Agent-based simulation with
iTasks for navy patrol vessels

Supervisors:
Prof. Dr. Ir. M.J. Plasmeijer
Dr. J. van Diggelen

Author:
Wessel van Staal

Radboud University Nijmegen f% m

Thesis number:
671

Master’s Thesis
Computing Science

Radboud University Nijmegen
August, 2013

CONTENTS

Contents

1__Introductionl
2 CWA and iTasks|

[2.2.1 Task concepts|. L.

222 Semantics of iTaskd
2.2.3 GiN: A graphical iTasks notation|.
2.2.4 1Tasks in practicel.

2.3 1Tasks and CWA in software development)

13

Agent-based simulation|

8.1 BDIlagents]
3.2 Hierarchical task networksl
3.3 28APL0 . ..o
3.4 TAMS

4.4.1 Extended service representation|.
4.4.2 Annotating tasks with tags|
4.4.3 Changes for agent framework|

[4.5 Semantics of agents|. L.

4.5.2 Tagging tasks| L.
4.5.3 Running agents|
4.5.4 Agent primitives|
4.6 Towards automatically deriving agents|
4.7 Anexamplel L oL

]

Case study: damage control with 1Tasks|

[5.2 Building the iTasks prototype|

5.2.1 Handling fire alerts|.
0.2.2 tarting blanket searches|
b.2.3 Searching compartments|.
b.2.4 Executing attack plans|f.

[5.3 Using the iTasks agent framework]

15
16
17
18
19
20
22

23
23
24
25
26
26
27
28
29
29
30
30
31
33
35

CONTENTS

B32 Taskcostsl. 45

b.3.3 Agent behaviour| L. 46

b.3.4 Implementationl. 48

.4 Performing simulations|. 0L 51
B5 _DISCUSSION] « « « o v v v v v e e e e 53
6 Conclusions| 54

1 Introduction

Designing automation for complex domains is a time consuming and error prone
process. Such a process usually consists of a domain analysis and a requirements
analysis, followed by the implementation and testing of the software system.
Multiple iterations of these phases are required to obtain the product as desired.
In the domain of our interest, navy vessels, the complexity of the design is
increased because of reduced (human) resources on vessels due to budget cuts.
Furthermore, budget cuts reduce the amount of time that is available to build
and test software.

Domain experts think in terms of high level concepts that do not always translate
well to software. Using their domain knowledge, they know precisely (explicitly
or implicitly) which tasks humans need to perform under what circumstances
to achieve certain goals. These high level concepts need to be translated into
very precise program statements. The amount of time required to implement
a software system is proportional to the level of abstraction and expressiveness
that the programming language and tools offer. With existing software devel-
opment methods, the gap between concepts used by programmers and domain
experts is often too large, increasing the amount of time required to build usable
prototypes. We would like to validate functionality as quickly as possible, to
identify issues early on and minimize the effort required for reparation.

Once requirements have been defined and a prototype is developed, experiments
need to be conducted in order to verify claims about design decisions. Such
experiments can be dangerous in more complicated domains such as the navy,
where mistakes can have severe consequences. Moreover, it is costly to conduct
and organize such experiments when human end users are involved. Another
method that can be used to estimate the impact of design decisions is simulation.
Human end users are simulated with computer programs, such that experiments
can be conducted more efficiently in less time. This is used extensively in the
space domain using the Brahms simulation tool [36] [4].

To perform simulations, it must be possible to model the users of the software
system. Software components that are used to simulate human behaviour are
referred to as agents. Each agent is able to observe, reason and act upon its
environment. In existing agent-based systems, the tasks that can be performed
are included in the definition of the agents. A disadvantage of this approach is
that it imposes constraints on the amount of reuse of tasks. Functionality that is
common to agents cannot be abstracted and isolated in building blocks to reduce
the amount of time required to build future agents. Furthermore, it is harder
to model team-based cooperation when all tasks are decentralized. Agents in
existing tools often lack a coordination artefact to coordinate task distribution,
making it more difficult to efficiently divide tasks among agents.

Another important feature that is underdeveloped in existing agent-based sim-
ulation methods is the ability to perform human-in-the-loop [37] or crew-in-

4 1 INTRODUCTION

the-loop [10] simulations. In order to support actual humans participating in
simulations, user interfaces must be defined along with all the machinery to han-
dle interactions. With existing methods, this functionality is not automatically
derived from agent specifications or task models. Therefore, it is not trivial to
interchange humans with software agents. Human-in-the-loop simulations are
especially relevant in training scenarios. Furthermore, actual visualizations of
task models used with simulations help discussions between domain experts and
developers to improve requirements.

TOP provides the concept of a task to build fully functional software by spec-
ifying relations between primitive tasks. In this work, we propose to use the
iTasks framework, which is an implementation of TOP. Developers only need
to concern themselves with issues that are related to the requirements of the
software system. All of the other concerns are handled by the iTasks framework,
including the generation of a user interface, handling data persistence, handling
user input, etcetera. iTasks is built with Clean, a state of the art functional
language supporting a high degree of abstraction. The concept of a task creates
an opportunity to bridge a gap between analysts and developers, providing a
shared idea that is understandable for both expertises. Analysts can use task
analysis methods to gain insight about what tasks humans perform on a high
level, which can be used to assist the iTasks programmer in constructing the
task model in software. If developers can share concepts with domain experts to
communicate in an efficient manner, the time to build a software system can be
greatly reduced. Further, if software developers do not need to concern them-
selves about matters that are not important to the functional requirements of
the system, they can use their time in the most efficient manner possible.

Refinement

Final
Problem :> Model :> Prototype :> product

Domain Task
analysis analysis

iTasks

Figure 1: Overview of research domain

In figure [we show an abstracted view of a development process involving
iTasks as prototyping tool. Given some real-world problem, we construct a
contextual model by performing a domain analysis. Based on such an analysis,
we can derive requirements and claims that must be satisfied by the solution of
the problem. Requirements are implemented in prototypes iteratively, possibly
refining requirements and claims during the development process. Our aim is to

use iTasks as a tool to perform rapid prototyping and agent-based simulation,
providing us with a tool to build a formal and executable task model that forces
domain experts to think in concrete tasks. We focus on agent-based simulation
with iTasks to enable automated testing, allowing us to improve requirement
refinement and claim validation. We use domain analysis tools as context for
requirements: in this work, we also study the use of Cognitive Work Analysis
to derive requirements for iTasks prototypes.

We propose an agent framework that is defined in terms of iTasks to overcome
issues with other agent-based tools. Instead of designing tasks specifically for an
agent in a decentralized manner, it can be more appropriate to use a centralized
task model defining the constraints and order of tasks to be performed by (a
team of) agents. A combination of approaches is also possible, enabling the
option of moving tasks between the centralized task model and individual agents.
Because we define software agents in iTasks with a functional language, we
have the opportunity to create abstract building blocks that promote reuse in
agents.

We ask the following questions:

How can we use iTasks as a tool to assist in designing automation for complex
domains?

e How can we perform simulations with agents in iTasks?
e How do agents in iTasks relate to agents in other frameworks?

e How can iTasks be used to rapidly build prototypes in a non-trivial do-
main, based on products from task analysis methods and input from do-
main experts? In particular, how can cognitive work analysis assist in
designing requirements for iTasks models?

This research is conducted in cooperation with the Netherlands Organisation
for Applied Scientific Research (TNO) as part of a project to reduce the amount
of personnel on navy patrol vessels. Within this project, TNO intends to use
iTasks as a tool to experiment with task models and to provide a mechanism
for personnel training. Computer simulation is a commonly used tool at TNO
to test various solutions. With that in mind, the goal of our research is to
enable such functionality for iTasks. We compared several simulation tools
used at TNO with the framework we propose in this thesis. Furthermore, we
developed the prototype in our case study in cooperation with domain experts
at TNO.

The aim of this research is to gain insight about how iTasks can be used to
improve the development process. A part of that aim is to extend iTasks where
necessary in order to move the framework forward towards a product that can be
used in a variety of domains. In this work, we discuss how we extend iTasks to
support agent-based simulations. We explain how these agents relate to existing
agent-based systems. Furthermore, we discuss how we design and build a proto-

6 2 CWA AND ITASKS

type based on input from domain experts and products from analysis methods.
Also, we show how we can perform simulations with this prototype.

2 CWA and iTasks

In this chapter, we discuss both Cognitive Work Analysis (CWA) and iTasks.
We also explain how decision ladders in CWA relate to iTasks.

2.1 Cognitive work analysis

Analysts use various methods in order to understand and optimize tasks that
humans execute in complex environments. Examples of these methods include
cognitive work analysis (CWA) [31] [16] and hierarchical task analysis [38]. In
this study, we mainly focussed on CWA, since this was the method used to
analyse the domain of the prototype as described later in this work.

Cognitive work analysis is a method to gain understanding about complex do-
mains. Using the method, analysts can answer high level questions such as
why a system exists and what tasks are performed by whom. Rather than very
explicitly describing workflows of tasks that are performed, CWA focusses on
describing the constraints and goals of tasks. An advantage of this approach
is that it provides a way to handle situations that were not anticipated during
analysis. This makes the method especially useful for the navy domain where
unexpected events occur on a daily basis. However, it is not clear how usable
the analysis results are in a software development process, when details are im-
portant. We claim that CWA products do not contain enough detail to be able
to translate into iTasks implementations with little effort. However, we did use
some of CWA as high level (informal) specifications. We will now describe the
phases that are included in CWA.

Work domain analysis During domain analysis, the elements of the domain
and their relations are defined using an abstraction hierarchy. In this
hierarchy, it becomes clear what the higher level goal of the system is and
of what parts it is composed. At the lower level of the hierarchy, all of
the important physical objects are described that support the system on
the operational level. On the top of the hierarchy, the high level goals
are described. This hierarchy has been used to construct user interface
designs [40], but is primarily used to gain a high level insight about the
domain.

Control task analysis The goal of control task analysis is to investigate the
activities (tasks) that are performed in the domain. The main products of
this phase are decision ladders [31] that describe a sequence of informa-
tion processing steps that occur during a task. A decision ladder describes
what has to be achieved and the constraints that must be enforced, but

2.1

The options available to change the system state
Is it possible fo (-....)7

System states are multidimensional containing
different classes of information
What is the{..|?

s thera {.....)?

Cognitive work analysis 7

not in terms of precise steps as one would expect in a workflow. It leaves
room for human interpretation, making it more suitable to handle unantic-
ipated events. Decision ladders also support short cuts (shunts) in order
to achieve a goal in less time. This enables the option of modelling paths
for experienced and less experienced actors. Decision ladders were used
as the basis for the prototype as described later in this work.

The overall goal and constraints of the system
To (insert goal) (insert constraints)

Evaluate
performance

The specific balance of goal and constraints selected
Is (insert goal) (insert constrain{) my chosen goal?

Predict
consequences

Each option should be considered as a target
state
Should (insert opiion) be performed?

Diagnose state Definition of task

Information contains one class of

What is thef.....)?
Where is the(.....)?

What are the tasks that may be required to
information these can be (3) (8) achieve inese gosis?
informed by requirements to INFOR What nseds fo be dans o {......J7
develop system states - What is the process for |......)?
ot 17 MATION

Observe
information and data,
scanning for cues

Planning of
procedure

Alerts are the actions What are the procadures that may
within the system that 9 need to take place to achieve these
indicate a need to tasks?

make a decision nggg What steps are needed fo (...)7

Activation Execute

Figure 2: The decision ladder template [15]

Decision ladders are instances of a generic structure; the overall process
remains the same for each ladder. We use |2| as an example of a decision
ladder. The left hand side of the ladder in figure [2] corresponds to activa-
tion of the decision making process and building the internal picture of the
context. An activation may be caused by a triggered sensor or a human
reporting a calamity during a blanket search on a vessel. In iTasks, we
can model triggers that fire when an environment changes; if a predicate
is satisfied, we can allocate a task and assign it to some user to aid in the

3 2 CWA AND ITASKS

decision making process. Part of this task might be to inform the user
about the environment such that the user can build an internal picture.
The decision ladder does not explicitly define whether tasks are performed
by an information system or by human users; this yields an opportunity
to experiment with the level of automation. Sheridan & Verplank [34]
describe the level of autonomy (LOA) of an information system. A high
LOA corresponds to a system where most tasks are performed without
any human interaction. iTasks is especially suitable to experiment with
the LOA: a rule-based task can easily be converted into a task that re-
quires interaction with a human. Furthermore, with iTasks, one can use
an adaptive strategy, where a task is only performed by a human when
the system is unable to do so.

The top level of the ladder describes the knowledge-based steps in the
decision ladder. In iTasks task models, this would correspond to tasks
that only serve a supporting and informing role; almost no tasks can
be automated (easily) in this case. An example of this might be the
prioritizing of calamities by the commanding officer on a marine vessel.
While an information system can play a supporting role, it is up to the
commander to make these important decisions.

The right hand side corresponds to the planning and execution part in
a decision making process. With iTasks, this would correspond to tasks
that present the user with options and known procedures to resolve some
issue. In command and control, it is important to be aware of the available
resources (i.e. the capabilities) that can be allocated to handle a crisis
situation. iTasks has built-in functionality to delegate tasks to users in
a flexible manner. Users can monitor the progress of delegated tasks,
optionally reassigning them when needed.

Each part of the decision ladder corresponds to a set of requirements and
task types for iTasks. In our case study, we further elaborate on ways to
interpret one instance of a decision ladder.

Strategy analysis The goal of a strategy analysis is to describe recurring
paths of decision ladders in more detail. This phase identifies the most
common ways in which a task is performed, allowing for optimizations.
However, the strategy analysis will never yield an exhaustive list of all
possible ways to perform a task. The focus lies on the most common
paths.

Social organization & cooperation analysis In this phase, the goal is to
analyse which actors must perform what tasks. Products from earlier
phases are annotated with actor indicators to describe which actors can
be involved.

Worker competencies analysis Tasks require skills and experience. A worker
competency analysis yields a matrix indicating what task requires which
competencies from workers.

2.2 iTasks 9

2.2 1Tasks

iTasks [14] [26] [27] is a software library that can be used to specify high level
work tasks performed by users. An iTasks application is a task composed of
subtasks, where each individual subtask can also be a composition of tasks.
When viewed as a hierarchy, basic primitive tasks such as displaying informa-
tion on the screen or filling out a form exist on the bottom. At the top of
the hierarchy are the tasks that correspond to higher level functionality of the
application.

Tasks are composed with various types of composition. These compositions cor-
respond to the flow of an application, which can expressed by workflows. In fact,
an extension exists for iTasks that allows users to construct tasks visually by
drag and drop operations. The basic forms are sequential and parallel compo-
sition, where tasks are executed sequentially and in parallel respectively. From
these basic compositions, more complicated variants can be derived.

While other workflow systems are often fixed and static, iTasks provides the
possibility of creating highly dynamic task models. Tasks produce values that
can be used to dynamically decide what task to perform successively. Tasks
can be assigned dynamically to users based on complicated decision procedures.
With iTasks, it is possible to model an application that can suggest multiple
alternatives to perform a task, based on the current context.

One of the advantages of iTasks is that a multi-user application is completely
derived from the tasks that are specified. This application is web-based, only
requiring devices that are capable of browsing websites. During development,
one does not need to be concerned about implementation details of the user
interface. This makes iTasks especially suitable for rapid prototyping, which
is one of the main motivations of this research. It is possible to extend and
adapt the user interface, but this is not required to build a fully functional
application.

iTasks provides functionality to define and manage users. Tasks can be delegated
to different users and can share information, allowing users to monitor task
progression and share workload. Since all of these features are implemented as
tasks, iTasks is especially useful to construct a formal model of tasks performed
by teams. This model produces a fully functional application and forces domain
experts to think in more exact terms.

2.2.1 Task concepts

To build task specifications, we have several constructs available. Among the
primitive tasks are interaction tasks that require input from users to com-
plete. We show viewInformation, enterInformation and updateInformation as exam-
ples:

10 2 CWA AND ITASKS

viewInformation :: d [ViewOption m] m — Task m | descr d & iTask m
enterInformation :: d [EnterOption m] — Task m | descr d & iTask m
updateInformation :: d [UpdateOption m m] m — Task m | descr d & iTask m

:: Stability :==Bool

:: TaskValue a = NoValue
| Value a Stability

Each of these functions produce the abstract notion of a Task a, which is the
fundamental type in the iTasks system. A Task a is a description of all the
computation required to construct the user interface, handle input from users
and construct task values. Tasks produces values (TaskValue a) that are either
non-existing (NoValue), stable or unstable. Stable values no longer change as
opposed to unstable values. This is a powerful concept in iTasks: it is possible
to act upon incomplete information.

With viewInformation, some description d describes the task that must be per-
formed by the user. ViewOption is used to produce an optional view for the
user; information that is defined in terms of m. enterInformation defines a task
that produces a m out of 'nothing’: the user is responsible for doing so. The
iTasks system generates a user interface using type information at runtime. The
enterInformation task produces NoValue until the user has entered all required in-
formation to produce m. The framework has similar functions for entering
(multi) choice values and viewing/updating shared information.

Primitive tasks can be composed with combinators to produce more complex
tasks. In iTasks, there are two core combinators: step (sequential composition)
and parallel (parallel composition). There is also value transformation, but we
omit this part. The other combinators are derived from these core combina-
tors.

:: TaskStep a b
= OnValue ((TaskValue a) — Maybe (Task b))
| OnAction Action ((TaskValue a) — Maybe (Task b))
| 3e: OnException (e — Task b) & iTask e
| OnAllExceptions (String — Task b)

step :: (Task a) [TaskStep a b] — Task b | iTask a & iTask b
:: ParallelTaskType

= Embedded

| Detached ManagementMeta

:: ParallelTask a :== (SharedTaskList a) — Task a

parallel :: d [(ParallelTaskType,ParallelTask a)] — Task [(TaskTime,TaskValue a)]

16

Lo B AN~ S C I

2.2 iTasks 11

| descr d & iTask a

With step, Task a is evaluated to produce values. A list of possible steps to
be performed based on these values is used to execute a new task in sequence,
producing a new value b. This is slightly similar to the observer pattern known
in object oriented programming, where one can ’hook into’ values that are pro-
duced from some source. A task in iTasks can be seen as a data source that is
continuously producing new values until it stabilizes. A TaskStep is some step
requiring action from a user (a button) or a rule-based step in which some pred-
icate is used to decide the next task to be performed. When no TaskStep matches
on a value produced by Task a, step produces NoValue and continues to evaluate
Task a.

The parallel combinator takes a list of tasks to be performed in parallel. The
combinator collects the results from these tasks continuously and combines them
with a time-stamp. Tasks supplied to the parallel combinator can be performed
in the current session, allocating them to the current user. It is also possible
to assign tasks to other users, using the Detached constructor in ParallelTaskType.
The derived @: combinator makes use of this functionality. An important feature
of the parallel combinator is the ability to monitor values produced by tasks by
providing a SharedTaskList. FEach task is able to monitor its siblings, enabling
more advanced collaboration scenarios. Each of the following combinators can
be defined in terms of the parallel and step combinator:

(>) infixl 1 :: (Task a) [TaskStep a b] — Task b | iTask a & iTask b

(>>=) infix] 1 :: (Task a) (a — Taskb) — Taskb | iTask a & iTask b

(=11-) infixr 3 :: (Task a) (Task a) — Task a | iTask a

(-&&-) infixr 4 :: (Task a) (Task b) — Task (a,b) | iTask a & iTask b

(@:) infix 3 :: worker (Task a) — Taska | iTask a & toUserConstraint worker
allTasks :: [Task a] — Task [a] | iTask a

anyTask :: [Task a] — Task a | iTask a

Both > and >>= can be defined in terms of step: >> is the infix representation
of step and >>= is the monadic style bind operator. Task b is produced once
Task a produces a stable value. -| |- is the or-combinator, performing two tasks
in parallel from which one must complete. Similarly, -&&- is the and-combinator,
performing two tasks at the same time that must be completed.

2.2.2 Semantics of iTasks

Semantics of software systems known in academic literature are often described
using a syntax grammar and derivation rules. These semantics often contain
mistakes, are difficult to read and they need to be verified manually. The se-
mantics of iTasks are defined differently; the framework is expressed as a term
rewriting system implemented in Cleanx [28]. This way, we can use the Clean

12 2 CWA AND ITASKS

compiler to check for trivial errors (e.g. type errors or typing mistakes) and
actually execute them for testing.

A task in iTasks can be seen as a function that modifies some state based on an
event, producing both a value and a reduct describing the continuation of the
task. Evaluating a task comes down to providing events and a state, rewriting
the resulting reduct to continue evaluation until the task value stabilizes or
some error occurs. We briefly discuss the details of the task evaluation. Further
details are specified in [2§].

:: Task a:==Event — *State — *(Reduct a, Reponses, *State)

evaluateTask :: Task a — *World — *(Maybe a, *World) | iTask a
evaluateTask ta world

st = {taskNo = 0, timeStamp = 0, mem = [] , world = world}

(ma,st) = rewrite ta st

= (ma, st.world)

rewrite :: Task a — *State — *(Maybe a, *State) | iTask a

rewrite ta st=:{world}

(ev,world) = getNextEvent world

(t, world) = getCurrentTime world

st = {st & timeStamp = t, world = world}

(Reduct res nta, rsp, st) =ta ev st

= case res of

ValRes _ (Val a Stable) = (Just a, st)
ExcRes _ = (Nothing, st)
_ = rewrite nta

= {st & world = informClients rsp st.world}

The function rewrite obtains an event through some function getNextEvent and
applies the task function. When the task value is stable, the recursion ends and
the value is returned. Similarly, if an exception occurs, a Nothing is returned.
Otherwise, the reduct obtained from the task is used to continue evaluation
recursively. Each time the task is evaluated, the clients are informed by some
function informClients. The details of both getNextEvent and informClients are not
relevant to the semantics. Later in this work, we use the semantics proposed in
[28] as foundation for the semantics of our agent framework.

2.2.3 GiN: A graphical iTasks notation

Graphical notations are common to many workflow systems. A graphical rep-
resentation often clarifies the flow and structure of a program, increasing the
readability for non-technical users. This can help tremendously when discussing
implemented functionality with domain experts. Such a notation exists for
iTasks in the form of GiN [II]. GiN provides graphical elements for some of
the combinators that we discussed in section but it is slightly outdated:
the step (>>) combinator and shares in iTasks are not yet supported. We use

2.2 iTasks 13

—H g 11 =g1

foreach = in If| | N @
Iven p A .
1] 1. =5 ’

(c) (d) (e) 6 (& Mm G O

task return assign list list let paral- paral- case merge
appli- compre- lel lel
cation hension split join

Figure 3: Elements of GiN [11]

ad-hoc solutions in this work to express these concepts visually. GiN can be
translated directly to an iTasks task specification, enabling the option of exe-
cuting the graphically designed workflows. In this work, we use some elements
of GiN to clarify some of the code examples. However, we do use abstracted
views that omit information to keep the diagrams clear and simple.

The following elements are outlined in figure[3] Function f applied to arguments
g1, » gk corresponds to a). Lifting a value g into the task domain with return
corresponds to b). Assigning a task g to user w is expressed with ¢). The
elements g) and h) are used for parallel composition: Vi maps to anyTask and
A maps to allTasks, while A() maps to -&-. The elements in figure |§| are

connected with arrows that correspond to the bind operations. = corresponds
to >>=\p. and — corresponds to >>|.

2.2.4 iTasks in practice

The iTasks system was used to build a prototype for the Netherlands Coast
Guard, to handle incident response scenarios. The Netherlands Coast Guard
handles many incidents daily, each requiring a different workflow that dynam-
ically changes as more details about the incident arise. This work by Lijnse
et al [20] [2I] showed that the iTask workflow definition language (WDL) is
powerful enough to capture highly dynamic tasks that occur during an inci-
dent. This work demonstrates the flexibility of iTasks: task models need not
be fixed nor static as with other workflow systems, a task model can be mod-
elled such that the system suggests tasks or different alternatives to approach
the same problem, depending on the situation. This leaves more initiative to
the human user, which is sometimes required with knowledge-based tasks. A
knowledge-based task is difficult to automate; it requires human experience and
judgement.

The work done for the cost guard also showed that higher order tasks provide
a powerful concept in iTasks. Functionality that is useful in multiple instances

14 2 CWA AND ITASKS

(e.g. providing suggestions for alternative tasks) can be generalized by such
constructs. Since tasks can be treated as data, they can be stored in data
structures along with meta information, further improving the reusability of
functionality.

2.3 iTasks and CWA in software development

In this research, both CWA and iTasks are positioned in a development method
called Situated Cognitive Engineering (SCE) [24]. We illustrate this in figure [
We distinguish three components: foundation, design specification and testing.
In the foundation, we explore the domain of the problem. Part of this explo-
ration is to define the roles, constraints and goals in the domain. Based upon
this foundation, we formulate requirements that are optionally based on design
patterns. In software engineering, a design pattern relates to recurring patterns
that have proven to be working in practice. It has a similar meaning in SCE,
where design patterns describe proven ideas for requirements. We also spec-
ify requirements for training (i.e. defining the capabilities required to perform
tasks) and scenarios usable for (human-in-the-loop) tests.

Foundation

CTL Ethnographic
Method research

Design Specifications

Use Cases,
Requireme’ Training SearEas
, Claims Requirements

Design
Patterns

c
Q
=
2]
I
b
]
3
=
®©
=
)
o
Q
2
=
O

iTasks Agents

Figure 4: CWA and iTasks positioned in SCE

Cognitive Work Analysis can be used in the foundation component: part of a
CWA analysis is to define an abstraction hierarchy and decision ladders. These
high level concepts aid in domain exploration. For example, an abstraction
hierarchy defines relations between the goals of a system and the physical entities

15

and systems available to achieve these goals. Decision ladders can also serve as
foundation for high level requirements for iTasks.

iTasks is positioned as a rapid prototyping tool to test implementation of re-
quirements. One of the main reasons to use iTasks is the minimal amount of
effort required to build fully functional prototypes. Furthermore, one forces do-
main experts to think about the desired behaviour of a software system in more
detail. By using agent-based simulation, tests can be performed by a combina-
tion of both human and software agents (human-in-the-loop). Claims that were
defined in the design specification can be verified by results of these tests.

3 Agent-based simulation

Simulation is used for a wide variety of purposes: some examples include gain-
ing understanding about human behaviour in complex scenarios (e.g. emergency
evacuations), to train personnel in dealing with crisis situations and to compute
effects of changes during the design of a product. Simulations can be performed
in various ways. A real-life exercise on a patrol vessel where several different
scenarios are trained is an example of such a simulation. Another example is the
use of computational simulation, where some approximation of an environment
and scenario is defined in a computer model to obtain results through computa-
tion. This has the advantage that simulations can be performed with relatively
few resources as opposed to real-life exercises.

Commonly known methods of computer simulation include discrete time event
simulation [7] and stochastic modelling [I7]. With discrete time event simu-
lation, a time line of events is processed. An event resembles a system state
change at a particular time. Entities that have state are effected by these
events. An example of stochastic modelling is the use of discrete time markov
chains (DTMCs), where one can model a system by a set of states and transi-
tions. Each transition is associated with a probability. Using DTMCs, one can
compute the probability of reaching a particular state within n steps.

Another method of computer simulation involves the use of agents that interact
with an environment and each other. There is no real consensus on what it
takes to call something an agent. According to Macal & North [22], an agent is
an autonomous, self-contained entity attempting to achieve goals with respect
to its behaviours. Furthermore, an agent is flexible and has the ability to adapt
its behaviour by learning from experience. An agent can represent a human,
but it is also possible to model entities such as vehicles.

Creating models for agent-based simulation is often called bottom-up modelling
[32], as behaviour is defined at the individual level from which the global be-
haviour emerges. A simulation may involve a large number of agents, all com-
municating with each other and their environment.

16 3 AGENT-BASED SIMULATION

Macal states that an agent-based model consists of (i) a set of agents with their
behaviours and attributes; (i) a set of inter-agent relationships and methods of
interaction; (i) the environment that agents interact with.

According to Bonabeau [I], agent-based simulation (ABS) offers the following
advantages when compared to other modelling techniques:

e ABS captures emergent phenomena;
e ABS provides a natural description of a system;
e ABS is flexible.

Bonabeau argues that emergent phenomena are hard to predict and can be
counter-intuitive, making them difficult to create and observe with other mod-
elling methods. Bonabeau also argues that some systems are natural to define
in terms of agents: an example of a problem that is suitable for ABS is traffic
modelling [23], where each (driver of a) vehicle is represented by an agent.

Sheridan & Verplank [34] describe the level of autonomy regarding human-
machine interactions. As the level of autonomy (LOA) increases, the machine
requires less interaction to complete its tasks. Simulation can be used to exper-
iment with various LOA and explore the effects in different situations. It has
been shown that ABS is particularly useful to experiment with situated tasks
that are driven by communication [3] [13].

3.1 BDI agents

There are many different variants of agents and levels of intelligence and au-
tonomy. BDI agents are defined in terms of beliefs, desires and intentions [30].
An agent has a belief state representing beliefs held about the environment at
time t. All agents observe their environment through sensors and act upon their
environment with actuators. By interpreting sensor information, an agent can
update its belief state if it desires. This can be modelled with the following
function [18]:

remember : S x P — S

where S represents the belief state and P represents percepts that are produced
by sensors. A belief state is different from the actual environment: an agent can
have beliefs about the environment that are false. Beliefs can be quantitative:
an agent can believe that some proposition about the environment is true to
some degree. Belief states are used as a temporary memory to accumulate facts
during the agent’s lifetime and aid in making decisions. When combined with
sensor information, agents can decide what actions to perform. This can be
modelled with the following function:

3.2 Hierarchical task networks 17

do:SxP—C

where C' represents commands that can be given by agents to change their
environment or interact with other agents.

BDI agents also have the concept of desires and intentions. Desires are goals
the agent wishes to achieve at some time in the future. Intentions are the steps
the agent intends to take to achieve a goal. By observing the environment
and interacting with other agents, an agent can decide to change its intent or
desire.

3.2 Hierarchical task networks

In planning and artificial intelligence, a commonly known concept is a hierar-
chical task network [33] [19]. Such a network is based on a hierarchical de-
composition of a problem domain into tasks. A network consists of primitive
tasks and non-primitive tasks that can be decomposed into other tasks. This
network can be seen as a plan to achieve a certain goal and can be obtained
by applying a hierarchical task analysis [38]. The concept of a HTN is used by
TAMS to define software agents. Interestingly, a method is described to map
task hierarchies to concepts of BDI agents [J].

Build
House

{ decomposes to

Builder
________________ e m e e e c e ——————
| decomposes to

Build I
/ Roof \ !
Build Build Buwld !
Foundation Frame = |Interior I
\ Build / :
Walls !

Figure 5: Example of a hierarchical task network

In [9], a task hierarchy language is defined. A task is defined as T'(T'ype, [(T1,C1),- -, (Tn, Cn)])
where Type denotes the type of task T, [T1,--- ,T,] denote the subtasks of T

18 3 AGENT-BASED SIMULATION

Task hierarchy BDI agent
State Beliefs
Main task Goal
Subtask Goal or plan
Primitive task | Action (atomic plan)

Table 1: Mapping from task hierarchies [9] to BDI agents

and C4,---,C), denote the conditions under which subtasks can be adopted.
Type specifies what composition is used: sequential, all, one or prim. Sequen-
tial composition specifies that all subtasks must be executed one after the other.
All or one composition specifies that all subtasks must be executed or just one
respectively. Prim denotes that the task is primitive and is not composed of
any subtasks. The paper then shows that such a hierarchy can be translated to
an agent in 2APL.

Conceptually, there are many similarities between HTNs and task models we
have for iTasks. For example, primitive actions correspond to the primitives we
have in iTasks. Further, non-primitive tasks use some form of composition com-
posing other tasks. We have a similar notion in iTasks with task composition.
However, task models for iTasks are defined formally in Clean. Task hierarchy
networks are less expressive when compared to task models in iTasks in terms
of constructs for abstraction. For example, we can define higher order tasks
in iTasks. Additionally, we can identify common patterns in task models and
create abstractions to maximize the amount of reuse.

3.3 2APL

2APL [f] is a programming language to implement BDI-based agents. It pro-
vides higher level constructs to implement concepts commonly used in agent-
based programming such as plans, goals and beliefs. The programming language
consists of a combination of declarative and imperative (Java) constructs, using
the declarative subset to formulate beliefs and goals while the imperative subset
is used to formulate plans and interfaces to external environments. A goal is
a desired world state (i.e. a predicate over the belief state and environment),
while a plan is a sequence of actions to achieve a goal. An important concept of
2APL is the notion of planning goal (PG) rules of the form goal < belief | plan.
To achieve goal when an agent believes belief, it must execute plan. A plan
consists of actions such as updating the belief state, communicating with other
agents or interacting with the environment. One of the more interesting features
of 2APL are repair rules. If some plan fails, a repair rule can be used to alter
the plan such that the agent can recover from the failure. This adds flexibility
to how agents need to deal with errors.

2APL is a general purpose agent language: agents can interact with any envi-

3.4 TAMS 19

ronment and are not tailored towards a specific technology. A large difference
with this work is that we define agents that are specifically designed to operate
on iTasks task specifications. The tight coupling between task specifications
and agents performing tasks is expressed by the duality of the two concepts.
Whereas 2APL is a completely separate framework specifically for the specifica-
tion of agents, we utilize the same model for both task specifications (programs)
and agent definitions.

With 2APL, each agent has a high level of autonomy in the sense that there
are no constraints on what tasks can be performed at a particular time. This
is different from agents we define in this work; we have a central iTasks model
that defines the constraints and order of tasks to be performed by agents. This
means that the level of autonomy is constrained. An advantage of this approach
is that we have a central point of coordination. In team-based scenarios, we can
define all tasks that must be performed by a team along with coordination in
one model. With 2APL, tasks are coupled with agents and coordination must
be done by inter-agent communication.

There is some similarity between error handling of 2APL agents and iTasks
agents: 2APL uses plan repair rules as mentioned earlier. This is a way to
alter plans that have failed. iTasks agents are also capable of altering their
tasks when failures occur by using the iTasks exception model. Using the step
combinator, one can define an exception handler to produce a new task (or plan)
to be executed. If the exception is not handled, it is propagated onwards in the
task tree. This makes it possible to define general error handlers for iTasks
agents.

3.4 TAEMS

TAEMS (Task Analysis, Environmental Modelling and Simulation) [6] [12] is
a modelling language for describing task models for agents. The goals that
agents should achieve are defined at the top of such a tree, composed of tasks
that the agent should perform. Tasks are in turn composed of other tasks
and methods, which cannot be decomposed further. A method corresponds to
primitive actions that an agent can perform (e.g. manipulate the environment).
Each method is associated with a quality which is a indicator of the quality of
the outcome. Methods are also associated with a cost and duration distribution.
Tasks are then composed by defining Quality Accumulation Functions (QAF's)
describing the semantics of executing and accumulating the quality of outcomes
of subtasks/methods. With T/AEMS, each agent is assigned a task model. It
is also possible to define multi-agent systems, allowing inter-agent relationships
between task models. For example, an agent might depend on another agent to
perform a certain task.

The task models that are defined with TAMS correspond to hierarchical task
networks as described earlier, with additional features such as a notion of quality

20 3 AGENT-BASED SIMULATION

and duration. T/AEMS shows that it is possible to define agents with task models,
which is similar to what we present in this work. One of the differences between
the method presented in this work and TAEMS is that TAMS is specifically
designed to model tasks for simulation and is limited in terms of extensibility.
In contrast, our method is embedded in the Clean language offering greater
flexibility. We provide a foundation for agents, which can be extended at will
with concepts such as quality and duration. One would have to alter the core
of TAEMS to add features to agents.

Another difference with iTasks is that TAMS is not meant to support inter-
actions with actual humans. iTasks supports human-in-the-loop simulations,
where humans can take over roles of software agents. This makes iTasks more
suitable for training scenarios. Task models in iTasks were originally designed to
be executed by actual humans, by using advanced technology to automatically
construct user interfaces from task specifications.

3.5 Brahms

Brahms [36] [4] is an agent-based simulation tool that combines comprehen-
sive models involving human-machine interaction, collaboration, cognitive mod-
elling, traditional business process modelling and more. Brahms is used to
model work practice, groups of people using resources and collaboration to per-
form work. The Brahms developers use the following definition for work prac-
tice:

The collective performance of contextually situated activities of
a group of people who coordinate, cooperate and collaborate while
performing these activities synchronously or asynchronously, making
use of knowledge previously gained through experiences in perform-
ing similar activities.

Brahms uses a form of BDI style agents, where each agent executes activities
based on local beliefs. Brahms is capable of simulating complex interactions
between agents and their environment, such as agent interactions with physical
devices and social interactions. Results of simulations can be used to derive
work flow diagrams that indicate how goals were achieved by agents. These
workflows can then be used to adjust the agent model or alter requirements.
The Brahms architecture is structured around the following constructs:

Brahms distinguishes two types of knowledge: declarative and procedural. Declar-
ative knowledge is captured in terms of beliefs of agents. A belief is a predicate
in first-order logic, an assertion that is perceived to be true by an agent. Proce-
dural knowledge is captured in workframes and thoughtframes, expressed with
rule-like logic. Thoughtframes update the belief set of an agent, while work-
frames perform actual activities in an environment. Both types of frames are
guarded by preconditions: if a precondition of a rule matches against the belief
set of an agent, it is put on a queue to be processed.

3.5 Brahms 21

GROUPS are composed of
AGENTS having
BELIEFS and doing
ACTIVITIES executed by
WORKFRAMES defined by
PRECONDITIONS, matching agents beliefs
PRIMITIVE ACTIVITIES
COMPOSITE ACTIVITIES, decomposing the activity
DETECTABLES, including INTERUPTS, IMPASSES
CONSEQUENCES, creating new beliefs and/or facts
DELIBERATION implemented with
THOUGHTFRAMES defined by
PRECONDITIONS , matching agents beliefs
CONSEQUENCES, creating new beliefs

Figure 6: Brahms taxonomy

An interesting similarity between Brahms and iTasks agents is the use of explicit
detectables and sensing actions. With Brahms, agents can explicitly observe the
environment and update their belief sets accordingly. This explicit nature is also
used in iTasks agents, where information about the environment (a task model)
must be observed explicitly with readInformation or derived combinators. iTasks
agents can react upon these changes to formulate new beliefs and start new
tasks.

Since Brahms enjoyed over a decade of extensive research and development, its
features are far more extensive than what we propose in this work. However,
there are some conceptual differences similar to the other tools we have dis-
cussed. A large difference is that we model tasks that need to be performed
by teams in one central task model. This task model is agnostic with respect
to simulation of agents; it does not describe any properties related to individ-
uals (e.g. cognitive attributes, capabilities). From this central task model, the
iTasks platform derives a fully functional application which can be used imme-
diately. This yields an executable, formal specification of tasks that need to be
performed in a domain.

It is interesting to reason about the amount of autonomy of agents in both
Brahms and iTasks. Franklin et al [8] defines an autonomous agent as fol-
lows:

An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time,
in pursuit of its own agenda and so as to effect what it senses in the
future.

22 3 AGENT-BASED SIMULATION

For both iTasks agents and Brahms agents, the environment seems to be the
‘main’ limitation to autonomy. iTasks agents are required to follow tasks ac-
cording to a task model, but are free to decide how and when a task should be
performed. They are also capable of social interactions as with Brahms agents.
With Brahms agents, they are limited to what actions can be performed in an
environment. Arguably, a Brahms environment is far more extensive than an
iTasks task model. For example, a Brahms environment is situated in space and
time while an iTasks task model is not. For iTasks agents, there is no built-in
notion of movement or geography.

3.5.1 KAoS integration

KAoS [39] [2] is a set of policy and domain services that can be used to define
policies. According to the KAoS developers, a policy is a statement enabling
or constrained some action that can be performed by an actor in a particular
situation. In the context of software agents, KAoS can be used to constrain
the capabilities of agents to make sure agents behave according to the intended
purpose. In addition, it can be used to model team-based policies as well as
individual policies.

KAoS can be used to define policies for agents, while remaining agnostic about
the agent technology that is used. This way, one can reuse the same policies for
multiple agent-based frameworks and other distributed systems. Efforts were
made to bridge KAoS with Brahms [35] [37], such that Brahms agents can make
use of KAoS policies. In order to preserve autonomy of agents, agents are not
required to follow KAoS policies, but agents have the option to do so. Note that
KAoS does not rely on any implementation details of agents; the KAoS services
can be supported by any agent framework.

Domain services are used to support the abstract notion of a domain: they can
be used to structure agents into groups, ranging from simple teams to complex
organizational structures. Such a domain can be used to generalize policies for
agents (i.e. domain specific policies). Policy services can be used to specify
and enforce policies within domains. Part of the service is conflict resolution,
resolving contradicting policy issues. An actor uses a policy service to learn
the policies applicable to the current situation. Often times, such an actor is
an agent in some agent framework. An enforces intercepts actors to enforce
policies.

Brahms agents resemble agents in iTasks more strongly with the Brahms/KAoS
bridge: KAoS can be seen as a central coordination model, a service that dictates
what actions are allowed in the current context. Using this bridge, it is possible
to define a central model for Brahms agents, such that individual agent tasks
can be defined (or constrained) in a centralized, more team-based manner. This
is similar to the central task model we have in iTasks. The two methods will
also have similar challenges. For example, should a particular behaviour or task

23

be defined in the agent model or in the central model?

iTasks agents could also benefit from a KAoS integration. The KAoS services
can be used to assist in agent reasoning. For example, KAoS can be used to
reason about the actions an agent can perform in the future, based on the
policies that are currently enforced. Furthermore, one of the interesting parts
of KAoS is the modular architecture and the modules that it currently supports.
One of these modules is spatial reasoning, in which policies are also situated in
space (and time). Since we do not yet support tasks models situated in space,
we could potentially use KAoS as alternative if we can build a KAoS-iTasks
agent bridge.

4 An iTasks agent framework

4.1 Introduction

We build software with iTasks by specifying task models that capture work
performed by humans. iTasks reduces the amount of time required to produce
prototypes by automatically deriving tedious development work from task spec-
ifications. This allows us to test requirements specifications early with user
experiments. However, it is time consuming to arrange the people necessary to
perform these experiments, especially in complex domains such as navy vessels.
Furthermore, in training scenarios, it should be possible to train individuals
without the need of complete human teams. In order to solve both of these
issues, we need a way to simulate human behaviour for iTasks.

An iTasks user is working on an instance (i.e. a personal view) of the task
model, similar to instantiation of classes to objects in object oriented languages.
Each user is associated with an instance and performs work by providing the
iTasks server with input (e.g. keystrokes and mouse clicks). Each time input is
received, the iTasks server modifies the instance and responds by presenting the
user with a visualization of the new instance. The user then has the opportunity
to observe the changes and can decide what input to supply next. If we would
like to model human users or systems with software in the form of software
agents, we need a mechanism that supports interpreting task representations.
Furthermore, the mechanism needs to support producing input to tasks.

Agents defined for iTasks can interact in various ways. One way is to model
inter-agent communication in the task model. For example, it is possible to
model chat-like functionality as tasks that are performed in parallel with other
tasks that agents might have. The communication method is then defined in
the central task model. Another way is to let agents communicate using primi-
tives that are defined in the agent framework. Messaging and similar forms are
commonly used in existing agent frameworks. In our work, the agent framework

24 4 AN ITASKS AGENT FRAMEWORK

iTasks instance

ty

[} UI representation /\
X

User interface £ P

Events /\

ta ts ... tn

Figure 7: User-iTasks interaction

is implemented as extension to the iTasks platform. Inter-agent messaging can
be implemented by using the shares provided by iTasks.

Agent frameworks often support modelling of cognitive and social attributes.
The agent framework we propose in this work does not include these features,
as it is merely the foundation of defining agents with iTasks. However, we
do show that concepts such as costs for performing tasks can be defined with
little effort in our case study. This shows the extensibility of our approach:
since we define agents with iTasks in a general purpose language, we can add
functionality without having to modify a complex code base.

4.2 Architecture

Users perform tasks by supplying events to an iTasks instance. An event is
produced by keystrokes, mouse clicks and any other form of input. The iTasks
instance then processes the event and produces a user interface representation of
the tasks that are being performed. A user then interprets the new information
displayed on the screen, making a decision to produce new events to continue
working on tasks.

We want to be able to model task performers that perform tasks defined with
iTasks. We refer to these as agents, where each agent is a separate entity capable
of observing, reasoning and performing actions to complete tasks. With iTasks,
tasks are defined in a single task model that describes the constraints and order
of tasks to be performed. This means that agents are only capable of performing
tasks that are assigned to them as defined by the central task model. The level
of atonomy of each agent is thus dependent on how strict the task model is
defined.

The architecture as shown in figure applies to agents as well. A small dif-
ference is that agents do not require the complex Ul representation of tasks,
but rather a minimal version that includes task tags to be able to distinguish
tasks.

An important observation is that we consider observing, reasoning and
performing actions to complete tasks as tasks. This has the implication

4.3 Dualism of tasks and agents 25

that we can define agents in iTasks, exploiting the full potential of the iTasks
framework. Agents can use shared data to communicate with other agents or
use interaction tasks to influence their behaviour. Each agent can be considered
as a single iTasks instance with a task model, enabling the option of simulating
agents with agents.

Domain representation
(Ship, alerts, resources)

/ Manipulate, monitor

iTasks instance ¢ iTasks instance]/
t

tq

communication link /\
\ P

tn ta ts ... tn

Figure 8: Overview of architecture

We introduce a new iTasks primitive runAgent that runs a simulation task rep-
resenting an agent. The runAgent task is connected to some source providing a
task model. In figure |8 an agent task is running in a separate iTasks instance i
and is connected to iTasks instance j. The agent task is performing tasks that
are defined in j. Note that an agent task and source can run in the same iTasks
instance (i = j). Also note that 4 itself is an iTasks instance, allowing us to
define some instance k containing agents to work on tasks in 1.

4.3 Dualism of tasks and agents

A dualism exists between how we define tasks in iTasks and how we model
agents. The idea is that a task consumes events produced by agents and pro-
duces a value in addition to some intermediate representation of itself. We take
the dual of this function to model agents: given some representation of tasks at
hand and their values, produce events to perform work. Conceptually, we have
the following:

Tasks = FEvent x State — Value x TaskRep x State
Agents = Value x TaskRep x State — FEvent x State

By extending the notion of Fvent and State, we can model Agents as a sub-
set of T'asks. Because of the dualism between the two domains, operations on
Tasks are also useful for Agents. For example, the semantics of the parallel
combinator for T'asks can be used for Agents to simulate performing two tasks

26 4 AN ITASKS AGENT FRAMEWORK

in parallel. We define new primitives for Agents that are the dual of prim-
itives for T'asks. For instance, we have enterInformation for Tasks to inter-
actively obtain input from users (agents). This task consumes events to up-
date and produce a value representing the information. We define the dual of
this function, writeInformation, to produce events in order to update the value
of a enterInformation task. writeInformation completes when the corresponding
enterInformation task is available and the events are produced.

Now that this dualism is acknowledged, we could exploit some of its properties
in various ways. We discuss some of these ideas informally. For example, agent
definitions could be (partially) derived from task specifications. Furthermore,
we could define some notion of agent soundness: if tasks (activities) in agent a
are defined satisfying duality with the tasks in model b, we could say that agent
a is sound with respect to task model b. Similarly, if tasks in agent a cover all
tasks defined in model b, we could say that agent a is complete with respect to
task model b. These properties could assist in agent development. For instance,
a soundness check could be performed by static analysis during development
of agents. However, it remains to be seen whether these properties can be
verified automatically. Verifying these properties is presumably undecidable or
extremely complicated due to the fact that iTasks is nested in a general purpose
language, allowing all sorts of highly dynamic task models. Future research
could indicate what subset of iTasks programs are verifiable.

4.4 Extensions to iTasks

In order to support agent-based simulations with iTasks, the iTasks platform
is extended in various ways. These extensions are not just useful for the agent
framework presented in this work; it also allows us to create connectors to third
party frameworks such as Brahms.

4.4.1 Extended service representation

We define a new type TaskServiceRep as task representation for service-based
access to iTasks. With service-based access, we mean access by (agent) software
with the intent to perform tasks in iTasks. A variant of this type exists in the
original iTasks implementation, but is only partially implemented and does not
produce all the information required for services. For example, we require that a
tag is included for services to differentiate between tasks. TaskServiceRep replaces
the original TaskPart type in iTasks. The type represents all running interaction
tasks in an iTasks session. Note that an iTasks session represents one user that
is performing tasks, so each user has a different service representation as well as
a different user interface. Continuation actions that are grouped by the iTasks
platform are also included in the structure. Each interaction task produces
this structure as result to serve as an alternative to the (more complex) GUI
representation.

4.4 Extensions to iTasks 27

//Task representation for web service format
:: TaskRepKind = ActionRep (String, Bool)
| EditorRep JSONNode

//Task representation for web service format
:: TaskServiceRep = TaskServiceRep TaskId (Maybe JSONNode) TaskRepKind

:: ServiceRep :== [TaskServiceRep]

The JSONNode type in the EditorRep construct represents any type that is produced
by an interaction task. In the iTasks implementation, interaction tasks provide
the option to use views to alter the information that is shown to users in the UL
The service representation that we implemented will always contain this view of
information, since we do not want to discriminate between users that perceive
information through the UI and extensions that interpret information from the
service representation. However, we also would like that the information in the
service representation is free from any UI related values. In order to implement
this, we had to change the implementation of interaction tasks slightly. We
show the implementation of viewSharedInformation as an example:

viewSharedInformation :: !d ![ViewOption r| !(ReadWriteShared r w) — Task r | descr d & iTask r
viewSharedInformation d [ViewWith tof]| shared
= interactSharedInformation d (toReadOnly shared) (A\r — Display (tof r))
<<# tof //new : change service representation

//alter the editor value in the service representation for editor tasks
(<<#) infixl 1 :: (Task a) (a—b) — Task a | iTask a & JSONEncode{jx} b

The value that is shown to the user in viewSharedInformation is a Display, which
is UI related information. It informs the iTasks platform to generate a read-
only user interface element. We strip the Display constructor in the service
representation with the <<# combinator.

4.4.2 Annotating tasks with tags

The tag part of TaskServiceRep is another extension to iTasks: tasks can be tagged
in order to identify them in applications that consume the iTasks service. Note
that this extension is not just useful for agents, but also for other applications
that must interface with iTasks. We introduce two new operators to the iTasks
platform:

class Tag a
| JSONEncode{J[}
, JSONDecode{fx[} a

//Tag tasks with identifiers
(<<:) infixl 2 :: (Task a) t — Task a | iTask a & Tag t
(>>:) infixl 2 :: t (Task a) — Task a | iTask a & Tag t

28 4 AN ITASKS AGENT FRAMEWORK

Tags can be of any type, with the restriction that the type can be encoded and
decoded to the JSON format. JSON is a generic representation commonly used
in web development. JSON encoding and decoding is supported by almost all
common development platforms. Tagging is especially useful when task models
are highly dynamic (e.g. tasks are allocated dynamically at runtime, executed
in parallel, etc.). Using tags, agents can easily identify what tasks are available
to them.

4.4.3 Changes for agent framework

We now introduce changes to the iTasks platform specifically to support our
agent framework. As explained before, an agent can be defined as the dual
of a task. However, by extending IWorld and Event, we can express agents as
tasks:

:: Event = EditEvent !TaskId !String !JSONNode
| ActionEvent !TaskId !String
| FocusEvent 1TaskId
| AgentEvent IServiceRep //Task representations as input
| RefreshEvent

:: xIWorld =

... //many other fields
, eventTarget :: Maybe (Event *IWorld — *(ServiceRep, *IWorld))

}

The idea is that the duality is encapsulated in the existing types. The input for
agent tasks (task representations) is encoded into the Event type. When agent
tasks produce events, they do so implicitly by using the the eventTarget function
in IWorld. We now introduce a new core combinator for iTasks, runAgent:

:: TaskRepShare :==ReadOnlyShared ServiceRep
:: EventConsumer :==Event *IWorld — *(MaybeErrorString ServiceRep, *IWorld)

runAgent :: TaskRepShare EventConsumer (Task a) — Task a | iTask a

runAgent encapsulates a task that represents an agent. It takes a share that
contains a task representation to be performed by the agent, a function to
consume events and a task that represents the agent. It essentially implements
the observer pattern by monitoring the share and running the agent when a
new task representation is available. The share can represent any data source,
normally being an iTasks instance.

We now introduce functions to connect agents to an iTasks instance. The func-
tion webServiceTaskProducer takes an URL, a port, an interval and a SessionId to
periodically poll an external iTasks instance for available tasks. The webServiceEventConsumer

4.5 Semantics of agents 29

function takes similar arguments and sends events to an iTasks instance. We il-
lustrate the usage of these functions with a simple example in section [£.7}

:: URL :==String
:: Port :==1Int

webServiceTaskProducer :: URL Port Int Sessionld — TaskRepShare
webServiceEventConsumer :: URL Port Sessionld Event — Task Void

getSessionId :: URL Port — Task Sessionld

Recently, the iTasks framework introduced push-based events. A push-based
event model is far more efficient than the polling mechanism that we use cur-
rently. The idea of push-based events in iTasks is that the iTasks server provides
a notification mechanism when new information is available for clients. Instead
of continuously checking whether new information is available (polling), the
server notifies the client when new data is available. We do not use this func-
tionality in the current version of the agent framework, but there is no reason
why it could not be implemented in the future.

4.5 Semantics of agents

In this section, we semantically define the concepts of agents in iTasks. We use
and extend the semantics defined in [28] with Cleanx. We give the semantics
of the runAgent function along with matchAgentEvent and doEvent. Furthermore,
we show how tasks are tagged. As in [28], we used framed boxes to indicate
semantics and unframed boxes to indicate the actual API. In section .7 we
give a short example of agents performing some tasks.

4.5.1 Events and states

To express our semantics, we extend Event and EditorResponse. We add a new
event AgentEvent that includes the task representations to be processed by agents.
In addition, we include a tag field in the existing EditorResponse type. We only
allow editor tasks to be tagged in our semantics, keeping most of the existing
semantics in tact. We also add a field invalidateAgent to State; we explain the
purpose of this field in section

1 :: Event = RefreshEvent

2 | EditEvent TaskNo Dynamic

3 | ActionEvent TaskNo Action

4 | AgentEvent Responses //new: task responses as input
5

6

5 :: EditorResponse —

-

M)

-

V)

w

'S

o

o

10

11

12

13

14

16

30 4 AN ITASKS AGENT FRAMEWORK

7 { description :: String
8 , editValue :: EditValue
o , editing :: EditMode
1o , tag :: Maybe String //new: tags for editors
1 }
12
13 :: *State =
i { taskNo :: TaskNo
15 , timeStamp :: TimeStamp
1 , mem :: [Dynamic]
17 , world 1 *World
1s , invalidateAgent :: Bool //new: flag whether agent task tree is invalid
19
}

4.5.2 Tagging tasks

We introduce two operators to tag tasks:

(<<:) infixl 2 :: (Task a) String — Task a | iTask a
(1) infixl 2 :: String (Task a) — Task a | iTask a

We use the function tagEditor to alter the response produced by a task. If the
response is an EditorResponse, we update the tag field.

tagEditor :: String — (Task a) — Task a | iTask a
tagEditor tag tsk = newTask eval
where
eval tn t ev st
#(Reduct res nTsk, rspTsk, st) = tsk ev st
#rspTsk = case rspTsk of
[(t, EditorResponse e)]
= [(t, EditorResponse {e& tag = Just tag})]
rsp =rsp
= (Reduct res nTsk, rspTsk, st)

(<<:) infixl 2 :: (Task a) — String — Task a | iTask a
(<<:) t tag = tagEditor tag t

(>>:) infixl 2 :: String — (Task a) — Task a | iTask a
(>>:) tag t = tagEditor tag t

4.5.3 Running agents

We will now define the semantics of the runAgent function that is responsible for
running an agent. runAgent takes an argument representing an agent (a) and an

© L N o oA W N =

11

-

N

w

4.5 Semantics of agents 31

argument representing the task to be executed by the agent (b). When an event
is available, it is passed to b. We also pass the event to a, since a can contain
interaction tasks. After that, we collect the task representation from b and pass
it as an AgentEvent to a, so that a is able to produce events. When a produces
events, they are added to the event queue of iTasks, effectively creating a loop of
a producing events to perform b. We define this seemingly complex mechanism
as follows:

runAgent :: (Task a) — (Task b) — Task b | iTask a & iTask b
runAgent agent tsk — newTask eval
where
eval tn t ev st=:{invalidateAgent=ia}
#(Reduct res nTsk, rspTsk, st) =tsk ev st

| isExcRes res = (Reduct res (runAgent agent nTsk), [], st
#(Reduct _ nAgt, _, st) = agent ev st
#(Reduct _ nAgt, rspAgt, st) = nAgt (AgentEvent rspTsk)

{st&invalidateAgent=False}
= (Reduct res (runAgent nAgt nTsk), rspTsk ++ rspAgt,
{st&invalidateAgent=ia})

For simplicity, we assume that exceptions are handled within agents and do
not need to ’bubble up’ in the task tree. We update invalidateAgent in order to
indicate that we have a fresh task representation for the agent; the reasoning
behind this choice is explained in chapter [£.5.4]

Note that the type of runAgent in our semantics is different from the type in the
actual implementation discussed earlier. The only difference is the source of the
task representations and the output of the events: in the actual implementation,
we abstract from the source of task representations and the output of events. In
our semantics, we simplify this by explicitly specifying the task to be executed
by the agent. The events produced by agents are directly placed in the iTasks
queue instead of using an abstraction. Other than a difference in the way
input/output is coordinated, the implementation corresponds to the semantics
as defined above.

4.5.4 Agent primitives

We will now define the semantics of the primitives takeAction, writeInformation
and readInformation.

takeAction :: String — Task Void
readInformation :: String — Task a | iTask a
writeInformation :: String a — Task Void | iTask a

We first introduce a few helper functions to define these primitives. doEvent is a
task that places an event in the event queue of iTasks. This is used by agents to
produce events. We use matchAgentEvent to perform a match on an AgentEvent. The

-

w

IS

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

32 4 AN ITASKS AGENT FRAMEWORK

task result is the result of the pattern match. matchEditor and matchAction produce
representations when a tag or action name matches respectively. For simplicity,
we assume that all actions have some unique name in our semantics.

doEvent :: Event — Task Void
doEvent ev = newTask eval
where
eval tn t evt st=:{world}
#world = queueEvent ev world
= (Reduct (ValRes tn (Val Void Stable)) (doEvent ev), [],
{st&world=world, invalidateAgent=True})

matchAgentEvent :: (Responses — Maybe a) — Task a
matchAgentEvent p = newTask eval
where
eval tn t (AgentEvent tsr) st=:{invalidateAgent = False}
= case (p tsr) of

Nothing = (Reduct (ExcRes AgentException) (matchAgentEvent p), [|, st)
Just x = (Reduct (ValRes t (Val x Stable)) (matchAgentEvent p), [], st)
eval tn t e st = (Reduct (ValRes t NoVal) (matchAgentEvent p), []|, st)

findEditorTask :: String — Responses — Maybe (TaskNo, EditorResponse)
findEditorTask tag rsp
= case (filter (eq tag) rsp) of
[(t, EditorResponse e):_] = Just (t, e)
- = Nothing
where
eq tag (_, r) =case r of
EditorResponse e =
case e.tag of
Just t = t==tag
Nothing = False
_ =False

findAction :: String — Responses — Maybe (TaskNo, (Action, Bool))
findAction action rsp
= case (filter hasAction rsp) of
[(t, ActionResponse as):_] = Just (t, (hd (filter pred as)))
- = Nothing
where
pred (Action t, _) = t==action
hasAction (_, ActionResponse as) = any pred as

matchEditor :: String — Task (TaskNo, EditorResponse)
matchEditor tag = matchAgentEvent (findEditorTask tag)

matchAction :: String — Task (TaskNo, (Action, Bool))
matchAction tag = matchAgentEvent (findAction tag)

10

11

12

13

14

15

16

17

18

19

4.6 Towards automatically deriving agents 33

Note that the invalidateAgent flag is set by doEvent. This indicates that the agent
has invalidated the task representation that it is currently inspecting. In more
clear terms, it means that the agent is no longer perceiving the current envi-
ronment. The invalidateAgent machinery is in place to keep agents consistent
when performing agent tasks sequentially. We explain this by a simple exam-
ple:

someAgent = writeInformation "Number" 12 >>| readInformation "Number"

After the agent decides to enter a number in some task, one expects that reading
the number from the same task would yield the same result. However, accord-
ing to the iTasks semantics, a >>| b passes the same event to a and b. This
means that b is inspecting the same task representation from AgentEvent as a,
which would lead to inconsistency in agents. We use the simple invalidateAgent
flag solution to overcome this issue. A better implementation could involve
some changes to the core combinators of iTasks to alter the AgentEvent when
needed.

takeAction can be used to take an action as defined with a step combinator
(>>%). The task attempts to find an action with a particular action name. If
the action exists and is enabled, an ActionEvent is immediately sent by using the
eventConsumer function in State. readInformation and writeInformation use similar
patterns.

takeAction :: String — Task Void
takeAction tag — matchAction tag
>>+ [OnValue (\action.
case action of
Val (_, (_, enabled)) _ = enabled
- = False)
A(Val (taskId, (a, enabled)) _).
doEvent (ActionEvent taskId a)

]

readInformation :: String — Task a | iTask a
readInformation tag — matchEditor tag
QA(_, edt).
(return o de_serialize o fst) edt.editValue

writeInformation :: String — a — Task Void | iTask a
writeInformation tag value = matchEditor tag
@ \(taskNo, _).
doEvent (EditEvent taskNo (serialize value))

4.6 Towards automatically deriving agents

Now that we have a method to define agents with iTasks, we can explore how we
can automatically derive basic agents from task specifications. Derived agents do

34 4 AN ITASKS AGENT FRAMEWORK

not perform any interesting reasoning nor follow any best strategies. They can
be seen as stubs that can be expanded to include these features. Derived agents
can also be used as simple test cases for task models. In order to demonstrate
the possibility, we create a context free grammar representing a simple subset
of the iTasks constructs. We acknowledge that this subset is limited. The
type T represents a task in iTasks, optionally associated with tag 7. Both
writeInformation and takeAction correspond to agent combinators that we defined
earlier. The writeInformation combinator is parametrized with a tag 7 to indicate
the ’target’ task. We assume that d is a unique description for a step action
involving user interaction. We inductively define the function BasicAgent :
T — T over elements in the grammar that non-deterministically derives a simple
agent from a given task specification.

(T) ::= enterInformation,
| updateInformation,
| writeInformation 7
| takeAction d
| (T) >>* (Step)+
| (T)>>|(T)

| {T) -[I- (T)

| (T) -&&- (T)

(Step) ::= Action d (T)

BasicAgent|enterInformation,] = writeInformation 7
BasicAgent[updateInformation] = writeInformation T

BasicAgent|t]
BasicAgent[t >>* steps] = >>| takeAction d if Actiond t’ € steps

>>| BasicAgent[t']

BasicAgent[t; >>| to] = BasicAgent[t1] >>| BasicAgent[ts]
) _ BasicAgent[t1]

BasicAgent[t, =1 |- ta] = { BasicAgent[ts]

BasicAgent[t) -&&- ta] = BasicAgent[t1] -&&- BasicAgent[ts]

An agent that is produced by BasicAgent simply writes information to the
interaction tasks enterInformation and updateInformation. With the step combina-
tor, BasicAgent picks a possible step non-deterministically. The step action is
taken with takeAction followed by BasicAgent of . With the -| |- combinator,
one task must be completed. One of the two tasks is chosen by BasicAgent
non-deterministically. For the -&- combinator, the agent must complete both
tasks.

4.7 An example 35

oo

h

@Taken

watch Token owner _

‘ WithResult ‘ “Pass token” | if owner == id

i

token

L 4
" | enterinformation
“Enter receiver”

receiver

L4
updateToken
receiver

L J

=
-)

7

Figure 9: Abstract visualization of the task model

In practice, deriving agents from task specifications is constrained. For example,
in order to perform tasks in a task model, some path condition must be satisfied
in order to cover all tasks. An agent would need to produce input that satisfies
this path condition, which is not always decidable.

4.7 An example

We show the interplay between agent tasks and a task specification with a small
example. Assume that we have a token that is shared by a number of agents.
The token is assigned to one agent at any time. The agent with ownership of
the token can pass the token to another agent. We model the token as a share
that is shared by all agents.

We first give the definition of the task model. The idea is that we tag each
interaction task (strongly typed) such that agents can identify them. We define
the TokenTags to serve this purpose. We define a function viewToken that shows
information about who currently owns the token and a list of previous actions.
We do so by using the viewSharedInformation combinator; it produces a task that
presents information contained in a share. As the information in a share changes,
the task will automatically update the user interface accordingly.

1 //Token is assigned to an agent (Int) and stores history

2 :: Token = Token Int [(Int, Int)]

3

1 //We use the following tags to identify the tasks in this task model
5 :: TokenTags = EnterId | EnterReceiver | PassToken

6

~

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

36 4 AN ITASKS AGENT FRAMEWORK

token :: Shared Token
token = sharedStore "token" (Token 1 [])

//View token information

viewToken :: Task Token

viewToken = viewSharedInformation "Token" [ViewWith view| token

where

view (Token current history) =
("Agent " + toString current + " has the token. "
gap (A(f, t). "Agent " + toString f + " gave agent "
+ toString t + " the token") history

)

//Enable the possibility of passing the token
handleToken :: Int — Task Token
handleToken myIld — watch token
>>+ [WithResult (Action "Pass token" [])
(A (Token owner _). owner ==myId)

enterReceiver
<<: PassToken
where
//enter the receiving agent
enterReceiver _ = enterInformation "Enter receiver" [| <<: EnterReceiver

>>= updateToken
//update the token to contain the new owner and add history
updateToken n = update (A(Token _ xs). Token n (xsH{(myId, n)])) token

login :: Task Int
login = enterInformation "Enter agent id" |]
<<: EnterId

Start :: *World — *World
Start world = startEngine [publish "/" WebApp (A_— task)]| world
where

task = login >>= Aid. forever (viewToken -&&- handleToken id)

The handleToken function provides the opportunity to pass the token if the agent is
the owner. This is expressed with the predicate A (Token owner _). owner ==myId.
If the agent is indeed the owner, a receiving agent can be entered. This is
expressed with the enterInformation combinator. Subsequently, the token is up-
dated accordingly.

Next, we define the agents. We use the function agentTask to represent the
agent behaviour. All agents are assigned an integer to uniquely identify them.
The function agentTask takes such an identifier along with the identifier of an
agent that will the receive the token once it is obtained. First, an agent will
enter its identifier with the writeInformation combinator. Entering the identifier is
completed by taking the ”Continue” action with takeAction. Then, it will forever

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

4.7 An example

pass the token to the receiving agent if possible. The combinator takeAction will

only proceed if the action is enabled for the agent.

Note that there is a duality between the task model above and the agents we
define below. We use writeInformation in the agents to update the enterInformation
task in the task model. For every step combinator in the task model (>>|, >>=
and >>), we use the appropriate takeAction combinator in the agents.

We will now show the agent specification:

//the task of the agent is to pass the token to some other agent
agentTask :: Int Int — Task Void
agentTask id target — writeInformation EnterId id
>>| takeAction EnterId "Continue"
>>| forever (
takeAction PassToken "Pass token"
>>| writeInformation EnterReceiver target
>>| takeAction EnterReceiver "Continue"

)

//Run 10 agents in parallel, each passing the token to each other
allAgents :: Task Void
allAgents = parallel Void
(map (\(id, target).
(Embedded, A_. runTokenAgent id target))
(zip2 [1..9] [2..10] ++ [(10, 1)]))
@ const Void

//Start the iTasks engine with the allAgents task
Start :: *World — *World
Start world = startEngine [publish "/" WebApp (A_— allAgents)] world

//Run an agent with the runAgent combinator
runTokenAgent :: Int Int — Task Void
runTokenAgent id target = getSessionld server port
>>= Asessionld.
runAgent (taskProducer sessionId)
(eventConsumer sessionId)
(agentTask id target)
where
taskProducer = webServiceTaskProducer server port interval
eventConsumer = webServiceEventConsumer server port
server = "localhost"
port =80
interval =2

38 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

5 Case study: damage control with iTasks

In this case study, we define a prototype in iTasks that models tasks performed
by navy patrol vessel personnel in crisis situations. The goal of the case study
is to show that we can define agents for complex task models using the method
as presented in this work as proof of concept. Furthermore, we discuss how
Cognitive Work Analysis (CWA) is used as context for requirements and how
it relates to the implementation. We show how agents can be defined and how
they are used to obtain results from simulations. We verify a number of claims
about the prototype by analysing the results of the simulations.

It is important to consider that the purpose of this prototype is not to be de-
ployed on a vessel for immediate use, but rather to demonstrate the expressive-
ness of iTasks along with the working of agents. Furthermore, the constructed
task model serves as discussion for evolving requirements and claims. It yields
something that is executable and forces domain experts and analysts to be ex-
act about the tasks that must be supported by future information systems. To
summarize, we can do the following with the formal task model:

e We can execute the task specification, forming discussion material for do-
main experts and decision makers. These discussions can lead to changes
in the task model or requirements.

e We can define agents that simulate humans performing tasks. From sim-
ulations, we can gather results to verify claims about the task model and
test the proposed manning and automation. These results can also serve
as discussion material or can lead to changes in the task model.

e We can train the human crew of vessels by human-in-the-loop simulations.

5.1 Problem definition

The most important goal of operational maintenance on a patrol vessel is to
preserve the command aim: the current mission of the vessel. Dealing with
calamities (i.e. the internal battle) is required to achieve this goal. The com-
mand aim influences the way calamities are prioritized. When the command
aim involves maintaining a certain velocity to intercept a hostile vessel, a fire in
a compartment close to the engine room has a higher priority than a small leak
in the messdeck.

Dealing with calamities requires communication among the various roles on a
vessel. Communication is supported by many different devices. Devices include
hand-helds, headsets, mobile phones, broadcasting and more. A problem com-
mon on these vessels is that communication is repeated throughout the chain
of command: an order is given with a certain priority and written down by
the first officer, who then communicates manually with a second officer respon-
sible for a particular task (e.g. maintenance of combat systems) who in turn

5.1 Problem definition 39

communicates the order by headset to personnel on the ship. These communi-
cation links can be optimized by using digital communication, where each role
is immediately aware of relevant data without the need for repetition. iTasks
is especially suitable to define these sorts of models, in which complicated in-
teractions between roles on a ship can be defined using tasks and (new) data is
immediately available to those who need it.

The requirements of the prototype are based on decision ladders that are part
of a CWA analysis. This CWA analysis was performed by TNO on a Dutch
navy vessel and serves as a foundation for projects to increase efficiency of
operational maintenance. We used this CWA analysis to investigate whether
we can automatically derive iTasks applications from CWA products. It turned
out that this is not possible, because of the lack of detail in these products.
However, we did establish that CWA is suitable as foundation, a context that
can be used to formulate requirements.

The decision ladder in figure describes the general process of handling the
internal battle on a patrol vessel. The goal of the ladder is described at the
top of the figure: the command aim must be maintained at all times. The
left hand side of the ladder describes detection and observation, while the right
hand side describes planning and taking action. The top of the ladder describes
prioritizing calamities which is a responsibility of the top of the command chain.
The decision ladder is invoked by detection of an anomaly in the environment,
which leads to an alert situation. The first step is to construct an internal
picture of the anomaly (e.g. gather information using sensors) and determining
the possible consequences to the command aim. Officers in command determine
the priorities and allocate personnel to handle the calamity on the ship.

This case study involves the roles of damage officer (D-Officer), team leader
and seaman. Agents with these roles need to cooperate in order to resolve
calamities on a ship, such as fires, leaks and damaged systems. The D-Officer
is responsible of coordinating team leaders and constructing plans to repair
damage in the vessel. The D-Officer corresponds to the top level of the decision
ladder: this role prioritizes calamities according to the command aim. In reality,
more officers are concerned with prioritizing. In this case study, we limit this
task to the D-Officer. Team leaders are responsible for assembling teams of
seamen to attack fires and monitoring the attacking process. Seamen perform
the labour work: they must repair leaks, fix systems and extinguish fires. In
addition, seamen are responsible for performing blanket searches, searching the
vessel for calamities and reporting them to the bridge. Seamen and team leaders
are involved in both sides of the decision ladder: they detect calamities and
repair damage on the vessel.

We obtained the requirements from interviews with domain experts; they were
also the authors of the CWA analysis. We picked these requirements because of
the relative complexity: they require communication and cooperation between
different roles, they include a monitoring and resource allocation problem and
the amount of requirements fitted the time available for the case study. The

40 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

e Ship Mission - Command Aim

Integral Weighting of - Force
Evsluste performance Internal and External - Influence
Battle - Coordinate
- Mavigate
Options to Control o
Inteal Situation Command Priorities
Consequences of Choose Option to Control - by Personnel Control
Intt_amal_Snluatlon on Predict consequences Internal Situation - by Material Cantrol
Ship Mission - by Fire / Damage Control
F

- F'erso_nnel Intermnal Situation Aimed Intemal
- Matenel Situation
- Fire / Damage

Prio's for Intemal Battle - Personnel Provision

Internal Picture Compilation

& Moniton’ng [Firea’Damage] Disgnose state Definition of task - R_epai_r .
- Fire Fighting
- Damage Containment
e
TION
Sensor Observe information Allocate personnel
Deployment and data, seanning for Flanning of pracedure | Preparations for Repair, Fire
(track, identify) cuss Fighting, Damage Containment
Sensor - Repair
Deployment Activation Exacute - Fire Fighting
(detect) - Damage Containment

Decision Ladder
Internal Battle

Figure 10: Decision ladder from [29]

decision ladder was used during interviews as the primary source of discussion.
We experimented with different requirements and ideas to use iTasks. For in-
stance, in earlier prototypes, we supported switching between automated and
human sensor tasks. A sensor is an example of an automated (autonomous)
task, while a blanket search is a sensor task performed by humans.

1. The system should enable the D-Officer to initiate and monitor blanket
searches.

2. The system should enable the D-Officer to handle fire alerts by construct-
ing attack plans containing the following details:

5.2 Building the iTasks prototype 41

e An attack post from which the attack team initiates the attack.
e A team leader which will lead and coordinate the attack.
e An attack route from the attack post to the location of the fire.

3. The system should enable the D-Officer to monitor ongoing attacks of
fires.

4. The system should enable the D-Officer to send engineers to repair dam-
aged systems and leaks.

5. The system should enable the team leaders to (re-)allocate seamen to
attack fires.

6. The system should enable the team leaders to monitor ongoing attacks of
fires.

7. The system should enable the seamen to perform blanket searches, possi-
bly reporting calamities.

8. The system should enable the seamen to assist fire teams.

9. The system should enable the seaman to repair leaks and damaged sys-
tems.

10. It must be possible to manage a scenario:
e Simulating fires, leaks and damaged on a virtual ship.

e Monitoring the activities performed by users in the prototype.

o [[4 o
X D-Officer X Teamleader X Seaman X Scenario

l

Blanket search | (Re-)assign teams | | Search compartment | Start calamities

| Formulate attackplans | Im
Im Monitor personnel
| Simulate fire model |

Figure 11: Overview of roles and tasks

5.2 Building the iTasks prototype

Given the described requirements, we designed a task model in iTasks. In this
chapter, we discuss the implementation of the model.

10

11

12

u

3

14

16

17

18

19

20

21

22

23

42 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

5.2.1 Handling fire alerts

When a fire is reported by a seaman during a blanket search, the D-Officer
should be able to respond by formulating an attackplan (requirement 2). This
is defined as follows in the task model:

["handleFireAlert yields Alert

[
leaders . _ _

post route
selectAttackPost [selectAttackRoute }—-—-[selectTeamleaders

| " |

i newPlans
(allTasks monitor
foreach in newPlans

1
- _é < foreach in leaders
—
“-..1_‘_-_.__—__/
Mgy
| D-Officer

B Team leader

Figure 12: An abstracted GiN visualisation of handleFireAlert

:: AlertKind = Fire | Leak | DamagedSystem

: Alert =
{ location :: Compartment
, description :: String
, sensor :: Int
, type :: AlertKind
, time :: Time
, uniqueld :: Int

handleFireAlert :: Alert — Task Void

handleFireAlert alert
= selectAttackPost alert

>>= \post. selectAttackRoute alert post

>>= \route. selectTeamLeaders alert
>>= \leaders. get currentTime
>>= \time. return [attackPlan time leader post route

\\{ShipUserView|user=Hidden leader} <+ leaders]
>>= AnewPlans. update (\plans. plamns + newPlans) attackPlans
>>| monitor ||- allTasks [assign (attackInfo plan.leader)
(performAttack plan attackPlans)
\\plan + newPlans

24

[I SR

1

2

3

5.2 Building the iTasks prototype 43

@ const Void

The D-Officer performs various tasks in sequence to formulate attack plans. The
sequence is displayed in figure First, an attackpost is selected from which
the attack will commence. Then, a route is established from the attackpost to
the location of the fire. After that, the team leader is selected. This results in
a set of plans 'newPlans’ that is stored in a share called ’attackPlans’. Each
plan is assigned to a team leader with a task. Then, the D-Officer monitors the
compartment (showing information about the current temperature and other
information) and directs the team leaders to assemble teams and attack the fire
according to the plans.

5.2.2 Starting blanket searches

A blanket search (requirement 1) can be seen as a task that produces a list
of alerts (possibly empty) containing reported calamities by seamen during the
search. The blanket search is divided amongst the available seamen on the
ship. The D-Officer monitors the percentage of compartments that is searched.
Note that the type of the function is quite general. A list of alerts can also be
produced by sensors that automate the reporting process. In a more advanced
prototype, the implementation of the function could use sensors as primary
source of alerts and fall back on a blanket search whenever sensor systems have
failed.

blanketSearch :: Task [Alert]
blanketSearch = get (shipUserViewsWithRole "seaman")
>>= \users. parallel "Blanket search"
[(Embedded, monitor):divideWork users]
Q@7 collect

The function divideWork divides the number of search tasks evenly amongst the
available seamen, returning a list of delegated tasks each possibly producing an
alert. The function monitor counts the number of results produced and shows
the corresponding percentage. collect collects all the reported alerts.

5.2.3 Searching compartments

Seamen must be able to search compartments in a blanket search (requirement
7). A compartment search can be seen as a task that takes an representation of
a compartment and possibly produces an alert:

:: CompartmentEnv =
{ identifier :: String
, smoke :: Bool

10

11

12

13

15

16

17

18

19

20

21

22

44 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

, temperature :: (Int, [(Time, Int)]) //current temperature, previous temper-
ature measures

, systems :: [System]

, leak :: Bool

}

searchCompartment :: Compartment — Task (Maybe Alert)
searchCompartment compartment
= viewSharedInformation ("Sensor", "Report fire, leak or damaged systems")
[ViewWith view| (getCompartmentEnv compartment)
>>k actions compartment <<: CompartmentInfo compartmentId

where
view = toCompartmentView
compartmentId = compartment.Compartment.identifier

actions ¢ = [Always (Action "Report fire" [|) (alert Fire)
,Alvays (Action "Report leak" []) (alert Leak)
,Always (Action "Report system damage" [])
(alert DamagedSystem)
,Always (Action "No observations" []) (return Nothing)

]

The function getCompartmentEnv returns a ’live view’ of a compartment, including
the current temperature and whether the compartment is filled with smoke.
The seaman can respond by reporting an alert or indicating that there are no
calamities occurring. Note that we use the <<: operator to tag the task with
information that is used by software agents defined later in this work.

5.2.4 Executing attack plans

Team leaders must be able to execute attack plans (requirement 5 and 6). We
implemented this by giving the team leader a live view of both the attack plan
(which can be updated when seamen retreat while extinguishing fires) and the
compartment (current temperature). Parallel to this view, the team leader
can assign a team of seamen. The team leader is responsible for ending a fire
alert.

attackFire :: (Shared AttackPlan) — Task Void
attackFire plan
= get plan
>>= \p. viewSharedInformation "Attackplan" [ViewWith view]
(plan |+| getCompartmentEnv p.AttackPlan.target)

—&&- assignAttackTeam plan
Sk [Always (Action "End fire alert" []) (return Void)]
<<: LeadFireTeam (compartmentId p)

assignAttackTeam :: (Shared AttackPlan) — Task [ShipUserView|
assignAttackTeam plan
= get plan

13

14

15

16

5.3 Using the iTasks agent framework 45

>>=)\p. enterSharedMultipleChoice "Assign attackteam" []
(shipUserViewsWithRole "seaman")

Sk [WithResult (Action "Assign" []) (const True) (assignTasks p)]

<<: AssignFireTeam (compartmentId p)

We use the viewSharedInformation combinator to produce a view of both the attack
plan and the compartment. This view is produced by composing two shares with
the |+| operator. With the step combinator >, we define an action to end the
fire alert at any time. With the function assignAttackTeam, the team leader can
assign a team by selecting available seamen with the enterSharedMultipleChoice
combinator.

5.3 Using the iTasks agent framework
5.3.1 Introduction

We defined software agents for the role of D-Officer, team leader and seaman
in the prototype. Using these agents, it is possible to perform simulations with
iTasks without any human intervention. Later in this work, we present some
results of simulations performed in the case study. The software agents also
provide an opportunity to do human-in-the-loop experiments where humans
and software agents cooperate to perform tasks. This is especially useful in
training scenarios.

In this case study, we created some functionality to be able to simulate the
physical costs of tasks performed by agents. We implemented this functionality
by using the features available in the iTasks framework. This is an example of
a reusable building block: it can be reused in development of future agents. In
existing agent-based tools, it is difficult to implement these kinds of extensions,
because agent languages often lack the constructs required to create abstrac-
tions. Since we define agents in Clean with iTasks, we can exploit the full
power of all the functionality available. Note that we compare our method to
languages specifically designed to define agents; we do not intend to comment
on or disregard the abstraction and reuse capabilities of technologies such as
Java.

5.3.2 Task costs

To demonstrate the extensibility of the agent framework, we added an element
of realism by associating costs to certain tasks that agents perform. We do so
by defining a new function that takes an agent task and a cost, producing a
function that takes an initial agent state to construct a task that produces a
new agent state. This resembles the inner belief state that agents maintain. In
the world of iTasks, we can define agents by tasks that consume and produce
agent states.

-

1

14

46 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

:: Fatigue —Fatigue Int
:: Health = Health Int
:: AgentState s =

{ fatigue :: Fatigue

, health :: Health

, id 1t String

, state 1 s

}

//Duration minSecs mazSecs
:: Duration = Duration Int Int | NoDuration

:: Costs = Costs Fatigue Health Duration

(<<-) infix] 2 :: (Task a) Costs — (AgentState s) — Task (AgentState s)
| iTask a & iTask s

The agent state produced by <<- is updated each time interval, subtracting the
costs from the supplied state. This simulates physical costs when performing
tasks. Optionally, the time it takes to perform a certain task can be simulated by
supplying a duration. We used this functionality to add realism to the software
agent simulating the seaman role in the prototype.

5.3.3 Agent behaviour

The software agents we defined in this case study use various behaviours. We
consider the term behaviour as a composition of agent tasks expressed in iTasks:
observation, reasoning and acting using the agent (and iTasks) primitives we
defined earlier. A behaviour is a program used to model a task performer
working on tasks that are specified in the central iTasks model. Each agent can
have a different behaviour and therefore a different manner of performing the
same task.

A more complicated central task model that provides alternatives to achieve
goals will allow for more freedom in agent behaviour, simply because there are
many ways to perform a task. A simple task model that uses fixed workflows
and procedures will often result in less complicated agents. However, agent
developers are free to use as much complexity as desired.

Although it is possible to implement advanced behaviours involving (machine)
learning and other interesting algorithms, we only implemented some basic be-
haviours. Most of the reasoning that the agents perform is straight-forward:
favouring tasks with high priority, selecting the engineer with the least amount
of assigned work to fix a leak, dividing seamen evenly amongst fires, etcetera.
We will now discuss some of the implemented behaviours.

5.3 Using the iTasks agent framework 47

For both the seaman agent and the team leader agent, we use a dashboard style
model in the central task model. This dashboard consists of a list of tasks
to be performed together with an overview of tasks that are currently being
performed. The agents need to explicitly accept tasks in the task list to start
them. The agent decides when to work on a task and when not. For the seaman
agent, we implemented the behaviour such that only one task is performed at a
time. This is an example of a case where the agent is more restrictive than the
central task model.

Although it is up to agents when to work on tasks, we sometimes need a mech-
anism in the central task model to be able to respond when an agent decides to
pause or cancel a task, which would normally be an implicit action. We had to
make this an explicit action in some cases. An example of this is agents extin-
guishing fires: since this is associated with a physical cost, they must be able
to recover and thus pause the extinguishing task. The team leader needs to be
notified in order to judge whether more personnel is required on the team. This
is another example of continuously dividing tasks and functionality between
agents and the central task model.

Seaman agent The seaman agent is a worker drone: it does not perform many
interesting reasoning steps. The goal of the agent is simply to empty
a priority queue of tasks that are assigned by the D-Officer and team
leaders. The task assignment is specified in the central task model, while
the seaman agent is responsible for performing these tasks. The agent is
only capable of performing one task at a time, to mimic a real life situation
where it is not possible to extinguish a fire and perform a blanket search
at the same time. However, the central task model does allow seaman
agents to perform multiple tasks at the same time. We made the choice
to restrict the behaviour of the agent.

The implemented agent has a notion of task costs as defined earlier. These
costs are agent-specific and are not defined in the central task model.
Extinguishing fires and repairing leaks take time and impact the physical
state of a human in the real world. As a result, the seaman agent needs
to rest once in a while to recover from the physical impact, negatively
impacting the time it takes to attack a fire. We modelled the option to
retreat from extinguishing a fire in the central task model.

While the seaman agent is attacking a fire, it might be the case that a task
with a higher priority is ordered by an officer. This might be required in
a situation where a new calamity impacts the command aim. In this case,
the agent leaves the fire team to accept the task with a higher priority.
This feature is modelled in the agent, making use of the flexibility of the
central task model.

Team leader agent The team leader agent is responsible for managing attack
teams to extinguish fires. The agent receives its orders from the D-Officer.
The team leader agent is capable of leading multiple teams at the same

48

5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

time, requiring only one instance of this agent during a simulation, al-
though the central task model allows for multiple team leader agents.
The agent monitors the amount of fires it needs to extinguish, continu-
ously reassigning teams to maintain a balanced amount of seaman for each
attack. The central task model provides the option to reassign teams and
choose team members, while the agent is responsible for actually choos-
ing these teams and team members. Once the smoke in a compartment
has disappeared and the temperature is at an acceptable level, the agent
notifies the D-Officer and the men in the fire team to end the attack and
stop the alert.

D-Officer agent The D-Officer has the responsibility of defining attack plans

to extinguish fires. Furthermore, this role allocates engineers to fix dam-
aged systems and leaks. The D-Officer maintains and monitors these
tasks. Blanket searches are also initiated by this role. The D-Officer initi-
ates the blanket search, but the central task model automatically divides
the search tasks among the available seamen. This is a design choice: it is
also possible to change the task model such that the D-Officer manually
divides the tasks among available resources. The agent representing this
role needs to handle each incoming alert reported by seamen. Thus, it
handles an arbitrary amount of tasks in parallel at any time. When the
alert constitutes a fire calamity, the officer formulates an attack plan by se-
lecting the attack post followed by a team leader and attack route. When
an alert describes a system failure or a leak, an engineer is allocated. The
D-Officer chooses an engineer with the least amount of assigned tasks.

5.3.4 Implementation

Searching compartments The software agent representing the seaman role

1

2

3

© 0 N o v s

10

11

should be able to investigate compartments and report any abnormalities.
As shown in 5.2.3, the agent is represented with a live view of the compart-
ment that includes information about smoke development and the current
temperature. The agent should decide what alerts should be reported
based on this information.

inspectCompartment :: String — SeamanState — Task SeamanState
inspectCompartment compartment = inspect <<- Costs (Fatigue 5)
(Health 0)

(Duration 5 20)
where
compTag = CompartmentInfo compartment
inspect = readInformation compTag
>>= decide
decide comp
| comp.CompartmentView.leak = takeAction compTag "Report leak"
| comp.CompartmentView.smoke = takeAction compTag "Report fire"

| hasDamagedSystem comp

5.3

Using the iTasks agent framework 49

= takeAction compTag "Report damaged system"
= takeAction compTag "No observations"
hasDamagedSystem {CompartmentView|systems}
= any (\{System|state}. case state of
SysDestroyed = True
_ = False) systems
We assign costs to the inspect task with the <<- operator we defined
before. Inspecting a compartment takes between 5 to 20 seconds and
negatively impacts the fatigue of the agent.

Assisting fire teams The seaman agent is also responsible for assisting fire

1

2

teams in attacking fires. At any moment, the agent is capable of inter-
rupting the assist by a ”"Pause” action. It is also capable of cancelling
the assist through the ”Stop” action. As explained in the strategy of the
seaman agent, the agent will assist the team as long as a) it is physically
capable of doing so and b) if no task with a higher priority is assigned to
the agent.

assistFireTeam :: TaskView String SeamanState — Task SeamanState
assistFireTeam tv compartment state
= determineBestTask -&&- assistTeam state
>>+ [WhenValid (isTired o snd)
(interruptTired o snd)
JWhenValid (A(tv‘, _). tv.TaskView.priority < tv‘.TaskView.priority)
(interruptPriority o snd)
,JWhenStable (return o snd)
,CatchAll (const (recover state)))
]
where
compTag = CompartmentInfo compartment

assistTeam = readInformation compTag
>> [WhenValid (Acp.
cp.CompartmentView. temperature < 20)
(A_. takeAction compTag "Stop")

]

<<- Costs (Fatigue 2) (Health 2) NoDuration

interruptTired s = takeAction compTag "Pause"
>>| recovery s

interruptPriority s = takeAction compTag "Pause" @ const s

We use the -&&- and the >> to monitor both the assigned task list and the
current physical state of the agent. If the agent is tired, we interrupt the
assist with the ”Pause” action and start a recovery process. The assist
task is reassigned and picked up again when the agent is fully recovered.
At the same time, the agent checks whether there is a task with a higher

50

5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

priority than the current task. If this is the case, the agent interrupts
the assist. While the agent is assisting, it is continuously monitoring the
temperature in the compartment. The agent stops the assist when the
temperature has reached an acceptable level.

An exception handler is in place to handle the situation when the agent
attempts to perform an illegal action or read invalid information from
the environment. This can happen when the team leader ends the fire
alert: the task that is assigned to the seaman to assist the fire team is
immediately removed from the active tasks. In that case, monitoring the
compartment or taking some action is invalid, since the task with the
particular tag (compTag) no longer exists. We handle this through the
CatchAll handler.

Handling alerts by the D-Officer The D-Officer agents needs to continu-

© L N O o A W N =

[S T S S S =S
AW N B O © ® N & o A W N = O

N
o

ously monitor and handle newly reported alerts.

//Continuously monitor and handle reported alerts
monitorAndHandleAlerts :: Task Void
monitorAndHandleAlerts =
repeatTask (
AknownAlerts. readOptions Alerts
>>+ [WhenValid (any (Aa. all ((=!=)a) alerts))
(handleAlerts o newAlerts knownAlerts)]
) (const False) []
@ const Void

newAlerts old new = [a \\ a<new | all ((=l=)a) old]

//Handle new alerts
handleAlerts :: [AlertView| — Task [AlertView]
handleAlerts newAlerts
= allTasks (map (\a. selectAlert a >>| handleAlert a) newAlerts)
@ const newAlerts

selectAlert :: Task Void
selectAlert a = chooseOption Alerts a >>| takeAction Alerts "Select"

handleAlert :: Task Void

handleAlert a=:{AlertView|typeFire} = handleFire agentId a
handleAlert a=:{AlertView|type=Leak} = handleLeak agentId a
handleAlert a=:{AlertView|type=DamagedSystem} = handleDamage agentId a

The agent for the D-Officer performs this task by observing information
from the task tagged with the tag Alerts. It does so by using the readOptions
combinator, which is derived from the readInformation combinator:

//Read list of options from a task with some tag t
readOptions :: t — Task [v] | iTask v & Tag t

5.4 Performing simulations 51

If the alert list contains any alerts that we did not handle before, we
obtain the new alerts and handle them sequentially. We use the iTasks
API function repeatTask to continue monitoring, keeping track of the list
of alerts that we already handled:

//Iterate a task as long as a predicate is not valid.
repeatTask :: (a — Task a) (a — Bool) a — Task a | iTask a

Then, for each newly reported alert, the agent selects the appropriate task
with the handleAlert function. Handling all new alerts is composed into a
new task with the API function allTasks.

5.4 Performing simulations

To demonstrate the possibility of simulation with software agents in iTasks, we
have set up a simple experiment with the prototype. We would like to validate
the claim that 20 agents can extinguish two fires in under five minutes. This is
a simple example of a claim that could be part of the requirements of a software
system. We have also tested the claim for 5, 10 and 15 agents. Results of these
simulations are not meant to be an accurate estimate of reality. However, they
can be used to measure the effects of reducing the amount of agents or changes
to the task model. At the very least, results can be used as discussion material
for domain experts, possibly altering requirements or claims.

In our prototype, agents performing various roles need to cooperate in order to
extinguish fires. The D-Officer needs to call for a blanket search, a seaman must
report the fire, the D-Officer formulates an attack plan, etcetera. We would like
to measure the effects (in terms of time costs) of reducing the amount of seamen.
In order to do so, we added logging functionality to software agents. This allows
us to collect and measure detailed information about the actions and reasoning
that agents perform.

We have conducted the experiment as follows: we used a tool to perform various
simulation runs using different amounts of seamen and fires. The fires are started
at fixed points in the ship. We measure the amount of time taken from the initial
blanket search order to the last ’end fire’ call by the team leader. In some cases,
the agents are not capable of extinguishing the fire(s), due to lack of agents. In
that case, the fire spreads faster than the agents can deal with.

We defined a very basic model to simulate temperature development of fires in
compartments, where the amount of agents currently attacking in the compart-
ment impacts the speed in which the temperature drops:

ti = tifl +5—3.5n

The temperature ¢ is updated with each time interval 4, considering the amount
of agents n that are currently attacking the fire. Of course, this model does not

52 5 CASE STUDY: DAMAGE CONTROL WITH ITASKS

have real-world accuracy, but it does take into account agents retreating and
attacking fires repeatedly. The model can be refined easily if more accuracy is
required.

20F
—e— 1 Fire
181 —m— 2 Fires
—e— 3 Fires
—— 4 Fires
16 |- —+—5 Fires
14 |-
£l
E 2]
& \
g
a 8
6 [
4 [|
9| .\k//.\o
| | |

) 10 15 20

Seaman agents
Figure 13: Time required to extinguish n fires with m seamen

Using these results, we can verify that 20 agents can extinguish 2 fires in under
5 minutes (4.27 to be precise). From these simulations, the results also show
that 5 agents are only capable of attacking two fires at most. Furthermore, 10
agents can resolve at most 3 fires at the same time.

Based on the simulation results, we discovered a bottleneck in the task model
regarding blanket searches and the strategy of the team leader agent. When a
fire is discovered, the team leader immediately assigns all available seamen to
resolve the fire as soon as possible. However, seamen are also needed to perform
the blanket search. If the blanket search is terminated because the seamen are
all ordered to attack a fire, other fires do not get discovered. This is a typical
manning issue. One possible solution to this issue is to change the task model to
allow delegation of tasks by seamen. In that case, we could let seamen delegate
blanket search tasks to seamen who are not assigned high priority tasks. If

5.5 Discussion 53

we then alter the strategy of the team leader agent to only assign a subset of
available men, we could solve this issue.

One conclusion of these results could be that they are too inaccurate. In that
case, it is possible to introduce a more complex temperature model. However,
even with a simple model, we can already show the impact of increasing or
decreasing the amount of agents with little effort.

5.5 Discussion

We discovered that the iTasks workflow specification language (WSL) was pow-
erful enough to capture the requirements in our case study. Combined with
some additional primitives, the WSL provides a suitable framework to define
agents. We are able to express basic agents that reactively act based on changes
in the environment (the task model). In addition, we used iTasks constructs to
express physical costs when performing tasks and agent tiredness, showing the
extensibility of the framework.

During development of the agent framework and agents for the prototype, we
also observed several limitations. We discuss these limitations in this sec-
tion.

Real-time versus virtual-time simulations Currently, the agent framework
does not support simulations with virtual time. This feature would intro-
duce a virtual clock, such that time costs can be simulated. We cannot
do this by introducing a new combinator or expanding the <<- operator
defined earlier, because time is a concept in both the central task model
and the agent model. Awaiting some period of time should affect other
tasks that are performed subsequently. The <<- combinator introduced
earlier actually awaits the duration that is supplied. This increases the
amount of time that simulations take, negatively impacting the benefits
of computer simulations.

No unified logging mechanism In order to evaluate simulations, there must
be a way to record all agent activity. We used a simple logging mechanism
that writes some information annotated with a time stamp to a text file.
However, it required us to clutter agents with logging expressions, making
them less readable.

Lacking common agent framework features While the basic primitives for
agents are presented in this work, primitives that are common to other
agent frameworks are missing. For example, we had to implement a com-
binator to simulate task costs for our case-study. Another example of an
important lacking feature is inter-agent communication: while iTasks pro-
vides enough primitives to implement this feature, we did not implement
it because of time constraints. Being able to communicate is one of the
requirements in an agent-based simulation framework according to Macal

54 6 CONCLUSIONS

[22]. The agents that we defined in the case-study only communicate im-
plicitly through the environment (the central task model). It is possible
that we could have defined more efficient strategies for agents when they
can communicate directly with each other.

Arguably, we also lack features such as positioning agents in space and
time. These features add more realism to the simulations and extend the
set of scenarios that can be expressed with iTasks agents.

Agent framework inefficiency The efficiency of the agent framework can be
improved. Right now, we experienced that it is difficult to simulate with
more than 25 agents. This is due to the fact that each agent polls in-
formation from iTasks regularly. Recently, iTasks introduced the concept
of push-based events, so that clients are informed about changes in their
task models in a more efficient manner. In the future, the agent framework
needs to use this feature in order to increase the efficiency.

Type safety issues We defined a dual for each interaction combinator in iTasks
to construct agents. For example, the enterInformation task in iTasks can
be performed with the writeInformation task in our agent framework. How-
ever, when developing agents, one needs to be careful what types are read
from and written to tasks. There is no static check that verifies whether
the types match. Although we made sure that types do not contain any
unexpected Ul information as described in section[£.4.1] mistakes are made
easily, leading to runtime errors. It would help tremendously if some tool
were available to analyse agents with respect to task models.

6 Conclusions

In this research, we attempted to use iTasks to improve the process of designing
and building automation for complex domains. We defined our main research
question as follows:

How can we use iTasks as a tool to assist in designing automation
for complex domains?

As this research question is quite broad, we decided to focus on performing
agent-based simulations and using cognitive work analysis in conjunction with
iTasks. We asked the following sub-questions:

1. How can we perform simulations with agents in iTasks?
2. How do agents in iTasks relate to agents in other frameworks?

3. How can iTasks be used to rapidly build prototypes in a non-trivial do-
main, based on products from task analysis methods and input from do-
main experts? In particular, how can cognitive work analysis assist in
designing requirements for iTasks models?

55

We first explored the various techniques in chapter [2| and We discussed
the concepts of iTasks and CWA and how these techniques relate. We also
discussed how CWA and iTasks can be positioned in a software development
method in section 2.3] Then, we explored the topic of agent-based simulation.
We discovered that there is no consensus on the meaning of the term agent and
that there are many different tools available to perform agent-based simulations.
We attempted to compare these tools to the agent framework that we proposed
in this work to answer sub-question 2, although this is difficult due to the
immaturity of our agent framework and the differences in concepts. From the
comparisons, we can conclude that the main difference between our proposed
method and other tools is that we use a central task model to specify tasks
for teams of agents. Other simulation methods tend to only specify tasks in
individual agents. We discuss the implication of having a central task model
later on in this conclusion.

We showed how agent-based simulation can be performed with iTasks in section
which is related to the technical part of sub-question 1. This resulted in
an integrated agent framework, requiring various additions and changes to the
iTasks framework. We touched upon the duality relation of agents in section
[43] and tasks and the possibility to automatically derive agents from iTasks
task models in section This dualism relation is unique when compared
to other tools: future research must indicate whether it is useful in practice.
Furthermore, we proposed a semantics for agents in iTasks in section [4.5

Part of our thesis is a case study, developing a prototype for a non-trivial do-
main. The purpose of this case study is to be able to verify whether our method
works and to actually use CWA in conjunction with iTasks for a practical prob-
lem. We can also use the results of the case study to help answer the practical
part of our research questions. We developed a prototype for damage control on
a navy patrol vessel, where various actors need to cooperate in order to resolve
calamities on a vessel. We designed a formal task model for iTasks based on
requirements that were specified using a decision ladder, which we partly show
in section In order to answer sub-question 3, we explained how these re-
quirements relate to specific parts of the decision ladder in section and
Concluding from the experience in our case study and the general discussion in
section [2.I] we believe that some of the CWA products are suitable to derive
requirements and claims, the decision ladders in particular.

As part of the case study, we developed a set of agents with the framework that
we proposed in section 4} This captures the practical part of sub-question 1. In
order to simulate tasks costs in terms of time and physical impact, we defined
the <<- combinator in section We discussed the behaviours of the agents
in section[5.3.3] We believe that this section also reveals the interesting interplay
between a central task model and agents performing tasks within this model:
it is up to the developer to decide what tasks need to be defined centrally and
decentrally. If the central task model is fixed and rigid, the agents are usually
simple and not capable of interesting reasoning. If the central task model is

56 6 CONCLUSIONS

flexible and dynamic, the agents are usually more complicated and interesting.
A choice can be made about the amount of freedom for agents: the central task
model can be extremely restrictive or extremely permissive. A central model
enables fine-grained control over task allocation and coordination, which can be
useful in many domains. In section[5.4] we used these agents to verify the claim
whether 20 seaman can resolve 2 fires in under 5 minutes. From these results,
we can conclude that our method can be used to perform simulations that can
be used to verify claims and requirements.

We believe that the concept of a task in iTasks and the system itself is enor-
mously versatile; we were able to capture both agents and a moderately complex
case study without any invasive changes to the core of the system. Furthermore,
during development of our case study, we experienced that the notion of a task
bridges a gap in communication with domain experts. It forces a level of detail
and concreteness that is extremely valuable. By conducting the case study, we
experienced that iTasks is a useful tool that can be positioned within a software
development process.

6.1 Future work

In section we touched upon the dualism property between tasks and agents
to automatically derive simple agents from task models. Such functionality
could have tremendous potential: a task model would be enough to automati-
cally derive a working application together with simple software agents to per-
form human-in-the-loop tests. Similarly, a notion of agent soundness and agent
completeness with respect to a task model could be defined. More research is
required to investigate whether this is feasible.

We performed a case study in which we defined agents for an iTasks task model.
We discovered that an interesting interplay exists between these agents and the
central task model. Although we did discuss this interplay, more research is
necessary to fully understand the implications of our proposed agent framework
and whether it is useful for case studies in other domains. We believe that our
method has potential in domains where there is a need for fine-grained task
allocation and coordination.

GiN [II] needs to be updated with elements to support the latest iteration of
iTasks. Providing a graphical notation for iTasks programs is essential to bridge
a gap between developers and domain experts. Although a direct translation
from GiN models to iTasks programs is interesting, it also clutters the diagrams
with details that are not relevant to domain experts. It would be helpful if
a visualization tool is also capable of omitting details (e.g. zoom functional-
ity).

In section [5.5] we discussed the limitations of the agent framework. We discov-
ered some of these limitations during implementation of the case study. We will
now propose directions for future work to resolve these issues.

6.1 Future work 57

Real-time versus virtual-time simulations Currently, most tasks use the
currentTime share or similar shares to obtain time information. These
can be modified to support virtual time. It is possible to introduce a
virtualTime share, such that time can be modified. During human-in-
the-loop simulations, the clock needs to run at real-time. Therefore, it
should be possible to change the behaviour of the clock (i.e. real-time or
virtual-time) with a flag.

No unified logging mechanism A unified logging mechanism can be imple-
mented by logging the events that agents produce. In order to distinguish
agents, the concept of an agent identity is required in the agent framework.
For the case study, we used a simple variant of identity that is not inte-
grated in the framework. Still, in order to produce detailed information
about actions performed by agents, a variant of custom logging directly
implemented in agents needs to be supported.

Lacking common agent framework features Some important functional-
ity is missing in the agent framework that we proposed; one of these
features involves agent communication. Various communication protocols
have been established for inter-agent communication [25]. We believe that
any of these communication protocols can be implemented by using shares
in iTasks: communication can be done by queuing messages with a mail-
box communication style. Future research is needed to properly implement
such functionality according to some agent communication language.

In this research, we did not focus on more detailed aspects that can be used
to model humans. For instance, cognitive workload is used to simulate sce-
narios where cognitive lock-up occurs. This provides valuable information
to reorganize task models. We recognize that this is important, but we
did not have enough time to implement this feature. Furthermore, we did
not investigate how these features can be expressed formally.

Agent framework inefficiency We discovered that simulation with more than
25 agents causes degraded performance. This is possibly caused by the
polling mechanism that is in place to execute agents. Recently, a mech-
anism has been introduced in iTasks that allows push-based events. Per-
formance could be improved if the agent framework is updated to support
this mechanism. Furthermore, in order to reduce the amount of communi-
cation between the agent framework and iTasks, it is possible to combine
task representations for multiple sessions in one HTTP request/response.

Type safety issues When defining agents for task models, one must make
sure that the correct types are read from and written to tasks. If in-
correct types are used, then runtime errors occur. We believe that the
duality relation as explained in section and provides a starting
point to research the possibility of building a tool to assist agent devel-
opment. Although we acknowledge the undecidability of the soundness
and completeness properties, there might be a subset of problems that is

58 REFERENCES
decidable.
References
[1] Eric Bonabeau. Agent-based modeling: Methods and techniques for sim-

[10]

[11]

ulating human systems. Proceedings of the National Academy of Sciences,
99(3):7280-7287, May 2002.

Jeffrey M Bradshaw, Stuart Dutfield, Pete Benoit, and John D Woolley.
Kaos: Toward an industrial-strength open agent architecture. Software
agents, pages 375—418, 1997.

Guido Bruinsma and Robert de Hoog. Exploring protocols for multidis-
ciplinary disaster response using adaptive workflow simulation. In Inter-
national Conference on Information System for Crisis Response and Man-
agement (ISCRAM). Newark, New Jersey, 2006.

William J Clancey, Patricia Sachs, Maarten Sierhuis, and Ron Van Hoof.
Brahms: Simulating practice for work systems design. International Jour-
nal of Human-Computer Studies, 49(6):831-865, 1998.

Mehdi Dastani. 2apl: a practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214-248, June 2008.

Keith Decker. Taems: A framework for environment centered analysis &
design of coordination mechanisms. Foundations of distributed artificial
intelligence, pages 429-448, 1996.

George S Fishman. Principles of discrete event simulation.[book review].
1978.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A
taxonomy for autonomous agents. In Intelligent agents III agent theories,
architectures, and languages, pages 21-35. Springer, 1997.

Maaike Harbers, Karel van den Bosch, and John-Jules Meyer. A methodol-
ogy for developing self-explaining agents for virtual training. In Proceedings
of The 8th International Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS ’09, pages 1129-1130, Richland, SC, 2009.
International Foundation for Autonomous Agents and Multiagent Systems.

Clinton Heinze, Simon Goss, Torgny Josefsson, Kerry Bennett, Sam
Waugh, Tan Lloyd, Graeme Murray, and John Oldfield. Interchanging
agents and humans in military simulation. AI Magazine, 23(2):37, 2002.

Jeroen Henrix, Rinus Plasmeijer, and Peter Achten. Gin: a graphical lan-
guage and tool for defining itask workflows. In Proceedings of the 12th
international conference on Trends in Functional Programming, TFP’11,
pages 163-178, Berlin, Heidelberg, 2012. Springer-Verlag.

REFERENCES 59

[12]

[13]

Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja,
Shelley Zhang, Keith Decker, and Alan Garvey. The TAEMS White Paper,
1999.

Helen PN Hughes, Chris W Clegg, Mark A Robinson, and Richard M Crow-
der. Agent-based modelling and simulation: The potential contribution
to organizational psychology. Journal of Occupational and Organizational
Psychology, 85(3):487-502, 2012.

Jan Martin Jansen, Rinus Plasmeijer, Pieter Koopman, and Peter Achten.
Embedding a web-based workflow management system in a functional lan-
guage. In Proceedings of the Tenth Workshop on Language Descriptions,
Tools and Applications, LDTA ’10, pages 7:1-7:8, New York, NY, USA,
2010. ACM.

Daniel P Jenkins, Neville A Stanton, Paul M Salmon, Guy H Walker, and
Laura Rafferty. Using the decision-ladder to add a formative element to
naturalistic decision-making research. Intl. Journal of Human—Computer
Interaction, 26(2-3):132-146, 2010.

D.P. Jenkins, N.A. Stanton, G.H. Walker, P.M. Salmon, and M.S. Young.
Applying cognitive work analysis to the design of rapidly reconfigurable
interfaces in complex networks. Theoretical Issues in Ergonomics Science,
9(4):273-295, July 2008.

W David Kelton and Averill M Law. Simulation modeling and analysis.
McGraw Hill Boston, MA, 2000.

Poole David L. and Mackworth Alan K. Artificial Intelligence: Foundations
of Computational Agents. Cambridge University Press, New York, NY,
USA, 2010.

Maridan Lekavy and Pavol Névrat. Expressivity of strips-like and htn-like
planning. In Proceedings of the 1st KES International Symposium on Agent
and Multi-Agent Systems: Technologies and Applications, KES-AMSTA
'07, pages 121-130, Berlin, Heidelberg, 2007. Springer-Verlag.

Bas Lijnse, Jan Martin Jansen, Ruud Nanne, and Rinus Plasmeijer. Cap-
turing the netherlands coast guard’s sar workflow with itasks. In Proceed-
ings of the 8th International ISCRAM Conference—Lisbon, volume 1, 2011.

Bas Lijnse, Jan Martin Jansen, Rinus Plasmeijer, et al. Incidone: A task-
oriented incident coordination tool. Proc. ISCRAM 2012, 2012.

Charles M. Macal and Michael J. North. Tutorial on agent-based modeling
and simulation. In Proceedings of the 37th conference on Winter simulation,
WSC ’05, pages 2-15. Winter Simulation Conference, 2005.

A. Naiem, M. Reda, M. El-Beltagy, and I. El-Khodary. An agent based
approach for modeling traffic flow. In Informatics and Systems (INFOS),
2010 The T7th International Conference on, pages 1-6, 2010.

60

[24]

[25]

[26]

[27]

REFERENCES

Mark A Neerincx and Jasper Lindenberg. Situated cognitive engineering
for complex task environments. Naturalistic decision making and macrocog-
nition, pages 373-390, 2008.

Jeremy Pitt and Abe Mamdani. A protocol-based semantics for an agent
communication language. In IJCAI volume 99, pages 486491, 1999.

Rinus Plasmeijer, Peter Achten, Bas Lijnse, and Steffen Michels. Defining
multi-user web applications with itasks. In Proceedings of the 4th Summer
School conference on Central European Functional Programming School,
CEFP’11, pages 46-92, Berlin, Heidelberg, 2012. Springer-Verlag.

Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter
Koopman. Task-oriented programming in a pure functional language. In
Proceedings of the 14th symposium on Principles and practice of declarative
programming, PPDP 12, pages 195-206, New York, NY, USA, 2012. ACM.

Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter
Koopman. Task-oriented programming in a pure functional language. In
Proceedings of the 14th symposium on Principles and practice of declarative
programming, PPDP 12, pages 195-206, New York, NY, USA, 2012. ACM.

Wilfried Post and Marleen Rakhorst-Oudendijk. Methods for socio-
technical system analysis applied to opv operational maintenance. Un-
published, 2013.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents within
a BDI-architecture. In James Allen, Richard Fikes, and Erik Sandewall,
editors, Proceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning, pages 473-484. Morgan Kauf-
mann publishers Inc.: San Mateo, CA, USA, 1991.

J. Rasmussen, A.M. Pejtersen, and L.P. Goodstein. Cognitive systems en-
gineering. Wiley Series in Systems Engineering and Management. Wiley,
1994.

Kurt A Richardson. On the limits of bottom-up computer simulation: To-
wards a nonlinear modeling culture. In System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference on, pages 9—pp. IEEE,
2003.

Earl D. Sacerdoti. A structure for plans and behavior. Technical Report
109, AI Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA
94025, Aug 1975.

Thomas B Sheridan and William L Verplank. Human and computer control
of undersea teleoperators. Technical report, DTIC Document, 1978.

Maarten Sierhuis, Jeffrey M Bradshaw, Alessandro Acquisti, Ron Van Hoof,
Renia Jeffers, and Andrzej Uszok. Human-agent teamwork and adjustable

REFERENCES 61

[36]

[40]

autonomy in practice. In Proceedings of the seventh international sym-

posium on artificial intelligence, robotics and automation in space (I-
SAIRAS), 2003.

Maarten Sierhuis, William J Clancey, and Ron JJ van Hoof. Brahms an
agent-oriented language for work practice simulation and multi-agent sys-
tems development. In Multi-Agent Programming:, pages 73—117. Springer,
2009.

Nanja JJM Smets, Jurriaan van Diggelen, Mark A Neerincx, Jeffrey M
Bradshaw, Catholijn M Jonker, Lennard JV de Rijk, Pieter AM Senster,
Ot ten Thije, and Maarten Sierhuis. Assessing human-agent teams for
future space missions. IEEFE Intelligent Systems, pages 4653, 2010.

Neville A. Stanton, Human Factors, Integration Defence, Technology Cen-
tre, and Ub Ph. Hierarchical task analysis: Developments, applications and
extensions.

Andrzej Uszok, Jeffrey Bradshaw, Renia Jeffers, Niranjan Suri, Patrick
Hayes, Maggie Breedy, Larry Bunch, Matt Johnson, Shriniwas Kulkarni,
and James Lott. Kaos policy and domain services: Toward a description-
logic approach to policy representation, deconfliction, and enforcement. In
Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY
2003. IEEE jth International Workshop on, pages 93-96. IEEE, 2003.

K.J. Vicente. The abstraction hierarchy as a basis for interface design: an
empirical evaluation. In Systems, Man and Cybernetics, 1990. Conference
Proceedings., IEEE International Conference on, pages 657-659, 1990.

	Introduction
	CWA and iTasks
	Cognitive work analysis
	iTasks
	Task concepts
	Semantics of iTasks
	GiN: A graphical iTasks notation
	iTasks in practice

	iTasks and CWA in software development

	Agent-based simulation
	BDI agents
	Hierarchical task networks
	2APL
	TÆMS
	Brahms
	KAoS integration

	An iTasks agent framework
	Introduction
	Architecture
	Dualism of tasks and agents
	Extensions to iTasks
	Extended service representation
	Annotating tasks with tags
	Changes for agent framework

	Semantics of agents
	Events and states
	Tagging tasks
	Running agents
	Agent primitives

	Towards automatically deriving agents
	An example

	Case study: damage control with iTasks
	Problem definition
	Building the iTasks prototype
	Handling fire alerts
	Starting blanket searches
	Searching compartments
	Executing attack plans

	Using the iTasks agent framework
	Introduction
	Task costs
	Agent behaviour
	Implementation

	Performing simulations
	Discussion

	Conclusions
	Future work

