
Master's Thesis

TCP Idle Scans in IPv6

Mathias Morbitzer

m.morbitzer@student.ru.nl

Thesis number: 670

August 2013

Supervisors:
Erik Poll

Hendrik Schimmelpenninck van der Oye (Fox-IT)
Mark Koek (Fox-IT)

Department of Computing Science

Radboud University Nijmegen

1

Abstract

Port scans are done by an attacker to discover which services are o�ered by
systems on a network and could be attacked. There are various approaches
for port scanning, all providing advantages and disadvantages. One of those
approaches is the TCP Idle Scan, in which the attacker spoofs messages of a
third computer in order to remain undetected. To see the results of the scan,
he utilizes the IPID in the IPv4 header.
With the slowly approaching upgrade of IPv4 with IPv6, one will not be

able anymore to conduct the TCP Idle Scan as previously, as the IPID is
not included statically in the IPv6 header, but only when fragmentation is
needed. Therefore, this thesis started with an investigation whether the TCP
Idle Scan is still feasible in IPv6.
The investigation illustrated that an attacker can use ICMPv6 Echo Re-

quest messages with large amounts of data as well as ICMPv6 Packet Too Big
messages specifying a MTU smaller than the IPv6 minimum MTU. This way,
the idle host can be forced to use the IPv6 extension header for fragmenta-
tion, which contains an identi�cation value which is comparable to the IPID
in IPv4, in each IPv6 packet sent to a speci�c host. Applying this method,
the TCP Idle Scan is feasible in IPv6.
After establishing how to conduct the TCP Idle Scan in IPv6, 21 di�erent

operating systems and versions have been analyzed regarding their properties
as idle hosts. Among those, all nine tested Windows operating systems were
suitable. This shows that the mistake to use predictable IPIDs in IPv4 is
being repeated in IPv6.
Also two alternatives to the TCP Idle Scan in IPv4 as well as in IPv6, which

do not rely on predictable assignment of the IPID or identi�cation values have
been analyzed. The �rst one is the RST Rate Limit Scan, which utilizes the
fact that some idle hosts only allow a certain amount of TCP segments with
the RST-�ag per second. Another alternative is the SYN Cache Scan, which
makes use of the limited amount of half-open TCP connections an idle host
is able to store. Additionally, with the second alternative, it might also be
possible for an attacker to scan through a �rewall into the internal network.
To show that the presented port scanning methods can also be used in

practice, a proof of concept has been created for each scan. Additionally, a
patch for the security scanner Nmap was created, which already provided a
very elaborated version of the TCP Idle Scan in IPv4. This patch enables the
scanner to execute the TCP Idle Scan in IPv6. Compared to the TCP Idle
Scan in IPv4, the created implementation decreased in performance by less
than 1% while at the same time having less requirements to the idle host.

2

Acknowledgements

� I would like to thank my parents for enabling my studies in the Netherlands and
their support.

� Fox-IT enabled me to do an internship at their company to write my thesis, for
which I am thankful. They sent me to a conference and provided me with the
hardware necessary to perform my research.

� Within Fox-IT, I would like to thank my supervisors Hendrik Schimmelpenninck
van der Oye and Mark Koek for supervising me, Joachim Schipper for reviewing
my patch as well as everybody else within the company who provided me with
feedback.

� I would also like to thank Erik Poll, my supervisor from Radboud University, who
provided me with academic feedback and useful critiques.

� Also, I am grateful for my proofreaders who helped me to improve the quality of
my writing.

3

Contents

1. Introduction 7

2. Background 9

2.1. IPv4 . 9
2.2. TCP three way handshake . 10
2.3. TCP Idle Scan in IPv4 . 11
2.4. Existing research into the TCP Idle Scan (for IPv4) 12

3. Applying the TCP Idle Scan in IPv6 14

3.1. Di�erences to IPv4 . 14
3.2. Forcing fragmentation . 16

3.2.1. Forcing fragmentation of step 2 and 7 using ICMPv6 Echo Requests 16
3.2.2. Forcing fragmentation of step 5 . 17
3.2.3. Spoo�ng ICMPv6 Packet Too Big Messages 18

3.3. TCP Idle Scan in IPv6 . 20
3.4. Requirements for the idle host . 22
3.5. Increasing stealth . 24

4. Conducting the TCP Idle Scan in IPv6 28

4.1. Behavior of various systems . 28
4.2. Incorrect behavior of systems . 30
4.3. Dual Stacking . 30

5. Alternatives to the TCP Idle Scan in IPv6 33

5.1. RST Rate Limit Scan . 33
5.1.1. Concept of the RST Rate Limit Scan 33
5.1.2. Characteristics of the RST Rate Limit Scan 35

5.2. SYN Cache Scan . 36
5.2.1. SYN-Flooding attacks and defenses 37
5.2.2. Concept of the SYN Cache Scan . 38
5.2.3. Characteristics of the SYN Cache Scan 40
5.2.4. Behavior of various systems . 42

6. Implementations 46

6.1. TCP Idle Scan in IPv6 using scapy . 46
6.2. RST Rate Limit Scan using scapy . 48
6.3. SYN Cache Scan using scapy . 49
6.4. TCP Idle Scan in IPv6 with Nmap . 50

6.4.1. TCP Idle Scan in IPv4 with Nmap 51
6.4.2. Changing existing process . 53
6.4.3. Performance . 55

4

7. Defense mechanisms 56

7.1. General defense mechanisms . 56
7.2. Defense mechanisms against the TCP Idle Scan in IPv6 56
7.3. Defense mechanisms against the RST Rate Limit Scan 57
7.4. Defense mechanisms against the SYN Cache Scan 57

8. Conclusion 59

8.1. Future work . 63

A. Forcing atomic fragments 69

B. Finding the IPv6 Identi�cation value 72

5

List of Figures

1. IPv4 header . 9
2. TCP three way handshake . 10
3. TCP Idle Scan in IPv4 . 12
4. IPv6 header . 14
5. IPv6 extension header for fragmentation . 15
6. ICMPv6 Packet Too Big message header . 18
7. ICMPv6 Packet Too Big Message to spoof 19
8. TCP Idle Scan in IPv6 . 21
9. Scanning the �rst port with the improved TCP Idle Scan in IPv6 26
10. Scanning another port with the improved TCP Idle Scan in IPv6 27
11. ICMPv6 Router Advertisement . 31
12. RST Rate Limit Scan . 34
13. SYN Cache Scan . 39
14. SYN Cache Scan into DMZ . 42
15. TCP Idle Scan in IPv4 with Nmap . 52

6

1. Introduction

When an attacker receives access to a network, it is important for him to see which
systems are connected to this network, and which kind of services those systems are
o�ering [13]. After having gathered this valuable information, the attacker can decide
about his next target.
In order to �nd out which services are provided by a system, an often used technique

is port scanning, as described for example by Erickson [13] or Zhang et al. [52]. In
the usual approach for port scanning, connection requests are sent to various ports on a
target computer to evaluate which services are running, and which are not [46].
However, this method is easy to detect and to be traced back to the attacker. To

remain stealthier, di�erent methods for port scanning exist, all providing advantages
and disadvantages [29].
One of those methods is the TCP Idle Scan, which will be introduced in Section 2.3.

With this port scanning technique, the attacker uses the help of a third computer, the so-
called idle host, to cover his tracks. Most modern operating systems have been improved
so that they cannot be used as idle host, but research has shown that the scan can still
be executed by utilizing network printers [33].
Due to the slowly approaching upgrade of IPv4 with IP version 6 (IPv6), one will not

be able anymore to conduct the TCP Idle Scan as previously. In IPv4, the attacker
utilizes the identi�cation �eld, mostly called IPID, in the IPv4 header to detect if a port
on a target is opened or closed by triggering a message from the target to the idle host.
Afterwards, the IPIDs of di�erent answers from the idle host before and after the scan
are compared to receive the result.
Originally, the IPID value is intended for fragmentation. In case a packet is too big to

be transported over a network, the node will split it into parts, the so-called fragments.
Each of those fragment has an IPID that indicates to which original packet the fragment
belongs, which enables the receiver to correctly reassemble the original packet.
Compared to IPv4, no fragmentation is done by routers along the path anymore in

IPv6, but only by the end nodes [10]. Hence, there is no IPID �eld in the IPv6 header,
as it is not needed. Instead, IPv6 uses the optional extension header for fragmentation
in case fragmentation is needed, which provides an identi�cation �eld comparable to the
IPID in IPv4.
This thesis started with an investigation to see whether the TCP Idle Scan could be

transferred to IPv6, which turned out to be feasible. After giving an overview about
the TCP Idle Scan in IPv4 in Section 2, Section 3 shows how the TCP Idle Scan can
be transferred from IPv4 to IPv6, and which adjustments need to be made within this
transformation. This is followed by an overview given in Section 4 of which types of
systems assign their identi�cation value of the optional extension header for fragmenta-
tion in IPv6 in a predictable and global way, and can therefore be used as idle hosts.
Additionally, other noticeable �ndings in operating systems, such as bugs, are discussed.
Section 4 also deals with the di�erences of the TCP Idle Scan in IPv4 and IPv6 regarding
the amount of messages and the requirements for the idle host.

7

Section 5 discusses two alternatives to the TCP Idle Scan technique, which do not
rely on a predictable assignment of the IPID or identi�cation value, which are the RST
Rate Limit Scan and the SYN Cache Scan. In Section 6, the proofs of concept created
for the TCP Idle Scan in IPv6, the RST Rate Limit Scan and the SYN Cache Scan are
discussed. Also, a patch for the security scanner Nmap, which already provided a very
elaborated version of the TCP Idle Scan in IPv4, is introduced, which enables the tool to
also execute the TCP Idle Scan in IPv6. Finally, it is discussed how the di�erent types of
port scanning methods can be prevented on the short term by system administrators, and
on the long term by manufacturers of devices and operating systems, which is followed
by the conclusion.

8

2. Background

This chapter explains the TCP Idle Scan technique within an IPv4 network, but begins
by explaining some basics about the Internet Protocol version 4 (IPv4) as well as the
Transmission Control Protocol (TCP), which are necessary to understand the technique.

2.1. IPv4

According to Tanenbaum, the Internet Protocol (IP) is �the glue that holds the whole
Internet together� [48, Page 432]. The protocol is designed to deliver packets from its
source to its destination, regardless if those are located in the same network.
A detailed description of the whole protocol would go beyond the scope of this thesis, it

can be found for example in the work of Tanenbaum [48]. For this research, the important
part of the protocol is the layout its packages use in the protocol's currently most used
version, IPv4, as shown in Figure 1.

Figure 1: IPv4 (Internet Protocol) header [48]

Special attention should be paid to the 16 bit long identi�cation �eld, also called IPID.
If a packet needs to be split into parts, the so-called fragments, during transportation due
to certain limitations such as hardware, operating system, protocols or other reasons, the
IPID is used by the receiver to determine which parts of a packet belong together [48].
All fragments which belong to the same packet will have the same IPID, and a fragment
o�set �eld, which indicates at which place of the original packet the data of the fragment
belongs. This process is called fragmentation.
The IPID value can be either assigned incrementally, randomly, or in any other way.

Request for Comments (RFC) 791, �Internet Protocol� describes the possibilities for
assigning the IPID value as follows:

The choice of the Identi�er for a datagram is based on the need to provide
a way to uniquely identify the fragments of a particular datagram. The

9

(a) Successful (b) Unsuccessful (c) Unexpected

Figure 2: TCP three way handshake

protocol module assembling fragments judges fragments to belong to the same
datagram if they have the same source, destination, protocol, and Identi�er.
Thus, the sender must choose the Identi�er to be unique for this source,
destination pair and protocol for the time the datagram (or any fragment of
it) could be alive in the internet.

It seems then that a sending protocol module needs to keep a table of Iden-
ti�ers, one entry for each destination it has communicated with in the last
maximum packet lifetime for the internet.

However, since the Identi�er �eld allows 65,536 di�erent values, some host
may be able to simply use unique identi�ers independent of destination [38,
Page 28].

The RFC is not speci�c about assigning the IPID, and leaves the decision to the
developer. In the end, most early operating systems decided to use a global counter for
the assignment, while newer ones often use random counters [29]. Section 2.3 shows in
which way any predictable assignment with a global counter for all hosts can be misused.

2.2. TCP three way handshake

The Transmission Control Protocol (TCP) is a reliable protocol which works on top of
the IP protocol. To communicate via TCP, a connection must be established between
two participants, usually referred to as client and server [39].
In order to establish this connection, a three way handshake is executed. First, the

client sends a TCP segment which contains the control �ag SYN (for synchronize) to the
server. After receiving that, the server, when willing to open a connection, answers with
a segment containing the control �ag SYN- as well as ACK (for acknowledge). To �nish
the handshake, the client answers with a segment containing the ACK-�ag. Now that
the connection is established, data can be exchanged [39]. The procedure is illustrated
in Figure 2a.
If the server does not want to open a connection, for instance because the service

requested by the client is not available, it answers with a segment containing the �ag
RST (for reset), see Figure 2b. The handshake was unsuccessful.

10

When a segment with a SYN- and ACK-�ag is received without having previously sent
one with the SYN-�ag, a host will also answer with a segment containing the control �ag
RST, as shown in Figure 2c [39].

2.3. TCP Idle Scan in IPv4

In order to �nd out which services are provided on a speci�c host and can be abused
without revealing his own IP address, an attacker can execute the TCP Idle Scan, which
makes use of the properties of IP and TCP mentioned in the previous sections. The TCP
Idle Scan (or zombie scan) is a stealthy port scanning method, which allows an attacker
to scan a target without the need of sending a single IP-Packet which contains his own
IP address to the target. Instead, he uses the IP address of a third host, the idle host
(also known as zombie host) for the scan. To be able to retrieve the results from the idle
host, the attacker utilizes the IPID value in the IPv4 header, mentioned in Section 2.1.
While the idea of this technique was �rst introduced by Salvatore San�lippo in 1998

[43], the �rst tool for executing the scan was created by Filipe Almeida in 1999 [1].
The technique is described by Lyons [27] as follows:

1. To scan a port on the target host, the attacker �rst sends a TCP segment with the
SYN- and ACK-�ag to the idle host.

2. As the host is not expecting this segment, it will answer with a segment containing
the RST-�ag, and also its IPID.

3. Afterwards, the attacker sends a segment with the SYN-�ag to the target host,
dedicated to the port he wants to scan, and sets as source IP-address the spoofed
IP-address of the idle host. Due to this spoofed address, the target will answer to
the idle host, not to the attacker.

4. If the port is closed, a segment with a RST-�ag will be sent to the idle host (4a).
If the scanned port on the target is open, the host will send a segment containing
the SYN- and ACK-�ag (4b) to continue the TCP three-way handshake (Section
2.2).

5. In case of receiving a segment with a RST-�ag, the idle host will not execute further
actions. But if a segment with the SYN- and ACK-�ag is received, it will respond
by sending a segment with the RST-�ag, as the previous one was not expected.
For this answer, the host will use its next available IPID.

6. To get the result of the scan, the attacker sends now again a segment with the
SYN- and ACK-�ag to the idle host.

7. The idle host answers to the received segment with a segment containing the RST-
�ag and an IPID. In case the port is closed, the received IPID will have increased
once compared to the previously received IPID, while for an open port, it will have
increased twice.

11

Figure 3 shows the TCP Idle Scan in IPv4 in a schematic manner.

Figure 3: TCP Idle Scan in IPv4

2.4. Existing research into the TCP Idle Scan (for IPv4)

While there is scienti�c literature on how to detect TCP Idle Scans [12] [47], literature
on the scan itself remains very limited. The best source of information is the book
�Nmap Network Scanning: The O�cial Nmap Project Guide to Network Discovery and
Security Scanning�, written by Lyon [27], the author of the port scanner Nmap [28]. Most
contents of the book were also published in the free �Nmap reference guide� [29]. In the
book �Hacking: the art of exploitation� [13], Erickson also gives an explanation of the
TCP Idle Scan using Nmap.
Another publication about the TCP Idle Scan has been made by Kamerling [25]. Unlike

Lyon and Erickson, this document makes use of the network security tool Hping [44],
written by San�lippo. Kamerling also refers to Bellovin [3], who mentioned the danger

12

of predictable sequence numbers already in 1989. Although Bellovin was covering TCP,
the attack introduced by him was also enabled by predictable sequence numbers.
Based on this literature, the author of this thesis demonstrated that the TCP Idle

Scan, although discovered 15 years ago, is still feasible in modern networks as long as the
right device is used as idle host [33]. The research tested 38 di�erent types of network
printers for the assignment of their IPID in the IPv4 header, of which 34 turned out to
be suitable as idle hosts because of predictable and globally assigned values.
In comparison to the TCP Idle Scan, su�cient literature can be found on IPv6. The

speci�cations of the protocol are described in Request for Comments (RFC) 2460 [10],
and information about the Internet Control Message Protocol for IPv6 (ICMPv6) can
be found in RFC 4443 [8]. Hagen dedicated a whole book to IPv6 [18], and another
chapter about IPv6 was written by Tanenbaum [48]. For the advanced reader, Davies [9]
gives additional information about various implementation details regarding Microsoft
Windows. Some of this information will be utilized in Section 4, which discusses the
behavior of di�erent operating systems. In addition to the available literature, up to date
information is exchanged in various conferences, such as �IPv6 World Congress� [23], the
�V6 World Congress� [49] and the �IPv6-Kongress� [19], which are held regularly.
For porting the TCP Idle Scan to IPv6, the RFCs �Transmission Control Protocol� [39],

�The TCP Maximum Segment Size and Related Topics� [40] and �Path MTU Discovery
for IP version 6� [30] provide useful details and de�nitions.

13

3. Applying the TCP Idle Scan in IPv6

3.1. Di�erences to IPv4

The Internet Protocol version 6 (IPv6) introduces a lot of changes compared to version 4
(IPv4). Discussing all those changes would exceed the dimension of this thesis. Because
of that, this section will only analyze the di�erences that a�ect the TCP Idle Scan.
Additional information about all changes between IPv4 and IPv6 can be found in [18]
and [48].
Figure 4 shows the IPv6 header. Compared to the IPv4 header shown in Figure 1

on page 9, the most noticeable changes are that apart from the version as well as the
source and destination �elds, all �elds are di�erent. Also, the source and destination
�elds increased in size in order to be able to store IPv6 addresses.

Figure 4: IPv6 (Internet Protocol) header [48]

One of the �elds that has been removed is the IPID �eld, which is used for the TCP
Idle Scan in IPv4. In IPv6, fragmentation is only done by end nodes [10]. If a node on
the path receives a packet which is too big, an Internet Control Message Protocol version
6 (ICMPv6) Packet Too Big message [8] is sent back to the source address, notifying
it about the Maximum Transfer Unit (MTU) of the node on the path. This ICMPv6
message piggybacks as much as possible of the originally received packet, which caused the
ICMPv6 message to be sent, without exceeding the minimum IPv6 MTU. After receiving
such a message, the source node now fragments its packets with a maximum size of the

14

MTU received in the ICMPv6 message. This whole process is done to unburden nodes
on the path, and makes the permanent use of an IPID �eld for reassembling received
packets unnecessary.
For this reason, the IPID �eld has been removed in the IPv6 header. If the sending host

needs to fragment a packet, it uses the extension header for fragmentation, also called
fragmentation header [10]. Such an extension header is placed after the IPv6 header and
followed by the upper-layer header, for instance a TCP header. Therefore, a fragmented
packet contains at �rst the usual IPv6 header, afterwards the IPv6 extension header for
fragmentation, and then the payload. Besides the extension header for fragmentation,
IPv6 also provides extension headers for Hop-by-Hop options, Routing, Destination op-
tions, Authentication and the Encapsulating Security Payload. More information about
extension headers can be found in RFC 2460 [10].

Figure 5: IPv6 extension header for fragmentation (based on RFC 2460 [10])

Figure 5 shows the extension header for fragmentation. The next header �eld states
the protocol of the following header in the original packet, such as TCP [10]. Afterwards,
the following eight bits are reserved, and currently not in use. The fragmentation o�set
speci�es the o�set of this fragment in the complete packet. After this value, there are
again two bits reserved, which are followed by the m or more fragments �ag, which states
if a received fragment was the last one, or if there will be more fragments.
The last �eld in the extension header for fragmentation is the 32 bit long identi�cation

�eld, which has equally to IPv4 the purpose of identifying which fragments belong to-
gether. Unlike the IPID in IPv4, this value is usually referred to with no speci�c name.
This method will also be used within this thesis to di�er the identi�cation values from
IPv4 and IPv6. Compared to the IPID in IPv4, the size of the identi�cation �eld in IPv6
doubled. RFC 2460 states the following about the identi�cation value:

The Identi�cation must be di�erent than that of any other fragmented packet
sent recently* with the same Source Address and Destination Address. If a
Routing header is present, the Destination Address of concern is that of the
�nal destination [10, Page 18].

Among others, the asterisk gives the following information:

it is assumed that the requirement can be met by maintaining the Identi�-
cation value as a simple, 32- bit, "wrap-around" counter, incremented each
time a packet must be fragmented. It is an implementation choice whether

15

to maintain a single counter for the node or multiple counters, e.g., one for
each of the node's possible source addresses, or one for each active (source
address, destination address) combination [10, Page 19].

As stated by the RFC, the method of assigning the value in the identi�cation �eld
is a choice of implementation, and it is therefore hard to predict how a speci�c system
will behave. If the value is assigned on a per-host-basis, the TCP Idle Scan is impossible
with the device being used as idle host, since the attacker would not be able to detect
if a packet has been sent from the idle host to the target by analyzing the identi�cation
value.
The description given for the identi�cation value resembles the one describing the

IPID in IPv4, as shown in Section 2.1. Although having the possibility to choose, most
devices implemented a global counter for the IPID in IPv4 [29]. Additionally, one can
see that the RFC for IPv6 suggests the use of a simple incremented counter, which plays
an important role in making the TCP Idle Scan feasible in IPv6. Section 4.1 gives an
overview over the tested systems and their assignment strategies.

3.2. Forcing fragmentation

To be able to execute the TCP Idle Scan in IPv6, all three participating hosts must use
the extension header for fragmentation in their outgoing packets. Still, a closer look at
Figure 2.3 though shows that it is not necessary to use the extension header in all seven
steps of the scan. For the attacker, it is only relevant whether step 5, sending the TCP
segment with the RST �ag, has been executed by the idle host or not. Therefore, the use
of the extension header for fragmentation needs to be forced only in step 5, for packets
being sent from the idle host to the target.
Additionally, it will also be necessary that the idle host uses the extension header in

step 2 and 7 in order for the attacker to be able to compare the received identi�cation
values. Enforcing the extension header in those steps is though easier for the attacker, as
they do not require the use of TCP, and also because the attacker is directly participating
in the conversation.

3.2.1. Forcing fragmentation of step 2 and 7 using ICMPv6 Echo Requests

The Internet Control Message Protocol (ICMP) is an example for a protocol that has
been adapted in order to �t IPv6, and is therefore in its new version known as ICMP for
IPv6 (ICMPv6), de�ned in RFC 4443 [8]. It is a user of the IPv6 protocol and provides
various possibilities to debug a network connection. Its most common message is the
ICMPv6 Echo Request, also known as �ping�. When an Echo Request is received, a
host will answer with a ICMPv6 Echo Response. For this response, the RFC states the
following:

The data received in the ICMPv6 Echo Request message MUST be returned
entirely and unmodi�ed in the ICMPv6 Echo Reply message.

16

For the attacker, this means that an ICMPv6 Echo Request to the idle host, which
contains enough data that it needs to be fragmented, will also be returned in fragments,
and contain an extension header for fragmentation with the identi�cation value. There-
fore, the attacker can send ICMPv6 Echo Requests containing a large amount of data in
step 1 and 6 in order to receive answers containing an extension header for fragmentation
in steps 2 and 7.

3.2.2. Forcing fragmentation of step 5

Forcing fragmentation in step 5 in the TCP Idle Scan is more complex. In order to
scan for open ports, it is necessary to use TCP on top of the IPv6 header. For a �rst
experiment, a TCP segment with a SYN- and ACK-�ag was sent to the idle host, which
contained 1800 bytes of data as a payload, hoping that the data would be returned in
the segment with the RST-�ag, being big enough to require fragmentation. However, in
the response of the idle host, the payload was ignored and therefore no extension header
for fragmentation was used by the tested idle hosts running Linux 3.x and Windows 7.
For this reason, a similar approach to the ICMPv6 Echo Requests, which returns the
received data, can be excluded. Also, sending the TCP segment in fragments did not
lead to a fragmented answer of the idle hosts.
The solution to this problem can be found in RFC 1981, �Path MTU Discovery for IP

version 6�. As mentioned previously, fragmentation is usually requested from a node by
sending an ICMPv6 Packet Too Big message as answer to a received, but too large IPv6
packet. This ICMPv6 message piggybacks as much of the original packet as possible,
and also contains the MTU a node can process. The host which sent the original package
will set the MTU in the ICMPv6 message as the new Path MTU (PMTU), and will from
now on fragment packets bigger than this PMTU. If an attacker is now able to spoof this
ICMPv6 message, changing of another host's PMTU is possible.
However, spoo�ng such a message still does not seem enough to achieve fragmentation

of step 5 in the TCP Idle Scan, which is the host answering the target with a TCP-
datagram containing the RST-�ag. This datagram will have a maximum size of 60
bytes, assuming an IPv6 header of 40 bytes and a TCP header of 20 bytes [39] [40].
Considering that the minimal MTU of IPv6 is 1280 bytes [10], the answer of the idle host
should never be fragmented under normal circumstances.
What still enables the attacker to force the extension header for fragmentation in the

answer from the idle host to the target is RFC 1981. This states:

When a node receives a Packet Too Big message, it MUST reduce its estimate
of the PMTU for the relevant path, based on the value of the MTU �eld in
the message [30, Page 3].

as well as:

A node MUST NOT reduce its estimate of the Path MTU below the IPv6
minimum link MTU. Note: A node may receive a Packet Too Big message
reporting a next-hop MTU that is less than the IPv6 minimum link MTU. In

17

that case, the node is not required to reduce the size of subsequent packets
sent on the path to less than the IPv6 minimum link MTU, but rather must
include a Fragment header in those packets [30, Page 4].

Therefore, receiving an ICMPv6 Packet Too Big message with a MTU smaller than
1280 bytes, which is the smallest IPv6 MTU [10], causes a host to append the extension
header for fragmentation to all its IPv6 packages to a certain host. This behavior is
described in RFC 6946 as �atomic fragments� [16]. Although this extension headers are
mostly empty, they contain the identi�cation �eld, which is the only relevant �eld for
the attacker.

3.2.3. Spoo�ng ICMPv6 Packet Too Big Messages

As mentioned in Section 3.2.2, a host can be forced to use the extension header for
fragmentation for each packet to a speci�c destination. This behavior is called atomic
fragments. Therefore, in order to execute the TCP Idle Scan in IPv6, it is necessary to
send an ICMPv6 Packet Too Big message from the target to the idle host. The header
of such a message is described in RFC 4443 [8] and shown in Figure 6.

Figure 6: ICMPv6 Packet Too Big message header (based on RFC 4443 [8])

The �elds type, code and checksum are de�ned by RFC 4443. In the MTU �eld, it
is possible to specify the MTU the sending host can process. A MTU smaller than the
minimum MTU of 1280 bytes will cause the receiving host to use atomic fragments for
all IPv6 packets to the sending host. After setting those �elds, the RFC states that the
space left in the packet without exceeding the minimum MTU of IPv6 should be �lled
with the invoking packet, which is the too big IPv6 packet that caused the ICMPv6
Packet Too Big message to be sent.
When an attacker now wants to spoof such a message in order to force the idle host

to use atomic fragments, the degree of complexity of the task depends on the host which
is to manipulate.

� Linux kernels up to 3.8, which was the most recent stable kernel at the time of
writing, accept any spoofed ICMPv6 Packet Too Big Message without prior estab-
lished communication and change the Path MTU (PMTU) accordingly. Besides
that, di�erent kernel versions also provide di�erent bugs, which will be shown in
Section 4.1.

18

� Hosts running for example Windows 7 as operating system are more precise and
only accept incoming ICMPv6 Packet Too Big Messages where packets have been
sent earlier and exactly those packets are piggybacked by the ICMPv6 message.

One possibility to spoof an ICMPv6 Packet Too Big message for a Windows 7 host is
to send an ICMPv6 Echo Request with the source address of the target to the idle host
which contains enough data that it needs to be fragmented. The idle host will send an
ICMPv6 Echo Response to the target, which will not respond to this unexpected message,
as responses to responses are not scheduled, even if they are unexpected [8]. Afterwards,
the attacker can spoof an ICMPv6 Packet Too Big message from the target to the idle
host, informing it about the target's new MTU. The composition of this message is shown
in Figure 7.

Figure 7: ICMPv6 Packet Too Big Message to spoof

The message consists of the ICMPv6 Packet Too Big header, which piggybacks as much
as possible of the original message which caused the ICMPv6 Packet Too Big message to
be sent, which is in this case the ICMPv6 Echo Response and its IPv6 header. In order
to spoof the message, �rst the ICMPv6 Packet Too Big header with an MTU smaller
than the minimum IPv6 MTU is created. The payload of this message needs to be �lled
with as much of the ICMPv6 Echo Response from the idle host to the target as possible
without exceeding the minimum IPv6 MTU of 1280 bytes.
Although the attacker is not able to see the ICMPv6 Echo Response , its contents can

be assumed: On the IPv6 layer, the version will state �IPv6�, and with the exception of

19

special cases, the tra�c class and the �ow label will be zero [10]. The payload length can
be calculated according to RFC 2460 [10], and the next header �eld will state �ICMPv6�.
For the hop limit, the only values established while testing Linux and Windows hosts
were 64 and 128, this value can therefore be guessed. The remaining �elds the source
address and destination address, which are known by the attacker as well.
At the ICMPv6 layer for the old ICMPv6 Echo Response, the �elds for type and

code are known, and the checksum can be calculated [8]. The identi�er as well as the
sequence number were both zero with Windows 7 and Windows 8, and the �eld for the
data contains the values being created in the spoofed ICMPv6 Echo Request previously.
Knowing how to reconstruct the ICMPv6 Echo Response from the idle host to the

target, an attacker is able to create a spoofed ICMPv6 Packet Too Big message from
the target and send it to the idle host, causing it to use atomic fragments in all its IPv6
packets addressed to the target.

3.3. TCP Idle Scan in IPv6

With the knowledge gained in the previous sections, it is now possible to update the TCP
Idle Scan in IPv4 described in Section 2.3 so that it can be used in IPv6. The procedure
includes the full message sequence mentioned in Section 3.2.3, and therefore can be used
for idle hosts only accepting ICMPv6 Packet Too Big messages with prior tra�c as well
as for those accepting the messages without on prior tra�c. Figure 8 gives an overview
over the attack.

1. At �rst, the attacker sends a spoofed ICMPv6 Echo Request (�ping�) to the idle
host, with the source address of the target, which causes the idle host to answer to
the target. This Echo Request contains enough data that the request needs to be
fragmented, therefore the idle host will use an extension header for fragmentation
(FH) in its response. The identi�cation value in the extension header used by the
attacker is not relevant.

2. The idle host will answer with an ICMPv6 Echo Response directed to the target.
This response contains all the data received in the request, and therefore also needs
to be fragmented. The identi�cation value in the extension header in this message
is not relevant for the scan.

3. Despite receiving the ICMPv6 Echo Response, the target will not answer to the idle
host, as responses are not answered [8]. Instead, the attacker spoofs an ICMPv6
Packet Too Big message with a MTU smaller than the IPv6 minimum MTU with
the source address of the target (as described in Section 3.2.3) and sends it to
the idle host. Therefore, the idle host will now append an extension header for
fragmentation to all IPv6 packets sent to the target, even if there is no need to
fragment the data.

4. Similar to the TCP Idle Scan in IPv4, the purpose of the next two steps is to
obtain the idle hosts currently used identi�cation value in the extension header for

20

Figure 8: TCP Idle Scan in IPv6

fragmentation. For this, the attacker sends an ICMPv6 Echo Request to the idle
host which contains enough data that it needs to be fragmented. The identi�cation
value in the extension header used by the attacker is not relevant for the scan.

5. After receiving the ICMPv6 Echo Request, the idle host will answer with an
ICMPv6 Echo Response, which contains all the data received in the ICMPv6 Echo
Request, and therefore will also be fragmented. The identi�cation value in the
extension header is stored by the attacker.

6. Now, equally to the TCP Idle Scan in IPv4, the attacker sends a spoofed TCP
segment with the SYN-�ag to the target on the port he wants to scan, using as
source address the address of the idle host. This causes the target to answer to the
idle host.

7. If the port on the target is closed, a segment with a RST-�ag will be sent to the idle
host (7a). If the scanned port on the target is open, the host will send a segment
containing a SYN- and an ACK-�ag (7b).

21

8. In case of receiving a segment with a RST-�ag, the idle host will not execute further
actions. But if a segment with the SYN- and ACK-�ag is received, it will answer by
sending a segment with the RST-�ag (8), as the received segment with the SYN-
and ACK-�ag was not expected. As the idle host appends an extension header
for fragmentation to all packets being sent to the target because of step 3, it will
append an empty extension header for fragmentation, using its next available value
for the identi�cation �eld.

9. In order to request the result of the scan, the attacker now repeats step 4, sending
an ICMPv6 Echo Request with enough data so that it needs to be fragmented, to
the idle host.

10. The received ICMPv6 Echo Response will now be analyzed by the attacker re-
garding its identi�cation value in the extension header for fragmentation. If it
incremented once compared to the one stored in step 5, it can be reasoned that
the idle host did not send a segment with an RST-�ag, therefore the scanned port
on the target is closed (10a). If the value incremented twice compared to the one
stored in step 5, the idle host had to send a segment, and therefore the port on the
target is open (10b).

3.4. Requirements for the idle host

When using the TCP Idle Scan in IPv4, the requirements for the idle host are clearly
de�ned [33]:

1. The IPID values assigned by the idle host need to be predictable. Also, the gener-
ation of the value should be done globally, and not on a per-host-basis. Otherwise,
the attacker will not be able to recognize via the IPID if a packet was sent to a
di�erent host.

2. The idle host should not create tra�c by itself. This would disturb the scanning
process. (Hence the name idle host.)

Another rule for the idle host in IPv4, which was not mentioned in [33], depends on
the network architecture. In order to execute the TCP Idle Scan in IPv4, no node on
the networking path between the idle host and the attacker should exchange the IPv4
header and with it its IPID. If this is done for example by a router, an attacker is not
able to access the idle host's IPID, making the scan unfeasible. Therefore, a third rule
for the TCP Idle Scan in IPv4 should be declared as follows:

3. No node on the path between the idle host and the attacker should exchange the
IPv4 header. This would prevent the attacker from accessing the idle host's IPID
value.

When the TCP Idle Scan is used in IPv6, the �rst requirement remains the same. In
order for an attacker to see if the idle host answered the target with a TCP segment

22

containing the RST-�ag, the identi�cation value needs to be assigned in a global and
predictable way also in IPv6. What changes is the second requirement, which requires
the idle host to be idle.
In IPv4, every sent packet contains the IPID value, whether it is actually fragmented

or not. Compared to this, the identi�cation value in IPv6 is only used and increased
when a package with an extension header for fragmentation is sent, as stated by RFC
2460 [10, Page 17]:

For every packet that is to be fragmented, the source node generates an
Identi�cation value.

Gilad and Herzberg [15] present a statistic according to which only 0.11% of the IPv6
packets they analyzed were fragmented, and 0.15% of all IPv4 packets. This statistic
shows that the amount of fragmented packets, which would disturb the scanning process
of the TCP Idle Scan in IPv6, is nearly negligible for average network tra�c.
On the other hand, it should not be forgotten that the idle host attaches an IPv6

extension header for fragmentation to every IPv6 packet which is sent to the target
after once receiving the spoofed ICMPv6 Packet Too Big message with an MTU smaller
than the minimum IPv6 MTU. This includes for example ICMPv6 Neighbor Discovery
messages, which will be exchanged between the idle host and the target if both are in the
same network to announce their presence [35]. Besides those messages, also other IPv6
tra�c from the idle host to the target will in�uence the identi�cation value and therefore
disturb the scanning process.
To summarize, it can be said that the percentage of tra�c which would a�ect the TCP

Idle Scan in IPv6 remains rather limited. Most of all, no IPv6 communication besides
the port scan should be done from the idle host to the target. Reaching these results,
the second requirement for the idle host should be changed in IPv6 as follows:

2. The idle host should neither create fragmented IPv6 tra�c nor IPv6 tra�c to the
target by itself. This would disturb the scanning process.

Compared to IPv4, this second requirement for the idle host is less limiting. In IPv4,
the idle host was not allowed to create tra�c at all due to the IPID value being a
static part of the IPv4 header, and being included for each single packet. In IPv6,
the limitations are mostly on communication only between the idle host and the target
because the identi�cation value is not used for each single IPv6 packet, but only when
needed. While executing the TCP Idle Scan in IPv6, an idle host communicating with
a fourth party via IPv6 would not disturb the scanning process, as long as the IPv6
packets being sent from the idle host to the fourth party do not use the IPv6 extension
header for fragmentation. IPv6 packets from the fourth party to the idle host can use
the extension header though, as this does not in�uence the counter for the identi�cation
value of the idle host.
Another requirement which changes by using the TCP Idle Scan in IPv6 is requirement

3, which does not allow nodes on the path to change the IP header. In IPv6, the
identi�cation value is not located in the main IPv6 header, but in the IPv6 extension

23

header for fragmentation. Along the delivery path of an IPv6 packet, this extension
header will not be accessed or changed by nodes on the path [10]. Therefore, requirement
number 3 does not apply for the TCP Idle Scan in IPv6.
To summarize, the requirements for the idle host when executing the TCP Idle Scan

in IPv6 are the following:

1. The identi�cation values assigned by the idle host need to be predictable. Also,
the generation of the value should be done globally, and not on a per-host-basis.

2. The idle host should neither create fragmented IPv6 tra�c nor IPv6 tra�c to the
target by itself.

3.5. Increasing stealth

In order to increase the stealth of the TCP Idle Scan in IPv6, certain steps can be
modi�ed or even omitted in some scenarios.

� The �rst detail which can be further improved is located in step 3, sending the
spoofed ICMPv6 Packet Too Big message. This message contains the MTU for
this path, which will be applied by the idle host. RFC 1981 states the following
about the PMTU:

The PMTU of a path may change over time, due to changes in the rout-
ing topology. Reductions of the PMTU are detected by Packet Too Big
messages. To detect increases in a path's PMTU, a node periodically
increases its assumed PMTU. This will almost always result in packets
being discarded and Packet Too Big messages being generated, because
in most cases the PMTU of the path will not have changed. Therefore,
attempts to detect increases in a path's PMTU should be done infre-
quently. [30, Page 3]

Because of this, the decision on which MTU to be set in the ICMPv6 Packet Too
Big message in step 3 should be made carefully. Useful details to be aware of in this
step are the number of ports being scanned, the duration of scanning a single port
as well as the time span in which the idle host attempts to increase the PMTU and
by which value the PMTU is increased. Choosing this value well, steps 1 to 3 in the
TCP Idle Scan in IPv6 may only be necessary to be executed once while scanning
multiple ports. Ideally, the idle host even attempts to increment the PMTU shortly
after the scan to a value higher or equal to the IPv6 minimum MTU, causing the
idle host to stop appending the extension header for fragmentation on the path and
leaving less evidence of the occurred scan. By carefully choosing the MTU value
and omitting steps 1 to 3 for scanning multiple ports, the number of messages
necessary can be reduced from ten to seven, the same as for the TCP Idle Scan in
IPv4. On Linux and Windows, the period for trying to increase the PMTU is set
to 10 minutes by default [9] [42].

24

� The next steps which will be analyzed are 4 and 5, sending an ICMPv6 Echo
Request to the idle host to receive its currently used identi�cation value in the
extension header for fragmentation. Those are executed in order to be able to
compare the value later with the one received in the steps 9 and 10. If multiple
ports are scanned by the attacker, steps 4 and 5 can be omitted for all but the
�rst port, as the identi�cation value is already known from the steps nine and ten
while scanning the previous port. This reduces the number of messages necessary
to execute the scan further from seven to �ve when multiple ports are scanned.

� Another improvement that can be made a�ects steps 9 and 10, as well as 4 and 5 if
executed. In these steps, fragmented ICMPv6 Echo Requests and Echo Responses
are sent to determine the identi�cation value in the extension header for fragmen-
tation. To ensure that the idle host answers with a fragmented Echo Request, a
relatively high amount of data, which has no e�ective use, has to be sent. For ex-
ample in a local Ethernet network, an IP packet of 1500 bytes can be sent without
needing fragmentation [21], thus forcing the ICMPv6 Echo Request to have at least
1501 bytes.

Compared to this, an IPv6 Packet with an extension header for fragmentation but
no data in the ICMPv6 Echo Request produces an IPv6 Packet of 48 bytes, being
40 bytes for the IPv6 Header, and eight bytes for the ICMPv6 header [8]. This is
a reduction of 97%. In order to still force the idle host to use the extension header
for fragmentation, the attacker can spoof an ICMPv6 Packet Too Big message as
explained in Section 3.2.2 so that the idle host also uses atomic fragments on the
path to the attacker. This step can be executed after step 5, and the message of
step 5 can be piggybacked by the ICMPv6 Packet Too Big message. The size of the
reduced ICMPv6 Echo Response is 56 bytes, as it also includes eight bytes for the
extension header for fragmentation. This is still a reduction of 96%. It is also to
mention that after applying the procedure to receive atomic fragments, every other
message using IPv6 Packets can be chosen, as for example a Neighbor Solicitation
message [35].

While this procedure might not be advisable if only one port should be scanned since it
requires sending additional messages, it is clearly advisable if multiple ports are scanned
as it decreases the network tra�c drastically, and peaks in network tra�c are conspicuous
[52].
Figures 9 and 10 show the TCP Idle Scan in IPv6 with all three improvements of this

section applied. In Figure 9, which shows scanning of the �rst port on a target, one
step was added after step 5, the sending of the ICMPv6 Packet Too Big message with
the modi�ed MTU. Therefore, the ICMPv6 Echo Request in step 10 does not need to
be fragmented anymore, because the idle host uses atomic fragments at this point. This
leads to a decrease in the size of the messages in step 10 and 11.
For scanning another port, the steps 1 to 6 can be omitted, as shown by Figure 10. In

total, although while scanning the �rst port the amount of messages increased by one to

25

eleven, it decreased by half for scanning further ports in Figure 10. Another achievement
was a drastic reduction of the network tra�c.

Figure 9: Scanning the �rst port with the improved TCP Idle Scan in IPv6

26

Figure 10: Scanning another port with the improved TCP Idle Scan in IPv6

27

4. Conducting the TCP Idle Scan in IPv6

This section deals with the characteristics of the TCP Idle Scan in IPv6. Compared
to IPv4, where most modern operating systems use protection mechanisms against the
scan, it is novel to conduct the scan in IPv6. Therefore, not all operating systems use
the same protection mechanisms as in IPv4. To give an overview of the behavior from
various operating systems, tests have been conducted with 21 di�erent systems, and the
results are shown and discussed in the �rst part of this section. Afterwards, the feasibility
for an attacker to execute the TCP Idle Scan in IPv6 in IPv4 networks is discussed.

4.1. Behavior of various systems

A crucial factor for the TCP Idle Scan in IPv6 to be feasible is the predictable assignment
of the identi�cation value in the IPv6 extension header for fragmentation by the idle host.
If the value is assigned in an unpredictable way, an attacker is not able to determine if the
idle host sent a TCP segment with the RST-�ag to the target, which makes it impossible
to perform the scan as presented. Another necessity is the assignment of the value on
a global basis. This means that for all IPv6 packets which use the extension header for
fragmentation, the same counter should be accessed to determine its identi�cation value,
independent from the destination address of the packet. Such a behavior is necessary
for the attacker to detect an increase in the counter in case the TCP segment with the
RST-�ag was sent in step 8 of the TCP Idle Scan in IPv6. If the idle host would maintain
a separate counter for every destination, this increase could not be detected.
To determine which operating systems form appropriate idle hosts, 21 di�erent oper-

ating systems and versions have been tested to establish their method of assigning the
identi�cation value. The results have been gathered by using the IPv6 Toolkit [45] and
have been veri�ed with ICMPv6 Echo Requests. Those requests contained enough data
so that they needed to be fragmented and were sent from di�erent hosts to the tested
systems. In the received ICMPv6 Echo Responses, the identi�cation values were ana-
lyzed with a network sni�er. The reason for sending the messages from di�erent hosts
was to determine if the values were assigned globally, or on a per host basis. Table 1
shows the results of the tests.
Among all the tested systems, six assigned the identi�cation value on a random basis

and are therefore not suitable as idle host. Out of the remaining 15, �ve assigned their
values on a per host basis. Compared to the identi�cation value in IPv4, where only
Solaris 11 assigned values on a per host basis [29], this is a big increase. Another system
which can not be used as idle host is OS X 10.6.7, which does not support atomic
fragments. The details for this system will be discussed later in this section.
This leaves nine out of the 21 tested systems, which can be used as idle host for the

TCP Idle Scan in IPv6, which is every tested Windows operating system. All those nine
systems have a host-based �rewall, which is enabled by default [9]. The �rewall blocks
ICMPv6 Echo Requests as well as TCP segments with a SYN- and ACK-�ag without a
prior segment using the ACK-�ag. Therefore, the TCP Idle Scan in IPv6 is impossible
by using one of the tested Windows operating systems as long as the �rewall is active. A

28

System Assignment of Identi�cation

1 Android 4.1 (Linux 3.0.15) Per host, incremental (1)
2 FreeBSD 7.4 Random
3 FreeBSD 9.1 Random
4 iOS 6.1.2 Random
5 Linux 2.6.32 Per host, incremental (2)
6 Linux 3.2 Per host, incremental (1)
7 Linux 3.8 Per host, incremental
8 OpenBSD 4.6 Random
9 OpenBSD 5.2 Random
10 OS X 10.6.7 Global, incremental (3)
11 OS X 10.8.3 Random
12 Solaris 11 Per host, incremental
13 Windows Server 2003 R2 Standard 64bit, SP2 Global, incremental
14 Windows Server 2008 Standard 32bit, SP1 Global, incremental
15 Windows Server 2008 R2 Standard 64bit, SP1 Global, incremental by 2
16 Windows Server 2012 Standard 64bit Global, incremental by 2
17 Windows XP Professional 32bit, SP3 Global, incremental (4)
18 Windows Vista Business 64bit, SP1 Global, incremental
19 Windows 7 Home Premium 32bit, SP1 Global, incremental by 2
20 Windows 7 Ultimate 32bit, SP1 Global, incremental by 2
21 Windows 8 Enterprise 32 bit Global, incremental by 2

(1) Hosts calculates wrong TCP checksum for routes with PMTU < 1280
(2) PMTU < 1280 results in DoS
(3) Does not accept PMTU < 1280
(4) IPv6 disabled by default

Table 1: List of tested systems

deactivated �rewall though makes all tested hosts running a Windows operating system
suitable as idle host.
A special behavior occurred when testing Windows 8 and Windows Server 2012. A

�rst analysis of the identi�cation values sent to di�erent hosts gives the impression that
the values are assigned on a per-host-basis and start at a random initialization value.
Closer investigation though revealed that the values being assigned for one system are
also incremented if messages are sent to another system. This leads to the conclusion
that those operating systems use a global counter, but also a random o�set for each host,
which is added to the counter to create the identi�cation value. However, the global
counter is increased each time a message is sent to a host. For the TCP Idle Scan in
IPv6, this means that the systems are still suitable as idle hosts, as from the view of the
attacker, the identi�cation value received from the idle host increases each time the idle
host sends a message to the target. It is not clear to the author what should be achieved
with this behavior.

29

4.2. Incorrect behavior of systems

Besides the analysis of the identi�cation values, incorrect behavior occurred with certain
systems, which did not behave as de�ned in the RFCs. This can be either traced back
to bugs in the networking stack of the kernel or to conscious ignoring of the RFCs.
Denial of Service This concerns Linux 2.6.32. When an ICMPv6 Packet Too Big

message is received, the PMTU is adjusted accordingly without requiring any previous
tra�c. But if the MTU value in the ICMPv6 message is lower than the IPv6 minimum
MTU of 1280 bytes, this results in a Denial of Service (DoS) for the path. Until the
PMTU is increased again (See point 1 of Section 3.5) and reaches again a value smaller
or equal to the IPv6 minimum MTU, no packets are sent on the path. However, this bug
is �xed in Linux 3.2, which makes further investigation unnecessary.
Wrong TCP checksums While the bug regarding DoS has been �xed in Linux 3.2,

another problem was encountered while testing Linux 3.2 as well as Android 4.1, running
Linux 3.0.15. When these systems were used as idle host, the TCP segments with the
RST �ag were sent, but not accepted by the target. This resulted in the target repeating
to send the segment with the SYN- and ACK-�ag, and the idle host therefore repeating
its answer with the RST-�ag, which was again not accepted by the target, and so on. A
detailed investigation of the problem revealed that the kernel calculated the wrong TCP
checksum if the PMTU was set to a value smaller than the IPv6 minimum MTU. Similar
to the DoS bug, this has been �xed in a later kernel version, namely Linux 3.8. Again,
this made further investigation and bug reporting unnecessary.
Unsupported atomic fragments This behavior occurred while testing Mac OS X

10.6.7, which is running the kernel xnu-1504.9.37. While ICMPv6 Packet Too Big mes-
sages with a MTU bigger or equal to 1280 bytes were accepted and the PMTU was
adjusted accordingly, values below were ignored instead of appending an empty IPv6
extension header for fragmentation to each IPv6 packet. An investigation of the kernel
sources con�rmed this behavior [2]. The kernel used by the newest OS X version 10.8.2
�xed this problem, which has been con�rmed by investigation.

4.3. Dual Stacking

The version of the TCP Idle Scan introduced in this thesis as well as the properties
of various systems described in Section 4.1 only apply to IPv6, not to IPv4. However,
each of the tested systems in Table 1, except Windows XP, works out of the box in
dual stack mode. This means that although being connected to an IPv4 network, each
interface is automatically provided with a link-local IPv6 address which can be used for
communication within the local network [18]. Therefore, despite being connected to an
IPv4 network, an attacker might still be able to execute the TCP Idle Scan in IPv6
within this network by using the link-local addresses of the target and the idle host.

One requirement for the idle host in the TCP Idle Scan in IPv6 is not to create
fragmented IPv6 tra�c. A host which is connected to an IPv4 network will most likely
not create IPv6 tra�c at all, which increases the probability that it is suitable as idle
host for the TCP Idle Scan in IPv6, since this requirement can be considered ful�lled.

30

Additionally, dual stack systems listen for ICMPv6 Router Advertisements. Those are
sent periodically by routers on the network as well as on request of hosts, and contain
routing information and information for hosts which IPv6 address they can assign for
their interfaces [35]. In case of receiving an ICMPv6 Router Advertisement for a speci�c
subnet, a host will assign itself an IPv6 address within this subnet. The header of the
ICMPv6 Router Advertisement is shown in Figure 11.

Figure 11: ICMPv6 Router Advertisement (based on RFC 4861 [35])

In the �gure, the basic header as well as the three optional headers for the source
link-layer address, the MTU and the pre�x are shown. Within the context of this work,
one interesting detail is the optional header for the pre�x, which gives information for
the stateless autocon�guration [35]. After receiving an ICMPv6 Router Advertisement
with this optional header, the host will by default assign itself an IPv6 address using the
received pre�x. This can be used by an attacker to assign a global IPv6 address to other
hosts where afterwards port scans can be executed with this IPv6 address [20].
By using spoofed ICMPv6 Router Advertisements, an attacker can also claim to be an

IPv6 router. A host receiving this information will add the route with the attacker as

31

router to its IPv6 routing table. As IPv6 routes are preferred over IPv4 routes, this can
be used to execute a Man in the Middle (MitM) attack [20] [50].

Another thing which attracts attention is the optional header for the MTU. This one
is intended to be used to specify the MTU for routes, in case nodes behind the router
do not generate ICMPv6 Packet Too Big messages [35]. The coherent approach for an
attacker would be therefore to specify a MTU smaller than the IPv6 minimum MTU, so
that the victim appends an extension header for fragmentation to each IPv6 packet in
order to execute step 5 of the TCP Idle Scan in IPv6, similar to the approach of sending
the ICMPv6 Packet Too Big message as described in Section 3.2.2. However, RFC 4861
states the following about the MTU value:

If the MTU option is present, hosts SHOULD copy the option's value into
LinkMTU so long as the value is greater than or equal to the minimum link
MTU [IPv6] and does not exceed the maximum LinkMTU value speci�ed in
the link-type-speci�c document [35, Page 53].

The fact that only values for the MTU greater or equal to the IPv6 minimum MTU
are accepted by the host makes it impossible for an attacker to force the idle host to
append the IPv6 extension header for fragmentation to packets sent to the target by using
ICMPv6 Router Advertisements. However, as described in this subsection, spoo�ng such
messages can still be useful for an attacker, for example to execute a MitM attack or to
assign IPv6 addresses to hosts.

32

5. Alternatives to the TCP Idle Scan in IPv6

One requirement for the idle host in the TCP Idle Scan in IPv4 as well as in IPv6 is the
predictability of the identi�cation value. To avoid this requirement, Ensa� et al. [12]
describe two alternatives for the TCP Idle Scan, which do not rely on the predictable
assignment of the identi�cation value by the idle host. Instead, one method makes use
of the RST rate limit of the idle host, while another one utilizes the limited amount of
half-open TCP connections the idle host can remember.

5.1. RST Rate Limit Scan

This section deals with the RST Rate Limit Scan. At �rst, the concept itself, as described
by Ensa� et al. [12], is introduced. Afterwards, the advantages and disadvantages of the
scan compared to the TCP Idle Scan in IPv4 and IPv6 are discussed. In the end, an
overview over various operating systems and their RST rate limits is provided.

5.1.1. Concept of the RST Rate Limit Scan

Similar to the TCP Idle Scan, the three participating parties are the attacker, the idle
host and the target. The idle host has a limit of how many TCP segments with the RST-
�ag it sends per second, the so-called RST rate limit. Such a limit is for instance enforced
to slow down port scans [29]. In the following example, the limit is a maximum of 100
TCP segments with the RST-�ag per second. Figure 12 shows the message sequence for
conducting the scan.

1. First, the attacker sends a TCP segment with the SYN-�ag to the idle host, and
states as destination a closed port. In order to remain undetected, the source
address of the IP packet is spoofed and substituted with one that is not in use.

2. As the target port is closed, the idle host will respond with a TCP segment with the
RST-�ag. Due to the spoofed IP address, the reply will not reach any destination.

These �rst two steps are repeated until the idle host uses all of its RST rate limit
but one. In Figure 12, in which the idle host has an RST rate limit of 100, the
steps would be executed 99 times, until the idle host can only send one more TCP
segment with the RST-�ag within the same second. It is worthwhile to mention
that the TCP segment with the SYN-�ag of step 1 can also be substituted by
every other segment which leads to the idle host sending a TCP segment with the
RST-�ag, for example an unexpected TCP segment with the SYN- and ACK-�ag.

3. Afterwards, the attacker creates a TCP segment with the SYN-�ag, and sends it
to the target. Similar to the TCP Idle Scan, the source IP address is spoofed, and
substituted with the address of the idle host.

4. Because the source IP address in the last step was spoofed, the target will not
answer to the attacker, but to the idle host. If the port on the target is closed, it
will send a TCP segment with the RST-�ag to the idle host (4a). But if the port is

33

Figure 12: RST Rate Limit Scan

open, the target will send a segment with the SYN- and ACK-�ag (4b) to continue
the TCP three way handshake.

5. In case of receiving a TCP segment with the RST-�ag, no further actions are carried
out by the idle host. But in case of receiving a segment with the SYN- and ACK-
�ag, the idle host will answer with a TCP segment having set the RST-�ag, using
its last available TCP segment with the RST-�ag within its RST rate limit.

6. To receive the result of the scan, the attacker sends a TCP segment with the SYN-
�ag to the idle host to a closed port, and uses his real address in order to receive
the answer.

7. As the port on the idle host is closed, it will try to answer with a TCP segment
with the RST-�ag. But if the port on the target in step 3 was open, the idle host
already reached its RST rate limit by sending the last TCP segment with the RST-
�ag in step 5. Therefore, if the limit is reached, the idle host will not be able to
answer the TCP segment with the SYN-�ag sent by the attacker in step 6. This

34

lets the attacker conclude that the scanned port on the target is open. In case of a
closed port on the target, the idle host did not have to execute step 5, and is still
able to send one more TCP segment with the RST-�ag without reaching its RST
rate limit. Therefore, it will reply to the attacker by sending a TCP segment with
the RST-�ag. The attacker can conclude that the scanned port on the target was
closed.

5.1.2. Characteristics of the RST Rate Limit Scan

Compared to the traditional TCP Idle Scan in IPv4 and IPv6, the RST Rate Limit
Scan has advantages as well as disadvantages. Most important, it does not rely on
the predictable assignment of the identi�cation value in the IP header by the idle host.
Instead, it relies on the idle host to use a RST rate limit.
A big disadvantage of the scan is that the attacker needs to be aware of the idle hosts

RST rate limit in order to force the borderline cases necessary for the scan. The RST rate
limit can often be found in the documentation of the operating system. An alternative
to identify the RST rate limit would be a test, in which a big amount of TCP segments,
which will cause a segment with the RST-�ag as response, will be sent to the idle host.
Afterwards, the amount of packets with the RST-�ag received from the idle host, which
complies to its RST rate limit, is determined.
Another issue with the RST Rate Limit Scan is that it requires a lot more messages

than the TCP Idle Scan, at which the exact amount of messages depends on the idle
host. This is because the attacker has to �ll the idle hosts RST rate limit but one when
he wants to scan a port. Also, after having scanned one port, the maximum amount of
TCP segments with the RST-�ag which the idle host can send is reached. This requires
the attacker to wait until the RST rate limit is reset before scanning another port, which
slows down the scan dramatically.
A positive aspect from the RST Rate Limit Scan is that it works only with the TCP

layer, independent from the IP layer. While the TCP Idle Scan has to be adapted by
changing from IPv4 to IPv6, the RST Rate Limit Scan is una�ected by this exchange.
Finally, it also needs to be considered that the stricter a host is con�gured, and the less
TCP segments with the RST-�ag it allows per second, the easier it is for an attacker to
reach this limit and utilize the host as idle host.
The described advantages and disadvantages lead to the following requirements for the

idle host regarding the RST Rate Limit Scan:

1. The idle host should not create TCP segments containing the RST-�ag without
in�uence of the attacker. This would disturb the scanning-process.

2. The idle host needs to limit the amount of TCP segments containing the RST-�ag
it sends within a certain period.

For regular tra�c, it should not be necessary for the idle host to send TCP segments
with the RST-�ag, as those are only used to indicate connection problems [48]. Therefore,
the �rst requirement can be considered ful�lled in regular networks. On the contrary, the

35

System RST rate limit per second

1 FreeBSD 9.1 200
2 iOS 6.1.2 50
3 Linux 3.8 -
4 OS X 10.8.3 250
5 OpenBSD 5.2 100 (1)
6 Solaris 11 40
7 Windows XP Professional 32bit, SP3 -
8 Windows 7 Ultimate 32bit, SP1 -
9 Windows Server 2008 R2 Standard 64bit, SP1 -
10 Windows 8 Enterprise 32 bit -

(1) Considers as well outgoing as incoming TCP segments with RST-�ag

Table 2: RST rate limits of various systems

RST rate limit in the second requirement is not enforced by all operating systems. To
give an overview which operating systems use RST rate limits, tests have been conducted
with various operating systems, as only FreeBSD has been tested by Ensa� et al. [12].
Table 2 shows which of the tested operating systems limit the amount of TCP segments
with RST-�ags, and for those which do, the limit is indicated.
Out of the ten tested operating systems, �ve limit the amount of TCP segments with

the RST-�ag. OpenBSD 5.2 limits by default the amount of outgoing TCP segments
containing the RST-�ag to 100, according to the manual pages [36]. Di�erent from the
description in the manual pages, the diagnosed behavior was that the limit included
outgoing TCP segments as well as incoming segments. While executing the RST Rate
Limit Scan, the idle host will either receive a TCP segment with the RST-�ag in step
4a, or send the segment on its own by executing step 5. Either way, the message is
considered by OpenBSD for the RST rate limit. Step 7, sending the last TCP segment
with the RST-�ag, will therefore never be executed by the idle host, as its RST rate limit
is reached, regardless of the port on the target being open or closed. This makes the
RST Rate Limit Scan impossible by using OpenBSD 5.2 as idle host.
Reaching these results, four out of the ten tested operating systems remain suitable as

idle host with the RST Rate Limit Scan, namely FreeBSD, iOS, OS X and Solaris.

5.2. SYN Cache Scan

The second alternative to the traditional TCP Idle Scan in IPv4 and IPv6 is the SYN
Cache Scan, which will be described in this section. At the beginning, SYN-Flooding
attacks, which are a necessary background to understand the concept of the scan, are
explained. Then, the concept itself, as described by Ensa� et al. [12], is introduced.
Afterwards, the advantages and disadvantages of the scan compared to the TCP Idle
Scan in IPv4 and IPv6 are discussed. In the end, an overview of various operating
systems and their limits for half-open connections is provided.

36

5.2.1. SYN-Flooding attacks and defenses

In order to understand why the SYN Cache Scan works as described in the following
section, it is necessary to discuss SYN-Flooding attacks. When a TCP three way hand-
shake is executed correctly, as shown in Figure 2a on page 10, the client �rst sends a TCP
segment with the SYN-�ag to the server [11]. The server answers with a TCP segment
containing the SYN- and ACK-�ag, and stores the half-open connection to remember
related information, such as the sequence number. This number is sent back to the client
to uniquely identify the message. To fully establish the connection, the client answers
with a TCP segment with the ACK-�ag. This TCP segment also contains the sequence
number received from the server, incremented by one. With this number, the server can
determine to which previously sent TCP segment the answer belongs to. After receiving
the TCP segment with the ACK-�ag and the correct sequence number, the connection
is fully established. Now, data can be sent, and the server removes the connection from
the list of half-open connection, the so-called backlog queue.
When executing a SYN-Flooding attack, an attacker repeatedly sends TCP segments

with the SYN-�ag to a server. While the server will respond with a TCP segment
containing the SYN- and ACK-�ag, the attacker will drop the message from the server
and not send the necessary TCP segment with the ACK-�ag to complete the TCP three
way handshake [26]. This causes the server to keep the half-open connection saved in
its backlog queue until the server decides that it waited long enough for an answer and
removes the entry from the queue. If the attacker requests enough connections within
a certain period, the backlog queue of the server will reach its limit. In this state, the
server can not remember additional half-open connections, and new connection requests
are rejected. This leads to a denial of service, as legitimate clients are not able to establish
a connection with the server.
To prevent this attack, various methods have been developed. One of them are SYN-

Cookies [4]. When creating a sequence number for the TCP segment with the SYN- and
ACK-�ag, the server makes speci�c choices and calculates the sequence number based on
a time counter, the Maximum Segment Size (MSS) [40] chosen by the server and a secret
function. This sequence number is the so-called SYN-Cookie. After the TCP segment is
sent, no information is stored in the backlog queue. In case the client responds with the
sequence number incremented by one, the server can calculate if this number complies to
a SYN-Cookie that was created previously without requiring any additional information
besides the received sequence number. If the received sequence number complies to a
valid SYN-Cookie, the connection is fully established. SYN-Cookies are for example used
by Linux. By default, the operating system is using a traditional backlog queue. If the
system is under attack and the backlog queue is full, it falls back to sending SYN-Cookies
until place in the backlog queue is freed, for example due to a timeout of a connection
or because of receiving a TCP segment with the RST-�ag [26].
Another method for protecting against SYN-Flooding is a SYN cache [26]. Di�erent

from SYN-Cookies, information about the half-open connection is still stored on the
server. But compared to the traditional backlog queue, the amount of memory necessary
to remember the connection is minimized. This is done by saving a hash value containing

37

the source and destination address of the connection as well as the source and destination
port and a randomly chosen secret instead of the original values. Due to this memory
saving approach, the server is able to remember more connections using the same amount
of memory as with a traditional backlog queue. Those hash values are stored in di�erent
hash-tables. In case a hash-table is full, the oldest entry is removed.
Both SYN-Cookies and SYN Cache have advantages and disadvantages, which are

discussed by Lemon [26]. Besides those two methods, there are also other defense mecha-
nisms, such as �ltering and increasing the size of the backlog queue, which are discussed
in RFC 4987 [11].

5.2.2. Concept of the SYN Cache Scan

The second alternative to the TCP Idle Scan is the SYN Cache Scan. Similar to the other
port scanning methods introduced so far, the three participating parties are the attacker,
the idle host and the target. In the example, the idle host has a limited backlog queue of
the size 100. Afterwards, it falls back to sending SYN-Cookies until place in the backlog
queue is freed again. Additionally, the target shows di�erent behavior depending on if
an unexpected TCP segment with the SYN- and ACK-�ag is received on an open or on
a closed port. If received on an open port, the target will answer with a TCP segment
containing the RST-�ag, as the message was unexpected. But in case of receiving the
segment on a closed port, it will be dropped, and no response will be given. Figure 13
shows the sequence of messages for conducting the scan.

1. First, the attacker sends a TCP segment with the SYN-�ag to the idle host, and
states as destination an open port. In order to remain undetected, the source
address of the message is spoofed and substituted with one that is not in use.

2. As the port on the idle host is open, it will respond with a TCP segment containing
the SYN- and ACK-�ag. Because the source address is not in use, the message will
reach no destination, and therefore no answer will be received. As long as no answer
is received or the connection times out, the entry will remain in the backlog queue
of the idle host.

These �rst two steps are repeated until the idle host �lls all but one entries in its
backlog queue. In the example, in which the size of the idle host's backlog queue
is 100, the steps would be executed 99 times, until the idle host can only store one
more half-open connection.

3. Now, the attacker sends again a TCP segment with the SYN-�ag to the idle host,
targeted to an open port. As source port, he speci�es the port he wants to scan
on the target. The source address is spoofed, and substituted with the target's
address.

4. As the port on the idle host is open, it will respond with a TCP segment containing
the SYN- and ACK-�ag in order to continue the TCP three way handshake, and �ll
its backlog queue to the maximum. This reply will be sent to the target, because

38

Figure 13: SYN Cache Scan

the source address in the previous step was spoofed. Also, the reply will be sent
to the source port speci�ed in the previous message, which is the one the attacker
wants to scan.

5. If the port on the target is open, it will answer by sending a TCP segment with
the RST-�ag. Receiving this segment causes the idle host to close the half-open
connection, and remove the entry from its backlog queue. Therefore, the idle host
can again accept one more half-open connection before having to fall back to sending
SYN-Cookies. But if the port is closed, the message will be dropped by the target
and the half-open connection on the idle host will remain in the full backlog queue.

6. To get the results of the scan, the attacker sends a TCP segment with the SYN-�ag
to the idle host on an open port, using his real source address.

7. Because the message is received on an open port, the idle host will try to reply with
a TCP segment with the SYN- and ACK-�ag. If the port on the target was open
and a TCP segment with the RST-�ag was received in step 5, this is possible, as

39

there is place for one more half-open connection in the backlog queue. In this case,
a normal TCP segment with the SYN- and ACK-�ag will be sent. But if no TCP
segment with the RST-�ag was received in step 5 because the port was closed, the
idle host is not able to create another half-open connection due to its full backlog
queue. Instead, it will fall back to sending a SYN-Cookie. By receiving this cookie,
the attacker knows that the limit of the backlog queue on the idle host is reached,
which leads to the conclusion that the port on the target is closed.

5.2.3. Characteristics of the SYN Cache Scan

Like the other scans introduced in this work, the SYN Cache Scan has advantages and
disadvantages. Compared to the TCP Idle Scan in IPv4 and IPv6, it does not rely on
the predictable assignment of the identi�cation value in the IP header by the idle host.
Instead, it relies on the idle host to use a defense mechanism against SYN-Flooding
attacks, such as SYN-Cookies. An overview of how di�erent operating systems behave
in case of being exposed to SYN-Flooding attacks can be found in Section 5.2.4.
An advantage compared to the RST Rate Limit Scan is that it is slightly easier to

scan multiple ports. Entries in the backlog queue will remain for a certain amount of
time. While the backlog queue is nearly �lled, the attacker might be able to scan multiple
ports without having to re�ll the backlog queue for each port which is to be scanned. The
details for scanning multiple ports depend on the target. In case of FreeBSD's blackhole
[41], which drops messages received on closed ports, an attacker will be able to scan
multiple open ports. If he scans a closed port, the target will not answer to the idle host
with a TCP-segment with the RST-�ag, and the entry for the connection will remain in
the idle host's backlog queue. In this situation, the attacker has to wait until place in
the backlog queue is freed to continue scanning.
Alternatively, the attacker might not spoof the source addresses of all TCP segments

with the SYN-�ag used in step 1 to �ll the idle hosts backlog queue, but send some
segments with his real source address. Using this method, the answer given from the
idle host is received and provides the sequence number necessary to free an entry in the
backlog queue. In case an open port was scanned and the backlog queue is full, the
received sequence number can be used in a TCP segment with the RST-�ag sent to the
idle host to free one entry from the backlog queue to enable further scanning.
Like the RST Rate Limit Scan, the SYN Cache Scan is independent from the IP

layer. Defense mechanisms like SYN-Cookies fully work on the TCP layer, which makes
a change of the IP protocol easily possible.
A disadvantage of this port scanning method is that the attacker is required to know

details about the idle host, such as the size of its backlog queue and the defense mechanism
against SYN-Flooding attacks. As they di�er between operating systems, the attacker
will also have to structure the attack di�erently depending on the operating system
used by the idle host, which complicates an automated execution. Additionally, and
over�owing backlog queue might create warning messages on the idle host, which will
suspect a SYN-Flooding attack. Such messages are likely to raise someones attention,
which drastically decreases the stealthiness of the SYN Cache Scan.

40

Compared to the other port scans presented in this thesis, the SYN Cache Scan also
requires the idle host to have at least one open port. Otherwise it would not be possible
for the attacker to store half-open connections in the backlog queue of the idle host.
Additionally, it is advisable that no other clients try to establish TCP connections with
the idle host. An unknown amount of entries in the backlog queue which are not from the
attacker and will be removed at an unknown time will make it harder for the attacker
to �ll the backlog queue with exactly all but one entries. This leads to the following
requirements for the idle host in the SYN Cache Scan:

1. The idle host needs to have at least one open TCP port.

2. The idle host should not receive TCP connection requests from other hosts. This
would disturb the scanning-process.

3. The idle host needs to have a protection mechanism against SYN-Flooding, to
which it falls back after its backlog queue is full.

Additionally, the SYN Cache Scan also has one requirement for the target. The host
needs to behave di�erently depending on if a TCP segment with the SYN- and ACK-
�ag is received on an open, or on a closed port. Such a behavior could for example be
caused by FreeBSD's blackhole [41], which drops messages received on closed ports, or
by a �rewall.
Considering all those requirements for the SYN Cache Scan, it does not seem to be a

very tempting approach for an attacker. But compared to all other port scans introduced
in this paper, the SYN Cache Scan has one very interesting characteristic: A closer look
at Figure 13 reveals that not a single packet is sent from the attacker to the target, not
even one with a spoofed source address. This means that the attacker is not required
to be able to send packets to the target, but only to the idle host. This can enable the
attacker to scan internal networks to which he should not have access.
An example for this could be the DeMilitarized Zone (DMZ) [48] of a company network.

The idle host could be a web server in the DMZ, which is reachable from the outside.
Also, the DMZ contains a database server, which is not accessible from external networks.
This database server represents the target. Using the SYN Cache Scan, an attacker is
able to execute a port scan on the database server from outside the DMZ, even though
being separated by a �rewall. Figure 14 shows the SYN Cache Scan in the described
scenario.
In case the target in this scenario does not ful�ll the requirement of di�erent behavior

depending on receiving the TCP segment with the SYN- and ACK-�ag on a closed or on
an open port, the SYN Cache Scan can instead also be used to perform host discovery
in the DMZ. While alive hosts will respond with a TCP segment containing the RST-
�ag after receiving the TCP segment with the SYN- and ACK �ag, no response will be
created by non-existing hosts. Due to this behavior, an attacker can spoof di�erent source
addresses in step 3 of the SYN Cache Scan. If those addresses exist, step 5, sending the
TCP segment with the RST-�ag will be executed, and the entry in the backlog queue of
the idle host will be freed. Therefore, in step 7, the attacker will receive a normal TCP

41

Figure 14: SYN Cache Scan into DMZ

segment with the SYN- and ACK-�ag, and no SYN-Cookie. In case the spoofed source
address does not exist, step 5 will not be executed, and the backlog queue of the idle host
will remain full. Because of this, the attacker will receive a SYN-Cookie in step 7. Using
this method, an attacker is able to detect which addresses are used within the DMZ.

5.2.4. Behavior of various systems

To determine what operating systems make use of which defense mechanisms against
SYN-Flooding, and which of those operating systems can be used as idle host for the
SYN Cache Scan, tests have been conducted with various operating systems. The results
are shown in Table 3.
For each tested operating system, Table 3 also indicates the amount of RAM the system

was using, as the amount of RAM has in�uence on the size of the backlog queue for some
operating systems [12] [31]. In the next column, the countermeasure used against SYN-
Flooding is indicated, followed by the amount of half-open connections the server stores

42

before it falls back to using the countermeasure. The last column states how long an
half-open connection stays in the backlog queue before it is removed when no matching
TCP segment is received.
Out of the ten tested operating systems, two use SYN-Cookies as defense mechanisms

against SYN-Flooding attacks, namely FreeBSD and Linux. FreeBSD uses SYN-Cookies
by default, as soon as the �rst connection request is received. This makes it unfeasible for
an attacker to use FreeBSD as idle host for the SYN Cache Scan, as the behavior does not
change after a certain amount of half-open connections. The same applies to OpenBSD,
which uses a di�erent defense mechanism, a SYN Cache, but also uses the mechanism
already for the �rst half-open connection. Additionally for OpenBSD, it would not be
possible for the attacker to determine if the system makes use of the SYN-Cache or not,
as the data being sent on the network does not change compared to using a traditional
backlog queue.
Linux, which falls back to using SYN-Cookies after 256 half-open connections, repre-

sents a suitable idle host for the SYN Cache Scan. What is left for the attacker is to
determine if the idle host sent a SYN-Cookie or a normal sequence number in its TCP
segment with the SYN- and ACK-�ag. For this, Ensa� et al. [12] suggest the detection
of SYN-Cookies by statistical analysis of the received sequence numbers. An approach
which turned out to be easier for the author was to analyze how often the TCP segment
with the SYN- and ACK-�ag is resent by the idle host. Most tested operating systems
resend TCP segments between three and eight times if no answer is received, where the
exact amount depends on the operating system. If SYN-Cookies are used, no information
regarding the connection is stored on the system. Therefore, the operating system is only
able to send the TCP segment with the SYN- and ACK-�ag once when SYN-Cookies are
used, instead of replaying multiple times. This way of determining if the idle host sent a
SYN-Cookie turned out to be the easier approach compared to statistical analysis.
Solaris was simply dropping requests if no place was left in the backlog queue. Because

of this behavior, an idle host running Solaris can be used similarly to one sending SYN-
Cookies: If the attacker does not receive a TCP segment from the idle host in step 7 of
Figure 13, he can conclude that the backlog queue of the host is full. Being aware of this
behavior, SYN Cache Scans could be executed successfully using an idle host running
Solaris as operating system.
Compared to this, iOS and OS X did not drop new requests in case of a full backlog

queue, but dropped old requests. In general, this behavior seems to be more advisable, as
new connection requests still have a chance of establishing the TCP three way handshake
instead of getting instantly dropped. However, both systems can be used as idle hosts
for the SYN Cache Scan: When sending the �rst TCP segment with the SYN-�ag to
the idle host to �ll its backlog queue in step 1 of Figure 13, the attacker does not spoof
the source address in order to receive the reply. The idle host will respond with a TCP
segment with the SYN-and ACK-�ag, and will resend this segment multiple times if no
answer is received. Meanwhile, the attacker continues executing the SYN Cache Scan
as described, all other TCP segments with the SYN-�ag of step 1 will have a spoofed
source address in order for the attacker to remain undetected. If now step 6 in Figure 13
causes the backlog queue on the idle host to over�ow, the oldest connection in the queue

43

will be dropped, which is the one being made by the attacker from his own address in
step 1. By analyzing how often the TCP segment with the SYN- and ACK-�ag in step 2
has been sent back to the attacker, an attacker can determine if the backlog queue was
over�own or not, and therefore conclude if the port on the target is open or closed.
Also four systems from the Windows family have been tested, which showed di�erent

behavior in case of SYN-Flooding attacks. While Windows XP rejected new connection
requests by sending a TCP segment with the RST-�ag in case the backlog queue was
full, no limit of half-open connections could be determined for Windows 7 and Windows
Server 2008 R2. Windows 8 normally replays the TCP segment with the SYN- and
ACK-�ag multiple times, and afterwards sends a TCP segment with the RST-�ag if no
answer is received. In case the backlog queue is full, the �nal TCP segment with RST-
�ag is not sent. It is assumed that the reason for this behavior is that those connections
are dropped. However, documentation on this behavior leaves the details unclear [31].
Apart from showing di�erent behavior with a full backlog queue, the tested operating
systems from the Windows family all showed the same behavior when resuming normal
behavior after an entry of the backlog queue being removed. Regardless of whether a
TCP segment with RST-�ag was received in step 5 of Figure 13 or not, the answer to the
attacker in step 7 remained the same. The experienced behavior leads to the conclusion
that the amount of half-open connections is limited per period, not considering if place
in the backlog queue is freed within this period or not. This makes the tested Windows
operating systems unsuitable as idle hosts for the SYN Cache Scan.
To sum up, four out of the ten tested operating systems are suitable to be used as idle

host for the SYN Cache Scan, namely iOS, Linux, OS X and Solaris. However, those
four systems show three di�erent kinds of behavior in case of a full backlog queue, which
need to be considered to successfully execute the attack.

44

#
S
y
st
e
m

R
A
M

C
o
u
n
te
r
m
e
a
su
r
e

B
a
c
k
lo
g
q
u
e
u
e

P
e
r
io
d
p
e
r
e
n
tr
y

1
F
re
eB

S
D
9
.1

2
5
6
M
B

S
Y
N
-C
o
o
k
ie
s

0
3
5
s

2
iO
S
6
.1
.2

2
0
4
8
M
B

O
v
er
w
ri
te

o
ld

en
tr
ie
s

1
2
8

8
6
s

3
L
in
u
x
3
.8

1
0
2
4
M
B

S
Y
N
-C
o
o
k
ie
s

2
5
6

1
8
0
s

4
O
S
X
1
0
.8
.3

2
0
4
8
M
B

O
v
er
w
ri
te

o
ld

en
tr
ie
s

1
2
8

7
5
s

5
O
p
en
B
S
D
5
.2

2
5
6
M
B

S
Y
N
-C
a
ch
e

0
9
3
s

6
S
o
la
ri
s
1
1

1
5
3
6
M
B

D
ro
p
p
in
g
R
eq
u
es
ts

1
0
2
4

1
9
0
s

7
W
in
d
ow

s
X
P
P
ro
fe
ss
io
n
a
l
3
2
b
it
,
S
P
3

5
1
2
M
B

D
ro
p
p
in
g
R
eq
u
es
ts

5
0

2
1
s
(1
)

8
W
in
d
ow

s
7
U
lt
im
a
te

3
2
b
it
,
S
P
1

1
0
2
4
M
B

-
-

2
1
s
(1
)

9
W
in
d
ow

s
S
er
v
er

2
0
0
8
R
2
S
ta
n
d
a
rd

6
4
b
it
,
S
P
1

1
0
2
4
M
B

-
-

2
1
s
(1
)

1
0

W
in
d
ow

s
8
E
n
te
rp
ri
se

3
2
b
it

1
0
2
4
M
B

N
o
R
S
T

4
0
9
4

2
1
s
(1
)

(1
)
L
im
it
o
f
h
a
lf
-o
p
en

co
n
n
ec
ti
o
n
s
p
er

p
er
io
d

T
ab
le
3:

S
Y
N
p
ro
te
ct
io
n
m
ec
h
an
is
m
s
of

va
ri
ou
s
sy
st
em

s

45

6. Implementations

In the previous sections, three alternatives for the TCP Idle Scan in IPv4 have been
presented. To prove besides the theoretical also the practical feasibility of those scanning
methods, all three port scans have been implemented using the python program scapy [5].
Scapy is a powerful packet manipulation tool, which allows the easy creation of network
packets. Additionally, the TCP Idle Scan in IPv6 was also implemented as extension to
the security scanner Nmap [28].

6.1. TCP Idle Scan in IPv6 using scapy

Listing 1 shows the python [5] source code which implements the TCP Idle Scan in IPv6
using scapy. The source code follows the TCP Idle Scan in IPv6 as shown by Figure 8
on page 21.

Listing 1: The TCP Idle Scan in IPv6 using scapy

1 #!/ u s r / b i n / python
2 from scapy . a l l import *

3

4 #the add r e s s e s o f the t h r e e p a r t i c i p a n t s
5 i d l e h o s t="<IPv6−addre s s>"
6 a t t a c k e r="<IPv6−addre s s>"
7 t a r g e t="<IPv6−addre s s>"
8

9 # MTU which w i l l be announced i n the ICMPv6 PTB message
10 newmtu=1278
11

12 # Checksum which the ICMPv6 PTB message w i l l have
13 checksum=0x6fb0
14

15 # the po r t which i s to scan
16 po r t=22
17

18 # con f i g u r e scapy ' s r o u t e s and i n t e r f a c e s
19 con f . i f a c e 6=" eth0 "
20 con f . r ou t e6 . i f a d d (" eth0 " , " : : / 6 4 ")
21

22 # c r e a t e a f ragmented p ing from the t a r g e t to the i d l e hos t
23 p ing_ta rge t=fragment6 (IPv6 (d s t=i d l e h o s t , s r c=t a r g e t) \
24 / IPv6ExtHdrFragment () \
25 / ICMPv6EchoRequest (i d =123 , data="A" *1800) ,1400)
26 # send the p ing
27 send (p ing_ta rge t [0])
28 send (p ing_ta rge t [1])
29

30 # we do not ge t the r e sponse , so we have to make our own one
31 r e s pon s e=IPv6 (p l en =1248 ,nh=0x3a , h l im=64, s r c=i d l e h o s t , d s t=t a r g e t) \
32 / ICMPv6EchoReply (i d =123 ,cksum=checksum , data="A" *1800)

46

33 # take the IPv6 l a y e r o f the r e s pon s e
34 i p v 6 r e s p o n s e=r e s pon s e [IPv6]
35 # reduce the amount o f data be ing s en t i n the r e p l y
36 # (a ICMPv6 PTB message w i l l on l y have a maximum of 1280 by t e s)
37 i p v 6 r e s p o n s e [IPv6] [ICMPv6EchoReply] . data="A" *(newmtu−69)
38

39 # wai t a second , so tha t the t a r g e t has
40 # enough t ime to answer the i d l e hos t
41 t ime . s l e e p (1)
42

43 # t e l l the i d l e hos t t ha t h i s r e p l y was too big , the MTU i s sma l l e r
44 mtu_id lehost_to_target=IPv6 (d s t=i d l e h o s t , s r c=t a r g e t) \
45 / ICMPv6PacketTooBig (mtu=newmtu) / i p v 6 r e s p o n s e
46 # send the ICMPv6 PTB message
47 send (mtu_id lehost_to_target)
48

49 # c r e a t e a huge , f ragmented p ing to the i d l e hos t
50 # to get i t s f r a gmen t a t i o n i d e n t i f i c a t i o n
51 f r agment s=fragment6 (IPv6 (d s t=i d l e h o s t , s r c=a t t a c k e r , nh=0x2c) \
52 / IPv6ExtHdrFragment () / ICMPv6EchoRequest (data="A" *1800) ,100)
53

54 # send the huge p ing
55 send (f r agment s [0])
56 send (f r agment s [1])
57

58 # send a spoo f ed syn to the t a r g e t i n the name o f the i d l e hos t
59 syn=IPv6 (d s t=ta r g e t , s r c=i d l e h o s t) \
60 /TCP(dpor t=port , s p o r t=RandNum(1 ,8000) , f l a g s="S")
61 send (syn)
62

63 # g i v e the i d l e hos t some t ime to send an r s t
64 t ime . s l e e p (1)
65

66 # send the huge p ing aga in
67 send (f 0)
68 send (f 1)

At �rst, all necessary parameters are con�gured. In the lines 23-28, an ICMPv6 Echo
Request with enough data that it needs to be fragmented is sent to the idle host, with
the spoofed source address of the target (Step 1 in Figure 8). Line 31 and 32 recreate
the ICMPv6 Echo Response the idle host will send to the target (Step 2). After the data
in the response is reduced, the IPv6 layer of this message is used for the ICMPv6 Packet
Too Big message. Reduction of the data from the ICMPv6 Echo Response is necessary
as the message is not allowed to be bigger than the IPv6 minimum MTU of 1280 bytes.
Now, the ICMPv6 Packet Too Big message is created and sent in the lines 44-46 (Step
3).
Lines 51-55 create and send another ICMPv6 Echo Request with enough data that it

needs to be fragmented to the idle host, but this time the source address is not spoofed

47

(Step 4). In the lines 59-61, a TCP segment with the SYN-�ag and a spoofed source
address of the idle host is created, and sent to the target (Step 6). Afterwards, the script
waits for one second in order to give the target enough time to answer to the idle host,
and if necessary, the idle host to reply to the target (Step 7 and 8). Finally, lines 67 and
68 re-send the fragmented ICMPv6 Echo Request (Step 9).
By observing the described steps with a network sni�er such as Wireshark [51], the

identi�cation value used in the IPv6 extension header for fragmentation in step 5 and
10 can be analyzed. Depending on the di�erence between those two values, it can be
concluded if the scanned port on the target is open or closed.

6.2. RST Rate Limit Scan using scapy

The next implementation which was done with scapy is the RST Rate Limit Scan. The
source code acts according to Figure 12 on page 34.

Listing 2: The RST Rate Limit Scan using scapy

1 #!/ u s r / b i n / python
2 import s y s
3 from scapy . a l l import *

4

5 i d l e_ho s t="<addre s s>"
6 a t t a c k e r="<addre s s>"
7 t a r g e t="<addre s s>"
8 target_mac="<mac−addre s s>"
9 id le_host_mac="<mac−addre s s>"

10

11 # the po r t which i s to scan
12 po r t=22
13

14 # por t on the i d l e hos t which c r e a t e a RST when r e c e i v i n g a SYN/ACK
15 r s t p o r t=1
16

17 # RST r a t e l i m i t o f the i d l e hos t
18 r s t l i m i t =50
19

20 # con f i g u r e scapy ' s r o u t e s and i n t e r f a c e s
21 con f . i f a c e 6=" eth0 "
22 con f . r ou t e6 . i f a d d (" eth0 " , " : : / 6 4 ")
23

24 # c r e a t e a tcp segment to which the i d l e hos t w i l l r e spond
25 # with a RST
26 g e t r s t=Ethe r (s r c=RandMAC(' * : * : * : * : * : * ') , d s t=idle_host_mac) \
27 / IPv6 (s r c=RandIP6 () , d s t=idle_host_mac) \
28 /TCP(f l a g s="S" , dpo r t=r s t p o r t , s p o r t=RandNum(1 ,8000))
29

30 # send the segments f a s t by u s i n g s e n dp f a s t ()
31 s e n dp f a s t (g e t r s t , i f a c e=" eth0 " , l oop=r s t l i m i t −1)
32

48

33 # send a spoo f ed syn to the t a r g e t i n the name o f the i d l e_ho s t
34 syn=IPv6 (d s t=ta r g e t , s r c=i d l e_ho s t) \
35 /TCP(dpor t=port , s p o r t=RandNum(1 ,8000) , f l a g s="S")
36 send (syn)
37

38

39 # send aga in a message where a r s t shou ld come back
40 # − t h i s t ime wi th our own add r e s s so tha t we r e c e i v e the answer
41 g e t r s t=IPv6 (s r c=a t t a c k e r , d s t=i d l e_ho s t) \
42 /TCP(f l a g s="S" , s p o r t=RandNum(1 ,8000) , dpo r t=r s p o r t)
43 s r 1 (g e t r s t)

Similar to the TCP Idle Scan in IPv6, the �rst lines con�gure the necessary parameters.
The implementation uses IPv6 addresses, but changing to IPv4 would only require a
minimum amount of work. In the lines 26-31, a TCP segment with the SYN-�ag and
a random, spoofed source address is created and addressed to a closed port on the idle
host. Afterwards, this segment is sent to the idle host one time less than its RST rate
limit (Step 1 of Figure 12). Line 34-36 create a TCP segment with the SYN-�ag and the
spoofed source address of the idle host and send it to the target (Step 3). As the RST
rate limit of the idle host is only valid within one second, the script does not pause at
this point. Finally, another TCP segment with the SYN-�ag is sent to the idle host on
a closed port and the answer is recorded (Step 6 and 7). In case the idle host does not
respond with a TCP segment with the RST-�ag, the port on the target was open. If the
segment is received, the port was closed.

6.3. SYN Cache Scan using scapy

Also the SYN Cache Scan has been implemented with scapy. Listing 3 shows the source
code, which acts according to Figure 13 on page 39.

Listing 3: The SYN Cache Scan using scapy

1 #!/ u s r / b i n / python
2 import t ime
3 import random
4 import s y s
5 from scapy . a l l import *

6

7 t a r g e t="<addre s s>"
8 a t t a c k e r="<addre s s>"
9 zombie="<addre s s>"

10

11 # the po r t which i s to scan
12 po r t=22
13

14 # an open po r t on the i d l e hos t
15 openpor t=22
16

17 # the s i z e o f the i d l e hos t ' s back l og queue

49

18 syncache=100
19

20 # con f i g u r e scapy ' s r o u t e s and i n t e r f a c e s
21 con f . i f a c e 6=" eth0 "
22 con f . r ou t e6 . i f a d d (" eth0 " , " : : / 6 4 ")
23

24 # f i l l the back l og queue −1 by s end i ng r e q u e s t s
25 f o r i i n x range (0 , syncache −1) :
26 # c r e a t e SYNs wi th random sou r c e a dd r e s s e s to f i l l back l og queue
27 f i l l s y n=IPv6 (d s t=zombie , s r c=RandIP6 (" 2 0 0 1 : : * : * ") i p 6 s r c) \
28 /TCP(s p o r t=RandNum(1 ,8000) , dpo r t=openport , f l a g s="S")
29 send (f i l l s y n , i n t e r =0.0 , v e r bo s e=0)
30

31 # send a spoo f ed syn to the zombie i n the name o f the t a r g e t
32 syn=IPv6 (d s t=zombie , s r c=t a r g e t) /TCP(dpor t=openport , s p o r t=po r t)
33 send (syn)
34

35 # wai t a b i t , so tha t the t a r g e t can answer to the i d l e hos t
36 t ime . s l e e p (1)
37

38 # send aga in a message where a syn / ack shou ld come back
39 # − t h i s t ime wi th our own add r e s s so tha t we r e c e i v e the answer
40 ge t s yn=IPv6 (d s t=zombie) \
41 /TCP(s p o r t=RandNum(1 ,8000) , dpo r t=openport , f l a g s="S")
42 ans=s r 1 (ge t s yn)
43

44 # show the r e c e i v e d answer to ana l y z e i f i t i s a SYN−Cook ie
45 ans [TCP] . show ()

As in the previous scripts, the �rst lines of code are used for initialization. Line 25-
29 are used to �ll the backlog queue of the idle host with all but one entries by using
TCP segments with the SYN-�ag and a spoofed source address (Step 1 in Figure 13).
Afterwards, another TCP segment with the SYN-�ag, the spoofed source address of the
target and the source port which should be scanned is created in line 32 and 33, and sent
to the idle host (Step 3). Then the script waits for one second in order to give the idle
host enough time to answer to the target, and if necessary, the target to reply (Steps 4
and 5). Finally, the last TCP segment with the SYN-�ag is created and sent to the idle
host in lines 40-42, and the answer is displayed (Step 6 and 7). By analyzing the received
sequence number, the attacker can determine if the port is open or closed. Alternatively,
a network sni�er can be used to analyze how often step 7, sending the TCP segment with
the SYN- and ACK �ag, is executed by the idle host.

6.4. TCP Idle Scan in IPv6 with Nmap

After creating a proof of concept with scapy, the TCP Idle Scan in IPv6 was implemented
in Nmap [28] to provide a more elaborated scanning environment. Nmap was already
capable of executing the TCP Idle Scan in IPv4. This functionality could be used as a
basis for implementing the TCP Idle Scan in IPv6, as both scans rely on the same basic

50

concept. At �rst, this section discusses how the TCP Idle Scan in IPv4 is implemented in
Nmap to understand how it is possible to achieve a much more e�cient scan in comparison
to the book-version. Afterwards, it is shown which adjustments had to be made to
transfer the scan to IPv6, and �nally the performance of the implementation is discussed.

6.4.1. TCP Idle Scan in IPv4 with Nmap

While Figure 3 on Page 12 shows the basic concept of the TCP Idle Scan in IPv4, the
Nmap implementation has been optimized in order to decrease the time needed to scan
multiple ports as well as to increase reliability [29].
First, the sequence in which the IPIDs are assigned is tested. This is done by sending

six TCP segments with the SYN- and ACK-�ag to the idle host, to which the host
will respond with six TCP segments with the RST-�ag. From these responses, it is
determined by how much the IPID is increased for each packet sent. In case the idle host
does not respond to the TCP segments, it is assumed that the host is behind a �rewall,
which makes it impossible to use it as idle host in the TCP Idle Scan, and the scan is
aborted.
When the IPID sequence has shown to be predictable, the next step is to detect if the

IPIDs are assigned on a global, or on a per-host basis. For this, four TCP segments with
the SYN- and ACK-�ag are sent to the idle host with the spoofed source address of the
target. The responses to these messages will be sent to the target, and therefore will
not be received. Instead, after giving the idle host enough time to answer to the target,
another TCP segment with the SYN- and ACK-�ag and the real source address is sent
to the idle host, and the IPID in the response is analyzed. If the IPID increased �ve
times compared to the last response received from the idle host, it is assumed that the
last four IPIDs have been used to reply to the spoofed TCP segments. Therefore, it can
be concluded that the IPIDs are assigned on a global basis.
In case the IPID only incremented once, independent IPIDs have been used for the

answer to the target, which allows the conclusion that the IPIDs are assigned on a per-
host basis. An alternative explanation would be that the attacker is not able to spoof
IP-addresses, for example due to protection mechanisms of the Internet Service Provider
(ISP), or that the spoofed segments are recognized and dropped by the target. Anyhow,
the host is not suitable as idle host, and the scan is aborted.
After assuring the reliability of the idle host, the actual scan is started. This is done

by sending up to 100 TCP segments with the SYN-�ag to the target, addressed at ports
which should be scanned, and spoo�ng the source address of the target. When receiving
these segments, the target will answer with a certain amount of TCP segments with
the RST-�ag, which represents the number of closed ports, as well as with a number of
TCP segments with the SYN- and ACK-�ag representing the number of open ports. To
discover how many ports are open, a TCP segment with the SYN- and ACK-�ag is sent
to the idle host, which will answer with a TCP segment with the RST-�ag and its IPID.
By analyzing how often the IPID increased compared to the last IPID received from the
idle host, Nmap is able to determine how many of the scanned ports are open.

51

At this point, it is known how many of the scanned ports are open, but not which
ones. In case the received IPID incremented only once, it can be concluded that no
TCP segment with the RST-�ag was sent by the idle host, so none of the scanned ports
are open, and all tested ports are marked as closed. If the IPID incremented further, a
binary search is executed to determine which of the scanned ports are open. For this,
the amount of the previously scanned ports is split in half, and the scan is repeated for
the �rst half of the ports. In case the IPID incremented by the same amount as in the
previous step, it can be concluded that all open ports are on the �rst half, and all ports
on the second half are marked as closed. If one part shows open ports, this part is again
split into half, and the process is repeated until all open ports are discovered.
While adding a huge amount of complexity as well as additional messages required to

determine the open ports, this method decreases the time needed for a port scan by the
order of magnitude [29]. This is due to the fact that when scanning a big number of
ports, only some of them will be open. Figure 15 shows the scanning method for the
TCP Idle Scan being used in Nmap.

Figure 15: TCP Idle Scan in IPv4 with Nmap

52

6.4.2. Changing existing process

When adding the functionality for the TCP Idle Scan in IPv6 to Nmap, the basic func-
tionality provided for IPv4 could be reused. Still, all di�erences between the TCP Idle
Scan in IPv4 and IPv6 had to be considered and the original implementation had to be
adapted to be able to perform both types of port scans.

� The biggest change was to force the use of the IPv6 extension header for fragmen-
tation before any other task could be performed. This was not only done between
the idle host and the target, but also between the idle host and the attacker. The
reason for this was to be able to use the existing code, which made use of a TCP
segment with the SYN- and ACK-�ag to receive an answer containing an IPID,
instead of using a fragmented ICMPv6 Echo Request as this was shown in Figure
8 on page 21. Additionally, the use of TCP segments with the SYN- and ACK-�ag
decreases the amount of bytes being sent between the idle host and the attacker
compared to using ICMPv6 Echo Requests with a big amount of data, as discussed
in Section 3.5.

At �rst, an ICMPv6 Echo Request with a total size of 1280 bytes is created and
sent to the idle host. After receiving the response, an ICMPv6 Packet Too Big
message is sent to the idle host, informing it that the MTU for the path is lower
than the minimum IPv6 MTU. This will force the idle host to append the extension
header for fragmentation to every IPv6 packet sent to the attacker.

Next, the same ICMPv6 Echo Request is sent to the idle host again, but the source
address is spoofed to be the one from the target. Afterwards, an ICMPv6 Packet
Too Big message with the source address of the target and an MTU smaller than
the IPv6 minimum MTU is spoofed, as described in Section 3.2.3, and sent to the
idle host.

The issue in this step is the timing. It is di�cult to evaluate how long it should be
paused between sending the ICMPv6 Echo Request and the ICMPv6 Packet Too
Big message. If the time span is too short, the idle host will not have enough time
to send an ICMPv6 Echo Response to the target, and will therefore not yet expect
the ICMPv6 Packet Too Big message. If the time span is too long, the scan will
be needlessly delayed.

However, testing with di�erent Windows operating systems as idle host and di�er-
ent waiting periods has shown that even if the ICMPv6 Packet Too Big message
is sent immediately after the ICMPv6 Echo Request, the idle host still switches
into the desired behavior of appending the IPv6 extension header for fragmenta-
tion to every IPv6 packet. This is probably due to the fact that incoming messages
are handled one after each other in the order they arrive. Therefore, as long the
ICMPv6 Echo Request is sent before the ICMPv6 Packet Too Big message, the
probability for it to arrive �rst is high. But it still needs to be considered that the
IP protocol does not guarantee that both ICMPv6 packets will take the same route
and therefore arrive in the same order as they were sent [48]. To increase the prob-

53

ability of the messages to arrive in the desired order, a latency of 10 milliseconds
was introduced before sending the ICMPv6 Packet Too Big message.

After sending the ICMPv6 Packet Too Big messages, the idle host will append the
extension header for fragmentation to every IPv6 packet sent to the target as well as
to the attacker. This allows to execute the actual scan by using the same sequence
of messages as in IPv4, which was shown in Figure 15, and keep the necessary
changes to a minimum. The function which executes the described steps is shown
in Appendix A.

� Another major chance was the access of the identi�cation value. In IPv4, the IPID
used for the TCP Idle Scan is located at a de�ned place in the IPv4 header and
can therefore easily be accessed. In IPv6, the identi�cation value used for the TCP
Idle Scan is located in the extension header for fragmentation, which might have
various previous and successive extension headers, which are of a variable size. To
locate the identi�cation value within this chain of extension headers, a function was
created which investigates the type and size of the IPv6 extension headers in a loop.
In case the extension header is the one for fragmentation, the identi�cation value
is returned, and otherwise the length of the extension header is determined and
the next extension header in the chain is accessed. This process is repeated until
the extension header for fragmentation is found or the end of the extension header
chain is reached. Appendix B shows the function which �nds the identi�cation
value within an IPv6 packet.

� It also had to be considered that while the IPID in IPv4 has a size of 16 bits,
the identi�cation value in the IPv6 extension header for fragmentation is 32 bits
long. Mostly, the TCP Idle Scan implementation in Nmap used variables of the
type integer to store the IPID. The C++ standard de�nes that variables from this
type have to have a size of at least 32 bits, which is enough for the IPID in IPv4,
and also enough to store the identi�cation value in IPv6. But on some occasions,
the data type u16 was used to store the IPID value of IPv4. Code using this data
type was changed into using the data type u32 which has a size of 32 bits and
is therefore able to store the IPID of the IPv4 header as well as the identi�cation
value of the IPv6 extension header for fragmentation [24].

� Additionally, a new detection mechanism for sequential increments was added.
Previously, Nmap was only able to detect predictable IPID values if those were
incremented either by one or by 256. With �ve of the tested operating systems
incrementing by two, it was necessary to also create detection for such a behavior.
During the implementation, the method being used to detect a sequential increment
of 256 could be used, and only needed slight adaptation.

After applying all the described changes, Nmap is able to execute the TCP Idle Scan
in IPv6. The full patch as well as further developments are available at [32].

54

6.4.3. Performance

With Nmap being able to execute the TCP Idle Scan in IPv6, tests have been conducted
to ensure the correct behavior as well as to determine the performance of the implemen-
tation. For this purpose, three virtual machines running on the same physical system
have been used. For the attacker, a Debian Linux system running kernel 3.2 was used,
and for the target another Debian Linux running kernel 3.8. The target had one open
port on IPv4 as well as on IPv6, which was the SSH-daemon1 on port 22. For the idle
host, di�erent operating systems have been tested, which all led to the desired output
stating either the correct result or a reason why the scan could not be executed, such as
a per-host assignment of the identi�cation value from the idle host.
To test the performance of the implementation, Windows 7 has been chosen as oper-

ating system for the idle host. The time spans needed to scan 1000 ports were slightly
�uctuating. When executing the scan 50 times with pauses of one minute in between,
the shortest time span was 7.69 seconds to execute the whole scan, while the longest was
9.20 seconds. On average, the TCP Idle Scan in IPv6 took 8.13 seconds by using the
developed patch.
In order to create a valid comparison, the TCP Idle Scan in IPv4 has also been executed

50 times by using the same virtual machines. The fastest of these 50 scans was �nished
within 7.46 seconds, while the slowest took 10.35 seconds to �nish. On average, an
execution time of 8.06 seconds was reached for the TCP Idle Scan in IPv4.
Compared to the TCP Idle Scan in IPv4, the implementation created along with this

thesis was on average 0.07 seconds slower while delivering the same results. The delay is
caused by the message sequence in the beginning, which is used to force the idle host to
append the extension header for fragmentation to every IPv6 packet sent to the target
and to the attacker. Before being able to send the ICMPv6 Packet Too Big message
to the idle host, the attacker once has to wait until the answer for the ICMPv6 Echo
Request is received. For forcing the extension header for fragmentation between the idle
host and the target, another delay had to be placed to ensure that the ICMPv6 Packet
Too Big message will be received by the idle host after the ICMPv6 Echo Request.
However, the delay of 0.07 seconds compared to the TCP Idle Scan in IPv4 illustrates

a decrease in performance by less than 1%. Considering the less restricting requirements
on the idle host, this can be seen as a negligible decrease in performance.

1
Secure SHell

55

7. Defense mechanisms

After discussing various port scanning methods and their characteristics, this section
deals with defense mechanisms against those. Short-term defenses for system adminis-
trators are as well discussed as long-term defenses which need to be applied by vendors.

7.1. General defense mechanisms

� All four scans introduced in this work require the attacker to be able to spoof
the source addresses of some packets. Mechanisms against IP address spoo�ng
are therefore a �rst defense mechanism. To prevent IP spoo�ng within a network,
administrators can use techniques such as Reverse Path Forwarding. This technique
checks for the source address of each received packet if the interface on which the
packet was received equals the interface which would be used for forwarding a
packet to this address [7]. Systems which o�er such a defense against IP source
address spoo�ng are for instance Cisco, Linux and OpenBSD [7] [22] [37]. Outside of
internal networks, an approach to prevent IP source address spoo�ng is networking
ingress �ltering, which should be done by the Internet Service Provider (ISP), as
suggested in RFC 2267 [14].

� Another defense which applies to all introduced scans is related to accepting TCP
segments with the SYN- and ACK-�ag without precedent tra�c. In the TCP
Idle Scan in IPv4 and IPv6 as well as in the RST Rate Limit Scan, the idle host
is expected to reply to such received TCP segments with a segment containing
the RST-�ag, as those messages where unexpected. If the idle host would drop
TCP segments with the SYN- and ACK-�ag without precedent tra�c instead of
answering with a TCP segment with the RST-�ag, an attacker would not be able
to conclude if the idle host received a TCP segment with the RST-, or with the
SYN- and ACK-�ag from the target.

A similar behavior of the target is required while executing the SYN Cache Scan:
In reply to a received TCP segment with the SYN- and ACK-�ag, it is supposed to
either answer with a segment containing the RST-�ag in case of an open port, or to
drop the message in case of a closed port. To anticipate such a behavior, stateful
inspection �rewalls can be used in both cases, as described by Stallings [46]. This
type of �rewall saves the state of each connection, and will therefore only accept a
TCP segment with the SYN- and ACK-�ag from one party if a segment with the
SYN-�ag was sent previously from the other party.

7.2. Defense mechanisms against the TCP Idle Scan in IPv6

� Regarding the TCP Idle Scan in IPv6, the most e�ective defense is a random as-
signment of the identi�cation value in the IPv6 extension header for fragmentation.
Using this method, an attacker will not be able to predict the upcoming values of
the identi�cation values assigned by the idle host. Being unable to predict those

56

values, it is impossible for the attacker to determine if the idle host sent a TCP seg-
ment with the RST-�ag to the target, as this is done in step 8 of Figure 8. However,
this is a long-term defense mechanism, where the responsibility of implementation
relies on the vendor instead of the administrator.

7.3. Defense mechanisms against the RST Rate Limit Scan

� To protect against the RST Rate Limit Scan, one method would be to remove the
RST rate limit from operating systems. But before executing this step, it should
be understood why an operating system makes use of such a limit in the �rst place.
If a host is exposed to a traditional port scan [29], an attacker tries to create TCP
connections directly from his source address with TCP ports on the idle host. For
each connection attempt received on a closed port, the idle host will reply with a
TCP segment with the RST-�ag, which lets the attacker conclude that this port
is closed. By using an RST rate limit, the idle host will only give information
about a certain amount of closed ports per second, making the port scan more
time-consuming.

For this reason, it is not advisable to remove the RST rate limit, which protects
from traditional port scans, in order to protect from the RST Rate Limit Scan.
Instead, a better defense would be a combined RST rate limit, which considers
as well received as sent TCP segments with the RST �ag, as done for example
by OpenBSD. This behavior makes it impossible to execute the RST Rate Limit
Scan with this idle host. Independent if the scanned port on the target is open or
closed, the idle host will each time either receive or send a TCP segment with the
RST �ag, see Figure 12, and increase its counter for the RST rate limit. Therefore,
the idle hosts �nal answer to the attacker in step 7 will always remain the same,
independent from the behavior of the target, which makes the RST Rate Limit
Scan ine�ective.

Additionally, a RST rate limit which also considers incoming TCP segments will
also protect against other attacks which utilize the RST-�ag, such as RST Hijacking
[13]. As stated by Tanenbaum [48], TCP segments with the RST-�ag should not
occur in normal TCP tra�c, as those TCP segments indicate either networking
problems or attacks. Therefore, such a combined RST rate limit can be kept
relatively low to handicap attacks using TCP segments with the RST-�ag.

7.4. Defense mechanisms against the SYN Cache Scan

� There are various mechanisms in order to defend against the SYN Cache Scan,.
What enables an attacker to execute the port scan is that the the data being sent
on the network changes after the idle host's backlog queue is full because of the
host falling back to sending SYN-Cookies. One method to change this behavior is
not to use a backlog queue at all, as done for instance by FreeBSD and OpenBSD.
Both use di�erent defense mechanisms against SYN-Flooding, but use those for all

57

received connection requests, which means that the behavior does not change after
a certain amount of half-open connections.

� Another defense against the SYN Cache Scan is to maintain the behavior which the
idle host shows on the network after falling back to using the protection mechanism.
For the scan to work, the attacker needs to be able to detect in the last step if the
idle host answered with a SYN-Cookie or not, see Figure 13. By using alternatives
to SYN-Cookies, such as a SYN Cache, which do not in�uence the data being sent
on the network, an attacker will not be able to detect if the idle hosts backlog queue
is full and therefore if the port on the target is open.

� To avoid an external attacker scanning internal networks, as shown in Figure 14
on page 42, it is necessary to analyze the interface as well as the source address of
received IP packages. An example for this is the already mentioned Reverse Path
Forwarding, which checks if the interface on which an IP packet is received is the
same as the one which would be used to send the reply. Taken as example the
�rewall in Figure 14, the system should be able to detect that it is not possible
that an IP packet which is received from the external network has an internal
source address. Therefore, to avoid an external attacker to be able to scan an
internal network, elaborated con�guration of the gateway to the external network
is necessary.

� The last defense against the SYN Cache Scan does not need to be applied on the
idle host, but on the target. In order to be able to execute the scan, the target is
required to show di�erent behavior compared to if a TCP segments with the SYN-
and ACK-�ag is received on an open, or on a closed port. Examples for this are
FreeBSD's blackhole [41] and poorly con�gured �rewalls. To prevent an attacker
from executing the SYN Cache Scan, it is essential that the target shows the same
behavior independent from if the TCP segment from the idle host was received on
an open, or on a closed port.

To sum up, there are various defense mechanisms against the di�erent types of port
scans described. On the short term, it is advisable for system administrators to take
measures against IP source address spoo�ng, use stateful inspection �rewalls, review
the used mechanisms against SYN-Flooding attacks and analyze the behavior of hosts
when receiving TCP segments with the SYN- and ACK-�ag on open and closed ports.
Additionally, to prevent from external intrusion into internal networks, the forwarding
policy of the gateway to the external network should be audited.
On the long term, vendors are advised to design the identi�cation values in the IPv6

extension header for fragmentation in a way which is unpredictable for an attacker.
Besides that, a combined RST rate limit for incoming and outgoing TCP segments as
well as defense mechanisms against SYN-Flooding which do not in�uence the data being
sent on the network would be desirable.

58

8. Conclusion

This thesis has shown that by clever use of some IPv6 features, the TCP Idle Scan can
successfully be transferred from IPv4 to IPv6. Therefore, this type of port scan remains
also in IPv6 a powerful tool in the hands of an attacker who wants to cover his tracks,
and a challenge for anybody who tries to trace back the scan to its origin. The fact
that major operating systems assign the identi�cation value in the extension header for
fragmentation in a predictable way also drastically increases the chances for an attacker
to �nd a suitable idle host for executing the TCP Idle Scan in IPv6. Because the idle host
is also not required to be completely idle, but only expected not to create IPv6 tra�c
using the extension header for fragmentation, these chances are increased additionally.
What remains is the question why it is still a common practice to utilize predictable

identi�cation values. The danger of predictable sequence numbers has already been
disclosed by Morris [34] in 1985. Although his article covered TCP, the vulnerabilities
were caused by the same problem: a predictable assignment of the sequence number. For
this reason, he advised to use random sequence numbers. With the TCP Idle Scan in
IPv4 being �rst discovered in 1998, it has been shown that the necessity of unpredictable
identi�cation values also applies to IPv4. This article has shown that also in IPv6,
predictable identi�cation values facilitate attacks and should be substituted with random
values.
Besides the TCP Idle Scan in IPv4 and IPv6, two alternative scanning methods have

been presented, namely the RST Rate Limit Scan and the SYN Cache Scan. Table 4
compares the properties of all four scanning types. While the TCP Idle Scan in IPv4 and
IPv6 utilizes the predictability of the IPID or identi�cation value intended for fragmen-
tation, the RST Rate Limit Scan requires the idle host to enforce an RST Rate Limit,
and the SYN Cache Scan requires the usage of the backlog queue with a limited size.
Regarding idleness of the idle host, the port scan methods have di�erent requirements.

With the TCP Idle Scan in IPv4, the idle host is required to remain completely idle, as
each sent IPv4 packet in�uences its IPID. If tra�c is exchanged with a third party, the
scan will return unexpected results. Compared to this, the TCP Idle Scan in IPv6 only
requires the idle host not to create IPv6 tra�c which makes use of the IPv6 extension
header for fragmentation. When using the RST Rate Limit Scan, the idle host is not
required to remain idle at all, as it can be assumed that casual tra�c does not require to
send TCP segments with the RST-�ag [48]. Within the SYN Cache Scan, the idle host
is not allowed to receive incoming TCP connection requests, as those would in�uence
the available place in the backlog queue. However, outgoing tra�c does not a�ect the
scanning results.
The port scans also di�er by the number of message which are necessary to scan the

�rst port. For the TCP Idle Scan in IPv4, those are seven messages, whereas the TCP
Idle Scan in IPv6 requires a total of 11 messages. The total amount of messages needed
to scan the �rst port with the RST Rate Limit Scan depends on the RST Rate Limit of
the idle host. To force the idle host to send all but one TCP segments with the RST-
�ag, an amount of the RST Rate Limit but one messages, which will be replied by the
idle host, is necessary. After this is done, another �ve messages are required to execute

59

the actual scan. For the SYN Cache Scan, a total amount of the size of the idle host's
backlog queue but one messages is required to �ll the backlog queue, to which the idle
host will reply with TCP segments with the SYN- and ACK-�ag. Afterwards, �ve more
messages are required to execute the actual scan. Additionally, it needs to be considered
that the idle host might resend the TCP segments with the SYN- and ACK-�ag, which
will increase the amount of messages additionally.
To scan further ports, the amount of messages can be decreased to �ve for the TCP

Idle Scan in IPv4 as well as for the TCP Idle Scan in IPv6. This also applies to the SYN
Cache Scan as long as the backlog queue was not �lled by previously scanning a port
which did not return a TCP segment with the RST-�ag from the target to free an entry
in the idle host's backlog queue. For the RST Rate Limit Scan, it is necessary to send
the same amount of messages as when scanning the �rst port, since the RST rate limit
will be reset at all tested operating systems after one second. Additionally, one will have
to wait until the RST rate limit is reset before scanning a second port, as the idle host
will have sent the maximum number of TCP segments with the RST-�ag after scanning
the �rst port.
Among all port scanning methods, the stealthiest is the TCP Idle Scan in IPv4. The

TCP Idle Scan in IPv6 reaches similar results regarding stealthiness, but has the problem
that it requires to send the unusual ICMPv6 Packet Too Big messages with an MTU
smaller than 1280, which might raise the attention of an administrator. On the third
position regarding stealth is the RST Rate Limit Scan, as the unusually high amount of
TCP segments with the RST-�ag is also likely to raise the attention of an administrator.
However, the least stealthy scan is the SYN Cache Scan, as a full backlog queue will
be reported by most operating systems with the warning of a suspected SYN-Flooding
attack, and is therefore highly likely to raise the attention of the administrator.
When analyzing the di�culty of tracing back a scan to its origin, all four scans provide

the same level of protection for an attacker. For all of the scans, not a single IP-packet
containing the attacker's IP-address is sent to the target. To be able to discover the
attacker's IP-address, access to the idle host is required, and even then, most of the
used messages such as TCP segments with the SYN- and ACK-�ag are unlikely to be
logged by the target system. Therefore, to trace back the scan to its origin, one would be
required to run for example a network sni�er on the idle host while the scan is executed
in order to be able to determine its source.
Compared to the other three scans, the SYN Cache Scan is the only one which requires

the idle host to have at least one open TCP-port in order to be able to �ll the backlog
queue of the host. Also, it is the only scanning method that requires a speci�c behavior
from the target, which is to respond di�erently depending on if a TCP segment with
the SYN- and ACK �ag is received on an open or on a closed port. Additionally, the
SYN Cache Scan is also the only one from the four presented scans which needs to be
adapted depending on the operating system the idle host is running and the defense
mechanism against SYN-Flooding it is using. However, although requiring all those
additional properties, the SYN Cache Scan has the advantage that the attacker is not
required to be able to send packets to the target, which might enable an attacker to
scan internal networks. Summed up, it can be said that all port scans shown in this

60

thesis provide advantages as well as disadvantages. It will depend on the situation which
method should be preferred after considering variables such as the operating system and
behavior of the target and the idle host as well as details such as the network architecture.
With implementing proofs of concept for the TCP Idle Scan in IPv6, the RST Rate

Limit Scan and the SYN Cache scan, it has been shown that the scanning methods are
also feasible in practice. Additionally, the patch created for the security scanner Nmap
along with this thesis has shown that the newly discovered TCP Idle Scan in IPv6 is only
slightly slower than the TCP Idle Scan in IPv4 by having less requirements for the idle
host.
Until vendors are able to implement the long term defense mechanisms described in

Section 7, administrators are advised to make use of the short-term protection mecha-
nisms to ensure a full protection against the port scanning methods discussed.
In the future, one might consider an update of RFC 1981, which forces a host to

append an empty fragmentation header to every IPv6 packet after receiving an ICMPv6
Packet Too Big message with an MTU smaller than the IPv6 minimum MTU. Likewise,
updating RFC 2460 towards an obligatory random assignment of the identi�cation value
in the extension header for fragmentation should be considered as well.

61

T
C
P
Id
le
S
c
a
n
IP
v
4

T
C
P
Id
le
S
c
a
n
IP
v
6

R
S
T
R
a
te

L
im
it
S
c
a
n

S
Y
N
C
a
c
h
e
S
c
a
n

U
ti
li
ze
s

IP
ID

id
e
n
ti
�
ca
ti
o
n
va
lu
e

R
R
L

B
Q
L

Id
le
h
o
st
re
q
u
ir
ed

to
b
e
id
le
?

✓
∼

×
∼

N
o
.
o
f
m
es
sa
g
es

to
sc
a
n
�
rs
t
p
o
rt

7
1
1

(R
R
L
-
1
)
*
2
+
5

>
=
(B
Q
L
-
1
)
*
2
+
5

N
o
.
o
f
m
es
sa
g
es

to
sc
a
n
se
co
n
d
p
o
rt

5
5

(R
R
L
-
1
)
*
2
+
5

5
S
te
a
lt
h
L
ev
el

+
o

-
-
-

A
tt
a
ck
er

re
m
a
in
s
u
n
tr
a
ce
a
b
le
?

✓
✓

✓
✓

O
p
en

p
o
rt
o
n
id
le
h
o
st
re
q
u
ir
ed
?

×
×

×
✓

S
p
ec
i�
c
b
eh
av
io
r
o
f
ta
rg
et

re
q
u
ir
ed
?

×
×

×
✓

D
ep
en
d
s
o
n
O
S
o
f
th
e
id
le
h
o
st
?

×
×

×
✓

A
tt
a
ck
er

n
ee
d
s
to

re
a
ch

ta
rg
et
?

✓
✓

✓
×

L
e
g
e
n
d
:

R
R
L
:
R
S
T
ra
te

li
m
it

B
Q
L
:
B
a
ck
lo
g
Q
u
eu
e
L
im
it

T
ab
le
4:

O
ve
rv
ie
w
ov
er

th
e
ch
ar
ac
te
ri
st
ic
s
of

th
e
d
is
cu
ss
ed

sc
an
s

62

8.1. Future work

The RST Rate Limit Scan and the SYN Cache Scan have shown that the TCP Idle Scan
is not the only possibility for an attacker to execute a stealthy port scan. In the future,
it would be interesting to research if similar scanning methods, which make use of a third
host to hide the real IP address of an attacker are feasible. What would be needed is an
idle host that sets a limit or a counter for a speci�c action and is in�uenced di�erently
by receiving TCP segments with the SYN- and ACK-�ag or segments with the RST-�ag.
For this purpose, an investigation of other IPv6 extension headers to analyze if one

of those provides alternatives to the identi�cation value in the extension header for
fragmentation would be a �rst approach. Also, extension headers could be used in order
to hide port scans from Intrusion Detection Systems (IDS) such as snort [6] or to in�ltrate
into �rewalls [17], which could also be investigated in the future and might even be
successfully merged with the TCP Idle Scan in IPv6.

63

Acronyms

ACK Acknowledge

DoS Denial of Service

FH Extension header for fragmentation

ICMP Internet Control Message Protocol

ICMPv6 Internet Control Message Protocol version 6

ID Identi�cation

IP Internet Protocol

IPID Identi�cation value for fragmentation

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

MTU Maximum Transfer Unit

PMTU Path Maximum Transfer Unit

RFC Request for Comments

RST Reset

SYN Synchronize

TCP Transmission Control Protocol

64

References

[1] Filipe Almeida. idlescan (ip.id portscanner). http://seclists.org/bugtraq/

1999/Dec/58, 1999. [Online; Request on July, 22nd of 2013].

[2] Apple Inc. xnu-1504.9.37 - bsd/netinet6/icmp6.c, 2008.

[3] Steven M. Bellovin. Security Problems in the TCP/IP Protocol Suite. Computer
Communications Review, pages 32�48, 1989.

[4] Daniel J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html. [Online;
Request on April, 23rd of 2013].

[5] Bryan Burns, Eric Markham, Chris Iezzoni, Philippe Biondi, Jennifer Stisa Granick,
Steve Manzuik, Paul Guersch, Dave Killion, Nicolas Beauchesne, Eric Moret, Julien
Sobrier, and Michael Lynn. Security power tools. O'Reilly, �rst edition, 2007.

[6] Jon Christmas. Topera the sneaky IPv6 Port Scanner. http://www.

soleranetworks.com/blogs/topera-the-sneaky-ipv6-port-scanner/, 2013.
[Online; Request on July, 31st of 2013].

[7] Cisco Systems, Inc. Understanding Unicast Reverse Path Forwarding. http:

//www.cisco.com/web/about/security/intelligence/unicast-rpf.html, 2013.
[Online; Request on May, 10th of 2013].

[8] Alex Conta, Stephen Deering, and Mukesh Gupta. Internet Control Message Pro-
tocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Speci�cation. RFC 4443
(Draft Standard), March 2006. Updated by RFC 4884.

[9] Joseph G. Davies. Understanding IPv6. Microsoft Press, Redmond, WA, USA, third
edition, 2012.

[10] Stephen Deering and Robert Hinden. Internet Protocol, Version 6 (IPv6) Speci�ca-
tion. RFC 2460 (Draft Standard), December 1998.

[11] Wesley Eddy. TCP SYN Flooding Attacks and Common Mitigations. RFC 4987
(Draft Standard), August 2007.

[12] Roya Ensa�, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. Idle Port
Scanning and Non-Interference Analysis of Network Protocol Stacks Using Model
Checking. In Proceedings of the 19th USENIX conference on Security, USENIX
Security'10, pages 257�272, Berkeley, CA, USA, 2010. USENIX Association.

[13] Jon Erickson. Hacking: the art of exploitation, 2nd edition. No Starch Press, San
Francisco, CA, USA, second edition, 2008.

[14] Paul Ferguson and Daniel Senie. Network Ingress Filtering: Defeating Denial of Ser-
vice Attacks which employ IP Source Address Spoo�ng. RFC 2267 (Draft Standard),
January 1998.

65

http://seclists.org/bugtraq/1999/Dec/58
http://seclists.org/bugtraq/1999/Dec/58
http://cr.yp.to/syncookies.html
http://www.soleranetworks.com/blogs/topera-the-sneaky-ipv6-port-scanner/
http://www.soleranetworks.com/blogs/topera-the-sneaky-ipv6-port-scanner/
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html
http://www.cisco.com/web/about/security/intelligence/unicast-rpf.html

[15] Yossi Gilad and Amir Herzberg. Fragmentation considered vulnerable: blindly inter-
cepting and discarding fragments. In Proceedings of the 5th USENIX conference on
O�ensive technologies, WOOT'11, pages 9�18, Berkeley, CA, USA, 2011. USENIX
Association.

[16] Fernando Gont. Processing of IPv6 "Atomic" Fragments. RFC 6946 (Draft Stan-
dard), May 2013.

[17] Fernando Gont and Marc Heuse. Security Assessment of IPv6 Networks and Fire-
walls. http://www.si6networks.com/presentations/ipv6kongress/mhfg-ipv6-

kongress-ipv6-security-assessment.pdf, 2013. [Online; Request on July, 31st
of 2013].

[18] Silvia Hagen. IPv6 Essentials. O'Reilly Media, 2009.

[19] heise Netze. IPv6-Kongress, 2013.

[20] Marc Heuse. Recent advances in IPv6 insecurities. http://media.ccc.de/browse/
congress/2010/27c3-3957-en-ipv6_insecurities.html, 2010. [Online; Request
on April, 5th of 2013].

[21] Charles Hornig. A Standard for the Transmission of IP Datagrams over Ethernet
Networks. RFC 894 (Draft Standard), April 1984.

[22] Bert Hubert, Gregory Maxwell, Remco van Mook, Martijn van Oosterhout, Paul B.
Schroeder, and Jasper Spaans. Reverse Path Filtering. http://tldp.org/HOWTO/

Adv-Routing-HOWTO/lartc.kernel.rpf.html, 2013. [Online; Request on May,
10th of 2013].

[23] Informa UK. IPv6 World Congress, 2013.

[24] ISO. ISO/IEC 14882:2011 Information technology � Programming languages �
C++. International Organization for Standardization, Geneva, Switzerland, Febru-
ary 2012.

[25] Erik J. Kamerling. The Hping2 Idle Host Scan . http://www.ouah.org/

hping2idle.htm, 2001. [Online; Request on June, 27th of 2012].

[26] Jonathan Lemon. Resisting SYN �ood DoS attacks with a SYN cache. In Proceedings
of the BSD Conference 2002 on BSD Conference, BSDC'02, pages 89�97, Berkeley,
CA, USA, 2002. USENIX Association.

[27] Gordon Lyon. The O�cial Nmap Project Guide to Network Discovery and Security
Scanning. Nmap Project, 2012.

[28] Gordon Lyon. Nmap - Free Security Scanner For Network Exploration and Security
Audits. http://www.nmap.org/, 2013. [Online; Request on August, 1st of 2013].

66

http://www.si6networks.com/presentations/ipv6kongress/mhfg-ipv6-kongress-ipv6-security-assessment.pdf
http://www.si6networks.com/presentations/ipv6kongress/mhfg-ipv6-kongress-ipv6-security-assessment.pdf
http://media.ccc.de/browse/congress/2010/27c3-3957-en-ipv6_insecurities.html
http://media.ccc.de/browse/congress/2010/27c3-3957-en-ipv6_insecurities.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://www.ouah.org/hping2idle.htm
http://www.ouah.org/hping2idle.htm
http://www.nmap.org/

[29] Gordon Lyon. Nmap Reference Guide. http://nmap.org/book/man.html, 2013.
[Online; Request on August, 1st of 2013].

[30] Jack McCann, Stephen Deering, and Je�rey Mogul. Path MTU Discovery for IP
version 6. RFC 1981 (Draft Standard), August 1996.

[31] Microsoft Corporation. Syn attack protection on Windows Vista, Windows 2008,
Windows 7 and Windows 2008 R2. http://blogs.technet.com/b/nettracer/

archive/2010/06/01/syn-attack-protection-on-windows-vista-windows-

2008-windows-7-and-windows-2008-r2.aspx, 2010. [Online; Request on May,
7th of 2013].

[32] Mathias Morbitzer. Nmap Development: [PATCH] TCP Idle Scan in IPv6.
http://seclists.org/nmap-dev/2013/q2/394 and http://seclists.org/nmap-

dev/2013/q3/13, 2013. [Online; Request on August, 1st of 2013].

[33] Mathias Morbitzer. TCP Idle Scanning using network printers. http:

//www.researchgate.net/publication/239660144_TCP_Idle_Scanning_using_

network_printers/file/3deec51c1c17e29b78.pdf, 2013. Research Paper,
Radboud University of Nijmegen. [Online; Request on July, 7th of 2013].

[34] Robert T. Morris. A Weakness in the 4.2BSD Unix TCP/IP Software, 1985.

[35] Thomas Narten, Erik Nordmark, William A. Simpson, and Hesham Soliman. Neigh-
bor Discovery for IP version 6 (IPv6). RFC 4861 (Draft Standard), September 2007.

[36] OpenBSD. OpenBSD Programmer's Manual: sysctl(3). http://www.openbsd.org/
cgi-bin/man.cgi?query=sysctl&sektion=3, 2013. [Online; Request on April, 25th
of 2013].

[37] OpenBSD. PF: Packet Filtering. http://www.openbsd.org/faq/pf/filter.html#
urpf, 2013. [Online; Request on May, 10th of 2013].

[38] Jon Postel. Internet Protocol. RFC 791 (Draft Standard), September 1981.

[39] Jon Postel. Transmission Control Protocol. RFC 793 (Draft Standard), September
1981.

[40] Jon Postel. The TCP Maximum Segment Size and Related Topics. RFC 879 (Draft
Standard), March 1983. Updated by RFC 6691.

[41] Geo�rey M. Rehmet. FreeBSD Manual Pages for BLACKHOLE(4). http://www.

unix.com/man-page/FreeBSD/4/BLACKHOLE/, 2007. [Online; Request on May, 7th
of 2013].

[42] Pedro Roque. Linux 3.8 - net/ipv6/route.c, 2013.

[43] Salvatore San�lippo. New TCP scan method. http://seclists.org/bugtraq/

1998/Dec/79, 1998. [Online; Request on July, 22nd of 2013].

67

http://nmap.org/book/man.html
http://blogs.technet.com/b/nettracer/archive/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-and-windows-2008-r2.aspx
http://blogs.technet.com/b/nettracer/archive/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-and-windows-2008-r2.aspx
http://blogs.technet.com/b/nettracer/archive/2010/06/01/syn-attack-protection-on-windows-vista-windows-2008-windows-7-and-windows-2008-r2.aspx
http://seclists.org/nmap-dev/2013/q2/394
http://seclists.org/nmap-dev/2013/q3/13
http://seclists.org/nmap-dev/2013/q3/13
http://www.researchgate.net/publication/239660144_TCP_Idle_Scanning_using_network_printers/file/3deec51c1c17e29b78.pdf
http://www.researchgate.net/publication/239660144_TCP_Idle_Scanning_using_network_printers/file/3deec51c1c17e29b78.pdf
http://www.researchgate.net/publication/239660144_TCP_Idle_Scanning_using_network_printers/file/3deec51c1c17e29b78.pdf
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3
http://www.openbsd.org/cgi-bin/man.cgi?query=sysctl&sektion=3
http://www.openbsd.org/faq/pf/filter.html#urpf
http://www.openbsd.org/faq/pf/filter.html#urpf
http://www.unix.com/man-page/FreeBSD/4/BLACKHOLE/
http://www.unix.com/man-page/FreeBSD/4/BLACKHOLE/
http://seclists.org/bugtraq/1998/Dec/79
http://seclists.org/bugtraq/1998/Dec/79

[44] Salvatore San�lippo. Hping - Active Network Security Tool. http://www.hping.

org/, 2006. [Online; Request on July, 31st of 2013].

[45] SI6 Networks. SI6 Networks' IPv6 Toolkit. http://www.si6networks.com/tools/
ipv6toolkit/, 2013. [Online; Request on April, 3rd of 2013].

[46] William Stallings. Network Security Essentials - Applications and Standards (4. ed.,
internat. ed.). Pearson Education, 2010.

[47] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical auto-
mated detection of stealthy portscans. Journal of Computer Security, 10(1-2):105�
136, July 2002.

[48] Andrew Tanenbaum. Computer networks. Prentice Hall PTR, 5th edition, 2011.

[49] Upperside Conferences. V6 World Congress, 2013.

[50] Johannes Weber. IPv6 Security Test Laboratory. Masterthesis, Ruhr-University
Bochum, Germany, February 2013.

[51] Wireshark Foundation. Wireshark. Go deep. https://www.wireshark.org/, 2013.
[Online; Request on August, 1st of 2013].

[52] Hai Zhang, Xuyang Zhu, and Wenming Guo. TCP portscan detection based on
single packet �ows and entropy. In Proceedings of the 2nd International Conference
on Interaction Sciences: Information Technology, Culture and Human, ICIS '09,
pages 1056�1060, New York, NY, USA, 2009. ACM.

68

http://www.hping.org/
http://www.hping.org/
http://www.si6networks.com/tools/ipv6toolkit/
http://www.si6networks.com/tools/ipv6toolkit/
https://www.wireshark.org/

A. Forcing atomic fragments

Listing 4: Function to force the use of the extension header for fragmentation

1 /* Force s the permanent use o f the IPv6 e x t e n s i o n heade r f o r
2 * f r a gmen t a t i o n i n each IPv6 packe t s en t from the i d l e hos t
3 * to the t a r g e t o r the a t t a c k e r . Th i s i s a ch i e v ed by f i r s t
4 * s end i ng a ping , and a f t e rwa r d s an ICMPv6 Packet Too Big
5 * message which s t a t e s t ha t the r e s pon s e from the p ing was
6 * too big , our MTU i s sma l l e r than the IPv6 minimum MTU */
7 s t a t i c void i p v6_fo r ce_f ragmenta t i on (s t ruc t i d l e_p roxy_ in f o *proxy , ⤦

Ç Target * t a r g e t) {
8 i n t ha rd t imeout = 9000000; /* Gen e r a l l y don ' t wa i t more than 9 ⤦

Ç s e c s t o t a l */
9 char f i l t e r [5 1 2] ; /* L ibpcap f i l t e r s t r i n g */

10 s t ruc t i p * i p ;
11 /* The maximum data s i z e we can c r e a t e w i thout f ragment ing , ⤦

Ç c o n s i d e r i n g tha t the heade r s a l s o need p l a c e */
12 char data [IP6_MTU_MIN − IPv6_HEADER_LEN − ETH_HDR_LEN − ⤦

Ç ICMPv6_MIN_HEADER_LEN] ;
13 unsigned i n t da ta l en , b y t e s ;
14 const unsigned i n t proxy_rep ly_t imeout = 2000 ;
15 const void * r da t a ; // the data r e c e i v e d i n the echo r e s pon s e
16 s t ruc t t ime v a l tmptv , r cvdt ime , ipv6_packet_send_time ;
17 s t ruc t abs t rac t_ip_hdr hdr ;
18 boo l r e s pon s e_r e c e i v e d = f a l s e ;
19 s t ruc t icmpv6_hdr * icmp6_header ;
20 u8 * i pv6_packet = NULL ;
21 u32 pa c k e t l e n = 0 ;
22 u16 p i n g i d = 0 ;
23 u16 seq = 0 ;
24 s t ruc t sockaddr_sto rage s s ;
25 s i z e_t s s l e n ;
26 i n t r e s ;
27 a s s e r t (p roxy) ;
28

29 /* F i r s t , we f o r c e the proxy to p r o v i d e us w i th a
30 * f r a gmen t a t i o n heade r i n each packet by s end i ng a p ing
31 * and a f t e rwa r d s an ICMPv6 Packet Too Big */
32 memset (data , 'A ' , s i z eo f (data)) ;
33 p i n g i d = get_random_u16 () ;
34 seq = get_random_u16 () ;
35

36 /* pcap to get the answer . Max s i z e he r e i s the IPv6 minimum MTU */
37 i f ((proxy−>pd = my_pcap_open_live (proxy−>hos t . deviceName () , ⤦

Ç IP6_MTU_MIN, (o . s p o o f s o u r c e) ? 1 : 0 , 50)) == NULL)
38 f a t a l ("%s " , PCAP_OPEN_ERRMSG) ;
39

69

40 S n p r i n t f (f i l t e r , s i z eo f (f i l t e r) , " icmp6 and s r c hos t %s and d s t ⤦
Ç hos t %s " , proxy−>hos t . t a r g e t i p s t r () , ⤦
Ç proxy−>hos t . s o u r c e i p s t r ()) ;

41 i f (o . debugg ing)
42 l o g_wr i t e (LOG_STDOUT, "Packet cap tu r e f i l t e r (d e v i c e %s) : ⤦

Ç %s\n" , proxy−>hos t . dev i ceFu l lName () , f i l t e r) ;
43

44 /* Make a p ing tha t i s i n t o t a l 1280 byte l ong and send i t */
45 proxy−>hos t . TargetSockAddr(&ss , &s s l e n) ;
46 i pv6_packet = build_icmpv6_raw (proxy−>hos t . v 6 s o u r c e i p () , ⤦

Ç proxy−>hos t . v 6 ho s t i p () , 0x00 , 0x0000 , o . t t l , seq , p i ng i d , ⤦
Ç ICMPV6_ECHO, 0x00 , data , s i z eo f (data) , &pa c k e t l e n) ;

47 r e s = send_ip_packet (proxy−>rawsd , proxy−>ethp t r , &ss , ⤦
Ç ipv6_packet , p a c k e t l e n) ;

48 i f (r e s == −1)
49 f a t a l (" E r r o r occu red wh i l e t r y i n g to send ICMPv6 Echo Request ⤦

Ç to the i d l e hos t ") ;
50 f r e e (ipv6_packet) ;
51 ge t t imeo f day (&ipv6_packet_send_time , NULL) ;
52

53 /* Now l e t ' s wa i t f o r the answer */
54 whi le (! r e s pon s e_r e c e i v e d) {
55 ge t t imeo f day (&tmptv , NULL) ;
56 i p = (s t ruc t i p *) read ip_pcap (proxy−>pd , &bytes , ⤦

Ç proxy_rep ly_t imeout , &rcvdt ime , NULL , t r u e) ;
57 i f (! i p) {
58 i f (TIMEVAL_SUBTRACT(tmptv , ipv6_packet_send_time) >= ⤦

Ç ha rd t imeout) {
59 f a t a l (" I d l e scan zombie %s (%s) po r t %hu cannot be used ⤦

Ç because i t has not r e t u r n e d any o f our ICMPv6 ⤦
Ç Echo Reques t s −− pe rhaps i t i s down or ⤦
Ç f i r e w a l l e d . " ,

60 proxy−>hos t . HostName () , proxy−>hos t . t a r g e t i p s t r () ,
61 proxy−>probe_port) ;
62 }
63 continue ;
64 }
65 da t a l e n = by t e s ;
66 r da t a = ip_get_data (ip , &data l en , &hdr) ;
67 i f (hdr . v e r s i o n == 6 && hdr . p ro to == IPPROTO_ICMPV6) {
68 icmp6_header = (s t ruc t icmpv6_hdr *) r da t a ;
69 i f (icmp6_header−>icmpv6_type == ICMPV6_ECHOREPLY) {
70 const s t ruc t icmpv6_msg_echo * echo ;
71 echo = (s t ruc t icmpv6_msg_echo *) ((u8 *) icmp6_header + ⤦

Ç s i z eo f (* icmp6_header)) ;
72 i f (ntohs (echo−>icmpv6_id) == p i n g i d && ⤦

Ç ntohs (echo−>icmpv6_seq) == seq)
73 r e s pon s e_r e c e i v e d=t r u e ;
74 }

70

75 }
76 }
77

78 i f (proxy−>pd)
79 pcap_close (proxy−>pd) ;
80

81 /* Now we can t e l l the i d l e hos t t ha t i t s r e p l y was too big ,
82 * we want i t sm a l l e r than the IPV6 minimum MTU. The data
83 * c o n t a i n s f i r s t the MTU we want , and then
84 * the r e c e i v e d IPv6 package */
85 *(u int32_t *)&data = n t oh l (IP6_MTU_MIN − 2) ;
86 memcpy(&data [4] , ip , s i z eo f (data) −4) ;
87

88 i pv6_packet = build_icmpv6_raw (proxy−>hos t . v 6 s o u r c e i p () , ⤦
Ç proxy−>hos t . v 6 ho s t i p () , 0x00 , 0x0000 , o . t t l , 0 x00 , 0x00 , ⤦
Ç 0x02 , 0x00 , data , s i z eo f (data) , &pa c k e t l e n) ;

89 r e s = send_ip_packet (proxy−>rawsd , proxy−>ethp t r , &ss , ⤦
Ç ipv6_packet , p a c k e t l e n) ;

90 i f (r e s == −1)
91 f a t a l (" E r r o r occu red wh i l e t r y i n g to send spoo f ed ICMPv6 Echo ⤦

Ç Request to the i d l e hos t ") ;
92

93 f r e e (ipv6_packet) ;
94

95 /* Now we do the same i n the name o f the t a r g e t */
96 /* No pcap t h i s t ime , we won ' t r e c e i v e the answer */
97 memset (data , 'A ' , s i z eo f (data)) ;
98 p i n g i d = get_random_u16 () ;
99 seq = get_random_u16 () ;

100

101 i pv6_packet = build_icmpv6_raw (t a r g e t −>v6ho s t i p () , ⤦
Ç proxy−>hos t . v 6 ho s t i p () , 0x00 , 0x0000 , o . t t l , seq , p i ng i d , ⤦
Ç ICMPV6_ECHO, 0x00 , data , s i z eo f (data) , &pa c k e t l e n) ;

102 r e s = send_ip_packet (proxy−>rawsd , proxy−>ethp t r , &ss , ⤦
Ç ipv6_packet , p a c k e t l e n) ;

103 i f (r e s == −1)
104 f a t a l (" E r r o r occu red wh i l e t r y i n g to send ICMPv6 Echo Request ⤦

Ç to the i d l e hos t ") ;
105

106 f r e e (ipv6_packet) ;
107

108 /* Now we gues s what answer the decoy hos t s en t to the t a r g e t ,
109 * so tha t we can p iggyback t h i s on the
110 * ICMPV6 Packet too Big message */
111 i pv6_packet = build_icmpv6_raw (proxy−>hos t . v 6 ho s t i p () , ⤦

Ç t a r g e t −>v6ho s t i p () , 0x00 , 0x0000 , o . t t l , seq , p i ng i d , ⤦
Ç ICMPV6_ECHOREPLY, 0x00 , data , s i z eo f (data) , &pa c k e t l e n) ;

112 *(u int32_t *)&data = n t oh l (IP6_MTU_MIN − 2) ;
113 memcpy(&data [4] , ipv6_packet , s i z eo f (data) −4) ;

71

114 f r e e (ipv6_packet) ;
115

116 i pv6_packet = build_icmpv6_raw (t a r g e t −>v6ho s t i p () , ⤦
Ç proxy−>hos t . v 6 ho s t i p () , 0x00 , 0x0000 , o . t t l , 0 x00 , 0x00 , ⤦
Ç 0x02 , 0x00 , data , s i z eo f (data) , &pa c k e t l e n) ;

117 /* g i v e the decoy hos t t ime to r e p l y to the t a r g e t */
118 u s l e e p (10000) ;
119 r e s = send_ip_packet (proxy−>rawsd , proxy−>ethp t r , &ss , ⤦

Ç ipv6_packet , p a c k e t l e n) ;
120 i f (r e s == −1)
121 f a t a l (" E r r o r occu red wh i l e t r y i n g to send ICMPv6 PTB to the ⤦

Ç i d l e hos t ") ;
122 f r e e (ipv6_packet) ;
123 }

B. Finding the IPv6 Identi�cation value

Listing 5: Search the IPv6 extension header chain for the identi�cation value

1 /* F inds the IPv6 e x t e n s i o n heade r f o r f r a gmen t a t i on i n
2 * an IPv6 packet , and r e t u r n s the i d e n t i f i c a t i o n v a l u e
3 * o f the f r a gmen t a t i o n heade r */
4 i n t ipv6_get_fragment_id (const s t ruc t ip6_hdr * ip6 , unsigned i n t ⤦

Ç l e n) {
5 const unsigned char *p , *end ;
6 u8 hdr ;
7 s t ruc t ip6_ext_data_fragment * f r ag_header = NULL ;
8

9 i f (l e n < s i z eo f (* i p 6))
10 return −1;
11

12 p = (unsigned char *) i p6 ;
13 end = p + l e n ;
14

15 hdr = ip6−>ip6_nxt ;
16 p += s i z eo f (* i p 6) ;
17

18 /* I f the f i r s t e x t e n s i o n heade r i s not the f r agmenta t i on ,
19 * we s e a r ch our way through the e x t e n s i o n heade r s u n t i l
20 * we f i n d the f r a gmen t a t i o n heade r */
21 whi le (p < end && hdr != IP_PROTO_FRAGMENT) {
22 i f (p + 2 > end)
23 return −1;
24 hdr = *p ;
25 p += (* (p + 1) + 1) * 8 ;
26 }
27

28 i f (hdr != IP_PROTO_FRAGMENT | | (p + 2 + ⤦
Ç s i z eo f (ip6_ext_data_fragment)) > end)

72

29 return −1;
30

31 f r ag_header = (s t ruc t ip6_ext_data_fragment *) (p + 2) ;
32

33 return (n t oh l (f rag_header−>i d e n t)) ;
34

35 }

73

	Introduction
	Background
	IPv4
	TCP three way handshake
	TCP Idle Scan in IPv4
	Existing research into the TCP Idle Scan (for IPv4)

	Applying the TCP Idle Scan in IPv6
	Differences to IPv4
	Forcing fragmentation
	Forcing fragmentation of step 2 and 7 using ICMPv6 Echo Requests
	Forcing fragmentation of step 5
	Spoofing ICMPv6 Packet Too Big Messages

	TCP Idle Scan in IPv6
	Requirements for the idle host
	Increasing stealth

	Conducting the TCP Idle Scan in IPv6
	Behavior of various systems
	Incorrect behavior of systems
	Dual Stacking

	Alternatives to the TCP Idle Scan in IPv6
	RST Rate Limit Scan
	Concept of the RST Rate Limit Scan
	Characteristics of the RST Rate Limit Scan

	SYN Cache Scan
	SYN-Flooding attacks and defenses
	Concept of the SYN Cache Scan
	Characteristics of the SYN Cache Scan
	Behavior of various systems

	Implementations
	TCP Idle Scan in IPv6 using scapy
	RST Rate Limit Scan using scapy
	SYN Cache Scan using scapy
	TCP Idle Scan in IPv6 with Nmap
	TCP Idle Scan in IPv4 with Nmap
	Changing existing process
	Performance

	Defense mechanisms
	General defense mechanisms
	Defense mechanisms against the TCP Idle Scan in IPv6
	Defense mechanisms against the RST Rate Limit Scan
	Defense mechanisms against the SYN Cache Scan

	Conclusion
	Future work

	Forcing atomic fragments
	Finding the IPv6 Identification value

