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Abstract

Marketeers profile customers to gain deeper understanding of who their custom-
ers are and what are their needs, habits and interests. Progressive profiling is a
method of gathering information about a prospect incrementally over time. GX
Software’s online engagement product BlueConic progressively profiles website
visitors on a large scale.

Usually a profile is not considered independently, but as being part of a larger
like-minded group or a market segment. The idea is that when we consider two
independent segments, there are some characteristics at which these segments
differ greatly. Stated differently: there may be some properties that distinguish
or typify those segments.

In this thesis we examine how we can automatically find these distinctive
features in two independent segments. The progressive nature of the data, which
brings a lot of uncertainty, leads us to a statistical approach that considers both
the significance, or certainty, of the difference and its effect size. We have built
a prototype application which is capable of performing this analysis on actual
datasets, and furthermore presents the result to the marketeer in a clear and
understandable manner. This application is named Distiller, as it extracts the
essential properties that distinguish two segments from each other.
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Chapter 1

Introduction

1.1 Context

Customer profiling is the process of gathering data about a company’s custom-
ers. Companies gather customer data for several purposes. It provides a certain
insight in the characteristics and intentions or needs of their customers and can,
among others, be used to target particular customers or groups of customers.
The underlying idea here is that based on previous interactions, so called touch
points of the customer, or interactions of similar customers with the organiza-
tion, content can be delivered that is most relevant to a particular customer’s
needs or interests.

For an online business this customer typically is the online visitor, who
interacts with the company through its websites. But it may also include other
channels, such as the organization’s mobile application, social network page or
e-mail. Wiedmann et al. [25] refer to online profiling as

the collection of information about Internet surfing behaviour across
many different websites for the purpose of formulating a profile of
users’ habits and interests.

This definition however neglects the fact that online profiling may also include
a broad range of non-behavioral information about the visitor. Types of data
that online business typically like to gather include

Demographics like age, gender, household income, education level and ethni-
city

Spatial or geographic data which includes information regarding country,
city, population density or ZIP code

Contextual data like site category, referrer url, search engine referrer keywords,
site content or content category

Behavioral data includes information about browsing behavior, purchase in-
tent, past purchases, site actions or read-time.

Search intent data like search keywords or search category

Psychographic data including values, interests, lifestyle or attitude.
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The collection of desired and valuable profile information takes resources and
time. On its very first visit, the online visitor is a rather anonymous customer,
this will change whenever the customer or visitor profile is extended with data
that has been accumulated over time about that visitor along each channel. In
marketing this incremental method of information gathering is characterized as
progressive profiling. It is the progressive nature of the data makes analyzing
and reasoning with the data extremely challenging.

1.2 GX Software

This Master Thesis is written in the context of an internship at GX Software.
GX Software is a global provider of Web Content Management and Online
Marketing software. BlueConic is GX’s customer-driven online engagement
product. According to the product’s website 1

BlueConic was developed to help companies take advantage of todays
new cross-channel marketing opportunities. Layered on top of your
existing technology, it fosters ongoing communications through pro-
filing and custom content delivery. For everyone – anonymous vis-
itors, leads and customers – BlueConic facilitates relevant dialogues
and experiences across channels and in the moment.

The power behind BlueConic is a big data store which contains profiles con-
sisting of visitors’ explicit preferences and implicit behavior. These profiles are
continuously updated with relevant information about the online visitors in real-
time. The BlueConic users have already created more than 100 million profiles
all together since June 2012. This research focuses on this data collection and
the insight that can be derived from it.

1.3 Information need

The data collection of progressive profiles provides many interesting challenges
to address. For the purposes of this thesis we have sought a research subject that
addresses one of these interesting challenges, and is also feasible for a Master
Thesis within a six-month period. In this thesis we will examine how we can
automatically find distinctive features in two groups of visitor profiles. Note
that we consider groups of profiles, instead of focussing on profiles individually.

Suppose that there is a group of visitors that has clicked, and another group
of visitors that (has seen the banner but) has not clicked on a banner. The
idea is that there is a good chance there are some typical characteristics that
makes the first group more likely to click the banner. In this case it is not
so much the question what the characteristics of the visitors that click are,
but more what characteristics do really distinguish the two groups of visitors.
This would give marketeers a valuable insight with possible explanations of the
reasons why people click or do not click that banner. On the basis of these
insights marketeers may, for example, decide to exclusively present the banner
to visitors that share a certain characteristic, or they may decide to change the

1http://www.blueconic.com/product.htm
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content of the banner. Likewise, marketeers may be interested in the distinctive
characteristics between

• visitors that have subscribed to a newsletter and visitors that have not

• male website visitors and female website visitors.

• young visitors and old visitors.

These analyzes all provide insights in the typical interests and needs of those
groups, and provide information on how to best target these different groups of
visitors. This thesis will focus on the discovery and reporting of the differences
between groups of progressive profiles. As we will see in later chapters, the
dataset contains all data that we have learned about the website visitors up to
a certain moment. Some properties of those visitors are fairly easy to measure,
while obtaining other characteristics requires much more time and resources.
As a consequence, on some areas we have much data, while on others we have
very little data. This introduces a lot of uncertainty when our aim is to reason
about this data.

1.4 Research goals

The main goal of this research is to find and report the distinctive differences
between two groups of progressive profiles. Groups of progressive profiles are
simply referred to as segments. However both terms are used interchangeably.
We have decomposed our research goal into four subgoals.

1. Given two segments, find how these two segments differ from each other

2. Given a segment, find how that segment differs from the whole

3. Compose a system for above requirement.

4. Build a prototype.

1.5 Thesis outline

• Chapter 2 gives a more detailed description of what visitor profiles and
segments are. It provides an overview of different types of profile at-
tributes based on their distinctive features. Furthermore it explains how
continuous attributes can be transformed into discrete attributes using
discretization techniques.

• Chapter 3 covers the significance aspect of group differences. First it
provides a short overview of descriptive statistics, which are used to sum-
marize the data. The remainder of this chapter focuses on inferential stat-
istics. These statistics are used to assess whether the differences between
two or more groups can be explained through random chance alone or
not. Since the model is based on this theory, the rationale behind these
statistics is extensively discussed.
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• Chapter 4 addresses the effect of the group differences. Statistical sig-
nificance of differences does not provide information about whether a dif-
ference is meaningful in practise. In fact, very small differences may be
considered significant. Now chapter 4 discusses statistics that characterize
magnitude of effect, so called effect sizes.

• Chapter 5 formulates a model for progressive profiling based on the previ-
ously discussed theory. It provides the domain with captures the concepts
of visitor profiles and segments. Furthermore the model is related to real
world situation, and the key differences are mentioned. Finally the model
for the assessment of differences between groups of progressive profiles is
provided.

• Chapter 6 applies the model in the form of a prototype, which oper-
ates on actual BlueConic data. The first part of this chapter discusses
the technical considerations and implementation of this prototype. The
second part addresses the design choices that have been made regarding
the presentation of the results to the end user. This chapter concludes
with a discussion of the findings of the application.

• Chapter 7 covers the conclusion and recommendations for further re-
search.
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Chapter 2

Visitor profiles, segments
and attributes

In the introduction we have discussed data that marketeers typically gather
about online visitors. This data is structurally recorded in so called profiles or
visitor profiles. In this chapter we shortly explain what we mean by a visitor
profile, and a segment of profiles, while a formal definition is provided in chapter
5. As we will see, a profile is made up of a number of attributes. In this
chapter we outline several distinctive types of attributes using the theory of
scale types. We can distinguish a few classes of attributes that correspond to
the properties that apply to the values that are used to represent the attribute.
This theory enables us to reason about which operations, techniques or even
algorithms are applicable to specific types of attributes. Finally we will consider
discretization techniques that allow us to transform continuous attributes to
discrete attributes.

2.1 Visitor profiles and segments

A visitor profile can be seen as a data object which is described by a number
of attributes that capture the characteristics of that visitor. This profile has
a unique identifier so it can be linked to an entity in reality, and updated at
revisits. In the case of BlueConic a profile is associated with a visitor’s web
browser, via a HTTP cookie. As this is not really relevant for this research we
will not go into technical detail here.

Some examples of attributes that are tracked in practice are gender, visited
pages, average time on site and football club preference. These attributes are
referred to as profile properties. Each attribute is assigned some symbolic
values, expressed using primitive data types, that are always a representation
of some physical values. This symbolic value is just a way to represent the
attribute, and thus may have properties that do not correspond to the properties
of the attribute. Categorical attributes, such as ID numbers or gender, lack most
of the properties of numbers, but they may me represented as numbers. In
the next section we will outline different types of attributes, which accurately
reflect the properties of the attribute. A profile is called progressive when
the profile is extended over time with new data, as new information is learned
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about the visitor. Basically a segment is a group or set of profiles, which is a
subset of all profiles. Marketeers typically divide the homogeneous market into
several target segments that they approach differently based on their distinctive
needs and interests. In this research each identifiable group of visitor profiles,
consisting of one or more profiles, is called a segment.

2.2 Theory of scale types

An attribute can be categorized as either numeric or categorical, or respectively
quantitative or qualitative. Stanley Smith Stevens developed the theory of
scale types [18] in which he claimed that all measurement in science was con-
ducted using four different types of scales: nominal, ordinal (both categorical),
interval and ratio (both numeric). Respectively, these scales expose the amount
of properties that are applicable to the values of the attribute.

Nominal scale attributes provide the least information. The values that
this kind of attribute takes are not naturally ordered. Nominal values can only
be used to distinguish one object from another. Examples are gender, favorite
football club, ID numbers or zip codes. As the name suggest, ordinal attributes
provide just enough information to order objects. Examples are dichotomous
data (young, old) and non-dichotomous data such as grades and scores when
for example measuring opinion (good, better, best). At the level of interval
scale attributes it becomes meaningful to talk about the difference between
two values. The main characteristic of interval scales is that the zero point is
arbitrary, and the attribute can have negative values. Examples include calendar
dates and temperature in Celsius. Time attributes can be at interval scale when
measured from a certain epoch, for example Unix Epoch. For illustration, we
may ascertain that there is a difference of 31 between -1 and 30 degrees celsius,
the mean is temperature is 15, but it makes no sense to conclude that the
difference is -30 times as high. When both difference and ratios are meaningful
we say these attributes are measured on ratio scale. Examples include age,
counts, length, calculation times and temperature in Kelvin (0K as zero point).
All statistical measures that we will discuss in coming chapters can be used for
a variable measured at the ratio level.

2.3 Single-valued or multi-valued attributes

In the previous discussion, it was assumed that each attribute was assigned a
single value. However it is very common for an attribute, especially for cat-
egorical attributes, to have multiple values or a sequence of values. We may
have an attribute that consists of the items bought by a certain user, the cor-
responding amount of these purchases (transaction data), the pages the user
has visited or its hobbies. Note that these attributes may be considered to be
objects itself, where each possible value is an attribute that is assigned either
one for occurrence or zero for non-occurrence. Usually occurrences of values are
far more rare than non-occurrences, so usually only occurrences are stored.

8



2.4 Between and within-attribute differences

Recall that objects are described by a number of heterogeneous attributes that
capture the characteristics or properties of that object. With these different
scale types, it is interesting to examine how differences between attributes relate
to each other. Numeric attributes are often captured on different ranges of
values. When comparing two objects, there might be much variation in the
absolute distance between attribute values. Consider we compare two persons
on age and income, in absolute terms their difference in income is usually much
higher than their difference in age. Moreover the same absolute distance within
an attribute can be perceived differently. Intuitively, most people will agree
that the difference between two people with age 2 and 12, or age 8 and 18, is
greater than the difference between age 50 and 60. This pattern also holds for
many other attributes such as temperature and income. The relation between
numeric attributes and categorical attributes usually is much vaguer: how is a
difference between nominally scaled male/female related to a difference of 20
in age? In order to avoid that the similarity of two objects is dominated by
one or more attributes, standardization or normalization transformations
are usually applied. Furthermore, some attributes may be found to be more
influential when determining the difference between two objects. Consider that
two objects have the same hair color, shoe size or even the same length of toenail.
Does that mean that we consider those objects more equal than objects that do
not share this attributes, all other things being equal? A common modification
is to assign weights to attributes to ensure some attributes will contribute more
to the overall similarity than others. In this research we consider all attributes
independently, and assume all attributes to be equally important.

2.5 Discretization

We have discussed different types of attributes based on their properties. An-
other way to distinguish attributes is by considering the number of values an
attribute can take. A continuous attributes can take any value from a con-
tinuous domain (real numbers). If an attribute has a finite set of possible values,
it is called a discrete attribute. Many machine learning algorithms require
attributes to be discrete. In this section we will discuss some algorithms to
transform continuous attributes to discrete attributes [12].

2.5.1 Unsupervised discretization

In unsupervised discretization an attribute is divided into a number of intervals
without making use of class information. One of the simplest methods to dis-
cretize a continuous-valued attribute is by dividing the attribute in a specified
number of bins.

Definition 2.1. In equal-width interval binning the continuous attribute
is divided into k equally sized intervals. Assume that we have an attribute x
with a sorted set of m values {x1, · · · , xm} and a predefined number of intervals
k. The interval width w can be determined using

w =
range(x)

k

9



where
range(x) = max(x)−min(x) = x(m)− x(1)

Now the cut points are at x(1) + w, x(1) + 2w, · · · , x(1) + (k − 1)w. Although
this approach is simple and easy to implement, it is very sensitive to outliers
that may skew the range.

Definition 2.2. Equal-frequency discretization is a slightly different tech-
nique that assigns each bin the same number of values. If m is the number
of values and k is the user-specified number of intervals, then each bin has m

k
values. The width of each bin may vary but the number of observations in each
bin is constant.

2.5.2 Supervised discretization

Supervised discretization techniques use additional “class information” to de-
termine the intervals. In this situation each instance is assigned a certain class
label that is used to determine the optimal splits. Some algorithms are based
on the chi-square statistic, which we will discuss in section 3.9. We will discuss
the entropy-based supervised discretization algorithm proposed by Fayyad and
Irani [6].

Entropy-based discretization

Entropy measure

Shannon (1948) [17] defines the entropy of a random variable X with values
x1, · · · , xk as

H(X) = −
k∑
i=1

P (xi) log P (xi)

where P is the estimated probability of instance xi. This measure incorporates
the average amount of information per event

I(xi) = −log(P (xi))

Minimum Description Length Principle

Fayyad and Irani (1993) use this entropy measure in their discretization method
called the Minimum Description Length (MDL) Principle [6]. The class en-
tropy defined is as

Ent(S) = −
k∑
i=1

P (Ci|S) · log2(P (Ci|S))

where there are k classes C1, · · · , Ck, and P (Ci, S) is the proportion of examples
in S that have class Ci. The class entropy measures the amount of information
needed to specify the classes in S. A smaller entropy means that the class dis-
tribution is less even. In other words: consider that we have two classes C1 and
C2. We have the lowest entropy (of 0) when set S entirely consists of examples
of class C1. The entropy will be the highest when both classes are equiprobable,
that is when 50% of the examples are of class C1 and 50% are of class C2. To
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evaluate a split point, we take the weighted average of the resulting class en-
tropies. For a set S, with attribute A, if S is partitioned into two intervals S1

and S2, using cut value T , the information after partitioning is defined as:

E(A, T ;S) =
|S1|
|S|

Ent(S1) +
|S2|
|S|

Ent(S2)

The cut point T that minimizes E(S, T ) is consider to be the best cut point.
This point has the highest gain, the information gain for a split point T is
the difference between the class entropy of the entire set S and the weighted
average of the two resulting classes after splitting:

Gain(A, T ;S) = Ent(S)− E(A, T ;S)

The minimum description length principle (MDLP) is used as stopping
criterion. LIU et al [12] explain this principle as follows

MDLP is usually formulated as a problem of finding the cost
of communication between a sender and a receiver. It is assumed
that the sender has the entire set of instances while the receiver
has the class labels of the instances. The sender needs to convey the
proper class labeling of the instances to the receiver. It says that the
partition induced by a cut-point for a set of instances is accepted if
and only if the cost or length of the message required to send before
partition is more than the cost or length of the message required to
send after partition

The partitioning stops if

Gain(A, T ;S) ≤ log2(N − 1)

N
+

∆(A, T ;S)

N

where

∆(A, T ;S) = log2(3k − 2)− [k · Ent(S)− k1 · Ent(S1)− k2 · Ent(S2)]

and k1 and k2 are the number of class labels in S1 and S2. N is the number of
instances in S.

The algorithm

In this section the steps of the algorithm are discussed in more detail.

Initialisation The algorithm start with the some initialisation.

• We start with an empty set of cut points, TA = ∅.
• We sort the set S with N numeric instances of attribute A, in as-

cending order.

• Then we extract set D which consists of all distinct values in a set S,
{d1, · · · , dn}. Each distinct value represents a number of instances
that belongs to one or more of the k possible classes C, {C1, · · ·Ck}.
For the calculations we can now build a 2-dimensional matrix M ,
where each element mij represents the number of instances that have
value di and belong to class Cj .

11



M =


m1,1 m1,2 · · · m1,k

m2,1 m2,2 · · · m2,k

...
...

. . .
...

mn,1 mn,2 · · · mn,k


Iteration: find the best cut point In every interaction of the algorithm we

only need the upper and lower bound of D, blow and bup. In first iteration
these bounds are blow = d1 and bup = dn.

For each di ∈ D, di ≥ blow ∧ di ≤ bup.
T = arg min

di

E(A, di;S)

Stopping criterion The algorithm stops ifGain(A, T ;S) ≤ log2(N−1)
N +∆(A,T ;S)

N .
Otherwise the point is added to the set of cut points TA.

• TA = TA ∪ T
• Subsequently we want to find the best cut points in the resulting

subsets S1 and S2 after splitting in point T .

Where S1 ⊂ S, with attribute values ≤ T and S − S1 = S2 with
attribute values >T .

• The lower bound for S1 is equal to the lower bound of S: blow. The
upper bound is the new cut point T : bup = T . The lower bound for
S2 is the new cut point: blow = T . The upper bound is equal to the
upper bound of set S: bup.

• With these bounds we can now find the best cut points for S1 and
S2. This repeats until the stopping criterion is met for all (sub)sets.

After the iteration process the split point should be sorted and the intervals are
creating using these split points.

• Sort TA in ascending order.

• Finally, create intervals using the cut points TA, d1 and dn.
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Chapter 3

Significance of group
differences

This chapter provides a brief overview of some key concepts of statistics, which
play a crucial part in many data mining algorithms. The discussed concepts are
fundamental statistics but essential for the remainder of the thesis. As much
as possible we try to consider the subtleties of these statistics to ensure we will
apply them in the right way and to be aware of the limitations of our approach.

When the aim of study is to only describe the characteristics of the data that
has been collected, this field of statistics is called descriptive statistics. In
contrast, this chapter will mainly focus on inferential statistics. In inferential
statistics samples are used to make generalizations about the populations from
which the samples were drawn. These statistics can be used to consider groups
of subjects and to draw conclusions about general differences between these
groups. We must keep in mind that these statistics are all defined in a period
were researchers had to do with little data, with only a sample of the much
larger actual population, and needed tools to draw reliable conclusions.

3.1 Population and samples

The population consists of all subjects of interest. In actual situations, both
in time and resources it is often not possible to gather data about the entire
population. Usually only a subset of the population is considered, this sub-
set is called a sample. In inferential statistics samples are used to make
generalizations about the populations from which the samples were drawn. A
sample therefore should be representative, that is when it accurately reflects the
subjects of the entire population. Many statistics therefore require a random
sample, this means that each subject of the population has an equal chance of
being part of that sample.

Example 3.1.1. Imagine a researcher is interested in which hair colors are
most common in the Netherlands. The researcher has a large Dutch family, so
he has made a list with the original hair color of 80% of its family. He sees that
50% of them is red-haired, 40% brown-haired and 10% has black hair. Using
this data the researcher concludes there are far more red-haired people in the
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Netherlands than black haired people.
There are a few flaws in this research. First, the researcher makes a gen-

eralisation about the people in the Netherlands, using a sample of its family
members. This type of sample is called a convenience sample. It is true that
the researcher has a Dutch family, but his family members might not be repres-
entative for all people in the Netherlands. As we know each family has its own
different background. It may very well be that there are accidentally many red-
haired people in his family. Using this sample the researcher may only conclude
about the population from which this sample was drawn, that is its own family.
Now let us assume that the user takes his own family as the population he want
to make statements about. The second thing is that the sample is not randomly
taken from the population. It may be the case that the researcher studied a
certain side of the family with many red-haired people, and the 20% that he
did not study are all black-haired. However, when a sample is sufficiently large,
that chance is high that it accurately represents the population, although it is
not a random sample.

3.1.1 Paired versus independent samples

Usually we work with more than one sample of observations. We can distinguish
samples on whether or not their observations are independent. In this thesis we
always we will reason from independent samples.

Independent samples Suppose that we have two samples with values, or
scores, for a certain dependent variable. The samples are said to be in-
dependent if the probability of a specific value occurring in one sample is
not influenced by the values that occur in the other sample.

Paired samples In paired samples it is possible to uniquely match or pair
the observations in the first sample with an observation of the second
sample. This will typically occur in pre-test/post-test studies where a
variable is measured before and after an intervention (repeated-measures
design). Another option is to create samples were each subject in a sample
is purposefully paired, based on some variable of interest, to a subject in
the other sample (matched-subjects design). An example is to match
subjects on age, so that each subject in the first sample is matched with
a subject in the second sample having the same age.

3.2 Descriptive statistics

Descriptive statistics are used to quantitatively summarize and describe the
data and characteristics of a population or sample of subjects. A measure of
the population is called a parameter. A descriptive measure associated with
a sample is called a statistic. By convention, Greek symbols are used for
population parameters and the Roman letters for sample statistics.

3.2.1 Measures of Central Tendency

A measure of central tendency is a single value that describes a set of data
by identifying the central position within the data. The most commonly used
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measure of central tendency is the mean, the average value. The sample mean,
or arithmetic mean, is defined as

mean = x̄ =
1

n

n∑
i=1

xi (3.1)

where n is the number of observations in the sample and xi is the ith observation.
The disadvantage of the mean is that is is susceptible to the influence of outliers.
In some situations the median will provide a better description of the data. The
median is the middle observation when data have been arranged in order from
the lowest to the highest value. For a sorted set of observations {x1, x2, · · · , xn}

median =

{
1
2 (xn

2
+ xn

2 +1) if n is even

xn+1
2

if n is odd
(3.2)

The least used measure of central tendency is the mode, it is used when one
is interesting in the most commonly observed value in the data. The mode
indicates the most frequent value within the data.

3.2.2 Measures of Variability

Measures of central tendency are mainly useful when summarizing data. How-
ever these measures are limited in the information they provide, because they
do not provide information about the variation within the data. A measure
of variability describes the spread or dispersion of a set of data. These meas-
ures indicate if values are widely spread out or relatively concentrated around
a single point such as the mean.

The total (or maximum) spread or dispersion in a distribution is often ex-
pressed in terms of the range. The range is the difference between the maximum
value and the minimum value of a distribution. For a sorted set of observations
{x1, x2, · · · , xn}, where x1 = xmin and xn = xmax:

range = xmax − xmin (3.3)

Because this range measure is based on the two most extreme values in the data,
it is very sensitive to outliers, more robust measures are often used such as the
interquartile range.

The average amount of spread within the distribution is often expressed with
the variance and standard deviation. The difference or distance between a single
point and the population or sample mean is called its deviation. The vari-
ance computes the average squared deviation from the mean. The population
variance, denoted by σ2, is given by the formula

σ2 =

∑N
i=1(xi − µ)2

N
(3.4)

where N is the size of the population and µ is the population mean defined as

µ =
1

N

N∑
i=1

xi
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A slightly different formula is used for the sample variance s2

variance = s2 =

∑N
i=1(xi − x̄)2

n− 1
(3.5)

where n is the size of the sample and x̄ the sample mean as defined in equation
(3.1). The sample size, the number of observations, is corrected by one: n− 1.
This is because the true variance is underestimated by using the sample mean
instead of the population mean.

Note that to make the deviation scores positive, the deviation between each
observation and the sample mean is squared, also known as the squared de-
viation: (xi − x̄)2. The sum of the squared deviations for all observations is
known as the sum of squared deviations or sum of squares (SS).

sums of squares = SS =

n∑
i=1

(xi − x̄)2 (3.6)

The sum of squares is divided by the number of observations to get the aver-
age squared deviation. By squaring the deviation scores, we have changed the
original scale of measurement. There is another measure that compensates for
this by simply taking the square root of the variance: the standard deviation.
The standard deviation is defined as the average deviation from the mean.

standard deviation = s =
√
s2 =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (3.7)

3.3 Hypothesis testing

Whenever we take a random sample of the population, we will have to a greater
or lesser extent different observations. When we see a particular variation
between a specific sample and the population, or two sample distributions, we
want to test if this can be explained through random chance alone or not. In
other words, we want to decide whether the result of a statistic is statistically
significant.

The usual way to handle this is to state two mutual exclusive and exhaustive
hypotheses, of which either will be true. Unless we find enough evidence, the
null hypothesis, that suggests an absence of effect in the population, is assumed
to be true.

The null hypothesis (H0) is the assumption that the difference among ob-
servations are due simply to random sampling error or chance.

The alternative hypothesis (HA or H1) states that the difference can not
be explained by random chance alone.

If the null hypothesis is true, the p-value is the probability to get a difference
this large or larger. In other words it is the probability that this evidence would
arise given the null hypothesis is true [2] [5]

P (E|H0)
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In a two sample t-test (section 3.7.2) we ask the question: what is the chance to
get this mean difference (E), given that the two samples were obtained from the
same population (H0)? Note that we do not consider the probability that the
obtained groups were sampled from same population, which would be P (H0|E).
A p-value of 0.05 means that when we randomly draw two samples of this size
from the same population we expect to see a mean difference this large or larger
1 out of 20 times. Consequently, a p-value near 1 means that we always expect
to see a difference this large or larger. The significance level α is the threshold
at which we decide to reject the null-hypothesis, which is usually set at α = 0.05.
Even with a strong significance level there is still a chance that our rejection of
the null hypothesis is wrong, we refer to this as the type I error.

Note that this hypothesis does not conclude anything about whether the
observed difference is small or large. For example, with a sample of a million
people, both a difference of 10 and a difference of 1000 might be enough to result
in very small p-values, and thus rejection of the null hypothesis. With a very
small sample however, even a difference that we would consider as very large,
can be considered as present simply due to chance. Because of the design of the
statistics, we can be very confident in small differences, and very unconfident
about large difference, just due the size of our sample. Some researchers suggest
that the significance testing is too heavily influenced by the sample size [11].
Moreover, in data mining, we often can work with sufficiently large amounts of
data. In these situations there is no need to verify the probability of a difference
occurring due to chance. Differences between very large samples will be con-
sidered statistically significant anyhow because of the design of the inferential
statistics.

The bottom line is that the statistical significance is not informative about
the substantive significance or practical importance of the observations. The
substantive significance is concerned with the meaning of the observation: is the
difference large enough to be meaningful in practice? Therefore we need some
other statistic such as for example the effect size. However this does not mean
that statistical significance is unimportant, it is wise to consider both. We will
discuss the concept of practical or substantive significance in chapter 4. This
chapter continues with the discussion of inferential statistics.

3.4 Independent and dependent variables

Recall from chapter 2 that an attribute captures a characteristic of an object.
The variable is the operationalized way in which the attribute is represented.
In an experimental design variables can be divided into in two major types, in-
dependent and dependent variables. An independent variable is the variable
that is presumed to have an effect on the dependent variable. The independ-
ent variables usually are considered predictor variables because they predict the
dependent variables. The independent variable may be

• a different condition to which a subject is exposed. In this case the re-
searcher has control over the variable. A classical example is in medical
studies, where one group is given a certain (real) treatment, while the con-
trol group is given a placebo treatment. In advertising for example, one
could randomly expose subjects to different advertisements, to determine
the effect on the click rate.
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• characteristics that the subject brings in a research situation. A researcher
could for example be interested in the differences between men and women,
subjects with different income levels or subjects within certain age ranges.

It depends on the research context which of the variables are the independent
and which are the dependent variables. In some situations the variable might
be considered as an independent variable, while in others that same variable is
considered to be the dependent variable.

3.5 Design of inferential statistics

The statistics that are used in inferential statistics to determine statistical sig-
nificance, which will be discussed in the coming sections, share a common
design. In inferential statistics we are concerned with the question whether
a phenomenon we see in the sample represents an actual similar phenomenon
in the larger population. A sample is not expected to perfectly represent the
population: we always expect to see a deviation between the sample and the
population. We refer to this variance, that we reasonably would expect when
we randomly select a sample of the population, as the standard error (section
3.6). In inferential statistics we usually examine whether the sample statistic is
large of small compared to the expected variance

sample statistic

standard error

Using an appropriate distribution we finally can determine what is the chance
to get a ratio as extreme as this.

3.6 Standard error

A sample is supposed to represent the larger population. However, it is inherent
in sampling that we make errors. There are generally two causes for differences
between the sample and the population

random sampling error This is the difference between the sample and the
population caused by chance. Each time we take a sample from the pop-
ulation, our observations deviate to a greater or lesser extent on what we
see in the population.

sampling bias These are errors that are systematic due to inadequate design
of the sampling process. The sample is collected in such a way that some
members of the intended population are less (or more) likely to be included
than others.

The inferential statistics do not correct for sampling bias. The assumption is
that the sample is taken randomly from the population, so there is no sampling
bias. When our sample is sufficiently large, there is a high probability that even
a biased sample approximates the population. Therefore, all else being equal,
statements based on larger samples may be considered as more reliable than
those on smaller sample sizes.
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The statistics do correct for random sampling error. This is why we talk
about the standard error. The standard error is the standard deviation of the
sampling distribution of a statistic. The sampling distribution can be seen
as the distribution of the statistic for all possible samples of a given size from
the population. In other words, when we repeat our sampling procedure many
times, the average deviation we find from our statistic will be the standard error.
However in most practical cases we do not have information about the whole
population, and thus the true value of the standard error. In these situations
we make an estimation of the standard error. The sample standard error
is obtained by dividing the sample standard deviation (equation 3.7) by the
square root of the number of observations n in the sample. We will now focus
on the standard error of the mean. The basis formula for the standard error of
the mean (SEM) is

standard error of the mean = sx̄ =
s√
n

Note that the sample standard deviation is our best guess of the population
standard deviation. When in the population the values are highly concentrated
around the mean, the sample means of different samples drawn from that pop-
ulation will not differ much. Vice-versa, when the values within the sample are
far apart, it is likely that the values within the population are far apart. When
there is much average deviation of the mean, this is when there is much vari-
ation between the values within the sample, we expect a larger standard error.
Oppositely, when in our sample all observations are very centered around the
mean, we would expect to see this pattern when we select another sample of
the same size. Furthermore, the larger the sample, the greater the likelihood
that our sample accurately represents the population. Therefore larger sample
sizes produce smaller standard errors. As a consequence, all else being equal,
larger sample sizes produce higher statistics, and are more likely to be judged
statistically significant. In section 3.3 we already highlighted that significance
testing is heavily influenced by the size of the sample.

Finally, we have now reached the point that we can discuss inferential stat-
istics for statistical significance tests of sample differences. In the following
sections we will discuss three different statistics.

Student’s T-test The t-test addresses whether the means of two groups are
statistically different from each other.

Analysis of variance (ANOVA) ANOVA tests significance of differences between
the means of two or more groups.

Chi-squared test The chi-squared test is a statistical hypothesis test to ex-
amine the difference between two or more distributions.

3.7 Student’s T-test

A t-test is a statistical test to determine whether there is a significant difference
between the means of two groups. Technically, a t-test is any statistical test that
uses the Student’s t-distribution. The t-distribution is a family of probability
distributions that is used when the sample size is small (n < 120) and the
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population standard deviation is unknown. Otherwise the normal distribution
is appropriate. Dependent on the size of the sample specific t-distributions are
available. We can distinguish three types of t-tests, based on the number and
type of samples

• One-sample t-test

• Independent two-sample t-test

• Paired two-sample t-test

We have explained the difference between independent and dependent samples
in section 3.1.1. The paired samples t-test is not discussed because it is not
relevant for this study.

3.7.1 One-sample t-test

In a one-sample t-test the sample mean is compared to a known population
mean or a meaningful fixed value. The t-statistic is observed by dividing the
difference between the population and the sample means (mean difference) by
the sample standard error

t =
x̄− µ
s√
n

where µ is the population mean, and x̄ the sample mean (3.1).

3.7.2 Independent samples t-test

The independent samples t-test is used to compare the means of two un-
related, non-overlapping samples on a given variable. In this test we have a
single categorical independent variable with exactly two levels or categories (e.g.
male/female). The aim of the t-test is to find if the means on a quantitative
dependent variable differ significantly between the two levels of the independent
variable. We want to know if the difference of the means of the two samples
is large compared to the standard error. So that it is likely that the difference
reflects a true population difference, and is not caused by random chance alone.
The equation that provides the t-value is

t =
observed difference between sample means

standard error of the difference between the means

The numerator is the difference of the two means: x̄1−x̄2. The denominator, the
standard error of the difference between the means, depends on the two samples
and their characteristics. Now we can use the appropriate t-distribution to find
out what is the probability to get a sample statistic as extreme as the calculated
t-statistic.

3.8 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) provides a statistical test to compare the
means of two or more groups. It generalizes the t-test to more than two groups.
Although there are several versions of ANOVA, only one-way ANOVA is
discussed in this section.
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3.8.1 One-way ANOVA (F -test)

One-way analysis of variance is a statistical technique to compare the means
of two or more groups for a quantitative dependent variable to see whether
there are statistically significant differences among them. The term one-way,
or one-factor, indicates that there is a single categorical independent variable
(also called the treatment), with two or more of levels. If each subject is only
exposed to one treatment, this is called between-subjects one-way ANOVA.
In this case the subjects in each condition group are mutually exclusive. We talk
about within-subjects ANOVA when each subject is exposed to several levels
of treatment. In case the independent variable has only two levels, that is when
we compare two means, we will come to the same conclusions whether we use
an independent samples t-test or one-way ANOVA. For independent variables
of two levels: F = t2.

The null hypothesis is that the population means are all equal

H0 : µ1 = µ2 = · · · = µk

where k is the number of conditions. The alternative hypothesis states that at
least one mean is different

HA : ∃i, j : µi 6= µj

We know that the mean of each sample is the best guess we can get of the
population mean. Each subject within a sample has a certain deviation, error,
from this sample mean. For each sample we could also determine an average
squared deviation from the mean, which we called the variance (SS/df). In one-
way ANOVA this concept of variance is used, the major difference is that we
consider multiple samples together instead of individual samples. When we have
multiple samples, there is a difference or variance within all samples. Thereby,
also between the different samples means there is a certain deviation. One-way
ANOVA is based on the idea that when comparing samples the variance can be
divided into two components

Between-groups variance This is the average variance between the means of
the groups

Within-groups variance This is the average variance within the groups, the
variance around the group mean

ANOVA basically determines the ratio between the average amount of variation
between each of the samples and average amount of variation within each of the
samples, which is expressed as:

F =
Between-groups variance

Within-groups variance

This is operationalized by dividing the mean square between groups by the mean
square within groups:

F =
mean square between

mean square error (mean square within)
=
MSbetween
MSerror

The general formula for the mean squares MS is, just like the sample variance,
SS
df . We will now discuss the two mean squares in detail.
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Mean square between groups

The mean square between groups is the average amount of variation between
the groups. The interesting part is the sum of squares between groups. We
have seen the notion of sum of squares when discussing the sample variance.
This time we consider the deviation of the mean of each sample with the grand
mean. The grand mean X̄ is the mean of all samples combined. Let X be
the collection of samples, and let Xi be the ith sample of K samples. Let ni be
the number of subjects in the ith sample, so Xi = {x1, · · · , xni}, and N be the
total number of subjects. Xij is the jth subject of the ith sample.

X̄ =
1

N

K∑
i=1

ni∑
j=1

Xij

The sum of squares between groups is given by

sum of squares between groups = SSbetween =

K∑
i=1

ni(X̄i − X̄)2 (3.8)

where X̄i is the mean of the ith sample. This difference between the sample
mean and the grand mean applies for each element in the sample. Each sample
has a number of subjects and can be of different size, we take this into account
by ni, which is the size of each sample. We finally divide this sum of squares
by the degrees of freedoms to get a kind of an average

MSbetween =
SSbetween

df
=
SSbetween
K − 1

(3.9)

Mean square within groups

The mean square within groups (MSwithin) or the mean square error
(MSerror) is the average amount of variation within each of the samples. For
each individual sample i we can compute the sum squared deviations by

SSi =

ni∑
j=1

(Xij − X̄i)
2

Here X̄i is the mean of the ith sample. Note that by dividing SSi by dfi we
would just get the variance as in equation 3.5. In the sum of squares within
(SSwithin) we combine the deviations all of the K samples in a single estimate.

SSwithin =

K∑
i=1

SSi =

K∑
i=1

ni∑
j=1

(Xij − X̄i)
2 (3.10)

dfwithin =

K∑
i=1

dfi =

K∑
i=1

(ni − 1) = N −K

MSerror = MSwithin =
SSwithin
dfwithin

=
SSwithin
N −K
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F statistic

Note that the difference between an individual subject and the grand mean, is
equal to the sum of the difference between the subject and its sample mean and
the difference between the sample mean and the grand mean.

(Xij − X̄i) + (X̄i − X̄) = Xij − X̄

We can determine the sum of squared deviations for all subjects with the fol-
lowing formula, that we call SStotal

SStotal =

K∑
i=1

ni∑
j=1

(Xij − X̄)2

The interesting thing in ANOVA is that this squared difference between each
subject, of all samples together, with the grand mean is equal to the sum of two
things:

• For all samples, the squared difference between each subject and the group
mean

• For all samples, squared difference between the group mean and the grand
mean times the size of the sample.

These two parts are exactly what we get by SSwithin and SSbetween, our two
SS components.

SStotal = SSwithin + SSbetween

We saw that the mean squares are the estimation of the average of these sum of
squared deviations (estimates of variance). The F-ratio statistic is the ratio
of these two estimates

F =
MSbetween
MSwithin

What this statistic basically tries to answer is whether variability that we see
between the different samples, is large or small compared to the variability that
we see within the samples. Using this statistic and the family of F-distributions
we can determine the probability of finding this ratio, and test the null hypo-
thesis whether the groups means are the same. The statistic tends to be larger
if the alternative hypothesis is true, than if null hypothesis is true. If the null
hypothesis is true, if the population mean of the samples is roughly the same,
we expect the MSbetween to be small.

3.9 Chi-square

Previously we discussed statistics to determine statistical significance for nu-
meric variables. This section will focus on discrete or categorical variables.
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3.9.1 Contigency tables

A contingency table is a type of table (in matrix format) used to display
and analyze the relationship between two or more categorical variables. The
cells of the table display the frequency distribution of variables, which can be
either frequency counts or relative frequencies. It is most used for analyzing two
variables presented in a 2-dimensional contingency table. Consider for example
this 2 x 3 contingency table, which divides a group of people by gender and
whether those are right-handed, left-handed or ambidextrous. Based on this

Gender

Handedness Male Female Total by Handedness

Right-handed 50 60 110
Left-handed 15 10 25

Ambidextrous 10 5 15
Total by Gender 75 75 150

Table 3.1: 2 x 3 contingency table

table we can easily compute some probabilities. We can see for example that
we have equal chance of seeing males or females.

P (Gender = Male) = P (Gender = Female) =
75

150
= 0.5

Ten percent of this group is male and left-handed.

P (Gender = Male ∩Handedness = Left− handed) =
15

150
= 0.1

Given that someone is female, the chance that she is right-handed is 80 percent.

P (Handedness = Right− handed | Gender = Female) =
60

75
= 0.8

In this group 10% of the people is ambidextrous.

P (Handedness = Ambidextrous) =
15

150
= 0.1

In the table we can see that the proportion of right-handed female is greater
than the proportion of right-handed male. It would be interested to see whether
this difference is significant or might occurred due to chance. We can use the
chi-squared test to see whether there is a dependency between Gender and
Handedness.

3.9.2 Pearson’s chi-squared test

Technically, a chi-squared test is any statistical test that uses the chi-squared
distribution. Usually, when referred to the chi-squared test, the Pearson’s chi-
squared test is meant. The Pearson’s chi-squared (χ2) test is a statistical
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hypothesis test to examine the difference between two or more distributions.
The general statistic is defined as

χ2 =
∑ (O − E)2

E

Here O and E are respectively the observed and expected, theoretical, frequency
for each cell in the contingency table. Pearson’s chi-square test has two types

• Goodness of fit test

• Test of independence

3.9.3 Goodness of fit test

The goodness of fit test is used to check whether an observed distribution
matches an expected or theoretical distribution. In other words: it tests how well
the model fits the actual data. It is also called one-way chi-square because the
data is classified using one variable. The null hypothesis states that there is no
significant difference between the expected and observed frequencies. Expected
frequencies can be determined using prior knowledge, or one can assume that
each category has an equal frequency.

Example 3.9.1. In our contingency table example, we had a total sample size
of 150 people. We might expect that when we draw a random sample the
number of men and women are equal in frequency. So we would expect 75 men
and 75 women. Our observed frequencies were indeed 75 men and 75 women.
But what if that would be 85 and 65?

χ2 =
(85− 75)2

75
+

(65− 75)2

75
= 2.67

The probability of observing a value as extreme as this (with df = 1) is

p = 0.1

With an α level of 0.05 we conclude that there is no significant difference between
the expected and observed frequencies: the data fits the model.

3.9.4 Test of independence

This test examines whether two nominal variables are independent of each other,
it is also called the two-way chi-square test. When we take two nominal
variables A and B, the null and alternative hypothesis are

H0: Variable A and variable B are independent.

HA: Variable A and variable B are not independent.

The degrees of freedom for this test is equal to

df = (r − 1)(c− 1)

where r is the number of levels for variable A and c the number of levels for
variable B, which represents the rows and columns in the contingency table.
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The expected frequency for each cell in the contingency table can be computed
using

Erc =
nr · nc
n

For each cell we take multiplication of the total of its row and the total of its
column, divided by the total sample size. Then the chi-squared statistic can be
computing using the formula

χ2 =
∑ (Orc − Erc)2

Erc
(3.11)

Using the chi-square distribution for the degrees of freedom df , we can determine
the probability of observing a sample statistic as extreme as the test statistic.

P (χ2 > CV )

Example 3.9.2. We take our example in section 3.9.1. The two variables in
this example are gender and handedness. In the given sample, we see that the
probability of being right-handed is slightly larger when the gender is female.

P (Handedness = Right− handed|Gender = Male) =
50

75
=

2

3

P (Handedness = Right− handed|Gender = Female) =
60

75
= 0.8

Now we want to conclude whether there is a dependency between these two
variables, gender and handedness. We can use the independence test for this.
First we compute the expected probabilities for each combination.

Emale,right−handed = 75 · 110

150
= 55

Emale,left−handed = 75 · 25

150
= 12.5

Emale,ambidextrous = 75 · 15

150
= 7.5

Efemale,right−handed = 75 · 110

150
= 55

Efemale,left−handed = 75 · 25

150
= 12.5

Efemale,ambidextrous = 75 · 15

150
= 7.5

Note that the sum of all expected values is equal to the sample size. As in
this example we have an equal amount of males and females (both 75), when
there is no dependency we expect that the number of right-handed people in
the sample is divided evenly between them. We now investigate whether the
differences between the observed values and the previously computed expec-
ted values, are sufficiently large to reject our null hypothesis that there is no
dependency between gender and handedness.

H0: gender and handedness are independent.
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HA: gender and handedness are not independent.

χ2 =
(50− 55)2

55
+

(15− 12.5)2

12.5
+

(10− 7.5)2

7.5

+
(60− 55)2

55
+

(10− 12.5)2

12.5
+

(5− 7.5)2

7.5
= 3.576

We have two degrees of freedom: df = (2− 1)(3− 1) = 2, so

χ2 = 3.576, df = 2

The p-value, the probability of observing a chi-square value as extreme as this
is

p = 0.17

With a α level of 0.05 we stick to the null hypothesis, and conclude that there
is no dependency between the two variables.
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Chapter 4

Effect of group differences

In the previous chapter we discussed statistics that can be used to determine
statistical significance related to group differences. Statistical significance is
concerned with whether a research result is due to chance or sampling error.
We saw that statistically significant differences can be found with very small
differences, if the sample size is large enough. Thereby, the presented inferential
statistics provide no information about whether a difference is meaningful in
practise [23]. Sawyer and Peter [16] state that

marketing researchers should become more aware of the limited value
of classical statistical significance tests

Furthermore

empirical results should be described and analyzed such that the size
and substantive significance of obtained effects are emphasized and
not merely the p-values associated with the resulting test statistics.

Moreover, when there is sufficient data available, there is no need to reason
about sampling error and chance. Differences between very large samples will be
consider statistically significance anyhow because of the design of the inferential
statistics. As Berry and Linoff [1] state

One difference between data miners and statisticians is that data
miners are often working with sufficiently large amounts of data that
make it unnecessary to worry about the mechanics of calculating the
probability of something being due to chance.

There certainly is a need for more than null hypothesis significance testing
(NHST) alone. Practical or subjective significance is concerned with whether
the result is useful in the real world [9]. In this chapter we will discuss statistics
that characterize magnitude of effect, so called effect sizes. These statistics
are in the class of descriptive statistics. Unstandardized measures refer to raw,
absolute differences in the dependent variable, such as the mean difference

x̄1 − x̄2

There are different types of effect sizes suited for different research situations.
Two categories of effect size measures we will discuss are
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Standardized effect sizes Standardized measures express the difference in
standardized units of difference.

Variance-accounted-for statistics. These statistics reflect the amount of “ex-
plained” variance within an experiment that is attributable to an inde-
pendent variable.

The measures provide quantitative outcomes that enable to assess the magnitude
of differences on a scale tied to the real world. However only the user can put
the results into context; the measures assist the user to put it into real world
context. Note that “practical significance” is a subjective concept: an effect size
of 0.30 might interpreted as small for some, while it is large for others. Usually
there are some general guidelines in literature what can be considered as a small
or large effect.

To summarize, when we consider the effect size as an indication for the
magnitude of the effect, we can consider statistical significance as an indication
for the certainty about the existence of an effect.

4.1 Effect size of numeric variables

Standardized effect sizes of numeric variables are usually expressed in standard-
deviation units. The effect size for the mean difference between two popula-
tions is defined as

δ =
µ1 − µ2

σ

4.1.1 Cohen’s d

Cohen’s d [4] is a measure of effect size that can be used with t-tests. It is
defined as the difference between the group means, divided by the standard
deviation. The idea is that the standard deviation of either group could be used
when the variances of the two groups are homogeneous.

d =
x̄1 − x̄2

σ

The interpretation of this measure is that the difference of the mean values is
d standard deviations. Whether the value of d should be considered as large
or small in practise is dependent on the application. In general, d < 0.20 is
interpreted as a trivial effect size, d ≥ 0.20 to < 0.50 is a small effect size,
0.5 ≤ d ≤ 0.8 is a medium or moderate effect size and d > 0.80 is a large effect
size. Usually the pooled standard deviation is used for two independent
samples with unequal variances

spooled =

√
s2

1(n1 − 1) + s2
2(n2 − 1)

n1 + n2 − 2

The formula of the resulting effect size statistic is

x̄1 − x̄2

spooled

We refer to this formula when we talk about Cohen’s d effect size.
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4.1.2 Eta-squared

Eta-squared (η2) is a measure of effect size for use in ANOVA. This is used
when we compare multiple groups on a numeric variable. It is a variance-
accounted-for statistic. Eta-squared reflects the percentage of variability in the
dependent variable that can be explained by the independent variables in the
sample data. In the context of one-way ANOVA the formula is

η2 =
SSbetween
SStotal

Another commonly used modification of this statistic is partial eta-squared
(η2
p).

η2
p =

SSbetween
SSbetween + SSerror

However for one-way ANOVA, which we have discussed in this thesis, eta-
squared and partial eta-squared are equal. Recall that we have seen SSbetween
and SStotal in section 3.8. We have also seen that

SStotal = SSwithin + SSbetween

where SSwithin = SSerror. So SStotal = SSbetween + SSerror. Because we do
not use one-way ANOVA and Eta-squared in the current version of our model,
we do not provide an effect size interpretation for this statistic.

4.2 Effect size of categorical variables

4.2.1 Cramér’s V

Cramér’s V is a measure of association for two nominal categorical variables.
The formula is defined as

V =

√
χ2

n(k − 1)

where
χ2 is the chi square formula (equation 3.11),
n is the total number of cases,
k is smallest number of categories of the two variables, that is the smallest num-
ber of the total number of rows or columns in the contingency table.

If one of the categorical variables is dichotomous, Cramér’s is equal to the phi
statistic

φ =

√
χ2

n

Cramér’s V ranges from zero to one. The closer V is to 0, the smaller the
association between the two categorical variables.

0 ≤ V ≤ 1

For the interpretation of Cramér’s V we can consider Cohen’s effect size in-
terpretation rules-of-thumb. Using several sources [3] [14] we have derived a
five-level scale Cramér’s V interpretation that can be found in table 4.1. Here
df = 1 means that the smallest dimension is 2.
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Interpretation df = 1 df = 2 df = 3
Very strong ≥ 0.7 ≥ 0.49 ≥ 0.42
Strong < 0.7 < 0.49 < 0.42
Moderate < 0.5 < 0.35 < 0.29
Weak < 0.3 < 0.21 < 0.17
Negligible < 0.1 < 0.07 < 0.06

Table 4.1: Interpretation table for the Cramér’s V statistic
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Chapter 5

A model of progressive
profiling

In this chapter we define a formal model that enables us to reason about the
research domain and to provide a solution for the research goals. We start by
providing the domain which captures the concepts of visitor profiles and seg-
ments. Subsequently we will discuss how this model relates to the real world
situation that we want to reason about. Finally we outline our approach for the
assessment of differences between groups of progressive profiles. This approach
is strongly based on the theory that is discussed in the previous chapters. This
discussion includes how the statistical results should be presented to marketeers,
which usually do not have a scientific background and lack deep statistical know-
ledge. Our aim is to translate the statistics into graphical or textual reports
that are highly understandable and actionable for marketeers.

5.1 The domain

We have a collection U of visitor profiles. The collection A of profile attributes
or profile properties is the set of all possible profile properties. We have a
collection V of values that consists of the values that are assigned to a profile
property.

Definition 5.1. A single visitor profile u ∈ U is a partial mapping of profile
properties to values, so

U ⊆ A 7→ V +

Example 5.1.1. Consider a profile u ∈ U , profile properties a1, a2, a3, a4, a5 ∈
A and values v1, v2, v3, v4, v5, v6 ∈ V

u = {a1 : [v1, v2], a2 : [v3], a3 : [v4], a4 : [v5], a5 : [v6]}
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This may be the abstract representation of the concrete profile

u = {hobbies : [tennis, football],

age : [33],

subscription : [1],

gender : [male],

lastvisit : [1359365228355]}

Definition 5.2. A segment S is the subset of profiles that satisfy a certain
condition on its attributes. We simply define

S ⊆ U

Definition 5.3. A target segment T is just that segment that has been chosen
for certain marketing purposes. It consists of a set of profiles that satisfies the
target condition

T = S ⊆ U

We define the set of excluded profiles E, the set of profiles that does not
satisfy the target condition, as

E = U − T

5.2 Relationship between model and reality

A model is by definition, and so is our model, an abstract representation of
reality. It represents the reality by taking out the essentials from the real world.
We try to reason about the visitors in reality using this model, therefore it is
worthwhile to identify where the differences are between model and reality. In
this section we discuss how our model relates to the real world, considering the
following aspects

• the relationship between the reality and the model

• the completeness of knowledge in the model

• the validity of knowledge in the model

Relationship between the reality and the model

A visitor is an actual person that for example likes some books, has an age,
visited a few pages and bought some products in the web shop. The visitor
profile model represents this visitor by capturing the contextually relevant
and measurable properties. This usually includes information about actual
visitor’s interests, characteristics and interactions with the system. In the ideal
situation all relevant information is either implicitly or explicitly provided to the
system. However, visitor profiles are built up progressively and our model only
incorporates observed facts, the things we have learned about each visitor up
to a certain point in time.
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Completeness of knowledge in the model

We do not have complete knowledge about reality. We have discussed that
profiles are built up progressively, this means knowledge about the visitor is
gathered incrementally instead of all at once. Furthermore some facts may
be measurable, and our model is capable of representing those facts, but are
practically infeasible to acquire. In large-scale practical applications it is im-
practicable to get to learn the ages of all our visitors, or even harder all books
that they like. In contrast, it is relatively easy to capture all visited pages or
all bought products for all visitors.

Validity of knowledge in the model

Interests and characteristics change over time. So facts that we observed in the
past may no longer hold in the current situation. To correct this the model
might incorporate the invalidation of observed facts. This is a rather tricky
problem that we do not discuss here. We assume that everything we observed
about a visitor in the past is still true or valid in the future.

5.3 Analysis of segments

Practically speaking, in this research we are interested in the differences between
two groups of website visitors, which are actual human beings. This would be
rather straightforward when we would have access to all information about these
visitors. However, as we previously discussed, our representation of reality only
incorporates the things we have learned about each visitor up to a certain point
in time. This means our knowledge about the visitor is incomplete and this
brings a large amount of uncertainty about the visitors. Despite this uncertainty
our goal is to make reliable statements about group differences. Therefore our
method is consciously influenced by the progressive nature of the profile dataset.

In the next sections we will discuss how to analyze the differences between
two groups of progressive profiles, called segments. First we will distinguish
some segment types based on their dependency. We have defined a segment
as a set of profiles, S ⊆ U . Note that we use the terms groups or sets of
progressive profiles and segments interchangeably. We will see that when we
take two segments these may be somehow related to each other. Our approach
is always based on two independent segments.

5.3.1 Segment types

Let A and B be two segments: A,B ⊆ U . These are two sets that contain
visitor profiles. If two sets A and B have no elements in common, we say that
A and B are disjoint or independent. This is when the intersection of the two
sets is empty

A ∩B = ∅

We use this terminology from set theory to say that two segments A and B are
independent segments when they have no profiles in common.
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Independent segments

We can split all visitors U for which the gender is known into two segment, a
segment A of men and a segment B of women. In that case we have A ∩ B = ∅,
so these two segments are independent.

A B

Figure 5.1: Two independent segments

The target segment T and the excluded profiles E are independent segments by
definition.

Dependent segments

In case we have two more arbitrary segments, these segments will usually inter-
sect. Two segments are called dependent segments when they have one or
more profiles in common. For example, let A be the segment of all visitors that
visited the “contact” page, and B the segment of all visitors that visited the
“news” page. The intersection of both segments A ∩ B is equal to the visitors
that visited both pages.

A B

A ∩B

Figure 5.2: Two dependent segments

We can define the relative complements A∗ and B∗, which are the nonintersect-
ing parts of both segments

A∗ = A− (A ∩B) = A−B

B∗ = B − (A ∩B) = B −A
A special case is when a segment is a subset of another segment, we refer to this
as segment containment. When A is a subset of B, or A is contained inside
B, that means all profiles in A are also in B.

A ⊆ B

A ∩B = A

This is graphically visualized as

35



A

B

Figure 5.3: Two dependent segments, where A is contained inside B

We see that the nonintersecting part of A and B, is equal to B∗ = B −A. Our
model assumes segments to be independent. In case two segments intersect, we
will always try to compare two nonintersecting parts, which are independent.
See the figure 5.4.

A

B −A

Figure 5.4: The two nonintersecting parts of figure 5.3

5.3.2 Segment differences

In the remainder of this chapter we will connect the theory we have discussed in
the previous chapters with our model. The progressively accumulated profiles
are an elegant way to incrementally gather profile data over a longer time period.
The direct consequence of this approach is that the profiles in our dataset will
vary greatly in the amount of information they contain. Another way to state
this is that only a small fraction of profiles have values assigned to a certain
profile attribute. Now from a segment point of view this means we usually only
have information about a small subset of the profiles that belong to that seg-
ment. Moreover, in many cases we do not exactly know which profiles belong
to a certain segment. As a consequence our model contains a lot of uncertainty
about whether the profiles reflect the true characteristics of that segment in
reality. We can look at it as being the segment the population we want to
make statements about. We operationalize these “statements about the pop-
ulation” by making statements on attribute level. Now because of progressive
profiling we will only have data about a small part, a sample, of the population
on each individual attribute. Our aim is to use this data to generalize about
the population. We approach this by considering the aspects of (un)certainty
about the difference and magnitude of the observed differences. Fortunately
the statistics we have discussed offer the tools to address these aspects. Because
the substantial difference between these attribute types, we will discuss numeric
(quantitative) and categorical (qualitative) attributes independently of one an-
other. This discussion does not include multi-valued attributes. Multi-valued
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attributes should be transformed into multiple single-valued attributes to be
analyzed.

Assumptions

We start by formulating the conditions under which the statements apply. Al-
though the discussed theory (e.g. ANOVA) enables us to compare multiple
groups, we only consider two groups in our discussion. Now we assume that

samples are independent The samples being compared have no subjects in
common.

numeric attributes are normally distributed If a numeric attribute is con-
sidered it is assumed that the population follows a normal distributions.
This will hold for many numeric attributes, but obviously not for all nu-
meric attributes.

sample subjects are randomly taken from the population The statistics
all have the condition that a random sample is taken from the population.
We violate this assumption because we say that our sample consists of all
data we have progressively gathered about the profiles that belong to a
segment.

In the remainder when we talk about a sample we mean all data that we have
about the concerning segment on a certain attribute, here each value represents
a profile.

5.3.3 Differences on numeric attributes

Uncertainty about mean value

Single-valued numeric attributes either contain one numeric value or are empty.
We begin the discussion with how we can express the uncertainty about the
mean value of a single sample. We know the sample mean is always an estimate
of the population mean and varies from sample to sample. Informally stated our
sample consists of all information we have progressively gathered up to a certain
point in time about a certain characteristic. Formally, when S is a segment and
a ∈ A is a numeric attribute, then S(a) consists of all values assigned to this
attribute for all profiles u ∈ S.

Definition 5.4. We define that µ̃ is the estimated mean of this segment, and
σ̃ is its standard deviation (equation (3.1) and (3.7))

µ̃ =
1

|S(a)|
∑

x∈S(a)

x (5.1)

σ̃ =

√√√√ 1

|S(a)| − 1

∑
x∈S(a)

(x− µ̃)2 (5.2)

This mean is just a point estimate, our best guess, of the mean that we would
get if we would have complete knowledge (e.q. no sampling error).
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We have discussed the concept of standard error in section 3.6, recall that
it provides us with a quantitative value of the error that we reasonably would
expect when we take a sample of this size from the population:

σ̃√
|S(a)|

We can use the concept of confidence intervals to make an educated predic-
tion about the upper and lower bounds of the population parameter. Usually
researchers use confidence interval of either 95% or 99% (95% or 99% CI). With
a CI of 95% we expect in 95% of the cases, 19 out of every 20 times, (we take a
sample of the same size from the population) that our confidence interval covers
the true population parameter value. This does not mean that the interval has
a 95% chance of containing the true parameter value. The confidence inter-
val either contains µ or does not contain µ. However, there is 95% chance of
creating an interval that does contain µ.

Definition 5.5. We determine a 95 CI estimation with upper and lower bound
using

µ̃lower = µ̃− t95
σ̃√
|S(a)|

(5.3)

µ̃upper = µ̃+ t95
σ̃√
|S(a)|

(5.4)

where t95
σ̃√
|S(a)|

is also called the margin of error. The value t95 can be calcu-

lated using the family of t distributions, we will not discuss that in detail here.
Note that σ̃√

|S(a)|
is the standard error.

The width of the confidence interval reflects the precision of the estimate.
A narrower interval indicates a more precise point estimate; wider intervals
reflect greater uncertainty about the estimate. Usually increasing the sample
size, which increases reliability, will narrow the interval with, and so increases
precision. Confidence intervals do not correct or control for inadequate sampling
design, which we characterized as sampling bias. If our sample is biased the
actual error may be greater than the CI indicates.

Certainty and magnitude of difference

It is relatively easy to see whether or not there is a difference between two
point estimates, such as two sample means. However, we have seen that the
estimation of these points involves uncertainty, and so the difference between
these points. More interesting is whether the observed difference in the sample
actually reflects a true difference in the population. What we ultimately want
is to make a certainty statement about the observed difference.

The second thing is whether an observed difference should be considered
large or small in practise. Obviously only domain experts can judge about
whether a difference is large or small. Moreover, some differences are considered
small by some while considered large by others. We will discuss some general
approaches to determine the magnitude of effect.

We know that even when we randomly draw samples from the population,
so everyone in the sample has an equal chance of being assigned to either of the

38



treatment groups, our observations will vary from sample to sample. Recall that
we hypothesized that the two treatment groups are the same, so that difference
among observations are simply due to chance. Now the p-value provides us with
a likelihood that the observation (the difference between the means) is due to
chance alone. The consideration is whether we have enough evidence to reject
our null hypothesis and conclude that the difference is not due to chance alone.
Statisticians often use a rather pessimistic approach and use a significance level
of 0.05. This means the null hypothesis is rejected when a difference as extreme
or more extreme could have happened by chance alone less than 5% of the time.
As Greenfield et al [7] state

The cut-point or significance level of 0.05 is arbitrary, and may ignore
important, clinically meaningful findings.

Note that the rejection of the null hypothesis does not imply that we conclude
that the two groups are the same. That we do not proof a difference does not
mean a proof of no difference. A lower p-value (than the α-level) means we think
there is enough evidence, so we are enough confident to conclude a difference
between the groups.

Definition 5.6. We define the concept of confidence in difference between
the segments on a numeric attribute as

confdifference = 1− p (5.5)

Here the value of p is calculated using the independent samples t-test (section
3.7.2) and Student-t family of distributions. A confdifference of 0.99 means that
there is still a 1% probability (1 out of 100) to see a difference greater than this
that is caused by random chance alone.

With large sample sizes we can be very confident about even very small differ-
ences. Now such small differences might be considered meaningless in practise.
That is why we also assess the effect, or practical value, of the difference.

Definition 5.7. We use Cohen’s d effect size (section 4.1.1) to assess the mag-
nitude or effect of the difference. Variables µ̃1, µ̃2, σ̃1 and σ̃2 are the mean
and standard deviation of the first and second segment on a numeric property.
The first segment has a value on n1 properties, and the second segment on n2

properties. Now the formula for the effect size is given by

µ̃1 − µ̃2√
σ̃2
1(n1−1)+σ̃2

2(n2−1)
n1+n2−2

(5.6)

5.3.4 Differences on categorical attributes

There is no way to summarize categorical attributes by providing a central
position within the data. A good alternative is to report the mode, which is the
value that appears most often in a set of data. In this model we solely focus
on the difference between two segments on a categorical property. Just as with
numeric attributes we define the concepts of confidence in difference and effect
of the difference here for categorical attributes.
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Definition 5.8. For the confidence in difference we rely on the chi-square
test of independence, discussed in section 3.9.4. With this test we try to as-
sess whether there is a dependency between being part of either the first or
second segment and the value on the categorical attribute. If there is a strong
dependency between the segments and the attribute, this means there is a large
difference between the two segments on this categorical attribute. Using the
chi-square distribution the p-value can be computed with the test statistic. The
p-value is the probability of observing a sample statistic as extreme as the test
statistic. Now the formula for the confidence in difference is equal to that of
numeric attributes.

confdifference = 1− p (5.7)

Definition 5.9. We have discussed Cramér’s V effect size, which measures the
strength of association for nominal categorical variables, in 4.2.1. This measure
is used to assess the effect of the difference for categorical attributes. In
our model we limit ourselves to the consideration of two segments. This means
the smallest number of categories is always two. Consequently, using k = 2,
Cramér’s V formula in our model is equal to phi, φ

Vk=2 = φ =

√
χ2

n
(5.8)

The definition of the χ2 formula is provided in equation 3.11. Here n is equal
to the number of profiles in the two segments that we can classify in one of the
categories of the categorical attribute.

5.4 Interpretation of model statistics

When analyzing data in the right way and with the right techniques, possibly
interesting findings can be uncovered. As we have seen in the previous sections,
the result of a statistical analysis is usually just a set of numbers on some stat-
istics. Comprehensive understanding of these numbers requires knowledge on
how these statistics are computed. Therefore just presenting these raw num-
bers in an actual application to the user requires a high level of prerequisite
knowledge. This is rather undesirable because it increases the barriers to use
the system. It is worthwhile to investigate the possibilities the present the res-
ult in a more user-friendly way. In this section a guideline for translating the
statistical results to a semantic meaning is provided.

5.4.1 Interpretation and reporting

In order to clarify statistical findings these may be represented using tables and
charts. Textual expressions or statements may help to summarize and interpret
these results. Miller [13] provides guidelines on how best to present information
on both statistical and substantive significance of regression results. As he
clarifies

An important part of writing a thorough description of multivari-
able regression results involves striking the right balance between
presenting inferential statistical results and interpreting the sub-
stantive meaning of those results in the context of the particular
research question.
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According to Miller the description of a research finding should include

concepts one should write in terms of specific real-world concepts (male, fe-
male, age, income) instead of generic references to the dependent and
independent variable.

units of measurement incorporating units of measurements (years, kilograms,
euros) makes it easier to assess real world implications of the findings.

direction knowing that there is an association between the independent and
dependent variable usually is not enough. To make the result more action-
able it is necessary to include the direction of association. This provides
information on questions such as: do males have higher income than fe-
males, or vice versa? Is there a positive or negative relation between age
and income?

magnitude Besides the direction of association it is interesting to assess the
magnitude of association: is the difference large or small in practise.
Very small differences may be considered statistically significant with large
sample sizes. Small differences however are usually not very interesting
in practise. Instead of observing that males have higher incomes than fe-
males, we want to know whether the incomes of males are extremely much
higher or just slightly higher than females.

statistical significance After reporting the subjective aspects it is still im-
portant to report the statistical significance statistics which give us the
confidence in the existence of the association or difference.

Using Miller’s approach in the context of this thesis we want to make clear
statements like (these examples are just for illustrative purposes)

“People who clicked on the banner are a much older (8.4 years at
average) than people that did not click (p < .05).”

“People who clicked on the banner spend little more time on the site
(12 seconds at average) than people that did not click (p < .05).”

“People in the target segment visit a few more pages (4 pages at
average) than people that are not in the target segment (p < .0001).”

“Males are more likely to click (20% of males) on the banner than
females (4% of females) (p < .05).”

“People who spend 80-130 seconds on the page are much more likely
to click the banner than people who spend 20-60 seconds (p < 0.05).”

Although these textual statement provide a clear interpretation of the findings,
these should always be supported by tables and charts which provide better
insight into the data. Based on some discussions during the internship at GX
Software, it appears that significance levels are hard to understand for market-
eers. An alternative approach for interpreting significance levels is discussed
next.
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5.4.2 Levels of statistical significance

Recall that the conventional significance level of 5% (α = 0.05) is rather ar-
bitrary. Other popular levels of significance in scientific literate are 10% (0.1),
1% (0.01), 0.5% (0.005) and 0.1% (0.001). A common approach is to use the
“three-star system” to indicate the different levels of significance [10]. Here ∗
indicates p ≤ .05, ∗∗ means p ≤ .01 and ∗∗∗ indicates p ≤ .001. Sometimes four
asterisks are used that indicate significance at .0001 level. The smaller the p-
value, the greater the significance and thus our “confidence” in the existence of
a difference or association. More precisely formulated: the closer the p-value is
to zero, the more confidence we have that the difference is not caused by chance
alone. We propose the following system, which is a little more extensive and also
provides a practical interpretation This scheme enables to directly translate the

Symbol P-value Meaning Confidence in difference
ns > 0.1 not significant not confident
nqs ≤ 0.1 not quite significant not really confident
* ≤ 0.05 quite significant little confident
** ≤ 0.01 significant confident
*** ≤ 0.001 clearly significant very confident
**** ≤ 0.0001 very clearly significant highly confident
***** ≤ 0.00001 extremely clearly significant extremely confident

Table 5.1: Interpretation table for statistical significance

inferential statistics to their practical meaning. However, one must always keep
in mind that the results are based on some assumptions that may have not been
met. Even with very significant result, one should be suspicious about how the
data has been obtained. To be completely clear: we do not intend to provide
perfectly validated scientific results, our goal is to uncover relevant insights for
marketeers.

5.4.3 Levels of effect

In chapter 4 we have already provided interpretations for different levels of effect
sizes. These levels are used to report whether we think an effect is negligible,
weak, moderate, strong or very strong. In order to help the user to interpret the
results we also construct natural language statements as proposed by Miller [13].
The grammar of this language is fairly simple. For numeric properties the
structure of the statements is: “people in segmentA have effect values on
property than people in segmentB”. Here segmentA is the name of the first
segment, segmentB is the name of the second segment and property is the
name of the property under analysis. Depending on the value of the statistic,
effect is translated to one of the following values

• “very slightly higher”

• “slightly higher”

• “higher”

42



• “much higher”

• “very much higher”

An actual example of a statement we have generated using this grammar is
“people in Age between 50 and 60 have slightly higher values on Average order
value than people in Age between 20 and 30”.

For categorical properties the statements are formulated differently because
we do not talk about differences in values in this case: “property is effect

with being subject of either segmentA or segmentB”. The effect is translated
to

• “very weakly associated”

• “weakly associated”

• “associated”

• “strongly associated”

• “very strongly associated”

An actual example of a statement that we have generated for a categorical
property is “Searched for: www is weakly associated with being subject of either
Age between 20 and 30 or Age between 50 and 60”. In contrast to the Miller’s
advice we do not incorporate units of measurements. The reason behind this is
that this information is not available to us in the prototype.
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Chapter 6

Distiller: applying the
model

In the previous chapter we have described a theoretical model for the assessment
of differences between independent groups of progressive profiles, which we refer
to as independent segments. Now we will consider the practical value and
application of the discussed theory. We will discuss how these statistical findings
can be converted into relevant insights and knowledge in a business context. One
of the goals of the research was to make the rather theoretical findings of this
study tangible. We will consider how the model can be incorporated in an
actual application, and we build a prototype given a set of requirements that
uses actual data. This application is named Distiller, as it finds the properties
that distinguish two segments from each other. The output of this prototype is
carefully analyzed and discussed, and acts as a guide for recommendations to
GX Software.

6.1 Practical application

In this chapter we will concretize the practical value of the discussed theory. In
order to do this we will construct a prototype that works for both simulated
and actual data. The main goals that we try to achieve with Distiller are to

• demonstrate that the literature and theory that is discussed in this thesis,
and the resulting model, can be incorporated in an actual application

• demonstrate that the model works on simulated data

• demonstrate that the model works on actual data

• demonstrate that the analysis leads to both meaningful and interpretable
results

• investigate on which aspects the model falls short in practice, which allows
us to reason about areas for improvement
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6.2 Technical requirements

In an actual situation a segment can consist of millions of profiles. GX relies on
open source Apache projects, including Apache Solr and Apache Cassandra, to
handle this large amount of data. An important selling point for GX Software is
that the product operates in real-time: the user should not have to wait for an
analysis to be computed, so everything should be available within milliseconds.
However, we have only limited time and resources to build the prototype. Our
prototype should run on a single machine with limited memory and computation
power. Furthermore we do not have access to the profile database directly, but
instead we have to make use of CSV exports. Taking all this together, we are
satisfied when our prototype can read, analyze and export 150 properties in two
segments with up to a maximum of 5000 profiles per segment, in reasonable
time (less than 5 minutes execution time).

The analysis part of the prototype is written in JAVA. For the statistics and
algorithms discussed in the previous chapters we use existing libraries, when
available, instead of writing these ourselves. Two main libraries we use are

Commons Math is a library of lightweight, self-contained mathematics and
statistics components addressing the most common problems not available
in the Java programming language or Commons Lang. We heavily use
this library for its implementation of many mathematical or statistical
functions, distributions and algorithms that are discussed in thesis.

WEKA (Waikato Environment for Knowledge Analysis) [8] is an open source
library for machine learning. We use this library solely for its implement-
ation of Fayyad & Irani’s MDL supervised discretization algorithm, which
we discussed in section 2.5.2.

The results of the analysis are written to a JSON file. Furthermore we provide
a web-based user interface, that presents the results of the analysis to the user.
This part is written in HTML, CSS, Javascript, and uses jQuery and the Google
Visualization API. The Google Visualization API enables use to draw tidy
charts that clarify the statistical findings.

6.3 The operation of the prototype

Now we will discuss the functionality of Distiller. Let us first define what our
application should do

Distiller should find those properties in which two sets of progressive
profiles are most dissimilar. These findings should be presented to
the user in a clear and understandable manner

The remainder of this section discusses how we approach this in a real applica-
tion, and illustrate this with the prototype. In this discussion we consider our
prototype as two individual parts: an analysis part and a presentation part,
which we respectively refer to as the analyzer and the presenter. The interest-
ing computations take place in the analyzer. The discussion about the analyzer
focuses on how the data is processed and the statistics are computed. Which is
essentially a translation of our model to source code. The presenter takes care

45



of presenting the results of the analyzer to the user. Here the emphasis is on
the important considerations regarding the user interface.

6.3.1 Analyzer

The input of the analyzer is two sets of profiles, with for each profile its values
on a set of properties. We have formally defined a profile in section 5.1. These
sets of profiles can be either simulated or constructed on the basis of real data.

Listing 6.1: Simulation of values

public int[] generateNumericValues(int n, int lowerBound , int

upperBound , int bins , int[] dist);

public String [] generateCategoricalValues(int n, List <String > list

, int[] dist);

// generate 100 numeric values between 0 and 80

generateNumericValues (100, 0, 80, 6, new int[] { 15, 25, 25, 25,

5, 5 });

// generate 100 categorical values (10% yes , 90% no)

List <String > YESNOMAYBE = Arrays.asList(new String [] {

"yes", "no", "maybe" });

generateCategoricalValues (100, YESNOMAYBE , new int[] { 10, 90, 0})

;

Simulated profiles For the simulation of profiles we have defined two gener-
ation functions whose definitions are listed in 6.1. These functions can
generate a specified number of values on numeric and categorical proper-
ties.

The generateNumericValues function generates n numeric values between
the lower and upper bound. Here the range between the lower and upper
bound is equally divided in a specified number of bins. Now the distri-
bution array tells what proportion of values to generate for each these
bins. So if we have four bins, with lower bound 0 and upper bound 80, we
have four bins of length 20. Our distribution may prescribe to randomly
generate 30% of the values in the first bin, 40% in de second bin, 20% in
the third bin and only 10% in the last bin.

For the generateCategoricalValues function the bins are given in ad-
vance by a list of the possible categories. Now the distribution array says
what proportion of values to generate for each of the categories.

Each of the values that we generate represents a single profile. So with a
n of 100 we have generated values for 100 profiles on a certain property.
By calling the function twice we can generate values for two segments on a
certain property. We can now simulate differences between two segments
by varying the distribution of values over bins to a greater or lesser extent.

Actual profiles BlueConic provides the ability to export sets of profiles to a
comma-separated file (CSV). Our prototype can read up to a maximum
of about 7000 rows of profiles and 180 columns of profile properties. For
numeric properties empty values are not considered. For categorical prop-
erties, in some cases the empty value is not considered, in others the empty
value is seen as a separate EMPTY category. We have manually indicated
the desired behavior for each property.
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As we have seen in the discussion of the model, the analysis is strongly de-
pendent on the type of the profile property. Therefore the system must have
knowledge of the type of each profile property: either numeric or categorical.
This can be either indicated in advance or, with some uncertainty, determined
based on the data. For example, with our automatic detection technique, in-
teger ID numbers will be interpreted as numeric while in fact these should be
considered categorical. We do not have access to property type information, so
the prototype derives these types for us.

Details on how the data is parsed are not considered in this discussion. The
final result of this process is two segment objects, both consisting of a set of
profile objects. These profile objects have values assigned to a set of profile
properties. In the next sections we comprehensively describe how the profile
properties are analyzed.

Numeric property analyzer

For clarification, we will provide some parts of the source code. Many details
however are hidden in the packages we have used, and some code fragments are
simplified for illustrative purposes.

We have declared two variables myFirst and mySecond, that refer to the two
segment objects. Math3’s DescriptiveStatistics class is used to compute the
summary statistics for a segment on a numeric profile property. Only the profiles
within that segment that have a value on that profile property are regarded here.
This statistics class includes the sample mean, standard deviation and sample
size. We have extended this class to support the 95% confidence interval for
the mean. This method is shown in listing 6.2. Listing 6.3 shows how we can
request the descriptive statistics on a certain numeric property prop.

Listing 6.2: Confidence interval

/**

* Compute the width of the confidence interval for the current

numeric attribute

* @return confidence interval width

*/

public double getConfidenceIntervalWidth ()

{

// t distribution with n-1 degrees of freedom

TDistribution tDist = new TDistribution(getN() - 1);

// compute the probability quantile function of this

distribution

double a = tDist.inverseCumulativeProbability (1.0 - 0.05 / 2);

return a * getStandardDeviation () / Math.sqrt(getN());

}

Listing 6.3: Segment descriptive statistics

// get the summery statistics on both segments

ExtendedDescriptiveStatistics statsSegmentA =

myFirst.getStats(prop);

ExtendedDescriptiveStatistics statsSegmentB =

mySecond.getStats(prop);

These descriptive statistics are used to individually summarize the two segments
on a numeric property. Furthermore these are the foundation of many other
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statistics. Recall we have already extensively discussed these statistics in chapter
3.

The remainder will focus on the difference between the two segments on a
numeric property. The most simple way to describe the difference between two
numeric properties is the mean difference, which implementation is shown in
listing 6.4. However this statistic does not tell us anything about the certainty
and effect of the difference. As discussed in the model, for this we use the
two-sample t-test (listing 6.5) and Cohen’s d effect size. The Cohen’s d effect
size (listing 6.8) measure incorporates the pooled variance or pooled standard
deviation (see section 4.1.1), which are listed in 6.6 and 6.7

Listing 6.4: Mean Difference

/**

* difference between means of two segments

* @return mean difference

*/

double getMeanDifference () {

DescriptiveStatistics statsSegmentA = myFirst.getStats(prop);

DescriptiveStatistics statsSegmentB = mySecond.getStats(prop);

double m1 = statsSegmentA.getMean (),

m2 = statsSegmentB.getMean ();

return Math.abs(m1 - m2);

}

Listing 6.5: Independent sample t-test

/**

* Get the p-value for a independent sample t-test on the

specified property.

* @param prop

* @return p-value

*/

double tTest () {

TTest test = new TTest();

DescriptiveStatistics statsSegmentA = myFirst.getStats(prop);

DescriptiveStatistics statsSegmentB = mySecond.getStats(prop);

return test.tTest(statsSegmentA.getValues (), statsSegmentB.

getValues ());

}

Listing 6.6: Pooled variance

/**

* Computes the pooled variance.

* @param s1 variance first segment

* @param s2 variance second segment

* @param n1 sample size of first segment

* @param n2 sample size of second segment

* @return the pooled variance of segment s1 and segment s2

*/

static double getPooledVariance(final double v1, final double v2 ,

final double n1, final double n2)

{

return ((n1 - 1) * v1 + (n2 - 1) * v2) / (n1 + n2 - 2);

}
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Listing 6.7: Pooled standard deviation

/**

* Computes the pooled standard deviation.

* @param s1 standard deviation first segment

* @param s2 standard deviation second segment

* @param n1 sample size of first segment

* @param n2 sample size of second segment

* @return the pooled standard deviatin of segment s1 and

segment s2

*/

static double pooledStandardDeviation(final double s1 , final

double s2, final double n1 , final double n2)

{

double v1 = Math.pow(s1, 2), v2 = Math.pow(s2 , 2);

return FastMath.sqrt(getPooledVariance(v1, v2, n1, n2));

}

Listing 6.8: Cohen’s d

/**

* Computer cohen ’s d effect size

* @return cohen ’s d effect size

*/

public double cohensD () {

DescriptiveStatistics statsSegmentA = myFirst.getStats(prop);

DescriptiveStatistics statsSegmentB = mySecond.getStats(prop);

double m1 = statsSegmentA.getMean (),

m2 = statsSegmentB.getMean ();

double poolStandardDeviation = pooledStandardDeviation(

statsSegmentA.getStandardDeviation (),

statsSegmentB.getStandardDeviation (),

statsSegmentA.getN(),

statsSegmentB.getN()

);

return (m1 - m2) / poolStandardDeviation;

}

Furthermore the numeric property analyzer has several complex methods for
the discretization of a set of continuous numeric values into discrete intervals.
Note that we have two sets of values on a numeric property: the values on
that property for the first and the second segment. So for each value of the
numeric property we know whether the value belongs to the first or the second
segment (this corresponds to the class label). The discretization algorithm tries
to optimally split the continuous range into a few bins wherein each bin provides
maximum information about the segment. To illustrate: when most values of
the first segment are between 10 and 30, and most values of the second segment
are between 40 and 60, the discretization algorithm will indicate these two ranges
as bins. The prototype uses the Fayyad & Irani’s MDL method which we have
discussed in section 2.5.2 and is implemented in the WEKA library.

Categorical property analyzer

This section discusses the technical implementation of the categorical property
analyzer. Most of the methods we describe here are part of the
CategoricalPropertyAnalyzer class and frequently use the counts() method
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that returns a two-dimensional long[][] array. This array contains for each
category of the categorical property, how many profiles within the two segments
belong to that category. For example, let us assume we have a categorical
property with three possible categories: yes, no and maybe. Assume that 50
people in the first segment belong to yes, and 50 in the first segments belong
to no. For the second segments, all 100 profiles belong to the no category.
Now the counts array looks like this: {{50,0},{50,100},{0,0}}. We can use
this two-dimensional array for a chi-square test of independence, and return the
associated p-value. This method is shown in listing 6.9. The implementation of
ChiSquareTest is given by the Commons Math library.

Listing 6.9: Chi-square test of independence

/**

* Returns the observed significance level , or p-value , associated

with a

* chi -square test of independence

* @return p-value

*/

public double chiSquare () {

ChiSquareTest testStatistic = new ChiSquareTest ();

return testStatistic.chiSquareTest(counts ());

}

For the effect of the difference we have implemented Cramér’s V effect size meas-
ure. As in our situation nCols is always equal to two (the two segments), the
number of degrees of freedom (df = nRows < nCols ? nRows - 1 : nCols

- 1) is always equal to one. So in fact we use the phi measure of effect size.

Listing 6.10: Cramer’s V

/**

* Computes Cramer ’s V

* @return Cramer ’s V of phi (for df=1)

*/

public double CramersV () {

long [][] counts = counts ();

int nRows , nCols , df;

double n = 0;

nRows = counts.length;

if (nRows > 0) {

nCols = counts [0]. length;

for (int row = 0; row < nRows; row ++) {

for (int col = 0; col < nCols; col ++) {

n += counts[row][col];

}

}

df = nRows < nCols ? nRows - 1 : nCols - 1;

if (n > 0 && df > 0) {

ChiSquareTest testStatistic = new ChiSquareTest ();

return Math.sqrt(testStatistic.chiSquare(counts) / (n * df

));

}

}

return 0; // error

}
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Furthermore the analyzer class has several utility functions for processing the
categories, generating tables for the presenter and translating the results to their
semantic meaning.

6.3.2 Presenter

The analyzer outputs two JSON files. The first file contains all data that is
needed to report the results of the analysis to the user. The other file maps the
system variable names to real names. For instance, RANGE PROPERTY VISTIS

is mapped to Monthly visits. Both files are input to the presenter. This
presenter is a small web-based application that can be opened within the web
browser. This application is involved with processing the JSON files, building
the HTML DOM and handling the interaction of the user. We do not provide
details on its technical implementation here. Rather we will focus on the design
choices regarding the user interface.

Our prototype can analyze up to a maximum of 150 properties. For a user to
consider the results for those 150 properties is already a lot of work. We therefore
want to make a ranking of most interesting to least interesting properties, so we
can present it to the user accordingly. Now we have to consider what properties
do we find most interesting. The properties are all scored on two points, the
confidence in the existence of a difference, certainty of the difference, and the
effect of the measured difference. It is possible to see a very large effect, but a
very low confidence in the existence of the difference. This is usually the case
when we have little data that is widely distributed among the two groups. In
some cases our confidence is large, but the effect is small. This is common when
we have a lot of data for both groups, but there is only a small or even negligible
difference between the two groups.

It seems reasonable to take a mixture of the confidence score and the effect
score as ranking criterion. The confidence score is always somewhere between
0 and 1. It must be close to one (≥ 0.95) to make us actually believe in the
difference. Recall that the confidence score is equal to 1−p. We have previously
provided an interpretation table of this p-value in section 5.4.2. The effect
size for categorical properties also ranges from 0 to 1. However for numeric
properties the effect size can become greater than one. Categorical properties
are considered large and very large at respectively 0.5 and 0.7, as this is 0.8
and 1.3 for numeric properties. Unfortunately, we have not been able to find
a golden formula that combines these two scores, confidence and effect, in a
single ranking score. We find that this would be an interesting topic for further
research, which could also focus on whether marketeers would manually rank
the results in the same way.

We have decided to display a list of all properties, and sort this list on the
significance score. Consequently, the differences that we are most confident of
appear on top of the list. One of the design goals is that the application should
be easy to use and understand: no deep statistical knowledge should be required.
Instead of presenting raw numbers, we focus on meaning and interpretation of
the numbers. The confidence and effect of the difference on each property are
therefore presented in natural language. To further clarify this we assign a
color to each score on the 5 level scales, from green (best) to red (worst). Non
confident and negligible results are displayed in gray. We also have a button in
the interface to filter these results from the list. Figure 6.1 shows a screenshot
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of the resulting list in the actual application, with actual data. We refer to this
screen as the list view.

The second part of the presenter, the detail view, provides detailed inform-
ation on each individual property. This view can be accessed by selecting one of
the properties from the list. It is a concise report that displays in an insightful
manner where the differences are between the two segments for a certain prop-
erty. There are two versions of the detail view, a version for numeric properties
and a version for categorical properties. An example report for a numeric prop-
erty is found in three parts in figure 6.2, figure 6.3 and figure 6.4. In figure 6.5
and 6.6 the report for a categorical property can be found.

The report always starts with a statement in natural language that summar-
izes the finding, the structure of these statements is discussed in section 5.4.3.
Instead of using colors now bars are used to indicate the strength on a five-point
scale. There is a “show details option” to reveal the raw numerical results from
the statistics. For numeric properties the report shows some summary statistics
such as the mean and confidence intervals as we have discussed in the model.
The power of textual reports is limited. We visualize the results using histo-
grams to make clear at a glance how the data is distributed within the segments
(see figure 6.3, 6.6). Furthermore the report summarizes categorical results in
tables by row and by column. Let us discuss what the tables in figure 6.6 show.
The interpretation of the first table is that 10.9% of the people with an age
between 50 and 60 (835 profiles) searched for the keyword “www”. Only 1.76%
of the people between 20 and 30 searched for “www”. The second table tells us
that from all people (910 profiles) that searched for “www”, 91.76% is between
50 and 60 while only 8.24% is between 20 and 30 years old. What we may
conclude from this report is that people between 50 and 60 years old are more
likely to search for the term “‘www” than people between 20 and 30 years old.

Figure 6.4 shows the results of the MDL discretization technique. This table
is only visible when the algorithm is able to distinguish a few characteristic
intervals within this numeric property. We see that the algorithm has distin-
guished three groups. Proportionally many Feyenoord supporters (almost 50%)
fall within the first category (visits between 0-105.5). Instead proportionally
many Ajax supports are in the last category (visits between 298.5 - 4096). This
emphasizes the finding that Ajax supporters have (slightly) higher values on
Visits than Feyenoord supporters.

6.4 Findings of the prototype

We have tested our prototype on both simulated and actual BlueConic data.
For the simulated data the prototype behaves as we had expected. Therefore
the focus is on the findings using actual data. We have tested Distiller on four
different datasets. These datasets are summarized in table 6.1. The columns
“size first” and “size second” refer to the number of profiles within each segment.
A few profiles were corrupted, so the actual numbers may be very slightly lower.
In this final section we will summarize our general findings.

• We have assumed that the numeric attributes are normally distributed. It
turned out when inspecting the datasets that many numeric attributes are
not normally distributed. See for example figure 6.3, where most values
are close to zero.
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First segment Second segment Size first Size second
Ajax supporters Feyenoord supporters 789 3617
Men to 30 years old Women to 30 years old 4561 2705
People between 20 and 30
years old

People between 50 and 60
years old

4259 7669

People that bought a
product in shop between
6:00 - 10:00

People that bough a
product in shop between
20:00-24:00

2656 4307

Table 6.1: Actual datasets exported from BlueConic
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Figure 6.1: A screenshot of the Distiller WebApp list view
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Figure 6.2: A screenshot of the Distiller WebApp detail view for numeric properties (part 1 of 3)
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Figure 6.3: A screenshot of the Distiller WebApp detail view for numeric properties (part 2 of 3)
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Figure 6.4: A screenshot of the Distiller WebApp detail view for numeric properties (part 3 of 3)
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Figure 6.5: A screenshot of the Distiller WebApp detail view for categorical properties (part 1 of 2)
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Figure 6.6: A screenshot of the Distiller WebApp detail view for categorical properties (part 2 of 2)
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Our explanation is that many attributes in the dataset are count at-
tributes. These attributes represent something that can be counted in
whole numbers. Usually this is visitor behavior such as the total number
of website visits, the total number of monthly visits, the total number of
page views, the number of products bought this month, the number of
ecards sent, etcetera. This data usually follows a Poisson distribution.
Sun et al. discuss how they treat count data from Facebook in [19]. It is
advisable to look into other statistics to assess these count attributes.

• For many instances the value on a profile attribute is empty. For some
properties this means we do not know the value. The visitor just did not
tell us the value so far. However in many other cases this emptiness has a
certain meaning.

To illustrate this: emptiness on the numeric property “product bought”
means 0 products bought. For “visits this month” emptiness means the
user did not visit the page this month, so the value should be zero. Empti-
ness on the categorical property “subscribed” means the profile belongs
to the “no” category.

We have manually indicated this for each property to improve the results
of the analysis. However we advise to specify the meaning of emptiness
at the definition of each property.

• The dataset has several properties that are multi-valued. These properties
can contain more than a single value per profile. Examples are “search
keywords entered”, “pages visited” and “products viewed”. We have not
been able to find methods for the assessment of confidence in difference
and effect of difference for multi-valued attributes.

However an alternative that we have tested is to translate multi-valued
attributes into multiple single-valued categorical attributes. We call these
properties virtual properties.

This is tested for the “search keywords” property. We have created 50
virtual properties for the top 50 most popular keywords. Now for each
profile we have indicated for the fifty virtual properties whether (yes) or
not (no) that keyword is in the profile’s list of search keywords. The
results are promising. With this method we have for example uncovered
that: “Searched for: voetbal is (weakly) associated with being subject
of either men to 30 years old or women to 30 years” and “Searched for:
www is (weakly) associated with being subject of either Age between 20
and 30 or Age between 50 and 60” (see figure 6.5 and 6.6). It may not
be surprising that males do search more for “voetbal” (football). But we
cannot explain exactly why older people search for “www” more often
than younger people.

• In some cases the effect size interpretation table is inconsistent with our
interpretation. Figure 6.5 and 6.6 show that “Searched for: www is weakly
associated with being subject of either Age between 20 and 30 or Age
between 50 and 60” (α < 0.00001). The associated Cramér’s V or phi
effect size is 0.16. The table shows that 10.9% of the more than 7000
profiles between 50 and 60 years old searched for “www”. That is one
out of ten profiles. In contrast, less than two in every hundred profiles
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between 20 and 30 years old searched for “www”. This is a difference of
nine in a hundred profiles. Our intuition says this is a strong difference or
association, however using the effect size interpretations discussed in this
thesis it is considered as a weak effect. More research is needed to say
something meaningful about the origin of this interpretation difference.

• Some categorical attributes have hundreds of categories. In addition, often
there are just a few profiles that belong to each category. Analysis of this
data with the chi square test of independence and Cramér’s phi often leads
to highly significant results with moderate to strong effects.

An example of a categorical attribute with lots of categories is “Entry
page”. The entry page is the page where visitors arrive at the website. In
an actual case, we have seen 1455 different entry pages, so 1455 categories,
for the segments “Men to 30 years old” and “Women to 30 years old”. For
most entry pages, there was only one profile with that entry page in one
of the two segments. The conclusion of the prototype is that “Entry Page
is strongly associated with being subject of either Men to 30 years old or
Women to 30 years old”.

We do not trust outcome of the statistics in this case, as there is very few
data available for each category. Furthermore with so many categories the
prototype is not able to present the results in an insightful way. This can
be seen in figure 6.7. However the figure only shows 4 rows of the 1455
rows in total.

A general rule of thumb, which is sometimes referred to as Cochran’s rule,
when using chi-square is that [26] [22]

No more than 20% of the expected counts are less than 5
and all individual expected counts are 1 or greater

The data in our example certainly does not satisfy this rule. To increase
cell frequencies we advise to combine categories, if possible. For example,
with entry pages we could merge categories on domain name. An altern-
ative is to only consider the top 5 or top 10 most frequent categories in
analysis.

Although the prototype revealed several areas for improvement, overall, the
results are promising.

First, with the application we have been able to identify on which proper-
ties the two segments are distinctive. In the four test cases the vast majority
of the properties was considered statistically insignificant. This means that
only for a small proportion of profile properties we were (moderate to highly)
confident that there actually is a difference between the two segments. For ex-
ample, for the segments with Ajax and Feyenoord supporters, only 20 of the
160 profile properties were considered significantly different. As the number of
profiles grows, we see that more profile properties are considered significantly
different between the two segments. With the segments “People between 20 and
30 years old” and “People between 50 and 60 year”, 79 of the 184 properties
were considered significantly significant. Nevertheless, this leads to an enormous
reduction in the number of profile properties a marketeer needs to consider. Fur-
thermore the application distinguishes valuable (the ones that have the greatest
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Figure 6.7: A screenshot of the Distiller WebApp for a categorical attribute with many categories.
The table for which four rows are shown is 1455 rows long.

62



effect) and less valuable results from one another. In the football club example,
twelve of the twenty significant properties were classified as trivial or negligible
in terms of effect. Consequently, there were just eight properties that are stat-
istically significant and have a weak to strong effect size. The three strongest
of those eight distinctive properties measure the same visitor characteristic in a
different manner: the football club preference. It is good to see that this actu-
ally comes up in the analysis. Furthermore we have found that Ajax supporters
have a slightly higher number of visits than Feyenoord supporters. Feyenoord
supporters search (slightly) more for the keyword “Feyenoord” than Ajax sup-
porters (4.99% to 1.23%).

Finally, what we did not evaluate is whether there are more interesting
differences within our data that do not come up in our application. As we
have discussed, at the moment, the prototype is not capable of a good analysis
of multi-valued attributes and attributes with many categories. Therefore we
are pretty sure there are interesting differences in the data that do not come
up in the current version of the application. It may be interesting to examine
whether the prototype finds all distinctive properties that a human expert can
find within the data. What remains to say is that the results always strongly
depend on the quality of the data. If there are few significant differences within
the data, then little significant properties will come up in the application.
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Chapter 7

Conclusion

We have started this research with a rather practical issue. The goal of this
study was to automatically find distinctive features in two independent segments
of progressive profiles. We have thoroughly investigated the research problem,
formulated a model for progressive profiling, and ultimately we have reflected
the results on the practical problem in chapter 6.

First, in chapter 2 we have carefully examined the characteristics of the
available data. The high degree of uncertainty about profile values has led us
to a statistical approach. We consequently have build a solid foundation of
statistics in chapter 3 and chapter 4. In chapter 5 we have incorporated these
statistics in a formal model for progressive profiling. This model addresses both
the significance and the magnitude of effect of segment differences. We have
decided to indicate the significance as the “confidence in the difference”, as we
find this term better reflects what we actually try to assess. The interpretation
of the statistics is an important part of the model. We have provided general
guidelines for the interpretation of the outcomes of the statistic. Finally we have
applied the model. The result is a working prototype that operates on actual
datasets. This application has exhibited a few weaknesses of the model. We have
discussed these weaknesses and outlined possible solutions or improvements to
the model.

Overall, we think the results are promising. Distiller can be used without
technical knowledge about statistics. The results of the analysis are presented
to the marketeer in a clear and understandable manner. It saves marketeers a
lot of time, as it makes clear at a glance what the distinctive characteristics are
between two groups of profiles. These are valuable, and sometimes unexpected,
insights that may cause to approach certain groups of customers in a different
manner. After some further research we think the model can be successfully ap-
plied within BlueConic. We will discuss our recommendations for GX Software
in the next section. Finally in section 7.2 we conclude with some subjects for
future research.

7.1 Recommendations

The findings of this thesis lead to the following recommendations for GX Soft-
ware
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• Due to time and resource constraints the prototype has not been pro-
grammed in a very efficient way (section 6.2). We however expect that
when the application is programmed in a more careful way, and is built
on top of powerful search systems such as Apache Solr or ElasticSearch,
it may generate the analysis within milliseconds (in real time).

• For each profile, information is stored on several profile properties. Cur-
rently, little is specified about these properties. This increases flexibility
but allows for strange data on some properties. For example: we have seen
negative, or extremely large values on the property “age”. On dichotom-
ous attributes we have seen more than two categories, such as ‘yes’, ‘no’,
‘false’, ‘null’. Automatic data analysis strongly depends on the quality of
the data.

We think it is advisable to specify some characteristics (range or possible
categories) about the properties to keep the dataset clean. Furthermore,
as discussed in 6.4, we advice to specify the meaning of emptiness of a
property in the definition of profile properties.

• The prototype has demonstrated some weaknesses in our model. We have
highlighted these findings in 6.4. Before applying the model in BlueConic
we therefore strongly recommend to look at the subjects for future re-
search, which we will address in section 7.2.

• Finally, the prototype should be incorporated in the existing BlueConic
software product. One should take care finding the appropriate form and
position within the application. In its current form the most likely decision
seems to create a separate analysis section within the application.

7.2 Future research

We will conclude this thesis with some subjects for future research. These
subjects largely reflect the findings in section 6.4.

• In the model we assume that data on numeric attributes follows a normal
distribution. We have found that many numeric attributes that measure
visitor behavior follow a Poisson distribution instead of a normal distribu-
tion. Subject of future research should be to adapt the model with Poisson
models for the analysis of count attributes.

• The model does not consider multi-valued attributes. Alternatively, we
have suggested a method to translate multi-valued attributes into multiple
single valued attributes in section 6.4. Future research could focus on how
to accurately assess confidence and effect of differences on two segments
for multi-valued attributes.

• The model does not produce reliable outcomes on categorical attributes
with many categories, where most of these categories have a small number
of instances. We have suggested some solutions to reduce the number of
categories in section 6.4. Future research on these attributes may poten-
tially lead to new insights.
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• Based on a variety of literature we have proposed guidelines for the in-
terpretation of the used statistics. Especially on the aspect of effect it
is important that these guidelines are consistent with the interpretation
of marketeers. The guidelines may be, for example, too strong within a
marketing context. We have already discussed an interpretation issue in
section 6.4 that encourages further research. This may be investigated in a
practical study that considers how marketeers value the statistical results,
and relates these assessments to the guidelines discussed in this thesis.

• As discussed in section 6.3.2 the results are ranked according to the confid-
ence score. However, with this ranking, results may appear on top of the
ranked list that we are very confident of, but are meaningless in practice
(have a negligible effect). Future research may address finding a single
relevance score that combines both confidence and effect.

• Throughout this thesis we have extensively discussed that visitor profiles
are built up progressively. On some profiles much data has been gathered
over time, while on others we come to know very little. In practice we say
that some profiles contain much information, and others contain very little
information. This makes sense, because profiles that are filled on many
attributes provide much information about that website visitor. How-
ever, not all attributes are equally informative. One might argue that
rarely filled attributes are more informative than frequently filled attrib-
utes. What “information” exactly means is a bit vague. In addition, it is
difficult to express how informative a certain profile is. In order to solve
these issues we have made a step towards defining profile informative-
ness. Although we think it this is a very interesting topic and gives rise to
further research, it was partly outside the scope of this thesis. Therefore
we have decided to discuss our measure for profile informativeness, which
is inspired by the tf-idf statistic, in Appendix A.
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Appendix A

Profile informativeness

A.1 Information and surprise

We have described a visitor profile by the values that it takes on a finite set
of attributes. Each time we assign a value, content, to a profile property for a
profile, we add a some information to that profile. We state that each profile
holds a certain amount of information. Our aim is to provide a quantitative
measure that describes the total amount of information that a profile contains.
More formally, if u ∈ U , we want to define a function Iu(u) that assigns a
quantitative value for the amount of information included in that visitor profile.

We will first clarify what we exactly mean by information. In essence, a
profile is made up of multiple pieces of data. Which can be representations
of events, actions, preferences or characteristics. Each piece represents some
information. The information within a profile will increase each time a piece of
data is added. The key part here is that we do not find all pieces of data within a
profile equally important and informative. Based on prior knowledge we always
have some idea of what observations we expect for each profile attribute. The
more unexpected an observation, the more surprised we are. Each observations
has its own level of surprise that directly relates to how informative we find that
observation.

Example A.1.1. We will provide an example. Someone visits our website for
the first time and we observe the following events: the visitor enters the website
on the homepage, visits the news section, searches for the keyword ‘Obama’
and provides us its age of 73. Either implicitly or explicitly all of those events
contain some information. That one enters our website on the homepage does
not really surprise us. For most websites most inbound traffic will be generated
by people entering the URL in their browser, although also much traffic is from
search engines. Slightly more interesting might be that the fact that this person
visited the news section, obviously only a part of the visitors will visit this page.
The search keyword provides even more information, it provides some clue about
what the visitor is searching for on this website. When the chance that someone
searches that keyword is low, this probably really tells something about this
visitor and its intension. Finally also the age provides us valuable information.
Here, when this age is very uncommon it provides more information than when
the age is close to the average visitor age.
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What we see in the example is the idea is that each attribute has its own
probability distribution, that tells us the probability for a specific value in this
distribution. When we observe values that are infrequent we find this more
informative than when we observe common values. We will now discuss the
related information theory concepts of surprise and entropy.

Definition A.1. Let X be a random variable, taking values in X with a prob-
ability density function P , 0 ≤ P (X = x) ≤ 1. The surprise or information
I of observing X = x is defined as

I(X = x) = log2
1

P (X = x)
= −log2 P (X = x) (A.1)

The suprise measure ranges from zero for P (X = x) = 1 to infinity for P (X =
x) = 0

0 ≤ I(X = x) ≤ ∞
Note that the lower the chance of X taking value x, the more surprised we are
to see that value, the higher our outcome for I. Vice versa: if the chance to see
x is very high, our surprise will be very low, so will be I.

Example A.1.2. The concept of surprise is a crucial part in well known in-
formation retrieval algorithms. Let us consider the very popular tf − idf (term
frequency-inverse document frequency) statistic [15]. It provides a quantitative
measure for the evidence that a document is relevant for a given term.

Obviously the more times we see the given term in that document, the more
relevant we would consider the document. The term frequency refers to number
of times a term occurs in a document. Sometimes a normalized term frequency is
used to compensate for bias towards longer document. Because there is no linear
relation between the relevance and term frequency, logarithmic normalization is
usually applied. The inverse document frequency idft quantifies how surprised
we are to see term t in a document. It is a measure of the informativeness of this
term about the document identity. The document frequency of t, the number
of documents in D that contain t is defined as

df(t|D) = |d ∈ D : t ∈ d|

Now the likelihood or chance for t to occur in any document is defined as

P (t|D) =
df(t|D)

|D|

When we insert this chance in the previously defined equation (equation A.1)
of surprise we get the idf of t

idf(t|D) = log
1

df(t|D)
|D|

= log
|D|

df(t|D)

Because usually the word “The” occurs in many documents, and the word “For-
mula” in only a few, we are obviously more surprised to see the word “Formula”
in a document. Consequently, seeing the word “Formula” says much more about
the identity of the document, than seeing the word “The”. The inverse doc-
ument frequency provides us with a numeric measure for that. The complete
equation is
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tf − idf(t, d|D) = (1 + log tf(t, d)) · log |D|
df(t|D)

(A.2)

Definition A.2. We have discussed a related measure when discussing the
MDLP discretization algorithm. The average surprise on discovering the out-
come of a random experiment is given by the Shannon entropy. The Shannon
entropy defines the amount of information that random variable X contains as

H(X) = −
∑
x∈X

P (X = x) log2 P (X = x) (A.3)

If all observations are equally likely, the entropy is maximized.

A.2 Formalizing profile informativeness

We saw that IDF is a measure of the informativeness of a term about the
document identity. The aim is to define a similar measure that provides a
quantitative amount directly related to the information that a value of a profile
property discloses about the profile identity. Again this will be based on the
underlying idea that unexpected values, values that surprise us, contain more
information than common values. We start by defining a measure that provides
us with the total informativeness of a profile.

Definition A.3. We will call that measure the profile’s informativeness Iu.
For each profile u ∈ U and a set of attributes A

Iu(u ∈ U |A) =
∑
a∈A

wa Ia(u(a)| U, a)

The informativeness of a profile is just the sum of the informativeness of its
attributes. We may find some attributes more important in affecting inform-
ativeness than others, so a different weigth can be assigned to each attribute
wa.

Finally, we have to define the key part of the formula, attributes’s inform-
ativeness Ia. This is a measure of information seeing the sequences of values
u(a) for attribute a. The order of values is disregarded. We will provide a pos-
sible solution here for categorical attributes. The rest is up to future research.

Definition A.4. Given value x ∈ a for a profile property a ∈ A, the chance to
see any profile with profile property with that value is

P (x|U, a) =
|{z ∈ U : x ∈ z(a)}|

|U |
The surprise (in bits) seeing the value of x for this property is

I(x|U, a) = log2
|U |

|{z ∈ U : x ∈ z(a)}|
(A.4)

If we assume that the occurrence of values within an attribute are statistically
independent, we can combine occurrence of multiple values by addition. To
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prove this, let x and y be two values

I(x and y)

= −log P (x and y)

= −log P (x)P (y)

= −(logP (x) + logP (y))

= I(x) + I(y)

Therefore the attributes’s informativeness Ia for user u on attribute a can
be defined as

Ia(u(a)|U, a) =
∑

x∈u(a)

I(x|U, a) =
∑

x∈u(a)

log2
|U |

|{z ∈ U : x ∈ z(a)}|
(A.5)
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