

Applications of Named Entity Recognition in Cus-

tomer Relationship Management Systems

Farbod Saraf Jadidian

September 2014

Dissertation submitted in partial fulfilment for the degree of

Master of Science in Information Science

Computer Science Department

Radboud Univers

- ii -

Attestation

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

I certify that this dissertation reports original work by me during my University

project except for the following (adjust according to the circumstances):

 The theory review in Section 2.1 was partially taken from[2].

 The technology review in Section 2.3 was partially taken from TUD Palladian Over-

view1.

 The code discussed in Section 5 and Appendix was developed by OpenNLP Group2

and was used in accordance with the licence supplied.

 The training data used in Section 5 was provided by NLP-GEO project3.

Signature Date

1 http://palladian.ws/documentation/
2 http://opennlp.apache.org/
3 https://code.google.com/p/nlp-geo/

- iii -

Acknowledgements

I would like to take this opportunity to express my appreciation to everyone who

supported me throughout this master thesis project. I am sincerely grateful for their

knowledge sharing, invaluable guidance, constructive criticism and friendly advice

during the project.

It gives me a great pleasure in acknowledging the support and help of my supervisor

Professor Th. van der Weide. Without his guidance and persistent help, this thesis pro-

ject would not have been possible. I am also grateful to P. van Bommel for accepting

my request to be the second reviewer for this project.

I would also like to thank my project external guide Mr. de Rooij from the company

Soluso B.V. and all the people from OpenNLP team who provided me with the

facilities and resources being required for conducting my thesis project.

At the end, I am indebted to my parents and close friends who supported me by

preparing a proper atmosphere for me to able to focus on the project and manage to

finish it with my desirable result on time.

- iv -

Table of Contents

Attestation.. ii

Acknowledgements .. iii

Table of Contents .. iv

List of Figures... vi

1 Introduction .. 1

2 State-of-The-Art ... 2

2.1 Theoretical aspects: Survey of Named Entity Recognition (NER) 2

2.1.1 Handcrafted Rule-based Algorithms ... 2

2.1.2 Feature Space... 3

2.1.2.1 Word-level features .. 3

2.1.2.2 Documents and Corpus Features ... 4

2.1.2.3 Dictionary Feature ... 5

2.1.3 Machine Learning Techniques ... 6

2.1.3.1 Supervised Learning .. 7

2.1.3.2 Unsupervised Learning .. 13

2.1.3.3 Semi-supervised Learning ... 13

2.2 Mind map of NERC .. 15

2.3 Evaluation of Named Entity Recognition Systems ... 17

2.3.1 Contingency Tables ... 18

2.3.2 Precision and Recall .. 19

2.3.3 F-Measure .. 20

2.4 Technical aspects: Existing Technologies for NER .. 20

3 Named Entity Recognition in Customer Relationship Management (CRM) Systems . 28

3.1 Introduction to CRM .. 28

3.1.1 Collaborative Systems ... 28

3.1.2 Operational Systems .. 28

3.1.3 Analytical Systems .. 28

3.2 Named Entity Recognition Applications in CRM Systems 29

3.2.1 NER in Collaborative CRM .. 29

3.2.2 NER in Operational CRM ... 29

3.2.3 NER in Analytical CRM .. 29

3.3 Falcon CRM ... 30

3.4 Named Entity Recognition in Falcon CRM .. 30

3.4.1 Task management system and calendar ... 30

3.4.2 Template selection ... 31

- v -

4 Requirements Analysis ... 32

4.1 Technical Requirements .. 32

4.1.1 Platform Specification ... 32

4.1.2 License Requirements ... 32

4.1.3 System Input Specification .. 33

4.1.4 System Output Specification ... 33

4.2 Functional Requirements .. 33

4.2.1 Algorithm selection ... 33

4.2.2 License Filtrations ... 33

4.3 Product selection and preparation ... 34

4.3.1 OpenNLP vs. Stanford NLP .. 34

4.3.2 Porting Java to C# ... 35

4.3.2.1 IKVM ... 35

5 Recognition of Named Entities .. 37

5.1 Introduction to OpenNLP ... 37

5.2 Named Entity Recognizer ... 38

5.2.1 Training Data Specification ... 38

5.2.2 Training a classifier ... 39

3.2.5 Custom Feature Generation Specification ... 40

5.3 Named Entity Recognizer in Falcon Case .. 40

5.3.1 Training Data Preparation.. 40

5.3.2 Model Training .. 41

5.3.3 Entity Recognition using Trained Model ... 41

5.4 Evaluation ... 42

5.5 Boosting the Performance... 42

5.5.1 Improvement Process .. 42

5.5.2 Applying the Improvement Process in Falcon .. 43

5.5.3 Validation ... 44

6 Conclusion .. 46

6.1 Summary ... 46

6.2 Validation .. 46

6.3 Future Work .. 47

References ... 48

Appendix ... 49

- vi -

List of Figures

Figure 1. Machine Learning Techniques .. 6

Figure 2. Supervised Classification Process .. 7

Figure 3. Decision Tree Method ... 10

Figure 4. Mind Map of NER: Machine Learning Methods .. 15

Figure 5. Mind Map of NER: Handcrafted Rule-based Algorithms 16

Figure 6. Mind Map of NER: Feature Space ... 17

Figure 7. Training Data Sample ... 41

Figure 8. OpenNLP NER Process in Falcon .. 43

Figure 9. Improved NER Process in Falcon ... 44

- 1 -

1 Introduction

Natural language processing refers to human-computer interaction in terms of Linguis-

tic; in simple words, understanding of the human language by computer or the natural

language generation by the machines. Dealing with natural language processing has

been always known as one of the complex fields in computer science. As time goes by,

more progress are being made to improve the performances of natural language

processing systems. However achieving the nearly human performance in NLP

application is not pragmatic due to numerous reasons such as ambiguities in Languages,

slangs, sarcasms and so on. There is a wide range of fields in Natural Language Pro-

cessing such as Parsing, Speech recognition, Machine translation, Information retrieval,

Part-of-speech tagging and so on. In this thesis, the focus is on Named entity

recognition, finding a solution to detect and extract entities such as persons, locations,

organizations, dates in order to automatize several tasks in a CRM application, namely

creating pre-filled forms, an agenda item, saving contacts information, making summary

of an email or a report and so on.

Due to the complexity of the field, introducing a new algorithm or making a system

from scratch would not be a solution with regards to the limitations of the master thesis.

Therefore, the first step was checking state-of-art of the field to explore all the existing

algorithms and techniques as well as their implementations as toolkits, software,

packages, and libraries which is elaborated in the second chapter. Analysis of the system

requirements was also a major step which was conducted in the third chapter. With re-

gards to different aspects of requirements ranging from performance to licensing issue

and technology limitations, out of all available systems OpenNLP is nominated, a Java-

based NLP library which is distributed under Apache 2.0 License. This toolkit offers the

most common NLP tasks, such as part-of-speech tagging, coreference resolution and so

on. In the fourth chapter, more details about OpenNLP is elaborated, including the in-

troduction to the package, instruction for training a model and modifying the code with

regards to the requirements. To check the performance, a model is trained out of the

training data which is annotated for entity “Location”. Using the trained model, the

accuracy of the recognition for location entitles were evaluated, 0.84 for precision, 0.45

for recall and 0.59 for F-measure. The high precision indicates that the 84% of all rec-

ognized entities were actual locations which means the output of the model is reliable

enough for using in the targeted system. However, the recall of 0.45 means not all the

entities were recognized, indicating that the amount of annotated data for training the

model was less which can be solved by collecting and annotating more data from

available resources. The overall performance was almost 0.6 which is acceptable for the

provided amount of training data to the system.

In the end, the modification of system to improve the performance is discussed. The

NER engine of OpenNLP has been implemented using maximum entropy algorithm. A

bootstrapping method is based on running the model and modifying the result recur-

sively to remove the undesired known entities and to add ignored entities to the system

for boosting the performance.

- 2 -

2 State-of-The-Art

The first step in a proper research is to find and examine all existing technologies

specifically the State-of-The-Art, helping the researcher to find the most appropriate

techniques which are not only fulfil the theoretical aspects of the problem but also it is

practical enough to implement using existing resources. In this chapter, all the findings

regarding both theoretical and technical aspect of State-of-the-Art are summarised.

There is a wide range of literatures introducing new techniques, concepts and solutions.

In upcoming parts, first all theoretical aspects of state of the arts are introduced, followed

by the state-of-the-art techniques for the evaluation of NER systems. Last part of this

chapter is covering all existing implementation of those techniques which is available

(either freely or commercial) in the area of Natural Language Processing.

2.1 Theoretical aspects: Survey of Named Entity Recognition (NER)

Named Entity Recognition field has its roots back in the days in 1991 when Lisa F.

Rau represent his first research papers at the 7th IEEE Conference of Artificial Applica-

tions, recognizing and extracting “company names”. Most of those old methods were

relied on handcrafted and heuristic rules. After investigating a variety of papers and

surveys in the field of named entity recognition and classificationError! Reference

source not found., the conclusion has been made that the whole existing techniques can

be categorised in three major fields below:

 Hand crafted rule-based algorithms, Feature Space and Machine Learning

techniques. However, machine learning techniques and feature space are much more

new compared to Rule-based algorithms, based on the system requirements it is possible

to either go in one direction or combine different methods to achieve a highest perfor-

mance. Upcoming sub-chapters describes more details about all mentioned techniques.

2.1.1 Handcrafted Rule-based Algorithms

As it is mentioned, handcrafted rule-based algorithms are the oldest techniques in this

fields. In general, all works and results by different scientists in this area can be seen as

three major factors of ‘Entity type’, ‘Domain’ and ‘Language factors’. Some of them

worked on specific topics such as “Enemex” recognizing names of Type “Persons”,

“Locations” and “Organizations” whereas there are some papers regarding Open

Domain covering a wide range of types. Some other works in this field was done for

specific textual genre, for example, in 2005 E.Minkov et al. designed a system for email

documents. However, it sounds practical to convert a system from a specific domain to

another domain but it requires a lot of time and effort since it is a complicated task. In

terms of language factor, most of the works are done in English but also there are some

other scientists and specialists which tried to broad the same features in other languages

such as Dutch, German, Chinese and etc.

- 3 -

2.1.2 Feature Space

Features are being considered as attributes which representing the characters of words

being used by different algorithms. For example, a simple feature vector can be a Bool-

ean attribute which stands for showing whether the word is started with capital or small

letter. Although a wide range of features stands for representing different aspects of

words, in most cases they are not merely enough to solve the real world NER problem.

However, when they are coupled with some machine learning techniques they contribute

to best performance which is the one of the state-of-the-are techniques using as solutions

to NER problems. Based on the survey of named entity recognition and classification

the most used feature in NER can be divided into three categories:

2.1.2.1 Word-level features

As the name implies, Word-level features are describing the character composition of

words. There is a wide range of word-level feature, out of which the most common

features in NER is listed below:

 Digit patterns

This pattern specifically stands for digits such as dates, percentage, amount

and so on. For example, if a two-digit numbers followed by a dash, two more

digits, another dash and four-digit number (xx-xx-xxxx) the system can learn

to use this pattern for recognizing a date.

 Common word ending (Morphology)

It is mostly related to the origin of the words and affixes. For example a

system can learn to recognize words followed by “land” as candidates for

countries such as Nederland, Scotland, England and so on.

 Function over words

There is a wide variety of useful features which is extractable from words out

of applying functions. One of the most common way of implementing func-

tion over words is to use n-grams. In the upcoming technical chapter, there is

a detailed information about n-grams.

 Part-of-Speech

In general, POS refers to lexical categorizing of a word in the sentence (i.e.

subject, object, verb and so on). This kind of lexical features might help to

recognize a pattern especially when it combines with machine learning meth-

ods. However, for most of NER solution POS as feature will not improve the

result but still in some cases it might be necessary to take it into account.

 Patterns and summarized patterns

Patterns features for the first time presented by M. Collins in 2002. Using this

kind of features helps to map word(s) to set(s) of characters in order to sum-

marize them. For example, a summarized pattern can map all the capital

- 4 -

letters to X, small letters to x, digits to 0 and Special characters to _; then the

result would be:

Heyendaalseweg 135, 6525 AJ Nijmegen = Xxxxxxxxxxxxxx 000_ 0000 XX

Xxxxxxxx

2.1.2.2 Documents and Corpus Features

One of the best source of features is a large and proper amount of corpus. While going

through and processing the whole corpus a lot of features can be extracted from single

or multi-words, based on the relation between words and sentences and Meta

information lying under the corpus which is hard to recognize without using statistics.

Here are some extractable features from documents and corpus:

 Entity coreference and alias

One of the difficulties in detecting the name entities is when a same word is

occurred across the documents in the various makeups. Furthermore, Aliases

might lead to more difficulties since they represent a same name in another

manner. For instance in all these words share the same meaning which repre-

sent the company: corporation, Ltd., Corp, company, B.V. and etc.

Recognizing coreference and alias seems like the same as entity recognition

in terms of difficulties; however, using combination of some techniques such

as machine learning as well as world level feature might lead to solve this

problem much easier. There are more solution for solving the problem of

entity reference such as semantic tagging, using heuristic rules and so on.

 Meta information

Meta information can play an efficient role in detecting named entities since

most of them can be used directly. For example URL of a document can bring

some useful information regarding the content of the document. Another ex-

ample can be title of a research paper, providing a clue for the context of

document. Or even more simple and clear example is the title of an email,

indicating the greeting followed by a name of a person and in some cases

contact information such as name of companies. There are more and more

example in this area such as XML section, tables, figures and so on.

 Local syntax

Using the position of a word in sentence, paragraph or even in document

might provide useful information. Furthermore, another application of local

syntax is using Enumeration, which refers to having set of a groups of words

which are related to each other. For example, November, August and July all

are in the same categorization.

 Multi-word units

- 5 -

Processing large amount of corpus can help the system to extract features for

detecting multi-word entities. Out of statistical methods, in 2004, Da Silva

managed to define some useful feature functions over multi-word entities in

large co. For example, he defined the threshold on selecting a multi-word unit

as named entity candidate.

2.1.2.3 Dictionary Feature

Dictionary or list look up feature refers to using lists (dictionaries, lookup tables or etc.)

for recognizing entities base on their probabilities of being targeted entities. The dic-

tionaries are created out of processing a large amount of corpus to calculate the

probability of a word being a specific entity once it is detected in the context. For ex-

ample, when the word “Nijmegen” is appeared in a text there is a high likelihood that it

refers to the city.

There is a wide variety of lists in literature. Based on a survey of named entity recogni-

tion and classification Error! Reference source not found., three major categories of lists

are:

 List of entities

It is just a big list of all entities covering areas of First name, Last name,

Organization, Airline, Government, Educational, Celebrity, Continent, Astral

body, Country, City, State and so on.

 List of entity cues

A lot of entities can be recognised by identifying words which mostly they

are coupled with. It can be pre-fix, person title, location typical word, post-

nominal letter and so on. For example when Ltd or Corp. are coupled with a

word there is a high chance that the word is an organization name.

 General dictionaries:

General dictionaries are pre-existing lists containing common nouns which

can help a lot in recognizing entities. For example, when first letter of the first

word of a sentence is capitalised it can lead to some disambiguates whether

it is an entity or it is only capitalized because it is located at the first of sen-

tence. Referring to a general dictionary can solve this type of issue to an

acceptable extent.

Exact matching with pre-existing dictionaries would not provide a satisfactory re-

sults. However, there are several ways and techniques in order to achieve more

flexibility and better results using lists:

- Accessing lists via Soundex algorithm is one of the way to increase the

flexibility. Soundex is an algorithm for mapping names into their sound

using their English pronunciation. Soundex code algorithm use the first

letter of the word as well as three digits repressing the sound. For exam-

ple, Radboud University has been stated in two ways in different web

sites. In some corpus it is appeared as “Radboud University” while in

- 6 -

some others it is “Radboud Universiteit” (Dutch version). However, Uni-

versity and Universiteit has a same Soundex code (U516). Therefore we

are able to embed this technique to the old one to detect both words in

corpus.

- Most of the time words are not stating as their origins and roots. There-

fore, normalizing words and removing derivational and inflectional

suffixes from them before matching helps to have more correct detec-

tions. For example, “Prof.” can be normalized to “Professor” in order to

be detected as a cue for a name.

- One of the most effective solution is using a fuzzy-matched technique.

It check the lists using edit-distance factors. It check the distance of each

words to the words in the list and if the edit-distance of the word with

one of the words in the lists was less than a threshold then it will

nominate that word as potential candidate.

As it is already mentioned, using feature space merely might not be enough to solve

NER problems. However, when they are coupled with machine learning the system

achieve highest performances. In next chapter, different techniques of machine learning

for NER systems are described.

2.1.3 Machine Learning Techniques

In contrast to early systems which were based on hard-coded rule base system, nowa-

days most of advance named entity recognition systems are using machine learning

techniques to boost the performance. Machine learning techniques gives the system abil-

ity to learn based on input and induce the rules for detecting entities. In general, three

sub categories of unsupervised, semi-supervised and supervised learnings:

Machine learning
techniques for NER

Supervised learning
Semi-supervised

learning
Unsupervised

learning

Learning by example
Input: a training set of
hand-labeled corpus
Output: Intelligent

classifer

Learning by patterns:
Input: Patterns

Output: Intelligent
classifer

Learning by both
examples and patterns

Figure 1. Machine Learning Techniques

- 7 -

2.1.3.1 Supervised Learning

In supervised learning, the classifier is trained using a set of hand-labelled data. The

whole process can be summarized to the diagram below (Figure 2):

Supervised Learning

P
re

d
ic

ti
o

n
T

ra
in

in
g

Phase

Feature extractor

Input
(Plain
text)

Hand
labelled
training

data

Feature extractor

Classifier trainer using MA algorithms

Feature sets

Labelled
version of

input

Feature sets

Classifier

Figure 2. Supervised Classification Process

As can be seen in figure 2, in supervised learning the features should be extracted be-

forehand, in order to train a classifier based on extracted features using machine learning

algorithms. Once the classifier is trained, the same feature extraction phase is required

for the input data since the classifier accomplishes its tasks out of feature sets. The whole

process might look rudimentary, however, choosing the right features to extract is one

of the trickiest step in NER process which have direct impact on the performances and

results. Furthermore, choosing the right implementation of feature extractor plays a vital

role as well. In order to come over of these crucial issues, proper analysis of the require-

ments and goals of the system should be taken into the account from the first steps. Once

the results of analysis are listed as requirements, the feature extractor should be built

base on trial and error method to check which strategy suits the problem the most.

Training a classifier requires selection and implementation of machine learning al-

gorithms. There is wide range of algorithms available for named entity recognition. Out

of which we selected those who were implemented the most in the freely available soft-

ware and packages. Although in several distributions the combination of different

methods are used, having insight over each probabilistic models would contribute to the

proper selection of the software with regards to the requirements of the final system. In

next sub-chapters, first two categorization of learning models namely generative and

discriminative is described, followed by the elaboration of Decision Tree, Naïve Bayes,

Maximum Entropy and their pros and cons.

 Generative and Discriminative Models

Learning model are categorized into two groups of generative and discrimi-

native (conditional). Generative models distribute probabilities over both

observed data x and hidden classes y. In contrast, Discriminative models are

- 8 -

using natural distribution for classifying x, assigning the probability of be-

longing to a group y to a give parameter x: P (a | x).A simple example makes

it clearer, consider the sentence below is selected from a corpus:

Mr. Amelink is visiting Soluso in order to establish a joint collaboration be-

tween Amelink B.V. and Soluso.

Selected entities are listed and categorized below in the format (x,y):

(Amelink, Person), (Soluso, Organization), (Amelink, Organization), (So-

luso, Organization)

Then for P(x,y) two probability distributions are listed below, the former for

generative and the latter for discriminative algorithm:

 y = Person y = Organization

x = Soluso 0 0.5

x = Amelink 0.25 0.25

Table 1. Joint Probability Distribution

 y = Person y = Organization

x = Soluso 0 1

x = Amelink 0.5 0.5

Table 2. Conditional Probability Distribution

 Getting Features from Corpus to Use in Models

As it is already mentioned, feature is an elementary piece of evidence which

leads to predicting class C for the observed data D. Mathematically speaking,

feature ƒ can be considered as a function which map a real value to a space

of classes and a piece of data:

ƒ: C × D —> R

For example for this sentence:

Mr. Amelink is visiting Soluso in order to establish a joint collaboration be-

tween Amelink B.V. and Soluso.

One feature for Amelink B.V. which is an organization would be:

- 9 -

ƒ(c, d) = [c = Organization ^ w[i+1] = “B.V.” ^ isCapitalized(w[i])]

This feature map a number to the fact of belonging to the category ‘organiza-

tion’, being capitalized as well as being followed by the word “B.V”.

Models are trying to give each feature a weight which is a real number. It can

be either positive or negative. The positive numbers stands for the correct

configuration while the negative is representing that the configuration is prob-

ably incorrect.

Conditional or discriminative probabilistic models are much more useful

nowadays, reason:

- High accuracy and performance

- Making it easier to include a variety of linguistically features

- Incorporating to automatic building of NLP systems in a language

independent manner.

Downsides of discriminative to generative models is that Conditional models

can easily memorize much of the training set, contributing to over fitting of

too much information by observing and memorizing everything which may

not appear in test data.

Generative models are also transferable to Discriminative out of applying

Bayes rules in or-der to use for classification. In terms of classification, Dis-

criminative models outperform Generative models. [5]

Models such as n-gram models, Hidden Markov Models (HMM), Probabilis-

tic context-free grammars, Naïve Bayes classifiers and so on are generative,

while some others like Conditional random fields (CRM), Logistic regres-

sion, Maximum entropy models (Maxent) and so on are known as

discriminative or conditional models.

 Decision Tree

One of well-known learning methods which contribute to building a classifier

automatically is Decision Tree, reacting as a flowchart to assign a class to the

new input. Each decision tree consists of decision nodes for checking the fea-

tures and leaf nodes for assigning the classes based on the result of decision

nodes. The first decision node is known as root node, assigning a class to a

new input by checking the value of one the input’s feature. After this phase,

the input which is classified already for one step is now considered as an input

at a new decision node. The process is repeated for each new decision node

until we achieve a decision leaf which can assign a label for input value. The

example is provided below:

- 10 -

Decision Tree: Location-Person entity recognizer

FirstLetter=Capitalized?

No

PreviousWord= At ? PreviousWord= With ?

Yes

Previous= Mr./Mrs. ContainNumbers?

L P

No

No

Previous= Mr./Mrs.

LP L P LP

ContainNumbers?

YesNoYes

No Yes No YesNoYesYes

input

Figure 3. Decision Tree Method

Once the decision tree is trained, it would be straightforward to classify a new

input. Hence the complicated part of this solution is to train a proper tree

using an efficient and procedural strategy. In order to build up an appropriate

tree, there are some steps to take into account. The first and required step is

to find and choose the most effective decision stump for a set. Decision stump

is a single decision node which classify the input regarding a single feature.

To simply the task, it is possible to consider all features separately and assign

each feature a decision stump, selecting a class for input which is the most

frequent regarding that feature in the training set. Each class is considered as

a leaf of decision stump. The leaves are changing continuously to find a class

which maximize the performance and accuracy.

There is a wide range of methods for finding the most appropriate and in-

formative feature for the decision stump. An information gain is another

solution which calculate how disorganized the data is, using entropy of their

classes.

 Entropy: An attribute stands for indicating how data is distributed.

The more disorganized a data is, the higher an entropy would be. In other

words, if the classes of input data is varied immensely, the entropy would be

high, in contrast when the input data share the same classes the entropy is

low. The entropy is calculated out of multiplying the sum of the probabilities

for each label to log probability of that specific label.

𝐻 = − ∑ 𝑃𝑖(𝑙𝑜𝑔2

𝑖

𝑃𝑖)

Using entropy helps to find a proper classes which occurred as medium scale.

If a class is occurred rarely then Pi would be so small so H is low, on the

- 11 -

other hand if a class extremely occurred within a corpus then log2Pi returns

a small value, contributing to a low entropy.

As it is previously mentioned, finding classes with the highest entropy or in

other words finding decision stumps with the highest information gain would

help to have an efficient decision tree. However, decision trees has their own

pros and cons as other methods. Decision trees are simple and easy to depict

as well as interpret the results. Furthermore, in order to find the most useful

features, decision trees can play an effective roles. On the other hands, the

advantages can be “over fitting” the data set, which means by division of data

set into two data set at each nodes, the amount of training data for lower

branches might be so low that lead to unreliable results. There are some solu-

tion to this issue, such as producing the full decision tree and applying prune

to decision nodes using dev-test for those who are not affecting the perfor-

mance. Furthermore, a major deficiency of this method is checking features

in a specific order which might lead to undesirable results since not all the

features are relatively dependant on each other. To overcome this drawback,

Naïve Bayes Classification offers possibilities to all features to act equidis-

tantly which will be discussed in next part.

 Naïve Bayes Classifiers

As it is discussed previously, the main goal is to assign a class (C) to a word

(W). In order to classify base on Naïve Bayes algorithm, two types of proba-

bilities are involved. Firstly probabilities of all classes should be calculated P

(Ci). This task can be done out of processing labelled training courses, prac-

tically speaking: number of the specific of a group occurred in the corpus

divided by the total amount of words in the corpus. The second type of prob-

abilities is P (Fi | C) stands for the probabilities of each feature (F) give class

(C). In order to simplify the task, assume that features are binary and inde-

pendent. Then the equation would dividing the number of words in training

set with the feature and class by the number of words with the given class:

𝑃 (𝐹|𝐶) =
𝑁𝑢𝑚(𝐹, 𝐶)

𝑁𝑢𝑚 (𝐶)

The multiplication of both factors is the key to the Naïve Bayes classification.

For each input, all the probabilities are calculated and the winner is a class

which maximize the result of the equation below:

𝑆 (𝐶, 𝑊) = 𝑃(𝐶) × ∏ 𝑃 (𝐹𝑖 | 𝐶)

𝑛

𝑖=1

- 12 -

The formula might looks rudimentary, however using of this equation merely

might lead to unreliable results. There are numerous reasons which cause var-

iation in results, decreasing the performance. Few tips might help to boost the

result:

i. Smoothing: In the formula above if in the training set there is no word

with the feature (F) with the given class (C) then the result of 𝑃 (𝐹|𝐶)

would be zero which means there is no chance of a word happening in

the test set with the given feature (F) and class (C). In order to prevent

this kind of variation in the results, sophisticated solution such as imple-

menting smoothing techniques are required.

ii. Non-binary to Binary: As it is already stated, to simplify the task all

non-binary features should be translated to binary features. One of the

solution is to translate multi-class feature to several binary features. For

example, for multi -class feature “WordType = {noun, verb, adjective,

adverb}” it would be rational to have four binary feature “WordIsNoun

= {0, 1}” and so on. Furthermore, regression methods can be used for the

translation of numeric features to binary ones.

Although the method is very simple and easy to implement, it has some major

deficiency which makes it not efficient to implement in real sophisticated

word. For instance, Double-Counting. This drawbacks comes from the pro-

cessing of the feature in the independence manner. In other words, a lot of

features has some correlations. However, since in one hand, the contribution

of all features in training set are processed independently and on the other

hand for classifying new input all the features are combined, the contribution

of those correlated features might be overestimated. For example, two feature

F1 and F2 stands for ends_with(1) and ends_with(odd numbers), if the new

input ends with 1 then both features are applicable and their contribution

weights would overrate the final judgments. To come over this deficiency,

Maxent algorithm is a proper alternative which will be discussed in next part.

 Maxent Classifier

Maxent stands for Maximum Entropy classifier, sharing a lot of similarities

in terms of model they use. The major difference is that Maxent uses search

methods to find specific parameters which maximizes the total likelihood of

training data, in contrast to Naïve Bayes which finding parameters out of us-

ing likelihoods. Direct calculations of P (label | feature), does not merely

contribute to finding a reliable set of parameters due to complicated inter-

relation between some features. The problem is solved by a technique called

iterative optimization.

- Iterative optimization: This techniques consist of following steps,

starting by initializing the model by random parameters, redefine the

- 13 -

parameters continuously to find the most optimized set. Every itera-

tion guarantee that new set of parameters is more optimized, however

there is no solution to determine whether the most optimized set is

achieved or still there is a room for improvement. This fact makes this

technique time consuming especially when there is a wide range of

features and classes available in the training data.

Mathematically speaking, in Naïve Bayes model, each class and pair of (class,

feature) has a parameter to calculates the likelihood. Nevertheless, in maxi-

mum entropy, combination of features and classes has their own parameter

(joint-feature).

2.1.3.2 Unsupervised Learning

In unsupervised learning, all techniques are based on lexical resources and patterns. In

order to find named entities, for every new input, models refers to the most similar clas-

sified word in a lexical resource such as WordNet which is created out of processing a

large amounts of corpus. One of the most outstanding advantages of this method is that

there is no human annotated corpus is required in order to train a model. In other words,

an input of the system is syntactic patterns with specific properties and the system tries

to create a rich list of named-entities. Referring to wide list of entities is not merely

enough since it can cause a lot of ambiguities. Nevertheless, the techniques are covering

ambiguity resolution techniques to achieve reliable results.

An example for unsupervised learning is the method developed by R. Evans at 2003 in

order to identify hypernyms and hyponyms which is capitalized in the text. For instance,

if “Microsoft” is capitalized in the text and we are looking for its hypernyms, the query

of “such as” might contribute to a solution out of searching on the web and retrieving

corpus. The word that preceding the query “such as” is the most probable candidate as

a hypernym for “Microsoft”, in this example “Organization such as Microsoft” was the

most occurrence of passage, giving the clue that the hypernym of “Microsoft” is “Or-

ganization”.

2.1.3.3 Semi-supervised Learning

Semi supervised learning stands between supervised and unsupervised ones. SSL tech-

niques require small amounts of seeds (e.g. hand annotated data) in order to start the

process. The main method in SSL is bootstrapping which is elaborated by an example.

For instance, consider a named entity recognizer system which is implemented using

SSL specifically bootstrapping approach. To initialize the system, names of few organ-

izations are given to the system, out of which system tries to find sentences that include

seed examples, followed by identification of contextual clues which is shared between

seeds. The process is followed by finding new entities and context using contextual clues

extracted previously. Repeating this process continuously contributes to extraction of

numerous new entities and contexts.

The methods might look simple and autonomous which might rise questions over its

performance. However an experiment by Nadeu et al.in 2006 shows that performance

- 14 -

of Semi-supervised learning methods is comparable to the baseline supervised tech-

niques.

There are some other methods rather than bootstrapping for semi-supervised learning.

Mutual bootstrapping was introduced by E. Riloff and Jones in 1999. It suggest how to

initialize with a handful of seeds of a given type instead of initializing with pre-defined

named entities. Furthermore some techniques were introduced in order to boost the per-

formance of existing methods, such as using syntactic relation in order explore more

reliable contextual evidence near entities which is for the first time used by A . Cucchi-

arelli and Velardi in 2001.

- 15 -

2.2 Mind map of NERC

In previous chapter, theoretical aspects of named entity recognition embedded into ex-

isting systems has been elaborated. Nevertheless, it is mostly focused on specific and

related topics regarding requirements of the system which will be discuss later. In order

to find which most related techniques, the overview of survey of named entity recogni-

tion is visualized using mind map representation technique.

Figure 4. Mind Map of NER: Machine Learning Methods

- 16 -

As can be seen, since the diagram is enormous, the mind map is divided into 3 sub-roots,

namely machine learning techniques, handcrafted rule-based algorithms and feature

space. In addition to the detailed description for each part, some branch contains infor-

mation regarding the related papers such as the name of the authors and their publish

date.

Figure 5. Mind Map of NER: Handcrafted Rule-based Algorithms

- 17 -

The last part of the mind mapping which is the biggest part is allocated to feature space.

As it is already mentioned, features merely are not able to solve complex problems,

therefore it should be coupled with other techniques such a machine learning to accom-

plish the entity recognition task.

Figure 6. Mind Map of NER: Feature Space

2.3 Evaluation of Named Entity Recognition Systems

The evaluation of named entity recognition simply refers to the comparison between the

results returned by system and human expectations. There is wide range of strategies

and methods available for NER systems which can be implemented regarding tech-

niques embedded into the system. In most of evaluation methods, three attributes play

- 18 -

vital roles, namely Precision, Recall and F-Measure. Before introducing these attributes,

understanding of 2-by-2 contingency table is required.

2.3.1 Contingency Tables

To evaluate each part of data, 4 states are available, namely true positive, true negative,

false positive and false negative. Describing four states using 2-by-2 contingency table

makes it more clear and understandable. For instance, consider that there is an entity

“Radboud” in the text and the system detect it as an entity “University”. In this case the

answer is correct. Another example, a word “Soluso” is appeared in corpus and the sys-

tem has not recognize as a name of company which is the incorrect perdition. In

contingency tables this attribute can have both value of true and false, based on the

situation which will be described later. One dimension of table stands for mentioned

characteristic, representing true and false prediction using two columns. On the other

side, there is another dimension of table, indicating whether a prediction is accom-

plished or not. In other words, if system predict an data piece as an entity then attribute

assigned to this prediction is positive, while negative is stands for a piece of data which

is not detected as an entity, no matter whether it is true or false. This aspect of the result

evaluation is depicted by two attributes of negative and positive representing rows of

the table.

The combination of both previously mentioned attributes is leaded to a table called 2-

by-2 contingency table.

 Correct Not correct

Detected True Positive(𝑡𝑝) False Positive(𝑓𝑝)

Not detected False Negative(𝑓𝑛) True Negative(𝑡𝑛)

Table 3. The 2-by-2 Contingency Table

As can be seen, the main parameter of the table stands for true predictions, out of which

the accuracy of the system is calculable.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛

However, accuracy does not a good measurement to evaluate the performance of a sys-

tem. For example, consider a system designed to detect name of universities and we

have a corpus of 500,000 words, out of which only 50 words are university names. As-

sume that system could not detect any of them. Then the contingency table would be

filled with values below:

- 19 -

 Correct Not correct

Detected 0 0

Not detected 50 499,950

Table 4. The 2-by-2 Contingency Table

Then if the accuracy is calculated based on the formula above the result would be:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
499,950

500,000
= 99.99%

As it is proven, the system which was not able to detect any of entities are considered

as a high accurate system with the accuracy of 99.99 percent. Therefore, this kind of

accuracy is not a reliable indicator of evaluation and another. Effective evaluation re-

quires a solution which take more factors into the account. This issue is solved by using

precision and recall.

2.3.2 Precision and Recall

Precision and recall are two effective attributes which can be calculated out of contin-

gency table. Precision is a factor to measure to how extent the guess of the system was

right, mathematically speaking:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

On the other hand recall stands for how effective the system detects the entities, in other

words:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

As it can be noticed, in previous example it was the attribute True Negative (𝑡𝑛) which

affects the result of the accuracy formula. In both precision and recall true negative is

not involved, contributing to more reliable evaluations. Nevertheless, for having a well-

designed system there should be a proper tradeoff between both precision and recall,

hence based on the requirements some systems are made to have higher precision while

the others are more effective in recall. These differences in terms of evaluation makes it

complicated to have an overall comparison between the performances of different sys-

tems. Establishing a new measurement method called F-measure is a solution to the

case, involving both precision and recall factors.

- 20 -

2.3.3 F-Measure

F-measure is a sort of weighted harmonic mean for evaluating the trade-off between

precision and recall. There are two equal formulas 𝐹𝛼 and 𝐹𝛽 for the calculation of F

measure using two custom variables α and β :

𝐹𝛼 =
1

α
1

P
+ (1 − α)

1

R

𝐹𝛽 =
(β2 + 1)PR

β2P + R

Arithmetically speaking, both α and β should be customized to the amounts which fulfill

the requirements of system via strengthening the impact of whether precision or recall

while weakening the other one.

Out of both formulas introduced for F-Measure, the second latter is more common for

the NER evaluation systems. Consequently β is the standard control parameter for using

balanced F measure. When there is no reason for maximizing the impact of precision or

recall rather than the other one, balanced F1 measure is used as evaluation mean which

means initializing β = 1 (in other words α =
1

2
), creating equal balance between pre-

cision and recall.

𝐹1 =
2PR

P + R

2.4 Technical aspects: Existing Technologies for NER

The theoretical aspects of Named Entity Recognition are fully covered in previous

chapter. In order to make a proper decision in choosing the most correspondent package

to the system requirements, having insight over all existing technologies is required.

There is wide variety of software, packages and libraries available which implemented

mentioned algorithms using different techniques and technologies. In this chapter all

available toolkits are introduced. Furthermore, in each part their features, languages and

licences are summarized. The list is sorted by name (A_Z).

 AlchemyAPI 4

Type: Web-service

Programming Language: Multiple

Services: Named entity recognition, language identification, concept tagging, con-

tent scraping, web page cleaning, text classification, keyword extraction.

License: Commercial, offered in free, basic, professional and metered versions.

4 http://www.alchemyapi.com/

- 21 -

 Apache Mahout 5

Type: Library

Programming Language: Java

Features: User and item based recommendation, mean shift and fuzzy k-means clus-

tering, singular value decomposition, collaborative filtering, random forest decision

tree based and complementary naive bayes classifiers, latent Dirichlet process allo-

cation and parallel frequent pattern mining.

License: Apache software license

 Balie 6

Type: Library

Programming Language: Java

Features: Tokenization, language identification, named entity recognition, sentence

boundary detection, supporting English, French, Spanish, German and Romanian.

License: GNU GPL

 Classifier4J 7

Type: Library

Language: Java

Features: Text summary, vector and Bayesian text classification

License: Apache software license

 Content Analyst 8

Type: Platform

Language: N/A

Features: Automatic summarization, vector and Bayesian text classification

License: Apache software license

 The Dragon Toolkit 9

Type: Development package

Language: Java

Features: Text summarization, text classification, topic modelling and text clustering

License: Open source (Few condition should be met which is stated in their website)

5 Apache Mahout-scalable machine learning algorithm.
6 http://balie.sourceforge.net/
7 http://classifier4j.sourceforge.net/
8 http://contentanalyst.com/html/tech/technologies.html
9 http://dragon.ischool.drexel.edu/license.asp

- 22 -

 FreeLing 10

Type: Library

Language: C++

Features: Sentence splitting, sSuffix treatment, text tokenization, morphological

analysis, retokenization of clitic pronouns, Rule-based dependency parsing, nominal

correference resolution, contraction splitting, named entity recognition, PoS tag-

ging, probabilistic prediction of unknown word categories, chart-based shallow

parsing and WordNet based sense annotation and disambiguation, supporting Eng-

lish, Austrian, Portuguese, Spanish, Galician, Italian, Catalan and Welsh.

License: GPL GNU

 Gate 11

Type: Framework

Language: Java

Features: Text processing features, using of external plugins.

License: Apache software license

 Illinois Natural Language Processing Group 12

Type: Tools/Packages

Language: Java

Features: NLP curator, quantifier, chunker, named entity tagger, part of speech tag-

ger, semantic role labeller (SLR), lemmatizer and lots of more packages.

License: BSD license

 Java Text Mining Toolkit (JTMT) 13

Type: Toolkit

Language: Java

Features: Citation based ranking, POS Tagger and recognizer, token recognition, bi-

nary naïve and vector space classifier, corrector using word collocation probabilities

and summarization with Lucene.

License: LGPL (Lesser GNU General Public License)

 Julie NLP 14

10 http://garraf.epsevg.upc.es/freeling/demo.php
11 https://gate.ac.uk/
12 http://nlp.cs.illinois.edu/
13 http://jtmt.sourceforge.net/
14 http://www.julielab.de/Resources/NLP+Tools.html

- 23 -

Type: Toolkit

Language: Java

Features: Named entity recognition, semantic search, text mining and information

extraction.

License: Common Public License

 Language Computer 15

Type: Products

Language: N/A

Features: Named entity recognition, PoS tagging, attribute/event/relationship ex-

traction, co-reference resolution, text summarization, sentence splitting and

tokenization.

License: Fully commercial

 Lemur Project 16

Type: Toolkit

Language: C++, C# and Java

Features: Set of toolkits for information retrieval and text mining such as search

engine (Indri), browser toolbar (Lemur) and data resource (ClueWeb09)

License: BSD license

 Lingo3G 17

Type: Software

Language: Java, PHP, Ruby and C#

Features: Clustering text collections in hierarchy manner

License: Commercial (but also offering some open source alternatives)

 LingPipe 18

Type: Toolkit

Language: Java

Features: Named entity recognition, language identification, sentiment analysis,

clustering, hyphenation and syllabication, Sentence detection, word sense disambig-

uation, spelling correction, string comparisons, interesting phrase detection,

database text mining, Chinese word segmentation, character language modelling,

15 http://www.languagecomputer.com/
16 http://www.lemurproject.org/
17 http://carrotsearch.com/lingo3g
18 http://alias-i.com/lingpipe/

- 24 -

singular value decomposition, logistic regression, expectation maximization, topic

classification, and PoS tagging.

License: Free for academic use and for other purposes commercial licenses are avail-

able

 Mallet 19

Type: Toolkit

Language: Java

Features: Numerical optimization, sequence tagging, text classification and topic

modelling.

License: Common Public Licence

 Minor Third 20

Type: Toolkit

Language: Java

Features: Named entity recognition, text annotation and classification.

License: BSD license

 MontyLingua 21

Type: Toolkit

Language: Java and Python

Features: PoS tagging, natural language summarization, lemmatization and tokeni-

zation.

License: MontyLingua version 2.0 License (Free for non-commercial applications)

 MorphAdorner 22

Type: Command line program

Language: Java

Features: Word tokenization, language recognition, PoS tagging, spelling standard-

ization, text segmentation, name recognition, lemmatization, noun pluralization,

verb conjugation and sentence splitting.

License: NCSA style license

 NaCTeM 23

Type: Software tools

19 http://mallet.cs.umass.edu/
20 http://sourceforge.net/projects/minorthird/
21 http://web.media.mit.edu/~hugo/montylingua/
22 http://morphadorner.northwestern.edu/
23 http://www.nactem.ac.uk/

- 25 -

Language: N/A

Features: Named entity recognition, PoS tagging, text classification, deep syntactic

parsing, sentiment analysis, annotation of named entities, shallow parsing for bio-

medical text and a bilingual dictionary extraction using a Random Forest method.

License: Free and closed source

 NLTK 24

Type: Toolkit

Language: Python

Features: Text classification, PoS tagging, syntactic parsing, stemming and text to-

kenization.

License: Apache 2.0 license

 Open Calais 25

Type: Web service

Language: N/A

Features: Named entity recognition, fact and event extraction.

License: Free up to 50,000 transactions a day (more transaction requires service li-

cense agreement).

 OpenNLP 26

Type: Library

Language: Java

Features: Named entity recognition, part-of-speech tagging, tokenization, chunking,

sentence segmentation, parsing and coreference resolution.

License: Apache License Version 2.0

 Palladian 27

Type: Toolkit

Language: Java

Features: Named entity recognition, Sentence splitting, tokenization, classification

and information retrieval such as crawler and API access.

License: Apache License Version 2.0

 RASP 28

24 http://www.nltk.org/
25 http://www.opencalais.com/
26 http://opennlp.apache.org/
27 http://palladian.ws/
28 http://www.sussex.ac.uk/Users/johnca/rasp/

- 26 -

Type: Toolkit

Language: C and Lisp

Features: Lemmatization, morphological analysis, Tokenization, grammar-based

parsing and PoS tagging.

License: GNU Lesser General Public License (LGPL)

 Stanford NLP 29

Type: Library

Language: Java

Features: Named entity recognition, word segmentation, PoS tagging and classifica-

tion.

License: GNU GPL

 SRILM 30

Type: Toolkit

Language: C++

Features: Statistical tagging and segmentation, Machine translation and speech

recognition.

License: SRILM Research Community License Version 1.1 (Only free for non-com-

mercial use)

 TextAnalyst 31

Type: Software

Language: N/A

Features: Semantic information retrieval, text clustering, text summarization and

meaning extraction.

License: Commercial

 VisualText 32

Type: Software

Language: C and Lisp

Features: Named entity recognition, text classification, text indexing, text summari-

zation, text grading and text filtering.

License: Commercial

29 http://nlp.stanford.edu/
30 http://www.speech.sri.com/projects/srilm/
31 http://megaputer.com/site/textanalyst.php
32 http://www.textanalysis.com/

- 27 -

 WEKA 33

Type: Library

Language: Java

Features: text clustering, classification and regression using support vector ma-

chines, naïve bayes, k-nearest neighbour and neural networks.

License: GNU Lesser General Public License (LGPL)

After introducing theoretical aspects of the Natural language processing specifically

Named Entity Recognition and providing latest implementations available, now it is

time to elaborate the requirements of the goal system.

33 http://www.cs.waikato.ac.nz/ml/weka/

- 28 -

3 Named Entity Recognition in Customer Relation-

ship Management (CRM) Systems

The final goal of this thesis to develop and optimize a named entity recognition system

inside an existing CRM system called Falcon. In first part of this chapter, details about

CRM applications are discussed, followed by the application of named entity recogni-

tion in CRM systems. Falcon CRM will be introduced as well. In the last part of these

chapter the requirements of Falcon for having a proper NER system is elaborated.

3.1 Introduction to CRM

CRM is abbreviation for Customer Relationship Management which refers to a set of

tools for managing all the affairs related to customers, ranging from customer services

and support to marketing, sales, inventory and so on. There is wide variety of CRM

applications available in the market with different prices, features, specifications, ser-

vices, accessibility and a lot of factors which will be offer as software packages, online

web services or any other platforms. Customer relationship management gives the busi-

nesses opportunities improve their relation with existing customers as well as potential

customers out of providing more satisfaction. In general, CRM applications can be cat-

egorized in three major groups below:

3.1.1 Collaborative Systems

Collaborative CRM focuses on communication and direct interaction with customers

through different platforms such as emails, telephone calls, web and etc. Customers can

play a vital role in the improvement of services. Collaborative CRM make it possible

for the business to offer better products out of collaboration with customers.

3.1.2 Operational Systems

Operational CRM systems are used to take care of the customers. In other words, it

offers supports for a variety of business processes such as marketing, managing sales

and customer data such as their contacts, history of purchases, last communications and

so on. All these data can be collected in one place in order to use later on for marketing

purposes or other types of CRM such as Analytical.

3.1.3 Analytical Systems

Analytical systems focus on the analytical aspect of the data. It uses a variety of tech-

niques to process the available data related to sales, customers and services in order to

evaluate the business performance, gaining more insight over the past which helps busi-

nesses to modify and improve the strategies and marketing plans.

- 29 -

There is a wide range of CRM systems available in the market, offering services via

web application, software or other types of online or even offline services. At this mo-

ment, market leaders are Microsoft Dynamic CRM, Salesforce.com, Oracle and SAP

AG.

3.2 Named Entity Recognition Applications in CRM Systems

Since the number of features in CRM systems which offer services to the users are

countless, it would not be pragmatic to cover all of them here in this research. However

based on the types of CRM which are discussed in the previous chapter, it is possible to

mention and categorize some of the features which can gain benefit out of the results of

named entity recognition engines:

3.2.1 NER in Collaborative CRM

The most interesting type of CRM for taking advantage of named entity recognition

features is Collaborative. Since the focus is on the communication and direct interaction

with customers, a wide range of applications can be implemented through different strat-

egies to offer better services to the customers. Nowadays most of direct interactions with

the customers are being done through different online communication platforms such as

emails, social media and web. All the data passing through these channels can be passed

through the named entity recognition engine in order to be processed. Once the named

entities are extracted, a variety of services can be offered. For instance, in the calendar

of the user in a CRM application, an event can be automatically created and added to

the calendar of the user using extracted entities (such as date and location) from the plain

text of an email containing a request for a meeting.

3.2.2 NER in Operational CRM

In Operational CRM systems, a named entity recognition engine can play a role of fas-

cinator in the data collection and categorization. As it is already mentioned Operational

CRM systems help the organization to keep track of its business processes and collected

all the data related to the fields. NER engine can help to extract key entities to have a

more organized and structured data. For instance, to collect and store sales and customer

data such as history of purchases, named entity recognition can extract all related entities

such as numbers and date of purchases from plain texts to have an automatic data col-

lection service.

3.2.3 NER in Analytical CRM

Due to the catachrestic of Analytical CRM systems which is the analysis of data to gain

more insight about the business, named entity recognition can only be helpful in the data

collection process which is exactly the same as applications which are discussed in the

previous chapter. However, other Natural Language Processing fields can play im-

portant role in processing the data for having more insight over business. For instance

sentiment analysis of Twits and Facebook posts by customers about an specific products

can give the product owner an insight over opinion of users.

- 30 -

3.3 Falcon CRM

Falcon is a web application offering a variety of services. The core of the falcon is focus-

ing on collaborative and operative CRM services rather analytical. However, system is

not limited to CRM features but also a lot of extra services such as task management

and project management which are under development.

Major features are Falcon CRM which is under development for the first version of

the product are listed below:

1- Automating a variety of tasks for the employees such as mailings, calendar and

schedule, summary of meetings and upcoming tasks.

2- Keep track of different stage of the project out of automatizing writing reports,

to do lists and an online communication platform

3- Collect data from different resources to evaluate the business performance.

In the next chapter, more detailed descriptions regarding features which use Named En-

tity Recognition to offer services will be discussed.

3.4 Named Entity Recognition in Falcon CRM

As it is already stated, there is a wide variety of features within Falcon. Out of which,

some of them take advantage of Named Entity Recognition. Namely creation of tasks,

events, report and summary out of online communication such as emails, instant mes-

sages and so on which is elaborated below.

3.4.1 Task management system and calendar

There is a task management system coupled with a personalized calendar within Falcon

which help users to create tasks, assign it to another or a group of users, keep track of

its progress, add it to a calendar using due date and lots of more features. However,

features are already implemented in some CRM and task management systems, using

Named Entity Recognition to automatize these tasks is a new method which makes the

features easier than ever before to use. For example, if a user receive an email, they can

open it in a Falcon mail management system (similar to outlook). The falcon Named

Entity Recognition engine can detect if a name of a task (e.g. asking for a meeting, call

or etc.), company (Soluso B.V., Amelink Ltd. And etc.), person (David Notte, Farbod,

De rooij and etc.), location (Silicon Valley, Nijmegen, Kerkenbos St. and etc.), date (30-

10-2014, 16:30, 14 Jan 2004, Sat 21 Feb 2016 and etc.) is stated in the plain text of an

email, report or etc. Based on the detection, it can suggest users to create tasks using

template which is initialized with the specification of the task that should be done such

as a title, specific assignee, due date or other elements which is stated in the text. Another

example can be an email request which a user received by an email from its customer.

The named entity recognition engine suggest the users to create an event in their calen-

dar using a prefilled template with its suggestion regarding the parties involved in the

meeting, date, place and other entities which might be stated in the email.

- 31 -

3.4.2 Template selection

There is a variety of templates available within Falcon CRM. Users access and use these

forms for different purposes. For instance, a form can be created with the project inquiry

template in order to provide a customer prices regarding a project, so based on the email

conversation, reports or simply the title of the task which users type in the title of the

form, the named entity recognizer engines will detect all entities in the plain text and

based on the extracted keywords it suggests the most related templates.

For instance, a user received an email in his Falcon inbox. It is stated that “Regarding

our meeting, I would like to inform the place is same as previous time (Looimolenweg

13, 6542JN). I am looking forward to see you at 16:30, 30-10-2014”. The system can

recognize that a place and a date is stated in the email. So it will suggest a template for

adding an event to the user’s calendar. The system will initialize:

 The time of the event with “16:30, 30-10-2014”

 The title of the event with “Meeting with x” where “x” can be extracted from the

keywords in the email such as the name of the person in the email signature:

 The location of the email with Looimolenweg 13, 6542JN either from the email text,

the mail signature or even out of referring to the contact manager to find the address

which is allocated to the person or company.

A similar example can be the same process via adding an event manually. In other words,

a user make an appointment with someone on the phone and now he/she wants to add

this event to the calendar. Simply the user can click on adding a new element and start

typing the title for the element:

Automatically Falcon detects the Entities namely “Theo” as a person, “16:30 10-10-14”

as a date and “Huyegensgebouw” as a location. Therefore the system suggest a user a

template for creating an event in the calendar, initialized with mentioned entities in their

right places.

Lots of example are available to describe the role of named entity recognition in facili-

tating the manual tasks in Falcon CRM such as events and tasks creation, choosing and

filling proper templates in terms of documentation as well as communication and so on.

In the upcoming chapter, technical requirements of the system is analysed.

- 32 -

4 Requirements Analysis

In previous chapter, high level functionalities of the Falcon using named entity recogni-

tion were discussed. However, in order to have a fully comprehensive solution, the

requirements of Falcon should be examine in the detail, regarding both aspect of func-

tional and technical. The former stands for what the system is supposed to do while the

latter specify how the system is built.

4.1 Technical Requirements

At the moment of writing this thesis, Falcon CRM is under development in terms of

both architecture and implementation aspects. Therefore, to make technical require-

ments clear, a solution is to consider the named entity recognition engine as a separate

element which will be added to the system in order to conduct tasks and prepare the

results for other elements to finalize a specific goal (e.g. form template suggestions,

element creation and etc.). As it is already stated in previous chapter, there is a wide

range of advantages which can be drawn from named entity recognition in the Falcon

CRM system which is not possible to discuss all here in this thesis. However, based on

brainstorming sessions and Falcon requirements, the type of named entities which are

supposed to be extracted were clarified. In upcoming sub-chapters, type of the platform

and its programming language, license requirements, inputs of the NER engine, output

(targeted types of entities) and their specification such as desire data format will be

elaborated. All these factors have impacts on the selection of the NER library, package

or software. At the end, the selection and preparation of the package will introduced.

4.1.1 Platform Specification

Referring to Falcon CRM design documents, all elements should be implemented using

MVC language pattern specifically C# in .Net framework platform. Therefore the pref-

erence for developing an NER engine is to have C# friendly product. It other words, If

the selected product is:

 A closed source software/toolkit: There is no requirements for its language since

the product can react as the translator. That is, receiving input data, enter it to the

package, processing and producing the output, finalizing it via passing back the

results to Falcon.

 An open source package/library: A major concrete requirement for a modifiable

package or library is to be adoptable to the Falcon which has been written in C#.

In other words, the language of the library should either have been written in C#

or in a way that is portable to use in C# programs.

4.1.2 License Requirements

There must be no costs involved in either using a package or buying a subscription.

Therefore, the modified named entity recognition engine of the Falcon CRM should be

freely available without any restriction in using it commercially.

- 33 -

4.1.3 System Input Specification

The input of the named entity recognition engine in Falcon should be a plain text. The

input text stream should be consider as raw data which means either might contain en-

tities or not.

4.1.4 System Output Specification

Base on the goal of the systems, system owners and designers came to a conclusion that

the output of the NER engine in Falcon CRM should be return specific entity types of

“Person’s Name”, “Company’s Name”, “Location”, “Time” and “Date”. The results

must be a plain text as well containing all detected named entities. However, at this

moment there is no requirements on the format of the results. It can be offered as CSV

files or any other formats available for plain-text.

4.2 Functional Requirements

4.2.1 Algorithm selection

The designers of the Falcon has not imposed any restrictions in terms of algorithms

selection. Therefore, the most efficient algorithms which are implemented in the latest

products will be chosen for the Falcon NER engine, mainly CRF (Conditional Random

Field), Maxent (Maximum Entropy), MEMM (Maximum Entropy), HMM (Hidden

Markov Model) and decision tree.

4.2.2 License Filtrations

In previous chapter it is mentioned that a product should be embedded to Falcon which

has not been restricted for using in commercial software. Therefore all the commercial

products will should be eliminated during the selection process. In second step, it comes

to open source application. Although there are different licenses available which can be

considered as open source, few of them give permission for using them in commercial

applications. For example GNU GPL is one of most common license in the world of

free software. However, if developers wants to use a code which is distributed under

this license in their own product, it should be distribute under GPL as well. In other

words, in commercial closed source application such as Falcon it is not possible to use

full GPL licensed code. So all the products under this license will be eliminated during

the selection procedure. Here is the example directly from the website of Stanford Nat-

ural Language Processing Group:

“All these software distributions are open source, licensed under the GNU General

Public License (v2 or later). Note that this is the full GPL, which allows many free uses,

but does not allow its incorporation into any type of distributed proprietary software,

even in part or in translation. Commercial licensing is also available; please contact us

if you are interested.”34

34 http://nlp.stanford.edu/software/

- 34 -

Another common license is GNU LGPL which is similar to the GNU GPL with less

restriction for developers who are using the product. In other words, GNU LGPL does

not require the developers to license their own products under the same type. BSD li-

cense is another type which impose less limitation on redistribution. BSD distribution

is allowed to be modified and used in the close source commercial applications. The

most permissive license is MIT which allows users to freely use, copy, and modify. The

only minor restriction is that it should be accompanied by the license agreement. Apache

is another famous license which is applicable to both copyrights and patents. Regarding

copyright which is related to this project, Apache grants user several rights which makes

it prominent. Refer to the official website of Apache:

“Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the Work and such

Derivative Works in Source or Object form.” 35

Based on what is elaborated regarding licenses, products under apache licence suit Fal-

con requirements. There are more functional requirements which will be specified after

the product selection such as training classifier, porting other languages to c# and so on.

In the next chapter one product will be selected to be modified in the solution chapter.

4.3 Product selection and preparation

4.3.1 OpenNLP vs. Stanford NLP

All packages and tools which were introduced in state of the art chapter were examined

carefully. First step was eliminating all the commercial and closed source packages from

the long list. Then the filtration were done based on the features of the packages. In other

words, packages without named entity recognition feature or weak NER engine were

filtered from the list. At third step, packages which are neither in C# nor capable of

being ported to C# were removed. At the last step, two packages were nominated as the

most suitable options with regards to the requirements of Falcon CRM. Both packages

have proper documentation and functionalities in terms of named entity recognition.

Stanford NLP group used CRF (Conditional Random Field) coupled with some other

methods to implement named entity recognition feature. On the other side, OpenNLP

group implemented NER engine using Maximum Entropy Model. There was a dilemma

regarding the selection of a package out of this two which was solved by the license

restriction. Stanford NLP package is licensed under the GNU GPL and it is clearly stated

in their website that it is not allowed to use this package in any type of distributed pro-

prietary software. There are some possibilities for using the package in the commercial

extent, however it requires some condition from Stanford NLP group. On the other hand,

35 http://www.apache.org/licenses/LICENSE-2.0

- 35 -

OpenNLP is licensed under Apache version 2.0 which impose no restrictions on modi-

fying and using the package in the commercial applications. Therefore, at the end

OpenNLP is selected out of all packages introduced in the stated of the art chapter.

4.3.2 Porting Java to C#

As it is already stated, OpenNLP libraries has been written in Java. In order to use them

in Falcon two solutions are available. First one is to make a separate system for Named

Entity Recognition and pass the data through a data channel from Falcon to NER system

which returns the result to Falcon. This black box which reacts as translator might cause

unacceptable amount of latency which affects the performance of real time suggestions

by Falcon CRM. The second solution which is selected to implement in this thesis is to

port the Java code to C#.

4.3.2.1 IKVM

IKVM is a free software for converting java files to a .Net assembly (dll). IKVM is

distributed under a permissive free software license, therefore there is no restrictions in

using it either for this thesis or the commercial application (Falcon CRM). The software

makes it possible to run compiled java code of OpenNLP directly on Microsoft .Net

which is the goal since Falcon is being written in C#. A short guide to port OpenNLP

java code to C# using installation guide provided in OpenNLP wiki36:

 Download and extract files from latest version package of IKVM37

 Download and extract the latest distribution of OpenNLP

 Copy three files from OpenNLP package namely opennlp-maxent-incubat-

ing.jar, jwnl.jar, opennlp-tools-incubating.jar38 to bin folder of IKVM (ikvmbin-

version/bin)

 Open the command prompt and changed the directory to the bin folder of IKVM

 Run this command: ikvmc -target:library -assembly:opennlp opennlp-maxent-

incubating.jar jwnl.jar opennlp-tools-incubating.jar.

 Running the previous command leads to the creation of dll files which can be

used in .Net project. Copy the created files which is listed below to the folder of

the project:

- opennlp.dll (the assembly you have just created)

- IKVM.Runtime.dll

- IKVM.OpenJDK.Core.dll

- IKVM.OpenJDK.Jdbc.dll

36 https://cwiki.apache.org/confluence/display/OPENNLP/
37 http://sourceforge.net/projects/ikvm/files/
38 These names are mostly coupled with numbers indicating versions of the distribution.

- 36 -

- IKVM.OpenJDK.Text.dll

- IKVM.OpenJDK.Util.dll

- IKVM.OpenJDK.XML.API.dll

Now OpenNLP is ready to use in a .Net project using the references to these assemblies.

In the Appendix, the ported code using IKVM is provided.

- 37 -

5 Recognition of Named Entities

As it is stated in previous chapter, OpenNLP is selected to fulfil the requirements of the

case. In the state of the art chapter OpenNLP is described shortly. However, since the

package is going to be modified, more insight over the whole product is needed. There-

fore, in the next subchapter OpenNLP is elaborated, followed by the introduction to

named entity recognition of the package, preparing the training data, training of a clas-

sifier and the evaluation is described. In the end, a new method for boosting the results

is described, followed by the evaluation and comparison of the results in terms of accu-

racy.

5.1 Introduction to OpenNLP

OpenNLP is a natural language processing library written in Java and distributed under

Apache version 2.0 license. It offers solution for several NLP tasks which are accessible

either via command line or API including:

- Part-of-speech tagging:

POS tagger assign each token a label which corresponds with its appropriate

word type, using the word itself or its context.

- Chunking

OpenNLP chunker divide a sentence into the groups which share the same

syntactic types such as noun group, verb group and so on.

- Tokenization

It segment an input text into tokens such as numbers, words, punctuation and

so on. The output of this feature is vital for some other tasks such as named

entity recognition.

- Parsing

Sentence segmentation: This feature contribute to sentence detection. In other

words, it can determine if a punctuation character in the sentence represent

the end of sentence.

- Named entity recognition:

Named entity recognizer is capable of detecting named entities such as per-

sons, date, locations and so on. In next chapter details regarding this

procedure are described.

- 38 -

- Coreference resolution

It contributes to finding all tokens refers to the same entity. This feature of

OpenNLP is not fully grown as other tasks, however they already made some

progress in this area.

In addition, OpenNLP offers several pre-built models for different languages using ma-

chine learning techniques such as Maxent and perception. It also provides the sources

for annotated texts which were used to train models. The clear and structured documen-

tation is provided in their website39, coupled with comments in the raw codes. For each

feature, a guide through evaluation process is described as well.

5.2 Named Entity Recognizer

As it is already mentioned, OpenNLP offers named entity recognition to find entities in

the raw input corpus. There is two way for using name entity recognizer in OpenNLP, a

command line interface and API. For name entity recognition, there are few pre-trained

models available. However to have better performance, training your own model on

proper corpus is required.

5.2.1 Training Data Specification

To train a model, annotated corpus is required which should be in a specific format

below:

- There should be one sentence per line.

- The entities in the sentences should be tokenized and labelled using spans.

- The separation of the documents are done using empty lines.

- The minimum amount of sentences in the training data to train a high perfor-

mance model is 20000.

Here is an example of the training data:

On <START:date>October 17<END>, during an academic ceremony at the Stevens-

kerk in <START:location>Nijmegen, the Rectorship will be transferred from

<START:person>Bas Kortmann<END>, the Rector for the last seven years, to

<START:person>Theo Engelen<END>.

39 http://opennlp.apache.org/documentation/

- 39 -

<START:person>Kortmann<END> is looking forward to taking up his professorship

again.

Meanwhile, the newest product of <START:organization>Soluso B.V<END> will be

available online on the website next week on <START:date>Friday 30th Aug<END>.

5.2.2 Training a classifier

For training a classifier in OpenNLP the tree major steps are required:

1. Opening a training data stream

Charset charset = Charset.forName("UTF-8");

ObjectStream<String> lineStream =

 new PlainTextByLineStream(new FileInputStream("en-ner-

person.train"), charset);

ObjectStream<NameSample> sampleStream = new

NameSampleDataStream(lineStream);

2. Call the NameFinderME

TokenNameFinderModel model;

try {

 model = NameFinderME.train("en", "person", sampleStream,

TrainingParameters.defaultParams(),

 null, Collections.<String, Object>emptyMap());

}

finally {

 sampleStream.close();

}

3. Saving the Model to a file/DB

try {

 modelOut = new BufferedOutputStream(new FileOutputStream(mod-

elFile));

 model.serialize(modelOut);

} finally {

 if (modelOut != null)

 modelOut.close();

}

Since no feature generation is specified, OpenNLP uses its default feature generation.

- 40 -

5.2.3 Custom Feature Generation Specification

In order to specify a custom feature generation, either the implementation of an interface

called AdaptiveFeatureGenerator or the extension of the FeatureGeneratorAdapter is re-

quired. Here is the example from OpenNLP which shows the specification of its default

feature generator:

AdaptiveFeatureGenerator featureGenerator = new CachedFeatureGenera-

tor(

 new AdaptiveFeatureGenerator[]{

 new WindowFeatureGenerator(new TokenFeatureGenerator(), 2,

2),

 new WindowFeatureGenerator(new TokenClassFeatureGenera-

tor(true), 2, 2),

 new OutcomePriorFeatureGenerator(),

 new PreviousMapFeatureGenerator(),

 new BigramNameFeatureGenerator(),

 new SentenceFeatureGenerator(true, false)

 });

The method which must be used for training is mentioned below. Feature generator can

be an argument for this function:

public static TokenNameFinderModel train(String languageCode, String

type, ObjectStream<NameSample> samples,

 TrainingParameters trainParams, AdaptiveFeatureGenerator gen-

erator, final Map<String, Object> resources) throws IOException

In order to detect name entities, both model and the feature generator must be entered

as arguments to the NameFinderME method:

new NameFinderME(model, featureGenerator, NameFinderME.DE-

FAULT_BEAM_SIZE);

In this thesis, the default feature generator was used. However in the future, based on

the new requirements in Falcon, a customized feature generation might be needed.

5.3 Named Entity Recognizer in Falcon Case

5.3.1 Training Data Preparation

The training data is collected from NLP-Geo project40. The data set is derived automat-

ically from Wikipedia and WordNet. The data is also redefined in the format required

40 https://code.google.com/p/nlp-geo/source/browse/trunk/models/en-ner-location.train?r=11

- 41 -

for the training, each line a sentence including tags for specific goal. In this case, the

targeted entities were the name of the locations which suits the Falcon requirements as

well. To finalize the preparation phase, all the named entities of locations were labelled.

Now the repository of 5452 sentences per line including tags for location named entities

is ready for the training level. It should be taken into account that all part of the corpus

should be included into the training data and not only parts and sentences containing

named entities.

Figure 7. Training Data Sample

5.3.2 Model Training

To train a model inside the application, calling API is more appropriate. In one of the

upcoming chapter, the description of code ported to C# is described. However, during

training, recognition and evaluation the tasks are done via command line. In the training

command, the source and the output file should be specified which is en-ner-loca-

tion.test for the former and en-ner-location.bin for the latter in this case.

After calling this command, the system starts doing specific preparation for computation

namely computing event counts, indexing, sorting and merging events as well as calcu-

lation for the number of event tokens, outcomes and predicates.

After the preparation phase, model parameter are calculated using the likelihood of 100

iteration, followed by saving the model in the specified location.

Now the model is ready to recognize the location named entities.

5.3.3 Entity Recognition using Trained Model

As it is already stated, there are two ways of accessing the NER engine, API as well as

command line interface. To show the result, the command line interface is selected. In

- 42 -

order to recognize entities, the model should be called. After calling the models, the

command line is ready to receive the input. Once a text is entered, a system print out the

same text coupled with tags for recognized named entities. Here is an example of one

sentence were inserted to the model and two named entities were recognized by it.

5.4 Evaluation

OpenNLP offers an evaluation tool for calculating the performance of named entity rec-

ognizer using three attributes including precision, recall and F-measure. The evaluation

can be done out of either pre-trained model coupled using a test set or cross validation.

To evaluate the model trained in previous chapter, a test dataset is provided. Using the

command below the evaluation is carried out.

As can be seen, the achieved numbers are 0.84 for Precision and 0.45 for Recall which

were leaded to the overall of 0.59 for F-measure score. The high precision indicates that

84% of all recognized entities were actual locations while average recall shows that 45%

of all the locations mentioned in the test corpus were recognized by the NER engine. In

Falcon system (and most of commercial applications), the strategy is to not to offer the

users a suggestion until there would be a high likelihood that the recognized entity is

correct in order to not irritate users by a numerous suggestions which are not proper. In

other words, the high precision and acceptable recall achieved in this project properly

fulfil the Falcon requirements. However, to make this research applicable and reliable

to a wide range of projects, in the next chapter an innovative way to boost the perfor-

mance specifically recall is introduced.

5.5 Boosting the Performance

One of the first step in improving the result is finding out the algorithm used inside the

NER engine. The OpenNLP named entity recognizer is implemented using Maximum

Entropy (Maxent) algorithm. Below the details about improvement cycle is elaborated.

5.5.1 Improvement Process

Based on the characteristic of the Maximum Entropy approach which is previously elab-

orated in the state-of-the-art chapter, the best results are achieved when the models are

trained out of running against samples of data. To implement this method, an approach

is to going through steps below recursively:

1) Building a model using annotated data

- 43 -

2) Reading new dataset

3) Extract named entities using models

4) Go through the results and add the entities which was not recognized by the system to the

list of recognized entities

5) Repeat the process from step two

The reason that cycle above is improving the performance is that each time the model will be

improved base on the fact that in Maxent method the contribution weights of similar features

would not overrate the final judgments.

5.5.2 Applying the Improvement Process in Falcon

In previous chapters all the steps required for recognizing named entities using

OpenNLP NER Engine is described. However, to have a better insight over the im-

proved process, the default process is depicted in the Figure 8.

OpenNLP NER Process in Falcon

M
o

d
if

yi
n

g
p

ro
p

e
rt

ie
s

P
re

p
ar

in
g

tr
ai

n
in

g
da

ta

C
la

ss
if

ie
r

tr
a

in
in

g
P

er
fo

rm
an

ce

ch
ec

ki
n

g

Phase

Insert some input
corpus

Tokenization Annotation

Define a propertise

Train a classifier

Insert some input
corpus

Tokenization Annotation
Performance
calculation

Figure 8. OpenNLP NER Process in Falcon

As can be seen named entity recognition process involves four phases, namely preparing

training data, modifying properties, classifier training and performance checking. In the

improvement cycle a new phase is added called customer data preparation.

To embed the improved method into the Falcon, different strategies are applicable. Out

of which, the most smart one is to use the user interaction with the system to check if

recognized entities are actual ones. To implement this strategy, several features of the

Falcon can be involved.

For instance, when user receive an email containing a request for a meeting, the system

should offer the user “adding an event to the calendar” with some pre-filled data based

on the results of NER, such as the time and place of the meeting. If a user has not change

the fields, it means that the recognized entities were correct. In the case that the user

- 44 -

changed the pre-filled data, the newly added data should be searched in the text and if it

was included in the body of email, it should be tagged and added automatically to the

training data for the next cycle of the improvement. This improvement cycle period is

varied based on the number of the users and their interactions with the system. At this

moment Falcon is in the development stage and the platform is not ready to have the

full implementation of the solution. Therefore the method is implemented and tested

using real freely available data on the internet. During the whole process the

Default properties is used. In the diagram below, all the phases regarding the Falcon

NER improvement cycle is described

Improved NER Process in Falcon

M
o

d
if

yi
n

g
p

ro
p

er
ti

es
Pr

ep
ar

in
g

tr
ai

n
in

g
d

at
a

C
la

ss
if

ie
r

tr
ai

n
in

g
Pe

rf
or

m
an

ce

ch
ec

ki
n

g

C
u

st
o

m
e

rs

d
at

a
p

re
p

ar
at

io
n

Phase

Insert some input
corpus

Tokenization Annotation

Define a
propertise

Insert some input
corpus

Tokenization Annotation

Check users
interactions with

the system

Data
collection

Cateforization

Initial
classifier
training

Performance
Calculation

Annotation

Classifier
improvement

Define a
propertise

New Performance
>= existing

performance

Yes

NO

Remove added
data from the
training data

Figure 9. Improved NER Process in Falcon

5.5.3 Validation

To validate the method, an evaluation should be taken into account to compare the new

result and the old method ones. To simulate the improvement cycle, firstly a model is

trained using the same training data. Then an entity recognition is carried out on the

newly added corpus. All entities which were neglected by the system were founded,

annotated and added to the existing training data. The model is trained on the new train-

ing data and tested using the same evaluation method.

As can be seen, the recall was increased dramatically from 0.45 to 0.82 which was lead

to the improvement of F-secure by 44% from 0.59 to 0.85. In addition, the precision has

- 45 -

also been incremented from 0.84 to 0.88. The chart below shows the comparison be-

tween the results of both methods, indicating the superiority of improved NER engine.

0.85

0.59

0.82

0.45

0.88
0.84

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Improved NER Engine Traditional NER Engine

Comparison between the performance of the
traditional and improved NER engine

F-measure Recall Precision

- 46 -

6 Conclusion

6.1 Summary

Named Entity Recognition is one of the natural language processing subfields. It refers

to the recognition of specific entity types such as names of the person, locations and

dates in the plain text. The outcome of NER systems can be used in wide range of ap-

plications to offer better services to the user. In this thesis, the focus was on the

implementation of named entity recognition engine in an existing CRM application as

well as boosting the results via the modification of the system. In order to have a reliable

named entity recognizer, reviewing state-of-the-art of the field was a vital step, finding

out what is already achieved in the field. All of the existing techniques, algorithms and

technologies were reviewed and elaborated in two separate chapters. Next step was to

analyse requirements to be able to choose an appropriate technique and technologies

which suit all needs of the system. With regards to all the requirements OpenNLP has

been nominated, an open source library which has been written in Java under the Apache

license. The named entity recognition offers several natural language services, out of

which the most related library of it which is related to this project is named entity recog-

nition engine which has been implemented using Maximum Entropy probability

distribution. In the solution chapters, a model is trained and the performance of system

has been evaluated using three measurement factor namely Precision, Recall and F-

measure. In the last part, a new method has been introduced and tested which was lead

to boosting the performance up to 44%. The bootstrapping strategy to implement the

improvement method using the customer data has been elaborated as well which helps

the system to have an automatic increase in terms of accuracy out of the user’s interac-

tions with the system.

6.2 Validation

In the chapter 4 all the requirements of the system has been analysed. With regards to

the results of analysis a technique and technology have been selected to be implemented

which means the solution fulfil the all the system requirement.

In the solution chapters, a named entity recognizer engine has been implemented. A

training corpus of 5400 sentences which has been annotated for location entity was used

to train a model. The embedded evaluation tool of OpenNLP was used to check the

accuracy of the system and the result of evaluation was 0.84 for Precision, 0.45 for Re-

call and 0.59 for F-Measure. Although the Recall was low compared to the high

Precision of the system, but still 0.45 is acceptable number for Recall of a named entity

recognizer since in CRM applications most focus is on the precision in order to not

interrupt the users with numerous suggestion.

In order to generalize the solution and make it more applicable to all other problem

areas, the Recall should had been improved. Using a technique which is introduced and

elaborated in previous chapters, the Recall has been amazingly raised from 0.45 to 0.82,

leaded to the improvement by of recall by 82%. Recall has been increased slightly from

0.84 to 0.88. The increments in both Precision and Recall was resulted in the growth of

- 47 -

F-Measure from 0.59 to 0.85. In other words, the overall performance of the NER engine

has been enhanced by 44%.

6.3 Future Work

As it is already stated the performance has been increased using a technique with hand-

annotated data while the improvement method offer an implementation technique to

have an automatic improvement using bootstrapping method which requires the user’s

interaction data with the system. Therefore the next step is to embed the named entity

recognition engine into the CRM environment to be able to implement and test the im-

provement method with real-time data.

Another step in future work is to solve the privacy issues in using the customer data.

A separate solution is needed to be able to use the data which involves customer inter-

action to improve the accuracy of named entity recognition engine. There is a variety of

strategies such as encryption of the data, asking customers for data access privileges or

using the data in anonymous paradigm which can be chosen with regards to the require-

ments.

The broader aspect of the future work is related to the improvement of OpenNLP tool

itself. At this moment the package is implemented using Maximum entropy probability

distribution model. Embedding some other powerful algorithms such as CRF (Condi-

tional Random Fields, the algorithm which is implemented in the engine of Stanford

NLP package) might help to enhance the overall performance of the toolkit.

- 48 -

References

[1] Collins, Michael. 2002. Ranking Algorithms for Named–Entity Extraction: Boosting and

the Voted Perceptron. In Proc. Association for Computational Linguistics.

[2] A Survey of Named Entity Recognition and Classification, D Nadeau, S Sekine -

Lingvisticae Investigationes, 2007.

[3] Olena Medelyan, Eibe Frank, and Ian H. Witten. Human-competitive tagging using auto-

matic keyphrase extraction. In Proceedings of the 2009 Conference on Empirical Methods

in Natural Language Processing, pages 1318-1327. Association for Computational

Linguistics, 2009.

[4] David Nadeau. Supervised Named Entity Recognition: Learning to Recognize 100 Entity

Types with little Supervision. PhD thesis, Ottawa-Carleton Institute, 2007.

[5] Andrew Y. Ng and Michael I. Jordan. On Discriminative vs. Generative classifiers: A com-

parison of logistic regression and naïve Bayes, Advances in neural information processing

systems, 2002.

[6] Robert Munro. 2013. Crowdsourcing and the Crisis-affected Population. Information

Retrieval 16(2):210-266

[7] Cohen, William W.; Sarawagi, S. 2004. Exploiting Dictionaries in Named Entity Extrac-

tion: Combining Semi-Markov Extraction Processes and Data Integration Methods. In

Proc. Conference on Knowledge Discovery in Data.

[8] Tzong-Han Tsai, Richard; Wu S.-H.; Chou, W.-C.; Lin, Y.-C.; He, D.; Hsiang, J.; Sung, T.-

Y.; Hsu, W.-L. 2006. Various Criteria in the Evaluation of Biomedical Named Entity

Recognition.

[9] Marta Recasens, M. Antònia Martí, and Constantin Orasan. 2012. Annotating Near-Identity

from Coreference Disagreements. In Proceedings of LREC 2012.

[10] X. Zhou, X. Zhang, and X. Hu. Dragon Toolkit: Incorporating auto-learned semantic

knowledge into large-scale text retrieval and mining. 19th IEEE International Conference

Citeseer, 2007.

[11] Mengqiu Wang, Wanxiang Che, and Christopher D. Manning. 2013. Joint Word Alignment

and Bilingual Named Entity Recognition Using Dual Decomposition. In ACL.

[12] Sonal Gupta and Christopher D. Manning. 2014. Improved Pattern Learning for

Bootstrapped Entity Extraction. In Proceedings of the Eighteenth Conference on

Computational Natural Language Learning (CoNLL).

[13] Heng, Ji; Grishman, R. 2006. Data Selection in Semi-supervised Learning for Name

Tagging.

[14] Wanxiang Che, Mengqiu Wang, Christopher D. Manning, and Ting Liu. 2013. Named

Entity Recognition with Bilingual Constraints. In NAACL-HLT.

[15] Cucchiarelli, Alessandro; Velardi, P. 2001. Unsupervised Named Entity Recognition Using

Syntactic and Semantic Contextual Evidence. Computational Linguistics 27:1.123-131,

Cambridge: MIT Press.

[16] Jansche, Martin. 2002. Named Entity Extraction with Conditional Markov Models and

Classifiers. In Proc. Conference on Computational Natural Language Learning.

- 49 -

Appendix

An introduction for porting named entity recognizer to C# is provided on the wiki of

OpenNLP41. It has been modified and used inside a .Net application in using Microsoft Visual

Studio. In this chapter the code inside two major classes namely EntityExtractor.cs and Pro-

gram.cs has been provided.

/// Farbod Saraf Jadidian – s4346319
/// Master Thesis Project – Oct 2014

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace OpenNLPtest
{
 public class EntityExtractor
 {
 /// <summary>
 /// Extractor for the entity types available in openNLP.
 /// Copyright 2013, Don Krapohl www.augmentedintel.com
 /// This source is free for unlimited distribution and use
 /// TODO:
 /// try/catch/exception handling
 /// filestream closure
 /// model training if desired
 /// Regex or dictionary entity extraction
 /// clean up the setting of the Name Finder model path
 /// </summary>
 /// Call syntax: myList = ExtractEntities(myInText, EntityType.Person);

 private string sentenceModelPath = "c:\\models\\en-sent.bin"; //path
to the model for sentence detection
 private string nameFinderModelPath; //Name-
Finder model path for English names
 private string tokenModelPath = "c:\\models\\en-token.bin"; //model
path for English tokens
 public enum EntityType
 {
 Date = 0,
 Location,
 Money,
 Organization,
 Person,
 Time
 }

 public List<string> ExtractEntities(string inputData, EntityType target-
Type)
 {
 /*required steps to detect names are:
 * downloaded sentence, token, and name models from
http://opennlp.sourceforge.net/models-1.5/

41 https://cwiki.apache.org/confluence/display/OPENNLP/Introduction+to+us-

ing+openNLP+in+.NET+Projects

- 50 -

 * 1. Parse the input into sentences
 * 2. Parse the sentences into tokens
 * 3. Find the entity in the tokens

 */

 //------------------Preparation -- Set Name Finder model path based
upon entity type-----------------
 switch (targetType)
 {
 case EntityType.Date:
 nameFinderModelPath = "c:\\models\\en-ner-date.bin";
 break;
 case EntityType.Location:
 nameFinderModelPath = "c:\\models\\en-ner-location.bin";
 break;
 case EntityType.Money:
 nameFinderModelPath = "c:\\models\\en-ner-money.bin";
 break;
 case EntityType.Organization:
 nameFinderModelPath = "c:\\models\\en-ner-organization.bin";
 break;
 case EntityType.Person:
 nameFinderModelPath = "c:\\models\\en-ner-person.bin";
 break;
 case EntityType.Time:
 nameFinderModelPath = "c:\\models\\en-ner-time.bin";
 break;
 default:
 break;
 }

 //----------------- Preparation -- load models into objects---------

 //initialize the sentence detector
 opennlp.tools.sentdetect.SentenceDetectorME sentenceParser = pre-
pareSentenceDetector();

 //initialize person names model
 opennlp.tools.namefind.NameFinderME nameFinder = pre-
pareNameFinder();

 //initialize the tokenizer--used to break our sentences into words
(tokens)
 opennlp.tools.tokenize.TokenizerME tokenizer = prepareTokenizer();

 //------------------ Make sentences, then tokens, then get names---

 String[] sentences = sentenceParser.sentDetect(inputData); //detect
the sentences and load into sentence array of strings
 List<string> results = new List<string>();

 foreach (string sentence in sentences)
 {
 //now tokenize the input.
 //"Don Krapohl enjoys warm sunny weather" would tokenize as
 //"Don", "Krapohl", "enjoys", "warm", "sunny", "weather"
 string[] tokens = tokenizer.tokenize(sentence);

 //do the find
 opennlp.tools.util.Span[] foundNames = nameFinder.find(tokens);

- 51 -

 //important: clear adaptive data in the feature generators or
the detection rate will decrease over time.
 nameFinder.clearAdaptiveData();

 results.AddRange(opennlp.tools.util.Span.spansToStrings(found-
Names, tokens).AsEnumerable());
 }

 return results;
 }

 #region private methods
 private opennlp.tools.tokenize.TokenizerME prepareTokenizer()
 {
 java.io.FileInputStream tokenInputStream = new java.io.FileIn-
putStream(tokenModelPath); //load the token model into a stream
 opennlp.tools.tokenize.TokenizerModel tokenModel = new
opennlp.tools.tokenize.TokenizerModel(tokenInputStream); //load the token model
 return new opennlp.tools.tokenize.TokenizerME(tokenModel); //create
the tokenizer
 }
 private opennlp.tools.sentdetect.SentenceDetectorME prepareSentenceDe-
tector()
 {
 java.io.FileInputStream sentModelStream = new java.io.FileIn-
putStream(sentenceModelPath); //load the sentence model into a stream
 opennlp.tools.sentdetect.SentenceModel sentModel = new
opennlp.tools.sentdetect.SentenceModel(sentModelStream);// load the model
 return new opennlp.tools.sentdetect.SentenceDetectorME(sentModel);
//create sentence detector
 }
 private opennlp.tools.namefind.NameFinderME prepareNameFinder()
 {
 java.io.FileInputStream modelInputStream = new java.io.FileIn-
putStream(nameFinderModelPath); //load the name model into a stream
 opennlp.tools.namefind.TokenNameFinderModel model = new
opennlp.tools.namefind.TokenNameFinderModel(modelInputStream); //load the model
 return new opennlp.tools.namefind.NameFinderME(model);
//create the namefinder
 }
 #endregion
 }
}

using java.util;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OpenNLPtest
{
 class Program
 {
 static void Main(string[] args)
 {
 EntityExtractor myExtractor = new EntityExtractor();

- 52 -

 string myInText = "Henk and Nima are going to collaborate for the
new project in San Francisco. The owner of the company, Farbod, has been prom-
ised to help Jan during the collaboration.";

 List<string> results = myExtractor.ExtractEntities(myInText, Enti-
tyExtractor.EntityType.Person);

 foreach (var item in results)
 {
 Console.WriteLine(item);
 }
 // List<string> myList1 = NaturalLanguageProcessingCSharp.EntityEx-
tractor.ExtractEntities(myInText, EntityExtractor.EntityType.Person);
 }
 }
}

