
A new approach to structured document

building

An analysis of „automated document processing‟ at Kadaster

Master Thesis

Author: Robbin Janssen

Student number: s4005236

University: Radboud University Nijmegen

Faculty: Faculty of Science

Course: Information Science

Graduation number: 182IK

Supervisor: Prof.dr.ir. Th.P. van der Weide

Date: 17 April 2013

2

3

Abstract

Kadaster is a company that is responsible for the land registry in the Netherlands.

Not only do they register information about the geography and the location of

properties, they also provide information to the public about this.

They have designed and implemented a system to automatically process documents,

provided by customers, containing such information. Since there is no standard

format for supplying documents of this kind, they designed and implemented a

system that accepts defined document models, which can be used by customers.

The creation of these document models is time-consuming; it causes a lot of

discussion about such a model between the business- and IT-department. One of the

reasons for this is that document models are created using a self-defined color-

coding syntax and Microsoft Word. This thesis proposes a solution to this problem by

introducing a model where all these document models can be based on, replacing

the color-coding syntax

The basic concept is that the model slices a document into a sequence of smaller

parts called blocks. A block can be as little as one character, but can also contain

other blocks forming a complete document. Different types of blocks offer different

functionality to create and compose a document.

Kadaster can gain a lot of benefits using a model to base structured document

models on. It can be a starting point for automating the complete process.

4

5

Contents

1 Introduction ... 9

1.1 Terminology .. 10

1.2 Focus of the research ... 10

1.3 Method ... 11

1.4 Relevance .. 12

2 Requirements and relevance ... 13

2.1 Why use a structured document model for documents 13

2.2 Implementation of a document model ... 14

2.3 Creating a document model .. 15

2.3.1 Elements within the current model ... 16

2.3.2 Color-coding syntax to define elements in a document model 18

2.4 Example of a „document model‟ by Kadaster .. 18

2.5 Challenges with the Kadaster model ... 20

2.6 Current drafting systems ... 20

2.7 A sample session ... 21

3 The proposed model.. 23

3.1 Assumptions ... 23

3.1.1 Block .. 26

3.1.2 Text ... 27

3.1.3 Assignment .. 28

3.1.4 Variable retrieval .. 29

3.1.5 Choice ... 29

3.1.6 Conditional choice ... 31

3.2 Definition of the model .. 32

3.3 Functionality ... 33

3.3.1 Example based on real document using the model. 33

3.3.2 Generating the example document .. 36

3.3.3 The functionalities drafting system ... 39

4 Technical setup ... 45

4.1 Storage structure .. 45

4.2 Storing a document model .. 46

5 Conclusion .. 51

6

5.1 Implementation in the organization ... 52

5.2 Recommendation and follow-up.. 53

Bibliography .. 55

Appendix A – JSON Schema .. 57

Appendix B – „Tekstblok aanhef‟ in JSON storage .. 61

Appendix C – MySQL Storage structure .. 67

Table of tables

Table 1 – Color-coding syntax ... 18

Table 2 – JSON schema for proposed model .. 60

Table 3 – JSON – Document root for “Tekstblok aanhef” .. 61

Table 4 – JSON – Tekstblok aanhef .. 63

Table 5 – JSON – Tekstblok personalia van natuurlijk persoon versie 1.0 65

7

Table of figures

Figure 1 – Kadaster document processing .. 15

Figure 2 – A simple representation of a document model .. 23

Figure 3 – Document as a tree .. 25

Figure 4 – Proposed model – Single Block .. 26

Figure 5 – Proposed model – Block ... 27

Figure 6 – Proposed model – Text .. 28

Figure 7 – Proposed model – Assignment ... 28

Figure 8 – Proposed model – Variable retrieval ... 29

Figure 9 – Proposed model – Choice .. 30

Figure 10 – Proposed model – Conditional choice .. 31

Figure 11 – Definition of the model .. 32

Figure 12 – Post-order walk for the retrieval of an assignment. 33

Figure 13 – JSON object tree for “Tekstblok aanhef” ... 37

Figure 14 – Parsed grammar into HTML ... 37

Figure 15 – Illustration of 'List documents' ... 39

Figure 16 – Illustration of „view document‟ ... 40

Figure 17 – Illustration of „highlighted block‟ .. 40

Figure 18 – Illustration of „highlighted assignment‟ .. 41

Figure 19 – Illustration of „edit tooltip‟ .. 42

Figure 20 – Illustration of „add element‟ ... 43

Figure 21 – Illustration of „Revision comparing‟ ... 44

Figure 22 – Tree for “Tekstblok aanhef” with post-order walk traversal 49

8

Table of document models

Document model 1 – “Tekstblok aanhef” ... 19

Document model 2 – “Modeldocument akte van levering” 19

Document model 3 – Content for “Tekstblok aanhef”... 34

Document model 4 - Grammar of content for "Tekstblok aanhef" 34

Document model 5 - Content for “Tekstblok personalia van natuurlijk persoon” 35

Document model 6 – Grammar for content for “Tekstblok personalia van natuurlijk

persoon” ... 35

Document model 7 – Content for second “Tekstblok personalia van natuurlijk

persoon” ... 35

Document model 8 – Grammar for content for second “Tekstblok personalia van

natuurlijk persoon” .. 35

Document model 9 – Content for conditional choice .. 36

Document model 10 – Grammar for content for conditional choice 36

9

1 Introduction

In this rapidly changing computer-aided world we are always looking for tools and

methods to support us in the field of work. We want to perform tasks smarter,

produce faster and make sure that the whole process is sustainable and reusable

whenever we want to perform the same task over and over again.

There are a lot of work tasks like these that involve producing a document as the end

result, and in a lot of work fields the same document is used over and over again but

with different data (O'Leary, 2011).

This thesis focuses on a similar process within a company that is responsible for land

registry in the Netherlands; Kadaster BV. Not only do they register information about

the geography and the location of properties, they also provide information to the

public about this. This applies to houses and buildings, but also for ships, aircrafts

and (underground) transportation networks.

The data they use is mostly gathered from legal documents, the necessary data is

extracted from these documents and processed in a system. However, the

documents provided are no standard formatted documents. To cope with this

problem Kadaster has designed, created and implemented a system that accepts

„standard‟ formatted documents to be processed automatically into their system.

Using this method there is hardly any manual labor required to process a legal

document.

What they have created is called a document assembly system. In short: they use

self-written document models that are provided to an IT department. A working

application is created based on a document model, which results in a document

assembly system. Knowing which model created what document, they can easily

extract data from such a document and process it into their system automatically,

resulting in; document automation. Customers can use this assembly system or

create own implementations of this system. (J. Vos, personal communication,

Septemer 23th, 2012).

This thesis will take a closer look at the process described in short above. Kadaster

indicated that the process of creating a document model that can be assembled and

automatically processed takes to long.

10

1.1 Terminology

The terms document assembly, document models and document automation give a

global idea of what Kadaster tries to achieve, but does not capture the full width of

the actual process.

 Document assembly indicates that a document can be assembled based on

given data, but not how the document is defined.

 Document models define what a model/document can do, but not how to use

it.

 Document automation is a term that might be too broad for the subject at

hand because it sometimes refers to managing, comparing and analyzing

documents as well.

A term that potentially covers the full width of the system is a „drafting system‟. A

drafting system is an intelligent system that can draft documents based on structured

document models and save the data of that model (Lauritsen, Current Frontiers in

Legal Drafting Systems, 2007).

1.2 Focus of the research

Drafting systems help you draft documents. A mostly forgotten, or treated as least

important, part is not the actual drafting of documents based on structured document

models, but drafting or defining the structured document models themselves

(Lauritsen, Current Frontiers in Legal Drafting Systems, 2007). Because the problem

for Kadaster lies within this part of the drafting system, this thesis focuses on creating

a general approach to such a (part of the) system.

To optimize the process of creating a document model within Kadaster, we need to

overcome several obstacles.

Look into the current process of creating a document model

and find flaws in the process.

By looking into the complete process we get a clear view of how the current process

works within the organization. By finding flaws in that process we can find limitations

of the current method and find functionalities that Kadaster would like to have.

Define the requirements of a structured document model

11

When there is a clear view of the current process we need to take a look at how

Kadaster creates document model. Find out what kind of elements they use within

these documents, what the current shortcomings are and how this document model

gets translated into an application.

Propose a model for structured document models

A model can be proposed for creating a structured document model once the

requirements are clear. Within the proposed model the research will focus on

documents in global, not just documents based on Kadaster.

Basic interactions and functionalities of this model have to be defined as well. A

description of how an application can work with this model should give the user a

notion of what the model is capable of and how they can interact with the model.

Storing and storage structure of structured document models

Once the model has been proposed it is important to define how such a model can

be stored, of course many solutions can be applied here to achieve this. But a

general storage structure will be defined.

Throughout the research one example document of Kadaster will be used to test and

validate the requirements, model and storage structure.

Summing this into a research question results in the following:

How do structured document models benefit the process of document

automation within Kadaster?

In the following chapters the statements above will be dealt with, together they will

show what benefits this solution can have to the document automation process within

Kadaster.

1.3 Method

Many papers exist about document automation; by reading and searching other

papers about this subject we will try to understand the know-hows about document

automation.

Kadaster has published all of their current document models and methods for

creating and implementing those models online on their website. These sources will

be used to define requirements and to get a global idea of how a company like

Kadaster works with documents. Next to these documents we can contact Kadaster

to provide any additional information next to these documents.

12

These are the sources for proposing a model and storage structure, to test the model

and storage structure a small application will be written to test the functionality and

validity of the model. An actual live document will be created using the model and

storage structure.

The literature used in this research will be in the bibliography and organized

according to the APA standard. These references will be visible throughout the whole

research.

1.4 Relevance

The web is constantly evolving and the rise of web-applications has officially started

a while ago, more and more web-based applications are being developed (NEM,

2012). In the field study of this thesis we can find some web applications that are

similar to drafting systems as well. However, most of them are based on old studies

and have to cope with legacies of previous applications (Lauritsen, Current Frontiers

in Legal Drafting Systems, 2007).

Data within documents needs to get where it is going much faster then it used to. A

clear separation between data and content should benefit this (O'Leary, 2011).

It is important to realize that in these new times technology is rapidly evolving. Being

able to utilize these new technologies might give new insights on how to create more

intelligent documents.

13

2 Requirements and relevance

Structured document models are used for creating and processing large amounts of

automatically generated or drafted documents. The structure and principles where

these document models, or any other objects for that matter, are based on is of

utmost importance and is the base for all applications that want to work with these

documents (Lauritsen & Gorden, 2009). These structured document models are a

crucial part of a drafting system. Any crucial mistakes in the model and thus the

structure can result in a terrible system and in an even more terrible user experience

(Hafner & Lauritsen, 2007).

2.1 Why use a structured document model for documents

Imagine a ticket for a fine handed out by a police officer; to the human eye it appears

to be a normal ticket or document, to a computer system however, it can be much,

much more. A ticket contains a lot of information, for example details of the offender,

the details of the officer, the amount of the fine, date, location, car information and

much more. If the filled out ticket is based on a structured document model then we

can automatically process all these details with another system that makes sure that

the fine is assigned to the correct person, that the car is registered, the person has

insurance etc.

When data is saved in a structured way a computer system can create, read, update

and delete this data. If a structured document model is connected to this data, then

we have the possibility to recreate documents based on given input. We can alter the

document, including its structure as well. Because the data is stored in a structured

way, we can process the document automatically. A system can perform actions

based on the given data input from a structured document. In other words, structured

document models can greatly benefit in automating business processes (Lauritsen &

Gorden, Toward a General Theory of Document Modeling, 2009).

Systems used to generate structured document models are called „drafting systems‟.

These drafting systems are tools that help you create a structured document model

that eventually can be filled in by a user (Hafner & Lauritsen, 2007). The ticket

example used above looks like a simple document; it has few fields to fill in and has

a pre-defined layout. Saving a structured document model of this ticket seems easy

at first, however there are obstacles that need to be conquered. E.g. definition of

what appears where when. Filled in fields that can be reused in the document; for

example; a name that is reused in a later part of the document, or multiple choices

that affect the layout of the document.

We can use structured document models for more any purpose, for example

responses to customer complaint letters. This requires a structured document to fill in

predefined data, offer choices of solutions, maybe add or remove parts of texts and

changes to layout. Now the model already has properties, multiple values, positions

and mandatory or optional status.

14

Note that the more functionality, freedom and possibilities the model has, the harder

it becomes to create a tool that utilizes all these features and is easy useable for a

user (Macleod, 1990). This thesis focuses on creating a model for basic, structured

document models. The purpose of this model is to define a better insight in which

these structured documents can be built.

2.2 Implementation of a document model

As described in chapter Fout! Verwijzingsbron niet gevonden. this thesis is closely

based on legal document models that are created and used by Kadaster. Before it is

possible to make assumptions, a definition and a technical description of a new

model, it must be clear what the requirements are and what functionality the model

needs.

To realize this it needs to be clarified what it is that Kadaster wants to achieve using

a structured document model. As we know, Kadaster processes large amounts of

documents and gathers data from these documents. The data gathered will be

processed and used in their core business process system. Extracting this data

should be quick and easy; integrity and validation of the data is important.

Kadaster uses a system that can (re-) generate documents based on content from an

Extensible Markup Document (XML) file and a model identifier number1, this number

indicates that this XML file should contain content to generate a document „Levering‟

for example, in other words, the meta-information about the document. The XML

Schema Document (XSD) file contains the document layout, document structure and

document validation for all possible documents. The XSD is based on a proposed

document model. The combination of these gives you the functionality to (re-)

generate documents (M. Arfman, personal communication, September 9th, 2012).

A structured document that can be processed automatically by Kadaster contains:

1. Meta-information about the document such as version number and creation

date,

2. A document model containing a set of elements that form the content of the

document,

3. The validation of the document,

4. The layout of the document.

1 Kadaster uses the word „Depot number‟ in their documentation to indicate a document.

15

Figure 1 – Kadaster document processing

The XSD created and used in this application is based on all of the proposed

document models that are defined internally; all models are defined in one file. These

document models are made by hand, not by a drafting system or any other

application of that kind.

Kadaster uses a text-processing tool (Microsoft Word) and a self-defined color-

coding syntax to define the layout, content and rules for a document model. The

biggest challenge here is that the model is not saved in a structured, ordered and

reproducible way. Because of this a lot is unclear when another department tries to

create an implementation of this document model. In chapter 2.5 the challenges and

limitations with the current process and color-coding syntax are explained. For now

the same functionality and elements as this syntax will be used to create the

proposed model.

2.3 Creating a document model

When a new type of document or a change in an existing document is proposed, the

document model for this document will be (re-) defined. As stated before, the

document model is drawn through a self-defined color-coding syntax, not a drafting

system. In chapter 2.3.2 the color-coding syntax defined by Kadaster and its

flaws/limitations are explained in detail.

Domain experts for this particular type of document define the document model.

These experts have to learn the syntax defined by Kadaster Because Kadaster uses

a text-processing tool to define the model, none of the information, properties and

values inside the model is stored in a defined, structured, digital way; the model is

saved as a Microsoft Word document, but any text-processing tool that supports

colors suffices. (J. Vos, personal communication, December 13th, 2012).

After many revisions and changes the document model is finalized and send to the

IT-department of Kadaster An example of a finished document model can be found in

chapter 2.4.

16

When the document is sent from the domain experts to the IT-department, it causes

a lot of discussion and explanation about the model. Many parts of the document

model are unclear, vital details are missing and there is a lot of room for different

interpretations of parts of the document model.

Overcoming this barrier, the IT department creates a technical document for this

document model and defines the structure and validation. It is then outsourced to a

development company that will implement it into their main application. Here an

application is formed that implements this structured document, but still, it is based

on a document model written by hand. When a change is made, the whole process

starts over.

2.3.1 Elements within the current model

Kadaster has defined their own syntax and semantics to create structured document

models. Each document model has a version number and when the document

changes, the version number is incremented as well.

As of now, document models can exist of the following elements: (Noort, 2011)

 Fixed and optional text

 Mandatory choice text

 Mandatory and optional variables

 Choice blocks

 (Optional) Text blocks

Most of these elements require more explanation; the document provided by

Kadaster should take care of this. However, personal communication was needed to

explain the different situations (J. Vos and M. Arfman). This indicates that the

document that should provide a clear guideline on how to create document models

is unclear.

Fixed and optional text

Two types of text can exist within a document. There is fixed text that cannot be

changed and is mandatory for the document to be valid. Then there‟s optional text,

this text is valid to use for this document but is not mandatory. It is mostly used to

create large amounts of fixed text where no variables, choices or text blocks are

needed.

Mandatory choice text

Like the fixed text this choice text is mandatory for the document. The choice text

exists of multiple sentences or words and one of these has to be chosen to make the

document valid. A choice text can be made optional by using it within an optional

text. It is used for creating multiple choices like „Sir/Madam‟ for example.

17

Mandatory and optional variables

Like the text there are two types of variables as well. One type of variables is optional

and one type is mandatory. The variable obtains a unique name within this document

and can be used multiple times within the same document. A variable begins and

ends with a § symbol. A variable can be used for example to use a name throughout

the whole document.

Choice blocks

A choice block is a part of the document where the user eventually has to choose an

instance of this block. These instances can contain for example all of the elements

above. An instance of a choice block is created using the same syntax as a

document model; this would indicate that a variant of a choice block is a document

model itself. According to the documentation, a choice block is specific to the

document model and applies only to this document model. In short, a choice block is

a collection of mini documents where the user has to choose one of these mini

documents.

(Optional) text blocks

A text block is a generic block of text that can be used within all the document

models. Similar to an instance of a choice block, it is created using the same syntax

as a document model as well. However, the main difference between these two is

that a text block actually can be used within other document models where a choice

block cannot. Because text blocks, like document models, can be modified and

updated, these text blocks contain meta-information. When a text block is included in

a document model the version number of this text block is specified as well.

18

2.3.2 Color-coding syntax to define elements in a document model
To use all the elements discussed above Kadaster has created it‟s own syntax. The

syntax is defined by color-coding to show what kind of element is used (Noort, 2011).

Element Example

Fixed text Fixed text is colored red.

Mandatory choice text Mandatory choice text is colored green

Mandatory variable
Mandatory variables are colored black and begin and

end with a § symbol

Optional variable
Optional variables are colored purple and begin and

end with a § symbol

Optional text Optional text is colored purple

Fixed text within optional

text
Fixed text within optional text is colored brown

Variable within a optional

text
A variable within a optional text is colored blue

Mandatory choice text

within a mandatory choice

text

Mandatory choice text within a mandatory choice text is

colored light blue

Choice block A choice blocks has a green background with white text

Mandatory text block A mandatory text block has a yellow background

Optional text block An optional text block has a green background

Table 1 – Color-coding syntax

2.4 Example of a ‘document model’ by Kadaster

The syntax above can define a document model that is used to create a technical

design. A document model created by Kadaster is nothing more than a text

document file with text and colors. The text document gets a title and version number

and this is how it is referred to in other document models. Because text blocks can

contain other text blocks and can be used within multiple document models, it is the

smallest document like element within a document model. A text block is a separate

text document file as well.

19

A text block looks as following:

Tekstblok Aanhef

Versie 2.2, dd 10 januari 2011

Op/Heden,/Vandaag, ♣datum♣, verscheen/verschenen voor mij,/verklaart TEKSTBLOK
PERSONALIA VAN NATUURLIJK PERSOON versie 1.0 hierna te noemen: „notaris‟, als
waarnemer van TEKSTBLOK PERSONALIA VAN NATUURLIJK PERSOON versie 1.0, notaris in
de gemeente ♣gemeente♣ kantoorhoudende te / te / gevestigd te / met plaats van vestiging
♣woonplaats♣ als volgt

….

Document model 1 – “Tekstblok aanhef”

As seen in the example above, this text block already includes another text block.

Below an example of a small part of a document model is displayed.

Modeldocument akte van levering - conform model BTR01E/ Van Brug

Versie 3.7 d.d. 22-02-2012

…

Kenmerk: § omschrijving § 

TEKSTBLOK AANHEF versie 2.2:
§ 1. §TEKSTBLOK GEVOLMACHTIGDE versie 2.4:
 § a. §TEKSTBLOK PARTIJ NATUURLIJK PERSOON versie 2.7 / TEKSTBLOK PARTIJ NIET
NATUURLIJK PERSOON versie 2.5;
 §en voornemens het hierna te vermelden registergoed te gaan
 bewonen, §  hierna zowel tezamen als ieder afzonderlijk te noemen:
(“vervreemder”/”verkoper”) / (“verkrijger”/”koper) / “partij [volgletter]”; 
 en
…

Document model 2 – “Modeldocument akte van levering”

Looking at these live documents we already notice the following flaws:

1. The title and version definition lack consistency, this could indicate that no

agreements have been made on how to define these.

2. Different symbols are used to indicate a variable, the spades and the

paragraph symbol; one of these symbols is not defined in the color-coding

syntax.

3. In the document model we see that a paragraph symbol is used in front of a

paragraph, text block and fixed text, this is incorrect according to the color-

coding syntax as well as this symbol is defined to use with variables.

A finished document model will be send to the IT-department, they will create a

technical document and complement the XSD that can be used within an application.

This thesis focuses on the creating of those document models that can be send to

the IT-department. It will not focus on creating these XSD‟s and technical documents,

20

since this is a specific type of export for their system. However the storing of

structured document models will be treated in this thesis.

2.5 Challenges with the Kadaster model

By using this syntax to define a document model, Kadaster has to cope with a couple

of challenges. The most important challenges are mentioned and explained in this

chapter.

1. The lack of functionality that a domain expert can use to define a document

model. For example: a text or variable should only be shown if a particular

choice has been made.

2. The syntax can be unclear to the IT-department on how a domain expert

meant to define a part of a document model. For example: if two optional

texts are set after each other (meaning they have the same color) it is unclear

where the separation is intended by the domain expert.

3. It is not clear to the IT-department which variable is meant where, sometimes

a document model uses the same variable in multiple places and it is not

clear which of the two variables is meant where. For example a „surname‟ can

be defined twice in a document for the selling and buying party, the current

syntax only uses the name „surname‟ to indicate a party, so to the IT-

department it‟s unclear where surname „A‟ is meant and where surname „B‟ is

meant.

4. When a document or text block changes the version number is updated.

However all of the other documents that use this document or text block have

to be manually updated as well. For one or two documents this is not a

problem, but when a lot of documents are defined it is hard to maintain.

5. There is no hierarchical view that shows which documents are dependent on

each other and where they are being used. Missing this view also harms the

maintainability.

These and other challenges result in a lot of communication errors between the

domain experts and the IT-department. There is a lot of room for different

interpretations of a document model because of some of these challenges. This is

not desirable when a syntax is defined. The syntax should make sure that there is no

room for difference in interpretation (Miller, 1992).

What we need is a clear definition of a model for a structured document model, when

this is defined a tool is needed to draft document models based on this structured

document model.

2.6 Current drafting systems

Drafting system software is reasonably common in legal and insurance companies

nowadays. Most of these systems require the user, for example a lawyer, paralegal

or do-it-yourselfer, to work through a series of question dialogs. The answers to

these questions are used to fill the document with data. Another example is that a

21

user picks particular forms and parts of documents from a library that eventually are

merged into a full document.

These types of systems are all based on regularities within the structure of these

documents. These regularities define which sections, paragraphs, sentences or

words are placed where under what circumstances in a document. The terminology

varies among these systems, most of them use a template that functions as a model

for a particular kind of document. Using the terms described in chapter 1.1 a

template of this kind can be described as a document model that can be assembled

within a system. (Lauritsen, Current Frontiers in Legal Drafting Systems, 2007)

These systems are mainly focused on assembling a document based on a document

model, not on creating an actual document model that can be assembled. This thesis

focuses on creating the actual document model, not assembling it.

2.7 A sample session

Defining a structured document model requires another kind of system than a system

that is used assembling a document model. This chapter describes the kind of

interactions a user may have with such a system and a basic explanation about the

steps of creating a structured document model.

The concept of such a system is that the content of a document model results in a

defined structured document model that can be translated into a document, but also

back into that same model. (Lehtonen, Petit, Heinonen, & Lindén) There will be no

more room for errors in different interpretations about a field that has been defined

between the domain experts and the IT departments, because it has been defined

according to a model and is saved structured.

There can be many ways in which such a system allows you to create a structured

document model. For example inputting a predefined grammar that forms your model

or an application that allows you to drag and drop certain elements to form a

structured document model.

The key element for such a grammar or application to work is a defined model where

all the structured document models are based on. In chapter 3 a basic model will be

proposed that meets the requirements stated in the previous chapters. A storage

structure is needed to save the structured document model after creating it according

to the proposed model. Once saved, the application needs to be able to reopen that

model and continue editing.

22

An ideal session with such a system would require the following global steps:

1. Start with an empty structured document model.

2. Fill the structured document model with data based on the proposed model.

This can be done with for example;

a. Grammar input.

b. An application allowing you to create a document by interacting

with it.

3. Export the structured document and save it as a new version according to a

defined storage structure.

4. The defined storage structure allows the IT department to (fully automatically)

process the structured document model into a useable document.

5. Reopen a structured document model that is loaded from the storage.

6. Repeat from step two.

Most modern day systems have an application that works online, mobile and in the

cloud. This can also be achieved when creating an application based on this

concept. In chapter 3.3.3 interactions with the model will be explained in more detail,

for now a global definition of such an application will be given.

Visualization

For starters the application should offer the functionality to a what-you-see-is-what-

you-get principle. The user creating a structured document model should be able to

see on the fly how a change, addition or deletion of text affects a document.

However, a structured document model can be become very large and complex, a

user should be able to „zoom-in‟ on particular parts of the document that displays

more information and editing options about that particular part of document

(Lauritsen, Current Frontiers in Legal Drafting Systems, 2007).

Lifecycle of a structured document model

A document model can be updated, edited or even removed. In other words, a

document model changes and evolves. When a document model is altered enough it

might occur that previously assembled documents based on that document model no

longer work because the data that is required as input for that document has

changed. That‟s why a document model needs to have a version and support for

rendering of previous versions (Lauritsen & Gorden, Toward a General Theory of

Document Modeling, 2009).

Storing document models

When a user has finished working on a document model, he or she needs to be able

to save the document. There are many solutions, in many formats and languages, on

how one could store a document model in a structured storage. But the principle is

the same; store the data and make sure it is reusable and loaded in the same way as

it was stored. A user should be able to export the model in a defined storage

structure based on conventions that allows other tools to work with these models.

23

3 The proposed model

In this chapter a model is proposed for document models based on the requirements

and basic features defined in chapter Fout! Verwijzingsbron niet gevonden..

Assumptions about different elements and their functionalities will be made. Those

elements will be modeled and described in details as well. Finally the complete

model and functionalities will be proposed.

3.1 Assumptions

As described in chapter 2.2 this thesis will closely look at Kadaster to propose a

model. The elements that will be proposed in this chapter have been derived from

the syntax and documents provided on their website. With these basic elements it is

possible to create a document that fulfills the needs for every structured document

that Kadaster uses at the moment.

Assume that a structured document

can contain the following elements:

1. Text,

2. New variables (Assignments)

3. Existing variables (Variable

retrievals)

4. Multiple choices (Choices)

5. Other structured documents

(Blocks)

These five elements are the basis for the newly proposed model. Each element has

its own properties and functionality; of course some properties and functionalities are

shared across elements.

The figure illustrated above illustrates the basic concept for the goal of this model.

Creating a document by inserting small elements with their own functionality. Some

are optional (striped lines) and some are mandatory. The end result will be a

document that is created by „gluing‟ all these small elements together in the correct

sequence.

Lauritsen & Gorden define all these elements as „text‟ in their general approach to a

document model and do not make a clear distinction between these five (Lauritsen &

Gorden, 2009). In the end everything can be reduced to text or characters, but it

might be wise to make a clear distinction between elements because it allows you to

divide and share functionality and properties of these elements. In another article

written by Lauritsen and his colleague Hafner they do make a distinction between

these elements when they zoom in further on the details of such a model (Hafner &

Lauritsen, 2007). In the proposed model for this thesis a distinction between these

elements is made as well. A lot of properties are shared, but not all. Some unique

properties can influence the document vastly.

Figure 2 – A simple representation of a

document model

24

As illustrated in Fout! Verwijzingsbron niet gevonden. creating a document

requires „gluing‟ multiple elements together. From now on we will refer to each

element as a block. We will start with the basic, fairly straightforward elements that a

block can be.

Assumption 1

A block (b) is an instance of an element text (t), assignment (a),

variable retrieval (vr) or choice (c).

This can be described as following:

b = t || a || vr || c

Creating a document requires the use of multiple blocks. Assume that we have Text

t1, t2, t3
 and Assignment a1 and a2. A document is an instance of the sequence of

these blocks:

d = <t1>, <t2>, <a1>, <t3>, <a2>

It is possible that we want to reuse the same „sequence‟ of blocks in another

document. To achieve this we need to be able to copy a set of blocks from one

document to another. Now if a change occurs in this sequence we might want that

sequence to be changed in all the documents that depend on this sequence. To

achieve this we will assume that a block is a sequence of at least one or more

blocks.

Seq1 = <t1>, <t2>, <a1>, <t3>, <a2>

Assumption 2

A block contains a sequence of one or more blocks.

Seq1 is now defined as a sequence of blocks and can be used inside the same or

other documents.

d = <seq1>, <t4>, <t5>, <t6>

 <t1>, <t2>, <a1>, <t3>, <a2>

A block containing a sequence of blocks, which is actually a mini-document, can be

related to documents in three ways (Lauritsen & Gorden, Toward a General Theory

of Document Modeling, 2009):

25

1. Intra-documentary

The block is related specifically to a particular document, it is only used in one

document and has no function in other documents.

2. Inter-documentary

The block is related to at least one document, but can serve other documents as

well. An example can be a salutation in a letter. One should strive for a maximum

amount of inter-documentary blocks. This can be achieved by keeping blocks small

and thus reusable.

3. Extra-documentary

Blocks that have no relation whatsoever to any documents. These can be for

example blocks that will be used later or are old and no longer used.

Can we still speak of a document? Not really; documents have been minimized to a

level where a document can exist of a single block of text or even a character; a

large document is nothing more than a very long sequence of blocks. There will still

be made references to „documents‟ in this paper. From now on when we speak of

documents or sequences, we speak of a sequence of blocks.

Assumption 3

A document exists of a sequence of blocks.

Something else that can be noticed from this sequence of blocks is the tree structure

that will eventually form the backbone of a document. This behavior is illustrated

below.

Figure 3 – Document as a tree

The tree structure can grow vastly and become complex when large documents are

created. Smart methods are needed to quickly traverse within the tree. However

when used properly, a tree structure can be a very powerful tool that allows you to

reuse parts of a document.

In the next chapter a basic block element will be define, in the chapters following all

type of elements that a block can be will be described in more detail.

26

3.1.1 Block

A block is the most important element in the proposed model. It‟s properties and

functionalities are the basis for all other elements. A block exists of a layout and a

version. Furthermore it can be set to mandatory or not, since we have optional parts

in documents as well.

A layout is needed to define how the block displays inside a document. For now only

little attention will be paid to the layout of a document. The model mainly focuses on

the structure of a document, layout specific details like when a break or indentation is

made can be added later on.

Figure 4 – Proposed model – Single Block

The version is needed for keeping track of revisions. It can also be used to

regenerate a document at a given version with given data. For example: the data

used inside an employment contract can be the same for the years 2012 and 2013,

but the content can differ as discussed in chapter 2.7. If a contract needs to be

renewed the next year, the data can be reused and it‟s still possible to regenerate the

previous contract using that same data.

Given this, we can assume that a document is build up out of a sequence of specific

versions of blocks. This means that a sequence of blocks is an actual block that

points to other blocks. For example2:

Seq1 = <t1, 3.0>, <t2, 2.1>, <a1, 1.4>, <t3, 0.7>, <a2, 4.1>

We can now propose our next assumption based on this information.

Assumption 4

a document exists of a sequence of blocks at a specific version.

2
 To improve readability the block version number will be omitted in the examples following.

27

We can now extend the proposed model for a single block above with a sequence of

blocks at a specific version. The following model is derived from these details and

forms the basis for the proposed model.

Figure 5 – Proposed model – Block

In the following chapters the other elements will be explained. All these elements are

specializations of a block. They inherit all of its properties and functionalities.

3.1.2 Text

A text element is introduced to fill a document with content, as stated above all

elements are specializations of a block and thus inherit properties and functionalities

of a block. It has a layout, can be mandatory and the version is tracked. Because we

want to propose the model in its simplest and most minimalistic form we will only add

a content attribute to this element.

The content of a text can vary in length. It can be a single character, a word, a

sentence or even a complete paragraph depending on the content of a document.

For example:

<t1, “Vandaag verscheen voor mij”>

If we want to the text to be optional, we add curly brackets to the example:

{<t1, “Vandaag verscheen voor mij”>}

A user needs to be smart in defining texts; this can be very lucrative in reusing

blocks. For example, reusable texts can be the closing part of a formal letter, or the

address part of a letter.

Figure 6 below illustrates how the text element specializes the block element.

28

Figure 6 – Proposed model – Text

3.1.3 Assignment
It might occur that you want to introduce a variable in a document that can be filled

with data, for example: the surname in the heading of a letter. The variable and data,

from now on value, form a pair. This pair is called an assignment. Assignments can

be reused in the same document; this functionality is explained in chapter 3.1.4.

A definition is needed of what type of value is accepted by the variable within an

assignment. To achieve this an element called variable type is introduced. A variable

type can be reused across other variables and defines the rules and validation for a

variable. Types with their own rules can be dates, money, surnames, initials or email

addresses for example.

<a1, “oplever datum”, date, ?>

Assignment is also a specialization of the block element. It has no extra properties

except for the relation with variable and value. The variable type defines for example

the validation rule in a regular expression and the (max)length of a variable.

Figure 7 – Proposed model – Assignment

29

3.1.4 Variable retrieval
It is now possible to introduce assignments into documents. But it might occur that

one wants to reuse the same filled-in data all over a document, for example when

referring to a person‟s name. If we create a new assignment it will result in duplicate

data. What is needed is an element that reuses an assignment and thus the value

within this assignment. To achieve this the element variable retrieval is introduced.

The variable retrieval is a specialized element of block that has an extra property.

That property is a derivative to an assignment. It defines which assignment exactly it

needs to be retrieved.

When we request to retrieve a variable we know it is attached to an assignment (that

does not imply that a value is assigned!). A simple grammar like <vr4> suffices

because the actual value can be derivative through the assignment.

Figure 8 – Proposed model – Variable retrieval

To quickly retrieve the defined assignment within a document a post-order walk can

be used to traverse to the assignment. This kind of walk traverses all child nodes

before their respective parents are traversed. Details about this interaction with the

model will be explained in the chapter 3.2.

3.1.5 Choice
It might occur that you want to provide a multiple choice within a document. For

example when there‟s a document describing a person that is leasing a car, a choice

can be the kind of lease or brand of car. A multiple choice can have unlimited

options. The actual choice is one of the defined values.

30

An example of a rendered choice can be for example:

Favorite car brand

What is your favorite car brand?

1. BMW

2. Audi

3. Mercedes

As you can see, a choice can have an indicator as a prefix for the choice. This can

be set within the choice. Above example is translated as following:

<c1, [1:"BMW", 2:"Audi", 3:"Mercedes"], ?>

The `?` at the end indicates that no choice has been made yet. If a choice would

have been made the `?` would contain the actual chosen value, for example:

<c1, [1:"BMW", 2:"Audi", 3:"Mercedes"], “BMW”>

What we need is a sequence of choices that form the options for a multiple choice.

Next to that there needs to be a possibility to order those options in a specific way. A

choice element has many option elements. These option elements are bound to the

choice by an indicator that orders the options. An option exists of a value.

Assumption 5

a choice exists of at least two options that contain a value.

Once a choice is made between one of the options it will be saved as an assignment,

by doing this the chosen option can be retrieved again in the document.

This can be visualized in the proposed model as following.

Figure 9 – Proposed model – Choice

31

3.1.6 Conditional choice

Based on the described choice element above we need to introduce another type of

element: a conditional choice block. A conditional choice block is used when we want

to make a decision within the document that vastly changes the content. In contrary

with choices we „choose‟ which text appears at that position.

For example: with a defined conditional choice block we can achieve the functionality

that based on your earlier conditional choice, a specific sequence of blocks is added

to the bottom of a document. Some other choice would have added another specified

sequence of blocks at the bottom of the document. After a choice has been made the

chosen „option block‟ will be set as a variable for this reference.

A conditional choice also makes it possible to create a choice between for example a

variable and a sequence of blocks at the position where the element is defined.

Adding this we have to correct assumption 1.

New assumption 1

A block (b) is an instance of an element text (t), assignment (a),

variable retrieval (vr), choice (c) or conditional choice (cb).

This can be described as following:

b = t || a || vr || c || cb

The grammar used for a conditional block is similar to the grammar used in choice,

except for the options, they are now references to other blocks.

<cb1, [1:<seq52>, 2:<seq23>] , ?>

Visualizing it into a model looks as following:

Figure 10 – Proposed model – Conditional choice

32

3.2 Definition of the model

All elements have been defined and modeled into a proposed model. When all these

elements are put together in a model then the complete model scheme is formed,

based on the assumptions and definitions made above. The scheme can be found in

Figure 11. To keep the model readable and clear, some properties of elements have

been disregarded in this figure.

Figure 11 – Definition of the model

Some functionality can be derived from this scheme. As stated before a block can

exist of a sequence of blocks. A sequence of blocks in fact already is a document.

The block element acts as a generalization for all other defined elements. They‟re a

specialization of the block element. There‟s no need to define an exclusive-or

constraint because a generalization/specialization forces the choice of a

specialization.

A large document can exists of many, many of these blocks and blocks containing

other sequences of blocks. As stated before a large document is build up in a tree

structure. A method is needed to retrieve the value of a previously defined

assignment with a variable retrieval element. To achieve this the model needs to be

able to traverse through the tree.

With these kinds of documents it is most likely that a defined assignment is a (deep)

child node. One of the traversal methods that we can apply here is a post-order walk.

A post-order walk is a depth-first walk in which the node will traverse the children of

all leaves/sub trees first before it will traverse its parents (Lerma, 2005).

33

In the case of the proposed model, it will traverse the deepest blocks first before it

traverses their containers. Because of this, an assignment that is declared in a block

node at the deepest level can be used in a block at the highest level. The traversal

route of a post-order walk is shown in the figure below.

Figure 12 – Post-order walk for the retrieval of an assignment.

The 'root‟ block is a block called seq1, this is the main container for the document and

the first node for our tree. It then has a sequence of blocks. Block seq2, text t3, Block

seq3, assignment a1, etcetera. Each block contains more elements. The blue arrow

describes the line in which the post-order walk traverses through all the elements.

The red numbers show in which order the nodes are traversed.

At the red number 9 we find a variable retrieval vr4. Assume that we want to retrieve

assignment a3 using this vr4. Using a post-order walk we find, within 3 steps, the

corresponding assignment. The traversal of the tree is as following: a2  t2  a2.

The same method of traversal can be used when we want to locate a previously

defined sequence of blocks.

3.3 Functionality

This chapter will describe the basic functionality for the model to work with. A „real-

life‟ example is introduced and an idea of the drafting system is presented.

3.3.1 Example based on real document using the model.
In this chapter a live document defined by Kadaster used in multiple of their

documents will be translated into the model. All elements described for the model are

used in this document. First the original document will be shown, followed by a table

in which that particular sequence of the document is „cut‟ into little parts that fit the

model. These sequences can be reused within the document.

34

Original: “Tekstblok aanhef”

Op/Heden,/Vandaag, ♣datum♣, verscheen/verschenen voor mij,/verklaart TEKSTBLOK PERSONALIA
VAN NATUURLIJK PERSOON versie 1.0 hierna te noemen: „notaris‟, als waarnemer van TEKSTBLOK
PERSONALIA VAN NATUURLIJK PERSOON versie 1.0, notaris in de gemeente ♣gemeente♣
kantoorhoudende te / te / gevestigd te / met plaats van vestiging ♣woonplaats♣ als volgt

Document model 3 – Content for “Tekstblok aanhef”

Defined as: Seq1 - “Tekstblok aanhef”

Document Model

Op/Heden,/Vandaag, <c1, [1: "Op", 2: "Heden," 3: "Vandaag,"], ?>

♣datum♣ <a1, "datum", date, ?>

, <t1, ",">

verscheen/verschenen voor

mij,/verklaart

<c2, ["verscheen voor mij,", "verschenen voor

mij,","verklaart"], ?>

TEKSTBLOK PERSONALIA VAN

NATUURLIJK PERSOON versie 1.0
<seq2>

hierna te noemen: „notaris‟, als

waarnemer van TEKSTBLOK

PERSONALIA VAN NATUURLIJK

PERSOON versie 1.0

{<seq3>}

, notaris <t4, ", notaris">

in de gemeente ♣gemeente♣

kantoorhoudende te / te / gevestigd

te / met plaats van vestiging

<seq4>

♣woonplaats♣ <a10, "woonplaats", string, ?>,

als volgt
{<t7, "als volgt">},

Document model 4 - Grammar of content for "Tekstblok aanhef"

35

Original: “Tekstblok personalia van natuurlijk persoon”

professor §adellijke titel§ §titel§ §voornamen§ §adellijke titel§ §voorvoegsels§ §achternaam§ §titel§

Document model 5 - Content for “Tekstblok personalia van natuurlijk persoon”

Defined as: Seq2 - “Tekstblok personalia van natuurlijk persoon"

Document Model

professor {<t2, "professor">}

§adellijke titel§ {<a2, "adelijkte titel", string, ?>}

§titel§ {<a3, "titel", string, ?>}

§voornamen§ <a4, "voornamen", string, ?>

§adellijke titel§ {<a5, "adelijke titel", string, ?>}

§voorvoegsels§ {<a6, "voorvoegsels", string, ?>}

§achternaam§ <a7, "achternaam", string, ?>

§titel§ {<a9, "titel", string, ?>}

Document model 6 – Grammar for content for “Tekstblok personalia van natuurlijk persoon”

Original:

hierna te noemen: „notaris‟, als waarnemer van TEKSTBLOK PERSONALIA VAN NATUURLIJK

PERSOON versie 1.0

Document model 7 – Content for second “Tekstblok personalia van natuurlijk persoon”

Defined as: Seq3

Document Model

hierna te noemen: „notaris‟, als

waarnemer van

<t3, "hierna te noemen: 'notaris', als

waarnemer van">

TEKSTBLOK PERSONALIA VAN

NATUURLIJK PERSOON versie 1.0
<seq2>

Document model 8 – Grammar for content for second “Tekstblok personalia van natuurlijk persoon”

36

Original:

in de gemeente ♣gemeente♣ kantoorhoudende te / te / gevestigd te / met plaats van vestiging

Document model 9 – Content for conditional choice

Define: Seq4

Document
3
 Model

1. in de gemeente ♣gemeente♣

kantoorhoudende te /

2. te / gevestigd te / met plaats van

vestiging

<cb1,[1:<seq5>, 2:<seq6>], ?>

Define: Seq5

Document Model

in de gemeente <t5, "in de gemeente">

♣gemeente♣ <a9, "gemeente", string, ?>

kantoorhoudende te <t6, "kantoorhoudende te">

Define: Seq6

Document Model

te / gevestigd te / met plaats van

vestiging

<c3, ["te", "gevestigd te", "met plaats van

vestiging"], ?>

Document model 10 – Grammar for content for conditional choice

3.3.2 Generating the example document

When the grammar is complete it is possible to generate a document from it. This

can be achieved by „parsing‟ the grammar.

For this thesis a JavaScript application4 was written that parses the grammar into a

JSON object. A HTML form allows you to input the grammar; a parser script will

parse this grammar into a JSON object. This JSON object is composed into a HTML

DOM structure that actually shows the structured document model.

3 The numbers leading these sentences do not appear in the original document, it is purely

shown here to indicate the separation between seq5 and seq6
4 Live example at http://www.doccy.nl/thesis/

37

The application5 responsible for parsing the grammar follows these steps:

1. Clean the grammar (where needed) from special characters like new line,

tabs etcetera.

2. Parse the cleaned grammar according to a strict set of rules, this will be done

token by token. It will eventually form an array of „blocks‟

3. For every element in the array transform it into a valid JSON object.

a. Detect the element type

b. Create JSON based on the element type and content from the array

c. Return that element

4. A large JSON object is the end result.

That JSON object forms a tree that we can illustrate as following:

Figure 13 – JSON object tree for “Tekstblok aanhef”

This parser is a limited parser that expects perfect input, once it finds an error it will

quit parsing and log about the error.

Another file was written6 that composes a document based on a given JSON object.

It will create a simple HTML DOM structure that illustrates the separation between

the different elements within the grammar as show in Figure 14.

Figure 14 – Parsed grammar into HTML

5

Source code for parser can be found at: http://www.doccy.nl/parser.txt, jQuery

(http://www.jquery.com) is required to run the script.
6 Source code for composing the grammar can be found at: http://www.doccy.nl/compose.txt,

jQuery (http://www.jquery.com) is required to run the script.

38

Having a JSON object that has been parsed from the grammar makes it fairly easy to

compose a HTML DOM structure based on that grammar. The compose script

follows these steps:

1. Start at the root node of the JSON object as figured in Figure 13.

2. For each child node walk „compose‟ the element into a HTML DOM object.

a. Variable Retrieval elements will post-order traverse through the tree

and find the referred assignment.

b. Conditional Blocks will post-order walk through the tree and find and

set the referred variable/assignment.

3. If a child node has child nodes itself:

a. If blocks are defined, repeat step 2 for this node.

b. If no blocks are defined, post-order walk through the tree and find the

referred node.

4. Display the HTML DOM object.

The function composing the grammar needs to be recursive, because one sequence

can contain another sequence containing another sequence, etc. The function

responsible for this in the script is called parseSequence.

/**

 * Parse a given sequence of blocks

 *

 * @param object sequence The sequence we want to parse

 *

 * @return void

 */

parseSequence = function(sequence) {

 // Create a container where the rendered HTML will be put in

 var container = $(document.createElement('div'));

 // Check if there are any blocks defined in this sequence.

 if (sequence.blocks !== undefined && sequence.blocks.length) {

 // Walk through all of the provided blocks, and parse them

 $.each(sequence.blocks, function(i, block) {

 // Make sure the object is defined.

 if (block.object !== undefined && block.object.length) {

 block.previous = sequence;

 // Parse the element and append it to the document container

 element = parseBlock(block);

 container.append(element);

 } else {

 console.log('Error: undefined object');

 }

 });

 } else {

 // No blocks found, we need to check if this sequence was defined before,

 // if not, throw error.

 sibling = getSequence(sequence);

 if (sibling) {

 // Parse the given sequence (again) and return it.

 element = parseSequence(sibling);

 return setLayout(sequence, element);

 } else {

 console.log('Error: sequence ' + sequence.id + '

 has not been defined within this scope');

 }

 }

 return setLayout(sequence, container);

};

39

This application demonstrates how a user can interact with the model, but for an

application to function in a work environment like Kadaster it will need more

functionality.

3.3.3 The functionalities drafting system
As described in chapter 2.6 most drafting systems don‟t take the actual defining of

structured document models into account.

This chapter describes the minimum functionality that such a drafting system needs

to successfully work with the proposed model.

1. List all existing structured document models

The system needs to be able to display all structured document models that have

been created using the model. This means that the system will need to fetch all „root‟

blocks. These are blocks that are not contained by any other block but do contain

other blocks. The models shown should always be the latest version of the

document. There should be a link called „add document‟ where the user can start

creating a new document model.

Figure 15 – Illustration of 'List documents'

40

2. Viewing an existing structured document model

When clicking on a link within the list created in Figure 15 the system should

navigate to the selected structured document model. The model has to be shown as

a „live‟ document like we know it from for example Microsoft Word, as stated in

chapter 2.7. This screen has three modes. The first mode is viewing, the second

mode is editing and the third mode is revision viewing. The views are mostly the

same, however the actions will differ.

Figure 16 – Illustration of „view document‟

Blocks that contain other blocks will be highlighted when the mouse hovers them.

Clicking on such a block will result in zooming in on this block, in other words,

navigating to the viewing page of a block. The viewing page of a block however is the

same as the page currently described because a document is nothing more then a

block.

Figure 17 – Illustration of „highlighted block‟

41

None mandatory elements in a document should be partly greyed out. This way a

user knows that it is an optional element.

The scope of an assignment or variable retrieval has to be clearly visible. This could

be achieved by using a different font and/or color with a leading symbol. For

example: „$‟. When an assignment or variable retrieval is hovered, the origin of this

assignment will be highlighted in a specific color as well as all other places where the

assignment occurs (the variable retrievals) in another color. This way the scope of an

assignment will be clear.

Figure 18 – Illustration of „highlighted assignment‟

3. Editing an existing structured document model.

When a structured document model is set to editing mode all elements inside this

model will be highlighted when a mouse hovers them. Clicking on an element will

display a small tooltip that has three options. View, edit and delete. Clicking on a

block containing other blocks will still result in navigating to the view of that block as

described at Figure 17. The elements within this block can be edited from here.

42

Figure 19 – Illustration of „edit tooltip‟

The box on the left side of the document will contain all the information concerning

this element. For example an assignment has to display the variable, variable type,

value and number of variable retrievals depending on this assignment. A choice will

display all of its options (in short) and indicators. Next to this information it has to

display the rendered blocks before and after this element, the dependencies and

version of the element.

Clicking on the edit option in a tooltip will load a screen where a specific element can

be edited. Each element has it‟s own edit form, however some fields appear on all

forms. The version field can be updated, this triggers an action called „Archive

document‟, specified later in this chapter. The mandatory field can be updated as

well.

A text simply has a field where the text can be edited. The variable has more details,

the type can be chosen and the value can be used. A choice will allow you to add

unlimited options. These options can be created on the fly or, in case of a conditional

block, existing elements can be chosen. An indicator is set as well.

Clicking on the delete option in a tooltip of an element will ask for confirmation if you

are sure you want to delete this element from the document. If no other documents

depend on this element an option will be given to remove the element from the

system.

Inserting elements can be achieved by right clicking in a document. It will place a

marker where the element will appear and the system will ask what kind of element

the user wants to add. The options for this will be a new element (one of the

elements discussed in the previous chapter) or an existing element. When a user

clicks on one of these options the system will load a popup or screen where the user

can add this element. The form for adding an element will be similar to editing an

element.

43

Figure 20 – Illustration of „add element‟

4. Creating a new document

When a user clicked on the „add document‟ button a screen will show with a blank

document. The functionality of this screen is similar to editing a document. The user

can right click in a document to start adding elements.

5. Archiving documents

A user can specifically archive a document at a given time. The structured document

model will be saved as a version that the user can provide through an input field. The

system will automatically duplicate all elements from this document to make sure that

their integrity is saved.

44

6. Compare document versions

This screen allows you to compare models with their previous version. It can be seen

as a time machine where the user can navigate through the different revisions of a

model and see exactly what changed, where and when. Elements that have

changed, have been added or deleted will be highlighted.

Figure 21 – Illustration of „Revision comparing‟

7. List all existing blocks

A view, similar to the „list all existing documents‟ view will show all the blocks

containing other blocks. The blocks that appear here are based on how many

dependencies it has. The more dependencies it has, the more important it is and it

will be shown at the top of the list. Clicking on a link of this block will navigate the

user to the view block page.

45

4 Technical setup

Storing can be done using many structures and techniques. For many years XML

has been the leading language for these kinds of structures, but this is starting to

change slowly. An alternative that we can apply here is a human-readable open

standard derived from JavaScript, called JSON7.

There are many ongoing discussions about the advantages and disadvantages of

XML versus JSON (Cormack, 2010), but for this thesis JavaScript is applied to store

a document (model). Our document solitary exists of elements on particular

positions, making JSON a good fit. It is language-independent with parsers available

in many languages, making it a good starting point for implementing our model.

JSON supports the following basic types (Crockford, 2006).

 A number - can be integer or floating point.

 A string - value should be inside double quotes, escape with backslash.

 A Boolean - true or false.

 An array – is defined in square brackets: [].

 An object – is defined in curly brackets: {}.

 null – an empty value.

The type „object‟ can contain one or more members/properties. These properties

are defined in pairs of name/value. An object can have many properties separated by

a comma. The name is always defined as a string surrounded by double quotes. The

value can be any one of the types defined above.

 Members of objects are defined as: "property": value

These types, together with the examples displayed in chapter 3.3.1, have been used

to create a JSON schema based on the proposed model. In the schema the following

useable elements have been defined: a sequence element, a text element, an

assignment element, a variable retrieval element and a conditional-choice element.

The schema can be found in Appendix A – JSON Schema.

4.1 Storage structure

Before we start saving an actual document model we need to take into account that,

eventually, we want to store every single object separately. To securely save these

objects it is needed to save the objects in pairs of a unique identifier and the version.

When the version is updated we need to keep the previous version to make sure that

„old‟ versions of a document model work as well.

7
 JSON, or JavaScript Object Notation, is a text-based open standard designed for human-readable

data interchange.

46

For this thesis we will create a basic structure that will suffice to save the dataset.

However advanced storing structures might improve speed and storage usage

(Sacks-Davis, Arnold-Moore, & Zobel, 1994).

In this example a simple MySQL database was created that stores all the data in a

structured way. For now every object has it‟s own table(s). The storage structure can

be found in Appendix C – MySQL Storage structure.

We need to take in account that a single document can and most likely will exist of

many, many records. Adding indexes to tables might help improving speed, however

most of the speed will rely on properly written queries and sufficient hardware for the

database (Oracle, 2013).

Still, this storage structure is merely an example; it all depends on how the

application works. There are a lot of frameworks, client side as well, that can work

with JSON as an input. For example Backbone.js8 accepts JSON as input, in this

case we can just save data as a JSON object converted to a string. But by doing this

maintainability will be harmed because the complete document is saved as an entire

string, making it harder to replace or update particular parts.

4.2 Storing a document model

Storing a model based on the previously proposed document model can be done

using many structures and techniques.

As shown in chapter 3.3.1 the document „tekstblok aanhef‟ has been decomposed

into the model. This example will be stored using JSON. Start by defining a root

object for this. The object contains an object type, an identifier, a title and a version.

Next to those properties, it contains a property called „blocks‟ that is able to contain

other (sequences) of blocks.

Root object

{

 "object": "sequence",

 "id": "seq1",

 "title": "Tekstblok aanhef",

 "version": 1.0,

 "blocks": [...]

}

A document always starts with a sequence containing at least one block, all of the

following elements defined are an item in the "blocks": [...] array. In other

words, they are child nodes/objects of the root node/object.

8
 http://www.backbonejs.org - Backbone.js gives structure to web applications by providing

models with key-value binding and custom events, collections with a rich API of

enumerable functions, views with declarative event handling, and connects it all to your

existing API over a RESTful JSON interface.

47

For this example the first six elements of the „Tekstblok aanhef‟ will be defined, the

complete JSON can be found in Appendix B – „Tekstblok aanhef‟ in JSON storage.

Document Model

Op/Heden,/Vandaag, <c1, [1: "Op", 2: "Heden," 3: "Vandaag,"], ?>

♣datum♣ <a1, "datum", date, ?>

, <t1, ",">

verscheen/verschenen voor

mij,/verklaart

<c2, ["verscheen voor mij,", "verschenen voor

mij,","verklaart"], ?>

TEKSTBLOK PERSONALIA VAN

NATUURLIJK PERSOON versie 1.0
<seq2>

hierna te noemen: „notaris‟, als

waarnemer van TEKSTBLOK

PERSONALIA VAN NATUURLIJK

PERSOON versie 1.0

{<seq3>}

If the schema defined in Appendix A – JSON Schema is used to translate the

grammar into JSON we get the following elements that we can store.

Choice:
Op/Heden,/Vandaag,

{

 "object": "choice",

 "id": "c1",

 "version": 0.1,

 "options": ["Op", "Heden,", "Vandaag,",],

 "value": null,

},

Assignment:
♣datum♣

{

 "object": "assignment",

 "id": "a1",

 "version": 0.1,

 "variable": {

 "name": "datum",

 },

 "variableType": {

 "name": "date",

 "rule": "/^(0?[1-9]|[12][0-9]|3[01])[\/\-](0?[1-

 9]|1[012])[\/\-]\d{4}$/",

 },

 "value": null,

},

Text:
,

{

 "object": "text",

 "id": "t1",

 "version": 0.1,

 "content": ",",

},

Choice:
verscheen/verschenen

voor mij,/verklaart

{

 "object": "choice",

 "id": "c2",

 "version": 0.1,

 "options": [

 "verscheen voor mij",

48

 "verschenen voor mij",

 "verklaart"

],

 "value": null,

},

Sequence:
TEKSTBLOK

PERSONALIA VAN

NATUURLIJK

PERSOON versie 1.0

{

 "object": "sequence",

 "id": "seq2",

 "title": "Tekstblok personalia van Natuurlijk Persoon",

 "version": 1.0,

 "blocks": [

 see Appendix B – „Tekstblok aanhef‟ in JSON storage
]

},

Sequence:
hierna te noemen:

„notaris‟, als

waarnemer van

TEKSTBLOK

PERSONALIA VAN

NATUURLIJK

PERSOON versie 1.0

{

 "object": "sequence",

 "id": "seq3",

 "version": 1.0,

 "mandatory": false,

 "blocks": [

 {

 "object": "text",

 "id": "t3",

 "version": 0.1,

 "content": "hierna te noemen: ‘notaris’, als

 waarnemer van"
 },

 {

 "object": "sequence",

 "id": "seq2"

 },

]

},

In the example above the definition of the sequence of blocks within “Tekstblok

personalia van natuurlijk person versie 1.0” has been omitted, the complete definition

can be found at Appendix B – „Tekstblok aanhef‟ in JSON storage.

The sequence following, called seq3, includes the previously defined sequence seq2.

We see that in the second appearance the blocks have not been defined at seq2,

which his valid according to the schema that states that “blocks” is not a required

property. This means the tree will be traversed using a post-order walk as defined in

chapter 3.2 to fetch the content of the actual seq2.

49

The following tree can be derived from the objects defined in JSON:

Figure 22 – Tree for “Tekstblok aanhef” with post-order walk traversal

During the parsing of the document we find inside the sequence with id seq3 a text

object with id t7 and a sequence with id seq2. As stated above the second time the

sequence is mentioned no blocks are defined. The traversal order has been drawn to

fetch the content of the actual sequence with id seq2. We see that it takes 5 steps to

fetch the actual content.

Because the sequence has already been defined within the document there‟s no

need to actually define it twice in the document and save it. Once a document is

stored we can reopen it using the application defined in chapter 3.3.2. The document

can be reopened and edited from storage.

50

51

5 Conclusion

Kadaster indicated that the process of creating a document model that can be

assembled and automatically processed takes to long. This thesis provides a solution

on how to cope with this problem.

We started by describing the requirements, functionalities and flaws of the current

method used, which is a color-coded syntax in combination with Microsoft Word. The

main problem with this method is the room for different interpretations between the

business- and IT-department. The syntax could become quite confusing, because

structure and logic was missing.

Another problem that occurred frequently was maintainability, document models

were relying on each other but there was no clear view of which document model is

used where. When a frequently used document model was updated all other

document models had to be checked manually if it included this model (Noort, 2011).

Once the requirements for a new model were clear and functionalities have been

derived, a model was proposed. This model is based on all elements that are

currently available in the document models of Kadaster. It copes with different

revisions, reusing and maintainability of structured document models. It knows which

structured document models are used where, so no more manually checking if a

structured document model uses the latest version of another structured document

model.

The model has been setup to decompose a document into „blocks‟. Each block has

properties and functionalities. A block can contain other blocks and thus create mini-

documents. These „mini-documents‟, which are sequences of blocks, can be reused

in the same or another document.

The key element behind the use of the model is a solid application that supports and

offers a lot of functionality to work with a structured document model. The main

functionalities for such an application have been described, and a basic application

has been created to test a structured document model.

After creating a structured document model we have to actually save the structured

document model on a storage platform. The defined JSON scheme shows which

properties are required for saving the model, and a limited MySQL database has

been defined to save the structured document models.

This completes the cycle of creating a structured document model based on the

proposed model, saving it and being able to reopen the structured document model

after saving.

52

5.1 Implementation in the organization

The next step is to successfully setup and implement a new application based on the

proposed model in the organization. Five key ingredients are essential for such a

project to succeed. (Laurtisen & Soudakoff, 2005).

1. An appropriate concept is needed.

An application based on the proposed model that leads to better, faster, more

efficient and less error-prone documents.

2. The right mixture of people.

Make sure that domain experts from the document field are involved as well

as IT experts. It might also help to collaborate with some customers.

3. Adequate tools.

Make sure open-standards are used to ensure endurance of the software.

Create documentation about the software that is written to ensure that no

knowledge is lost in case in a change of employees for example.

4. Relevant knowledge.

Basically three kinds of knowledge are needed. Domain experts on the

documents themselves are crucial. Experts about storing such large amounts

of data and off course the IT experts who can actually implement such a

system. All three need to closely collaborate to ensure the durability and

efficiency of the system.

5. An effective process.

Choose a process where you are constantly improving the software. Short

cycles of implementation could help here. Start by creating the core

functionality and keep adjusting it until it works perfectly. Once this works the

core functionality can be used to build the other functionalities.

If Kadaster would implement such a model and application in their process, it would

not only be a time-saver, because there‟s no more room for difference in

interpretation, but also a starting point for automating the complete process. If a

structured document model has been defined and saved, then the next step is

automating the assembly functionality of these structured documents.

When this is implemented properly there will be less cause for communication and

discussion between the business and IT-department. When done correctly, a

business-department employee can create or update a structured document model

useable by customers without any interaction with the IT-department. This should

benefit the company greatly.

If done correctly, this could be a first step for creating an environment where

customers themselves can define structured document models in order to give them

complete freedom in how a document looks and is filled in.

53

5.2 Recommendation and follow-up

Further research is needed about interactions between structured document models

and users. When users are interactively working with structured document models

and actually seeing what impact a change might have on the structured document

model is not only important, but will also make working with structured document

models a lot easier.

Creating structured document models has caught the interest of me and graduated

master student Daan Schraven. Together we would like to start building a prototype

of an application that can work with the proposed model to generate structured

document models.

In the conversations with Kadaster we‟ve already discussed this possibility and

Kadaster is very enthusiastic about the idea. A workshop will be organized to get a

clear picture of the interactions with such an application. Employees from business-,

IT- and other departments will join this workshop to contribute and think about the

application.

54

55

Bibliography

Cormack, J. (2010, 01 27). JSON vs XML. Retrieved 04 01, 2013, from Technology

of Content: http://blog.technologyofcontent.com/2010/01/json-vs-xml/

Crockford, D. (2006, 07 01). The application/json Media Type for JavaScript Object

Notation (JSON). Retrieved 04 02, 2013, from The Internet Engineering Task

Force (IETF): http://www.ietf.org/rfc/rfc4627.txt

Hafner, C. D., & Lauritsen, M. (2007). Extending the power of automated legal

drafting technology. In A. R. Lodder, & L. Mommers (Ed.), Legal Knowledge

and Information Systems - JURIX 2007. 165, pp. 59-68. Amsterdam: IOS

Press.

Lauritsen, M. (2007). Current Frontiers in Legal Drafting Systems. 11th International

Conference on AI and Law (pp. 1-15). California: Stanford University.

Lauritsen, M., & Gorden, T. F. (2009). Toward a General Theory of Document

Modeling. ICAIL '09: Proceedings of the 12th International Conference on

Artificial Intelligence and Law (pp. 202-211). Barcelona: ACM.

Laurtisen, M., & Soudakoff, A. (2005). Keys to a Successful Document Assembly

Project. New York: Capstone Practice Systems.

Lehtonen, M., Petit, R., Heinonen, O., & Lindén, G. A Dynamic User Interface for

Document Assembly. University of Helsinki, Department of Computer Science,

Helsinki.

Lerma, M. A. (2005, 04 01). Tree Traversal. Retrieved 04 02, 2013, from

Mathematical Foundations of Computer Science:

http://www.math.northwestern.edu/~mlerma/courses/cs310-05s/notes/dm-

treetran

Macleod, I. (1990). Storage and Retrieval of Structured Documents. Information

Processing & Management , 26 (2), 197-208.

Miller, D. (1992). Abstract Syntax and Logic Programming. Lecture notes in

Computer Science , 592, 332-337.

NEM. (2012). Digital Growth through web-based applications and services . 13th

NEM General Assembly (pp. 65-74). Brussel: NEM.

Noort, v. H. (2011, 02 01). Tekstblok - Algemene afspraken modeldocumenten en

tekstblokken. Apeldoorn, Gelderland, Netherlands.

O'Leary, D. (2011, 06 19). 5 Myths about Document Automation and Electronic

Document Creation. Retrieved 04 02, 2013, from Digital Landfill:

http://www.digitallandfill.org/2011/07/5-myths-about-document-automation-and-

electronic-document-creation.html

Oracle. (2013, 03 24). Optimization and Indexes. Retrieved 04 01, 2013, from

MySQL 5.5 Reference Manual:

http://dev.mysql.com/doc/refman/5.5/en/column-indexes.html

56

Sacks-Davis, R., Arnold-Moore, T., & Zobel, J. (1994). Database Systems for

Structured Documents. International Symposium on Advanced Database

Technologies and Their Integration. Nara, Japan: ADTI.

57

Appendix A – JSON Schema

Sequence

{

 "name": "sequence",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\bseq[0-9]+\b",

 "required": true

 },

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "title": {

 "type": "string"

 },

 "blocks": {

 "type": "array",

 "items": {

 "type": "object",

 },

 }

 }

},

Text

{

 "name": "text",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\bt[0-9]+\b",

 "required": true

 },

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "content": {

 "type": "string",

 "required": true

 }

 }

},

Assignment

{

 "name": "assignment",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\ba[0-9]+\b",

 "required": true

 },

58

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "variable": {

 "type": "object",

 "properties": {

 "name": {

 "type": "string",

 "required": true

 }

 },

 "required": true

 },

 "variableType": {

 "type": "object",

 "properties": {

 "name": {

 "type": "string",

 "required": true

 },

 "rule": {

 "type": "string",

 "required": true

 },

 "maxLength": {

 "type": "number",

 "default": 0

 }

 },

 "required": true

 },

 "value": {

 "type": "string",

 }

 }

},

Variable

Retrieval

{

 "name": "variable-retrieval",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\bvr[0-9]+\b",

 "required": true

 },

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "retrieve": {

 "type": "string",

 "valid": "\ba[0-9]+\b",

 "required": true

 }

 }

59

},

Choice

{

 "name": "choice",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\bc[0-9]+\b",

 "required": true

 },

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "options": {

 "type": "array",

 "items": {

 "type": "string",

 },

 "required": true

 },

 "value": {

 "type": "string",

 }

 }

},

Coniditional

Block

{

 "name": "conditional-block",

 "properties": {

 "id": {

 "type": "string",

 "valid": "\bcb[0-9]+\b",

 "required": true

 },

 "version": {

 "type": "number",

 "default": 0.1,

 "required": true

 },

 "mandatory": {

 "type": "boolean",

 "default": true

 },

 "options": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "indicator": {

 "type": "string",

 },

 "option": {

 "type": "object",

 "required": true

 },

 }

 },

 "required": true

 },

 "value": {

60

 "type": "string",

 }

 }

}

Table 2 – JSON schema for proposed model

61

Appendix B – ‘Tekstblok aanhef’ in JSON storage

Root object

The root object of the document, it contains a title and a sequence of blocks.

Root object:

{

 "object": "sequence",

 "id": "seq1",

 "title": "Tekstblok aanhef",

 "version": 1.0,

 "blocks": [see Table 4 below]
}

Table 3 – JSON – Document root for “Tekstblok aanhef”

Tekstblok aanhef

Contains all objects for the document.

Choice:
Op/Heden,/Vandaag,

{

 "object": "choice",

 "id": "c1",

 "version": 0.1,

 "options": ["Op", "Heden,", "Vandaag,",],

 "value": null,

},

Assignment:
♣datum♣

{

 "object": "assignment",

 "id": "a1",

 "version": 0.1,

 "variable": {

 "name": "datum",

 },

 "variableType": {

 "name": "date",

 "rule": "/^(0?[1-9]|[12][0-9]|3[01])[\/\-](0?[1-

 9]|1[012])[\/\-]\d{4}$/",

 },

 "value": null,

},

Text:
,

{

 "object": "text",

 "id": "t1",

 "version": 0.1,

 "content": ",",

},

Choice:
verscheen/verschenen

voor mij,/verklaart

{

 "object": "choice",

 "id": "c2",

 "version": 0.1,

 "options": [

 "verscheen voor mij",

 "verschenen voor mij",

 "verklaart"

],

 "value": null,

},

62

Sequence:
TEKSTBLOK

PERSONALIA VAN

NATUURLIJK

PERSOON versie 1.0

{

 "object": "sequence",

 "id": "seq2",

 "title": "Tekstblok personalia van Natuurlijk Persoon",

 "version": 1.0,

 "blocks": [

 see Table 5 below
]

},

Sequence:
hierna te noemen:

„notaris‟, als

waarnemer van

TEKSTBLOK

PERSONALIA VAN

NATUURLIJK

PERSOON versie 1.0

{

 "object": "sequence",

 "id": "seq3",

 "version": 1.0,

 "mandatory": false,

 "blocks": [

 {

 "object": "text",

 "id": "t3",

 "version": 0.1,

 "content": "hierna te noemen: ‘notaris’, als

 waarnemer van"
 },

 {

 "object": "sequence",

 "id": "seq2"

 }

]

},

Text:
, notaris

{

 "object": "text",

 "id": "t4",

 "version": 0.1,

 "content": ", notaris",

},

Conditional

Choice:
in de gemeente

♣gemeente♣

kantoorhoudende te /

te / gevestigd te / met

plaats van vestiging

{

 "object": "conditional-choice",

 "id": "cb1",

 "version": 0.1,

 "options": [

 {

 "indicator": "1",

 "option": {

 "object": "sequence",

 "id": "seq4",

 "version": 1.0,

 "blocks": [

 {

 "object": "text",

 "id": "t5",

 "version": 0.1,

 "content": "in de gemeente",

 },

 {

 "object": "assignment",

 "id": "a9",

 "version": 0.1,

 "variable": {

 "name": "gemeente",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

63

 "value": null

 },

 {

 "object": "text",

 "id": "t6",

 "version": 0.1,

 "content": "kantoorhoudende te",

 },

]

 },

 },

 {

 "indicator": "2",

 "option": {

 "object": "choice",

 "id": "c3",

 "version": 0.1,

 "options": [

 "te ",

 "gevestigd te",

 "met plaats van vestiging"

],

 "value": null,

 },

 },

]

},

Assignment:
♣woonplaats♣

{

 "object": "assignment",

 "id": "a10",

 "version": 0.1,

 "variable": {

 "name": "woonplaats",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null,

},

Text:
als volgt

{

 "object": "text",

 "id": "t7",

 "version": 0.1,

 "mandatory": false,

 "content": "als volgt",

},

Table 4 – JSON – Tekstblok aanhef

“TEKSBLOK PERSONALIA VAN NATUURLIJK PERSOON versie 1.0”

Contains the objects that belong to the sequence “Tekstblok personalia van natuurlijk

person versie 1.0”

Text:
professor

{

 "object": "text",

 "id": "t2",

 "version": 0.1,

 "mandatory": false,

 "content": "professor"

},

64

Assignment:
§adellijke titel§

{

 "object": "assignment",

 "id": "a2",

 "version": 0.1,

 "mandatory": false,

 "variable": {

 "name": "adelijke titel",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§titel§

{

 "object": "assignment",

 "id": "a3",

 "version": 0.1,

 "mandatory": false,

 "variable": {

 "name": "titel",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§voornamen§

{

 "object": "assignment",

 "id": "a4",

 "version": 0.1,

 "variable": {

 "name": "voornamen",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§adellijke titel§

{

 "object": "assignment",

 "id": "a5",

 "version": 0.1,

 "mandatory": false,

 "variable": {

 "name": "adelijke titel",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§voorvoegsels§

{

 "object": "assignment",

 "id": "a6",

 "version": 0.1,

 "mandatory": false,

 "variable": {

 "name": "voorvoegsel",

65

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§achternaam§

{

 "object": "assignment",

 "id": "a7",

 "version": 0.1,

 "variable": {

 "name": "achternaam",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

},

Assignment:
§titel§

{

 "object": "assignment",

 "id": "a8",

 "version": 0.1,

 "mandatory": false,

 "variable": {

 "name": "titel",

 },

 "variableType": {

 "name": "alphaNumeric",

 "rule": "/^[-\sa-zA-Z]+$"

 },

 "value": null

}

Table 5 – JSON – Tekstblok personalia van natuurlijk persoon versie 1.0

66

67

Appendix C – MySQL Storage structure

Sequence

-- Create syntax for TABLE 'sequences'

CREATE TABLE `sequences` (

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `title` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE 'sequence_blocks'

CREATE TABLE `sequence_blocks` (

 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,

 `sequence_id` varchar(10) NOT NULL DEFAULT '',

 `sequence_version` float(10,1) NOT NULL DEFAULT '0.1',

 `block_id` varchar(10) NOT NULL DEFAULT '',

 `block_version` float(10,1) NOT NULL,

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Texts

-- Create syntax for TABLE texts

CREATE TABLE `texts` (

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `content` text NOT NULL,

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Assignments

-- Create syntax for TABLE assignments

CREATE TABLE `assignments` (

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `name` varchar(255) NOT NULL DEFAULT '',

 `variable_type_id` int(11) NOT NULL,

 `value` varchar(255) DEFAULT NULL,

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE variable_types

CREATE TABLE `variable_types` (

 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,

 `name` varchar(255) NOT NULL DEFAULT '',

 `rule` text DEFAULT NULL,

 `max_length` int(11) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Variable Retrieval

-- Create syntax for TABLE variable_retrievals

CREATE TABLE `variable_retrievals` (

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `assignment_id` varchar(10) NOT NULL DEFAULT '',

 `assignment_version` float(10,1) NOT NULL,

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Choices
-- Create syntax for TABLE choices

CREATE TABLE `choices` (

68

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `value` varchar(255) NOT NULL DEFAULT '',

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE choice_options

CREATE TABLE `choice_options` (

 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,

 `choice_id` varchar(10) NOT NULL DEFAULT '',

 `choice_version` float(10,1) NOT NULL,

 `value` varchar(255) NOT NULL DEFAULT '',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Conditional blocks

-- Create syntax for TABLE conditional_blocks

CREATE TABLE `conditional_blocks` (

 `id` varchar(10) NOT NULL DEFAULT '',

 `version` float(10,1) NOT NULL DEFAULT '0.1',

 `mandatory` tinyint(1) NOT NULL DEFAULT '1',

 `value` varchar(255) NOT NULL DEFAULT '',

 PRIMARY KEY (`id`, `version`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE conditional_block_options

CREATE TABLE `conditional_block_options` (

 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,

 `conditional_block_id` varchar(10) NOT NULL DEFAULT '',

 `conditional_block_version` float(10,1) NOT NULL,

 `block_id` varchar(10) NOT NULL DEFAULT '',

 `block_version` float(10,1) NOT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

