A new approach to structured document

building

An analysis of ‘automated document processing’ at Kadaster

Master Thesis

Author: Robbin Janssen

Student number: s4005236

University: Radboud University Nijmegen
Faculty: Faculty of Science

Course: Information Science

Graduation number: 182IK
Supervisor: Prof.dr.ir. Th.P. van der Weide
Date: 17 April 2013

Abstract

Kadaster is a company that is responsible for the land registry in the Netherlands.
Not only do they register information about the geography and the location of
properties, they also provide information to the public about this.

They have desighed and implemented a system to automatically process documents,
provided by customers, containing such information. Since there is no standard
format for supplying documents of this kind, they designed and implemented a
system that accepts defined document models, which can be used by customers.

The creation of these document models is time-consuming; it causes a lot of
discussion about such a model between the business- and IT-department. One of the
reasons for this is that document models are created using a self-defined color-
coding syntax and Microsoft Word. This thesis proposes a solution to this problem by
introducing a model where all these document models can be based on, replacing
the color-coding syntax

The basic concept is that the model slices a document into a sequence of smaller
parts called blocks. A block can be as little as one character, but can also contain
other blocks forming a complete document. Different types of blocks offer different
functionality to create and compose a document.

Kadaster can gain a lot of benefits using a model to base structured document
models on. It can be a starting point for automating the complete process.

Contents

1

5

INEFOTUCTION .t e e e e r e e e e e e e 9
1.1 TermMiNOIOQYuuuuuuuuuiniiiiiiiiei e 10
1.2 FOCUS Of the reSEarCuiiiiiiiie e 10
1.3 MEENOM ... 11
1.4 REIBVANCE ...t 12

Requirements and releVaNCEe..........ccooviviiiiiii e 13
2.1 Why use a structured document model for documentscoeeeeeeeeenn. 13
2.2 Implementation of a document modelcccoooeiiiiiiiiii 14
2.3 Creating a document Mmodel............ooooo i 15

2.3.1 Elements within the current modelccccccvvviiiiiiiiii 16
2.3.2 Color-coding syntax to define elements in a document model.............. 18
2.4 Example of a ‘document model’ by Kadaster..............cccooooiiiii, 18
2.5 Challenges with the Kadaster model............cccooiiiiiiiiiiiiiiin e, 20
2.6 Current drafting SYSIEMS.......cooeiiieieeee e 20
2.7 A SAMPIE SESSION ..o 21

The proposed MOEL..........oi i e 23

3.1 ASSUMPLIONS ..ot 23
0 I =1 o 26
IO O < APPSR TUPPTT TP 27
.13 ASSIGNIMIENT ..ttt 28
3.1.4 Variable retrieVal..............ooiiiiiiiiii e 29
.15 CROICE .ttt 29
3.1.6 ConditioNal CROICEuviiiiieiiiiiii e 31

3.2 Definition of the MOdelcooiiiiiii e 32

3.3 FUNCHONANTY oo 33
3.3.1 Example based on real document using the model............................ 33
3.3.2 Generating the example dOCUMENTuuuuiuuiiiriiiiiiiiiiiiiiiiiiiieeeeeeaeenns 36
3.3.3 The functionalities drafting SYSTEMuuuuuiiimiiiiiiiiiiiiiieiiiieiieee. 39

JIC=To] gl (o= U =] (o 45
4.1 SEOraAge SHUCKUIE ...ttt ettt e e ettt e e e e et e e erb e e e e eaeaenenes 45
4.2 Storing a document MOdelcoooieiiiiiiii e 46

(0] 131113 o] o [51

5.1 Implementation in the organizationcccooviieeiiiiiiiiciis e 52

5.2 Recommendation and fOllOW-UP...........cooeiiiieiiiiieee 53
21T o] [ToTo =T o] 0|V USSP 55
AppendiX A — JSON SCREMAcoi i e 57
Appendix B — ‘Tekstblok aanhef in JSON storageccceeiiiiiiiiiiiiiiiiii e 61
Appendix C — MySQL StOrage StIUCLUIE.........cceiiieeiiiiiiis e e eeee et 67
Table of tables
Table 1 — Color-COUING SYNTAXuuuuuuiiiiiiiiiiiiiiii e 18
Table 2 — JSON schema for proposed mMOdel..............uuuuiiiiiiiiiiiiiiiiiies 60
Table 3 — JSON — Document root for “Tekstblok aanhef”ccccccoiiiiiiiiiinnnns 61
Table 4 — JSON — Tekstblok aanhef...............uiiiiiiiiiii s 63
Table 5 — JSON — Tekstblok personalia van natuurlijk persoon versie 1.0............... 65

Table of figures

Figure 1 — Kadaster doCumMeNnt ProCESSINGccvvvuuiiiieeeiiieiiiiiiieseeeeeeeeariiaaeeeeeeeeannns 15
Figure 2 — A simple representation of a document model..............cccciiieiii i, 23
Figure 3 — DOCUMENL @S @ IrEEiieiviiiii i e e e e e e e e et e e e e e aeaene 25
Figure 4 — Proposed model — Single BIOCK...........coiiiiiiiiiiiicee e, 26
Figure 5 — Proposed model — BIOCK........c.cooiiiiiiiiiiii e 27
Figure 6 — Proposed Model — TEXEuuuiii it e e e e eanees 28
Figure 7 — Proposed model — ASSIGNMENT...........uuiiiiiieiiiieiiee e e e eeeens 28
Figure 8 — Proposed model — Variable retrieval.............ccccocoiiiiiiiiiiieiice e, 29
Figure 9 — Proposed model — ChOICEcooiiiiiiiiiiii e 30
Figure 10 — Proposed model — Conditional ChoiCeccccviiiiiiiiiiiiiieee, 31
Figure 11 — Definition of the model.............oooo 32
Figure 12 — Post-order walk for the retrieval of an assignment.cooeeeeeeen. 33
Figure 13 — JSON object tree for “Tekstblok aanhef”...............ccc 37
Figure 14 — Parsed grammar into HTML ... 37
Figure 15 — lllustration of 'LiSt dOCUMENLS'.........coooiiiiiiii e 39
Figure 16 — lllustration of ‘view document’..............cccooii i, 40
Figure 17 — lllustration of ‘highlighted block’ccc 40
Figure 18 — lllustration of ‘highlighted assignment’cccc 41
Figure 19 — lllustration of ‘edit tOOIIP’cceiiiiiiiiii e 42
Figure 20 — lllustration of ‘add element’.............ccoceeii i, 43
Figure 21 — lllustration of ‘Revision comparing’ ..., 44
Figure 22 — Tree for “Tekstblok aanhef” with post-order walk traversal 49

Table of document models

Document model 1 — “Tekstblok aanhef’ ..., 19
Document model 2 — “Modeldocument akte van levering”ccccciiieeiie e, 19
Document model 3 — Content for “Tekstblok aanhef”............cccooii i, 34
Document model 4 - Grammar of content for "Tekstblok aanhef"............................ 34
Document model 5 - Content for “Tekstblok personalia van natuurlijk persoon” 35

Document model 6 — Grammar for content for “Tekstblok personalia van natuurlijk
[oT=T =T o o 1PN 35
Document model 7 — Content for second “Tekstblok personalia van natuurlijk
[T=T=To o] o 1PN 35

Document model 8 — Grammar for content for second “Tekstblok personalia van

NAtUUITTK PEISOON”. 35
Document model 9 — Content for conditional ChOICE..........oceuvvevieeieee e, 36
Document model 10 — Grammar for content for conditional choice.............cccccuu...... 36

1 Introduction

In this rapidly changing computer-aided world we are always looking for tools and
methods to support us in the field of work. We want to perform tasks smarter,
produce faster and make sure that the whole process is sustainable and reusable
whenever we want to perform the same task over and over again.

There are a lot of work tasks like these that involve producing a document as the end
result, and in a lot of work fields the same document is used over and over again but
with different data (O'Leary, 2011).

This thesis focuses on a similar process within a company that is responsible for land
registry in the Netherlands; Kadaster BV. Not only do they register information about
the geography and the location of properties, they also provide information to the
public about this. This applies to houses and buildings, but also for ships, aircrafts
and (underground) transportation networks.

The data they use is mostly gathered from legal documents, the necessary data is
extracted from these documents and processed in a system. However, the
documents provided are no standard formatted documents. To cope with this
problem Kadaster has designed, created and implemented a system that accepts
‘standard’ formatted documents to be processed automatically into their system.
Using this method there is hardly any manual labor required to process a legal
document.

What they have created is called a document assembly system. In short: they use
self-written document models that are provided to an IT department. A working
application is created based on a document model, which results in a document
assembly system. Knowing which model created what document, they can easily
extract data from such a document and process it into their system automatically,
resulting in; document automation. Customers can use this assembly system or
create own implementations of this system. (J. Vos, personal communication,
Septemer 23", 2012).

This thesis will take a closer look at the process described in short above. Kadaster
indicated that the process of creating a document model that can be assembled and
automatically processed takes to long.

1.1 Terminology

The terms document assembly, document models and document automation give a
global idea of what Kadaster tries to achieve, but does not capture the full width of
the actual process.

e Document assembly indicates that a document can be assembled based on
given data, but not how the document is defined.

¢ Document models define what a model/document can do, but not how to use
it.

e Document automation is a term that might be too broad for the subject at
hand because it sometimes refers to managing, comparing and analyzing
documents as well.

A term that potentially covers the full width of the system is a ‘drafting system’. A
drafting system is an intelligent system that can draft documents based on structured
document models and save the data of that model (Lauritsen, Current Frontiers in
Legal Drafting Systems, 2007).

1.2 Focus of the research

Drafting systems help you draft documents. A mostly forgotten, or treated as least
important, part is not the actual drafting of documents based on structured document
models, but drafting or defining the structured document models themselves
(Lauritsen, Current Frontiers in Legal Drafting Systems, 2007). Because the problem
for Kadaster lies within this part of the drafting system, this thesis focuses on creating
a general approach to such a (part of the) system.

To optimize the process of creating a document model within Kadaster, we need to
overcome several obstacles.

Look into the current process of creating a document mode/

and find flaws in the process.

By looking into the complete process we get a clear view of how the current process
works within the organization. By finding flaws in that process we can find limitations
of the current method and find functionalities that Kadaster would like to have.

Define the requirements of a structured document mode/

10

When there is a clear view of the current process we need to take a look at how
Kadaster creates document model. Find out what kind of elements they use within
these documents, what the current shortcomings are and how this document model
gets translated into an application.

Propose a model for structured document models

A model can be proposed for creating a structured document model once the
requirements are clear. Within the proposed model the research will focus on
documents in global, not just documents based on Kadaster.

Basic interactions and functionalities of this model have to be defined as well. A
description of how an application can work with this model should give the user a
notion of what the model is capable of and how they can interact with the model.

Storing and storage structure of structured document models

Once the model has been proposed it is important to define how such a model can
be stored, of course many solutions can be applied here to achieve this. But a
general storage structure will be defined.

Throughout the research one example document of Kadaster will be used to test and
validate the requirements, model and storage structure.

Summing this into a research question results in the following:

How do structured document models benefit the process of document

automation within Kadaster?

In the following chapters the statements above will be dealt with, together they will
show what benefits this solution can have to the document automation process within
Kadaster.

1.3 Method

Many papers exist about document automation; by reading and searching other
papers about this subject we will try to understand the know-hows about document
automation.

Kadaster has published all of their current document models and methods for
creating and implementing those models online on their website. These sources will
be used to define requirements and to get a global idea of how a company like
Kadaster works with documents. Next to these documents we can contact Kadaster
to provide any additional information next to these documents.

11

These are the sources for proposing a model and storage structure, to test the model
and storage structure a small application will be written to test the functionality and
validity of the model. An actual live document will be created using the model and
storage structure.

The literature used in this research will be in the bibliography and organized
according to the APA standard. These references will be visible throughout the whole
research.

1.4 Relevance

The web is constantly evolving and the rise of web-applications has officially started
a while ago, more and more web-based applications are being developed (NEM,
2012). In the field study of this thesis we can find some web applications that are
similar to drafting systems as well. However, most of them are based on old studies
and have to cope with legacies of previous applications (Lauritsen, Current Frontiers
in Legal Drafting Systems, 2007).

Data within documents needs to get where it is going much faster then it used to. A
clear separation between data and content should benefit this (O'Leary, 2011).

It is important to realize that in these new times technology is rapidly evolving. Being

able to utilize these new technologies might give new insights on how to create more
intelligent documents.

12

2 Requirements and relevance

Structured document models are used for creating and processing large amounts of
automatically generated or drafted documents. The structure and principles where
these document models, or any other objects for that matter, are based on is of
utmost importance and is the base for all applications that want to work with these
documents (Lauritsen & Gorden, 2009). These structured document models are a
crucial part of a drafting system. Any crucial mistakes in the model and thus the
structure can result in a terrible system and in an even more terrible user experience
(Hafner & Lauritsen, 2007).

2.1 Why use a structured document model for documents

Imagine a ticket for a fine handed out by a police officer; to the human eye it appears
to be a normal ticket or document, to a computer system however, it can be much,
much more. A ticket contains a lot of information, for example details of the offender,
the details of the officer, the amount of the fine, date, location, car information and
much more. If the filled out ticket is based on a structured document model then we
can automatically process all these details with another system that makes sure that
the fine is assigned to the correct person, that the car is registered, the person has
insurance etc.

When data is saved in a structured way a computer system can create, read, update
and delete this data. If a structured document model is connected to this data, then
we have the possibility to recreate documents based on given input. We can alter the
document, including its structure as well. Because the data is stored in a structured
way, we can process the document automatically. A system can perform actions
based on the given data input from a structured document. In other words, structured
document models can greatly benefit in automating business processes (Lauritsen &
Gorden, Toward a General Theory of Document Modeling, 2009).

Systems used to generate structured document models are called ‘drafting systems’.
These drafting systems are tools that help you create a structured document model
that eventually can be filled in by a user (Hafner & Lauritsen, 2007). The ticket
example used above looks like a simple document; it has few fields to fill in and has
a pre-defined layout. Saving a structured document model of this ticket seems easy
at first, however there are obstacles that need to be conquered. E.g. definition of
what appears where when. Filled in fields that can be reused in the document; for
example; a name that is reused in a later part of the document, or multiple choices
that affect the layout of the document.

We can use structured document models for more any purpose, for example
responses to customer complaint letters. This requires a structured document to fill in
predefined data, offer choices of solutions, maybe add or remove parts of texts and
changes to layout. Now the model already has properties, multiple values, positions
and mandatory or optional status.

13

Note that the more functionality, freedom and possibilities the model has, the harder
it becomes to create a tool that utilizes all these features and is easy useable for a
user (Macleod, 1990). This thesis focuses on creating a model for basic, structured
document models. The purpose of this model is to define a better insight in which
these structured documents can be built.

2.2 Implementation of a document model

As described in chapter Fout! Verwijzingsbron niet gevonden. this thesis is closely
based on legal document models that are created and used by Kadaster. Before it is
possible to make assumptions, a definition and a technical description of a new
model, it must be clear what the requirements are and what functionality the model
needs.

To realize this it needs to be clarified what it is that Kadaster wants to achieve using
a structured document model. As we know, Kadaster processes large amounts of
documents and gathers data from these documents. The data gathered will be
processed and used in their core business process system. Extracting this data
should be quick and easy; integrity and validation of the data is important.

Kadaster uses a system that can (re-) generate documents based on content from an
Extensible Markup Document (XML) file and a model identifier number?, this number
indicates that this XML file should contain content to generate a document ‘Levering’
for example, in other words, the meta-information about the document. The XML
Schema Document (XSD) file contains the document layout, document structure and
document validation for all possible documents. The XSD is based on a proposed
document model. The combination of these gives you the functionality to (re-)
generate documents (M. Arfman, personal communication, September 9", 2012).

A structured document that can be processed automatically by Kadaster contains:
1. Meta-information about the document such as version number and creation
date,
2. A document model containing a set of elements that form the content of the
document,
3. The validation of the document,
4. The layout of the document.

! Kadaster uses the word ‘Depot number’ in their documentation to indicate a document.

14

Model
identifier
R
XSD N Document
w1
R
R

Figure 1 — Kadaster document processing

The XSD created and used in this application is based on all of the proposed
document models that are defined internally; all models are defined in one file. These
document models are made by hand, not by a drafting system or any other
application of that kind.

Kadaster uses a text-processing tool (Microsoft Word) and a self-defined color-
coding syntax to define the layout, content and rules for a document model. The
biggest challenge here is that the model is not saved in a structured, ordered and
reproducible way. Because of this a lot is unclear when another department tries to
create an implementation of this document model. In chapter 2.5 the challenges and
limitations with the current process and color-coding syntax are explained. For now
the same functionality and elements as this syntax will be used to create the
proposed model.

2.3 Creating a document model

When a new type of document or a change in an existing document is proposed, the
document model for this document will be (re-) defined. As stated before, the
document model is drawn through a self-defined color-coding syntax, not a drafting
system. In chapter 2.3.2 the color-coding syntax defined by Kadaster and its
flaws/limitations are explained in detail.

Domain experts for this particular type of document define the document model.
These experts have to learn the syntax defined by Kadaster Because Kadaster uses
a text-processing tool to define the model, none of the information, properties and
values inside the model is stored in a defined, structured, digital way; the model is
saved as a Microsoft Word document, but any text-processing tool that supports
colors suffices. (J. Vos, personal communication, December 13", 2012).

After many revisions and changes the document model is finalized and send to the

IT-department of Kadaster An example of a finished document model can be found in
chapter 2.4.

15

When the document is sent from the domain experts to the IT-department, it causes
a lot of discussion and explanation about the model. Many parts of the document
model are unclear, vital details are missing and there is a lot of room for different
interpretations of parts of the document model.

Overcoming this barrier, the IT department creates a technical document for this
document model and defines the structure and validation. It is then outsourced to a
development company that will implement it into their main application. Here an
application is formed that implements this structured document, but still, it is based
on a document model written by hand. When a change is made, the whole process
starts over.

2.3.1 Elements within the current model

Kadaster has defined their own syntax and semantics to create structured document
models. Each document model has a version number and when the document
changes, the version number is incremented as well.

As of now, document models can exist of the following elements: (Noort, 2011)
e Fixed and optional text
¢ Mandatory choice text
¢ Mandatory and optional variables
e Choice blocks
o (Optional) Text blocks

Most of these elements require more explanation; the document provided by
Kadaster should take care of this. However, personal communication was needed to
explain the different situations (J. Vos and M. Arfman). This indicates that the
document that should provide a clear guideline on how to create document models
is unclear.

Fixed and optional text

Two types of text can exist within a document. There is fixed text that cannot be
changed and is mandatory for the document to be valid. Then there’s optional text,
this text is valid to use for this document but is not mandatory. It is mostly used to
create large amounts of fixed text where no variables, choices or text blocks are
needed.

Mandatory choice text

Like the fixed text this choice text is mandatory for the document. The choice text
exists of multiple sentences or words and one of these has to be chosen to make the
document valid. A choice text can be made optional by using it within an optional
text. It is used for creating multiple choices like ‘Sir/Madam’ for example.

16

Mandatory and optional variables

Like the text there are two types of variables as well. One type of variables is optional
and one type is mandatory. The variable obtains a uniqgue name within this document
and can be used multiple times within the same document. A variable begins and
ends with a § symbol. A variable can be used for example to use a name throughout
the whole document.

Choice blocks

A choice block is a part of the document where the user eventually has to choose an
instance of this block. These instances can contain for example all of the elements
above. An instance of a choice block is created using the same syntax as a
document model; this would indicate that a variant of a choice block is a document
model itself. According to the documentation, a choice block is specific to the
document model and applies only to this document model. In short, a choice block is
a collection of mini documents where the user has to choose one of these mini
documents.

(Optional) text blocks

A text block is a generic block of text that can be used within all the document
models. Similar to an instance of a choice block, it is created using the same syntax
as a document model as well. However, the main difference between these two is
that a text block actually can be used within other document models where a choice
block cannot. Because text blocks, like document models, can be modified and
updated, these text blocks contain meta-information. When a text block is included in
a document model the version number of this text block is specified as well.

17

2.3.2 Color-coding syntax to define elements in a document model
To use all the elements discussed above Kadaster has created it's own syntax. The
syntax is defined by color-coding to show what kind of element is used (Noort, 2011).

Element Example
Fixed text Fixed text is colored red.
Mandatory choice text Mandatory choice text is colored green

Mandatory variables are colored black and begin and

Mandatory variable end with a § symbol

Optional variables are colored purple and begin and

Optional variable end with a § symbol

Optional text Optional text is colored purple

Fixed text within optional

text Fixed text within optional text is colored brown

Variable within a optional
text

A variable within a optional text is colored blue

Mandatory choice text
within a mandatory choice
text

Choice block

Mandatory text block A mandatory text block has a yellow background

Optional text block An optional text block has a green background

Table 1 — Color-coding syntax

2.4 Example of a ‘document model’ by Kadaster

The syntax above can define a document model that is used to create a technical
design. A document model created by Kadaster is nothing more than a text
document file with text and colors. The text document gets a title and version number
and this is how it is referred to in other document models. Because text blocks can
contain other text blocks and can be used within multiple document models, it is the
smallest document like element within a document model. A text block is a separate
text document file as well.

18

A text block looks as following:

Tekstblok Aanhef
Versie 2.2, dd 10 januari 2011

Op/Heden,/Vandaag, «datumd, voor mij,/verklaart TEKSTBLOK
PERSONALIA VAN NATUURLIJK PERSOON versie 1.0 hierna te noemen: ‘notaris’, als
waarnemer van TEKSTBLOK PERSONALIA VAN NATUURLIJK PERSOON versie 1.0, notaris in
de gemeente #gemeente# kantoorhoudende te / te / gevestigd te / met plaats van vestiging
swoonplaats# als volgt

Document model 1 — “Tekstblok aanhef”

As seen in the example above, this text block already includes another text block.
Below an example of a small part of a document model is displayed.

Modeldocument akte van levering - conform model BTRO1E/ Van Brug

Versie 3.7 d.d. 22-02-2012

Kenmerk: § omschrijving §

TEKSTBLOK AANHEF versie 2.2:
§ 1. STEKSTBLOK GEVOLMACHTIGDE versie 2.4:
8§ a. STEKSTBLOK PARTIJ NATUURLIJK PERSOON versie 2.7 /| TEKSTBLOK PARTIJ NIET
NATUURLIJK PERSOON versie 2.5;
§en voornemens het hierna te vermelden registergoed te gaan
bewonen, § hierna zowel tezamen als ieder afzonderlijk te noemen:
(“vervreemder”/’verkoper”) / (“verkrijger”/’koper) / “partij [volgletter]”;
en

Document model 2 — “Modeldocument akte van levering”

Looking at these live documents we already notice the following flaws:

1. The title and version definition lack consistency, this could indicate that no
agreements have been made on how to define these.

2. Different symbols are used to indicate a variable, the spades and the
paragraph symbol; one of these symbols is not defined in the color-coding
syntax.

3. In the document model we see that a paragraph symbol is used in front of a
paragraph, text block and fixed text, this is incorrect according to the color-
coding syntax as well as this symbol is defined to use with variables.

A finished document model will be send to the IT-department, they will create a
technical document and complement the XSD that can be used within an application.
This thesis focuses on the creating of those document models that can be send to
the IT-department. It will not focus on creating these XSD’s and technical documents,

19

since this is a specific type of export for their system. However the storing of
structured document models will be treated in this thesis.

2.5 Challenges with the Kadaster model

By using this syntax to define a document model, Kadaster has to cope with a couple
of challenges. The most important challenges are mentioned and explained in this
chapter.

1. The lack of functionality that a domain expert can use to define a document
model. For example: a text or variable should only be shown if a particular
choice has been made.

2. The syntax can be unclear to the IT-department on how a domain expert
meant to define a part of a document model. For example: if two optional
texts are set after each other (meaning they have the same color) it is unclear
where the separation is intended by the domain expert.

3. ltis not clear to the IT-department which variable is meant where, sometimes
a document model uses the same variable in multiple places and it is not
clear which of the two variables is meant where. For example a ‘surname’ can
be defined twice in a document for the selling and buying party, the current
syntax only uses the name ‘surname’ to indicate a party, so to the IT-
department it's unclear where surname ‘A’ is meant and where surname ‘B’ is
meant.

4. When a document or text block changes the version number is updated.
However all of the other documents that use this document or text block have
to be manually updated as well. For one or two documents this is not a
problem, but when a lot of documents are defined it is hard to maintain.

5. There is no hierarchical view that shows which documents are dependent on
each other and where they are being used. Missing this view also harms the
maintainability.

These and other challenges result in a lot of communication errors between the
domain experts and the IT-department. There is a lot of room for different
interpretations of a document model because of some of these challenges. This is
not desirable when a syntax is defined. The syntax should make sure that there is no
room for difference in interpretation (Miller, 1992).

What we need is a clear definition of a model for a structured document model, when
this is defined a tool is needed to draft document models based on this structured
document model.

2.6 Current drafting systems

Drafting system software is reasonably common in legal and insurance companies
nowadays. Most of these systems require the user, for example a lawyer, paralegal
or do-it-yourselfer, to work through a series of question dialogs. The answers to
these questions are used to fill the document with data. Another example is that a

20

user picks particular forms and parts of documents from a library that eventually are
merged into a full document.

These types of systems are all based on regularities within the structure of these
documents. These regularities define which sections, paragraphs, sentences or
words are placed where under what circumstances in a document. The terminology
varies among these systems, most of them use a template that functions as a model
for a particular kind of document. Using the terms described in chapter 1.1 a
template of this kind can be described as a document model that can be assembled
within a system. (Lauritsen, Current Frontiers in Legal Drafting Systems, 2007)

These systems are mainly focused on assembling a document based on a document
model, not on creating an actual document model that can be assembled. This thesis
focuses on creating the actual document model, not assembling it.

2.7 A sample session

Defining a structured document model requires another kind of system than a system
that is used assembling a document model. This chapter describes the kind of
interactions a user may have with such a system and a basic explanation about the
steps of creating a structured document model.

The concept of such a system is that the content of a document model results in a
defined structured document model that can be translated into a document, but also
back into that same model. (Lehtonen, Petit, Heinonen, & Lindén) There will be no
more room for errors in different interpretations about a field that has been defined
between the domain experts and the IT departments, because it has been defined
according to a model and is saved structured.

There can be many ways in which such a system allows you to create a structured
document model. For example inputting a predefined grammar that forms your model
or an application that allows you to drag and drop certain elements to form a
structured document model.

The key element for such a grammar or application to work is a defined model where
all the structured document models are based on. In chapter 3 a basic model will be
proposed that meets the requirements stated in the previous chapters. A storage
structure is needed to save the structured document model after creating it according
to the proposed model. Once saved, the application needs to be able to reopen that
model and continue editing.

21

An ideal session with such a system would require the following global steps:
1. Start with an empty structured document model.
2. Fill the structured document model with data based on the proposed model.
This can be done with for example;
a. Grammar input.
b. An application allowing you to create a document by interacting
with it.
3. Export the structured document and save it as a new version according to a
defined storage structure.
4. The defined storage structure allows the IT department to (fully automatically)
process the structured document model into a useable document.
5. Reopen a structured document model that is loaded from the storage.
6. Repeat from step two.

Most modern day systems have an application that works online, mobile and in the
cloud. This can also be achieved when creating an application based on this
concept. In chapter 3.3.3 interactions with the model will be explained in more detalil,
for now a global definition of such an application will be given.

Visualization

For starters the application should offer the functionality to a what-you-see-is-what-
you-get principle. The user creating a structured document model should be able to
see on the fly how a change, addition or deletion of text affects a document.
However, a structured document model can be become very large and complex, a
user should be able to ‘zoom-in’ on particular parts of the document that displays
more information and editing options about that particular part of document
(Lauritsen, Current Frontiers in Legal Drafting Systems, 2007).

Lifecycle of a structured document model

A document model can be updated, edited or even removed. In other words, a
document model changes and evolves. When a document model is altered enough it
might occur that previously assembled documents based on that document model no
longer work because the data that is required as input for that document has
changed. That's why a document model needs to have a version and support for
rendering of previous versions (Lauritsen & Gorden, Toward a General Theory of
Document Modeling, 2009).

Storing document models

When a user has finished working on a document model, he or she needs to be able
to save the document. There are many solutions, in many formats and languages, on
how one could store a document model in a structured storage. But the principle is
the same; store the data and make sure it is reusable and loaded in the same way as
it was stored. A user should be able to export the model in a defined storage
structure based on conventions that allows other tools to work with these models.

22

3 The proposed model

In this chapter a model is proposed for document models based on the requirements
and basic features defined in chapter Fout! Verwijzingsbron niet gevonden..
Assumptions about different elements and their functionalities will be made. Those
elements will be modeled and described in details as well. Finally the complete
model and functionalities will be proposed.

3.1 Assumptions

As described in chapter 2.2 this thesis will closely look at Kadaster to propose a
model. The elements that will be proposed in this chapter have been derived from
the syntax and documents provided on their website. With these basic elements it is
possible to create a document that fulfills the needs for every structured document
that Kadaster uses at the moment.

Assume that a structured document Text Assignment Text
can contain the following elements: ———
1. Text, 0] Structured Document "A"

2. New variables (Assignments) eI :

3. Existing variables (Variable : Stuctured Document & 1
retrievals)

4. Multiple choices (Choices)

5. Other structured documents
(Blocks)

Figure 2 — A simple representation of a
document model

These five elements are the basis for the newly proposed model. Each element has
its own properties and functionality; of course some properties and functionalities are
shared across elements.

The figure illustrated above illustrates the basic concept for the goal of this model.
Creating a document by inserting small elements with their own functionality. Some
are optional (striped lines) and some are mandatory. The end result will be a
document that is created by ‘gluing’ all these small elements together in the correct
sequence.

Lauritsen & Gorden define all these elements as ‘text’ in their general approach to a
document model and do not make a clear distinction between these five (Lauritsen &
Gorden, 2009). In the end everything can be reduced to text or characters, but it
might be wise to make a clear distinction between elements because it allows you to
divide and share functionality and properties of these elements. In another article
written by Lauritsen and his colleague Hafner they do make a distinction between
these elements when they zoom in further on the details of such a model (Hafner &
Lauritsen, 2007). In the proposed model for this thesis a distinction between these
elements is made as well. A lot of properties are shared, but not all. Some unique
properties can influence the document vastly.

23

As llustrated in Fout! Verwijzingsbron niet gevonden. creating a document
requires ‘gluing’ multiple elements together. From now on we will refer to each
element as a block. We will start with the basic, fairly straightforward elements that a
block can be.

Assumption 1
A block (b) is an instance of an element text (t), assignment (a),

variable retrieval (vr) or choice (c).

This can be described as following:

b=t/lallvr]/c

Creating a document requires the use of multiple blocks. Assume that we have Text
t;, t, tz and Assignment a; and a,. A document is an instance of the sequence of
these blocks:

d =<t;>, <t;> <a;>, <t;>, <a:>

It is possible that we want to reuse the same ‘sequence’ of blocks in another
document. To achieve this we need to be able to copy a set of blocks from one
document to another. Now if a change occurs in this sequence we might want that
sequence to be changed in all the documents that depend on this sequence. To
achieve this we will assume that a block is a sequence of at least one or more
blocks.

SB(IJ =<t;>, <tz;>, <a;>, <tz>, <a>

Assumption 2

A block contains a sequence of one or more blocks.

Seq: is now defined as a sequence of blocks and can be used inside the same or
other documents.

d = <seq;>, <t;>, <ts>, <tz>

!

<t;>, <tz>, <a;>, <t;>, <az>
A block containing a sequence of blocks, which is actually a mini-document, can be

related to documents in three ways (Lauritsen & Gorden, Toward a General Theory
of Document Modeling, 2009):

24

1. Intra-documentary
The block is related specifically to a particular document, it is only used in one
document and has no function in other documents.

2. Inter-documentary

The block is related to at least one document, but can serve other documents as
well. An example can be a salutation in a letter. One should strive for a maximum
amount of inter-documentary blocks. This can be achieved by keeping blocks small
and thus reusable.

3. Extra-documentary
Blocks that have no relation whatsoever to any documents. These can be for
example blocks that will be used later or are old and no longer used.

Can we still speak of a document? Not really; documents have been minimized to a
level where a document can exist of a single block of text or even a character; a
large document is nothing more than a very long sequence of blocks. There will still
be made references to ‘documents’ in this paper. From now on when we speak of
documents or sequences, we speak of a sequence of blocks.

Assumption 3

A document exists of a sequence of blocks.

Something else that can be noticed from this sequence of blocks is the tree structure
that will eventually form the backbone of a document. This behavior is illustrated
below.

Figure 3 — Document as a tree

The tree structure can grow vastly and become complex when large documents are
created. Smart methods are needed to quickly traverse within the tree. However
when used properly, a tree structure can be a very powerful tool that allows you to
reuse parts of a document.

In the next chapter a basic block element will be define, in the chapters following all
type of elements that a block can be will be described in more detail.

25

3.1.1 Block

A block is the most important element in the proposed model. It's properties and
functionalities are the basis for all other elements. A block exists of a layout and a
version. Furthermore it can be set to mandatory or not, since we have optional parts
in documents as well.

A layout is needed to define how the block displays inside a document. For now only
little attention will be paid to the layout of a document. The model mainly focuses on
the structure of a document, layout specific details like when a break or indentation is
made can be added later on.

displayed
according to

Block
(blockNr)

{ true, false }

Figure 4 — Proposed model — Single Block

The version is needed for keeping track of revisions. It can also be used to
regenerate a document at a given version with given data. For example: the data
used inside an employment contract can be the same for the years 2012 and 2013,
but the content can differ as discussed in chapter 2.7. If a contract needs to be
renewed the next year, the data can be reused and it’s still possible to regenerate the
previous contract using that same data.

Given this, we can assume that a document is build up out of a sequence of specific
versions of blocks. This means that a sequence of blocks is an actual block that
points to other blocks. For example:

Seq: = <t 30>, <tz 21>, <ai 14> <t307>, <dz 41>

We can now propose our next assumption based on this information.

Assumption 4

a document exists of a sequence of blocks at a specific version.

% To improve readability the block version number will be omitted in the examples following.

26

We can now extend the proposed model for a single block above with a sequence of
blocks at a specific version. The following model is derived from these details and
forms the basis for the proposed model.

Block Version

displayed
according to

Block
(blockNr)

{ true, false }

Figure 5 — Proposed model — Block

In the following chapters the other elements will be explained. All these elements are
specializations of a block. They inherit all of its properties and functionalities.

3.1.2 Text

A text element is introduced to fill a document with content, as stated above all
elements are specializations of a block and thus inherit properties and functionalities
of a block. It has a layout, can be mandatory and the version is tracked. Because we
want to propose the model in its simplest and most minimalistic form we will only add
a content attribute to this element.

The content of a text can vary in length. It can be a single character, a word, a
sentence or even a complete paragraph depending on the content of a document.
For example:

<t;, “Vandaag verscheen voor mij”>
If we want to the text to be optional, we add curly brackets to the example:

{<t;, “Vandaag verscheen voor mij”>}
A user needs to be smart in defining texts; this can be very lucrative in reusing
blocks. For example, reusable texts can be the closing part of a formal letter, or the

address part of a letter.

Figure 6 below illustrates how the text element specializes the block element.

27

Block Version

1 |
: content 1
]

displayed
according to

Block
(blockNr)

{ true, false }

Figure 6 — Proposed model — Text

3.1.3 Assignment

It might occur that you want to introduce a variable in a document that can be filled
with data, for example: the surname in the heading of a letter. The variable and data,
from now on value, form a pair. This pair is called an assignment. Assignments can
be reused in the same document; this functionality is explained in chapter 3.1.4.

A definition is needed of what type of value is accepted by the variable within an
assignment. To achieve this an element called variable type is introduced. A variable
type can be reused across other variables and defines the rules and validation for a
variable. Types with their own rules can be dates, money, surnames, initials or email
addresses for example.

<ay “oplever datum’, date, 7>
Assignment is also a specialization of the block element. It has no extra properties

except for the relation with variable and value. The variable type defines for example
the validation rule in a regular expression and the (max)length of a variable.

Block Version

displayed
according to

Assignment
(assNr)

Block
(blockNr)

<

““““ contains contains

——— o - Validates
by

Variable
defines I:'j is of | (varName)

Variable Type
(title)

(content)

Figure 7 — Proposed model — Assignment

28

3.1.4 Variable retrieval

It is now possible to introduce assignments into documents. But it might occur that
one wants to reuse the same filled-in data all over a document, for example when
referring to a person’s name. If we create a new assignment it will result in duplicate
data. What is needed is an element that reuses an assignment and thus the value
within this assignment. To achieve this the element variable retrieval is introduced.

The variable retrieval is a specialized element of block that has an extra property.
That property is a derivative to an assignment. It defines which assignment exactly it
needs to be retrieved.

When we request to retrieve a variable we know it is attached to an assignment (that

does not imply that a value is assigned!). A simple grammar like <vr.> suffices
because the actual value can be derivative through the assignment.

Block Version

displayed
according to

Assignment
(assNr)

Block
(blockNr)

contains

{ true, false }

contains

"Variable
Retrieval”

Value
(content)

Variable
(varName)

Figure 8 — Proposed model — Variable retrieval

To quickly retrieve the defined assignment within a document a post-order walk can
be used to traverse to the assignment. This kind of walk traverses all child nodes
before their respective parents are traversed. Details about this interaction with the
model will be explained in the chapter 3.2.

3.1.5 Choice

It might occur that you want to provide a multiple choice within a document. For
example when there’s a document describing a person that is leasing a car, a choice
can be the kind of lease or brand of car. A multiple choice can have unlimited
options. The actual choice is one of the defined values.

29

An example of a rendered choice can be for example:

Favorite car brand

What is your favorite car brand?
1. BMW
2. Audi
3. Mercedes

As you can see, a choice can have an indicator as a prefix for the choice. This can
be set within the choice. Above example is translated as following:

<cy, [1:"BMW", 2:"Audi’, 3:"Mercedes"], 7>

The "?° at the end indicates that no choice has been made yet. If a choice would
have been made the “?" would contain the actual chosen value, for example:

<cy, [1:"BMW", 2:"Audi’, 3:"Mercedes"], “BMW">
What we need is a sequence of choices that form the options for a multiple choice.
Next to that there needs to be a possibility to order those options in a specific way. A

choice element has many option elements. These option elements are bound to the
choice by an indicator that orders the options. An option exists of a value.

Assumption 5

a choice exists of at least two options that contain a value.

Once a choice is made between one of the options it will be saved as an assignment,
by doing this the chosen option can be retrieved again in the document.

This can be visualized in the proposed model as following.

"Multiple choice"

Block Version

displayed
according to

: layout

Assignment
(assNr)
Value
(content)

Figure 9 — Proposed model — Choice

Block
(blockNr)

{ true, false }

30

3.1.6 Conditional choice

Based on the described choice element above we need to introduce another type of
element: a conditional choice block. A conditional choice block is used when we want
to make a decision within the document that vastly changes the content. In contrary
with choices we ‘choose’ which text appears at that position.

For example: with a defined conditional choice block we can achieve the functionality
that based on your earlier conditional choice, a specific sequence of blocks is added
to the bottom of a document. Some other choice would have added another specified
sequence of blocks at the bottom of the document. After a choice has been made the
chosen ‘option block’ will be set as a variable for this reference.

A conditional choice also makes it possible to create a choice between for example a
variable and a sequence of blocks at the position where the element is defined.

Adding this we have to correct assumption 1.

New assumption 1
A block (b) is an instance of an element text (t), assignment (a),

variable retrieval (vr), choice (c) or conditional choice (cb).

This can be described as following:

b=t/lallvr]//c//cb

The grammar used for a conditional block is similar to the grammar used in choice,
except for the options, they are now references to other blocks.

<chb;, [1:<seqs;>, 2:<seqz3>], 7>

Visualizing it into a model looks as following:

Block Version

\ "Conditional block"

Option
block

displayed
according to

{ true, false }

Variable - Value
contains
result for

Figure 10 — Proposed model — Conditional choice

31

3.2 Definition of the model

All elements have been defined and modeled into a proposed model. When all these
elements are put together in a model then the complete model scheme is formed,
based on the assumptions and definitions made above. The scheme can be found in
Figure 11. To keep the model readable and clear, some properties of elements have
been disregarded in this figure.

Block Version

_______ — displayed

f 1

I version t

I) gEEJJ
f ! according to
\L layout ! .‘ Block
"""" oc
r
I
L

""""" \

1
mandatory .. can be isa
]

{ true, false }

"Retrieval” "Multiple choice" "Conditional block"

— I Option i biock
sets — oo ! oc d
sa=uenayiin eal by
i i

contains
is of type displayed as

M
defines . Value

contains result for

sets result
n

Figure 11 — Definition of the model

Some functionality can be derived from this scheme. As stated before a block can
exist of a sequence of blocks. A sequence of blocks in fact already is a document.

The block element acts as a generalization for all other defined elements. They'’re a
specialization of the block element. There’s no need to define an exclusive-or
constraint because a generalization/specialization forces the choice of a
specialization.

A large document can exists of many, many of these blocks and blocks containing
other sequences of blocks. As stated before a large document is build up in a tree
structure. A method is needed to retrieve the value of a previously defined
assignment with a variable retrieval element. To achieve this the model needs to be
able to traverse through the tree.

With these kinds of documents it is most likely that a defined assignment is a (deep)
child node. One of the traversal methods that we can apply here is a post-order walk.
A post-order walk is a depth-first walk in which the node will traverse the children of
all leaves/sub trees first before it will traverse its parents (Lerma, 2005).

32

In the case of the proposed model, it will traverse the deepest blocks first before it
traverses their containers. Because of this, an assignment that is declared in a block
node at the deepest level can be used in a block at the highest level. The traversal
route of a post-order walk is shown in the figure below.

sed; . 12

Figure 12 — Post-order walk for the retrieval of an assignment.

The 'root’ block is a block called seqs, this is the main container for the document and
the first node for our tree. It then has a sequence of blocks. Block seq;, text t;, Block
seqQs, assignment a,, etcetera. Each block contains more elements. The blue arrow
describes the line in which the post-order walk traverses through all the elements.
The red numbers show in which order the nodes are traversed.

At the red number 9 we find a variable retrieval vry Assume that we want to retrieve
assignment az using this vr,. Using a post-order walk we find, within 3 steps, the
corresponding assignment. The traversal of the tree is as following: a; > t; > a.

The same method of traversal can be used when we want to locate a previously
defined sequence of blocks.

3.3 Functionality

This chapter will describe the basic functionality for the model to work with. A ‘real-
life’ example is introduced and an idea of the drafting system is presented.

3.3.1 Example based on real document using the model.

In this chapter a live document defined by Kadaster used in multiple of their
documents will be translated into the model. All elements described for the model are
used in this document. First the original document will be shown, followed by a table
in which that particular sequence of the document is ‘cut’ into little parts that fit the
model. These sequences can be reused within the document.

33

Original: “Tekstblok aanhef”

Op/Heden,/Vandaag, #datumd,

voor mij,/verklaart TEKSTBLOK PERSONALIA
VAN NATUURLIJK PERSOON versie 1.0 hierna te noemen: ‘notaris’, als waarnemer van TEKSTBLOK
PERSONALIA VAN NATUURLIJK PERSOON versie 1.0, notaris in de gemeente #gemeentes
kantoorhoudende te / te / gevestigd te / met plaats van vestiging #woonplaats# als volgt

Document model 3 — Content for “Tekstblok aanhef”

Defined as: Seq; - “Tekstblok aanhef”

Document
Op/Heden,/Vandaag,

&datume

voor
mij,/verklaart

TEKSTBLOK PERSONALIA VAN
NATUURLIJK PERSOON versie 1.0

hierna te noemen: ‘notaris’, als
waarnemer van TEKSTBLOK
PERSONALIA VAN NATUURLIJK
PERSOON versie 1.0

, hotaris

in de gemeente #gemeentes
kantoorhoudende te / te / gevestigd
te / met plaats van vestiging

&woonplaats#

als volgt

Model

<cy, [1: "Op", 2: "Heden," 3:
<a;, "datum", date, ?>

<t1, ",">

<c,, ["verscheen voor mij,",
mij,","verklaart"], ?>
<seq,>

{<seqgs>}

<ty, ", notaris">

<seq;>

<aip, "woonplaats", string,
{<t,;, "als volgt">},

Document model 4 - Grammar of content for "Tekstblok aanhef"

"Vandaag, "],

"verschenen

2>,

?>

vVOoor

34

Original: “Tekstblok personalia van natuurlijk persoon”

professor 8adellijke titel§ 8titel8 §voornamen§ 8adellijke titel§ §voorvoegsels§ §achternaams§ §titel§

Document model 5 - Content for “Tekstblok personalia van natuurlijk persoon”

Defined as: Seq; - “Tekstblok personalia van natuurlijk persoon”

Document Model

professor {<t,, "professor">}

8adellijke titel§ {<a,, "adelijkte titel", string, 2>}
8titel§ {<a;, "titel", string, ?>}
8voornamen§ <ay, "voornamen", string, ?>
8adellijke titel§ {<as, "adelijke titel", string, 2>}
8voorvoegsels§ {<ag, "voorvoegsels", string, ?>}
8achternaam8 <a;, "achternaam", string, ?>

8titel§ {<ay, "titel", string, 2>}

Document model 6 — Grammar for content for “Tekstblok personalia van natuurlijk persoon”

Original:

hierna te noemen: ‘notaris’, als waarnemer van TEKSTBLOK PERSONALIA VAN NATUURLIJK
PERSOON versie 1.0

Document model 7 — Content for second “Tekstblok personalia van natuurlijk persoon”

Defined as: Seqs

Document Model

hierna te noemen: ‘notaris’, als <ts;, "hierna te noemen: 'notaris', als
waarnemer van waarnemer van'">

TEKSTBLOK PERSONALIA VAN

: <seq,>
NATUURLIJK PERSOON versie 1.0

Document model 8 — Grammar for content for second “Tekstblok personalia van natuurlijk persoon”

35

Original:

in de gemeente #gemeentes kantoorhoudende te / te / gevestigd te / met plaats van vestiging

Document model 9 — Content for conditional choice

Define: Seq,

Document® Model

in de gemeente #gemeentes
kantoorhoudende te /

. <cb;, [1:<seqgs>, 2:<seqgs>], 2>
te / gevestigd te / met plaats van | =8 %]

vestiging

Define: Seq5

Document Model

in de gemeente <ts, "in de gemeente">

&gemeentes <ag, "gemeente", string, ?>

kantoorhoudende te <tg, "kantoorhoudende te">

Define: Seq6

Document Model

te / gevestigd te / met plaats van <cz, ["te", "gevestigd te", "met plaats van
vestiging vestiging"], 2>

Document model 10 — Grammar for content for conditional choice

3.3.2 Generating the example document
When the grammar is complete it is possible to generate a document from it. This
can be achieved by ‘parsing’ the grammar.

For this thesis a JavaScript application® was written that parses the grammar into a
JSON object. A HTML form allows you to input the grammar; a parser script will
parse this grammar into a JSON object. This JSON object is composed into a HTML
DOM structure that actually shows the structured document model.

% The numbers leading these sentences do not appear in the original document, it is purely
shown here to indicate the separation between seq5 and seqg6

4 Live example at http://www.doccy.nl/thesis/

36

The application® responsible for parsing the grammar follows these steps:
1. Clean the grammar (where needed) from special characters like new line,
tabs etcetera.
2. Parse the cleaned grammar according to a strict set of rules, this will be done
token by token. It will eventually form an array of ‘blocks’
3. For every element in the array transform it into a valid JSON object.
a. Detect the element type
b. Create JSON based on the element type and content from the array
c. Return that element
4. A large JSON object is the end result.

That JSON object forms a tree that we can illustrate as following:

ty seq,

Figure 13 — JSON object tree for “Tekstblok aanhef”

This parser is a limited parser that expects perfect input, once it finds an error it will
quit parsing and log about the error.

Another file was written® that composes a document based on a given JSON object.
It will create a simple HTML DOM structure that illustrates the separation between
the different elements within the grammar as show in Figure 14.

Figure 14 — Parsed grammar into HTML

® Source code for parser can be found at: http://www.doccy.nl/parser.txt, jQuery
ghttp:llwww.jquery.com) is required to run the script.

Source code for composing the grammar can be found at: http://www.doccy.nl/compose.txt,
jQuery (http://www.jquery.com) is required to run the script.

37

Having a JSON object that has been parsed from the grammar makes it fairly easy to
compose a HTML DOM structure based on that grammar. The compose script
follows these steps:
1. Start at the root node of the JSON object as figured in Figure 13.
2. For each child node walk ‘compose’ the element into a HTML DOM obiject.
a. Variable Retrieval elements will post-order traverse through the tree
and find the referred assignment.
b. Conditional Blocks will post-order walk through the tree and find and
set the referred variable/assignment.
3. If a child node has child nodes itself:
a. If blocks are defined, repeat step 2 for this node.
b. If no blocks are defined, post-order walk through the tree and find the
referred node.
4. Display the HTML DOM oabject.

The function composing the grammar needs to be recursive, because one sequence
can contain another sequence containing another sequence, etc. The function
responsible for this in the script is called parseSequence.

/**
* Parse a given sequence of blocks
*

* @param object sequence The sequence we want to parse
*
* @return void
*/
parseSequence = function (sequence) {
// Create a container where the rendered HTML will be put in

var container = $(document.createElement('div'));
// Check if there are any blocks defined in this sequence.
if (sequence.blocks !== undefined && sequence.blocks.length) {

// Walk through all of the provided blocks, and parse them
$.each (sequence.blocks, function(i, block) {
// Make sure the object is defined.
if (block.object !== undefined && block.object.length) {
block.previous = sequence;
// Parse the element and append it to the document container
element = parseBlock (block);
container.append (element) ;
} else {
console.log('Error: undefined object');
}
})
} else {
// No blocks found, we need to check if this sequence was defined before,
// if not, throw error.
sibling = getSequence (sequence) ;
if (sibling) {
// Parse the given sequence (again) and return it.
element = parseSequence (sibling);
return setlayout (sequence, element);
} else {
console.log('Error: sequence ' + sequence.id + '
has not been defined within this scope');
}
}

return setlayout (sequence, container);

i

38

This application demonstrates how a user can interact with the model, but for an
application to function in a work environment like Kadaster it will need more
functionality.

3.3.3 The functionalities drafting system
As described in chapter 2.6 most drafting systems don’t take the actual defining of
structured document models into account.

This chapter describes the minimum functionality that such a drafting system needs
to successfully work with the proposed model.

1. List all existing structured document models

The system needs to be able to display all structured document models that have
been created using the model. This means that the system will need to fetch all ‘root’
blocks. These are blocks that are not contained by any other block but do contain
other blocks. The models shown should always be the latest version of the
document. There should be a link called ‘add document’ where the user can start
creating a new document model.

Document list

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec pretium arcu non est scelerisque at ultrices nulla viverra. Ut

venenatis pulvinar est at porttitor.
Add document

Title Version Last updated Actions
Levering 1.02 Apr 14th, 2013

Aanhef 4.5 Mar 7th, 2013

Figure 15 — lllustration of 'List documents'

39

2. Viewing an existing structured document model
When clicking on a link within the list created in Figure 15 the system should
navigate to the selected structured document model. The model has to be shown as
a ‘live’ document like we know it from for example Microsoft Word, as stated in
chapter 2.7. This screen has three modes. The first mode is viewing, the second
mode is editing and the third mode is revision viewing. The views are mostly the
same, however the actions will differ.

Levering ..

Information
about the
current
highlighted

element
appears
here.

Blocks that contain other blocks will be highlighted when the mouse hovers them.
Clicking on such a block will result in zooming in on this block, in other words,

(" Edting | viewing | . 1]
Kenmerk: § amschriving §
&
TEKSTBLOK AANHEF versie 2.2 —
§ 1. §TEKSTBLOK GEVOLMACHTIGOE versie 2.4 B0 =ESE= = 7 W e-
§ . §TEKSTBLOK PARTW NATUURLLIK PERSOON versie 2.7 / TEKSTBLOK e
PARTLI NIET NATULIRLLIK PERSOON versie 2.5
§en voomemens het hiema ta vermelden registergoed te gaan bewanen,
hiema zowel tezamen als ieder afzonderllk te noemen: (Vervreemderverkoper') / n
(verkriiger’Mkaper) | “part [volgletter]" Add object

en

Figure 16 — lllustration of ‘view document’

navigating to the viewing page of a block. The viewing page of a block however is the

same as the page currently described because a document is nothing more then a

block.

Levering ..

Information
about the
current
highlighted

element

appears
here.

(" Edtng | Viewng | .. |

Kenmerk: § omschrijving §

TEKSTBLOK AANHEF versie 2.2
§ 1_§TEKSTBLOK GEVOLMACHTIGDE

" § & §TEKSTBLOK PARTLJ NATUU
PART ET NATUURLLIK PERSOO!

7!
hisma zowel fezamen als isder alzonderiik te nosmen: (Varvraemdsr T verkop _ n
(*verkrigerkoper) / “pari] [volgletier]"; Add object

Figure 17 — lllustration of ‘highlighted block’

40

None mandatory elements in a document should be partly greyed out. This way a
user knows that it is an optional element.

The scope of an assignment or variable retrieval has to be clearly visible. This could
be achieved by using a different font and/or color with a leading symbol. For
example: ‘$’. When an assignment or variable retrieval is hovered, the origin of this
assignment will be highlighted in a specific color as well as all other places where the
assignment occurs (the variable retrievals) in another color. This way the scope of an
assignment will be clear.

Levering ..

4

| Add object

Figure 18 — lllustration of ‘highlighted assignment’

3. Editing an existing structured document model.

When a structured document model is set to editing mode all elements inside this
model will be highlighted when a mouse hovers them. Clicking on an element will
display a small tooltip that has three options. View, edit and delete. Clicking on a
block containing other blocks will still result in navigating to the view of that block as
described at Figure 17. The elements within this block can be edited from here.

41

Levering ..

Add object b

Figure 19 — lllustration of ‘edit tooltip’

The box on the left side of the document will contain all the information concerning
this element. For example an assignment has to display the variable, variable type,
value and number of variable retrievals depending on this assignment. A choice will
display all of its options (in short) and indicators. Next to this information it has to
display the rendered blocks before and after this element, the dependencies and
version of the element.

Clicking on the edit option in a tooltip will load a screen where a specific element can
be edited. Each element has it's own edit form, however some fields appear on all
forms. The version field can be updated, this triggers an action called ‘Archive
document’, specified later in this chapter. The mandatory field can be updated as
well.

A text simply has a field where the text can be edited. The variable has more details,
the type can be chosen and the value can be used. A choice will allow you to add
unlimited options. These options can be created on the fly or, in case of a conditional
block, existing elements can be chosen. An indicator is set as well.

Clicking on the delete option in a tooltip of an element will ask for confirmation if you
are sure you want to delete this element from the document. If no other documents
depend on this element an option will be given to remove the element from the
system.

Inserting elements can be achieved by right clicking in a document. It will place a
marker where the element will appear and the system will ask what kind of element
the user wants to add. The options for this will be a new element (one of the
elements discussed in the previous chapter) or an existing element. When a user
clicks on one of these options the system will load a popup or screen where the user
can add this element. The form for adding an element will be similar to editing an
element.

42

Levering :..

Kenmerk: § omschrijving §

Editi Viewil o
TEKSTBLOK AANHEF versie 2.2: (ng Y g T]
§ 1. §STEKSTBLOK GEVOLMACHTIGDE versie 2.4:
§ a. STEKSTBLOK PARTIJ NATUURLIJK PERSOON versie 2.7 / TEKSTBLOK =
PARTIJ NIET NATUURLIJK PERSOON versie 2.5; m“m vl
S voomemens et e s vernolien egtagosd § omectring§ e aan (== = B == PuIS
bewonen, — —
hiema zowel tezamen als leder afzonderlijk te nosmen: (*vervreemder”/"verkoper") / m @ SIEE = /S ® 0'
(*verkriiger”/"koper) / “parti [volgletter]";
: en § omschriing § -
Information Add object v)

&
about the ‘ ——

current
highlighted [Choose element | bl]
element @ Mandatory
appears
here.

Figure 20 — lllustration of ‘add element’

4. Creating a new document

When a user clicked on the ‘add document’ button a screen will show with a blank
document. The functionality of this screen is similar to editing a document. The user
can right click in a document to start adding elements.

5. Archiving documents

A user can specifically archive a document at a given time. The structured document
model will be saved as a version that the user can provide through an input field. The
system will automatically duplicate all elements from this document to make sure that
their integrity is saved.

43

6. Compare document versions

This screen allows you to compare models with their previous version. It can be seen
as a time machine where the user can navigate through the different revisions of a
model and see exactly what changed, where and when. Elements that have
changed, have been added or deleted will be highlighted.

Levering ..

Version 1.01 Version 1.02

merk: § omschrijving §

prev next

stergoed § omscivijving § te gaan

Figure 21 — lllustration of ‘Revision comparing’

7. List all existing blocks

A view, similar to the ‘list all existing documents’ view will show all the blocks
containing other blocks. The blocks that appear here are based on how many
dependencies it has. The more dependencies it has, the more important it is and it
will be shown at the top of the list. Clicking on a link of this block will navigate the
user to the view block page.

44

4 Technical setup

Storing can be done using many structures and technigues. For many years XML
has been the leading language for these kinds of structures, but this is starting to
change slowly. An alternative that we can apply here is a human-readable open
standard derived from JavaScript, called JSON’.

There are many ongoing discussions about the advantages and disadvantages of
XML versus JSON (Cormack, 2010), but for this thesis JavaScript is applied to store
a document (model). Our document solitary exists of elements on particular
positions, making JSON a good fit. It is language-independent with parsers available
in many languages, making it a good starting point for implementing our model.

JSON supports the following basic types (Crockford, 2006).
e A number - can be integer or floating point.
e A string - value should be inside double quotes, escape with backslash.
e ABoolean - true or false.
e Anarray —is defined in square brackets: [].
e Anobject —is defined in curly brackets: {}.
e null —anempty value.

The type ‘object’ can contain one or more members/properties. These properties
are defined in pairs of name/value. An object can have many properties separated by
a comma. The name is always defined as a string surrounded by double quotes. The
value can be any one of the types defined above.

¢ Members of objects are defined as: "property": value

These types, together with the examples displayed in chapter 3.3.1, have been used
to create a JSON schema based on the proposed model. In the schema the following
useable elements have been defined: a sequence element, a text element, an
assignment element, a variable retrieval element and a conditional-choice element.
The schema can be found in Appendix A — JSON Schema.

4.1 Storage structure

Before we start saving an actual document model we need to take into account that,
eventually, we want to store every single object separately. To securely save these
objects it is needed to save the objects in pairs of a unique identifier and the version.
When the version is updated we need to keep the previous version to make sure that
‘old’ versions of a document model work as well.

" JSON, or JavaScript Object Notation, is a text-based open standard designed for human-readable
data interchange.

45

For this thesis we will create a basic structure that will suffice to save the dataset.
However advanced storing structures might improve speed and storage usage
(Sacks-Davis, Arnold-Moore, & Zobel, 1994).

In this example a simple MySQL database was created that stores all the data in a
structured way. For now every object has it's own table(s). The storage structure can
be found in Appendix C — MySQL Storage structure.

We need to take in account that a single document can and most likely will exist of
many, many records. Adding indexes to tables might help improving speed, however
most of the speed will rely on properly written queries and sufficient hardware for the
database (Oracle, 2013).

Still, this storage structure is merely an example; it all depends on how the
application works. There are a lot of frameworks, client side as well, that can work
with JSON as an input. For example Backbone.js® accepts JSON as input, in this
case we can just save data as a JSON object converted to a string. But by doing this
maintainability will be harmed because the complete document is saved as an entire
string, making it harder to replace or update particular parts.

4.2 Storing a document model

Storing a model based on the previously proposed document model can be done
using many structures and techniques.

As shown in chapter 3.3.1 the document ‘tekstblok aanhef has been decomposed
into the model. This example will be stored using JSON. Start by defining a root
object for this. The object contains an object type, an identifier, a title and a version.
Next to those properties, it contains a property called ‘blocks’ that is able to contain
other (sequences) of blocks.

"object": "sequence",
"id": "seq;",
Root object "title": "Tekstblok aanhef",
"version": 1.0,
"blocks": [...]

A document always starts with a sequence containing at least one block, all of the
following elements defined are an item in the "blocks": [...] array. In other
words, they are child nodes/objects of the root node/object.

8 http://www.backbonejs.org - Backbone,js gives structure to web applications by providing
models with key-value binding and custom events, collections with a rich API of
enumerable functions, views with declarative event handling, and connects it all to your
existing API over a RESTful JSON interface.

46

For this example the first six elements of the ‘Tekstblok aanhef will be defined, the
complete JSON can be found in Appendix B — ‘Tekstblok aanhef in JISON storage.

Document Model
Op/Heden,/Vandaag, <cq, [1: "Op"™, 2: "Heden," 3:
&datume <a;, "datum", date, ?>
, ST

voor <c,, ["verscheen voor mij,",
mij,/verklaart mij,","verklaart"], 2>

TEKSTBLOK PERSONALIA VAN

. <seq,>
NATUURLIJK PERSOON versie 1.0
hierna te noemen: ‘notaris’, als
waarnemer van TEKSTBLOK
{<seqgs>}

PERSONALIA VAN NATUURLIJK
PERSOON versie 1.0

"Vandaag, "], ?>

"verschenen voor

If the schema defined in Appendix A — JSON Schema is used to translate the
grammar into JSON we get the following elements that we can store.

"object": "choice",
. "3 d": " "
Choice: B
version": 0.1,
Op/Heden,/Vandaag, "options": ["Op", "Heden,", "Vandaag,",],

"value": null,

by

"object": "assignment",

"id": "a,",

"version": 0.1,

"variable": {
"name": "datum",

Assignment: },
&datume "variableType": {

"name": "date",
"rule": "/~ (0?[1-9]11[12]1[0-9]113[011) [\/\-1(02[1-

by

91111012]1) [\/\-1\d{4}s8/",

"value": null,
by
{
"object": "text",
Text: "idt: "ty
, "version": 0.1,
"content": ",",
b
{
Choice: "object": "choice",
"id": "c,",
"version": 0.1,
voor mij,/verklaart "options": [

"verscheen voor mij",

47

"verschenen voor mij",

"verklaart"
]l
"value": null,
}l
{
"object": "sequence",
Sequence: midh: "seq,",
TEKSTBLOK "title": "Tekstblok personalia van Natuurlijk Persoon",
PERSONALIA VAN "version": 1.0,
NATUURLIJK R !

PERSOON versie 1.0

see Appendix B — ‘Tekstblok aanhef’ in JSON storage

by

Sequence:
hierna te noemen:
‘notaris’, als
waarnemer van
TEKSTBLOK
PERSONALIA VAN
NATUURLIJK
PERSOON versie 1.0

"object": "sequence",
Hid": ”Squn,
"version": 1.0,
"mandatory": false,
"blocks": [
{
"object": "text",
Hid": Ht3”,
"version": 0.1,
"content": "hierna te noemen: ‘notaris’, als

waarnemer van"

"object": "sequence",
Hid": Hseqzﬂ
bo
]
bo

In the example above the definition of the sequence of blocks within “Tekstblok
personalia van natuurlijk person versie 1.0” has been omitted, the complete definition
can be found at Appendix B — ‘Tekstblok aanhef’ in JSON storage.

The sequence following, called seqs, includes the previously defined sequence seq..
We see that in the second appearance the blocks have not been defined at seq,,
which his valid according to the schema that states that “blocks” is not a required
property. This means the tree will be traversed using a post-order walk as defined in
chapter 3.2 to fetch the content of the actual seq,.

48

The following tree can be derived from the objects defined in JSON:

t3 seq,

Figure 22 — Tree for “Tekstblok aanhef” with post-order walk traversal

During the parsing of the document we find inside the sequence with id seq- a text
object with id t, and a sequence with id seqg,. As stated above the second time the
sequence is mentioned no blocks are defined. The traversal order has been drawn to
fetch the content of the actual sequence with id seqg,. We see that it takes 5 steps to
fetch the actual content.

Because the sequence has already been defined within the document there’s no
need to actually define it twice in the document and save it. Once a document is
stored we can reopen it using the application defined in chapter 3.3.2. The document
can be reopened and edited from storage.

49

50

5 Conclusion

Kadaster indicated that the process of creating a document model that can be
assembled and automatically processed takes to long. This thesis provides a solution
on how to cope with this problem.

We started by describing the requirements, functionalities and flaws of the current
method used, which is a color-coded syntax in combination with Microsoft Word. The
main problem with this method is the room for different interpretations between the
business- and IT-department. The syntax could become quite confusing, because
structure and logic was missing.

Another problem that occurred frequently was maintainability, document models
were relying on each other but there was no clear view of which document model is
used where. When a frequently used document model was updated all other
document models had to be checked manually if it included this model (Noort, 2011).

Once the requirements for a new model were clear and functionalities have been
derived, a model was proposed. This model is based on all elements that are
currently available in the document models of Kadaster. It copes with different
revisions, reusing and maintainability of structured document models. It knows which
structured document models are used where, so no more manually checking if a
structured document model uses the latest version of another structured document
model.

The model has been setup to decompose a document into ‘blocks’. Each block has
properties and functionalities. A block can contain other blocks and thus create mini-
documents. These ‘mini-documents’, which are sequences of blocks, can be reused
in the same or another document.

The key element behind the use of the model is a solid application that supports and
offers a lot of functionality to work with a structured document model. The main
functionalities for such an application have been described, and a basic application
has been created to test a structured document model.

After creating a structured document model we have to actually save the structured
document model on a storage platform. The defined JSON scheme shows which
properties are required for saving the model, and a limited MySQL database has
been defined to save the structured document models.

This completes the cycle of creating a structured document model based on the

proposed model, saving it and being able to reopen the structured document model
after saving.

51

5.1 Implementation in the organization

The next step is to successfully setup and implement a new application based on the
proposed model in the organization. Five key ingredients are essential for such a
project to succeed. (Laurtisen & Soudakoff, 2005).

1. An appropriate concept is needed.
An application based on the proposed model that leads to better, faster, more
efficient and less error-prone documents.

2. The right mixture of people.
Make sure that domain experts from the document field are involved as well
as IT experts. It might also help to collaborate with some customers.

3. Adequate tools.
Make sure open-standards are used to ensure endurance of the software.
Create documentation about the software that is written to ensure that no
knowledge is lost in case in a change of employees for example.

4. Relevant knowledge.
Basically three kinds of knowledge are needed. Domain experts on the
documents themselves are crucial. Experts about storing such large amounts
of data and off course the IT experts who can actually implement such a
system. All three need to closely collaborate to ensure the durability and
efficiency of the system.

5. An effective process.
Choose a process where you are constantly improving the software. Short
cycles of implementation could help here. Start by creating the core
functionality and keep adjusting it until it works perfectly. Once this works the
core functionality can be used to build the other functionalities.

If Kadaster would implement such a model and application in their process, it would
not only be a time-saver, because there’s no more room for difference in
interpretation, but also a starting point for automating the complete process. If a
structured document model has been defined and saved, then the next step is
automating the assembly functionality of these structured documents.

When this is implemented properly there will be less cause for communication and
discussion between the business and IT-department. When done correctly, a
business-department employee can create or update a structured document model
useable by customers without any interaction with the IT-department. This should
benefit the company greatly.

If done correctly, this could be a first step for creating an environment where

customers themselves can define structured document models in order to give them
complete freedom in how a document looks and is filled in.

52

5.2 Recommendation and follow-up

Further research is needed about interactions between structured document models
and users. When users are interactively working with structured document models
and actually seeing what impact a change might have on the structured document
model is not only important, but will also make working with structured document
models a lot easier.

Creating structured document models has caught the interest of me and graduated
master student Daan Schraven. Together we would like to start building a prototype
of an application that can work with the proposed model to generate structured
document models.

In the conversations with Kadaster we’'ve already discussed this possibility and
Kadaster is very enthusiastic about the idea. A workshop will be organized to get a
clear picture of the interactions with such an application. Employees from business-,
IT- and other departments will join this workshop to contribute and think about the
application.

53

54

Bibliography

Cormack, J. (2010, 01 27). JSON vs XML. Retrieved 04 01, 2013, from Technology
of Content: http://blog.technologyofcontent.com/2010/01/json-vs-xml/

Crockford, D. (2006, 07 01). The application/json Media Type for JavaScript Object
Notation (JSON). Retrieved 04 02, 2013, from The Internet Engineering Task
Force (IETF): http://www.ietf.org/rfc/rfc4627 .txt

Hafner, C. D., & Lauritsen, M. (2007). Extending the power of automated legal
drafting technology. In A. R. Lodder, & L. Mommers (Ed.), Legal Knowledge
and Information Systems - JURIX 2007. 165, pp. 59-68. Amsterdam: 10S
Press.

Lauritsen, M. (2007). Current Frontiers in Legal Drafting Systems. 11th International
Conference on Al and Law (pp. 1-15). California: Stanford University.

Lauritsen, M., & Gorden, T. F. (2009). Toward a General Theory of Document
Modeling. ICAIL '09: Proceedings of the 12th International Conference on
Artificial Intelligence and Law (pp. 202-211). Barcelona: ACM.

Laurtisen, M., & Soudakoff, A. (2005). Keys to a Successful Document Assembly
Project. New York: Capstone Practice Systems.

Lehtonen, M., Petit, R., Heinonen, O., & Lindén, G. A Dynamic User Interface for
Document Assembly. University of Helsinki, Department of Computer Science,
Helsinki.

Lerma, M. A. (2005, 04 01). Tree Traversal. Retrieved 04 02, 2013, from
Mathematical Foundations of Computer Science:
http://www.math.northwestern.edu/~mlerma/courses/cs310-05s/notes/dm-
treetran

Macleod, I. (1990). Storage and Retrieval of Structured Documents. Information
Processing & Management , 26 (2), 197-208.

Miller, D. (1992). Abstract Syntax and Logic Programming. Lecture notes in
Computer Science , 592, 332-337.

NEM. (2012). Digital Growth through web-based applications and services . 13th
NEM General Assembly (pp. 65-74). Brussel: NEM.

Noort, v. H. (2011, 02 01). Tekstblok - Algemene afspraken modeldocumenten en
tekstblokken. Apeldoorn, Gelderland, Netherlands.

O'Leary, D. (2011, 06 19). 5 Myths about Document Automation and Electronic
Document Creation. Retrieved 04 02, 2013, from Digital Landfill:
http://lwww.digitallandfill.org/2011/07/5-myths-about-document-automation-and-
electronic-document-creation.htmi

Oracle. (2013, 03 24). Optimization and Indexes. Retrieved 04 01, 2013, from
MySQL 5.5 Reference Manual:
http://dev.mysqgl.com/doc/refman/5.5/en/column-indexes.html

55

Sacks-Davis, R., Arnold-Moore, T., & Zobel, J. (1994). Database Systems for
Structured Documents. International Symposium on Advanced Database
Technologies and Their Integration. Nara, Japan: ADTI.

56

Appendix A - JSON Schema

{
"name": "sequence",
"properties": {
"id": {
"type": "string",
"valid": "\bseq[0-9]+\b",
"required": true
b
"version": {
"type": "number",
"default": 0.1,
"required": true
b
"mandatory": {
Sequence "type": "boolean",
"default": true
b
"title": {
"type": "string"
bo
"blocks": {
"type": "array",
"items": {
"type": "object",
b
}
}
bo
{
"name": "text",
"properties": {
"id": {
"type": "string",
"valid": "\bt[0-9]+\b",
"required": true
bo
"version": {
"type": "number",
"default": 0.1,
Text "required": true
bo
"mandatory": {
"type": "boolean",
"default": true
bo
"content": {
"type": "string",
"required": true
}
}
bo
{
"name": "assignment",
"properties": {
Assignment e
g "type": "string",
"valid": "\ba[0-9]+\b",
"required": true
bo

57

"version": {
"type": "number",
"default": 0.1,
"required": true

}y

"mandatory": {
"type": "boolean",
"default": true

by

"variable": {
"type": "object",
"properties": {
"name": {
"type": "string",

"required": true
}
}y
"required": true

}y
"variableType": {

"type": "object",
"properties": {
"name": {
"type": "string",

"required": true
s
"rule": {
"type": "string",
"required": true
s
"maxLength": {
"type": "number",
"default": 0
}
b
"required": true
}y
"value": {
"type": "string",

Variable
Retrieval

"name": "variable-retrieval",
"properties": {

"id": {
"type": "string",
"valid": "\bvr[0-9]+\Db",
"required": true

by

"version": {
"type": "number",
"default": 0.1,
"required": true

bo

"mandatory": {
"type": "boolean",
"default": true

bo

"retrieve": {
"type": "string",
"valid": "\ba[0-9]+\b",
"required": true

58

Choice

"name": "choice",
"properties": {

"id": {
"type" : "String",
"valid": "\be[0-9]+\b",
"required": true

b

"version": {
"type": "number",
"default": 0.1,
"required": true

}y

"mandatory": {
"type": "boolean",
"default": true

s

"options": {
"type": "array",
"items": {

"type": "string",

by
"required": true

s

"value": {
"type": "string",

Coniditional
Block

"name": "conditional-block",
"properties": {
"id": {
"type": "string",
"valid": "\beb[0-9]+\Db",
"required": true
by
"version": {
"type": "number",
"default": 0.1,
"required": true
bo
"mandatory": {
"type": "boolean",
"default": true
bo
"options": {
"type": "array",
"items": {
"type": "object",
"properties": {
"indicator": {
"type": "string",
by
"option": {
"type": "object",
"required": true
by
}
by
"required": true
by

"value": {

59

"type": "string",
}
}
}

Table 2 — JSON schema for proposed model

60

Appendix B - ‘Tekstblok aanhef’ in JSON storage

Root object

The root object of the document, it contains a title and a sequence of blocks.

Root object:

{

}

"object": "sequence",

"idll: "Seql",

"title": "Tekstblok aanhef",
"version": 1.0,

"blocks": [see Table 4 velow]

Table 3 — JSON — Document root for “Tekstblok aanhef”

Tekstblok aanhef

Contains all objects for the document.

{

"object": "choice",
Choice: Grdt: telt
version": 0.1,
Op/Heden,/Vandaag, "options": ["Op", "Heden,", "Vandaag,",],
"value": null,
by
{
"object": "assignment",
"id": "a,",
"version": 0.1,
"variable": {
"name": "datum",
Assignment: 1,
Sdatume "variableType": {
"name": "date",
"rule": "/~ (0?[1-9]1[12][0-9]13[01]) [\/\=]1(0?[1-
9]111[012]) [\/\-1\d{4}s/",
by
"value": null,
by
{
"object": "text",
Text: "idT: "ty",
, "version": 0.1,
"content": ",",
b
{
"object": "choice",
"id": "c,",
. "version": 0.1,
ChOICe "options" s

voor mij,/verklaart

by

"verscheen voor mij",
"verschenen voor mij",
"verklaart"

1,

"value": null,

61

Sequence:
TEKSTBLOK
PERSONALIA VAN
NATUURLIJK
PERSOON versie 1.0

by

"object": "sequence",

Hid": "Seqz",

"title": "Tekstblok personalia van Natuurlijk Persoon",
"version": 1.0,

"blocks": [

see Table 5 below

Sequence:
hierna te noemen:
‘notaris’, als
waarnemer van
TEKSTBLOK
PERSONALIA VAN
NATUURLIJK
PERSOON versie 1.0

"object": "sequence",
"id". "Seq3"

. 14
"version": 1.0,
"mandatory": false,
"blocks": [

{

"object": "text",

llid": llt3ll’

"version": 0.1,

"content": "hierna te noemen: ‘notaris’,

waarnemer van"

als

"object": "sequence",
"id": "seq,"
}
1
by
{
"object": "text",
Text: midT: "t,",
, notaris "version": 0.1,
"content": ", notaris",
by
{
"object": "conditional-choice",
"id": "cb,",
"version": 0.1,
"options": [
{
"indicator": "1",
"option": {
"object": "sequence",
"id": "seq,",
Conditional "version": 1.0,
i "blocks": [
Choice: {
in de gemeente "object": "text",
&gemeentes "id": "ts",
kantoorhoudende te / "version®: 0.1, B .
te / gevestigd te / met : content": "in de gemeente",
plaats van vestiging ('
"object": "assignment",
"id": "as",
"version": 0.1,
"variable": {
"name": "gemeente",

}y
"variableType": {
"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+S$"
}y

62

"value": null

"object": "text",
"id": "t6ll,
"version": 0.1,
"content": "kantoorhoudende te",
by
1
by
}l
{
"indicator": "2",
"option": {
"object": "choice",
"id": "C3",
"version": 0.1,
"options": [
"te ",

"gevestigd te",
"met plaats van vestiging"
1,
"value": null,
}y
bo

by

"object": "assignment",
Hid": ”alo”y
"version": 0.1,
"variable": {
Assignment: : name": "woonplaats",
4
#woonplaatse "variableType": {
"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+S$"

by

"value": null,

by

"object": "text",

Text: ey gt
"version": 0.1,

als volgt "mandatory": false,
"content": "als volgt",

by

Table 4 — JSON — Tekstblok aanhef

“TEKSBLOK PERSONALIA VAN NATUURLIJK PERSOON versie 1.0”
Contains the objects that belong to the sequence “Tekstblok personalia van natuurlijk
person versie 1.0”

"object": "text",
Text: nidts Mep',
version": 0.1,
professor "mandatory": false,
"content": "professor"

63

Assignment:
§adellijke titel§

"object": "assignment",
"id": "azll’
"version": 0.1,
"mandatory": false,
"variable": {

"name": "adelijke titel",
b
"variableType": {

"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+3"
b
"value": null
b
{
"object": "assignment",
"idl’: "a3"’
"version": 0.1,
"mandatory": false,
. "variable": {
Assignment: "name": "titel",
8titel§ by
"variableType": {
"name": "alphaNumeric",
"rule": "/"[-\sa-zA-Z]+S$"
b
"value": null
b
{
"object": "assignment",
"id": "a,",
"version": 0.1,
"variable": {
Assignment: : "name": "voornamen",
r
§voornamen§ "variableType": {
"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+$"
y
"value": null
y
{
"object": "assignment",
"id": "ag",
"version": 0.1,
"mandatory": false,
"variable": {
Assignment: : "name": "adelijke titel",
sadellijke titel§ nyariableType": {
"name": "alphaNumeric",
"rule": "/"[-\sa-zA-Z]+S$"
by
"value": null
by
{
"object": "assignment",
; . "id": "ag",
Assignment: "version?': 0.1,
§voorvoegsels§ "mandatory": false,
"variable": {
"name": "voorvoegsel",

64

by
"variableType": {

"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+$"
}s
"value": null
}s
{
"object": "assignment",
"id": "a;",
"version": 0.1,
"variable": {
Assignment: "name": "achternaam",
Sachternaam§ '}'\,/ariableType": :
"name": "alphaNumeric",
"rule": "/~[-\sa-zA-Z]+3"
b
"value": null
b
{
"object": "assignment",
"id": "ag",
"version": 0.1,
"mandatory": false,
. "variable": {
Assignment: "name": "titel",
8titel§ by

}

"variableType": {

"name": "alphaNumeric",
"rule": "/"[-\sa-zA-Z]+S$"
br
"value": null

Table 5 — JSON — Tekstblok personalia van natuurlijk persoon versie 1.0

65

66

Appendix C - MySQL Storage structure

Sequence

-- Create syntax for TABLE 'sequences'

CREATE TABLE "sequences (
“id® varchar(10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory’ tinyint(l) NOT NULL DEFAULT '1',
“title’ wvarchar(255) DEFAULT NULL,
PRIMARY KEY (°id°, “version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE 'sequence blocks'

CREATE TABLE " sequence blocks® (
“id’ int(11) unsigned NOT NULL AUTO_INCREMENT,
‘sequence_id’ varchar(10) NOT NULL DEFAULT '',
‘sequence version® float(10,1) NOT NULL DEFAULT '0.1',
"block id® wvarchar (10) NOT NULL DEFAULT '',
"block version® float(10,1) NOT NULL,
‘mandatory” tinyint (l) NOT NULL DEFAULT '1',
PRIMARY KEY ('id")

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Texts

-- Create syntax for TABLE texts

CREATE TABLE "texts® (
“id® varchar(10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory’ tinyint(l) NOT NULL DEFAULT '1',
‘content’ text NOT NULL,
PRIMARY KEY (°id°, “version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Assignments

-- Create syntax for TABLE assignments

CREATE TABLE “assignments’ (
*id® varchar (10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory’ tinyint(l) NOT NULL DEFAULT '1',
‘name’ varchar (255) NOT NULL DEFAULT '',
‘variable type id’ int(11) NOT NULL,
‘value' varchar (255) DEFAULT NULL,
PRIMARY KEY ('id°, ‘version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE variable types
CREATE TABLE “variable types® (
"id® int(11) unsigned NOT NULL AUTO_ INCREMENT,
‘name’ varchar (255) NOT NULL DEFAULT '',
‘rule’ text DEFAULT NULL,
‘max_length’ int(11) DEFAULT NULL,
PRIMARY KEY (°id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Variable Retrieval

-- Create syntax for TABLE variable retrievals

CREATE TABLE ‘variable retrievals’ (
“id® varchar (10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory’ tinyint(l) NOT NULL DEFAULT '1',
‘assignment id’ varchar(10) NOT NULL DEFAULT '"',
‘assignment version® float (10,1) NOT NULL,
PRIMARY KEY ('id’, “version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Choices

-- Create syntax for TABLE choices
CREATE TABLE "choices™ (

67

“id® varchar(10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory’ tinyint(l) NOT NULL DEFAULT '1',
‘value' varchar (255) NOT NULL DEFAULT '',
PRIMARY KEY (°id°, “version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE choice options
CREATE TABLE "choice options™ (
“id® int(11) unsigned NOT NULL AUTO_INCREMENT,
\Choice_id\ varchar (10) NOT NULL DEFAULT '',
‘choice version® float (10,1) NOT NULL,
“value® varchar (255) NOT NULL DEFAULT '',
PRIMARY KEY (' id")
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Conditional blocks

-- Create syntax for TABLE conditional blocks

CREATE TABLE “conditional blocks® (
id’ varchar (10) NOT NULL DEFAULT '',
‘version® float(10,1) NOT NULL DEFAULT '0.1',
‘mandatory” tinyint (l) NOT NULL DEFAULT '1',
‘value® varchar (255) NOT NULL DEFAULT '',
PRIMARY KEY ('id°, ‘“version’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-- Create syntax for TABLE conditional block options
CREATE TABLE “conditional block options® (
“id’ int(11) unsigned NOT NULL AUTO_INCREMENT,
‘conditional block id® varchar(10) NOT NULL DEFAULT '',
“conditional block version® float(10,1) NOT NULL,
"block id® wvarchar (10) NOT NULL DEFAULT '',
"block version® float(10,1) NOT NULL,
PRIMARY KEY (id’)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

68

