdf
http://eprint.iacr.org/2012/529.pdf
http://eprint.iacr.org/2009/191.pdf
http://eprint.iacr.org/2011/332.pdf
http://eprint.iacr.org/2011/332.pdf

block ciphers. In Christophe Clavier and Kris Gaj, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2009, volume 5747
of Lecture Notes in Computer Science, pages 272–288. Springer, 2009.
URL retrieved: 18-11-2013. http://www.cs.technion.ac.il/~orrd/

KATAN/CHES2009.pdf.

[16] Christophe De Canniere and Bart Preneel. Trivium. In Matthew
J. B. Robshaw and Olivier Billet, editors, New Stream Cipher Designs,
volume 4986 of Lecture Notes in Computer Science, pages 244–266.
Springer, 2008. URL retrieved: 18-11-2013. http://www.ecrypt.eu.

org/stream/p3ciphers/trivium/trivium_p3.pdf.

[17] Baudoin Collard and F-X Standaert. A Statistical Saturation Attack
Against the Block Cipher PRESENT. In Marc Fischlin, editor, Top-
ics in Cryptology – CT-RSA 2009, volume 5473 of Lecture Notes in
Computer Science, pages 195–210. Springer, 2009.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms (2nd Ed.). The MIT Press,
2001.

[19] Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving
circuit optimisation problems in cryptography and cryptanalysis. IACR
Cryptology ePrint Archive, 2011:475, 2011. URL retrived: 18-11-2013.
http://www.ima.org.uk/_db/_documents/Courtois.pdf.

[20] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES –
The Advanced Encryption Standard. Springer, 2002.

[21] Atmel datasheet. Atmel 8-bit AVR insruction set. URL retrieved: 18-
11-2013, http://www.atmel.com/images/doc0856.pdf.

[22] Atmel datasheet. Atmel 8-bit AVR microcontroller datasheet. URL
retrieved: 18-11-2013, http://tinyurl.com/klld65e.

[23] Thomas Eisenbarth, Zheng Gong, Tim Gneysu, Stefan Heyse, Se-
bastiaan Indesteege, Stphanie Kerckhof, Franois Koeune, Tomislav
Nad, Thomas Plos, Francesco Regazzoni, Franois-Xavier Standaert,
and Loc van Oldeneel tot Oldenzeel. Compact implementation and
performance evaluation of block ciphers in attiny devices. In Aika-
terini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptol-
ogy – AFRICACRYPT 2012, volume 7374 of Lecture Notes in Com-

54

http://www.cs.technion.ac.il/~orrd/KATAN/CHES2009.pdf
http://www.cs.technion.ac.il/~orrd/KATAN/CHES2009.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ima.org.uk/_db/_documents/Courtois.pdf
http://www.atmel.com/images/doc0856.pdf
http://tinyurl.com/klld65e

puter Science, pages 172–187. Springer, 2012. URL retrieved:. http:

//perso.uclouvain.be/fstandae/PUBLIS/108.pdf.

[24] Thomas Eisenbarth, Timo Kasper, Christof Paar, and Sebastiaan
Indesteege. Encyclopedia of Cryptography and Security (2nd Ed.).
Springer, 2011.

[25] Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, September 1972.

[26] Carsten Fuhs and Peter Schneider-Kamp. Synthesizing shortest lin-
ear straight-line programs over GF(2) using SAT. In Ofer Strich-
man and Stefan Szeider, editors, Theory and Applications of Satisfi-
ability Testing – SAT 2010, volume 6175 of Lecture Notes in Com-
puter Science, pages 71–84, 2010. URL retrieved: 18-11-2013. http:

//tinyurl.com/odfxblg.

[27] Brian R. Gladman. Software for efficient boolean function decom-
positions for the eight Serpent S-boxes and their inverses. URL
retrieved: 18-11-2013 http://gladman.plushost.co.uk/oldsite/

cryptography_technology/serpent/index.php.

[28] Mahadevan Gomathisankaran and Ruby B Lee. Maya: A novel block
encryption function. 2009. URL retrieved: 18-11-2013. http://palms.
princeton.edu/system/files/maya.pdf.

[29] Zheng Gong, Pieter H. Hartel, Svetla Nikova, and Bo Zhu. To-
wards secure and practical MACs for body sensor networks. In
Bimal K. Roy and Nicolas Sendrier, editors, Progress in Cryptol-
ogy – INDOCRYPT 2009, volume 5922 of Lecture Notes in Com-
puter Science, pages 182–198. Springer, 2009. URL retrieved: 18-
11-2013. http://doc.utwente.nl/67473/3/Towards_Secure_and_

Practical_MACs_for_Body_Sensor_Networks.pdf.

[30] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: A new family
of lightweight block ciphers. In Ari Juels and Christof Paar, editors,
RFID, Security and Privacy, volume 7055 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2011. http://doc.utwente.nl/73129/
1/The_KLEIN_Block_Cipher.pdf.

[31] Zheng Gong and Bo Zhu. Software Implementation of Block Cipher
PRESENT for 8-Bit Platforms, 2013. URL retrieved: 09-11-2013.

55

http://perso.uclouvain.be/fstandae/PUBLIS/108.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/108.pdf
http://tinyurl.com/odfxblg
http://tinyurl.com/odfxblg
http://gladman.plushost.co.uk/oldsite/cryptography_technology/serpent/index.php
http://gladman.plushost.co.uk/oldsite/cryptography_technology/serpent/index.php
http://palms.princeton.edu/system/files/maya.pdf
http://palms.princeton.edu/system/files/maya.pdf
http://doc.utwente.nl/67473/3/Towards_Secure_and_Practical_MACs_for_Body_Sensor_Networks.pdf
http://doc.utwente.nl/67473/3/Towards_Secure_and_Practical_MACs_for_Body_Sensor_Networks.pdf
http://doc.utwente.nl/73129/1/The_KLEIN_Block_Cipher.pdf
http://doc.utwente.nl/73129/1/The_KLEIN_Block_Cipher.pdf

http://cis.sjtu.edu.cn/index.php/Software_Implementation_

of_Block_Cipher_PRESENT_for_8-Bit_Platforms.

[32] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON
family of lightweight hash functions. In Phillip Rogaway, editor,
Advances in Cryptology – CRYPTO 2011, volume 6841 of Lec-
ture Notes in Computer Science, pages 222–239. Springer, 2011.
URL retrieved: 18-11-2013. http://www.ecrypt.eu.org/hash2011/

proceedings/hash2011_04.pdf.

[33] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Rob-
shaw. The LED block cipher. In Bart Preneel and Tsuyoshi Takagi,
editors, Cryptographic Hardware and Embedded Systems – CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011. URL retrieved: 11-8-2013. http://eprint.iacr.org/
2012/600.pdf.

[34] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream
cipher for constrained environments. In International Journal of Wire-
less and Mobile Computing, volume 2, pages 86–93, 2007. URL re-
trieved: 18-11-2013. http://www.ecrypt.eu.org/stream/ciphers/

grain/grain.pdf.

[35] Shoichi Hirose. Provably Secure Double-Block-Length Hash Functions
in a Black-Box Model. In Choon sik Park and Seongtaek Chee, editors,
Information Security and Cryptology – ICISC 2004, volume 3506 of Lec-
ture Notes in Computer Science, pages 330–342. Springer, 2005. URL
retrieved: 18-11-2013. http://repo.flib.u-fukui.ac.jp/dspace/

bitstream/10098/2310/1/p075.pdf.

[36] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length
Hash Functions. In Matthew Robshaw, editor, Fast Software Encryp-
tion, volume 4047 of Lecture Notes in Computer Science, pages 210–
225. Springer, 2006. URL retrieved: 18-11-2013. http://www.iacr.

org/archive/fse2006/40470213/40470213.pdf.

[37] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee,
Bonseok Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae
Jeong, Hyun Kim, Jongsung Kim, and Seongtaek Chee. Hight: A
new block cipher suitable for low-resource device. In Louis Goubin
and Mitsuru Matsui, editors, Cryptographic Hardware and Embed-
ded Systems – CHES 2006, volume 4249 of Lecture Notes in Com-

56

http://cis.sjtu.edu.cn/index.php/Software_Implementation_of_Block_Cipher_PRESENT_for_8-Bit_Platforms
http://cis.sjtu.edu.cn/index.php/Software_Implementation_of_Block_Cipher_PRESENT_for_8-Bit_Platforms
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_04.pdf
http://www.ecrypt.eu.org/hash2011/proceedings/hash2011_04.pdf
http://eprint.iacr.org/2012/600.pdf
http://eprint.iacr.org/2012/600.pdf
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://repo.flib.u-fukui.ac.jp/dspace/bitstream/10098/2310/1/p075.pdf
http://repo.flib.u-fukui.ac.jp/dspace/bitstream/10098/2310/1/p075.pdf
http://www.iacr.org/archive/fse2006/40470213/40470213.pdf
http://www.iacr.org/archive/fse2006/40470213/40470213.pdf

puter Science, pages 46–59. Springer, 2006. URL retrieved: 18-11-2013.
http://www.iacr.org/cryptodb/archive/2006/CHES/04/04.pdf.

[38] Michael Hutter and Peter Schwabe. NaCl on 8-bit AVR microcon-
trollers. In Abderrahmane Nitaj Amr Youssef and Aboul Ella Has-
sanien, editors, Progress in Cryptology – AFRICACRYPT 2013, volume
7918 of Lecture Notes in Computer Science, pages 156–172. Springer,
2013. URL retrieved: 18-11-2013. http://cryptojedi.org/papers/

avrnacl-20130514.pdf.

[39] Emilia Kasper and Peter Schwabe. Faster and timing-attack resistant
AES-GCM. In Christophe Clavier and Kris Gaj, editors, Cryptographic
Hardware and Embedded Systems – CHES 2009, volume 5747 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2009. URL retrieved:
18-11-2013. http://eprint.iacr.org/2009/129.

[40] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive
key search. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO
96, volume 1109 of Lecture Notes in Computer Science, pages 252–267.
Springer, 1996. URL retrieved: 18-11-2013. http://www.cs.ucdavis.
edu/~rogaway/papers/desx.pdf.

[41] Robert Konighofer. A fast and cache-timing resistant implementation of
the AES. In Tal Malkin, editor, Topics in Cryptology – CT-RSA 2008,
volume 4964 of Lecture Notes in Computer Science, pages 187–202.
Springer, 2008. URL retrieved: 18-11-2013. https://online.tugraz.
at/tug_online/voe_main2.getvolltext?pCurrPk=47852.

[42] Gregor Leander. Small scale variants of the block cipher present. IACR
Cryptology ePrint Archive, 2010:143, 2010. URL retrieved: 18-11-2013.
http://eprint.iacr.org/2010/143.pdf.

[43] Ruby Lee. Accelerating multimedia with enhanced microproces-
sors. In IEEE Micro, volume 15, pages 22–32, 1995. URL re-
trieved: 18-11-2013. http://www.princeton.edu/~rblee/HPpapers/

accelMultimediawEnhancedMicroproc.pdf.

[44] Ruby B. Lee. Subword permutation instructions for two-dimensional
multimedia processing in MicroSIMD architectures. In ASAP, pages 3–
14. IEEE Computer Society, 2000. URL retrieved: 18-11-2013. http:

//www.princeton.edu/~rblee/PUpapers/lee_asap00.pdf.

57

http://www.iacr.org/cryptodb/archive/2006/CHES/04/04.pdf
http://cryptojedi.org/papers/avrnacl-20130514.pdf
http://cryptojedi.org/papers/avrnacl-20130514.pdf
http://eprint.iacr.org/2009/129
http://www.cs.ucdavis.edu/~rogaway/papers/desx.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/desx.pdf
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=47852
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=47852
http://eprint.iacr.org/2010/143.pdf
http://www.princeton.edu/~rblee/HPpapers/accelMultimediawEnhancedMicroproc.pdf
http://www.princeton.edu/~rblee/HPpapers/accelMultimediawEnhancedMicroproc.pdf
http://www.princeton.edu/~rblee/PUpapers/lee_asap00.pdf
http://www.princeton.edu/~rblee/PUpapers/lee_asap00.pdf

[45] Ruby B. Lee, Zhijie Shi, and Xiao Yang. Cryptography efficient per-
mutation instructions for fast software. In IEEE Micro, volume 21,
pages 56–69, 2001. URL retrieved: 18-11-2013. http://palms.ee.

princeton.edu/PALMSopen/lee01efficient.pdf.

[46] Chae Hoon Lim and Tymur Korkishko. mCrypton - a lightweight block
cipher for security of low-cost RFID tags and sensors. In JooSeok Song,
Taekyoung Kwon, and Moti Yung, editors, Information Security Ap-
plications, volume 3786 of Lecture Notes in Computer Science, pages
243–258. Springer, 2005.

[47] Daniel Hulme Guangyan Song Martin Albrecht, Nicolas T. Cour-
tois. Bit-slice implementation of PRESENT in pure standard
C. URL retrieved: 18-11-2013. https://bitbucket.org/malb/

research-snippets/src.

[48] Jorge Nakahara Jr, Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin
Wang. Linear (hull) and Algebraic Cryptanalysis of the Block Ci-
pher PRESENT. In Atsuko Miyaji Juan A. Garay and Akira Ot-
suka, editors, Cryptology and Network Security, volume 5888 of Lec-
ture Notes in Computer Science, pages 58–75. Springer, 2009. URL
retrieved: 18-11-2013. http://www.ioc.ee/~tarmo/tday-meintack/

zhang-slides.pdf.

[49] Kostas Papagiannopoulos. Speed-optimized implementation of
PRESENT in AVR assembly. 2013. URL retrieved: 18-11-2013. https:
//github.com/kostaspap88/PRESENT_speed_implementation/.

[50] Kostas Papagiannopoulos and Aram Verstegen. Speed and size-
optimized implementations of the PRESENT cipher for Tiny AVR de-
vices. In Michael Hutter and Jorn-Marc Schmidt, editors, Radio Fre-
quency Identification, Lecture Notes in Computer Science, pages 161–
175, 2013.

[51] Krystian Matusiewicz Florian Mendel Christian Rechberger Mar-
tin Schlaffer Praveen Gauravaram, Lars R. Knudsen and Soren S.
Thomsen.

[52] The GNU project. AVR-Crypto-Lib. 2013. URL retrieved: 06-05-2013.
http://avrcryptolib.das-labor.org/.

[53] Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved
security of assembly code against leakage. IACR Cryptology ePrint

58

http://palms.ee.princeton.edu/PALMSopen/lee01efficient.pdf
http://palms.ee.princeton.edu/PALMSopen/lee01efficient.pdf
https://bitbucket.org/malb/research-snippets/src
https://bitbucket.org/malb/research-snippets/src
http://www.ioc.ee/~tarmo/tday-meintack/zhang-slides.pdf
http://www.ioc.ee/~tarmo/tday-meintack/zhang-slides.pdf
https://github.com/kostaspap88/PRESENT_speed_implementation/
https://github.com/kostaspap88/PRESENT_speed_implementation/
http://avrcryptolib.das-labor.org/

Archive, page 554, 2013. URL retrieved: 18-11-2013. http://eprint.

iacr.org/2013/554.pdf.

[54] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice
implementation of AES. In David Pointcheval, Yi Mu, and Kefei Chen,
editors, Cryptology and Network Security, volume 4301 of Lecture Notes
in Computer Science, pages 203–212. Springer, 2006.

[55] Zhijie Shi and Ruby B. Lee. Bit permutation instructions for accelerat-
ing software cryptography. In Proceedings of the IEEE International
Conference on Application-Specific Systems, Architectures and Pro-
cessors, pages 138–148, 2000. http://www.princeton.edu/~rblee/

PUpapers/shi_asap00.pdf.

[56] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda,
Toru Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight block-
cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2011, volume 6917 of Lec-
ture Notes in Computer Science, pages 342–357. Springer, 2011.

[57] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-bit blockcipher CLEFIA (extended abstract). In Alex
Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer
Science, pages 181–195. Springer, 2007. URL retrieved: 18-11-2013.
http://www.iacr.org/archive/fse2007/45930182/45930182.pdf.

59

http://eprint.iacr.org/2013/554.pdf
http://eprint.iacr.org/2013/554.pdf
http://www.princeton.edu/~rblee/PUpapers/shi_asap00.pdf
http://www.princeton.edu/~rblee/PUpapers/shi_asap00.pdf
http://www.iacr.org/archive/fse2007/45930182/45930182.pdf

	Introduction
	Lightweight ciphers
	AVR ATtiny architecture

	The PRESENT cipher
	Introduction
	Implementation motivation
	Lookup tables for the PRESENT cipher
	The bitslicing technique
	Bitslicing the PRESENT cipher
	Substitution layer under bitslicing
	Efficient software implementation of boolean functions
	Permutation layer under bitslicing
	Key precomputation and update under bitslicing
	Key XORing under bitslicing

	Performance

	The KATAN cipher
	Introduction
	Implementation motivation
	Implementing KATAN cipher
	Key precomputation of the KATAN cipher
	Parallel bit operations on fa,fb non-linear functions

	Performance

	PRINCE cipher
	Introduction
	Implementation motivation
	Nibble-slicing the PRINCE cipher

	Conclusions

