MASTER THESIS
INFORMATION SCIENCE

£ %
s\ :
- O
) N
O’"INe-‘?@

RADBOUD UNIVERSITY NIJMEGEN

Evaluating the testing quality of
software defined infrastructures

Author: Internal supervisor:
B. Siebert, BSc Prof. dr. M.C.J.D. van Eekelen
b.siebert@student.ru.nl marko@cs.ru.nl

Student No. 0839671

External supervisor:
Prof. dr. ir. J. Visser
j.visser@cs.ru.nl

22nd September 2014

Abstract

Software defined infrastructures are computer infrastructures expressed in
computer code. As software defined infrastructures is a young technology
the body of scientific knowledge on the subject is small.

This study aims at identification of quality aspects of software defined
infrastructure projects by interviewing practitioners in the field. The res-
ult is a quality model containing quality characteristics of software defined
infrastructures.

During the interviews on quality of software defined infrastructures, test-
ing emerged as one of the most important quality aspects. This study there-
fore also aims at creating a testing quality model for evaluating the testing
quality of software defined infrastructures. This was done by applying a
testing quality model made by the Software Improvement Group (SIG) for
traditional software to software defined infrastructures and by interview-
ing practitioners on their opinion of the existing model. The result is an
improved testing quality model which is better suited for software defined
infrastructures.

Acknowledgements

I would like to take this opportunity to thank the people that have helped
me make this thesis and my education possible.

First I would like to thank Marko van Eekelen en Joost Visser for guiding
me trough the tough process of creating a master thesis. At moments where
I felt that I could not see where I was heading, your advice provided the
clarity needed to continue.

I would also like to thank Joost for giving me the opportunity to write
this thesis at the Software Improvement Group (SIG). Being a research in-
tern at SIG has been a great learning experience which I think will influence
my whole future career.

The members of the SDI team of SIG, namely Thomas Kraus, Wander
Grevink and Kay Grosskop together with Miguel Ferreira from Shuberg
Philis who allowed me to take a look at their SDI projects. Prior to writing
this thesis I knew nothing about SDI. Now I know a little more. Thank you.

The research department of SIG, and especially the other research interns
can not go unmentioned. Being around peers on a similar mission has been
truly inspiring. I wish you all the best of luck in your careers.

But most of all I would like to thank my mother, my father, my sister
and my friends. You enabled me to pursue my ambitions and provided me
encouragement when I needed it.

Ben
's-Hertogenbosch
September, 2014

Contents

2 Background]|

2.2 Infrastructure management using Puppet|
2.3 Cloud computing]

DAL DevODY - - o v o e

[3 Identification of quality aspects|
3.1 Background| oo
13.2 Gathering SDI quality aspects|.
13.3 Construction the SDI quality model|
I;i.é (2!2“! l”sisz“l

[4 Testing quality of software defined infrastructures|
4.1 Background| L
4.2 SIG testing quality model| o000
4.3 New testing quality model|
44 Conclusionl

(Bibliography|

[A Interviews SDI quality characteristics|
[A.l Interview #1|o
[A.2 Interview #2|
[A.3 Interview #3|

ii

30
50
49
02

A4 Interview #4|
IA.5 Interview #5|

[B- Reference topics and transcription|

[C Application of TQM interview guide|

[D Test quality model questionnaires|

iii

(L)

5

(0

&

Chapter 1

Introduction

We start this chapter by providing a small background on software defined
infrastructures and some of the issues related to it. From this background
we formulate research questions which we answer in this thesis. We then
explain the research methods used for answering the research questions. We
end this chapter by giving an outline for the rest of the thesis.

1.1 Problem statement

In this section we describe some problems surrounding software defined in-
frastructures. We start by explaining that the application of software defined
infrastructures is relatively new. We then explain how the problems that
software defined infrastructures solve were dealt with before software defined
infrastructures were applied. We end by portraying the current state of the
research on the topic of software defined infrastructures.

1.1.1 New area of interest

Software defined infrastructures are computer infrastructures expressed as
code. By using configuration management tools and languages it is now
possible to automatically provision a computer by application of these in-
frastructure definitions. In traditional software development one compiles
source code into machine code or bytecode to execute it, or inputs the
source code to an interpreter which then executes it. When creating software
defined infrastructures the source code is a script defining steps a machine
has to perform or is a declaration of what the configuration of a computer
should be. The scripts can be performed ‘directly’ on the target machine,
while the declarations need a intermediating tool that transforms the defin-
itions into actions which the computer should perform.

Open Source configuration management tools such as Ansibleﬂ Cheiﬂ7
PuppetE| and Saltﬂ provide a means to provision many computers by writing
code defining the desired configuration for these computers. These defini-
tions describe, for example, that a particular application should be installed
and running, or that the operating system should be configured in a certain
way. The configuration management tools are made to be independent of the
operating system they are run on by abstracting operating system-specific
details away, such as which package management system the operating sys-
tem uses. In practice however, when developing the infrastructure using
configuration management tools, the developer still has to develop code with
certain operating system in mind because of the varying dependencies of the
operation system, such as where the operating system stores its applications
or configuration.

Before the adoption of configuration management tools, system admin-
istrators would provision computers by creating images of fully installed
machines and by writing scripts to deploy or update applications. The
problem with these methods is that they are operating system dependant,
inflexible, error prone and therefore limit the amount of computers that a
single system administrator can manage.

The emergence of open source configuration management tools, com-
bined with virtualisation and cloud computing has led to a wide adoption
of software defined infrastructures by the I'T-industry. Companies such as
PayPa]ﬂ and Spotifyﬂ leverage configuration management tools to automate
their IT infrastructures. Although many companies use software defined
infrastructures to automate their infrastructures, the academic community
has not yet picked up software defined infrastructures as an area of research.

1.1.2 Infrastructure creation as a software development pro-
cess

As described, one of the features of software defined infrastructures are
that they are expressed in computer code. This means that the creation
of computer infrastructures can now be treated as a software development
process. The development of software is traditionally the field of software
engineering, where techniques are devised to create software in an efficient
and robust manner.

Software engineering can be considered an immature engineering field in
comparison to other engineering fields. Yet while software engineering can

"http://www.ansible.com/

*http://www.getchef.com/

3http://puppetlabs.com/

“http://www.saltstack.com/

http://puppetlabs.com /presentations/keynote-puppet-scale-%E2%80%93-case-
study-paypals-learnings

Shttps://labs.spotify.com/2013/05/17/devops-management/

be considered immature there is a large body of scientific knowledge on the
subject compared to the of field of software defined infrastructures. Models,
such as the ISO 25010 [16], have been created to define what quality is for
software products. Such quality models do not exist yet for determining the
quality of software defined infrastructures.

1.2 Research questions

As there is only a small body of scientific knowledge on the subject of soft-
ware defined infrastructures, this study attempts to create a fundament in
quality measurement of software defined infrastructures.

The first research question is formulated as:

RQ1 How can we define quality of a software defined infrastructures?
The first research question can be subdivided into smaller questions:

RQ1.1 What are quality characteristics of software defined infrastructures?

RQ1.2 How can we create a quality framework for software defined infra-
structures?

During the identification of quality characteristics of we discovered that
testing is an important quality characteristics for software defined infrastruc-
tures. We decided to operationalise the quality of testing by to creating a
test quality evaluation model for software defined infrastructures.

The second research question is therefore formulated as:

RQ2 How can we evaluate the testing quality of software defined infrastruc-
tures?

We can subdivide this research question into:

RQ2.1 What are important aspects for testing in a software defined infra-
structure project?

RQ2.2 How can we create a model that is capable of measuring the testing
quality of a software defined infrastructure?

RQ2.3 How can we create a model that is accepted by practitioners in the
field of software defined infrastructures?

1.3 Research method

1.3.1 Creation of SDI quality framework

We identified important quality aspects of software defined infrastructures
by interviewing practitioners on the subject using semi-structured inter-
views. In these interviews we asked the practitioners what they think is
important when trying to maintain a level of quality in their own software
defined infrastructure projects. We asked them what they would advise for
a project which they are not involved if they were hired to give advice.From
these interviews we created an overview of aspects mentioned by each inter-
viewee and used that as input for determining which quality characteristics
these aspects stand for.

We chose a qualitative approach approach because of the inductive nature
of qualitative research, allowing us to find new aspects new quality aspects,
where a deductive approaches would only allow us to test existing ideas.
The reason that we chose to do interviews is because practitioners were at
hand while literature on the subject of software defined infrastructures was
limited.

1.3.2 Adapting the SIG testing quality framework for SDI

The Software Improvement Group (SIG) has a quality model [22] to evaluate
the testing quality of software which we used as a baseline testing quality
model for software defined infrastructures. As with the creation of the qual-
ity model for software defined infrastructures we interviewed practitioners
to get input to determine what a testing quality model for software defined
infrastructures should encompass.

We applied the SIG testing quality model to two software defined infra-
structure projects using semi-structured interview to answer all the questions
that the SIG testing quality model consists of. We used the result of the
application to determine if the SIG quality model was suitable for software
defined infrastructures.

After application of the SIG testing quality model, we thought that the
model did not fit software defined infrastructures, but we also thought that
we did not have enough information to improve the model. To get the in-
formation we needed we interviewed practitioners in the field of software
defined infrastructures. We asked the practitioners which themes of the
SIG testing quality model they thought were relevant to software defined
infrastructures and which themes they thought were irrelevant. In the same
interview we asked the practitioners questions related to the acceptance of
the current model and what themes, related to software defined infrastruc-
tures, they were missing from the current testing quality model.

1.4 Thesis outline

In the second chapter we provide a background on software defined infra-
structure to make the topic more tangible. It contains examples of how
different parts of software defined infrastructures can be implemented and
contains examples of successful implementations in the industry.

The third chapter answers the first research question, that is, which
quality characteristics can be identified for software defined infrastructures.
We explain in more detail what research method we applied to get the data
and to make sense out of the data. And we end the chapter by providing a
quality model for software defined infrastructures.

In the fourth chapter we create a testing quality evaluation model for
software defined infrastructures. We cover the results of assessing projects
using the SIG testing quality model. Then we cover the results of the inter-
views on the themes and acceptance of the SIG quality model and interpret
the results. We end the chapter by providing an improved testing quality
model for software defined infrastructures.

We conclude this thesis in the fifth chapter where we will summarise
the results, discuss the strengths and weaknesses of our approach and by
providing pointers for future work.

Chapter 2

Background

In this chapter we provide background on the concepts that are part of this
thesis. We start by explaining what a software defined infrastructures are
by giving a definition and by putting it in context with other concepts. The
concepts surrounding software defined infrastructure include configuration
management tools and languages, cloud computing and the DevOps philo-
sophy. We explain what each of these concepts are and how they are related
to software defined infrastructures.

2.1 Software defined infrastructures

In this section we provide background on software defined infrastructures.
We start by giving an overview of the definitions of software defined infra-
structures that are being used by different parties. From these definitions
we will pick one definition of what software defined infrastructures is and we
will use that throughout the thesis. We then place software defined infra-
structures in context with other concepts which are defined as software. We
then explain what software defined infrastructures solves by comparing by
sketching the situation as it was before the application of software defined
infrastructures.

2.1.1 Definition of software defined infrastructure

When talking about software defined infrastructures, there is no agreed upon
definition of what it encompasses. Intel refers to software defined infrastruc-
tures as a means of data centre automation]} where hardware components
like network and storage devices are virtualised.

In this thesis we define software defined infrastructures more closely

"http:/ /www.intel.com/content /www /us/en /switch-silicon/software-defined-
infrastructure-sdi-infographic.html

Infrastructure definitions Infrastructure

Role

Module Module

Resource Hesourc?

Deployment

Figure 2.1: Overview of software defined infrastructure

to ‘infrastructure as code’ as described by IBMH In this sense software
defined infrastructures encompasses all the computer code that provisions
computers, that is configuring a computer to a desired state so that it per-
forms a certain task, such as serving a website to end users.

Central to this thesis will be code written in configuration management
languages such as the Chef language and the Puppet language. Software
written in these languages should define what the desired configuration of
a computer is. The desired state could be that certain applications should
be or should not be installed, that they are configured in a certain way, and
that these application should be active or inactive.

Figure [2.]] depicts what software defined infrastructures are on a high
level. On the left hand side is a collection of files containing the definitions
of what the infrastructure should look like. In the middle is a process of
deployment, which takes the definitions as input and turns these into actions
that the computers should perform to reach the desired state. On the right
hand side is the resulting infrastructure providing services to users from
within an organisation or to clients outside of the organisation.

Also included in our concept of software defined infrastructures is all the
software written to “create” and “destroy” computers. The creation and de-
struction of computers mostly plays a role in virtualised environments such
as with cloud computing. Creation of a computer means launching a new
logical instance of a computer and destruction means turning such an in-
stance off. Automating creation and destruction of computers is often called
‘orchestrationﬂ and combined with the automatic provisioning of computers

2http://www.ibm.com/developerworks/library/a-devops2/
3https://www.ibm.com/developerworks/community /blogs/9e696bfa-94af-4f5a-ab50-

leads to a having a high amount of automation of the management of an I'T
infrastructure.

2.1.2 Other software defineds

Software defined infrastructure is also an umbrella term for other things
‘software-defined’, such as:

Software-Defined Networking (SDIN) A network architecture where net-
work logic is centralised in a software-based controller, which maintain
a global view of the network. This allows network administrators to
programmatically manage a simplified network instead of having con-
figuration files scattered across among many devices. [12]

Software-Defined Storage (SDS) A storage architecture where admin-
istrators and users get functionality in terms of capacity, performance
and reliability and are being abstracted from hardware configuration
of storage. [15]

Software-Defined Data Centre (SDDC) A term encompassing many
‘software defined’-terms. It provides Application Programmable In-
terfaces (API) for low-level components to administrators of the data
centre as well as to tenants of the data centre. [9]

In the context of this thesis, software defined infrastructure is described
as software that orchestrates and provisions computers so that they form a
computer infrastructure.

2.1.3 The problem software defined infrastructures solve
Infrastructures not defined by software

In an organisation where computers are not provisioned using software
defined infrastructures, the worst-case scenario when a computer needs to
provisioned would be that the network administrator would have to:

1. Install an operating system using a CD.

2. Configure the operating system.

3. Install the required applications using a CD or package repository.
4. Configure the applications.

5. Run the applications.

¢955¢cca76fd0/entry/orchestrating_the_cloud_to_simplify_and_accelerate_service_delivery1l

Provisioning a computer this way can take up to hours, meaning the
system administrator is limited in what he can do in the meantime. The
fact that this takes a lot of time also means that infrastructure creation
is inflexible meaning that it will be hard to deal with rapidly changing
environments. This method of provisioning is also error-prone. A human
having to perform a certain set of tasks over and over is bound to perform
the set of tasks differently each time. In system administration this leads to
so-called ‘works of arts’ where many systems are configured in different ways
and only a single administrator knows how a system is exactly configured.

In the best-case scenario when provisioning a computer without using
software defined infrastructures, the system administrator has an image of
a fully configured computer which he can load onto as many computers as
he likes. This however requires that of every type of configuration required
by an organisation, the system administrator would have to create an image
of it, which by itself is time consuming, but also is inflexible and additional
configuration steps would still lead to so-called ‘works of art’.

Infrastructures that are defined by software

In an organisation where computers are provisioned using software defined
infrastructures, the provisioning of a computer means that a definition of
how that computer should be provisioned has to be created. When this is
done the steps of provisioning a computer becomes:

1. Install the operating using a CD or image.
2. Install configuration management tool, such as Puppet.

3. Provide definition to the configuration management tool.

The first two steps can be eliminated by making use of infrastructure-
as-a-service cloud computing. This means that in a best-case scenario it
is possible to fully automate the provisioning of a computer. The result is
that it takes less time of a system administrator to provision a computer,
meaning that he manage more computers. It also results in that computers
doing similar tasks are configured in a homogeneous way, making the overall
infrastructure more manageable.

2.2 Infrastructure management using Puppet

At the centre of software defined infrastructures are the configuration man-
agement tools and languages such as Chef and Puppet. The configuration
management languages are a means of defining what the desired configur-
ation of a computer is. The configuration management tools are a means

to transform these definitions into actions that a computer can perform to
reach that desired state.

In this section we provide examples of code written in the Puppet lan-
guage and we describe how the Puppet tool turns this code into action to
be performed by the computer. The examples in this section are based on
Puppet but the general concepts are also applicable to other configuration
management tools and languages.

2.2.1 The Puppet language

A major difference between Puppet and many traditional programming lan-
guages is that Puppet is a declarative language and not an imperative lan-
guage. An example of an imperative language is the programming language
C. To describe in the C programming language what you want a function
to do, you need to fully write out all the intermediate steps.

In a declarative language the developer describes the desired result and
the compiler or interpreter figures out how to reach the desired result. An
example of a declarative language is Structured Query Language (SQL),
which is used to query databases. In SQL, the programmer explains that
it wants the database to provide data from specific columns given a certain
constraint on those columns e.g. “From the table people, provide me the
names of people who are of age 18 and older”. When given a query state-
ment, the SQL interpreter will then decide the strategy it will apply to get
the desired result.

file { :

path => s

ensure => file,

content => template()
+

Listing 2.1: Example of a resource definition.

The declarative nature of Puppet allows the developer to define what
kind of resources he wants applied to a computerﬂ Among the default
resource types are the types ‘File’, ‘Service’, ‘Package’ and ‘User’. When
declaring a resource you can give properties to it. The most prominent
properties of a resource are its handle and the ‘ensure’ property. The handle
of a resource can be seen as a reference or name of a resource. With the
ensure property the developer can tell Puppet that it has to ensure the
presence or absence of that resource. For example with the File-resource,
you can ensure that a file is present or absent, or more detailed ensuring that

“https://docs.puppetlabs.com /references/latest /type.html

10

the specified path it is a file, a folder or a symbolic link. With the Service-
resource Puppet can ensure that the service (An application running the
background, such as the system clock) is running or that it is stopped.

An example of a resource definition can be found in listing In this
example a File-resource is created with the handle ‘ntp.conf’. The specific
file the resource is referring to is ‘/etc/ntp.conf’ and it is to be ensured that
this file exists. The content of the file has is generated using the specified
template, which acts as a blueprint for how the content of the file should be
structured.

When a resource is provided as input the Puppet, the Puppet tool will
try to reach the desired state as defined by the resource. In the File-resource
example, each time the Puppet tool is run, it will make sure that the file is
there and if it is not, it will create the file. The Puppet tool will also check
if the content of the file is right and if it is not, it will insert the correct
content. In general, if the configuration in the definition is not the same
as the actual configuration (divergence from the desired state has occurred)
then Puppet will make the changes to the that are required (convergence
towards the desired state) to reach the desired state of the computer.

Classes, modules and node definitions

Resources in Puppet are bundled in classesﬂ Such classes typically represent
applications and include the resources needed to install, configure and run
that application. It is typically in these classes that developers generalise
their code so that it the classes can be applied to different operating systems.
An example of where this is useful is for different Linux distributions with
different package repositories. Names of packages of applications can differ
over repositories. A concrete example is that the Apache web server is
contained in the ‘apache2’ package in Debian package repository while it
is contained in the ‘httpd’ package on Red Hat-based package repositoriesﬂ
Creating specific cases for different distributions allows a class to be portable,
which can be valuable when changing cloud infrastructure providers or when
you have to provide the same applications for clients using different operating
systems.

One level above classes are modules, which are folder structures contain-
ing classes, binary files, configuration file templates and unit test&ﬂ Mod-
ules are meant to be easily re-distributable and are similar to libraries in
traditional programming languages. Puppet Labs offers a central repository
for these libraries at Puppet Forgeﬂ The Puppet Forge contains modules
created and shared by Puppet Labs and by the community.

Shttps://docs.puppetlabs.com/puppet/latest /reference/lang_classes.html
Shttps://docs.puppetlabs.com/guides/passenger.html#tinstall-apache-2
"https://docs.puppetlabs.com/puppet /latest /reference/modules_fundamentals.html
8https:/ /forge.puppetlabs.com/

11

node {
include common
include apache
include squid

by

node {
include common
include mysql

Listing 2.2: Examples of node definitions.

The last part of the Puppet language we discuss are node deﬁnitionsﬂ
In node definition it is describe which set of modules or classes are to be
applied to a computer.

Whenever a computer with a Puppet Agent connects to a Puppet Master
server, the Puppet Master will have to decide which configuration to apply
to the Agent. The node definitions are lists of classes to be applied to the .

Examples of two node definitions can be found in listing[2.2] If an Agent
with the host-name ‘wwwl.example.com’ connects to the Puppet Master,
then the Puppet Master will instruct the Puppet Agent to apply the ‘com-
mon’, ‘apache’ and ‘squid’ classes.

The Puppet deployment tooling

In traditional software development, source code is transformed to an execut-
able computer program by providing the source code as input to a compiler
or an interpreter. The job of the compiler or interpreter is to translate the
source code into machine code that the processor is able to execute.

In case of software defined infrastructures using configuration manage-
ment tools such as Puppet, the code is not compiled into machine code but
instead into a set of configuration steps called the ‘catalog’ which the agent
then performs. Figure provides an overview of the catalog creation of
the Puppet tooling.

The configuration of a computer starts with the Puppet Agent on that
computer doing a catalog-request to the Puppet Master. In this catalog-
request the Puppet Agent sends its host name name and a set of facts,
including hardware information and software information like which oper-
ating system and which version of Puppet are running on the computer.
Using the host name information the Puppet Master determines whether
the computer is eligible to receive a catalog and if so which node definition

9https://docs.puppetlabs.com/puppet /latest /reference /lang_node_definitions.html
Figure found at: https://docs.puppetlabs.com/learning/agent_master_basic.html

12

- N

Agent Master
Request Classify
catalog
| | ——» (Whoisthis,
(sends node and what do
name and they need?)
facts)
Catalog
Compile
Apply Query
status
Enforce
defined
state
\ /-\ Report
3
Defined /
system

\ state / K /

Figure 2.2: Puppet catalog creation and communication

applies. Then, using the facts the Agent has provided, the Master compiles
a catalog containing the desired state the machine should converge to and
sends that catalog back to the Agent. The Agent then applies the catalog,
first by checking if it is already at the desired state. If that is the case then
the Agent is finished, if not then the Agent has to take actions to get to
the desired state. If all went well, the Agent reports success to the Master,
meaning that it has reached the desired state. If things went wrong, the
Agent reports failure to the Master, which should alarm the infrastructure
developers.

2.3 Cloud computing

While software defined infrastructures are not necessarily a part of cloud
computing, the two do go hand in hand when automating I'T infrastructures.

The National Institute of Standards and Technology (NIST) defines
cloud computing as “a model for for enabling ubiquitous, convenient, on-
demand network access to a pool of configurable computing resources that

13

can be rapidly provisioned and released with minimal management effort or
service provider interaction” [18].

The NIST also provides a list of essential characteristics of cloud com-
puting:

e On-demand self-service

e Broad network access

Resource pooling

Rapid elasticity
e Measured service
The NIST also distinguishes cloud computing into three service models:

Software as a Service (SaaS) Providing a software application to the
end-user, like e-mail or a bookkeeping application.

Platform as a Service (PaaS) Providing a platform to deploy applica-
tions on.

Infrastructure as a Service (IaaS) Providing IT infrastructural services,
such as servers and storage.

In practice making use of cloud computing means the outsourcing of
services provided internally by the organisation to providers external to the
organisation. For a small company this could mean that they would not
have a mail server inside their organisation but that they would use a SaaS
e-mail provider, where the mail service is pooled with the mail service of a
lot of other companies.

The term cloud encompasses a sort of vagueness in that you now ‘bring’
service to the cloud. This means that you outsource a service and that it is
practically unknown where this service is physically located.

Virtualisation is one of the foundations of cloud computing, meaning
that the hardware is abstracted away. Whenever you make use of a service,
such as getting a virtualised servers the server is logical and not physical.
A logical server means that it is not bound to a physical machine, meaning
that when a cloud provider provides such a virtual machine, it will probably
reside on different physical machines each time the server is provided.

2.3.1 Relation with SDI

The relation of cloud computing with software defined infrastructures is that
they go well together automating whole IT infrastructures. One can use IaaS
providers for generating virtual machines which can then be provisioned us-
ing configuration management tools. Many [aaS providers have so-called

14

Application Programmable Interfaces (API) for the creation and destruc-
tion of virtual machines. These API’s mean that you can automate the
creation and destruction, and using configuration management tools allow
automating the provisioning. With a minimum amount of human interac-
tion one can now thus create IT infrastructures. When done well, this means
that you can have elastic infrastructure, which grows when there is a high
demand and shrinks when there is a low demand for services.

2.4 DevOps

Development Operations

\/

Quality
assurance

Figure 2.3: Diagram portraying DevOps

In many organisations development and operations are separate parts of
the organisation 2] While both are part of a chain with the goal to deliver
IT services, both roles have conflicting goals. On one hand development,
with the increased adoption of agile development methodologies, have the
goal to make changes to software so that the organisation can meet its
goals. On the other hand operations, are tasked with providing a stable I'T
infrastructures so that the continuation of the business is guaranteed. This
conflict of goals result in a lack of alignment causing release cycles to take
longer than needed.

To DevOps philosophy tries to close the gap between development and
operations. By applying development practices to IT infrastructure oper-
ations, the deployment cycle time for software releases is brought down.
Focus with the DevOps lies with the unification of processes, such as agile
and ITIL, on the unification of tooling, such as the use of configuration man-

"http://dev2ops.org/2010/02/what-is-devops,/
Phttp:/ /www.jedi.be/blog/2010/02/12 /what-is-this-devops-thing-anyway /

15

agement languages and continuous integration platforms, and to improve the
communication between the different I'T parts of an organisation. Figure|2.3
portrays the desired result of applying the DevOps culture within an organ-
isation. Different I'T departments within organisation should collaborate
rather than have a conflicting goals.

The relation between software defined infrastructures and DevOps lies
in the unification of tooling. With software defined infrastructures, the
creation of infrastructures becomes part both of development and opera-
tions. Developers can now create and test their software on computers that
have for which code has been created using configuration management lan-
guages. Using continuous integration tools such as Jenkinﬂ each change
to the code can be tested automatically and deployed once the tests succeed.
With infrastructure becoming code, this now also applies to infrastructures
themselves.

Y3http://jenkins-ci.org/

16

Chapter 3

Identification of quality
aspects

In this chapter we create a quality model for software defined infrastruc-
tures. We start by giving some background information on quality models
for traditional software systems. We then explain how we interviewed prac-
titioners of software defined infrastructures to gain information on quality
aspects in that context. We then interpret the results and end by creating
a quality model for software defined infrastructures.

3.1 Background

In this section we describe the small body of scientific knowledge on software
defined infrastructures. The industry however, has already adopted software
defined infrastructures and many practitioners in the field are writing articles
about it in the form of blogs. We provide an insight in some of these articles
written by practitioners to show the current state of adoption of the software
defined infrastructures. We end the background by providing how quality is
measured in traditional software engineering.

3.1.1 Small body of scientific knowledge

With the rise of configuration management languages, cloud computing and
DevOps there have been many companies adopting software defined infra-
structures to make their I'T infrastructures more manageable. The increasing
adoption of the technology by the industry is not reflected in academic lit-
erature as there is almost no literature on the subjects of software defined
infrastructure or infrastructure as code.

A model based testing approach for testing idempotence of infrastruc-
ture as code operations was proposed by [14]. Idempotence of infrastructure
operations means that tasks, such as those generated by configuration man-

17

agement language tools, are repeatable. The article shows that, using the
testing approach, many Chef cookbooks maintained by the Opscode com-
munityﬂ contain tasks found to be non-idempotent.

The author of CFEngineﬂ configuration management tool has written
articles on the formalisation of system administration processes. Burgess
created a theoretical framework for system administration [§], in which the
notion of policy is defined. In [7], Burgess defined idempotence and con-
vergence in the context of system administration are defined and for both
concepts a theoretical framework is created.

There are many blogs about increasing the quality of software written in
the Chef and Puppet languages. These blogs focus on the usage of testing
platforms and the usage of code style Checking%7 but are lacking to define
what quality in software defined infrastructure is.

This, to our knowledge, is the current state of research in the field of
software defined infrastructures, infrastructures as code and DevOps. Be-
cause there is no definition of quality on software defined infrastructure, we
aim to make a foundation by creating the notion of quality in this thesis. As
a software defined infrastructure is code, we will focus at looking at it from
a software engineering perspective. This is because software engineering,
which can be seen as an immature engineering principle when compared to
traditional engineering principles|6], is in our opinion, a more mature field
of research and standardisation than IT-infrastructure engineering is.

3.1.2 Quality aspects of traditional software

Many quality models have been written on traditional software. We provide
an overview of some well known software quality models.

Boehm’s software quality model

Boehm et al. [5] defines software quality in terms of portability, reliability,
efficiency and maintainability. The quality characteristics are decomposed
into sub-characteristics if it is implied that an increase in quality of a sub-
characteristic means an increase in quality of the supra-characteristic. The
article does not go into great detail on how the quality characteristics were
determined and how metrics for these quality characteristics were made.

"http://community.opscode.com /cookbooks/

http://www.cfengine.com/

3http:/ /www.neverstopbuilding.com /foodcritic/

“https://www.paydici.com /blog/increasing-chef-code-quality /
®http://puppetlabs.com/blog/software-quality-and-your-devops-tool-chain,/

18

McCall’s software quality model

McCall et al. [17] determines 55 software quality factors based on a literature
study. To make the list of quality factors more manageable the quality
factors were then grouped by removing factors that are synonymous and
then by logically grouping the factors. The result is the definition of eleven
factors and many sub-factors.

ISO 25010 software quality model

Software Product
Quality

[l | | [| I |

Funetienal Reliability Performance Operability Security Compatibility || Maintainability Portability
Suitability efficiency
—
Functional Maturity Time- Appropriateness | | Confidentiality Co-existence Modularity Adaptability
appropriateness Ayailability behaviour recognizability Integrity Interoperability || Reusabillity Installakility
Accuracy Fault tolerance Resource Ease of use Non-repudiation Analyzability Replaceability
Recoverability utlisation User error Accountability Maodifiability
protection Authenticity Testability
User interface
aesthefics
Technical
learnability
Technical
accessibility

Figure 3.1: Product quality aspects defined in ISO 25010

The International Organisation of Standardisation (ISO) is an organisa-
tion that has the creation of standards as its primary goal. The standards
created by the ISO vary in field and theme. For almost any kind of field or
subject there is a standard describing that thing or process. Examples of
standards are ISO QQOOdﬂ for food safety management and ISO 27001E| on
the process of creating a information security management system.

The ISO 25010 standard on systems and software quality requirements
and evaluation defines a set product quality characteristics and quality in-
use characteristics for systems and software [16]. Product quality charac-
teristics are properties of the system that can be evaluated by looking at
the product as-is. An example of a product quality characteristic that the
standard defines is ‘interoperability’, which is defined as: Degree to which
two or more systems, products or components can exchange information and

Shttp://www.iso.org/iso/home/standards/management-standards/is022000.htm
"http://www.iso.org/iso/home/standards/management-standards/iso027001.htm

19

use the information that has been exchanged. Next to the product quality
characteristics are the quality in-use characteristics, these in-use character-
istics are properties that depend on the context in which the system is being
placed. An example of such a property is ‘effectiveness’, which is defined as:
Accuracy and completeness with which users achieve specified goals.

The 25010 standard is the replacement for the ISO 912d§| standard on
software engineering product quality. The 9126 standard supports the needs
to assess software quality to ensure value to stakeholders. By creating a set
of quality requirements, the technical commission creating the standard in-
tends to provide a set of characteristics so that they can be used to for
creating requirements, the criteria for satisfaction and measurements. The
replacement added quality in-use characteristics and extended the scope to
include computer systems instead of just software products. Other changes
are the inclusion of several characteristics and renaming some for more ac-
curacy.

Overlap in quality models

Al-Qutaish compared different software quality models [1]. The conclusion
of the article is that the models show a great deal of overlap in the quality
characteristics they define. The quality models compared usually differ in
determining which characteristics are major characteristics and which ones
are sub-characteristics. It is concluded that the ISO 9126 quality model is
the most useful one as it is based on consensus.

3.2 Gathering SDI quality aspects

In this section we explain how we gathered quality aspects of software defined
infrastructures. We start by explaining the research method we applied to
gather information, which is interviewing. We then describe how we tran-
scribed these interviews and how we extracted quality aspects from them.
We end this section by giving an overview of the results of the interviews,
namely a list of quality aspects the practitioners of software defined infra-
structures found important.

3.2.1 Research method

We aim at finding which quality aspects are important in a software defined
infrastructure context. Due to the explorative nature of finding new quality
aspects, we chose a qualitative research approach. Qualitative approaches
allow us to gather new information which can later be tested using quantit-
ative approaches.

S8http://www.iso.org/iso/catalogue_detail. htm?csnumber=22749

20

For gathering quality aspects of software defined infrastructures, we
chose to interview practitioners of software defined infrastructures using
semi-structured interviews. Semi-structured interviewing allows the inter-
viewer to explore subjects as they come up but also to guide the subjects
using a pre-defined interview guide. Given their background as consultants
or at least having worked for a consultancy firm, we expected the inter-
viewees to be able to reason about software projects outside of their own
projects. The interview guide can be found in section [3.2.1

We have diversified our pool of interviewees by getting interviewees with
different backgrounds. Four out of five interviewees were employees of the
Software Improvement Group (SIG). These four interviewees were all part
of a team responsible for creating the internal software defined infrastruc-
ture. Two out of the four interviewees were technical consultants with a
development background. The other two interviewees have are part of the
IT operations of SIG. Out of these two one has a development background
and one has a systems administration background.

The Software Improvement Group describes itself as: “SIG is committed
to delivering practical, actionable insights that enable our clients to reduce
their software costs, increase their software systems effectiveness and shorten
IT project delivery times.

We provide objective, actionable advice on IT landscapes and systems,
and guide the development team in achieving optimal results. Our inde-
pendence and impartiality are important to our clients, who also benefit
from our partnerships with leading authorities, such as TUVIT and univer-
sities worldwide.”Pl

The fifth interviewee is an infrastructure engineer at Schuberg Philis. He
has a background in software development and in research at the Software
Improvement Group.

Schuberg Philis describes itself as: “Schuberg Philis is an innovative
business technology company. We focus on the mission critical applications
that our customers and society rely on 24/ 7.”|E|

Interview guide

The interview guide applied for data to determine quality aspects of software
defined infrastructures is:

1. Internal project

(a) What are important quality aspects you look out on your internal
project?

(b) What do you do to keep the quality of your project high?

“http://www.sig.eu/en/About_SIG/
Yhttps://www.schubergphilis.com/

21

2. If you were to act as an adviser on an external software defined infra-
structure project, what are quality aspects you would look out for and
what would you advice?

Transcribing

To save time, transcriptions are not word-for-word written versions of the
interview but are summarised reports of the interviews where diverges from
the main theme are omitted if they were not contributing to the research
goal. The reports of the interview can be found in appendix A. The record-
ings of the interviews have been handed over to the academic supervisor of
this thesis.

We extracted quality aspects of software defined infrastructures by cod-
ing the transcriptions based on themes that were identified by during and
after the interviews. Appendix [B] shows the result of the coding, pointing
out what the interviewees said about a certain topics.

3.2.2 Results
Overview of the quality aspects

Table gives on overview of quality aspects mentioned during the inter-
views with the practitioners of quality characteristics of software defined
infrastructures. The check marks indicate that the particular quality aspect
has been mentioned during that particular interview as being something
that is important to look out for when looking at the quality of a software
defined infrastructure. The last column shows the amount of interviews
the particular aspect was mentioned in, it is assumed that more important
topics are mentioned in more interviews than topics that are less important.

Interpretation of the interviews

In this section we interpret the results of the interview as shown in table
We highlight the characteristics that were mentioned in most inter-
views. Criteria for highlighting was arbitrarily chosen to be characteristics
that were mentioned in three or more interviews. During the highlights we
mention why the interview subjects feel these characteristics are important.
Transcriptions of the interviews can be found at appendix [A]

Automation Level of automation or autonomy is a quality characteristic
that was mentioned by three interviewees.

Interviewee #2 pointed out that the amount of manual operations per-
formed on servers is something to look out for.

Interviewee #3 and interviewee #5 explained that automation is a char-
acteristics that tells something about the predictability and maturity of a

22

Interview
Characteristics 1123
Audit trail
Automation v
Best practices v |V
Co-existence v
Complexity v
Data separation v
DevOps v
Environments v
Extensibility

Functional suitability
Infra design v
Level of freedom
Maintainability v |V
Maturity
Monitoring v
Node cohesion v
Predictability v
Test automation v
Testability
Testing v
Testing effort v
Tools usage v |V
Version control v |V

AN
<\

S ENESENENENENEN

SNENEN

TN e G e AN e e N e ISt e BN e e T e e Y OUT ESCI R B S

Table 3.1: Overview of quality characteristics mentioned during interviews.

software defined infrastructure. The predictability is increased when auto-
mating the deployment using a deployment pipeline which includes automat-
ing unit testing and integration testing. Other areas that were mentioned as
candidates for automation include incident handling of the infrastructure,
meaning that a monitoring system checks the infrastructure for incidents and
that incidents caught by the monitoring systems are automatically handled.
The usage of cloud orchestration, which is tooling that manages the infra-
structure by creating and destroying nodes and by provisioning the nodes,
was also mentioned as something that could be automated.

Best practices Three subjects mentioned the application of best prac-
tices.

Interviewee #2 mentioned that the tooling available for software defined
infrastructures does less for the developer than in many other programming
languages. This means that the developer should employ best practices more

23

as they are a set of ‘proven’ practices making less room for error.

Interviewee #3 explained that the configuration management languages
are owned by a single companies and are therefore subject to big changes.
This makes it important to closely watch the blogs of the companies which
are in control of the languages as those are important channels of commu-
nicating these changes.

Interviewee #3 and interviewee #4 pointed out language specific code
smells of the Puppet language and the best practices would be to not in-
troduce those smells in your code. The first code smell that was mentioned
is programming in an imperative style in the Puppet language as the Pup-
pet language is a declarative language. The declarative nature means you
can tell the Puppet Master what you want a machine to look like and the
Puppet Master will figure out the steps to get there. Using an imperat-
ive approach — such as by using require statements, explicitly telling the
Puppet Master in which order to do things, thus creating dependencies —
overrules the order in which Puppet executes commands which could lead
to circular dependencies. Another code smell mentioned is overusing of the
exec-statement. The exec statement of the Puppet language means that the
code a command is executed directly to the command-line interface. The
Puppet Master has no idea of what happens on the system when executing
these external commands. The Puppet Master will thus be unable to tell
where to schedule these exec statements and will be unable to tell if the exec
statement succeeded or failed, making it hard to detect errors generated by
the external commands.

Maintainability Interviewee #2 and interviewee #3 explained that they
would look at certain static code indicators of maintainability. The indic-
ators they mentioned were unit length, parameter list length, good naming
practices and code complexity. Interviewee #2 said that the McCabe meas-
ure for complexity is not that useful for code written in the Puppet language
due to its nature as a domain specific language in which programmers do not
have the tendency to create a lot of nesting. Code volume would therefore
be a better measure of complexity. Interviewee #5 mentioned that he uses
Sonar Qubdﬂ to do static analysis of his code base.

The method of keeping the code maintainable applied by the team of
interviewee #5 is by continuously refactoring on the code base. This means
that, in line extreme programming and agile principles, developers are al-
lowed to refactor code whenever they see it fit. Another thing they the team
does to keep the code maintainable is by being forced to test everything.
This creation of tests forces developers to go back and forth between creat-
ing tests and writing testable code. Creating more testable code means also
that the code is more maintainable[13].

"http://www.sonarqube.org/

24

Testing All interviewees mentioned that testing is something they find
important in their own project and test automation was also mentioned as
something they would look out for.

There are however some disagreeing views on the importance of unit
testing. Interviewee #2 and interviewee #3 mention that unit testing Pup-
pet code is not as important as integration testing as unit tests is simply
code written a different language for what you already wrote in the Puppet
language. Combined with the shared opinion of interviewee #1, that the
provisioning of computers is fragile due to a large amount of external de-
pendencies such as the operating system, they feel that integration testing is
far more important than unit testing. Interviewee #5 thinks that unit test-
ing is very important as it is a way to test to test units which are generalised
to work with more than one operating system.

The importance of integration testing is shared by everyone. The in-
terviewees mentioned that integration testing is important as deploying an
infrastructure and then testing against that infrastructure is a good way to
test if the code actually deploys the infrastructure as it is supposed to.

Interviewee #1, interviewee #2 and interviewee #3 explained how their
team tests the whole infrastructure on a daily basis. By rebuilding the
infrastructure in the staging environment on a daily basis, they test if their
infrastructure is able to reach the desired state from the ground up and is
not only able to transition from state to state.

3.3 Construction the SDI quality model

In this section we transform the results of the interview into a quality model
tailored to software defined infrastructures. We start by grouping the quality
aspects into logical, SDI related, groups. We then make a visual represent-
ation of the model and explain it.

3.3.1 Grouping the characteristics

The goal of the model is to measure the quality of the software defined in-
frastructure. In chapter 2 we explained that software defined infrastructures
consist of the software, the deployment process and the resulting infrastruc-
ture. We can thus decompose the quality of the software defined infra-
structure into the quality of each of those parts. This makes the quality of
software defined infrastructures the aggregation of:

e The quality of software
e The quality of the deployment process

e The quality of the infrastructure

25

For each of the parts of the software defined infrastructure we determ-
ine quality characteristics based on the aspects given as important by the
interviewees.

Quality of the software

Interviewees mentioned that the usage of best practices, proper tooling and
version control is important. Other than these aspects, interviewees men-
tioned code metrics related to code maintainability. We combined these
aspects into a maintainability quality characteristic for the quality of soft-
ware of the software defined infrastructure. The application of best practices
and usage of proper tooling allow the developers to keep to code maintain-
able in an field where there is a lack of good tooling. Version control is an
important maintainability aspect as it allows a team of software engineers
to collaborate on a code base and revert to prior versions of the software
in case changes have broken the software. Code metrics in a static code
analysis can provide a good tool for measuring the maintainability of the
software.

Software defined infrastructures can be used to create portable infra-
structures. Portability can be split up in two aspects. The first aspect is
the ability to deploy an infrastructure independent of the operating system
installed on the computers in the infrastructure. This is helpful in the case
of when it is decided that the operating systems of the computers should be
changed due to performance or security reasons.

The second aspect is the ability to be able to switch cloud service pro-
viders with little effort. Reasons for wanting to change cloud service pro-
viders could be cost related or for legal reasons. Costs are a concern due
to competition on the cloud market, where some cloud service providers try
to do lock in users|2|. Legal issues are a concern as government agencies
are gathering more and more data from IT companiem This results in
companies moving data from countries foreign to their customers to the
countries their clients are located in, so that the data of a client does not
fall under the jurisdiction of a country which is foreign to the customer.

Quality of the deployment process

Quality aspects mentioned by the interviewees related to the deployment
process are deployment automation using a build pipeline, testing code be-
fore moving it into production and the testability of the infrastructure. The

Phttp:/ /www.reuters.com /article/2014/07/31/us-usa-tech-warrants-
idUSKBN0G024120140731

Bhttp:/ /www.washingtonpost.com /business/technology /tech-companies-
urge-lawmakers-to-reform-nsa-programs/2013/10/31/f100ced6-4264-11e3-a751-
f032898f2dbc_story.html

26

inclusion of a build pipeline in the deployment process is a form of deploy-
ment automation in which testing can be included. The benefit of a build
pipeline is increased automation of deployment, leading to less man-hours
spent on deployment and a more predictable deployment process, causing
less room for human-made errors.

The quality of testing during the deployment process increases the safety
against faults. Preferably every change needs to be automatically tested
before the code can be placed in production.

The last aspect is the cycle time of testing and the cycle time of the
deployment of the infrastructure. Reduction of the time it takes to test and
deploy the infrastructure leads to an increased possibility to fix bugs and
changes. It is sometimes decided that an infrastructure can not be deployed
whenever there are failing tests, if this is the case then the cycle time of a
whole development iteration is limited by the test cycle time.

Quality of the infrastructure

The quality aspects related to the infrastructure that were mentioned were
autonomy, recoverability and suitability of the infrastructure.

Recoverability is the ability of an infrastructure to recover from failures
or incidents. Monitoring systems should warn system administrators when
necessary, but in the first place the infrastructure should be able to repair
itself if possible.

Autonomy is closely related to recoverability in the sense that system
administrators ideally have to put in as little time as possible maintaining
the infrastructure, which decreases the amount of system administrators
needed to maintain the infrastructure. A greater autonomy also increases
the predictability of an infrastructure as it is less like that human made
errors slip in during maintenance activities.

Suitability can be subdivided in technical and functional suitability.
Technical suitability means that the infrastructure should be able to handle
different kinds of strain. Functional suitability means that the infrastructure
must provide the functionality it should, meaning the specific applications
the infrastructure provides.

A characteristic related to the technical and functional suitability of the
infrastructure is that of complexity. A more complex infrastructure requires
more system administrators to maintain it. Either because the complexity
require more administrators to maintain smaller amount of computers. Or
that the size of the infrastructure requires a large amount of administrators.
Example of complexity in an infrastructure are the amount of computers,
and the cohesion and coupling between computers.

27

Software
Defined
Infrastructure
Quality
- 1
| |
Deployment
Software Infrastructure
Quality Process Quality
Quality
Maintainability Degree.of Autonomy
automation
Portability Fault safety Complexity
T —
Time efficiency Recoverability
T —
Suitability
T —

Figure 3.2: Quality model for software defined infrastructures

3.3.2 Visual representation of model

Following the categorisation of the quality aspects mentioned in the inter-
views into quality characteristics, the model shown in figure [3.2] has been
constructed.

The base node is the overall quality of the software defined infrastructure.
Fach of the decomposed parts of the software defined infrastructure has its
own quality characteristics, as shown in the grouping of the aspects. It
should be noted that the characteristics of the deployment process and the
infrastructure are for most part embedded in the code. Though it is more
probable that the quality of these parts are measured in-use rather than by
looking at the code.

Characteristics of the quality of code are maintainability and portability:

Maintainability The degree developers are able to make changes to code.

28

Portability The ease of moving the infrastructure to different hardware,
operating systems or cloud service providers.

Characteristics of the quality of deployment are autonomy, fault safety
and time efficiency:

Autonomy The degree of automation in the deployment process.
Fault safety The ability of the deployment process to prevent errors.
Time efficiency The time required for deploying the infrastructure.

Characteristics of the quality of the infrastructure are autonomy, com-
plexity, recoverability and suitability:

Autonomy The degree of automation of the infrastructure in place.
Complexity The manageability of the infrastructure.

Recoverability The ability to cope with faults happening inside the infra-
structure in place.

Suitability The degree that the infrastructure suits the wishes of the prin-
cipals.

3.4 Conclusion

In this chapter we presented the results of the interviews we had with prac-
titioners of software defined infrastructures on quality aspects of software
defined infrastructures. We then created a quality model for software defined
infrastructures containing quality aspects one could look at when assessing
the quality of software defined infrastructures.

The next step would be to make a concrete implementation of the quality
characteristics by creating metrics to measure the characteristics. In chapter
we create a model for measuring the quality of testing in software defined
infrastructures. Test quality is one of the pointers for fault safety in the
deployment process.

29

Chapter 4

Testing quality of software
defined infrastructures

In the process of interviewing experts on the quality of software defined
infrastructure, the aspect that stood out the most as being important was
testing. For this reason we decided that it would be helpful to create a
quality model for testing in a software defined infrastructure context. In
this chapter we provide context on testing and the quality of it of traditional
software. We explain the differences between testing in a traditional setting
and testing in a software defined infrastructure setting. Then we describe
our research method for the creation of a test quality model for software
defined infrastructures. We provide the results of the data acquisition and
how it has lead to a new model. We end by validating the new model by
applying it on the data we gathered to the new model.

4.1 Background

In this section we provide background on why testing is important, how
testing is being done and what aspects are to be taken into account when
looking at the quality of the testing process. We then compare between
testing in a traditional context to testing in a software defined infrastruc-
ture context to explain which practices are similar and which practices are
different in the two contexts.

4.1.1 Testing as an important quality aspect

When interviewing experts on what they thought were important quality as-
pects of software defined infrastructures, as described in chapter [3| without
exception they included testing as an important aspect. Many of the in-
terviewees even thought that it was the most important quality aspect of
software defined infrastructure projects. As we were aiming to instantiate

30

Software
Defined
Infrastructure
Cuality
T —
| |
Deployment
Software Process Infrastructure
Cuality Quality CQuality
Maintainability Degree_m Autonomy
automation
Portability Fault safety Complexity
e ________________________J
Time efficiency Recoverability
e ____________________J
Suitability
T

Figure 4.1: Testing as part of fault safety in the deployment process quality
of software defined infrastructure quality

one of the quality characteristics of software defined infrastructures, we felt
that it would be the most useful to create a testing quality model as a metric
for fault safety in the deployment process of software defined infrastructures.
Fault safety in the quality model for software defined infrastructures created
section [3.3.2] is highlighted in figure [£.1]

The experts on software defined infrastructures explained that testing
was very important in this context for various reasons. The most obvious
reason why testing is important is related to the DevOps philosophy. Soft-
ware defined infrastructures is a way of creating computer infrastructures,
which prior to DevOps becoming spread was the domain of ‘Operations’,
which is generally the system administrators tasked with creating an infra-
structure that has to be as stable as possible. To create a stable infrastruc-
ture, system administrators are reluctant to changes in the infrastructure

31

as each change has the possibility to introduce risks to stability. On the
other hand, the trend in application development is to use Agile methodo-
logies, which includes short release iterations. The short release iterations
that developers like to have is in conflict with the tendency of operations to
create a stable environment by deterring changes. DevOps is the philosophy
that tries to solve this conflict by applying software engineering practices
on operations. One of these practices is the application of testing in in-
frastructure management. With the introduction of testing, developers are
able to release more often as they guarantee that changes will not break the
infrastructure by testing.

4.1.2 The goal of testing

The International Software Testing Qualifications Board (ISTQB) is an or-
ganisation that certifies software testers. The ISTQB defines the goals of
testing as|19]:

e Finding defects.
e Gaining confidence about the level of quality.
e Providing information for decision making.

e Preventing defects.

The goals of the ISTQB are compatible with [4], where it is described
that testing is done to check if something behaves as intended, to identify
potential malfunctions and is being used in the industry for quality assur-
ance. While — as these goals point out — testing is important to find defects
and to increase confidence in the software, it should be pointed out that
testing cannot assure the absence of defects. This general truth was made
famous by Dijkstra’s: “Program testing can be used to show the presence
of bugs, but never to show their absence!” [11].

4.1.3 Testing process

According to [19], the software testing process consists of the generic steps:

Planning and control Defining the objectives of testing and specification
of test activities in order to meet the objectives and mission.

Analysis and design Transformation of test objectives into tangible test
conditions and test cases.

Implementation and execution Specification of test procedures and test
scripts and running them.

32

Evaluating exit criteria and reporting Evaluation of text execution against
the criteria to stop testing and reporting the results to the stakehold-
ers.

Test closure activities Collection of test data to consolidate experience.

The generic formulation of the testing approach by ISQTB is likely to
generalise the process so that it can encompass different types of software
development methodologies such as the agile and the waterfall methodolo-
gies. Using the waterfall methodology, testing is a separate phase in the
development of a software product. The testing phase comes after the de-
velopment phase meaning that testing starts when development of a version
of a product is done. In agile methodologies, testing is a part of development
meaning that each feature is done only if it is tested to a certain extent.

Making these steps more concrete a software team using an Agile ap-
proach could be planning the testing by communicating about the tooling
the team is going to use. In a definition of done a team would then describe
when a requirement is done, which should include the extent to which a
feature is tested. Then depending on the approach tests are written either
before or after implementation of the feature or change and is executed.
After execution the results of the tests are presented to the developer. In
case there are failing tests, the developer will then try to find the root cause
of the failing test and will then attempt to fix the bug until the tests are
passing.

4.1.4 Testing methods

There are numerous ways of testing a piece of software. The ISTQB found-
ation level syllabus [19] defines among many things, types of testing and
levels of testing.

Types of testing Types of testing are focussed on test objectives, such as
functional testing and non-functional testing. Functional testing is described
as testing what the system should do. Input for functional tests can be
documented specifications or the understanding of the tester about what
the system should do.

Another type of testing is non-functional testing, which include any type
of testing that is not testing the functionality. The ISTQB foundation level
syllabus refers to the software quality model of ISO 9126 for things to test
such as maintainability, performance and reliability.

Levels of testing The ISTQB distinguishes four levels of testing:

33

Component testing Testing the smallest components, such as modules
and classes and test tests these components in isolation to test func-
tional and non-functional aspects. Quality of component test code
can be measured and is positively correlated with some aspects of
issue handling [3].

Integration testing Testing of interfaces between components such as in-
teraction between the components and the operating system or the
database. Due to its larger scope its harder to detect the root cause
of a failing test than it is with component testing.

Systems testing Testing of the whole system. The goal is to see if require-
ments are met and if specific use cases can be performed.

Acceptance testing Testing of the software system by the customer or
other stakeholders to see if the software meets the (documented) wishes.

4.1.5 Testing in SDI

The types of testing and levels of testing also apply to software defined
infrastructures.

Types of testing The functionality of a software defined infrastructure
is the ‘what’ the infrastructure is supposed to do. Testing the functionality
of a software defined infrastructure thus means that you test if the modules,
systems or infrastructure as a whole does what it is supposed to do.

The non-functional aspects of a software defined can be the same as for a
tradition software system. Non-functional aspects can include performance,
reliability and security for example.

Levels of testing The units of a configuration management language are
typically modules responsible for the management of a single application.
An example of testing such a module is testing the conditional branches for
generalising the modules to work with different operating systemsﬂ

Integration testing in software defined infrastructure projects includes
testing modules, either in separation or in combination with other modules,
while they are are being run against actual machines. An example of integ-
ration testing could be the application of a module that installs and runs an
NTP client on a machine and then test on the machine if the NTP client is
actually running and has been conﬁguredﬂ

System and acceptance testing in a software defined infrastructure con-
text usually means testing if the applications are accessible from the outside.

"http://puppetlabs.com /blog/the-next-generation-of-puppet-module-testing/
*http://ehaselwanter.com/en/blog/2014/06 /03 /integration-testing-infrastructure-as-
code-with-chef-puppet-and-kitchenci/

34

In the case of a web application it means testing if the web application ac-
tually loads when browsing to it. The difference between system testing
and acceptance testing is that system testing is done by the tester or is
done automatically, while acceptance testing is done by stakeholders of the
infrastructure.

4.2 SIG testing quality model

The Software Improvement Group (SIG) uses their internally created testing
quality model 22| to assess the quality of the testing process of traditional
software projects. The testing quality model is confidential and is based for
most part on the foundation level syllabus of the ISTQB [19].

In the testing quality model of SIG, four quality characteristics of soft-
ware testing are defined:

Representativeness The ability of testing to reflect the usage of the soft-
ware in the production environment.

Effectiveness The ability of testing to detect the cause of a defect.
Efficiency The extent to which time and effort are are optimised for testing.

Evolvability The ability of testing to be adapted to product changes over
time.

As one can not measure these characteristics directly, the testing model
includes a set of properties which can be measured. These testing properties
are mapped to the testing quality characteristics if it can be argued that the
property is an indicator for the characteristic.

The testing properties defined by the SIG testing quality model are:

Test scope The level at which the objective and the strategy of testing are
defined.

Test validation The extent to which the requirements and the testing are
valid during the whole product life cycle.

Test design The extent to which the tests resemble the real world situation
in production.

Test environment The extent to which the test environment resembles
production and can adapt to changes.

Feedback duration The average duration of a feedback loop from the mo-
ment the testing is requested to the moment the test result is given
back to the developers.

35

Autonomy The extent to which the testing can be run independently, as-
sessed by how much man-effort the testing execution requires.

Reporting The extent to which the reporting is informative and actionable.

The mapping of the testing properties in the testing quality model is
summarised in figure where the testing quality properties are on the
horizontal axis and the testing quality characteristics are on the vertical
axis.

)‘)) %Q
2 R S (7
Q\S‘(\S‘(L 06\, QQ 6'90 qo(,%.O
S, % % 4. % %)
N % N\ % % % %, N\ %
(S 60 00 %Q ':9,. 2 (%
» O(/O/)

Representativeness X X X X X
Effectiveness X X X
Efficiency X X
Evolvability X X X

Figure 4.2: Mapping of test quality properties to test quality characteristics

The application of the testing quality model is done by (technical) con-
sultants of the software improvement group. Each property is comprised
of a set of questions the consultants have to answer. The questions can be
answered by interviewing stakeholders, reviewing the artefacts or by on-site
observation.

4.2.1 Questions about the SIG testing model and SDI

Our initial thought on the testing quality model of SIG was that such a model
would be helpful for assessing the quality of the testing process in software
defined infrastructures. We do question the generalisability of the model,
meaning that we think that the model might not generalise from traditional
software to software defined infrastructures. A lack of generalisability could
mean that the model could not accurately measure the quality of testing
practices in a software defined infrastructure context. Our idea was that in
some areas the model was fitted to cater more towards tradition software
development projects using a waterfall-like methodologies.

4.2.2 Finding limitations of the model by application

To confirm the idea that the model was not completely fitting, we applied the
testing quality model to two software defined infrastructure projects. The
first project we applied the test quality model to was the internal software

36

defined infrastructure project of SIG. The goal of this project is to move the
internal infrastructure to the cloud.

The second project we applied the model on is one from Schuberg Philis.
The goal of this software defined infrastructure project is to provide an in-
frastructure for front-end testing of web applications. The infrastructure
has to create machines with different operating system and browser config-
urations onto which Selenium can be run. Seleniumf|is a front-end testing
framework that is can automatically test the front end of a web application.
With this project, clients can ask to test their web application on a large
array of browser and operating system combinations.

The application of the model was done by interviewing one of the test-
ers of each of the projects. It should be noted that in both these projects
agile and DevOps methodologies were applied, meaning in both these cases
that developers are also responsible for the quality assurance as these roles
are not segregated in the DevOps philosophy. The interview guide for the
application of the test quality model can be found in appendix [C] The inter-
view was held in a semi-structured manner, meaning that we could diverge
from the interview guide if interesting topics had arisen.

The testing quality model has decision trees where questions are asked
in a certain sequence, where to get a positive rating for a certain questions,
all questions prior to that question must have been answered positively.
For example, if a property consists of ten questions and nine are answered
positively, but the negatively answered questions was the third. Then the
rating of that property would be three out of ten. While in a real world
scenario it would be redundant to ask questions from sequences that are
already closed, we asked them anyway as they could provide input about
the usefulness of rating a property sequentially.

Result of application

The result of the application of the testing quality model for the two projects
can be found in table The ratings are given for each of the quality
characteristics and are aggregated to a final rating by averaging the ratings
of the quality characteristics.

Project of Schuberg Philis The final rating of the project of Schuberg
Philis is 3.9, which is the aggregation of the four testing quality characteristic
ratings as shown in table

The testing quality characteristics ratings are an aggregation of the test
quality property rating as summarised in figure We explain the scores
for each of the testing properties.

3http://www.seleniumhq.org/

37

Project of
Characteristic Schuberg | SIG
Representativeness 3.2 2.8
Effectiveness 3.7 3.3
Efficiency 5.0 5.0
Evolvability 3.7 3.0
Final rating 3.9 3.5

Table 4.1: Result of application of the testing quality model on two projects

The project scored a rating of 3 on the test scope property, this is due to
a lack of prioritisation of the testing effort. According to the testing model,
a good practice would be to prioritise the testing based on how much effort.
This prioritisation is needed as it is impossible to fully test everything in a
project.

The test validation property gets a rating of 2 as there is are no formalised
change requests. The model states that it would be a good practice to
formalise change requests as that could be a trigger for changing the tests. In
this project however, an agile development methodology is used. When using
such a methodology change requesting is not a formal process as product
owners generally communicate their wishes directly with the developers.

The test design property receives the maximum rating of 5 as the know-
ledge of the project resides with the tester which is also the sole developer
of the project.

The test environment property receives a rating of 3 as compromises have
been made to the similarity of the testing environment to the production
environment. These compromises have been made to reduce costs but in
return reduce the representativeness of the testing. Ideally one would want a
carbon copy of production environment for use in testing to have a maximum
amount of representativeness.

Both the feedback and autonomy properties get a maximum rating of 5
as the testing environment is fully automated and the test cycle time is less
than an hour.

The reporting property gets a rating of 3 as there is a lack of tooling for
code coverage. Ideally one would want a code coverage as high as possible
as it is a measure for the rigour of testing.

Project of SIG The final rating of the project of SIG is 3.5, which is
the aggregation of the four testing quality characteristic ratings as shown in
table 4.1l

The testing quality characteristics ratings are an aggregation of the test
quality property rating as summarised in figure We explain the scores
for each of the testing properties.

38

The project scored a rating of 3 on the test scope property, this is due
to a lack of prioritisation of the testing effort. As with the project from
Schuberg Philis, everything was tested with equal importance as it was part
of the definition of done for all features. According to the testing model, a
good practice would be to prioritise the testing based on how much effort.
This prioritisation is needed as it is impossible to fully test everything in a
project.

The project was rated a single star due to the lack of recording the
requirements. In the software defined infrastructure project of SIG, the re-
quirements are implicitly known by the developers and testers but are not
made explicit. According to the testing quality model, gathering require-
ments is a good practice as it allows linking requirements to functional tests.

The test design property was rated with the maximum rating of 5 stars
as the infrastructure tested is also the infrastructure the testers use in their
day-to-day activities.

The test environment property is rated with 3 stars as the testing en-
vironment is not an exact copy of the production environment. The team
has decided that the testing environment consists of only one server of teach
type of role they have defined. It is considered a good practice to have the
testing environment imitate the production environment.

Both the feedback and autonomy properties get a maximum rating of 5
as the testing environment is fully automated and the test cycle time is less
than an hour.

The reporting property is rated with 2 stars due to a lack of requirement
coverage. As requirements are not gathered requirement coverage can not
be measured. It is considered a good practice to test each requirement as a
test of functional completeness.

Limitations found by application

We feel that the ratings of the Schuberg Philis and SIG projects are too
near to each other. The difference in total rating is just 0.4. We think that
this difference is too low because the project from Schuberg received a too
low score. We feel that is legitimate when applying the DevOps philosophy
that there is a definition of done stating that every feature should be tested
before going into production and that no prioritisation by testing effort
has to be made. Change requests are not really a thing when applying an
agile methodology as changes are encouraged by having a product owner
close to the development team, inserting changes with every iteration of
the development cycle. A fix of these issues should increase the rating of
Schuberg while the rating of SIG should stay roughly the same as the major
difference between the two projects is the lack of explicit requirements within
the project of SIG.

We feel that the testing model is catered a bit towards the waterfall

39

development methodology and not really towards agile. This is evident in
the wording of certain questions, such as asking for formalised requirements
or formalising the change requests.

At one point we found that the sequence of questions is off, as a question
about the time it takes to find the root cause of a problem is dependent
of a question about coverage in the model. Both projects have answered
negatively to the coverage questions while they would have had a positive
outcome on the time it takes the root cause.

The thresholds on questions relating to autonomy and feedback time are
too narrow. In a software defined infrastructure context, where testing is
quite often automated, a test cycle time of two weeks is unheard in of our
opinion. As automation of testing is spread out in this sort of environment,
scoring high on these properties would be too easy.

4.2.3 Relevance of themes of the test quality model

Another approach for finding limitations of the current test quality model is
by interviewing experts on software defined infrastructures. We wanted to
know which themes covered by the current test quality model were relevant
in the context of software defined infrastructures. To find out we provided
the experts with a list of themes covered by the current model and asked
them to rate each theme based on its relevance. The scale of rating of the
themes was based on a one-to-five Likert scale where one stands for a very
low degree of relevance and five stands for a very high degree of relevance.
The questionnaire can be found in appendix

Figure displays the result of the themes questionnaire. The chart is
sorted based on score, from a high relevance score to a low relevance score.

These results show that the experts feel that replicating the production
environment in a test environment is very important and that tests should
be automated where possible. This is likely due to the nature of software
defined infrastructures projects being infrastructure automation projects.
When the production environment is automated, it should not be too hard
to replicate that environment and run tests against it. Automation is very
important due to the agile nature of these projects where changes in code
are tested often in short iterations.

The results also show that the experts feel that the planning and scoping
of testing is not very important. Their opinion is that everything in a
software defined infrastructure project should be tested and that therefore
no planning is required. Another thing the experts did not find important
was the handling of change requests and traceability of tests to requirements.
All the current requirements should be tested anyway and a formal change
request policy adds redundancy, as in an agile type project requirements tend
to change a lot anyway. Traceability of tests to requirements is not important
as there should be more tests than just those for the requirements to cover

40

Replication of production environment 5.0
Test autonomy 5.0
Functional testing 4.8
Requirement risk assessment 4.8
Technical testing 4.5

Test cycle length 4.5
Requirement coverage 4.5
Knowledge of software functionality ‘ 4.0
Requirements gathering 3.8

Test effort 3.8

Test report content 3.8

Code coverage 3.5

Knowledge of software usage |3.5

Test scope 3.5

Traceability 3.0

Change req. handling 2.8

Test plan ‘ 2.5

T T T 1

1 2 3 4 5
Average relevance of test quality model theme

Figure 4.3: Result of questionnaire measuring the relevance of the themes

the unhappy paths, which are usually not documented in the requirements.

4.2.4 Acceptance of the test quality model

As a last step, a questionnaire to measure the acceptance of the currently
quality model was given to the experts.. With the questionnaire we wanted
to find out if the method of conduction of the current test quality model is
accepted by the experts. The questionnaire is loosely based on [20] in which
acceptance of methodologies is among developers is tested. Below is a list of
questions together with the acceptance criteria the questions are measuring.
The answer possibilities are based on a Likert scale. We provided five check
boxes ranging from a very low degree to a very high degree. All the questions
had a text box where the experts could provide input on why they gave the
answer that they did. The questionnaire can be found in appendix

Usefulness To what degree do you think this model is useful when meas-
uring the testing quality of an SDI project?

Easy of use To what degree do you think using this model would require
much effort?

41

Compatibility To what degree do you think this model is consistent with
testing practices in SDI environments?

Volunatariness If you were to assess the testing quality of an SDI, to what
degree do you think you would use this model in the future?

Measurability To what degree do you think this model is able to measure
the testing quality of an SDI project?

The last question asked in the interview was an open questions asking
if the expert feels that there are aspects missing about testing in an SDI
project in this model.

Figure [£.4) shows the result of the questionnaire. The chart shows the
average result of each question and is sorted from high score to low. It
should be noted that the score for ease of use is inverted as the question was
asked in a negative manner.

Ease of use |3.75
Voluntariness 135
Compatibility 3.0
Measurability 3.0
Usefulness 3.0
1 2 3 4 5

Averages score of per acceptance criteria

Figure 4.4: Result of questionnaire measuring the acceptance criteria

These results indicate that the experts think that the model itself is
easy to use and that they would use a model that is shaped like the current
test quality model in a software defined infrastructure context. The slightly
lower score on compatibility, measurability and usefulness indicate that the
experts are not convinced that the test quality model in its current shape
is fit to be used as model for measuring the testing quality in a software
defined infrastructure.

4.2.5 Issues of the current model

In this section we summarise the issues found in the current test model.
These issues are either a direct result from the application of the model or
the interviews. Another source of issues is the insight we gained while doing
the application and interviews, and during the preparation and rounding up
of both. We split the issues up in two categories. One category where we
summarise issues we found in the model that are not specific to software
defined infrastructures. And another category where we summarise issues

42

related to the application of the model in a software defined infrastructure
context. The separation of these two issues help at identifying general im-
provement and improvement for the model in relation to software defined
infrastructures.

General issues with the model

Mapping of properties with characteristics In the current model
there is a mapping between the report property and the representative-
ness of testing quality characteristic. During a discussion with one of the
experts we came to the conclusion that the mapping does not make sense as
the report of a test has no relation with the representativeness of that test.
This wrong mapping gave us the impression that other mappings, or lack of
mappings might be wrong as well.

Wording of concepts We feel that some concepts are incorrectly worded
or are addressed with vague terms. An example of that is the testing prop-
erty ‘test design’ which includes does not includes any questions relating to
the design of the tests but rather relating to things that might influence the
test design.

Mapping of questions inside properties To measure the reporting
property, the model asks questions about coverage of tests. In a discussion
with one of the experts we found that this was odd. We understand that
coverage might be measured and reported, but is to us an issues related to
test design rather than the test report.

Catered towards waterfall methodology The current test quality model
speaks of a formalised requirements and change request processes. We feel
that in projects using a more agile approach, where requirements gathering
is a less formal process, tests can still be based on the functionality that is
described explicit but less formal requirements.

Traceability from test to requirement In a discussion with one of
the experts it was brought up that you should have more tests than solely
specified in the requirements. Such is the case for unhappy-path testing
where you test edge cases typically not described by the requirements. Even
though the test suite is effective in this case, the score would be lower as
not every test would be linked to a requirement.

Unhappy-path testing Some of the experts would like to have a sense
of coverage of unhappy-path testing to know when they have tested enough

43

cases. The model describes unhappy-happy path testing rigour as an implic-
ation of the technical and function knowledge of the software of the testers,
yet does not ask specifically whether there are enough unhappy-path tests.
We feel that there should be a question or a set of questions specifically
addressing unhappy-path testing as we think it unhappy-path testing is an
absolute necessity. This is certainly the case in a software defined infrastruc-
ture project, where you would have to test for potential security issues, such
as for unintended users being enabled in the operating system.

Hard to achieve thresholds At one point the model asks if the require-
ments coverage is 100%. One of the experts pointed out that this is too
steep and that the value should be lowered.

Issues with the model in relation to SDI

Wide threshold ranges In line with the model being catered towards
the waterfall methodology, we feel that the ranges for the test cycle time
are set too wide. A project can still earn more than a single star in this
property if the test cycle takes less than two weeks. We feel that two weeks
is way too much and that therefore it is too easy to get a good score on this
criteria. The same issues goes for the level of automation which is measured
in man-hours. A project can earn more than a single point here if there
are less than ten man-hours involved in running a single test cycle. We feel
that with the possibility of fully automating the test suite, less than ten
man-hours is too easy to reach.

Testing of different languages One of the experts pointed out that
software defined infrastructure projects usually consist of more than one
technology. The code to provision the servers is usually written in another
language than the code to launch and shut down virtual machines. The
expert said that developers should be wary to not just test code of the main
language but also the smaller pieces written in other languages.

Convergence of configuration Configuration management tools try to
bring a server into a certain state. One of the issues the SDI team of SIG
ran into was that servers sometimes were not able to reach the desired con-
figuration when the they were installed from the ground up, but could reach
the desired state if they already were in a previously desired state. In order
to test if an infrastructure is able to configure itself after a complete restart,
one would have to also test if the servers are able to configure themselves
from the ground up.

Lack of emphasis on automation All the experts have pointed out that
automation of testing is really important as it allows to test more efficiently,

44

allowing for more development iterations. Other than efficiency automated
tests are also more effective as they are less prone to human-error.

Co-existence of test and production Another issues that the SDI-
team of SIG ran into was that certain applications would probe the network
themselves to find out which server or client to connect to. In a concrete
example, this has lead to the server responsible for creating back-ups of data
in the production environment, to contact machines that were residing in
the testing environment. Ideally, the test environment should be designed so
that this can not happen. Other than the design of the test environment, one
could also write tests to detect cross-environment connection possibilities.

4.3 New testing quality model

In this section we describe the testing quality model made for software
defined infrastructures|[21]. The testing quality model for software defined
infrastructures is based on the confidential SIG testing quality model[22].

4.3.1 Testing quality characteristics

We see no reason to adjust the quality characteristics of testing. These qual-
ity characteristics are based on the ISTQB foundation level syllabus and we
feel that diverging from the syllabus means would diverge from an industry
standard. One minor change that we would have wanted to do is renam-
ing the evolvability characteristics into ‘adaptability’ Evolvability can be
defined as: “changes in a systems$ environment (domain), requirements (ex-
perience) and implementation technologies (process)” [10]. We feel though
that the term evolvability implies natural change and not changes made by
developers. We would have preferred the term adaptability, which is defined
by the Oxford Dictionary as: “Able to be modified for a new use or pur-
pose”ﬁ which fits the context of changes made to tests by developers better.
Because evolvability is already a term used by the industry, we refrain from
implementing the word adaptability.

4.3.2 Testing quality properties
Renamed test design

Renamed the test design property to ‘Software knowledge’. The description
of test design was: “The extent to which the tests resemble the real world
situation in production is estimated and for the evaluation of this property”.
What this meant in practice is that the decision tree inside the property was
asking questions related to the knowledge of the testers about the software

“http://www.oxforddictionaries.com/definition/english /adaptable

45

so that they can use that knowledge as input to design effective tests. The
questions therefore are representing if some of the pre-conditions of a good
test design are being met but not if the test design itself is of a high quality.
We do agree with the SIG testing quality model that a weak knowledge
about the software impedes the representativeness, so the property should
remain. The description of the software knowledge has been changed to:
“The extent to which the testers have enough knowledge about the software
product, allowing them to design demanding tests”. With these changes we
aim to improve the overall correctness of the definitions of the testing quality
model, which increases the accuracy of the mappings of the mappings from
testing quality properties to testing quality characteristics.

New property: test design

As we renamed test design to software knowledge, we felt that there is now
a category missing measuring the quality of the design of the tests. This
property should measure to which extent the test suite covers artefacts such
as requirements and code and if there is enough rigour in testing unhappy
paths. The description of the property is: “The extent to which the test
suite covers both the artefacts of the software product, as well as the desired
and undesired functionality of the software system”. With this new property
resolve the issue that there is no notion of unhappy path testing in the SIG
testing quality model. Coverage of requirements and code were already
present in the model but were placed inside other properties causing those
properties to have odd property to characteristics mappings. The details of
the mappings is explained in subsection The details of the decision
tree is explained in subsection [4.3.5

4.3.3 Mappings of properties to characteristics

Because of all the changes we have made and because we disagreed with some
of the original mappings we decided to remap the testing quality properties
to the testing quality characteristics. A summary of the mappings is depicted

in figure

Mapping per property

We provide, for each of the testing quality properties that we have now
defined, the argumentation for the mappings to the testing quality charac-
teristics. Good mappings of the testing quality properties to testing quality
characteristics improves the accuracy of the result as the testing quality
characteristics are being represented better.

Test plan Test plan influences all four quality characteristics as it is the
fundament of the testing process. The representativeness is affected by

46

[:] ®
8, S, 2
S, 'y L/ 8,
/:’\s- & % A 6""0 {70 4 %,
“® % °l% Y ‘Fo () %, %
» N\ % B0 N\ 7, N N\ %, N\ %, N\
K4 © s,)’ % X o, °

Representativenesd X X X X X
Effectiveness X X X X X X
Efficiency X X X
Evolvability X X X X X

Figure 4.5: New Mappings of test quality properties to test quality charac-
teristics

the scoping of the testing. If the scope is smaller than the whole of the
project, then representativeness is impeded. Effectiveness and efficiency are
affected by the determination of the testing approach. Choices made in
the testing approach could include tooling and the rigour of tests, including
coverages. Adaptability is affected by determination of how to deal with
changing requirements.

Test validation Test validation influences the representatives and adapt-
ability characteristics. Representatives is affected by having the require-
ments explicit. Explicit requirements can act as input for the creation of
functional requirements. Adaptability is affected as requirements are bound
to change, meaning that functional tests should be adapted as well.

Software knowledge The software knowledge property influences the
representativeness, effectiveness and adaptability characteristics. A good
knowledge of the software system implies that testers able to write tests
that represent the use of the system. Knowledge also affects that testers are
able to determine edge cases better causing the tests to be more effective
at finding bugs. Adaptability is affected as testers are likely to understand
changes in the functional requirements better, allowing them to change the
existing tests more effectively.

Test environment The software knowledge property influences the rep-
resentativeness, effectiveness and adaptability characteristics. Replication
of the production environment to the test environment makes the testing
process more representative. The effectiveness of the tests is increased as
the testing suite will be more likely to find errors caused by the software
product and not by the confounding factors of the differences in the test
environment. The testing environment should allow being adapted when
requirements or changes in the production environment happen.

47

Test feedback The test feedback time property affects the efficiency and
evolvability characteristics. Shorter test feedback time increases the effi-
ciency as less time resources are consumed. Evolvability is affected as short
feedback time increases the feedback testers receive allowing them to change
tests when earlier tests were found to be erroneous.

Test automation The test automation property influences the effective-
ness and efficiency characteristics of testing. Effectiveness of the tests is
increased as a higher level of automation leaves less room for human error.
Efficiency is affected as automation of tests frees up developers’ time.

Reporting The reporting property influences the effectiveness quality char-
acteristic of testing. Effectiveness is affected a good quality of test reporting
increases the ability of developers to find the root cause of a failing test.

Test design The test design property influences the representativeness
and effectiveness characteristics of testing. A good test design covers most,
if not all of the functional requirements, making the testing suite represent-
ative. A good test design also covers most, if not all of the code, making
the tests more able to detect faults.

4.3.4 Aggregation of ratings

We changed the aggregation of testing properties. The new system does
not give out stars for the testing properties, but still gives out stars for the
testing quality characteristics. Reason for the is that we felt that giving out
a star rating for the properties creates a tendency where decision trees are
made in such a way that they can provide a one, two, three, four or five
star rating. This makes it hard to make decision tree that do not have five
questions or a multiple of five questions.

Each decision tree can now get a score from in the range of [0,1]. Zero
means that all decision tree ended right away due to negative answers in
the first question. One means that all decision tree have been successfully
traversed, but having all questions positively answered. Fach decision gives
a fraction, such as 1/3. The fractions given by each decision tree are then
added up to give a final score for that property.

Then, like in the already existing testing quality model, the rating for
each property are aggregated to the quality characteristic by averaging them.
The rating of a property has a minimum of one and a maximum of five. To
achieve this, the following formula is used:

Ratlngcharacteristic =1+ 4(rat1ngproperties)

48

The final testing quality rating is then the average of the ratings of all
the characteristics. To translate the score into a SIG star rating, the rating
is either rounded towards the nearest round number or to the nearest half
representing the number of stars to be given.

4.3.5 Decision trees inside the properties

In this section we explain the changes we made to the to the decision trees
of each testing quality property. The decision trees can be found in the new
testing quality evaluation model [21].

Test plan The test plan property was named test scope in the original
testing quality model. The goal of this property is to find out if there is a
test plan that contains the test approach, scope and prioritisation of test-
ing. A change in the decision tree is the removal of the risk assessment
for requirements questions. We feel that the risk assessment of the require-
ments is part of the validation of test validation property and how that risk
assessment is then being used should be part of the test plan.

Test validation The goal of the test validation property is to assess if re-
quirements are explicitly known. Wording of the questions has been changes
so that the model does not require formalised requirements, which does not
fit the agile development methodology. Formalising of change requests has
been removed to generalise methodologies as well, in agile environments
there usually is no change request process as changes to requirements can
be made at any time without starting a process. Requirements traceability
has been removed as we feel that not every test has to have a requirement.
There can be unhappy-path tests testing edge cases for which no requirement
has been made, but are still included by an experienced tester to discover
common mistakes.

Software knowledge The software knowledge property is what used to
be the test design property in the original testing quality model. The only
change made to this tree is that the question relating to functional testing
has been removed as that was the only question having to do with test design.
The rest of tree remains the same except for some changes of wording.

Test environment The test environment tree has had two changes. The
splits up the questions about the level of replication of the test environment
and adaptability of the test environment. We feel that these questions are
independent of each other so they are now two different paths within the
decision tree. Determining the quality of replication of the environment has
been worded more loosely. In the original test quality model the replication

49

of the test environment was had specific wording such as replication of the
topology. We generalised this allowing the person conducting the model to
decide the level of replication. This allows us to account for differences in
the test environment that are deliberate.

Feedback time We only changed the thresholds for the feedback time
property. These changes are made as the test cycle time and the feedback
delivery thresholds were too easy. In a time where testing can be almost
fully automated we feel that we can make these thresholds more strict.

Test automation As with the feedback time property, we reduced to
thresholds of the test automation property. We feel that in a time where
tests can be fully automated we can make the threshold more strict.

Reporting The test reporting property contained questions referring to
code coverage and requirement coverage. We feel that these questions are
related to test design, as they are measures of how effectiveness of the test
suite. Other than removal of the coverage questions and some changes in
the wording, the reporting property has not changed.

Test design Test design is a new property. It tries to determine the effect-
iveness and the representativeness of the tests. Measures for code coverage
and for the amount of unhappy-path testing are measures for the effective-
ness of the tests, as they determine the amount of the software artefacts that
are being covered by the tests. Requirement coverage measures the repres-
entativeness of the tests, as in the ideal case, every requirement should be
tested before a piece of software is shipped.

4.3.6 Application of the new model

Project of
Characteristic Schuberg | SIG
Representativeness 3.8 2.7
Effectiveness 4.2 3.8
Efficiency 4.6 4.6
Evolvability 4.0 3.5
Final rating 4.1 3.6

Table 4.2: Result of application of the new testing quality model on two
projects

50

We performed a test run based on the data gathered in the application of
the original testing quality model as described in section The results
of applying the data to the new test model can be found in table

As the data we gathered for application of the original testing quality
model is not sufficient to answer all the questions in the new model, we
made assumptions for the questions for which answers were missing. We
assumed that the project from Schuberg has sufficient amount of unhappy
path and we assumed that the project of SIG has an insufficient amount of
unhappy path testing. When interviewing the experts on the relevance of
the original testing quality model, described in section one of the SIG
interviewees expressed that he is not yet happy with the amount of unhappy
path testing. The interviewee from Shuberg Philis expressed being happy
with his whole testing approach.

Difference with original TQM

Project of
Characteristic Schuberg | SIG
Representativeness +0.6 -0.1
Effectiveness +0.5 +0.5
Efficiency -0.4 -0.4
Evolvability +0.3 +0.5
Final rating +0.2 +0.1

Table 4.3: Differences of the old TQM compared to the new TQM

Table shows the differences in the results between the application of
the original testing quality model versus the new testing quality model. For
each cell the difference is calculated by subtracting the result of the original
model from the result of the new model.

The table shows that the ratings of each of the projects has increased
and that the difference between the project has also increased. This is in
line with our thought that the ratings were too low and that the difference
between the project was too narrow.

The score for representativeness has increased for the Schuberg project
while it has decreased for the SIG project. This result can be accounted to
the new test design property in which the Schuberg project scores higher
than the average representativeness of the original model, while the SIG pro-
ject scores lower than the average representativeness of the original model.

The effectiveness rating increases for both project in the new model.
This increase in score can be accounted to the new mappings as the test
automation and test environment properties are now mapped to the effect-
iveness characteristics. Both projects get a high rating for these properties,

o1

which then propagated to the effectiveness characteristic.

The both projects get a lower rating on efficiency which can be accounted
to the new mapping of the test design property to the efficiency character-
istic. Given that they had a perfect rating in the original model and that
both projects received a sub-perfect rating for test design, thy both show a
minor decrease.

Both projects show an increase in evolvability when applied to the new
model. The increase for both projects is because of the inclusion of more
quality properties in the evolvability characteristic. Both projects have a
high rating for feedback duration which now influences evolvability. The
increase is steeper for the SIG project due as the relative weight of the
test validation property to the evolvability characteristic in which the SIG
project was rated lower than the Schuberg project.

The results are a step in the right direction, though we think that the
difference of the final ratings for the project should be a little further apart.
We believe that the lack of requirements gathering of the SIG project is
harmful for the functional testing of the infrastructure, which we believe is
important. An improvement to the new model could be adding weights to
either the properties or the characteristics.

4.4 Conclusion

During the interviews for gathering important quality aspects for software
defined infrastructures as described in chapter 3], we found out that testing
is an important quality aspect of software defined infrastructures.

In this chapter we created a model for measuring the quality of testing
of software defined infrastructures. To come to a model for measuring soft-
ware defined infrastructures, we applied an already existing testing quality
model created by the Software Improvement Group to projects. We also in-
terviewed experts on software defined, about their acceptance of the existing
testing quality model, and about which themes they feel are relevant and
irrelevant to testing in software defined infrastructures. We used the res-
ults of the application of the existing model and the interviews as input for
changing the existing model into one that is more compatible with software
defined infrastructure practices.

52

Chapter 5

Conclusion

In this chapter we conclude the thesis. We provide an overview of the
results and contributions of the thesis and we end by providing pointers
for future work opportunities in the field of quality evaluation of software
defined infrastructures.

5.1 Results

This section gives an overview of the answers to the research questions and
of the contributions of this thesis.

5.1.1 Answers to research questions

RQ1: How can we define quality of software defined infrastruc-
tures?

The first goal of this thesis was to create a quality model for software defined
infrastructures. To create a quality model we had to figure how to identify
quality aspects and how to create a model from the identified quality aspects.

We reviewed literature on the creation of quality models in the field
of software engineering. Prior studies on software quality identified qual-
ity aspects either trough the study of literature or by consensus of prac-
titioners. We applied a method for identification similar to the consensus
approach. We interviewed practitioners of software defined infrastructures
from Schuberg Philis and the Software Improvement Group to assess what
these practitioners think is important when assessing the quality of software
defined infrastructures. The outcome of these interviews can be found in
section The outcome of the interviews suggests that among other
important quality characteristics, testing is a very important quality char-
acteristic.

The outcome of the interview was used to construct a quality model for
software defined infrastructures. This quality model can be found in section

93

The model decomposes quality of software defined infrastructures into
software quality, deployment process quality and infrastructure quality. For
each of these decompositions quality characteristics have been defined.

RQ2: How can we evaluate the testing quality of software defined
infrastructures?

The second goal of this thesis was to create a model for the evaluation of
testing quality for software defined infrastructures. Testing was found to be
an important quality aspect of software defined infrastructures in the first
part of this thesis.

The Software Improvement Group has a quality model for the evaluation
of testing for traditional software development projects [22]. We applied the
testing quality model to two software defined infrastructures projects. The
first project was from Schuberg Philis, a company that creates computer
infrastructures for external clients. The second project was the internal
software defined infrastructure from the Software Improvement Group and
is used to deliver applications to its lab.

The results from applying the SIG testing quality evaluation model can
be found in section The results were an indication that the model
had a limited ability to measure the quality of testing of software defined
infrastructures.

To create a model that was more suited for measuring the quality of
testing of software defined infrastructures, we decided to ask practitioners
what themes of the SIG testing quality model they thought were relevant,
and which they thought were irrelevant. The outcome of the interviews can
be found in section The results indicate that automated testing and
replication of the testing environment are the most relevant themes, while
planning of tests and the handling of change requests were considered the
least relevant themes.

Next to identification of relevant themes we also looked at the voluntari-
ness of adoption of the SIG testing quality model. We asked the practitioners
questions related to the ease of use of the SIG testing quality model and its
ability to measure testing quality of software defined infrastructures. The
outcome of this interview can be found in section The outcome sug-
gests that the practitioners think that the SIG testing quality model is easy
to use and that they would use it for software defined infrastructures if it
was compatible with the current practices in software defined infrastructure
development.

The outcome of the interviews on the testing quality evaluation model
provided was then used as input for the creation of a model more compatible
with SDI practices. The new testing quality evaluation model [21] is less
strict on metrics evaluating requirements, but is more strict on processes
which can be automated. This is in line with DevOps practices which are

54

applied in software defined infrastructure projects. An overview of changes
made can be found in section [£.3

The new testing quality evaluation model was validated by reapplying
the data gathered for the application of the original testing quality evalu-
ation model. The results of the validation can be found in section [£.3.6 The
validation indicates that the new testing quality evaluation model is more
compatible with existing software defined infrastructure practices.

5.1.2 Contributions

The goals of this study was to create a quality model for software defined
infrastructures and to create a quality model for the evaluation of testing
quality of software defined infrastructures. The contributions of this thesis
are:

e The identification of quality aspects of software defined infrastructures
as seen by practitioners.

e The definition of a quality model for software defined infrastructures.
This quality model can be used as framework for the creation of metrics
or evaluations models to measure the quality of software, the quality of
the deployment process and the quality of the resulting infrastructure.
The combination of these parts represent the quality of the overall
software defined infrastructure.

e The analysis of the SIG testing quality evaluation model. This analysis
consists of determination of the relevance of the themes covered by the
model in relation to software defined infrastructures and consists of the
determination of the degree of adoption of the model on the context
of software defined infrastructures.

e The definition of a testing quality evaluation model for software defined
infrastructures. This model can be used to determine the quality of
the testing process of software defined infrastructure projects.

e The validation of the testing quality evaluation model for software
defined infrastructures by reapplication of project data gathered in
earlier stages of the study to the newly created model. The validation
shows that when applying the new testing quality evaluation model,
results are closer to what we think is the actual testing quality of the
projects.

We hope that these contributions will act as a foundation for the research
on quality assessment of software defined infrastructures. We feel that they
can help in providing an objective judgement on what quality in software
defined infrastructures are and we hope that it will contribute to maturing
the overall field of software defined infrastructure creation.

95

5.2 Future work

We provide some pointers for possible future work extending this study and
to other topics in the field of software defined infrastructures.

5.2.1 Extending this study

We identified several ways to extend the study done in this thesis:

Enlarging the data sets

The gathering of data for this thesis was limited to practitioners and pro-
jects of only two companies, namely The Software Improvement Group and
Schuberg Philis. This limitation could mean that the data gathered was
influenced by the cultures of both companies and might impact the gener-
alisability of the results. Enlarging the data set, by stretching it over more
companies and more practitioners, could reduce the impact of company cul-
ture in the results.

Refinement of model creation

The process of creating a quality model includes the identification of quality
aspects for the process or artefact for which the quality model is created.
When quality aspects are identified they need to be transformed into a qual-
ity model by a process of eliminating and grouping quality aspects. Prior
research shows that these identification and transformation steps are reliant
on the discretion of the creator of the model or are based on consensus.
This causes the identification and transformation steps to be influenced by
the perceptions of the creators which could impact the accuracy and gener-
alisability of the resulting model. Future research that makes use of more
objective and quantifiable approaches could eliminate the influences of the
perception of the creators of the model and thus increase the generalisability.

Validation of the models

The testing quality evaluation model resulting from this study has been val-
idated using data gathered for the application of the SIG testing quality
model. Application of the new model using existing data required assump-
tions to be made which results in some uncertainty in the validation of the
newly created models. Research validating the model could include prob-
ing practitioners for their opinion on the model and applying the models
on more project to see if the ratings yielded by the model are approaching
expected ratings.

o6

Calibration of the models

The models resulting from this study assume that the parts of the model
carry an equal weight in the quality of artefact or process that is to be
evaluated. It is currently unknown which parts of the models carry more
weight in the overall quality of software defined infrastructures and testing
of software defined infrastructures. Calibration of the model, for example
by applying the model to more projects, could help in either creating a
normative approach for rating, meaning that the resulting rating is relative
to the ratings of other projects.

5.2.2 Research on software defined infrastructures

As discussed in section [3.1.1] the field of software defined infrastructures is
relatively new and has yet to be picked up by the academic community as a
field of research. We identified the following interesting subjects related to
software defined infrastructures that could be explored:

Effectiveness of software defined infrastructures

While software defined infrastructures are being used, there is, to our know-
ledge, only anecdotal evidence that application of software defined infra-
structures leads to more effective IT infrastructure management. We see
opportunities in comparing software defined infrastructure to other meth-
ods of infrastructure management. An example would be to investigate what
size an infrastructure should be before automation using software defined
infrastructures becomes more effective than traditional approaches.

Applicability of software engineering practices

Because the body of scientific knowledge on software defined infrastructures
is small, one could look at fields that have an overlap with the field of
software defined infrastructures to look for best practices. An example of
such a field is the field of software engineering. Because of this overlap one
could look at the extensive knowledge that exists on software engineering and
test the applicability of that knowledge to software defined infrastructures.

o7

Bibliography

Rafa E Al-Qutaish. “Quality models in software engineering literature:
an analytical and comparative study”. In: Journal of American Science
6.3 (2010), pp. 166-175.

Michael Armbrust et al. “A view of cloud computing”. In: Commu-
nications of the ACM 53.4 (2010), pp. 50-58.

D. Athanasiou et al. “Test Code Quality and Its Relation to Issue
Handling Performance”. In: Software Engineering, IEEE Transactions
on PP.99 (2014), pp. 1-1. 18sN: 0098-5589. DOI: 10.1109/TSE.2014.
2342227.

Antonia Bertolino. “Software Testing Research: Achievements, Chal-
lenges, Dreams”. In: 2007 Future of Software Engineering. FOSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 85—-103.
ISBN: 0-7695-2829-5. DOI: [10.1109/F0SE. 2007 .25. URL: http://dx.
doi.org/10.1109/FOSE. 2007 .25,

Barry W Boehm, John R Brown and Myron Lipow. “Quantitative
evaluation of software quality”. In: Proceedings of the 2nd interna-
tional conference on Software engineering. IEEE Computer Society
Press. 1976, pp. 592-605.

Lionel Briand. “Embracing the engineering side of software engineer-
ing”. In: Software, IEEE 29.4 (2012), pp. 96-96.

Mark Burgess. “Configurable immunity for evolving human—computer
systems”. In: Science of Computer Programming 51.3 (2004), pp. 197—
213.

Mark Burgess. “On the theory of system administration”. In: Science
of Computer Programming 49.1 (2003), pp. 1-46.

Ben Cherian. What Is the Software Defined Data Center and Why
Is It Important? (Retrieved on 23-04-2014). 2013. URL: http://
allthingsd . com/20130613/what - is - the - software - defined -
data-center-and-why-is-it-important/.

Selim Ciraci and Pim Broek. “Evolvability as a quality attribute of
software architectures”. In: (2006).

o8

http://dx.doi.org/10.1109/TSE.2014.2342227
http://dx.doi.org/10.1109/TSE.2014.2342227
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1109/FOSE.2007.25
http://allthingsd.com/20130613/what-is-the-software-defined-data-center-and-why-is-it-important/
http://allthingsd.com/20130613/what-is-the-software-defined-data-center-and-why-is-it-important/
http://allthingsd.com/20130613/what-is-the-software-defined-data-center-and-why-is-it-important/

[21]

22]

Edsger Wybe Dijkstra. Notes on structured programming. Technolo-
gical University Eindhoven Netherlands, 1970.

Open Network Foundation. Software-Defined Networking: The New
Norm for Networks. (Retrieved on 23-04-2014). 2012. URL: https :
/ /www . opennetworking . org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf.

Ilja Heitlager, Tobias Kuipers and Joost Visser. “A practical model
for measuring maintainability”. In: Quality of Information and Com-
munications Technology, 2007. QUATIC 2007. 6th International Con-
ference on the. IEEE. 2007, pp. 30-39.

Waldemar Hummer et al. “Testing idempotence for infrastructure as
code”. In: Middleware 2013. Springer, 2013, pp. 368-388.

Coraid Inc. The Fundamentals of Software-Defined Storage: The Fun-
damentals of Software-Defined Storage. (Retrieved on 23-04-2014). 2013.
URL: http://san. coraid. com/rs/coraid/images/SB-Coraid_
SoftwareDefinedStorage.pdf.

ISO 25010 - Systems and software engineer - Systems and software
Quality Requirements and FEvaluation (SQuaRE) - System and soft-
ware quality models. Tech. rep. International Organisation for Stand-
ardisation (ISO), 2011.

Jim A McCall, Paul K Richards and Gene F Walters. Factors in soft-
ware quality. volume i. concepts and definitions of software quality.
Tech. rep. DTIC Document, 1977.

Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. Tech. rep. National Institute of Standards and Technology,
2011. URL: http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145. pdf.

Thomas Mller et al. Certified Tester Foundation Level Syllabus. Tech.
rep. International Software Testing Qualifications Board, 2011. URL:
http://www.istgb.org/downloads/finish/16/15.htmll

Cynthia K. Riemenschneider, Bill C. Hardgrave and Fred D. Davis.
“Explaining software developer acceptance of methodologies: a com-

parison of five theoretical models”. In: Software Engineering, IEEE
Transactions on 28.12 (2002), pp. 1135-1145.

SIG Testing Quality Model, SDI Version 0.1. Tech. rep. Software Im-
provement Group B.V.; 2014.

SIG Testing Quality Model, Version 1.0. Tech. rep. Software Improve-
ment Group B.V., 2013.

99

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://san.coraid.com/rs/coraid/images/SB-Coraid_SoftwareDefinedStorage.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.istqb.org/downloads/finish/16/15.html

Appendix A

Interviews SDI quality
characteristics

A.1 Interview #1

A.1.1 Quality aspects of internal project

Testability is important. With testability I mean the existence of unit tests
and integration tests. Integration testing means allowing the Puppet to
provision a node and to let the integration testing suite run commands on
the server to assert that the node is functioning. An example of such a test
could be asserting that a node provisioned to be a web server that it actually
serves a certain web page when requested.

There is no 1-to-1 mapping between Puppet code and integration test
code. (Meaning that you integration tests do not fully cover the code).

The provisioning of a server is very fragile due to the many external
dependencies, such the operating system of the machine that is to be pro-
visioned. Software defined infrastructures is starting to have value when
there is an automated test process validating the code. Testing is the most
important aspect of software defined infrastructures as it is the only way
you can check everything that is happening.

An issue we had with the internal project was that of a backup server
that, while being set up in the testing environment was also backing up
clients in the production environment. This resulted in the notion of co-
existence. Which means in this case to take measures to ensure that nodes
are not interfering with each other. This issue could be fixed by configuring
the backup-application to not contact clients outside of its environment, or
by enforcing that nodes are not able to reach each other beyond environment
that they are in by creating rules in the network configuration.

The testing process of that project is by re-building the testing environ-
ment on a daily basis. Each morning at six o’clock the testing environment

60

gets built up from scratch to see if the code results in the desired infrastruc-
ture.

A.1.2 Quality aspects as an adviser

I have no experience with larger code bases.

One aspect that is important is that servers only provide is single service.
Service in this case could be a something that consists of more than one
application. For example a web application could be the combination of a
web server and a database server. This in contrast to the hardware-centric
approach of filling up a machine until all its resources are being used.

Usage of 3" party libraries as-is is important in software defined infra-
structure projects. This means not making changes to the library but either
forking it as a separate project for maintaining it or by writing patches to
give back to the open source project. The team itself has been sloppy on
this in the past, adopting a library and therefore sitting with a large chunk
of code in their own code base which they do not use themselves. These
pieces of unused code provide support for operating systems they do not use
within the company. For this they are currently discussing if they are going
to remove all the unused code or if they are going to provide patches to the
open source project of that library.

The libraries found on the internet (on Puppet Forge) generally do not
carry very restrictive licences. Albeit that there is not a lot of jurisprudence
on open source licenses, the company is not reluctant on using these libraries.

The development process of software defined infrastructures is more
primitive than that of regular software development. This is due to the
available tooling is less mature than compared to more traditional program-
ming languages such as Java. The choice of tooling is important. This is
due to the level of hobbyism involved in the community which causes many
tools to be immature.

There are too many low level things programming have to keep in mind
while developing software defined infrastructures such as creating configura-
tion templates for different applications. The prediction is that in the future
developers of applications will also provide deployment libraries so that de-
ployment of those applications will be less operating system dependant.

The usage of an automated test and building process is important. This
is in line with the continuous delivery approach, where building is done
automatically on a daily basis or per-commit basis. With this the effect of
the code becomes visible.

61

A.2 Interview #2

A.2.1 Quality aspects of internal project

Just like with other software projects it is important to follow the best
practices.

Tooling is an important aspect, as software defined infrastructures are
an area without a lot of history. The tooling is guiding you less, therefore
the importance of best practices is larger.

Testing is important. Execution of of code is deployment, meaning that
you move from unit testing to integration testing fast. The guarantee of
unit testing is less than it is in regular software development projects, so
you can only properly test by actually building up an infrastructure and
running tests against it. Testing modules in isolation is not that useful.

Version control of 3rd party libraries is important. It is important to
think about how you are going to use version control and how you are or-
ganising your code. Within software defined infrastructures, the usage of
3rd-party libraries is larger than it is in regular software development pro-
jects. This creates more dependencies on different channels. Within Puppet
itself you already have dependencies on Gems of Ruby, the package man-
ager of the operating system and Maven of Java. The dependency channels
should be made clear so that you can see of how many channels you are de-
pendent and that you can think about how you are securing/guaranteeing
these channels.

In the internal project they are working on controlling the production
environment. This is done with testing

As you are doing things remotely it is important to reduce the round-
trip time as much as possible. This is done internally by not rebuilding the
infrastructure all the time but just once a day in the morning. Next to that
the developers have local sandboxes in which they can execute the code, but
this only works well with nodes that do not communicate with other nodes.

A.2.2 Quality aspects as an adviser

As an external adviser, I would look for usage of supported tooling such as
Puppet or Chef and see if they use a recent version of it.

For maintainability I would check if they have insight in their own code
base and check if have automated testing. For static analysis important
aspects are:

e Unit length
e Code complexity

e Volume

62

The technology stack should be small.

The usage of McCabe is troublesome in declarative languages and do-
main specific languages due the lack of if-statements. In these cases the
usage of unit size as a complexity metrics is more useful.

Deployment automation is something to look at. The amount of manual
operations being done on a server is something to look at.

Software defined infrastructures is where two worlds meet, Development
and Operations (DevOps). Operations is tasked with providing reliability,
guaranteeing a certain level of service. Developers on the other hand are
occupied with reproducibility, automation and version control. As software
defined infrastructures are the coming together of development and oper-
ations, it would be good to look at if a project is using the best of both
worlds, that is:

e Are all artefacts under version control?
e [s there anything being done manually?

— Is there continuous development / deployment?

— Test automation?

Tooling

Monitoring

Conservative with deployment of changes.

A.3 Interview #3

A.3.1 Quality aspects of internal project

It is important to look what at what the code looks like. Think of aspects
such as:

e Files should not be too long
e Parameter lists should not be too long
e Identifiers got to have good names.

Long lists of parameters are fine in Puppet compared to typical object ori-
ented languages. Though I do not yet have a good sense of when these
things are too much.

The procedure of testing that I use is the following: I first tests thing
on my laptop, then I test it in a sandbox, after that I put it in the staging
environment.

63

Within unit test, you tests if resources are being there. But due to the
declarative nature of the language, this is a bit senseless as you are testing
very basal things. I think it is useful though to test the output of templates
when the variables have been filled in. With unit tests you copy whatever
you wrote down in the declarative language to the language of the testing
suite. The integration tests are better. These bring a server up and start
testing things such as the presence of a file.

Our infrastructure takes some time to get built. Because of that we build
the infrastructure daily before work starts to run the integration tests on.
An example for testing a service running a MySQL database would be to
test if the MySQL process is running and to test if there is a response on
the configured port.

Another important thing is following the standards made by the com-
pany creating the languages, which in the case of Puppet is PuppetLabs.
The language subject to changes so it is important to keep track of the
community and the announcements made by the company. The reason that
the language is so subject to changes is due to the fact that only a single
company is responsible, so it is very easy for them to make those changes if
they deem it necessary.

A.3.2 Quality aspects as an adviser

If I would advise an external party I would formulate the previous better.

I would for example go look at how they separate code from data. Data
in case of software defined infrastructures would configuration parameters
such as which domain name servers (DNS) or network time protocol (NTP)
servers should be contacted. In Puppet data can be separated from code
using a tool called Hiera, which is a small database to store such data in.

Other things to look at would be whether or not there are tests and more
specifically if there are integration tests.

Code smells would be something to look at, like imperative programming
in a declarative language or more than necessary usage of if-statements.

A.4 Interview #4

A.4.1 Quality aspects of internal project

The Linux packages that we install and configure must contain the func-
tionality that we need, so that we can stay as close as possible to existing
installations. An example of this is the usage of the package manager and
repository of Ubuntu in our case which contains tested packages, meaning
that we do not have to test those packages any more. The management of
the package is then being done by somebody else meaning that we do not
have to provide specific versions of those packages as they are not bound to

64

change a lot. We only specify version numbers if there is a specific reason
for us to install a newer version of an application than the one in the official
repository.

One of the difficulties of software defined infrastructures is knowing how
applications behave so that you know how to set them up using Puppet.

Another important aspect is the application of best practices such as not
using exec statements too much as Puppet does not have control over the
thing you do inside such a statement and cannot check if the result of the
statement is correct.

Application states should be placed on a separate disk or volume so that
it can be disconnected and be reconnected to another instance if needed.
If possible this disk or volume should also be encrypted. The method for
creating and mounting encrypted volumes is standardised and is called at
many places inside to code as if it were an ‘infrastructural design pattern’.
In this case it is important to force a sequence of execution.

A.4.2 Quality aspects as an adviser

As an external adviser I would like to get a mental image of the infrastructure
at-hand. How many servers are there, and are these instances of a single
type of server or are these all different types? When having a homogeneous
infrastructure you can easily switch off and replaces instances, while that
is more difficult in a less homogeneous infrastructure. A less homogeneous
infrastructure is also more prone to having unexpected thing happen.

Predictability could be a good aspect to look at. How did the client take
care of the predictability? Predictability could be achieved for example by
making a continuous deployment pipeline. Which is a development pipeline
where code committed to a code repository is automatically unit tested,
then it is deployed to a staging area where it is integration tested. After all
tests succeed the code is placed in production. With Puppet you want this
kind of safety when making changes.

You want to have an audit trail of all the changes, for example by making
use of version control and by logging which versions have been deployed at
which times and what the test results were of that deployment.

On the code level it is important to follow best practices. How close is
the implementation to the how the tooling is supposed to be used? With
Puppet this means to look at exec-resources and such.

A.5 Interview #5

A.5.1 Quality aspects of internal project

There are two dimensions of quality when it comes to software defined in-
frastructure projects. First there is internal quality, which is the quality of

65

your code, cookbooks or artefacts. Then there is external quality, which is
the quality of the resulting infrastructure.

There is a lack of testing in software defined infrastructures as people
tend to do main function testing, which is the sort of testing where people
write a function and put it in the main function to see its outcome. Basic-
ally this sort of testing is testing the infrastructure like it is a C program.
There are now people internally that do do unit tests on the cookbooks
and integration tests on the cookbooks, cloud infrastructure and the cloud
provider/orchestrator. There are selenium tests for front-end web testing.
When you start generalising cookbooks for multiple operating systems, then
unit testing becomes more complicated.

When creating cookbooks we keep extensibility in mind internally. We
create our code in such a way that support for other operating systems can
be added in an easy way.

We internally created a tool called ‘Chefguard’ to prevent developers
altering versions of cookbooks without upping the version number. Not
being able to make changes to versions is called ‘version freeze’. It prevents
certain side effects from happening due to having the same version number
being used for different versions of the code. The typical scenario at this
company is that when creating and testing code on a personal computer and
then pushing it to a shared environment, such as the staging environment,
the changed code does not cause unexpected behaviour on machines which
are also reliant on cookbook containing that code. Another way of versioning
the the infrastructure is by versioning the roles as well. Teams can decide for
themselves if they wish to use newer versions of the role definition instead
of the version being pushed automatically to every project.

At this company we pay close attention to not only keeping the testing
environment and the production environment separated, but also keeping
the infrastructures of the different clients separated, each having their own
baseline creating a layered structured from company wide to team specific.

Code maintainability is an actual concern. We keep the code maintain-
able in an ad hoc manner. We do this by looking at the code over and over.
I measure some of the maintainability metrics by using a Sonar Cube, but
not everyone does that. They do revisit the code a lot due to us working in
an Agile and Scrum-like manner, which keeps the code more maintainable.

Other projects, such as for example one that relies on Python keep main-
tainability high due to being forced to create tests. Having to make changes
to your software and having to alter your tests over and over will help the
developer realise how to write more testable code, which in turn is more
maintainable.

66

A.5.2 Quality aspects as an adviser

As an external adviser I would start by looking at the level of maturity.
Pointers for that would be things like creating automated builds using Jen-
kins, or having automatic infrastructure checks using Nagios, or by having
using cloud orchestration tools such as Cloudstack or Openstack. Having
these things would be an indication for a more mature infrastructure than
when things are done manually.

From there I would help them trough the basics and the more advanced
stuff. The basics are:

e Automation (which as extremely hard to do well)

Being able to create stuff on the fly

How do you test your automation?

How do you monitor your systems?

At this company we have a tool to gather information and send out
pages or SMS-messages to people on duty. This tools runs down a chain of
responsibility until someone reports that they are picking up the problem.

After that I would look at the infrastructure that they are building. How
is the infrastructure fitting with what you want to deploy out there? As you
build and infrastructure to build an application on top of it.

It is a by-product of having many operations people doing these projects
and not so many software engineers. Software engineers tend to make an
effort of keeping things simple by making concious considerations of func-
tionality versus effort. ‘Is this feature worth the additional complexity?’

Here we create highly available infrastructures. To have highly available
infrastructures means you have to have a redundant set of machines, either
active-active, meaning that both of the sets share the load, or active-passive,
meaning that one set of machines handles the everyday load and the other
one sits idle acting as a fallback. This means you need to have load balancers
and virtual IPs.

It is the same as with regular software, you want loose coupling and
a high cohesion. Loose coupling in an infra for example by having a load
balancer and by synchronising data.

When doing client projects this is harder because the infrastructure itself
is a given.

You would have to think in levels of complexity and in levels of freedom.
If you have all the freedom in the world then you should create a simple
infrastructure for simple needs. If you do not have all this freedom then you
have to create a complex infrastructure.

Client infrastructure are given meaning that it cannot be split up or
have its dependencies swapped with comparable products, for example you
cannot swap out an Oracle database with a MySQL database.

67

Appendix B

Reference topics and
transcription

Audit trail

Interview #4

You want to have an audit trail of all the changes, for
example by making use of version control and by logging
which versions have been deployed at which times and
what the test results were of that deployment.

Automation

Interview #2

The amount of manual operations being done on a
server is something to look at.

Interview #4

... Which is a development pipeline where code com-
mitted to a code repository is automatically unit tested,
then it is deployed to a staging area where it is integra-
tion tested. After all tests succeed the code is placed in
production. With Puppet you want this kind of safety
when making changes.

Interview #5

As an external adviser I would start by looking at the
level of maturity. Pointers for that would be things
like creating automated builds using Jenkins, or hav-
ing automatic infrastructure checks using Nagios, or by
having using cloud orchestration tools such as Cloud-
stack or Openstack.

68

Best practices

Interview #2

Just like with other software projects it is important to
follow the best practices.

Interview #3

Another important thing is following the standards
made by the company creating the languages, which
in the case of Puppet is PuppetLabs. The language
subject to changes so it is important to keep track of
the community and the announcements made by the
company.

Interview #4

Another important aspect is the application of best
practices such as not using exec statements too much
as Puppet does not have control over the thing you do
inside such a statement and cannot check if the result
of the statement is correct.

Co-existence

Interview #1

This resulted in the notion of co-existence. Which
means in this case to take measures to ensure that nodes
are not interfering with each other.

Complexity

Interview #5

You would have to think in levels of complexity and
in levels of freedom. If you have all the freedom in the
world then you should create a simple infrastructure for
simple needs. If you do not have all this freedom then
you have to create a complex infrastructure.

Data separation

Interview #3

I would for example go look at how they separate code
from data. Data in case of software defined infrastruc-
tures would configuration parameters such as which do-
main name servers (DNS) or network time protocol
(NTP) servers should be contacted.

DevOps

Interview #2

As software defined infrastructures are the coming to-
gether of development and operations, it would be good
to look at if a project is using the best of both worlds,

69

Environments

Interview #1

This issue could be fixed by configuring the backup-
application to not contact clients outside of its environ-
ment,

Interview #5

At this company we pay close attention to not only
keeping the testing environment and the production
environment separated, but also keeping the infrastruc-
tures of the different clients separated, each having their
own baseline creating a layered structured from com-
pany wide to team specific.

Extensibility

Interview #5

When creating cookbooks we keep extensibility in mind
internally. We create our code in such a way that sup-
port for other operating systems can be added in an
easy way.

Functional suitabiltiy

Interview #5

After that I would look at the infrastructure that they
are building. How is the infrastructure fitting with what
you want to deploy out there? As you build and infra-
structure to build an application on top of it.

Infra design

Interview #4

Application states should be placed on a separate disk
or volume so that it can be disconnected and be recon-
nected to another instance if needed.

Interview #5

Here we create highly available infrastructures. To have
highly available infrastructures means you have to have
a redundant set of machines, either active-active, mean-
ing that both of the sets share the load, or active-
passive, meaning that one set of machines handles the
everyday load and the other one sits idle acting as a
fallback. This means you need to have load balancers
and virtual IPs.

Level of freedom

Interview #35

You would have to think in levels of complexity and
in levels of freedom. If you have all the freedom in the
world then you should create a simple infrastructure for
simple needs. If you do not have all this freedom then
you have to create a complex infrastructure.

70

Maintainability

Interview #2

For static analysis important aspects are:
e Unit length
e Code complexity

e Volume

Interview #3

It is important to look what at what the code looks like.
Think of aspects such as:

e Files should not be too long
e Parameter lists should not be too long

e Identifiers got to have good names.

Interview #5

Code maintainability is an actual concern. We keep the
code maintainable in an ad hoc manner. We do this by
looking at the code over and over. I measure some of
the maintainability metrics by using a Sonar Cube, but
not everyone does that. They do revisit the code a lot
due to us working in an Agile and Scrum-like manner,
which keeps the code more maintainable.

Maturity

Interview #5

As an external adviser I would start by looking at the
level of maturity. Pointers for that would be things
like creating automated builds using Jenkins, or hav-
ing automatic infrastructure checks using Nagios, or by
having using cloud orchestration tools such as Cloud-
stack or Openstack. Having these things would be an
indication for a more mature infrastructure than when
things are done manually.

71

Monitoring

Interview #2

As software defined infrastructures are the coming to-
gether of development and operations, it would be good
to look at if a project is using the best of both worlds,
that is:

o ...
e Monitoring

Interview #5

From there I would help them trough the basics and the
more advanced stuff. The basics are:

e How do you monitor your systems?

Node cohesion

Interview #1

One aspect that is important is that servers only provide
is single service. Service in this case could be a some-
thing that consists of more than one application. For
example a web application could be the combination of
a web server and a database server. This in contrast to
the hardware-centric approach of filling up a machine
until all its resources are being used.

Predictability

Interview #4

Predictability could be a good aspect to look at. How
did the client take care of the predictability? Predict-
ability could be achieved for example by making a con-
tinuous deployment pipeline.

72

Test automation

Interview #1

The usage of an automated test and building process is
important. This is in line with the continuous delivery
approach, where building is done automatically on a
daily basis or per-commit basis. With this the effect of
the code becomes visible.

Interview #2

As software defined infrastructures are the coming to-
gether of development and operations, it would be good
to look at if a project is using the best of both worlds,
that is:

e Is there anything being done manually?

— Test automation?

Testing

Interview #2

As you are doing things remotely it is important to
reduce the round-trip time as much as possible. This is
done internally by not rebuilding the infrastructure all
the time but just once a day in the morning. Next to
that the developers have local sandboxes in which they
can execute the code, but this only works well with
nodes that do not communicate with other nodes.

73

Testing

Interview #1

Testability is important. With testability I mean the
existence of unit tests and integration tests.

Interview #2

Testing is important. Execution of of code is deploy-
ment, meaning that you move from unit testing to in-
tegration testing fast. The guarantee of unit testing is
less than it is in regular software development projects,
so you can only properly test by actually building up
an infrastructure and running tests against it. Testing
modules in isolation is not that useful.

Interview #3

But due to the declarative nature of the language, this
is a bit senseless as you are testing very basal things.
I think it is useful though to test the output of tem-
plates when the variables have been filled in. With unit
tests you copy whatever you wrote down in the declar-
ative language to the language of the testing suite. The
integration tests are better.

Interview #4

Which is a development pipeline where code committed
to a code repository is automatically unit tested, then
it is deployed to a staging area where it is integration
tested. After all tests succeed the code is placed in
production. With Puppet you want this kind of safety
when making changes.

Interview #5

There is a lack of testing in software defined infrastruc-
tures as people tend to do main function testing, which
is the sort of testing where people write a function and
put it in the main function to see its outcome.

Testing effort

Interview #4

An example of this is the usage of the package manager
and repository of Ubuntu in our case which contains
tested packages, meaning that we do not have to test
those packages any more.

Tools usage

Interview #1

The choice of tooling is important. This is due to
the level of hobbyism involved in the community which
causes many tools to be immature.

Interview #2

Tooling is an important aspect, as software defined in-
frastructures are an area without a lot of history. The
tooling is guiding you less, therefore the importance of
best practices is larger.

74

Version control

Interview #2

As software defined infrastructures are the coming to-
gether of development and operations, it would be good
to look at if a project is using the best of both worlds,
that is:

e Are all artefacts under version control?

Interview #5

We internally created a tool called ‘Chefguard’ to pre-
vent developers altering versions of cookbooks without
upping the version number. Not being able to make
changes to versions is called ‘version freeze’. It pre-
vents certain side effects from happening due to having
the same version number being used for different ver-
sions of the code.

75

Appendix C

Application of TQM
interview guide

Up front

Test

Test

Let the interviewee summarise the project

Try to find out how this project’s testing approach differs from regular
projects

scope

Explain the testing approach of this project.

Is there any testing done in this project?

What is being tested?

Is there a test plan? What does it look like?

How important is testing in this project? How much testing is done
in comparison to development?

Is there a risk assessment for the requirements? How is such an as-
sessment being done? When is it done? What is included in it?
validation

Are requirements gathered and validated with the client? What do
these requirements typically look like?

What does the change request process look like?
When the client makes a change request, what are the effects of it?

How do you make sure that every test is sensible? How do you know
there are not too many tests? Is every test traceable?

76

Test design
e What do technical tests look like in your project?
e What do functional tests look like in your project?

e Do you keep track of how the software is being used? How do you
that?

e Do you keep track of technical aspects of the usage of the software in
production? How?

e Do you test for unexpected behaviour? How do you do that?

Test environment

e What does the test environment look like? How does this differ from
the production environment?

e What does the topology of the test environment look like?

e What is the difference in configuration between test and production
environment?

e When changes to hardware or cloud service provider are being made,
how does this affect the testing environment? What changes need to
be made?

Feedback duration
e How long does a typical test cycle take?

e How is the result of the test delivered to the developers? How long
does this take?

Autonomy

e How many man-hours are typically spent on a test cycle?

Reporting
e What does a test report look like?
e How do you make sure all the requirements are tested?

e Is code coverage a concern? How do you measure that? What was the
last result?

o If a test failed, how would you look for the root cause? How long does
that typically take?

77

Appendix D

Test quality model
questionnaires

78

Themes questionnaire

Test topics questionnairre
July 30, 2014
To what degree is this a topic of importance in an SDI environment.

1= Very low degree
2 = Low degree

3 = Average

4 = High degree

5 = Very high degree

1. Change request handling

2. Code coverage

3. Functional testing

4. Knowledge of software functionality

5. Knowledge of software usage

6. Replication of production environment

7. Requirement coverage

8. Requirement elicitation

9. Requirement risk assessment

10. Technical testing

11. Test autonomy

12. Testcycle length

13. Test effort

14. Test feedback time

15. Test plan

16. Testreport content

17. Test scope

18. Traceability

79

Acceptance questionnaire

Feedback questionnaire TQM
July 30, 2014

Q1. To what degree do you think this model | o Very low degree

is useful when measuring the testing o Low degree

quality of an SDI project? 0 Average
o High degree

0 Very high degree

Q2. To what degree do you think using this | o Very low degree

model would require much effort? o Low degree

O Average
0 High degree

o Very high degree

Q3. To what degree do you think this model | o Very low degree

is consistent with testing practices in SDI O Low degree

environments? o Average
0 High degree

o Very high degree

Q4. If you were to assess the testing quality | o Very low degree

of an SDI, to what degree would you think O Low degree

you would use this model in the future? o Average
o High degree

0 Very high degree

Q5. To what degree do you think this model | o Very low degree
is able to measure the testing quality of an o Low degree

SDI project? 0 Average
o High degree

0 Very high degree

Q6. Do you think there are aspects about o No
testing in an SDI project missing in this o Yes: Name the
model most important

aspects missing.

80

	Introduction
	Problem statement
	Research questions
	Research method
	Thesis outline

	Background
	Software defined infrastructures
	Infrastructure management using Puppet
	Cloud computing
	DevOps

	Identification of quality aspects
	Background
	Gathering SDI quality aspects
	Construction the SDI quality model
	Conclusion

	Testing quality of software defined infrastructures
	Background
	SIG testing quality model
	New testing quality model
	Conclusion

	Conclusion
	Results
	Future work

	Bibliography
	Interviews SDI quality characteristics
	Interview #1
	Interview #2
	Interview #3
	Interview #4
	Interview #5

	Reference topics and transcription
	Application of TQM interview guide
	Test quality model questionnaires

