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Abstract

This research project aimed to make improvements to the way blind learners in the
Netherlands use mathematics in an educational context. As part of this research, con-
textual research in the field of cognition, braille, education, and mathematics was con-
ducted. In order to compare representations of mathematics in braille, various braille
codes were compared according to set criteria. Finally, four Dutch mathematics curricula
were compared in terms of cognitive complexity of the mathematical formulas required
for the respective curriculum.

For this research, two main research methods were used. A literature study was
conducted for contextual information regarding cognitive aspects, historic information
on braille, and the education system in the Netherlands. Interviews with experts in the
field of mathematics education and braille were held to relate the contextual findings to
practical issues, and to understand why certain decisions were made in the past.

The main finding in terms of cognitive aspects, involves the limitation of tactile and
auditory senses and the impact these limitations have on textual aspects of mathematics.
Besides graphical content, the representation of mathematical formulas was found to be
extremely difficult for blind learners. There are two main ways to express mathematics in
braille: using a dedicated braille code containing braille-specific symbols, or using a linear
translation of a pseudo-code into braille. Pseudo-codes allow for reading and producing
by sighted users as well as blind users, and are the main approach for providing braille
material to blind learners in the Netherlands. A comparison based on set criteria allowed
us to conclude that dedicated braille codes are significantly better at assisting the reader
than pseudo-codes are. The comparison of mathematics curricula in the Netherlands
confirmed the representation problems; the less popular mathematics curricula involve
more mathematical formulas of higher cognitive complexity.
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1. Introduction

For many years it has been common to enroll blind children in regular, non-special edu-
cation, making use of the same teaching methods and materials that are used for sighted
children. These teaching methods and mateirals are made accessible by introducing as-
sistive aids such as laptops, computer software and digitized or tactile textbooks. In
some subjects, however, the way blind children learn in combination with the available
assistive aids form a problem. One of these subjects is mathematics, where not only
multi-dimensional graphics are used, but mathematical formulas and the braille system
are limiting factors as well. The teaching methods offered, often rely on visual aspects,
increasing the difficulty blind children will have.

1.1. Objective

In this thesis the focus lies in the limitations of the braille system in the field of mathe-
matics. The aim is to research the possibilities of braille codes that support mathematics
and thereby make mathematics education for the blind more accessible. Because a va-
riety of braille codes is used in the world, we want to know how these braille codes
can be compared. Additionally we show that one of the reasons certain mathematics
curricula in the Netherlands are relatively unpopular among blind learners, is related to
the complexity of its mathematical formulas. We achieve this by using a model to com-
pare mathematical formulas in terms of complexity, and applying this model on Dutch
mathematics curricula.

1.2. Research questions

The main question that is answered in this thesis is:

e How complex are mathematical formulas and how can they be represented in
Braille?

In order to answer this main question, the following sub-questions are answered in
the chapters of this thesis. Question 1 will be answered in chapter 3, whereas chapter
4 will cover questions 2, 3 and 4. The core of this research are questions 5 and 6, that
are answered in chapters 5 and 6 respectively. A summary of the answers to these sub-
questions, as well as the answer to the main question, is presented in the concluding
chapter on page 47.

1. How do blind children learn in comparison to sighted children?

2. What advancements to the braille system have been made to support blind learners
in the field of mathematics?



3. How is mathematics taught in the Netherlands
4. What technological development support blind learners in the field of mathematics?
5. In what way can braille codes be compared?

6. In what way can mathematics levels be compared in terms of complexity of math-
ematical formulas?

1.3. Research methods

For this research, two main research methods have been applied, being literature research
and interviews. Scientific papers as well as published articles and books have been
referenced in order to answer the contextual questions related to cognition of blind
children, the braille system, and technology. Interviews have been conducted to answer
questions regarding education, the use of technology, and the way blind learners in the
Netherlands experience mathematics. These interviews were held with mathematics
teachers and educational coaches of blind learners, and blind individuals that already
passed high school. Interviews often led to new sources of information such as articles
and books.



2. Braille code

Braille is a tactile writing system used by blind people around the world, that was
originally described in 1829 by Louis Braille. Louis Braille had been blind since the age of
three, and started development of the braille system when he was 16 years old, to publish
it four years later. At the time, the system did not cover much more than the French
alphabet and few punctuation marks. Since then, many countries have customized
the original Braille system to meet the specific requirements with respect to diacritical
letters of their own language. Since many of these changes were made on a national level
because of differences in language and character set, many braille tables are currently in
use around the world.

In addition to literary braille, braille systems for special application areas such as
music, mathematics and science have been developed. There is also a braille system
for languages that mainly use symbols, such as Chinese. These systems often use a
similar representation to writing without the use of symbols, by describing the sounds]1].
Although the music notation has been widely accepted|[2], braille codes and tables for
mathematics and science vary a lot[3]. The differences between these braille codes for
mathematics and science, as well as the differences between braille tables are described
in more detail in chapter 4.1. The following paragraphs cover the differences between
classes of literary braille that are used around the world.

2.1. Standard Braille

The standard braille system is directly based on the work by Louis Braille, and uses a
character set composed of 6 dots per cell. In this system, combinations of raised dots
form characters that span one or multiple cells. The main structure of a braille cell, as
shown in figure 2.1, is the 6-dot pattern that is also used on dice. Dots in the left column
are numbered 1-2-3, and dots on the right column are numbered 4-5-6.

1004
2005
3006

Figure 2.1.: Standard 6-dot braille cell pattern

When represented on paper, braille dots are 1.44mm in diameter and distance between
the center of two horizontal or vertical dots is 2.340mm. Raised dots are typically
0.48mm in height, whereas inactive dots are not raised at all[4]. Braille is by nature
entirely linear, which means that readers use their (often index) fingers to read from left
to right, to continue on the next line. This reading tactic is necessary mainly because



of the successive nature of tactile senses opposed to the simultaneous nature of sight.
Seeing large structures and recognizing words at the same time is possible, whereas touch
is limited to the position of fingers or other body parts.

L ] L L L] L L] L] L 1] .e L [ ] L ]
L ] L ] [ ] L L1 L L L] (1]
A B C D E F H I 1J
L] . .e L1 L ] L1 L] L] Y [ ]
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KL M N P Q R S T
L] b L] L L] (1]
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oe 8 L] L L] L L] .

U W X zZ

Figure 2.2.: Original braille table as defined by Louis Braille

Using only combinations of six dots essentially results in 64 unique characters including
one space character in which no dots are raised. The standard alphabet of braille, as
shown in Figure 2.2, follows a repeating pattern in the upper four dots that resets after
each 10th letter. The first ten letters, a-j, use 00 (no raised dots) in the bottom row.
These ten letters are followed by 10 characters for letters k-t with 10 in the bottom row
(dot 3 is raised). The final letters u-z have 11 in the bottom row (dot 3 and 6 are both
raised). The letter w is an exception to the ordering in the upper four dots, because at
the time Louis Braille designed the system in 1825, this letter was not considered part of
the standard French alphabet. This standard alphabet leaves 37 dot patterns for further
encoding, of which some are used for punctuation marks and context indicators (e.g.
upper case characters, numbers). The sequence of patterns in the original alphabet is,
unlike the unicode implementation of braille symbols [5], not based on a mathematical
model. This can be explained by the age of Louis Braille when he first developed the
system; he was only 16 years old when development started. Although no standard is
described for international braille, ISO standards starting with ISO/TR 11548-1! provide
multiple (but possibly not all) standardized correspondence tables as well as invocation
sequences to indicate context switches.

In order to increase the number of braille symbols, special multi-character represen-
tations of symbols are used. This is often achieved using modifier signs, that change
the context of the upcoming structure. Figure 2.3 shows examples of modifier signs to
indicate numbers and capitals letters. In many countries a similar approach is used for
foreign letters and accented letters. As one only needs upper-, and lower case letters,
numbers, punctuation marks and a small set of special characters for literary material[6],
the use of modifier characters for such material is considered satisfactory. However, it
has been argued that for mathematics the system of modifier symbols is "not an ideal

'1SO/TR. 11548-1 refers to ” Communication aids for blind persons”



solution” [3]. The main reasoning behind such statements is related to the high amount
of context switches that is required to minimize problems of ambiguity.

Modifier | Meaning Braille | Example
\cf Capital Follows | :; e \ef a ™~ A
\nf Number Follows | :: SR \nfax1

Figure 2.3.: Modifier signs for capitals and numbers in braille

2.2. Linearity

For mathematical equations, all normal characters can be used as well as a large number
of special characters such as arithmetic operations and Greek letters. Because the use
of upper-, and lower case letters in combination with numbers, the need for modifier
symbols is higher in the field of mathematics, in comparison to literary material. This
increases the size and complicates mathematical material in braille. Another issue for
learning mathematics in braille is linearity. Text is typically linear, which means that
letters are on the same line and typically span no more than one line in height. In
mathematics, anything but the simplest math is not normally represented in a linear
way|3]. Very basic equations such as y=ax+b can be considered linear, but when pow-
ers, fractions or spatial functions such as summations are involved, translation to braille
becomes a problem. For that reason, spatial structures in written text have to be lin-
earized in order to be represented in braille[3]. This linearization process often increases
the size of the formula, and also makes reading more difficult. The previously mentioned
context-sensitive meaning by modifier characters, may cause even more problems in the
field of mathematics. An example of such ambiguity problems involves the letter ”a”,
that could, depending on the braille table that is used, represent an ”a”, ”A”, and 71”7,
be also the Greek letter alpha (a), or a comma symbol. When grouping by means of
parentheses, braces or brackers is used, mathematical content increases in size even more,
and thereby becomes harder to read. An increased size of braille content will require
more time to read, as one can only read one character at a time.

2.3. Braille Grades

Braille reading is done in a linear way, from left to right. This linear method of reading
makes reading braille material a lot slower than reading print would be for sighted read-
ers; depending on individual reading skills, it can take twice as long to read braille. To
reduce the problem of generally slower reading, many adjustments to the braille system
have been made in the form of so-called ”Braille grades”. Most of these changes were
made on a national level, because of the different languages in the world, and the lack
of standardization in the past. Standard braille is, in many countries, also referred to as
Grade-1 braille or uncontracted braille. In contrast, Grade-2 braille is referred to as con-
tracted braille and aims to decrease size by contracting common words in the applicable



language. In Unified English Braille[7] some contractions use alphabetic word signs, and
thus add an additional meaning to certain letters. A list of single-letter abbreviations
for words in Unified English Braille is shown in Figure 2.4. Examples of alphabetic word
signs are the letters "b” and ”c¢”. Their meaning can be the word "but” and ”can” as
well. Other contractions make use of modifier characters or multi-character abbrevia-
tions. Special modifier characters are used to switch between various braille grades in
a similar way context switches are used for capital letters and numbers. Because of the
various languages in the world, these contractions are commonly used on a national level

only.

; bllit c;n do evle'ry fr&n go h;;e Just knov&;fl:edge
li:I;e mére nc;t pez):ple qllite ra‘éiler 50 tlzlét ub very
vx;i:ll 1t y;u as a;d f:O:I" of til.e Wlth chﬂ:d; /ch
gh sheil;/ sh thi:/th WhiC:f:I /wh ed er ou‘; / ou c;w bb CC

dd en gs/ :vifere 1n st mg ar

Figure 2.4.: Single-letter abbreviations in Grade-2 Unified English Braille. Based on

Simpson|[7]

In addition to Grade-2 braille, there have been initiatives for an even higher level of
contractions in braille[8]. The most well-known ones being Adam Speed Braille, Braille
Shorthand and Grade Three braille. These braille codes are, like Grade-2 braille, based
on the English language and offer abbreviations for words as well as phrases. Learning
of these braille codes either involves special training courses, or reading a lot of textual
material on the rules of these codes. In some methods, such as the Braille Shorthand,
these rules may conflict with the standard Grade-2 braille rules.

A well-known method for shortening written braille material is the use of 8-dot cells
rather than 6-dot cells. In this approach dots 7 and 8 are placed directly below dots 3
and 4 respectively. These dots can then be used to modify characters without the need
for additional modifier symbols; an extra dot-8 could indicate a capital or number. This
approach is mostly used in computer-braille, because most refreshable braille displays
contain cells that count 8 dots. 8-dot braille is not common in printed material. An
alternative to using dots 7 and 8 for modifier characters, is the use of a different character
set; having 8 dots in total means there are 256 possible braille patterns (including a space)
instead of the 64 combinations in standard braille. As many braille readers are already
familliar with the existing system, adoption of such expanded system seems unlikely.



3. Cognitive Aspects

Aside from the way the braille system is generally used, it is also important to look at the
way blind individuals learn in comparison to sighted people. This mainly involves the
use of memory and acquisition of cognitive skills. In order to relate this to mathematics
further on in this research, three main subjects are discussed in this chapter. These
subjects involve acquisition of cognitive skills, understanding of language, numbers and
shapes, and concept formation of spatial objects. Most research on this subject, in
relation to learning, is done on children.

One important factor in each of these subjects involves the concept of Cognitive Load.
Cognitive Load is described by Cooper[9] as ”The total amount of mental activity im-
posed on working memory at an instance in time”. Cognitive Load greatly influences
the way people learn; it is believed that people cease to learn when the Cognitive Load
is either extremely low or extremely high[10]. For blind learners this is particularly im-
portant, as they are limited to senses with a successive nature that donot allow for an
overview of the material they are reading. This practically means that material that is
read, has to be remembered entirely in order to apply it, increasing the cognitive load.

3.1. Acquiring cogpnitive skills

Many differences between sighted and blind children have been proven by research fo-
cussed on young children. These differences are mostly related to the senses used, and
how these senses make for an mental image’ of reality that is significantly different from
that of sighted children. Acquiring cognitive skills by blind individuals is limited by
the use of all senses except vision. The most important channels of skill learning are
auditory, tactile and kinesthetic senses. Both auditory and tactile senses are successive
by nature, in comparison to the simultaneous character of visual perception. This limi-
tation of tactile senses makes the perception field of blind individuals significantly more
narrow than that of sighted individuals.

Gouzman|[11] states that "the process of concept formation in blind learners is domi-
nated by two extremes: extremely abstract verbal notions that have little support in the
learners’ experience, and the extremely concrete tactile images of everyday life objects
that possess little potential for generalization.”. In addition, Vanlehn[12] applied a frame-
work for motor skill acquisition on cognitive skill acquisition, and describes sub-phases
of the early, intermediate and late phase of skill acquisition. During the intermediate
phase, the concept of generalization is described as ”the process of modifying one’s un-
derstanding of an example or principle in such a way that surface information does not
play a role in retrieval, mapping, and application”. Because most concrete objects blind
individuals perceive in daily-life don’t allow for much generalization, the skill of gener-
alization (something Vanlehn suggests is not an automatic process) could be limited as



Nelson 1973 (sighted) | Mulford 1988 (blind)
Specific nominals | 14 22
General nominals | 52 38
Action words 13 24
Modifiers 11 6
Personal-social 9 13
Function words 5 3

Table 3.1.: Percentages of word categories part of the first 50 words of blind and sighted
children, source: Warren[13].

well. In education, this could form a limitation, especially with the educational methods
that rely on relations between abstract information and real-life objects.

Spontaneous exploration of two dimensional graphics by blind individuals is often
done using a similar approach they apply for reading braille. Gouzman[11] describes
that individuals scan for horizontal lines using one finger, a method he calls ”abso-
lutely inadequate for the exploration of tactile images”. During his experiment some
individuals also applied this technique on three-dimensional objects. The lack of ade-
quate technique could lead to underdevelopment of skills such as comparative behavior
directed at tactile images. Spontaneous comparison, something important for general-
ization mentioned before, is therefore less common.

3.2. Understanding language, numbers and shapes

Understanding language starts with speech, but on the subject of ’first speech’ no consis-
tent differences between blind and sighted children has been proven[13]. When looking
at the first 50 words of sighted children compared to blind children, differences can how-
ever be observed. Warren[13] summarizes the results of various research conducted in
his book. A copy of this summary is shown in Table 3.1.

The categories of words are specific nominals (names of people, toys, pets), general
nominals (names of classes of objects, e.g. "dog”), action words (showing a manner or
direction of action, e.g. "up”), modifiers (qualities of objects, e.g. "hot”), personal-social
words (used in social interaction, e.g. "thank you”) and function words (e.g. ”what’s
this?”). The research, although among a small sample group (n=9 for blind, n=18 for
sighted), significant differences can be seen. The biggest difference is identified with
nominals; blind children tend to speak more of instances of objects/persons, whereas
sighted children speak significantly more of classes of objects.

Besides speaking, reading is also an important factor when it comes to understanding
language. Research has proven that consuming written material depends highly on the
reading skills of the individual[14]. For assessing reading skills in the United Stats,
the Oral Reading Fluency measure is used, which is based mostly on the amount of
words per minute that can be correctly read. The study conducted by Helwig[14] also
proves that reading skills highly influences mathematical skills, and thereby influence
the understanding of numbers. Helwig states that “Low Oral Reading Fluency - High



Mathematics” students tend to be more successful when solving complex problems via a
video presentation, indicating that reading can be a significant obstacle in mathematics.
Gordon[15] found that the median reading speed for braille readers was 124 words per
minute, compared to a median of 251 words per minute for normally sighted print
readers.

Researchers have studied the role of hearing in an educational context, and related
this to the memory of blind individuals. When hearing numerical sequences, studies
show that sighted children are able to perceive up to seven numbers from hearing, by
using their fingers as a tool to remember them. Blind children are able to perceive seven
to eight numbers without using any tools, whereas some blind children were able to
perceive many more[16]. During the research Ahlberg conducted, not one of the blind
children used their fingers as a tool, which indicates that they were not aware of their
fingers when doing arithmetic operations. This also suggests that the cognitive load
while doing the same arithmetic operations is significantly higher for blind children, in
comparison to sighted children.

Although not specifically for blind children, research on how children of a higher age
learn best has been conducted. In the context of mathematics, it has been proven that
learning from examples greatly increases the speed at which material is learnt[12]. There
are two main ways for learners to use examples: studying examples before starting the
assignment, or referring back to the examples while doing an assignment. Research in
1989 showed that the first approach, that involves explaining an example for oneself, re-
sults in the pupil learning faster. Referring back to examples while doing the assignment
can have a spontaneous or deliberate nature, where the spontaneous nature is commonly
based on superficial similarities between the example and the assignment. These simi-
larities can be lingual or structural, and in some cases result in wrong use of formulas in
particular. Deliberate retrieval of examples is less common, but generally has better re-
sults. When this approach is aimed at by teachers, the relation between the assignment
and the example is typically hidden. Generally speaking, structural similarities often
resulting in spontaneous retrieval of examples are less of a distraction for blind pupils,
but the lingual ones may therefore play a bigger role. Strategies for learning by either
studying examples before starting the assignment or referring back to them later can be
used by blind pupils as well, although reading back (and thereby searching) may take
more time.

When looking at the way mathematical equations are read, sighted pupils use different
strategies. It seems that in half of the equations tested by Gillian[17], the sighted
pupil made an initial scan to get to know the structure of the mathematical equation.
Additionally, most of the participants in his research read from left to right in the same
way they would read text, but frequently scanned back to previously read elements.
Finally, the concept of chunking was very common. This concept involves solving parts of
the equation first, often those within parentheses, to apply the outcome on the equation
later. Most of these approaches are a lot harder for blind pupils to apply because of the
forced linear way of reading. Scanning for the global structure and scanning for chunks
is impossible, so reading the full equation is required. This increases the previously



mentioned cognitive load.

An important part of high school mathematics involves reading of shapes, maps, di-
agrams and graphs. When reading such material, various cognitive problems play a
role. The previously mentioned successive nature of tactile perception forms the first
problem. Gouzman[11] describes that ”"The whole tactile picture thus remains beyond
the spontaneous grasp of the learner”. Another related problem has to do with size,
direction and proportion: two circles of different sizes may be perceived to be identical
by blind learners, and blind learners often don’t know their own body size in relation to
the surrounding objects and environments. In terms of mathematics, exploring graphs
and reasoning about steepness of lines in comparison to other lines become problems.

3.3. Spatial concepts

Describing spatial concepts logically involves physical properties of those concepts. How-
ever, when blind children are asked to describe properties of an object, they often men-
tion visual properties they cannot perceive themselves. Other researchers have confirmed
that speech of blind children is often ”less firmly connected to their sensory experience”,
but whether this in fact forms a problem is unclear|[6].

When assigning a task related to the position of objects or body parts in a multi-
dimensional environment, it has been proven that blind children complete this task
differently. One of the research examples included the task of drawing a straight line
between two objects on a drawing board. Sighted children (aged 6-11) were able to use
external reference points (e.g. borders, edges). In contrast, blind children of the same
age were less aware of the relation between the objects and their position on the board;
they tended to rely on internal accuracy instead[6]. David Warren stated: ”Although
there was a general improvement in performance of increasing age from 6 to 11 years,
age was not a strong predictor for performance”.

A research project by Hermelin and O’Connor in 1971[18] is slightly different in ap-
proach. They studied the concept of external referencing for blind, seeing and autistic
children. During a training session they assigned words to the first two fingers of each
hand, that were carefully placed on adjoining surfaces. No instruction was given on
how they should remember the words, but it turned out that most blind children (75%)
used their fingers as reference points rather than their location. With sighted children,
only 40% used their fingers as reference. Researchers call this ”Egocentric referencing of
spatial information”, which in relation to mathematics can be an obstacle when it comes
to graphs, tabular information, lines and geometric figures.

10



4. State of the art

In the previous chapters we discussed how the the standard braille system works and
what the influences of blindness are on cognitive skills and cognitive skill acquisition.
In order to relate this to mathematics education, we will look at the state of the art
from three viewpoints. These viewpoints include the braille system and its dialects and
advancements to support mathematics, the way mathmatics is taught to the blind, and
the way technology assists blind learners.

4.1. Braille Notations

In order to make mathematics more accessible for the blind, many projects arose[3].
Karshmer describes the braille code to be ”sufficient but far from perfect for normal
writing”, but with mathematics and science more problems occur. Although the 26
letters of Western alphabet remained mostly the same, the braille tables used vary by
country for most other symbols. The need for specific mathematics codes in braille comes
from the inability to write spatially arranged formulas in braille, which is especially a
problem in the field of algebra. To target this limitation of braille, multiple codes
specifically for mathematics and science were developed including the Nemeth Braille
Code in the United States, Unified English Braille in Great Britain and the Woluwe Code
in Dutch-speaking parts of Belgium[6]. Other mathematics codes include the Marburg
Code (on which Woluwe was based), the French Maths Code and ItalBra (used in Italy).
Additionally, the LaTeX notation, and variations of it, are commonly used to allow for
easier communication with sighted users. Such notations are however not considered
braille codes, because they still requires translation to braille[19].

Karshmer describes the various notations as a static approach to making mathemat-
ics more accessible. The mathematical content is simply translated to braille, where the
user can navigate through the content but the content does not change. An alternative
for this so-called static approach, would be to provide mathematical content in a more
dynamic way[3]. In such approach, the user can, after a conversion process, navigate
through the mathematical content in accordance with its mathematical structure. This
could theoretically reduce the problems discussed in the previous chapter.

Approaches to making mathematics more accessible vary on two levels:
e The way numbers are encoded

e The way mathematical equations are encoded

11



4.1.1. Encoding numbers

There are four main ways to encode numbers in braille: Standard Braille, French grade
1 and 2, Antoine and the US Maths and Science notation. These approaches all come
with advantages and disadvantages when it comes to ambiguity or size of the resulting
structure. Number notations have been point of discussion for a long time; the Inter-
national Council on English Braille (ICEB) documented a discussion on numbers that
was held between November 1993 and January 1994[20]. The decisions made during
that discussion were eventually implemented in the Unified English Braille standard,
and involve the use of the standard number indicator from standard braille. In the
Netherlands no such discussion has been documented, but the same approach is used
in education. When refreshable braille displays are used, the French notations are also
used. The following is an overview of the used number notations in the world.

Standard braille makes use of the number number sign as introduced by Louis
Braille in the original braille table. It is known around the world, and has only one
disadvantage: It takes one extra symbol for each group of numbers.

French grade 1 and 2 make use of the sixth dot as a replacement for the number
sign, and adds the sixth dot to the normal characters for letters a-j. There is no real
advantage when it comes to size of the structure, but ambiguity is reduced by numbers
no longer having the exact same symbol as letters. This ambiguity is still there with less
common symbol.

Antoine uses the additional sixth dot in a similar way as French grade 1 and 2, but
only adds a number sign if ambiguity is an issue. Size is therefore decreased compared to
standard braille. The other advantage over standard braille is that using 8-dot braille,
where dots 7-8 are below 3-6, the 8th dot can be used as a number sign. This saves space
and resolves ambiguity. 8-dot braille is common when refreshable braille displays are
used, more information on this subject can be found in chapter 4.3. The disadvantage
is only visible with 6-dot braille; some numbers may appear as less common symbols, in
which case the number symbol is still required.

US Maths and Science makes use of lowered letters a-j, and only uses the standard
number sign in case of ambiguity. The disadvantage is that many numbers will appear
as other characters such as punctuation marks. For that reason the traditional number
sign is still required in many cases.

To illustrate the differences between the previously discussed number notations, the
number 12 is encoded using the above methods in Table 4.1.
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Notation Representation

Print 12
Standard braille SRS
French grade one two Lo
Antoine RS

U.S. Maths and Science

Table 4.1.: Ways to write numbers in Braille

4.1.2. Encoding mathematical equations

Besides number notations and varying symbols, the way mathematical equations are
represented in braille varies by country as well. A linear translation of symbols into
braille is uncommon; most countries offer a set of dedicated symbols to encode equa-
tions instead. This way mathematical structures such as fractions and summations are
encoded using newly introduced symbols. A comparison of known braille codes that are
discussed in this paragraph, can be found in chapter 5.2, which also provides examples
of formulas from the mathematics curricula in Dutch secondary education.

The first English braille code for mathematics is the Taylor code, which was used in the
United States in 1946 and originated from Great Britain. The Taylor code contained a lot
of grouping symbols, was very simplistic! and did not provide all mathematical symbols
and structures that are used in high school mathematics. It was therefore considered
not suitable for secondary (or higher) education by the blind mathematics teacher Dr.
Abraham Nemeth.

Nemeth code

In order to solve the problems people experienced with the Taylor code, Dr. Abra-
ham Nemeth described a more efficient way of encoding mathematics, that was called
Nemeth code. This code has been in use in North America, Australia and New Zealand.
Development started in 1946, and the specification was published for the first time in
1952. Two major revisions were published in 1965 and 1972[21]. The Nemeth code was
originally based on the way Dr. Nemeth wanted pupils to read out formulas, where he
replaced the words (e.g. ”Fraction start”, ”Square root”, ”Superscript”) by symbols
unique to braille. The weakness of the Nemeth code is its complexity and high number
of indicators and additional symbols. A survery conducted by Amato[22] shows that in
the United States 20% of the teacher preparation courses don’t offer instructions for the
Nemeth code. Additionally, in 25% of the programs graduates were believed not to be
competent in the Nemeth code because of limited instructional time. Amato[23] states
that 39.6% of the participants in his survey completed a course in both literary braille

Information about Taylor code, only available through the Google cache of http://www.
unifiedbrailleforall.com/
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and the Nemeth code, and 33.6% completed a course that covered both codes.

Unified English Braille

A cooperation between multiple countries called the International Council on English
Braille developed a braille code called Unified English Braille (UEB). This standardized
notation was developed in the 1990s and uses a different set of symbols and grammar
than the Nemeth code. It is mainly based on the notation previously in use in the
United Kingdom, which is called English Braille. Development of UEB code is done by
the International Council on English Braille (ICEB) of which Australia, Canada, New
Zealand, Nigeria, South Africa, the United Kingdom and the United States are member.
The goal of the cooperation is to create a unified standard for both literary and math-
ematical content for countries of which English is the main language[24]. Although the
UEB code and the Nemeth code vary a lot in terms of braille tables and specific sym-
bols, the theory behind it is the same; symbols are introduced to replace mathematical
functions and structures.

During user research in the United Kingdom, conducted prior to the official intro-
duction in 2011, technical material encoded with UEB was provided to blind students
without providing symbol lists or other explanations of UEB. These users were not used
to UEB prior to this research, but had the knowledge to complete the given assign-
ments. This research showed both advantages and disadvantages of the UEB code[25].
The biggest advantage over other braille codes is that is is relatively easy to learn; only
few mistakes were made in technical material, and most confusion was related to symbols
being changed from the code they were used to. Other advantages are related to the
ease of transcription and conversion; only one braille code is used for both technical and
literary material, and this code more closely reflects print. The biggest disadvantage and
criticism against UEB, is the space it requires. Many common mathematical symbols
(such as arithmetic operators) require two or three braille cells[7], which results in signif-
icantly longer formulas that in turn are harder to understand. Additionally, the amount
of space characters used in UEB are significantly higher than is common in other braille
codes.

Woluwe code

In 1975 a braille code was developed for Dutch-speaking parts of Belgium and the Nether-
lands. This code is known as Notaert as well as Woluwe code, and is based on the German
Marburg code. The code had been in use in education for 30 years without much dis-
cussion[26], but has seen revisions, some of them recently in 2011[27]. Similar to the
Nemeth code and UEB, symbols are introduced to replace common mathematical func-
tions and structures, and a different braille table and set of special symbols are used.
Most criticism on the Woluwe code is targeted at practical problems also occurring in
other codes; creation using qwerty keyboards isn’t possible, and teachers have problems
teaching the code to blind learners. Additionally, the non-lingual nature of the notation
makes it hard to understand for sighted users. The advantages are that encoded formulas
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using Woluwe are relatively short, even when spaces are included to indicate arithmetic
operators.

Dedicon code

In the Netherlands a new encoding for mathematical equations was introduced in 2009,
that aimed to make information equally readable for blind and sighted users. This code
is not a dedicated braille code and does not describe braille symbols; instead, symbols
used on a computer keyboard are used. When physical books are produced, the Dutch
braille table is used, but personal communication indicated that most learners don’t use
the Dutch braille table when working on a computer. The Dedicon code can be best
described as a linearization using a similar approach as used in mathematical computer
software such as Microsoft Excel. Figure 4.1 shows an example formula using Dedicon
encoding in comparison to a standard (two-dimensional) notation.

— 2
Standard formula T = H\gﬂ
a

Dedicon encoded formula =z = —b+ sqrt(b"2 — 4ac)/2a

Figure 4.1.: Linearization of a mathematical formula using the Dedicon code

Although this linearization is readable for both blind and sighted users when a com-
puter is used, it is still believed to be complex to read. The use of grouping symbols
is required, abbreviations are relatively long (especially compared to dedicated braille
codes), and exact displaying of mathematical content depends highly on the software
and braille table that is used. In personal communication it has been said that the
code is based too much on what is displayed on the computer screen, rather than the
refreshable braille display of the blind learner.

4.2. Mathematics Education

In order to look at the way braille can be applied on mathematics in the context of educa-
tion in the Netherlands, we will assess the way mathematics is taught in the Netherlands.
In this chapter we will discuss the structure of Dutch mathematics education, the teach-
ing goals and methods that are used, and the teaching materials that are used. We will
focus on the VWO (pre-university) levels. Most information in this chapter was gathered
using interviews with mathematics teachers, educational coaches and blind learners.

4.2.1. Mathematics Curricula

The focus of this research is on the various VWO (pre-university) curricula for mathe-
matics. Learners choose one of four available levels: Mathematics A, B, C and D. These
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levels involve different domains of mathematics, and aim to prepare learners for specific
study directions. The levels are not ordered in increased or decreased complexity by
definition; mathematics B does not necessarily have a higher or lower workload than
mathematics A. The system in use now was introduced in 1999, but has seen its latest
revision in 2007[28].

Mathematics A has a focus on applied mathematics, and prepares students for eco-
nomic, social and medical studies. Mathematics A contains the domains of functions
and graphs, discrete analysis, collections and probabilities, differential equation calcu-
lations and application, and statistics and probability calculations[29]. Mathematics B
is considered to cover more of the fundamentals of mathematics, and prepares students
for the more technical (Beta) studies. Mathematics B contains domains of functions
and graphs, discrete analysis, differential and integral equation calculations, goniomet-
ric functions and advanced geometry[29]. Table 4.2 shows the domains associated with
the Dutch mathematics curricula A and B. Mathematics Mathematics C is considered a
preparation for social, cultural, legal, language and societal studies on a scientific level,
and is similar to Mathematics A[30]. Mathematics D is an expansion of mathematics B,
and has a more scientific nature[28].

Mathematics A | Mathematics B
X

Functions and graphs

Discrete Analysis

Collections and probabilities
Differential equation calculation

and application

Statistics and probability calculation
Integral calculation X
Goniometric functions X
Advanced geometry X

slkaiialls

o

Table 4.2.: Domains covered in Dutch pre-university mathematics levels

From a list of blind learners enrolled in secondary education in the Netherlands that
was made available by Koninklijke Visio, as well as interviews with education coaches
from the same organisation, it has become clear that mathematics levels B (and D) are
rarely chosen by blind learners. This is also confirmed by teachers of blind learners,
and blind former-students. Reasons for this phenomenon that were mentioned in inter-
views, involve the more complex formulas and equations, as well as the spatial nature
of mathematical content mainly in the domains of geometry and goniometry. Addition-
ally, graphical calculators, spatial figures, and the braille code to express mathematical
content form problems for blind students in the Netherlands[31]. No research has been
done to identify or prove the causes for this phenomenon as far as we could find.
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4.2.2. Teaching Goals

In the Netherlands it has become common to enroll blind learners in regular education
as much as possible, which implies that the same teaching goals and methods are being
used for blind learners as for sighted learners. Possibly for that reason, special needs
education in the Netherlands makes use of the same textbooks and domains of math-
ematics. Differences between special needs education and regular education that were
mentioned in interviews, involve the time spent on certain domains or subjects, and the
more personal approach in special needs education.

An important domain of all mathematics curricula in the Netherlands, is the field of
algebra, that contains a lot of formulas and equations. As mentioned in chapter 4.1,
this is also where the use of braille complicates mathematics most. To understand how
algebraic skills are taught, and what problems occur for blind students, it is important to
look at the didactical methods and goals, and their limitations used in regular education.
In the Netherlands a didactics guide for mathematics is available that covers this sub-
ject[32], and speaks of six main fields of didactics that will be covered. These fields are
the process-object duality, visual properties of expressions, basic skills and symbol sense,
meaning of algebraic expressions, practicing of skills and the development of schemas.
It has been said in interviews that these fields are hard to teach sighted learners, many
fields however base on visual properties that are inaccessible for the blind.

Duality of processes and objects

Most students will consider an algebraic expression as a process that can be used to get
an outcome or result. This approach is however no longer usable when one needs to
solve a mathematical equation by using the balance method, considering the left and
right side as weights. An example of looking at the algebraic object rather than the
process, involves solving the mathematical equation "4x"2 - 8a*x = 0”. The solution to
this equation is not a usual outcome, but yet another algebraic object, that also contains
variables - ”x = 2a”. For blind learners this teaching goal is not necessarily harder than
for sighted learners, but the methods used to illustrate this problem (e.g. the balance
method) is targeted at visual comparison and learning to recognize possible tactics.

Visual properties of expressions

The first thing sighted students will see when looking at a mathematical expression is
often its structure, as is also backed up by research[17]. Some teaching methods fo-
cus on visual similarities between the mathematical structures in rules of algebra, to
give the learner pointers on what step to take next. Examples of this include num-
bers being placed closely together, and symmetrical looking rules. Based on previously
taught rules that look similar (e.g. reductions of parentheses), one may try and use a
similar approach. This sometimes leads to invalid generalization of these rules, when
(for instance) the actual meaning of parentheses or powers is ignored. The desire for
similar looking or symmetrical structures is used to guide students into a first step, or
to mislead students so they can learn from their mistake. Both didactics methods are
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not directly applicable on blind learners for two main reasons; firstly, blind learners can
only perceive one expression at a time, as discussed in chapter 3.1. Secondly, there have
been indicators that blind learners have problems comparing sizes and other properties
of structures, as explained in chapter 3.2. This implies that even when adequate tools
are used, it remains difficult for blind learners to pass domains building highly on visual
content.

Basic skills and symbol sense

Basic skills are required to work using set procedures, to look at small parts of a problem,
and to use algebra to solve these problems. Symbol sense requires basic skills, but speaks
more of using a strategy to solve a problem, and keeping a broad view on the expressions.
It also involves looking the global expression and sub-expressions to know the meaning
and context of mathematical symbols, so conversion of the same expression to another
structure is possible. Finally, reasoning using algebra is an important part of symbol
sense. Acquisition of basic skills is therefore more based on learning procedures, where
symbol sense requires a mental image of the problem, to develop a strategy for solving
the problem in multiple steps. The tactic for analyzing mathematical expressions by
looking at the global structure as well as sub-structures as researched by Gillian[17] is
not usable for blind learners directly. This could indicate that acquiring symbol sense
could be more difficult as well.

Meaning of algebraic expressions

In order to give algebraic expressions a meaning for learners, algebra in the Netherlands
often makes use of concrete examples and situations recognize from real life experiences.
An example of a meaningful situation involves the repair for a car, where the cheapest
of two options is to be chosen. In order to give meaning to algebra, this situation is
translated into a graph with two lines in it that intersect at some point. From this
translation on, it is considered important that the meaning is less related to the original
problem; instead, one should use algebra to solve the problem instead. For blind learners
it is imaginable that the step containing a visualisation of the problem is skipped; reading
of graphs has proven to be difficult for blind learners. This implies that problem solving
in a mathematical context more or less starts at algebra. Whether skipping of this step
has a positive or negative impact on progress of the learner is unclear.

Practicing of skills

Developing, expanding, maintaining and practicing of algebraic abilities requires time,
there is however also a risk involved in this. When practicing basic skills, retention of
insight may decrease due to students memorising solutions or common procedures and
operations. This routine can therefore reduce the meaning of algebra for the learner.
To target this problem, alternative forms of exercises are often provided. The didactics
guide advises to use exercises in which underlying insights and the previously mentioned
symbol sense skills are also maintained. No clear limitations for blind learners apply on
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this field, as it mainly bases on other fields.

Development of schemas

In order to recognize and solve algebraic problems faster, one will need to know of the
applicability of algebraic operations and techniques. An expert in algebra will be able to
predict the effects of various strategies, and will also be able to judge if a certain operation
helps in solving the problem. The collection of procedures, techniques and terminology is
called a (mental) schema. One of the goals of teaching algebra, is to let students develop
their own schemas that help solve mathematical problems. Development of such schema
depends on skills of the previous five aspects as well. Blind learners that have problems
with the previous fields are more likely to have problems with developing mental schemas
for problem solving as well. This is however also the case for sighted learners.

4.2.3. Teaching Materials

Whereas the teaching goals and methods are generally the same for blind students and
sighted students, teaching materials are different in most cases. The main difference in
terms of reading is the braille system that is used, as explained in chapter 4.1. Besides
textual content and mathematical expressions, however, mathematical content is often
provided in other formats that can form obstacles for blind learners. Smith[33] states that
"this obstacle is especially obvious in the area of data analysis, with its strong emphasis
on graphical representation of data in tables, charts, graphs and plots”. Karshmer|6]
describes five general approaches to making (mathematical) content more accessible:
tactile as in braille or other raised representations, audio aids that read equations out
loud, tonal representations of equations and graphs, haptic or force feedback devices that
represent shapes of objects and curves, and integrated solutions. The use of technical
aids and software to achieve these methods of accessibility is discussed in more detail in
chapter 4.3.

Tactile approaches for mathematics often build on embossed paper, that can be pro-
duced in various manual and automatic ways. Two main ways to emboss paper are
the use of swelling paper, and the use of braille printers. Swelling paper uses chemically
treated paper that, when heated, swells dark areas on the paper, whereas braille printers
use dots of various height and spacing instead of, or in combination with, ink[34]. Either
system is usable for production of mathematical content that is best read spatially, and
also supports production of charts, graphs, tables and drawings. Exploration of tactile
material by blind users takes significantly more time than it would take sighted users
to read, which in turn increases the cognitive load for the blind learner. Inadequate
tactics for spontaneous exploration of tactile graphical material (as described in chapter
3) increases this problem.

In addition to using the standard braille system and the 8-dot braille systems men-
tioned in chapter 2.3 there have been 8-dot braille systems that target mathematics and
science specifically[35]. The most well-known system being the dots-plus system[34][6].
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This braille system, besides using 8 dots (4 rows, 2 columns) for regular characters, can
also be printed using braille printers. When dots-plus content is printed on compatible
printers, dots can have variable spacing and height. These properties are used to draw
symbols similar to the print symbols, rather than convert them into (complex) braille
symbols. An example of this approach is displayed in figure 4.2. The image shows the
use of a square root symbol that is spatially written, symbols for plus, minus and plus or
minus being written as they would be in print, and exponents being drawn on a higher
position with no special indicator. Letters (variables) and numbers were not altered,
and are readable in braille.

ard+ bz +eo=0 s R S N

—b £ /2% —dac T
= .-
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Figure 4.2.: Quadratic equations in print and dots-plus format. Source: Gardner[34].

When looking at examination of mathematics, tests are typically converted in a similar
way as textbooks are. In the Netherlands this is done by Dedicon, a Dutch publisher
of accessible textbooks. The main changes in exams are related to the displaying of
tables, charts and linearization of formulas. When tables are used, rows and columns
may be swapped to allow faster searching, and additional spacing is used to indicate the
start of the next row or column. Charts may be provided in a tactile format, but the
use of descriptions or tables instead is also common. An example of a description that
goes with the added table is "The figure contains three parallel straight lines”, which
is something a sighted user would instantly notice, but that is harder to recognize in a
table. Mathematical formulas are translated in a similar way as is used in textbooks.
In some cases, additional notes that mention possible confusing use of parentheses are
added. An example of this is the comment ”Note that the denominator of the fraction
is part of the radical”, as was added to a mathematics level A exam from 2011.

4.3. Technology

Knowing about the braille systems for mathematics, and the teaching methods and
materials for mathematics, it is important to look at technology to assist blind students.
This technology can be separated in two categories: Hardware and software. The reason
for this division, is the fact that many projects to assist blind learners involve the use
of computers and specific hardware. This paragraph will explain some of these projects,
as well as the hardware involved in mathematics education.
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4.3.1. Hardware

As discussed in chapter 4.2, physical tactile material is commonly used in education
and can be produced using braille printers or braille typewriters. The Perkins brailler
is a typewriter that punches braille dots in paper. The device was developed in 19512
and has been sold over 300,000 times in 170 countries. Although it has been mostly
replaced by technical aids in the Netherlands, the Perkins brailler is still popular in
many countries. Although the newer generations of the device are significantly lighter
in weight (3.5kg compared to 4.85kg of the standard brailler) and come with a reduction
of noise, the devices are still generally considered bulky. Both versions of the Perkins
Brailler are shown in Figure 4.3.

Figure 4.3.: Standard Perkins brailler and next generation Perkins Brailler

Braille printers are able to punch dots in paper, in combination or instead of traditional
ink. The downsides of using traditional paper for braille, however, involve the fact that
braille printed documents are bulky and deteriorate with use[36]. The production process
itself is relatively time consuming and noisy in comparison to ink printing.

A popular alternative to physical braille material using paper, is the refreshable braille
display. Refrehsable braille displays typically present between 40 and 80 braille cells
with support for 8-dot braille. Refreshable braille displays are either connected to a
computer using a USB or wireless bluetooth connection, or function as a standalone
device. When the device is used in combination with a computer, special computer
software can control the braille output, as will be explained in further detail section
4.3.2. When a braille display is used as a standalone device, however, it can also be used
as a note-taker. This way digital braille material can be produced and read, as well as
imported and exported to the computer when a connection is established?. Refreshable
braille displays are not suitable for graphical content, as their resolution is limited to
4 dots in height, by typically 80 dots (40 braille cells) in width. There is however an
experimental German project called the Hyper Braille, that offers a resolution of 120
dots in width and 60 in height, and is thereby able to display spatial content in a similar
way to the output of braille printers[37]. Although a solution like this solves many
problems of traditional braille, it is still in a development phase and is likely to be very

*Information from http://www.perkins.org/store/braillers/ visited at 20-12-2012
3HandyTech Active Braille from https://handytech.de/produkte.php?produkt=31 visited at 20-12-
2012
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Figure 4.4.: Active Braille refreshable braille display and Hyperbraille tablet.

expensive when commercially available. Figure 4.4 shows the Active Braille refreshable
braille display* and the Hyper Braille tablet®.

In addition to tactile approaches to making content accessible, Karshmer|[6] describes
audio aids (and software) as an approach as well. Audio aids such as the DAISY Stan-
dard for Digital Talking Books[38] can be used to read (digital) content, including math-
ematics. According to blind students braille cannot be substituted entirely by speech in
the field of mathematics and science[19]. The main reason for this is that when read-
ing formulas, a different method of reading is required. Additionally, quick navigation
is important in order to track back, and fully understand the (often context-sensitive)
meaning of (sub-)expressions. Abraham Nemeth[21] came up with rules for reading for-
mulas out loud himself, and Dick[39] indicates that taped versions of mathematics books
come with drawbacks related to the way mathematics is read as well. In addition to
the previously mentioned problems, another problem lies in the use of parentheses and
grouping symbols, that when read character-by-character make the global formula hard
to understand. An example Dick[39] uses involves the formula ”2(x+2)(x+2)” that is
possibly read out as ”two left parenthesis x plus two right parenthesis left parenthesis
x plus two right parenthesis” rather than ”two times the quantity = plus two, times the
quantity x plus two”. The same problem occurs when regular screen reading software is
used to read digital books. Karshmer[6] mentions software projects that allow reading
of equations out loud in different formats, using non-speech sounds to support the user
as well. These projects will be covered in section 4.3.2.

Although secondary education in the Netherlands makes use of graphical calculators,
these calculators are inaccessible for the blind[31]. Talking calculators are available[39],
and offer features such as speaking of pressed keys, display content, and a learning mode
for key identification at any moment that does not affect the calculation[40]. The main
limitations of such talking calculators, involve the fact that they lack graphing capa-
bilities. Because of this limitation of physical talking calculators, the use of computer
software is more common.

Besides methods to make information tactile by means of refreshable braille displays
and braille printers, two other techniques have been researched for making spatial in-

“Source: http://handytech.de/produkte.php?produkt=31&lang=en
Source: http://www.hyperbraille.de/press/
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formation more accessible. These techniques rely on haptics and force feedback devices,
that present vibrations or force when the user attempts to navigate in a virtual space,
using these devices. Haptics are already in use in phones and touch screen devices. Toen-
nies et. al[41] showed that most users are able to ”find requested locations on a grid,
determine the locations of displayed points, and differentiate between lines and shapes,
with haptic feedback, auditory feedback and various combinations of the two”. In this
study a single touch screen device was used in combination with a host computer. An
alternative to using touch screen devices, are devices that offer force feedback. Examples
of such devices are the commercially available Sensable Phantom, Logitech Wingman
Force Feedback Mouse or the Microsoft Sidewinder Force feedback 2 joystick. These
devices can, as demonstrated by Carmeiro et. al[42] be used to illustrate shapes, loca-
tions of objects, relative sizes of objects and identifying the various surfaces (e.g. bump,
friction, vibration). Experiments with haptic or force feedback devices show that blind
users are able to identify shapes, sizes of objects and different surface types, but use of
these devices seems to be mostly experimental at the moment.

4.3.2. Software

In the early 80s, software applications called screen readers were introduced, aiming to
produce a vocal rendering of the text contents of the computer screen under control of
the keyboard using a text-to-speech (TTS) converter. Screen readers typically create
a separate off-screen model, and interpret messages from the operating system. These
applications are commonly used, often in combination with speech synthesizers and re-
freshable braille displays. Commercially available screen readers are JAWS by Freedom
Scientific, HAL by Dolphin and Window Eyes by GW Micro[42]. Free alternatives are
available too, either by using built-in features of the operating system such as Microsoft’s
Narrator and Apple’s VoiceOver, or dedicated applications such as NVDAS. The limi-
tations of screen readers across all operating systems lie in the fact that images, graphs
and visual layouts cannot be expressed using speech at all, and objects such as tables
become confusing or lengthy[42]. Karshmer|[6] states that an example of a screen reader
(JAWS) is primarily designed for the general user interface, and is not well suited for
more technical user interfaces. Because not all applications are accessible using screen
readers, the concept of scripting is available in many screen readers. Scripting allows a
user to give instructions to the screen reader on what to read out. This is typically not
configured by users themselves, as it involves highly technical knowledge.

Specific software has been created for th purpose of reading and producing mathe-
matical content. These two classes of use will be covered in the next paragraphs.

Reading Mathematics

There are various ways to make mathematical formulas readable for the blind. Often this
requires converting the formulas to a format compatible with speech output, rather than
images that are often used to express mathematics. In order to read out mathematical

SNVDA Screen reading software from http://www.nvda-project.org/
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formulas on the internet using a screenreader, MathPlayer can be used[43]. MathPlayer
requires the mathematical content to be described using MathML. MathML is a standard
that provides a low-level specification for describing maths on the web. There are several
ways to output MathML code, including conversion from LaTeX or the Microsoft Office
Word Equation Editor[44]. Although MathML works well on the web, it still relies on the
time spent by the creator of mathematical content. If MathML was not used when the
webpage was created, a screen reader will not be able to display it”. There are Javascript
files available that are able to translate formulas in a LaTeX-format to MathML when
the visitor loads the page, an example of this approach is AsciiMathML®. Unfortunately
many electronic formats, including PDF and Postscript (commonly used for textbooks)
are inaccessible in braille and speech[19].

Several projects exist that allow reading of mathematical expressions that are not de-
scribed using the MathML format, including ASTER, InftyReader and InftyEditor, and
AudioMath. ASTER, Audio System for Technical Readings, was designed in 1994 and
allows the user to read out and navigate through technical content in a document using a
type of text editor referred to as emacs[45]. ASTER also allows for different audio views
to skip certain objects, use sonification in combination with speech, use higher or lower
pitched voices to indicate a change of level (to superscript, subscript), and bars/accents.
The Infty project was first presented in 2000, and consists of multiple applications. The
InftyReader application uses Optical Character Recognition (OCR) to scan a file from a
variety of digital formats including PDF and several image formats. After scanning, the
file can be converted into more accessible formats including LaTeX, MathML, HTML,
braille codes such as Unified Braille Code and the Japanese code, and Human Readable
Tex (HrTeX)[46]. Whereas LaTeX, MathML and HTML are quite technical and contain
many grouping symbols, the HrTeX standard, although not compatible with LaTeX,
aims to increase readability. HrTeX was first described in 1996, and increases read-
ability by using abbreviations, reducing the amount of backslashes needed, and using a
different notation for fractions[47]. The method of outputting HrTex or dedicated braille
codes is suggested for use by blind users[46]. AudioMath was developed in 2004, and
uses a similar approach to the Infty project, by scanning digital files into the MathML
format before presenting it to the user. When expressing mathematics using speech
only, information is generally lost. Especially grouping symbols such as parentheses and
powers form problems. To overcome this problem, AudioMath makes use of formal rules
for text generation based on existing research that keep the right structural information
of the formula. This structure information results in pauses of various length and the
use of tones with a higher or lower pitch[48], and is similar to the approach used in the
ASTER project. Unfortunately AudioMath is mainly aimed at the Portuguese language.

"University of Washington about screen readers and mathematical equations at https://www.
washington.edu/doit/Faculty/articles?404 visited at 10-01-2013
8 AsciiMathML at http://wwwl.chapman.edu/~jipsen/mathml/asciimath.html visited at 10-01-2013
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Figure 4.5.: SensoMath output in a spatial, braille and linear way

Writing Mathematics

Writing or editing mathematical content can be done on several levels, varying from
typing braille on a braille notetaker to using LaTeX on a computer. When a note-
taker is used, one is able to use the braille code desired, and transfer it to a computer.
Karshmer[3] describes the need for braille translators that allow conversion of LaTeX to
braille, and back-translators, to convert technical braille to a more uniform format such
as LaTeX. Although such software is available for the Nemeth braille code (the MAVIS
and Insight projects), Marburg code (the Labradoor project) and two French notations
(the Bramnet project), no applications exist for the braille codes used in the United
Kingdom (Unified English Braille) or Dutch-speaking Belgium (Woluwe code) as far as
I could find.

As an alternative to writing mathematics in braille, one can use computer software to
support the user with speech or braille output on a refreshable braille display. Projects
that specifically support writing of mathematics for blind users are the Infty project
described earlier, MathType (for Microsoft Office Word) and SensoMath. The Infty
project includes InftyEditor, a text editor that is able to edit content previously scanned
with InftyReader. When the extended version, called Chattylnfty is used, speech is
available as well, allowing a blind user to edit or create mathematical formulas using
the computer’s keyboard. ChattyInfty offers speech feedback and key combinations for
inserting special mathematical structures, and (like InftyReader) is able to save files
in the MathML, LaTeX and HrTeX format. One is also able to use braille output of
LaTeX on a refreshable braille display[49]. MathType is a plugin for Microsoft Office
Word, that is able to convert formulas created using the Microsoft Equation Editor to
the MathML format. The MathML output that is generated is accessible using a screen
reader in combination with the previously discussed MathPlayer. SensoMath is a plugin
for Microsoft Word that allows instant conversion between the linear mathematics code
used in Dutch-speaking Belgium, a spatial arrangement, and direct braille output to a
refreshable braille display[26]. Similar to the Dedicon code discussed in chapter 4.1.2, it
displays linearly on the computer screen to make it readable for both blind and sighted
users, but in addition it also allows reading using a refreshable braille display using
the familiar Woluwe code as well as the spatial notation as used by sighted users. An
example of a formula in the three views this plugin offers is shown in Figure 4.5.
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Calculating

The most common software applications that allow calculating in the Netherlands in-
clude Microsoft Office Excel and AllerCalc®. Both are accessible using screen reading
software (including speech) and allow for an intuitive input method that is also usable
for sighted users. The limitation these applications, and most other computer calcu-
lators, have in comparison to graphical calculators as used in secondary education, is
the fact that graphics cannot be presented using speech or a refreshable braille display.
As a solution to this problem, one can use tonal representations generated by so-called
audio-graphing calculators. In such application, one can write a formula that is then
made audible using tones that gain pitch for increasing steepness, and lower pitch for
decreasing steepness. Additional features include locating of intersections and finding
the highest and lowest point. Examples of audio graphing calculators are the ViewPlus
Audio Graphing Calculator[50] and the NASA MathTrax application[51].

9As stated in personal communication
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5. Comparing braille codes

As described in chapter 4.1, the braille code varies mostly by country and is usually
not decided by users. Users often use the braille code and (if applicable) the associated
braille tables that are common in their country of residence. In the United States one
is actively taught the Nemeth code, in the United Kingdom the English Braille Code
or Unified English Braille are used, and in the Netherlands one will use the Dedicon
code. In most countries a braille authority decides which braille code is used; examples
include the Braille Authority of North America (BANA) for the United States! and the
UK Association for Accessible Formats (UKAAF)? in the United Kingdom. On top
of that there is the International Council on English Braille (ICEB)? that focuses on
braille for countries in which English is the main language. BANA and UKAAF, as well
as braille authorities of Australia, Canada, New Zealand, Nigeria and South Africa are a
member of ICEB. In the Netherlands no real braille authority exists. Most institutions
and the main publisher of accessible books in the Netherlands cooperate to make print
material accessible, but no clear decisions or future plans are made and documented as
far as we know. The ”braille quality” division of the NLBB alliance* was formed in 2011
and aimed to improve and assess the implmentation of the existing code. From what
is documented on their website, no plans for improving the braille code as used in the
Netherlands have been made.

Braille codes and tables are typically used for all purposes except for music; the braille
music code from 1997 is agreed upon internationally[2]. The braille code that is decided
on by a braille authority is commonly a generic code that is not targeted at a specific use
case (e.g. writing or reading) or material type (e.g. science, literature, mathematics).
The reason for this as named in personal communication, is that the generic code has
always been expanded to suit new requirements. This has traditionally been done by
institutions or braille authorities on a national level, or on an individual scale that
drew the attention of others. As mentioned, the braille music notation is the only real
exception to this.

As described in chapter 4.1, existing braille codes vary on many levels ranging from
numeric notation and the use of number symbols, the way formulas are encoded and
the code-specific symbols that are introduced. The combination of these factors results
in braille codes that are difficult to compare. In 2010, a Comenius school partnership
called Touching Maths arose, that focussed on mathematics education for braille users

!Braille Authority of North America at http://www.brailleauthority.org
2UK Association for Accessible Formats at http://www.ukaaf .org
3International Council on English Braille at http://www.iceb.org

4NLBB at http://www.nlbb.nl/
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integrated in mainstream secondary education®. Participants of the project include

Norway, the Netherlands, France, Estonia, Germany and Belgium. One of the results of
this project is a set of requirements for the - in their opinion - ideal braille code. Using
these requirements, as well as some additional requirements, the existing braille codes
have been assessed. In the following paragraphs these requirements are explained in
more detail and a demonstration of five main methods of encoding mathematical work
in braille is provided. This demonstration is then used to assess and compare the braille
codes in terms of the given requirements.

5.1. Requirements Analysis

Results from the Touching Maths project explicitly state that the use of a laptop in
combination with braille a display offers advantages over the more traditional braille
typewriters or note-takers. Whereas laptops can use software to make translations and
allow sharing of information with sighted individuals, braille typewriters and note-takers
lack this functionality and require braille reading skills. At the same time, the laptop’s
keyboard can be used as well, reducing the need for a braille code when producing math-
ematics. Using the laptop’s keyboard also has the advantage of faster entering of textual
material. During personal communication it was made clear that the use of speech as
a sole mean to access mathematics results in a high cognitive load, and is therefore not
preferred. In personal communication with multiple braille users, it was mentioned that
many blind students prefer to use speech in combination with braille, allowing them to
track-back while reading the formulas.

It is my hypothesis that different requirements for braille codes can be useful for
different types of usage. In order to decide what types of usage are important, teaching
methods and factors by projects such as the Touching Maths project were considered. A
general aspect of braille involves writing of braille. Although shortness is an important
factor when writing braille, it is also important that a braille code offers guidance for
the future reader (which could be someone else). In contrast, note-taking benefits far
more from shorter formulas because of the speed at which production takes place. The
Touching Maths projects’ documentation also describes communication between blind
and sighted peers and teachers as an important aspect. We will refer to this as ”Sharing”,
as essentially material is shared by the blind pupil to other (sighted) individuals.

When looking at the braille codes that were mentioned in chapter 4.1, a few clear
differences can be seen. Most notably for mathematics, there is the factor of feed-
forward. In braille codes focussed on mathematics and science, it is common to tell the
user what kind of structure is coming before beginning the actual formula. Especially
with fractions this can be very useful to reduce the cognitive load and the need to
remember the entire mathematical structure at once. With a fractional formula, a
braille reader will only realize a fraction is involved when reading the division symbol.
When nested divisions are used this will make it even more complex, and tracking back

5Touching Maths project at http://www.touchingmaths.net visited at 10-01-2013
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will consume significantly more time. Another factor that especially plays a role in
longer formulas or equations, is the way a structure is terminated. The main reason
for this is the fact that mathematical structures may span multiple lines. When this is
the case, a user will need to know that a mathematical structure has ended. Whereas
parentheses can be used for this as well, especially with larger structures with a high
level of nesting, dedicated symbols may improve readability. We will refer to the use of
symbols to terminate structures as feed-back. Besides fractional formulas, feed-back is
also used when switching from sub-, or superscripts to the standard base-line level.

The first two requirements described in reports from the Touching Maths project in-
volve transparency and intuitivity for both teachers and peers. The explanation for these
requirements is that lingual or intuitive codes are more suitable for secondary education
in comparison to the paper-braille codes. Examples of lingual codes include LaTeX or
variations of it, that use keywords or abbreviations of keywords to describe structures.
For instance, a square root in LaTeX will start with sqrt. In addition, these codes are
typically easier to learn for those that gradually lose vision. The third requirement from
the Touching Maths project states that a dedicated braille code must be suitable for
secondary and higher education. The fourth requirement in short is called compactness,
but involves many methods that influence this. The first part describes the total length
of the structure, which is typically greater than the print version. It does however also
explain the use of spacing, key signs and brackets to prevent ambiguity. Finally, the
support of 8-dot braille is mentioned, to reduce the length of structures by using dot-7
and dot-8 for key symbols. An example of this would be the exclusion of the regular
number symbol, and using dot-8 together with the number instead. The same concept
applies to greek symbols, capitals, or even braille grade changes. Although the use of
spaces increases the total size of a mathematical structure, it has been said in personal
communication, that a popular method of reading equations involves adding spaces to
it, to separate sub-structures. This indicates that an increased size of a mathematical
structure in a braille code is not necessarily a bad thing. When comparing braille codes,
we will separate the requirements for assistive spacing and required size.

In Table 5.1, the relative importance of the previously mentioned requirements is
shown. Requirements marked with an asterisk (*) are the ones that were also described
by the Touching Maths project. The remaining requirements are mostly based on per-
sonal communication with braille users. Using the demonstration in section 5.2 of this
document, several braille codes will be assessed according these requirements in section
5.3.

5.2. Demonstration of braille codes

In order to assess existing braille codes using the requirements mentioned in chapter
5.1, formulas from Dutch mathematics education were used. Before making a selection
of formulas, all formulas in the VWO A and B curriculum were listed and compared in
search for common structures (e.g. fractional, linear, spatial, summation, integral) and
symbols (Greek letters, arithmetic operators) used in these formulas. I argue that these
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Writing | Note-taking | Reading | Sharing
Feed-forward 0 0 1 N/A
Feed-back 0 0 1 N/A
*Required size 1 2 1 0
*8-dot braille support 0 0 1 0
*Lingual 0 0 1 2
*Seconday and higher education 1 1 1 1
*Production on qwerty-keyboards 1 1 0 0
* Assistive spacing 0 0 1 1

Table 5.1.: Relative importance of requirements for specific use-cases

different structures as well as symbols increase or decrease the need for certain require-
ments, and also increase the differences between braille notations that may look similar
at first sight. The full assessment of formulas used in Dutch mathematics education can
be found in chapter 6.3. The reason mathematics curricula A and B are used, involves
the fact that the remaining levels are very similar to these levels; mathematics C is very
similar to mathematics A, and mathematics level D is an expansion of mathematics B.

As an indication, the first occurrence of common mathematical structures is trans-
lated to the various braille notations. The structures found, and the first formula of this
structure is shown in Table 5.2. The numbers between parentheses refer to the identifi-
cation numbers used in the full analysis of mathematical formulas, which can be found
in Appendix B. To increase readability of this thesis, only the translations of formulas of
the type linear, linear and fraction and spatial and fraction are included. The remaining
translations can be found in Appendix A.

Because LaTeX is not a braille-specific system and is based on characters on a com-
puter keyboard, a braille table had to be selected to match these symbols. Because
the default braille table in various screen reading applications in the Netherlands is the
braille table from the United States, the symbols from this braille table are used for the
LaTeX translations.

For the beforementioned common structures, the first occurance of this structure in a
list of formulas used in Dutch mathematics education of both levels A and B is encoded
using various braille codes. In most braille notations, special characters are used for
capitals, number or other special symbols to increase the amount of characters that can
be represented. In the print explanation below the translations, the ; character will be
used to denote a special character such as a Greek letter or an enlarged grouping symbol.
The # symbol is used to illustrate the regular number symbol (dots-3456 ::).

5.2.1. Linear Formulas

A linear formula is a formula that spans one line in height, and requires no spatial sym-
bols that cover multiple characters in width or height. An example of a linear formula is
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Structure Type Example formula

Linear nl=nsxn—1)*%..%x2x1
- X
Fraction o(X) = o(X)
n
Spatial P(X=k)= <Z>pk(1 —p)nk
1
Spatial and Fraction (Z = k'(”ni*k)'
n—1 1— ’I"n
S ti d Fracti S = b=
ummation and Fraction z:: ar’ = a——

k=0
5
Integral L= / V14 (f'(x))?dx

x(t) = m+ rcosw(t — tg)
y(t) =n+rsinw(t —to)

Group

Table 5.2.: Example formulas for common mathematical structures

the formula shown below, which was translated using LaTeX, Woluwe, Unified English
Braille, Dedicon and Nemeth code.

nl=nx(n—1)%.%x2x1

LaTeX

The LaTeX formula is written as ”nl=n*(n-1)*..*2*1” and counts 17 characters in print.
The representation below is a character-by-character translation of the formula that
counts 18 characters when using the American braille table. It is worth noting that the
equality symbol in the American braille table counts two cells, and numbers are lowered
so no number indicator is necessary.

ie ed ce +r ee e - P PR P
‘e @: e: ‘e 66 o- oo -- ee ‘e ‘o ‘o ‘o e: ‘e -

Woluwe encoed

The Woluwe encoded formula counts 21 characters and contains no braille-specific char-
acters. It appears the same as the LaTeX version of the same formula, but contains
number indicators and a sign of equality preceded by a space.

e e~
. ee .o P .- o - . P
© ee e: ee ‘e - 66 o6 - - 66 ‘e ‘e oo oo -

oo oo - -

Unified English Braille encoded

The UEB encoded formula counts 30 characters and contains no braille-specific char-
acters. The representation of the asterisk (*) and period (.) are very similar, as are
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the equals sign (=) and the number indicator (#). Most arithmetic operators span two
braille cells.

Dedicon encoded

The Dedicon encoded formula appears as "n! =n * (n- 1) * .. * 2 * 17 and counts
29 characters in print. When translated using the American braille table it counts 32
characters. This size is mostly explained by the number of spaces used and the use of
number indicators.

Nemeth encoded

The Nemeth encoded formula is equal to the LaTeX representation of the formula, but
adds assistive spacing around the equals sign. It counts 20 characters.

5.2.2. Fractional Formulas

Although fractions can also occur linearly using the linear division symbol, which ap-
pears as a slash (/) in print, we will only consider the spatially written version of a
fractional formula. In such case, the numerator and denominator are written on differ-
ent lines, separated by a horizontal line. This structure is very common in high school
level formulas.

The formula we will use as an example, reads as follows: ”Sigma of X-bar = fraction
of sigma of X divided by the square root of n”. The spatial expression is shown below:

o(X)

o(X)= NG

LaTeX

The LaTeX encoded formula reads as ”\sigma{ (\bar(X)) }=\frac{\sigma{(X)}} {\sqrt{(n)}}”

and counts 49 characters. When translated to braille using the American braille table,
it counts 59 characters.

e ‘e 60 o0 o- ‘e o- e- e- - 6- e- @- - 66 ‘e ‘8 ‘® ‘6 - e° 66 6- e- 68 -© e- e- ‘e ‘o oo oo
o o8 o+ - . PN P . P .- Ce e e c e se -
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Woluwe encoded

The Woluwe encoded formula counts 25 characters and uses Woluwe-specific symbols to
indicate the start of a fraction. It reads as ”;S(X;;) =start fraction ;s(X) / radicand(n)
end fraction”. The bar on top of the X is denoted by two different indicators; braille
dots 45, followed by dots 36 (:* ..).

Unified English Braille encoded

The UEB encoded formula counts 33 characters, and (like the Woluwe code) includes
specific characters for divisions. It reads like ”;s(X;;) = start fraction ;s(X) / radicand(n)
end fraction”. Like the Woluwe code, the indicator for a bar on top of the X, two dif-
ferent indicators are used. For UEB this symbol in braille is described using the braille
dots 56, followed by dots 156.

Dedicon encoded

The Dedicon encoded formula can be directly translated to print, and looks like ” ~s({~X)
= ~s(~H) / sqrt(n)” and counts 26 characters. When translated using the American
braille table, it counts 31 characters.

Nemeth encoded

The Nemeth encoded formula counts 25 characters, and (similar to Woluwe and UEB)
uses a special character to indicate the start of a fraction. It reads like ”;s(X;) = start
fraction ;s(X) / radicand(n) end fraction”.

5.2.3. Spatial and fractional formulas

A spatial formula in the context of this research, either involves symbols that span mul-
tiple lines, or has a different meaning because of the spacing between (sub)expressions.
Examples include the binomial coefficient, the Greek capital Sigma (X) and the ”long
s” ([) used for integrals.

The example formula that makes use of a spatial structure as well as a fractional
structure, is the formula for binomial coefficients. The formula is shown below, and

reads like "n choose k = n factorial divided by k factorial times the factorial of n minus
k”.
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n\ n!
k) kl(n — k)!
LaTeX

The LaTeX encoded formula reads as ”\binom{n}{k}=\frac{n!}{k!(n-k)!}”, and counts
32 characters. When translated using the American braille table, it counts 41 characters.
Its representation in braille is shown below.

‘e ee o oo ‘o o- oo ‘o . e o - . e e o- o: oo ‘o
o o @ o+ .. . 0o - oo - e - -+ oo @ PP
. . . .

XXy
oo -
o0
‘e

.-
Xy
oo .

‘Woluwe encoded

The Woluwe encoded formula counts 24 characters, and reads as ”(; n newline k) end =
start fraction n! / k!(n-k)! end fraction”. The newline character indicates the start of a
new line within enlarged parentheses. Starting on an actual new line is not recommended
with relatively small expressions. Within a fraction, the numerator and denominator are
written without spaces.

X
oo -
X3
.

...
.

X3

. .
‘e ‘8 ®: ‘o @+ -+ o8 -+ o+ o+ -

Unified English Braille encoded

The UEB encoded formula counts 29 characters, and reads as ”;(n binom k) = fraction
of n! / k!(n-k)! end fraction”. Dedicated symbols for binomial coefficients are used.

. . oo 0o - - -+ @ e e e . .
e @+ ‘8 ‘6 @+ <+ @+ 1+ ++ @@ +° 06 6+ @+ ‘o ©: @+ @+ ++ ‘6 @+ ++ o6 ©: 0+ 0 o6

Dedicon encoded

The Dedicon encoded formula counts 24 characters, and reads as ”(n; k) = n! / kl(n -
k)!”. In this formula, the semicolon is not a braille character to indicate a change of con-
text, but the actual semicolon. Using the American braille table, it counts 25 characters.

Nemeth encoded

The Nemeth encoded formula counts 26 characters, and reads as ”;(n directly under k;)
= start fraction n! / k!(n-k)! end fraction”. The directly under symbol indicates that
the next character appears directly below the previous character. The user will have to
recognize this as a binomial coefficient.

oo
.
.
.

© ee . . . oo -
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5.3. Assessment of braille codes

In the previous paragraph translations of three mathematical formulas into various braille
notations were provided. In addition, four other example formulas are provided in ap-
pendix A. In this paragraph we use these examples to compare the braille notations in
terms of the requirements described in section 5.1.

Looking at the example formulas, we see two main classes of braille notations: pseudo-
codes and dedicated braille codes. Pseudo-codes can typically be written using a qwerty-
keyboard and have a visual nature. Examples include LaTeX and the Dedicon code, as
well as variations of LaTeX such as Human Readable Tex (HrTex) [46]. Dedicated braille
codes, on the other hand, involve braille-specific symbols and are developed purely for
the blind. Production on qwerty-keyboards is not directly possible, and displaying is
only possible on paper or refreshable braille displays. Examples of dedicated braille
codes are Woluwe code, UEB and Nemeth code.

In the following paragraphs, we will analyse how each notation compares to the others
according to the set requirements. Finally, we will define a scoring scheme to compare
braille codes from a global perspecive. Depending on user preference, this scoring scheme
could also be used to choose a braille code for specific use cases.

5.3.1. Analysis
Feed-back and feed-forward

Dedicated braille codes typically introduce special characters that are used to guide the
braille reader. This is most commonly achieved by providing feed-forward and feed-back,
and also aims to minimize the need for abbreviations of function names. Whereas pseudo-
codes abbreviate function names such as summations, square roots or integrals, dedicated
braille codes implement (sometimes multi-cell) characters. Feed-back is provided by both
LaTeX and Dedicon code by the use of grouping symbols, which could cause problems
when nested groups are involved. Whereas LaTeX commonly uses curly braces (two-cell
symbols in most braille tables), Dedicon uses regular parentheses (one-cell symbols in
most braille tables). Counting of either is still required when nested structures are used
in either notation.

Required size

When looking at the size of our example formulas using the selection of braille notations,
it can be stated that LaTeX (a pseudo-code) and Unified English Braille (a dedicated
braille code) both produce relatively lengthy results. This is shown in more detail in
Table 5.3. The remaining notations that include both a pseudo-code (Dedicon) and
dedicated braille codes (Woluwe code and Nemeth code) are comparable in terms of size;
depending on the structure type (e.g. fractional, summation, integral) one is shorter than
the other. Dedicon being a pseudo-code offers significant improvements over LaTeX in
terms of size. The downside of pseudo-codes in general is however also visible; grouping
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LaTeX (Br) | Woluwe | UEB | Dedicon (Br) | Nemeth
Linear 17 (18) 21 30 29 (32) 20
Linear, fraction 49 (59) 25 33 26 (31) 25
Spatial 33 (46) 36 51 35 (41) 39
Spatial, fraction 32 (41) 24 29 24 (25) 26
Summation, fraction 41 (58) 41 55 54 (68) 43
Integral 31 (40) 29 41 36 (44) 30
Group 87 (96) 61 78 63 (68) 58

Table 5.3.: Formula types and the amount of braille cells required when translated using
various braille codes

symbols such as parentheses are common and don’t necessarily assist the reader. Looking
at the difference in size of LaTeX in comparison to Unified English Braille, it can be
observed that LaTeX contains a high amount of grouping symbols such as curly braces
and parentheses, whereas the UEB-encoded formulas contain symbols that span up to
four braille cells (including up to two spaces). It can be concluded that the length of
UEB-encoded formulas is a direct result of the braille table and spacing rules applied,
as has also been said during user research by RNIB in the United Kingdom[25].

Taking the average size of our example formulas, Woluwe code requires the least
amount of characters, followed by Nemeth code, UEB and LaTeX (equal size), and
Dedicon.

8-dot braille

Looking at the specifications of the braille codes, no explicit support for 8-dot braille has
been mentioned. It is however possible to combine 8-dot braille with all braille codes.
In such situation, the size of all mathematical work can be decreased thanks to modifier
symbols as described in paragraph 4.1.

Linguality

All pseudo-codes are relatively lingual; function names are abbreviated and easy to
understand. Pronunciation of formulas is therefore relatively easy as well. Examples
of abbreviated function names involve ”sqrt” for square root and ”int” for integral.
All dedicated braille codes make use of braille-specific symbols to decrease the size of
mathematical formulas. When computers are involved, speech output of dedicated braille
codes could be similar to that of pseudo-codes, as translation to a universal system is
possible. More information on this subject was covered in chapter 4.3.

Support for secondary and higher education

The example formulas were chosen to include the most common mathematical structures
in secondary education in the Netherlands. All braille codes were able to express these
formulas, suggesting that all these notations are suitable for secondary education. When
it comes to higher education, LaTeX is the most flexible notation; it can be expanded by
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the user, and expansions are provided in the form of packages by a supporting community.
Whether or not higher education is covered in other notations is hard to say, although
judging from the specifications of both the Nemeth code and Unified English Braille
these standards seem mature enough for use in higher education as well. The Woluwe
code specifications used to express the example formulas only covers the basics, but
the enhancements that were made in 2012[52] should make it possible to cover higher
education mathematics as well. The Dedicon code appears to not cover subjects from
higher education at the moment, as has been confirmed in personal communication with
users. The Dedicon code is however the most recently developed notation. This code
can, in theory, be expanded by users in a similar way this is done by LaTeX users. The
userbase of this code is currently relatively low.

Production on qwerty-keyboards

As was the case with linguality, the division between pseudo-codes and dedicated braille
codes are key to production on qwerty-keyboards. Pseudo-codes such as LaTeX and
variations, and Dedicon code, can be expressed using computer keyboards and can be
read directly from a computer screen without the need for conversion. Dedicated braille
codes lack this functionality directly, but with the right software conversions are possible
(as has been described in chapter 4.3).

Assistive spacing

Assistive spacing in the context of this research involves the separation of mathematical
content by the use of spaces. This can be done with function names, arithmetic operators,
comparison signs, or to start or end sub-expressions. To quantify the level of assistive
spacing, we look at the positions at which assistive spaces are used in formulas according
to the official specification. Possible positions of spaces include before or after signs of
comparison and mathematical operations. When the same rules apply for non-linear
context (e.g. square roots, superscripts) these are counted as well.

The highest level of assistive spacing is offered by the Dedicon notation; every sign of
comparison and every sign of operation is preceded and followed by a space. In both
Unified English Braille and Nemeth code, signs of comparison are preceded and fol-
lowed by a space, but arithmetic operators are usually not preceded or followed by a
space[53][54]. The Woluwe code specification describes that spaces only precede signs
of comparison and arithmetic operators. The Woluwe code also describes an excep-
tion; when the context is non-linear (square roots, fractions, integrals, summations,
sub-scripts, super-scripts) no spaces are used at all[55].

5.3.2. Comparison

Having looked at the set requirements, a scoring schema was developed to provide a
quantitative comparison. This schema is based on a scoring of 0-5, where 0 means ex-
clusion of the requirement, and 5 means that the related notations scores best on the
requirement. Scores can be the same when the way two notations meet the requirement

37



are equal. This can be the case when the exact same spacing rules or size is required
for our example formulas. When a requirement is not met by each notation, the max-
imum score is reduced by the number of notations that don’t meet the requirement.
The requirement for required size is based on the size in braille. For pseudo-codes the
American braille table was used, whereas other notations use the braille table that is
common in the country/countries the related braille code is used in.

Our comparison, as shown in table 5.4, shows that the quantitative differences between
dedicated braille code does not vary much. Pseudo-codes are less supportive towards the
reader, as can be concluded by the lower scores for feed-forward, feed-back, and required
size.

LaTeX | Woluwe | UEB | Dedicon | Nemeth
Feed-forward 2 4 4 1 4
Feed-back 1 4 4 2 4
Required Size 3 5 3 1 4
8-dot braille support 1 1 1 1 1
Lingual 2 0 0 1 0
Secondary and higher education 5 4 4 3 4
Production on qwerty-keyboards 2 0 0 2 0
Assistive spacing 1 2 4 5 4
| Total | 17 [ 20 [ 2 [ 16 | 21 |

Table 5.4.: Assessment of braille codes, higher scores are better for each requirement
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6. Comparing mathematical formulas

As described in chapter 4.2.2, it has become common to enroll blind students in regu-
lar, non-specialized, education where regular teaching methods and materials are used.
In personal communication it has been said that mathematics levels B and D are, in
comparison to mathematics A and C, less popular among blind learners. We believe
that cognitive aspects could be a reason for this phenomenon, as these mathematics
levels include fields of mathematics, such as advanced geometry, that are harder to per-
ceive by blind learners. The use of graphical calculators, spatial figures and complex
mathematical formulas could also make mathematics levels B and D harder for blind
learners. Although specialized software and hardware exists ! to support blind learners
with graphical representations of information, braille users are still limited to the braille
system for reading mathematical formulas. Because reading braille is, in most cases,
slower than reading print[15], another reason for the lower demand for mathematics B
and D curricula by blind learners could be related to the reading handicap that braille
forms with the claimed? more complex mathematical formulas.

It is my hypothesis that the complexity of mathematical formulas indeed forms a
greater obstacle to blind learners for mathematics B and D than mathematics A and C.
In order to prove this hypothesis, we need to compare the complexity of mathematical
formulas in various mathematics levels of Dutch education. In this chapter, we introduce
a model to define how hard it is to read and understand a formula. This model will then
be used to compare mathematics level B with the more popular mathematics levels A
and C. As discussed in section 4.2.1, mathematics level D is an expansion of mathematics
B. For that reason, it is not treated separately in our comparison.

6.1. Model for cognitive complexity of mathematical formulas

As briefly described in chapter 5, the structure of a mathematical formula influences
the length of representation in the various braille codes. The table on page 36 shows
that mathematical structures such as integrals, summations and fractions take a lot
more space than, for instance, a linear formula. In order to compare complexity of
mathematical formulas, it is important to consider the meaning of sub-structures as
well as the size of entire formulas. We consider a fomula as a set of sub-expressions.
Looking at the deep sentence structure of such sub-expression, it can be said that a
sub-expression:

e FEither is an elementary expression, in which case it may be a number or a variable

"Hardware and software to assist blind users is described in chapter 4.3
2Mathematics teachers in interviews mentioned that formulas in mathematics A are generally shorter
and easier to read than those in mathematics B
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e Or consists of an operator (predicate) with a number of associated components
(arguments)

A predicate can either be an arithmetic operator, or a function. Examples of binary
arithmetic operators are the addition and subtraction symbols. Functions can be unary,
such as the sine and cosine function, but can also take multiple arguments. Examples
of compound expressions with binary operators are:

e 24+3*5
. (2+3)*5

An example of an operator that takes four arguments, including a sub-expression, is the
Greek capital sigma that is used to represent a summation function. The example below
shows the four arguments a, b, ¢ and d. The argument d is typically a function that is
executed c-b times, in which argument a can be used.

C
> d
a=b
The deep sentence structure of an expression can be shown using a parse tree. A parse
tree shows the operators, and connects those operators to its associated arguments by
lines, forming a tree. Parse trees corresponding with the examples containing binary
operators are shown in figure 6.1. In these parse trees, each level (operator) as well

as each argument adds complexity. We will quantify this complexity by introducing a
model for Cognitive Complexity.

+ *
2 * + 5
3 5 2 3
Figure 6.1.: Deep sentence structure of mathematical expressions

We define the Cognitive Complexity of a mathematical formula as a numeric value
that gives an indication of how hard it is to not only read, but also understand the
given formula. It is understandable but not proven that a formula with a high Cognitive
Complexity will also have a higher Cognitive Load for the reader. This model was
designed mainly to compare complexity of mathematical formulas. It is believed that
complexity depends on three main factors:
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e The numbers and variables used in the expression
e The operators and functions used in the expression

e The grouping characters used in the expression

The Cognitive Complexity of an expression (formula) in this model, is the cognitive
complexity of all sub-structures and an additional factor for each sub-structure. In the
parse tree shown before, each level indicates a sub-structure, and starts with one or more
operators. In the formula below, Op; stands for Operation ¢ of the main expression F.
A;j; refers to Argument j of operator i. The additional factor ¢ — 1 adds the index of an
operation to the cognitive complexity value, where the first operator adds 0. The variable
n refers to the number of operators, whereas m refers to the number of arguments of
the associated operator.

n m
CC(E) =) (CC(Op) + (i—1)+ >  CC(Ay))
i=1 j=1
The Cognitive Complexity of numbers and variables, operators and functions, and
grouping characters involved in the formula are defined below.

Numbers and variables

Although the length of a mathematical expression is an important factor in Cognitive
Complexity, we argue that the length of a number is not a good method of measurement.
For example, the number 83,000,000 may be easier to remember (and apply) than the
number 8371 - which is significantly shorter. For this reason, the scientific notation is
used to write numbers in the shortest possible way. This notation has the format a % 10°
or aFEb, in which a is called the mantissa, and b is called the exponent. The number
83,000,000 can be written as 83 x 10% or 83E6 using the scientific notation. The number
8371 can be written as 8.371 * 10% or 8.371E3, which only increases its length. The
scientific notation allows for a better comparison of size of mathematical expressions;
intuitively 8371, counting 4 characters in normal notation and 7 in scientific notation,
is harder to remember than 83,000,000 - counting 8 characters in normal notation, but
only 4 in scientific notation.

We define the Cognitive Complexity of a number CC(N) equals the length of the
mantissa L(mantissa) plus the length of the exponent L(exponent) plus 1 (for the letter
CC(N) = L(mantissa) + L(exponent) + 1
The Cognitive Complexity of a variable CC(V) consisting of letters, is defined as the
length of the letters required to write the variable name L(V). When this L(V) is larger
than 5 and forms one or more words, CC(V) will be maximized at 5. In formula form:
CC(V|L(V)<5)=L(V)

CO(V | L(V)>6) =5
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Operators and functions

The Cognitive Complexity of an operator or function depends on the type of operator and
the Cognitive Complexity of its arguments. The Cognitive Complexity of an operator
or function itself is a constant, because remembering or applying a division operator
is believed to be harder than, for instance, remembering or applying an addition or
subtraction operator. The Cognitive Complexity of the arguments are based on rules
for numbers, variables, operators and grouping characters, as arguments themselves are
considered sub-expressions as well.

Functions surrounding expressions, such as f() and g() will have a constant Cognitive
Complexity similar to operators. The general rule is that the Cognitive Complexity
equals the number of characters used to name the function. The exceptions to this rule
are common textual functions, such as sine (sin) and cosine (cos), that are believed to
have a lower cognitive complexity.

Grouping symbols

Similar to operators, a set of grouping characters, such as parentheses, is believed to
have a constant Cognitive Complexity. When nested, grouping characters do add com-
plexity, as more reading is involved, and confusion can occur. In addition to symbols
such as parentheses solely used as a method of grouping, such symbols can also span
multiple rows. In such ituation they either carry a special meaning, such as the binomial
coefficient, or group multiple rows of content, such as a matrix. Enlarged curly braces,
spanning multiple rows to group a set of functions are used as well. Such enlarged
grouping symbols are believed to add complexity for each row they span.

6.2. Quantification of complexity

In section 6.1 we described a model for cognitive complexity of mathematical formulas,
that can, when applied, be used to compare complexity of mathematical formulas. In
order to do this, we need to define the complexity of mathematical operators, functions
and grouping symbols. This quantification will be used in section 6.3 to assess the
complexity of mathematical formulas used in mathematics levels A, B, C and D in
Dutch pre-university (VWO) education. The decisions made to quantify complexity of
mathematical operators, functions and grouping symbols is not backed by research, and
is used solely as an instrument to compare complexity.

The relevant mathematical, functions andgrouping symbols operators are divided in
four main classes of complexity:

e (Class 1: Basic operators
e Class 2: Operators with a spatial nature
e Class 3: Functions

e (Class 4: Operators and functions with more than two arguments
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Basic operators

Basic operators are operators that are mainly taught in primary education, require
two arguments, and are not commonly written in a spatial way. Basic operators have a
Cognitive Complexity of either 1 or 2. Table 6.1 shows the basic operators, the Cognitive
Complexity assigned, and an example illustrating the calculation. One example will be
explained in more detail below the table.

Operator CC(Op) | Example

= (Equals symbol) 1 CC(a =b) =1+1+1=3
+ (Plus symbol) CC(a+b) =1+1+1=3
- (Minus symbol) CC(a—b) =14+1+1=3
* (Multiplication symbol) CC(axb) =1+2+1=4
co(
co(

O{}[) (grouping symbols) ax (bxc)) =1424+0+14+14+2+141=9
’ (prime symbol) f(x)) =1+1+1+1=4

=N =

Table 6.1.: Table of basic operators, their Cognitive Complexity, and an example showing
calculation of this Cognitive Complexity

The formula a * (b * ¢) has a Cognitive Complexity of 9, which is based on the sum
of variables, operators, and parentheses. From left to right it contains the variable a,
the multiplication operator (with index 0), an opening parenthesis, the variable b, the
multiplication operator (with index 1) and the variable c¢. This sums up to CC(V) =
1+14+1=3,CCOp)=2+0+2+1=5, CC(Grp) = 1. The closing parenthesis is
ignored in this calculation; the Cognitive Complexity for grouping symbols is calculated
per group.

Operators with a spatial nature

Mathematical operators that are commonly written in a spatial way are, in terms of this
research, more complex than basic operators. Even though some of these operators are
taught in primary education, it is believed that these operators are more complex for
people with a reading handicap.

Operator CC(Op) | Example

" (Exponent symbol) 2 CC(a'b) =1+2+1=4

/ (Square root symbol) | 3 CC(y/(25)=3+1+2=6

/ (Division symbol) 4 CC(ax*b/c) =14240+14+4+14+1=10

Table 6.2.: Table of operators with a spatial nature, their Cognitive Complexity, and an
example showing calculation of this Cognitive Complexity

The formula a % b/c has a Cognitive Complexity of 10. From left to right it contains
the variable a, the multiplication symbol (with index 0), the variable b, the division
symbol (with index 1) and the variable c. This sums up to CC(V) =1+1+1 = 3,
CC(Par)=0,CC(Op) =2+0+4+1=T.
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Functions

Common mathematical functions include placeholder functions such as f() and g(), but
also include functions such as sine (sin) and cosine (cos). The amount of letters to
write these function names are typically higher than what we believe is the Cognitive
Complexity of such functions. Regular words, such as sin and cos are relatively easy to
read and understand.

Function CC(F) | Example
Single-letter function 1 CC(f(x)) =14+1+1=3
Common three-letter functions 2 CC(sina)=2+1=3
Expansions of common three-letter functions | 3 CC(arcsina) =3+1=4

Table 6.3.: Table of common mathematical functions, their Cognitive Complexity, and
an example showing calculation of this Cognitive Complexity

The formula f(z) = 1 has a Cognitive Complexity of 5. From left to right, the function
f, the opening parenthesis, the variable x, the equals symbol and the variable 1 are used.
This sums up to CC(F) =1, CC(V) =2, CC(Op) =1, CC(Grp) = 1.

Operators and functions with multiple arguments

The final class of operators and functions are those with multiple arguments. Besides
the increased number of arguments, that count as sub-expressions or variables as well,
it is believed that this class of operators and functions form an obstacle to blind users.
We believe this is the case because when reading from left to right, all arguments must
be remembered as well as the relation to the operator.

Operator CC(F) | Example
[ (Integral) 6 CO([ v(t)dt) =6+1+1+1+1+1+1+1=13
> (Summation) | 7 CCY" yaxr’) =T+1+1+0+14+1+142+1+14+24241=21

Table 6.4.: Table of common mathematical functions and operators that take multiple
arguments, their Cognitive Complexity, and an example showing calculation
of this Cognitive Complexity

The formula )" ; a * r "4 has a Cognitive Complexity of 21. From left to right, it
contains the summation symbol, the variable i, the equals operator (with index 0), the
variable 1, the variable n, the variable a, the multiplication symbol (with index 1), the
variable r, the exponent symbol (with index 2) and the variable i. This sums up to
CC(F)=15,CC(V) =6, CC(Grp) =0.

6.3. Assessment of mathematical formulas

Having introduced a model for Cognitive Complexity of mathematical formulas and a
quantification of common sub-structures of mathematical formulas, we are able to com-
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pare complexity of mathematical formulas. It is our aim to use this model to compare
Dutch mathematics curricula in terms of complexity of mathematical formulas. In order
to achieve this, we take all mathematical formulas used in mathematics levels A, B,
C and D as used in Dutch secondary (pre-university) education. These formulas were
copied from formula summaries from publisher Wolters-Noordhoff[56][57] and checked
by a mathematics expert. These formulas are the formulas learners must be able to
understand and apply in exams.

In order to assess all formulas, a simplified version of our model for Cognitive Com-
plexity was used. In this simplified version, we eliminate the increased complexity for
each additional operator or function. This means that, for example, CC(1+2+3+4+5)
will not equal 15 (Var=5, Op=1+2+3+4) but 9 (Var=5, Op=1+1+1+1=4). Although
the influence of this factor, especially with more complex formulas, is noticeable, it is
believed that the outcome of this analysis will be comparable to using the original model.
The advantage of this model is the fact that it allows for quick analysis. It is believed
that the outcome will comparable because the initial hypothesis, ”mathematics B is more
complex than mathematics A and C in terms of mathematical formulas”, was partially
based on the mathematical structures identified in these formulas. The structures we
identified, as was briefly discussed in chapter 5.3, include linear formulas, fractions of
varying complexity, spatial formulas, summations, integrals, groups, and combinations
of these structures. Table 6.3 shows the amount of mathematical formulas of each iden-
tified structure and combination of structures in mathematics levels A+C, B and the
formulas used in all curricula. Mathematics level D is not assessed separately, as it is
considered an expansion of mathematics B. In this analysis, fractions were counted and
categorized in three levels because it is believed that, for instance, ¢ is significantly less

f(a)

a . The levels are defined as
g(b)

complex than 707 which in turn is less complex than
follows:

e Category 1: Numerator and denominator contain no functions

e Category 2: Either the numerator or denominator contains a function

e Category 3: Both the numerator and denominator contain a function

In table 6.3, category 1 fractions are shown first, followed by categories 2 and 3. From
this quick analysis, one can conclude that mathematics B requires understanding of more
formulas in general, but in relative terms the percentage of more complex structures is
significantly higher as well. In the previous paragraphs we showed that more complex
mathematical structures often result in a higher Cognitive Complexity, supporting our
hypothesis.
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A+C | B A+B+C(+D)
Linear 9 44 39
Fraction 2,0,1 | 5,22 13,42
Spatial and Fraction 1 0 0
Summation and Fraction | 0 1 1
Integral 0 0 3
Group 0 0 1

Table 6.5.: Amount of mathematical formulas of a certain structure in mathemtics
curricula

Applying our simplified version of the Model for Cognitive Complexity of mathemat-
ical formulas involved counting of variables (and their lengths), grouping symbols, and
mathematical structures. The sum of the Cognitive Complexity of these parts was then
calculated. All formulas and their Cognitive Complexity according to this simplified
model are shown in Appendix B. The main criterium for mathematics B being more
complex in terms of complexity of its mathematical formulas is the average and median
cognitive complexity being higher than those of mathematics A and C. Table 6.6 shows
a summary of the analysis of Appendix B and shows properties of mathematics levels
A and B exclusively, as well as the combination with the formulas shared among all
curricula. It can be seen that formulas in mathematics level B have a higher average
and median Cognitive Complexity than those in mathematics levels A and C. From this
we can conclude that our hypothesis is confirmed; mathematics level B is more complex
than mathematics levels A and C in terms of mathematical formulas.

A-only | Shared | B-only | A B
Average 14.5 13.6 16.4 13.8 | 15.2
Minimum 4 5 2 4 2
Maximum 33 35 41 35 41
Median 13 12 15 13 14
n 14 51 68 65 119

Table 6.6.: Average, Minimum, Maximum, Median values of Cognitive Complexity of
formulas in the associated curriculum

46



7. Conclusions

In this research we assessed and compared braille codes and mathematical formulas in
the context of blind learners in secondary education. The results allowed us to find out
why Dutch mathematics education, and specific parts of it, cause problems for blind
learners. In order to place this in a broader context, the cognitive aspects of blind
learners and the developments in the field of education, braille and technology were
researched. Combining the results allows for drawing conclusions about the problems in
Dutch mathematics education for the blind. With this information and future research,
it may be possible to make mathematics education more accessible for the blind. The
main question that will be answered in this concluding chapter is:

e How complex are mathematical formulas and how can they be represented in
Braille?

In order to answer this question, sub-questions were described and answered in sep-
arate chapters of this thesis. The sub-questions are categorized as contextual (chapters
3-4), comparing braille (chapter 5) and comparing mathematics (chapter 6). The same
structure and order is used in this concluding chapter.

Based on findings from contextual questions, the main question is answered by com-
bining the answers to sub-questions 5 and 6. Briefly put, we conclude that mathematical
formulas can be compared in terms of complexity by introducing a model for Cognitive
Complexity of mathematical formulas. In Dutch high school pre-university mathematics,
the mathematics B curriculum requires use of more complex mathematical formulas than
mathematics A and C. Combined with the knowledge that this curriculum is rarely cho-
sen by blind learners, we conclude that the braille representation for mathematics forms
an obstacle. During our research we found that there are many braille codes describing
grammar-like rules for mathematics, of which the resulting formulas can also be com-
pared. This comparison was partially based on requirements from previous research, and
showed a separation of dedicated braille codes and codes we refer to as pseudo-codes that
can also be represented in print. We concluded that dedicated braille codes are better
at assisting the braille reader than pseudo-codes are. The differences between dedicated
braille codes were not significant; using our requirements and a scoring scheme where
a higher score indicates more assistive properties, the resulting scores were 20 (Woluwe
code), 20 (Unified English Braille) and 21 (Nemeth code). The pseudo-codes Dedicon
and LaTeX scored 16 and 17 respectively. Looking at individual requirements, user pref-
erence as well as the braille table that is used have more influence on the strenghts of
braille codes.
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7.1. Contextual findings

This section contains conclusions based on the findings in chapters 3 and 4, and answers
the following questions:

1. How do blind children learn in comparison to sighted children?
2. What advancements to the braille system have been made to support mathematics?
3. How is mathematics taught in the Netherlands?

4. What technological developments support blind learners in the field of mathemat-
ics?

How do blind children learn in comparison to sighted children?

In order to research the way blind children learn, literature was referenced and backed
up by interviews with experts in the field of pedagogical and educational sciences. We
expected to find that graphical content would be the main problem for blind learners,
as perception of this content using tactile or auditory senses is extremely difficult. The
main reason for this difficulty is the successive nature of these senses, allowing to perceive
just one piece of information at a time, lacking any form of overview. In addition to
graphical content, it has become clear that this limitation of tactile senses is also an
important factor when reading non-graphical mathematical content, such as formulas,
in braille. Tactics for reading mathematical formulas that are often applied by sighted
users are not suitable for braille readers, resulting in an increased cognitive load when
reading mathematical content. The cognitive load is defined as ”the amount of mental
activity tmposed on the working memory at an instance in time”, and is an important
factor when looking at reading tactics for mathematical content. These tactics include
the concept of chunking and getting an overview of the structure of a formula prior to
reading it in detail. Chunking involves reading and/or solving parts of the formula and
remembering the outcome, whereas getting an overview involves generation of a mental
image to understand the meaning of a sub-formula at a certain position. Either tactic
is unusable for blind children without memorizing the entire formula.

What advancements to the braille system have been made to support math-
ematics?

Through literature and interviews with teachers and educational coaches of blind learn-
ers, the strengths and weaknesses of braille in the context of mathematics were investi-
gated. Previous research has indicated that reading braille is typically 50% slower than
reading print. Reading braille can in that sense be considered a reading handicap, that
is much stronger for slow braille readers than it is for faster readers. It has been proven
that learners with low reading abilities are also less skilled in mathematics, indicating
that it is possible that braille readers require more effort in order to learn mathematics,
regardless of two-dimensional content. The braille system itself, from an international
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perspective, varies a lot; only the 26 letters of the alphabet as developed by the French-
man Louis Braille are internationally agreed upon. All special symbols, indicators and
punctuation marks are different around the world, mainly because of the differences in
language. In order to display non-French characters, and to decrease the size required
for braille content, changes to the braille system have been made in many countries.
Besides the braille table itself, abbreviations or contractions of words and the addition
of braille rules (referred to as braille code) were made.

It can be said that all but the simplest of mathematics is non-linear, whereas the
braille system is entirely linear; every character is placed at the same vertical position
on the baseline, and has the same (maximum) size of 2x3 dots. In order to express math-
ematics, braille codes for mathematics have been introduced, that allow linearization of
non-linear mathematical content. This development has happened in various ways, in-
dependently, in many countries in the world. Although the field of mathematics, like
music, can be considered language-independent, no universal braille code was ever intro-
duced for mathematics. In this research we focussed on the notations for mathematics
used in North America, the United Kingdom, Belgium and the Netherlands. North
America, the United Kingdom and Belgium have used braille codes specifically designed
for mathematics and science for several years, and changes are still being made to them.
In the Netherlands, no real braille code exists, but a pseudo-code that is also readable
by sighted users is being used.

How is mathematics taught in the Netherlands?

Besides the differences in perceiving mathematical content and the increased cognitive
load for blind learners, mathematics education is highly focussed on visual aspects.
Teaching goals for secondary mathematics education rely on the learner understand-
ing certain concepts, such as the differences and similarities between objects and pro-
cesses, symbol sense, the meaning of algebraic expressions and the development of mental
schemas. Teaching methods used to achieve these goals make use of common reading
tactics to guide learners; properties such as symmetry and visual similarities between
exercises and examples, and color-coding are common. These methods are not suitable
for blind learners, but as the same textbooks are used for blind learners it is under-
standable that blind learners have more problems with mathematics. Looking at the
curricula offered in the Netherlands, four mathematics levels can be chosen in the final
years of secondary (pre-university) education; levels A, B, C and D. Mathematics A and
C are similar in contents, and focus on applied mathematics and prepare mostly for
Alpha-studies. Mathematics B and D use a more fundamental approach, and prepare
for Beta-studies. By definition, mathematics level B is not more complex than mathe-
matics A or C. Mathematics D is an expansion of mathematics B, containing parts of
mathematics A and C.
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What technological developments support blind learners in the field of math-
ematics?

Technology in the context of this research involves the possibilities of hardware and
software to assist blind learners. Most of this research was based on published articles,
online references, personal communication with teachers and blind students, and infor-
mation provided by vendors of assistive aids and software for the blind. Refreshable
braille displays, braille note-takers and braille typewriters have been available for many
years, as well as screen reading and speech software to support these devices. Such
software however offers limited support for mathematis; both braille and speech out-
put for mathematics is, in most cases, a character-by-character output of the original
content. Alternatives to a character-by-character output exist and rely on automated
translation of braille codes and visual representations (often using a universal format
such as MathML), but these are not widely used. The variation in braille codes and
tables limits usefulness of such translation and back-translation software as well; no uni-
versal application is available, and braille codes and tables constantly change. In order
to share mathematical work with sighted users, many braille users use pseudo-codes such
as LaTeX or variations of it. These notations generally require more space than braille
codes when represented on a refreshable braille display, thereby increasing the cognitive
load for the reader.

7.2. Comparing braille codes

This section contains conclusions based on the results from chapter 5 and answers the
following question:

5. In what way can braille codes be compared?

It was our aim to assess and compare the possibilities of using braille to represent
mathematical formulas. In order to compare the notations used to represent mathemat-
ics in braille, requirements were described that were partially based on existing research.
The requirements used are: support of feed-forward, feed-back and 8-dot braille, the level
of linguality, the required size, coverage of high school and higher mathematics, produc-
tion on gqwerty-keyboards and the use of assistive spacing. Braille notations compared
include both dedicated braille codes that are not suitable for visual representation (e.g.
containing characters unique to braille), and pseudo-codes that are also usable by sighted
users without the need for conversion. Dedicated braille codes used in our comparison
include the Nemeth code, Unified English Braille and Woluwe code. The pseudo-codes
that were also compared are LaTeX and the Dedicon notation. The Dedicon notation is
a pseudo-code that was developed in, and is only used in the Netherlands. The braille
tables used to represent formulas in these braille codes depend on the country in which
the associated braille code is most commonly used, except for LaTeX and Dedicon no-
tation; for these notations the American braille table was used because of its popularity
in the Netherlands.
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From the comparison found in chapter 5.3, it can be concluded that the braille codes
don’t vary much in terms of our requirements. Assuming all requirements are equally
important, braille codes do score higher than pseudo-codes, but it cannot be stated
that one braille code is significantly more supportive to the reader than another. It can
however be said that dedicated braille codes, according to these requirements, are more
suitable for use by blind users. This advantage is however, with the current technology,
mostly limited to reading. Production of mathematics in dedicated braille codes requires
conversion from a pseudo-code such as LaTeX, or production using just six keys of
the computer keyboard (or braille notetaker), which is significantly slower than typing
pseudo-codes using ten fingers on a regular computer keyboard.

7.3. Comparing mathematics

This section contains conclusions based on the results from chapter 6 and answers the
following question:

6. In what way can mathematics levels be compared in terms of complexity of math-
ematical formulas?

One of the findings in an early stage of this research project, is the observation that
mathematics level B is rarely chosen by blind learners. Reasons for this phenomenon
that were mentioned in personal communication varied, but often included the problems
braille users have with notations for mathematics. In order to prove the hypothesis that
indeed the braille notation causes problems for mathematical formulas, the mathematical
formulas in Dutch secondary (pre-university) education were compared in terms of com-
plexity. In order to do this, a model for Cognitive Complexity of Mathematical Formulas
was introduced, that was then used to quantify how hard it is to read and understand
a given mathematical formula. Using a simplified version of this model, all formulas in
Dutch secondary (pre-university) mathematics education were compared, allowing us to
compare mathematics curricula in terms of complexity of its mathematical formulas.

Our simplification of the original model for cognitive complexity reduces the complex-
ity value of more complex formulas, slightly reducing the gap between formulas with
a medium complexity and a high complexity. Even with this change, however, it can
be concluded that mathematics level B is indeed more complex than mathematics lev-
els A and C, in terms of complexity of the mathematical formulas used. The average
complexity of a formula in mathematics A is 13.4, compared to 15.2 in mathematics B.
Looking at the median, mathematics A scores 13 in comparison to 14 in mathematics
B. Finally, the importance of mathematical formulas in mathematics level B is higher
than in mathematics A, as indicated by the number of formulas used; mathematics A
requires a total of 65 mathematical formulas, compared to 119 in mathematics B.

7.4. Discussion

We concluded that dedicated braille codes for mathematics have advantages for reading
mathematics compared to pseudo-codes. We also concluded that certain mathematics
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levels are less accessible to the blind because of complexity of mathematical formulas.
There is however a drawback in using dedicated braille codes; presentation to sighted
users. With the use of computers, it is theoretically possible to translate any braille
code for mathematics into a universal format such as MathML. However, projects that
alm to achieve this are commonly behind on development of braille codes they rely
on. One way to minimize this problem would be to reduce the amount of braille codes
altogether, and standardize the braille codes that remain. This also implies that national
and international braille authorities need to cooperate more.

During a symposium on Braille in Mathematics Education® a discussion resulted in
four key recommendations that reduce problems with mathematics education for the
blind. These recommendations are:

e Facilitation: Facilitate extra time for teachers of blind learners
e Standardization: Standardize braille codes and tables

e Change management: Form an authority to decide on the future of braille in the
Netherlands

e Collaboration: Collaborate with national and international braille authorities and
relevant organisations

7.5. Future research

This research resulted in a handful of improvements that can be applied to Dutch mathe-
matics education for the blind. One of the main topics involved the use of a standardized
braille code to express mathematical formulas. Although a similar approach has been
taken in other countries, this is new for the Netherlands. An introduction of a braille
code would therefore require more research. It is possible that, despite the positive
characteristics of the found braille codes, the approach cannot be easily applied to the
Netherlands. Topics that require more research include:

e The influence on existing braille material
e The influence on production of digital and physical braille material

e The required changes in education for the blind in both regular and specialized
education

e The way braille readers can learn about the new braille codes

From a more practical standpoint, research involving braille users is needed in order
to decide on the implementatio of a braille code. Questions that need answering include
the following:

e Which braille code is most suitable for the Netherlands?

1Symposium held at Radboud University Nijmegen, January 25th 2013
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e Is it wise to change the Dutch braille table to support mathematics in a better
way?

e If a change to the Dutch braille table is required, is there an existing braille table
that is suitable for the Netherlands?

Finally, there needs to be more research on a technical level as well. Despite the
advancements in software projects over the past years, it is believed that a more inte-
grated approach is required to assist the braille readers most. Screen reader software
is still behind on displaying mathematics, and production of mathematics for the blind
needs to be researched as well. A recommendation I would personally make, involves a
research project combining experts in the field of mathematics, braille, and the vendors
of popular screen readers. A collaboration with existing mathematics applications, as
mentioned in chapter 4.3.2, would be beneficial as well.
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Appendix A Braille translations of mathemati-
cal formulas

In chapter 5.2, three mathematical formulas were translated into LaTeX, Woluwe code,
Unified English Braille code, Dedicon code and Nemeth code. To improve readability
of that chapter, the remaining three formula structures and their translations into these
braille codes are shown in this appendix. The formulas translated are shown in table

A.l.

Structure Type Example formula Page
Linear nl=nxn—1)*..x2x1 30
Fraction o(X) = U\(/);SL) 32
Spatial P(X =k)= (p)p*(1—p* 55
Spatial and fraction () = ﬁlk), 33
Summation and Fraction S =S ark = at=rt 56
Integral L= fab V1+ (f'(x))2dz 57
Group z(t) =m+ r?os w(t —to) 58

y(t) =n+rsinw(t —to)

Table A.1.: Example formulas and location of translations in this document

A.1. Spatial

The formula involving a spatial structure is an application of the spatial and fractional
formula for the binomial coefficient. The formula is:

LaTeX

In LaTeX the formula is written as ”P(X=k)=\binom{n}{k} p"k(1-p)"{n-k}”. It counts
33 characters in print, and 46 characters when using the American braille table.
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Woluwe encoded

The Woluwe encoded formula counts 36 characters.

Unified English Braille encoded

The UEB-encoded formula counts 51 characters.

Dedicon encoded

The Dedicon encoded formula appears as "P(X = k) = (n; k)p'k(1 - p)’(n - k)” and
counts 35 characters in print. When translated using the American braille table, it
counts 41 characters.

Nemeth encoded

The Nemeth-encoded formula counts 39 characters.

A.2. Summation and Fraction

A summation uses the Greek capital Sigma with arguments directly above, below and
next to it. The example formula we use to compare braille codes is shown below.

i 1—r"
S:Zar :al—r

LaTeX

In LaTeX the formula is written as ”S=\sum_{k=0}"{n-1}ar’k=a\frac{1-r'n}{1-r}” and
counts 41 characters. When translated using the American braille table, it counts 58
characters.

Woluwe encoded

The Woluwe encoded formula counts 41 characters.

Unified English Braille encoded

The UEB-encoded formula counts 55 characters.

o6



Dedicon encoded

The Dedicon encoded formula appears as ”s = ~ S{k =0.n- 1}ar'k =a * ((1 - r'n) /
(1-1))” and counts 54 characters in print. When translated using the American braille
table, it counts 68 characters.

Nemeth encoded

The Nemeth-encoded formula counts 43 characters.

A.3. Integral

An Integral involves a so-called Long-S symbol with arguments directly below, above
and next to it. The example formula we used is:

b
L= / VIt (@)

LaTeX

In LaTeX the formula is written as "L=\int_a"b\sqrt(1+(f’(x))"2))dx” and counts 31
characters. When translated using the American braille table, it counts 40 characters.

Woluwe encoded

The Woluwe encoded formula counts 29 characters.

Unified English Braille encoded

The UEB-encoded formula counts 41 characters.

Dedicon encoded

The Dedicon encoded formula appears as "L = intg{a..b}sqrt(1 + (f’(x))"2)dx” and
counts 36 characters in print. When translated using the American braille table, it
counts 44 characters.
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Nemeth encoded

The Nemeth encoded formula counts 30 characters.

A.4. Group
A grouped formula involves an enlarged curly brace on the left, to group together two
formulas. The example formula we used contains two formulas.

x(t) = m+ rcos (w(t —tp))

y(t) =n—+rsin(w(t —tg))
LaTeX
In LaTeX the formula requires two lines, to separate the two formulas. It counts 87
characters in print, and 96 characters when translated using the American braille table.

\begin{cases}x(t)=m-+r\cos{(\omega(t-t_0))} y(t)=n+r\sin{(\omega(t-t_0))} \end{cases}

‘Woluwe encoded
The Woluwe encoded formula counts 61 characters.
Unified English Braille encoded
The UEB-encoded formula counts 78 characters.
Dedicon encoded
The Dedicon encoded formula appears as "x(t) = m + r cos(~j(t - t-0)); y(t) =n +r
sin(~j(t - t.0))” and counts 63 charactes. When translated using the American braille
table, it counts 68 characters.
Nemeth encoded
The Nemeth encoded formula counts 58 characters.
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Appendix B Cognitive Complexity Survey

B.1. Mathematics A, C Num | Formula CC
2.7.7a | f(z) =sinz 7
Num | Formula CcC 2.7.7b flx)=—cosx+¢ 10
111 [ n!=Nx(n—1)%.%x2x1 18 2.78a | f(z) =cosz 7
1.1.2 [or=1 4 2.7.8b | f(z)=sinxz+c 9
113 | () = oo 13 279 | L=["\/1+(/'())%dz 24
121 | E(X 1Y) = E(X) + E(Y) 13 2710 | I=n["(f(z))%dx 20
122 | o(X +Y)=/02(X)+2(Y) 23 2.8.1 | cos?t+sint=1 15
1.2.3 E(S) =nx* FE(X) 10 2.8.2 sin (—t) = —sint 10
1.2.4 = /(n) x o(X) 14 2.8.3 sin (5 —t) = cost 16
1.25 | B(X) = FE(X) 7 2.8.4 sin (r —t) = sint 10
126 | o(X) = z}?ﬂ 13 2.85 | tant = 30t 14
3T TP _") el — 5= 2.8.6 cos (—t) = cost 8
Lot E( d k)= (7) *pk(L —p) = 287 | cos(Z = —sint 15
3. ( ) — P 288 | cos(mr—1) = —cost 10
133 | o(X \/”p 1- 14 2.8.0 | sin(2f) = 2sinfcos2 12
144 | 2= _ _ 10 2.8.10 | cos(2t) = cos®t — sin’*t = 2cos>(t — 1) 39
1.4.5 P(X g g)=P(Z < E)=d(£E | 33 — 11— 9¢int
B.2. Mathematics B, D 2.8.11 | sin(t+u) = sintcosu + costsinu 20
2.8.12 [ sint +sinu = 2sin (%) cos 5%) 31
Num | Formula CC 2.8.13 | sin(t —u) =sintcosu — costsinu 20
2.2.7 gloga = ;;%2% 16 2.8.14 | sint —sinu = 2sin (;5%) cos (54) 31
228 gloga + glogh = glogab 15 2.8.15 | cos(t+u) = costcosu — sintsinu 20
2.2.9 gloga — glogh = glog ¢ 21 2.8.16 | cost+ cosu = 2cos (F£*) cos (54) 31
2.2.10 | gloga? = pIloga 17 2.8.17 | cos(t —u) = costcosu + sintsinu 20
2.3.3 H =d+asin (b(t — c)) 15 2.8.18 | cost — cosu = 2sin (%) sin (54) 31
2.3.4 H =d— asin (b(t —c)) 15 2.8.19 | sina =sinf gives 27
2.4.3 S:Zﬁoark:alir 28 a=B+kx2nora=7m—[B+kx*x271
2.6.12a | f(x) =sinz 7 2.8.20 | cosa = cos 3 gives 25
2.6.12b | f'(z) = cosx ] a=0+kx2rora=—-0+kx*2r
2.6.13b | f/(z) = —sinz 9 292 | [Po)dt = [P /@ () + (v (1)2dt 41
2.6.14a | f(x) = tanx 7 a(t) = m + rcos (w(t — to))
- 2.9.3 ithw= 2% | 38
2.6.14b | f'(z) = = =1+tan’x 22 y(t) = n -+ rsin (Wt — to)) with w = 7
2.6.15 | L(z) = f(a) + f'(a) x (x —a) | 17 -
2.10.1a =cy 11
271a | f(z)=a" 8 dL 7
2.10.1b | y(t) = y(0) x €° 14
27.1b | LoD ¢ 17
5 om }}(Z}) — o 2.10.2a | % =c(K —y) 14
. =z — _ ct 1
972 | f(z) = In(jz]) + ¢ 13 210.20 | ylt) = K + (y(0) ~ K) xe 9
5.73a | f(z) =" 3 2.10.3a | & = c(K —y) 13
- 2.10.3b | y(t) = ;7-Cor.a = & 20 33
273b | flz)=¢€e"+c 10 40, Yy TFaeeCT 2(0)
2.7.4a flx) =g° 8 3.1.1 2rr 3
2.7.4b | f(z) = %gﬂ +c 18 3.1.2 ar 2
2.75a | f(z) =z 7 3.1.3 717T 5
275b | f(x)=azlnz—a+c 12 3.1.4 52‘” — 11
2.76a | f(z)= glogx 8 3.2.1 a2 + b2 = 02 14
27.6b | f(z)=L(zlnz —x) +c 21 3.2.2 ¢ =a” + b — 2ab* cosy 23
: 323 siga - sigﬂ — sigfy 26
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B.3. Mathematics A, B, C, D

Num | Formula CcC
2.1.1a |ar’+br+c=0 12
2.1.1b | X = =b4vD 15
2.12a | X" =c¢ 6
212b | X =cn = {/c 17
2.13a | gxr = 6
21.3b | X =gloga = 22 13
2.14a | glogx =b 6
21.4b | X =¢° 6
2.15a |e"=a 6
2.1.5b | z =In(a) 5
2.1.6a | In(x)=0 5
216b [z=¢ 6
221 |a "= 16
222 |av=a 15
2.2.3 af * a9 = aP*4 17
2.24 aP a9 =aP™1 16
225 | (a?)7 = a 14
226 | (ab)? = a?bP 15
2.3.1 H=b+axt 8
2.3.2 H=bxgt 9
2.4.1 S = Eersteterm—;Laatsteterm 18
242 | S=%p"jar’ = alz" 35
2.5.1 u(n) = 12 (u(0) — tX)a" 30
2.5.2 un+1)=axu(n)+b, U= 24
253 | un)=U-+a"(u(0)-U),U=:= |26
2.5.4 u(n+1) = ax*u(n) 12
2.5.5 u(n) = u(0) x a™ 13
2.5.6 u(n+ 1) = u(n) + cxu(n) =2 | 30
2.6.1a | g(z) =cx* f(x) 10
2.6.1b | ¢'(z) =cx* f'(x) 12
2.6.2a | s(z) = f(z)+g(x) 11
2.6.2b | §'(x) = f'(z) + ¢ (x) 14
2.6.3a | p(z) = f(x)* g(x) 12
2.6.3b | p'(z) = fr(z) x g(x) + f(z) * g/(x) 24
2.6.4a | q(z) = ggi; 14
2.6.4b | ¢'(z) = HHe@ S {Horle) 31
2.6.5a | k(x) = f(g(x)) 9
265b | k= 21
2.6.5¢c | K'(x) = f'(g(x)) * ¢ (x) 17
2.6.6a | f(z)=c 5
2.6.6b | f'(x)=0 6
2.6.7a | f(z)=2a" 8
2.6.7b | fr(x) =n*a" T 14
2.6.8a | f(z)=ex 8
2.6.8b | f'(z) =¢€" 9
2.6.9a | f(z)=g" 8
2.6.9b | fl(z) =¢"*xIlng 14
2.6.10a | f(z) =Inz 7
2.6.10b | f'(x) =1 11
2.6.11a | f(z) =glogx 6
26.11b | f'(@) = ; * g 20
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