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1 Introduction

Natural language processing refers to human-computer interaction in terms of Linguis-
tic; in simple words, understanding of the human language by computer or the natural
language generation by the machines. Dealing with natural language processing has
been always known as one of the complex fields in computer science. As time goes by,
more progress are being made to improve the performances of natural language
processing systems. However achieving the nearly human performance in NLP
application is not pragmatic due to numerous reasons such as ambiguities in Languages,
slangs, sarcasms and so on. There is a wide range of fields in Natural Language Pro-
cessing such as Parsing, Speech recognition, Machine translation, Information retrieval,
Part-of-speech tagging and so on. In this thesis, the focus is on Named entity
recognition, finding a solution to detect and extract entities such as persons, locations,
organizations, dates in order to automatize several tasks in a CRM application, namely
creating pre-filled forms, an agenda item, saving contacts information, making summary
of an email or a report and so on.

Due to the complexity of the field, introducing a new algorithm or making a system
from scratch would not be a solution with regards to the limitations of the master thesis.
Therefore, the first step was checking state-of-art of the field to explore all the existing
algorithms and techniques as well as their implementations as toolkits, software,
packages, and libraries which is elaborated in the second chapter. Analysis of the system
requirements was also a major step which was conducted in the third chapter. With re-
gards to different aspects of requirements ranging from performance to licensing issue
and technology limitations, out of all available systems OpenNLP is nominated, a Java-
based NLP library which is distributed under Apache 2.0 License. This toolkit offers the
most common NLP tasks, such as part-of-speech tagging, coreference resolution and so
on. In the fourth chapter, more details about OpenNLP is elaborated, including the in-
troduction to the package, instruction for training a model and modifying the code with
regards to the requirements. To check the performance, a model is trained out of the
training data which is annotated for entity “Location”. Using the trained model, the
accuracy of the recognition for location entitles were evaluated, 0.84 for precision, 0.45
for recall and 0.59 for F-measure. The high precision indicates that the 84% of all rec-
ognized entities were actual locations which means the output of the model is reliable
enough for using in the targeted system. However, the recall of 0.45 means not all the
entities were recognized, indicating that the amount of annotated data for training the
model was less which can be solved by collecting and annotating more data from
available resources. The overall performance was almost 0.6 which is acceptable for the
provided amount of training data to the system.

In the end, the modification of system to improve the performance is discussed. The
NER engine of OpenNLP has been implemented using maximum entropy algorithm. A
bootstrapping method is based on running the model and modifying the result recur-
sively to remove the undesired known entities and to add ignored entities to the system
for boosting the performance.



2 State-of-The-Art

The first step in a proper research is to find and examine all existing technologies
specifically the State-of-The-Art, helping the researcher to find the most appropriate
techniques which are not only fulfil the theoretical aspects of the problem but also it is
practical enough to implement using existing resources. In this chapter, all the findings
regarding both theoretical and technical aspect of State-of-the-Art are summarised.
There is a wide range of literatures introducing new techniques, concepts and solutions.
In upcoming parts, first all theoretical aspects of state of the arts are introduced, followed
by the state-of-the-art techniques for the evaluation of NER systems. Last part of this
chapter is covering all existing implementation of those techniques which is available
(either freely or commercial) in the area of Natural Language Processing.

2.1 Theoretical aspects: Survey of Named Entity Recognition (NER)

Named Entity Recognition field has its roots back in the days in 1991 when Lisa F.
Rau represent his first research papers at the 7" IEEE Conference of Artificial Applica-
tions, recognizing and extracting “company names”. Most of those old methods were
relied on handcrafted and heuristic rules. After investigating a variety of papers and
surveys in the field of named entity recognition and classificationError! Reference
source not found., the conclusion has been made that the whole existing techniques can
be categorised in three major fields below:

Hand crafted rule-based algorithms, Feature Space and Machine Learning
techniques. However, machine learning techniques and feature space are much more
new compared to Rule-based algorithms, based on the system requirements it is possible
to either go in one direction or combine different methods to achieve a highest perfor-
mance. Upcoming sub-chapters describes more details about all mentioned techniques.

2.1.1 Handcrafted Rule-based Algorithms

As it is mentioned, handcrafted rule-based algorithms are the oldest techniques in this
fields. In general, all works and results by different scientists in this area can be seen as
three major factors of ‘Entity type’, ‘Domain’ and ‘Language factors’. Some of them
worked on specific topics such as “Enemex” recognizing names of Type “Persons”,
“Locations” and “Organizations” whereas there are some papers regarding Open
Domain covering a wide range of types. Some other works in this field was done for
specific textual genre, for example, in 2005 E.Minkov et al. designed a system for email
documents. However, it sounds practical to convert a system from a specific domain to
another domain but it requires a lot of time and effort since it is a complicated task. In
terms of language factor, most of the works are done in English but also there are some
other scientists and specialists which tried to broad the same features in other languages
such as Dutch, German, Chinese and etc.



2.1.2 Feature Space

Features are being considered as attributes which representing the characters of words
being used by different algorithms. For example, a simple feature vector can be a Bool-
ean attribute which stands for showing whether the word is started with capital or small
letter. Although a wide range of features stands for representing different aspects of
words, in most cases they are not merely enough to solve the real world NER problem.
However, when they are coupled with some machine learning techniques they contribute
to best performance which is the one of the state-of-the-are techniques using as solutions
to NER problems. Based on the survey of named entity recognition and classification
the most used feature in NER can be divided into three categories:

2.1.2.1 Word-level features

As the name implies, Word-level features are describing the character composition of
words. There is a wide range of word-level feature, out of which the most common
features in NER is listed below:

» Digit patterns

This pattern specifically stands for digits such as dates, percentage, amount
and so on. For example, if a two-digit numbers followed by a dash, two more
digits, another dash and four-digit number (xx-xx-xxxx) the system can learn
to use this pattern for recognizing a date.

» Common word ending (Morphology)

It is mostly related to the origin of the words and affixes. For example a
system can learn to recognize words followed by “land” as candidates for
countries such as Nederland, Scotland, England and so on.

> Function over words

There is a wide variety of useful features which is extractable from words out
of applying functions. One of the most common way of implementing func-
tion over words is to use n-grams. In the upcoming technical chapter, there is
a detailed information about n-grams.

» Part-of-Speech

In general, POS refers to lexical categorizing of a word in the sentence (i.e.
subject, object, verb and so on). This kind of lexical features might help to
recognize a pattern especially when it combines with machine learning meth-
ods. However, for most of NER solution POS as feature will not improve the
result but still in some cases it might be necessary to take it into account.

» Patterns and summarized patterns

Patterns features for the first time presented by M. Collins in 2002. Using this
kind of features helps to map word(s) to set(s) of characters in order to sum-
marize them. For example, a summarized pattern can map all the capital
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letters to X, small letters to x, digits to 0 and Special characters to _; then the
result would be:

Heyendaalseweg 135, 6525 AJ Nijmegen = Xxxxxxxxxxxxxx 000_ 0000 XX
XXXXXXXX

2.1.2.2 Documents and Corpus Features

One of the best source of features is a large and proper amount of corpus. While going
through and processing the whole corpus a lot of features can be extracted from single
or multi-words, based on the relation between words and sentences and Meta
information lying under the corpus which is hard to recognize without using statistics.
Here are some extractable features from documents and corpus:

»  Entity coreference and alias

One of the difficulties in detecting the name entities is when a same word is
occurred across the documents in the various makeups. Furthermore, Aliases
might lead to more difficulties since they represent a same name in another
manner. For instance in all these words share the same meaning which repre-
sent the company: corporation, Ltd., Corp, company, B.V. and etc.
Recognizing coreference and alias seems like the same as entity recognition
in terms of difficulties; however, using combination of some techniques such
as machine learning as well as world level feature might lead to solve this
problem much easier. There are more solution for solving the problem of
entity reference such as semantic tagging, using heuristic rules and so on.

> Meta information

Meta information can play an efficient role in detecting named entities since
most of them can be used directly. For example URL of a document can bring
some useful information regarding the content of the document. Another ex-
ample can be title of a research paper, providing a clue for the context of
document. Or even more simple and clear example is the title of an email,
indicating the greeting followed by a name of a person and in some cases
contact information such as name of companies. There are more and more
example in this area such as XML section, tables, figures and so on.

» Local syntax

Using the position of a word in sentence, paragraph or even in document
might provide useful information. Furthermore, another application of local
syntax is using Enumeration, which refers to having set of a groups of words
which are related to each other. For example, November, August and July all
are in the same categorization.

> Multi-word units



Processing large amount of corpus can help the system to extract features for
detecting multi-word entities. Out of statistical methods, in 2004, Da Silva
managed to define some useful feature functions over multi-word entities in
large co. For example, he defined the threshold on selecting a multi-word unit
as named entity candidate.

2.1.2.3 Dictionary Feature

Dictionary or list look up feature refers to using lists (dictionaries, lookup tables or etc.)
for recognizing entities base on their probabilities of being targeted entities. The dic-
tionaries are created out of processing a large amount of corpus to calculate the
probability of a word being a specific entity once it is detected in the context. For ex-
ample, when the word “Nijmegen” is appeared in a text there is a high likelihood that it
refers to the city.

There is a wide variety of lists in literature. Based on a survey of named entity recogni-
tion and classification Error! Reference source not found., three major categories of lists
are:

» List of entities
It is just a big list of all entities covering areas of First name, Last name,
Organization, Airline, Government, Educational, Celebrity, Continent, Astral
body, Country, City, State and so on.

» List of entity cues
A lot of entities can be recognised by identifying words which mostly they
are coupled with. It can be pre-fix, person title, location typical word, post-
nominal letter and so on. For example when Ltd or Corp. are coupled with a
word there is a high chance that the word is an organization name.

» General dictionaries:
General dictionaries are pre-existing lists containing common nouns which
can help a lot in recognizing entities. For example, when first letter of the first
word of a sentence is capitalised it can lead to some disambiguates whether
it is an entity or it is only capitalized because it is located at the first of sen-
tence. Referring to a general dictionary can solve this type of issue to an
acceptable extent.

Exact matching with pre-existing dictionaries would not provide a satisfactory re-
sults. However, there are several ways and techniques in order to achieve more
flexibility and better results using lists:

- Accessing lists via Soundex algorithm is one of the way to increase the
flexibility. Soundex is an algorithm for mapping names into their sound
using their English pronunciation. Soundex code algorithm use the first
letter of the word as well as three digits repressing the sound. For exam-
ple, Radboud University has been stated in two ways in different web
sites. In some corpus it is appeared as “Radboud University” while in



some others it is “Radboud Universiteit” (Dutch version). However, Uni-
versity and Universiteit has a same Soundex code (U516). Therefore we
are able to embed this technique to the old one to detect both words in
corpus.

- Most of the time words are not stating as their origins and roots. There-
fore, normalizing words and removing derivational and inflectional
suffixes from them before matching helps to have more correct detec-
tions. For example, “Prof.” can be normalized to “Professor” in order to
be detected as a cue for a name.

- One of the most effective solution is using a fuzzy-matched technique.
It check the lists using edit-distance factors. It check the distance of each
words to the words in the list and if the edit-distance of the word with
one of the words in the lists was less than a threshold then it will
nominate that word as potential candidate.

As it is already mentioned, using feature space merely might not be enough to solve
NER problems. However, when they are coupled with machine learning the system
achieve highest performances. In next chapter, different techniques of machine learning
for NER systems are described.

2.1.3 Machine Learning Techniques

In contrast to early systems which were based on hard-coded rule base system, nowa-
days most of advance named entity recognition systems are using machine learning
techniques to boost the performance. Machine learning techniques gives the system abil-
ity to learn based on input and induce the rules for detecting entities. In general, three
sub categories of unsupervised, semi-supervised and supervised learnings:

Machine learning
techniques for NER

Semi-supervised Unsupervised
learning learning

Supervised learning

Learning by example
Input: a training set of
hand-labeled corpus
Output: Intelligent
classifer

Learning by patterns:
Learning by both Input: Patterns
examples and patterns Output: Intelligent
classifer

Figure 1. Machine Learning Techniques
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2.1.3.1 Supervised Learning

In supervised learning, the classifier is trained using a set of hand-labelled data. The
whole process can be summarized to the diagram below (Figure 2):

Supervised Learning

Training

Hand
labelled E’ !
training

data . L

Feature extractor v

Feature sets Classifier trainer using MA algorithms

Labelled
Input
s = o
text) (e

Feature extractor Classifier

Prediction

Feature sets

Figure 2. Supervised Classification Process

As can be seen in figure 2, in supervised learning the features should be extracted be-
forehand, in order to train a classifier based on extracted features using machine learning
algorithms. Once the classifier is trained, the same feature extraction phase is required
for the input data since the classifier accomplishes its tasks out of feature sets. The whole
process might look rudimentary, however, choosing the right features to extract is one
of the trickiest step in NER process which have direct impact on the performances and
results. Furthermore, choosing the right implementation of feature extractor plays a vital
role as well. In order to come over of these crucial issues, proper analysis of the require-
ments and goals of the system should be taken into the account from the first steps. Once
the results of analysis are listed as requirements, the feature extractor should be built
base on trial and error method to check which strategy suits the problem the most.

Training a classifier requires selection and implementation of machine learning al-
gorithms. There is wide range of algorithms available for named entity recognition. Out
of which we selected those who were implemented the most in the freely available soft-
ware and packages. Although in several distributions the combination of different
methods are used, having insight over each probabilistic models would contribute to the
proper selection of the software with regards to the requirements of the final system. In
next sub-chapters, first two categorization of learning models namely generative and
discriminative is described, followed by the elaboration of Decision Tree, Naive Bayes,
Maximum Entropy and their pros and cons.

> Generative and Discriminative Models

Learning model are categorized into two groups of generative and discrimi-
native (conditional). Generative models distribute probabilities over both
observed data x and hidden classes y. In contrast, Discriminative models are



using natural distribution for classifying x, assigning the probability of be-
longing to a group y to a give parameter x: P (a | x). A simple example makes
it clearer, consider the sentence below is selected from a corpus:

Mr. Amelink is visiting Soluso in order to establish a joint collaboration be-
tween Amelink B.V. and Soluso.

Selected entities are listed and categorized below in the format (x,y):

(Amelink, Person), (Soluso, Organization), (Amelink, Organization), (So-
luso, Organization)

Then for P(x,y) two probability distributions are listed below, the former for
generative and the latter for discriminative algorithm:

y = Person y = Organization
x = Soluso 0 0.5
x = Amelink 0.25 0.25

Table 1. Joint Probability Distribution

y = Person y = Organization
x = Soluso 0 1
x = Amelink 0.5 0.5

Table 2. Conditional Probability Distribution

» Getting Features from Corpus to Use in Models

As it is already mentioned, feature is an elementary piece of evidence which
leads to predicting class C for the observed data D. Mathematically speaking,
feature f can be considered as a function which map a real value to a space
of classes and a piece of data:

fiCxD—>R
For example for this sentence:

Mr. Amelink is visiting Soluso in order to establish a joint collaboration be-
tween Amelink B.V. and Soluso.

One feature for Amelink B.V. which is an organization would be:



f(c, d) = [c = Organization * w[i+1] = “B.V.” ” isCapitalized(w[i]) ]

This feature map a number to the fact of belonging to the category ‘organiza-
tion’, being capitalized as well as being followed by the word “B.V”.

Models are trying to give each feature a weight which is a real number. It can
be either positive or negative. The positive numbers stands for the correct
configuration while the negative is representing that the configuration is prob-
ably incorrect.

Conditional or discriminative probabilistic models are much more useful
nowadays, reason:

- High accuracy and performance
- Making it easier to include a variety of linguistically features

- Incorporating to automatic building of NLP systems in a language
independent manner.

Downsides of discriminative to generative models is that Conditional models
can easily memorize much of the training set, contributing to over fitting of
too much information by observing and memorizing everything which may
not appear in test data.

Generative models are also transferable to Discriminative out of applying
Bayes rules in or-der to use for classification. In terms of classification, Dis-
criminative models outperform Generative models. [5]

Models such as n-gram models, Hidden Markov Models (HMM), Probabilis-
tic context-free grammars, Naive Bayes classifiers and so on are generative,
while some others like Conditional random fields (CRM), Logistic regres-
sion, Maximum entropy models (Maxent) and so on are known as
discriminative or conditional models.

Decision Tree

One of well-known learning methods which contribute to building a classifier
automatically is Decision Tree, reacting as a flowchart to assign a class to the
new input. Each decision tree consists of decision nodes for checking the fea-
tures and leaf nodes for assigning the classes based on the result of decision
nodes. The first decision node is known as root node, assigning a class to a
new input by checking the value of one the input’s feature. After this phase,
the input which is classified already for one step is now considered as an input
at a new decision node. The process is repeated for each new decision node
until we achieve a decision leaf which can assign a label for input value. The
example is provided below:



FirstLetter=Capitalized?
No Yes

PreviousWord="At"? PreviousWord="With”?
No Yes No Yes.

ContainNumbers? Previous="Mr./Mrs.” Previous="Mr./Mrs.” ContainNumbers?

No Yes No Yes No Yes No Yes

@D D a» aE&»
Figure 3. Decision Tree Method

Once the decision tree is trained, it would be straightforward to classify a new
input. Hence the complicated part of this solution is to train a proper tree
using an efficient and procedural strategy. In order to build up an appropriate
tree, there are some steps to take into account. The first and required step is
to find and choose the most effective decision stump for a set. Decision stump
is a single decision node which classify the input regarding a single feature.
To simply the task, it is possible to consider all features separately and assign
each feature a decision stump, selecting a class for input which is the most
frequent regarding that feature in the training set. Each class is considered as
a leaf of decision stump. The leaves are changing continuously to find a class
which maximize the performance and accuracy.

There is a wide range of methods for finding the most appropriate and in-
formative feature for the decision stump. An information gain is another
solution which calculate how disorganized the data is, using entropy of their
classes.

> Entropy: An attribute stands for indicating how data is distributed.
The more disorganized a data is, the higher an entropy would be. In other
words, if the classes of input data is varied immensely, the entropy would be
high, in contrast when the input data share the same classes the entropy is
low. The entropy is calculated out of multiplying the sum of the probabilities
for each label to log probability of that specific label.

H= =) P(log,P)
i

Using entropy helps to find a proper classes which occurred as medium scale.
If a class is occurred rarely then Pi would be so small so  is low, on the
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other hand if a class extremely occurred within a corpus then /og>P; returns
a small value, contributing to a low entropy.

As it is previously mentioned, finding classes with the highest entropy or in
other words finding decision stumps with the highest information gain would
help to have an efficient decision tree. However, decision trees has their own
pros and cons as other methods. Decision trees are simple and easy to depict
as well as interpret the results. Furthermore, in order to find the most useful
features, decision trees can play an effective roles. On the other hands, the
advantages can be “over fitting” the data set, which means by division of data
set into two data set at each nodes, the amount of training data for lower
branches might be so low that lead to unreliable results. There are some solu-
tion to this issue, such as producing the full decision tree and applying prune
to decision nodes using dev-test for those who are not affecting the perfor-
mance. Furthermore, a major deficiency of this method is checking features
in a specific order which might lead to undesirable results since not all the
features are relatively dependant on each other. To overcome this drawback,
Naive Bayes Classification offers possibilities to all features to act equidis-
tantly which will be discussed in next part.

Naive Bayes Classifiers

As it is discussed previously, the main goal is to assign a class (C) to a word
(W). In order to classify base on Naive Bayes algorithm, two types of proba-
bilities are involved. Firstly probabilities of all classes should be calculated P
(C)). This task can be done out of processing labelled training courses, prac-
tically speaking: number of the specific of a group occurred in the corpus
divided by the total amount of words in the corpus. The second type of prob-
abilities is P (F; | C) stands for the probabilities of each feature (F) give class
(C). In order to simplify the task, assume that features are binary and inde-
pendent. Then the equation would dividing the number of words in training
set with the feature and class by the number of words with the given class:

Num(F,C)

PFIC) = Num (C)

The multiplication of both factors is the key to the Naive Bayes classification.

For each input, all the probabilities are calculated and the winner is a class
which maximize the result of the equation below:

S(C,W) = P(C) xl_[ P (F,| C)
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The formula might looks rudimentary, however using of this equation merely
might lead to unreliable results. There are numerous reasons which cause var-
iation in results, decreasing the performance. Few tips might help to boost the
result:

i.  Smoothing: In the formula above if in the training set there is no word
with the feature (F) with the given class (C) then the result of P (F|C)
would be zero which means there is no chance of a word happening in
the test set with the given feature (F) and class (C). In order to prevent
this kind of variation in the results, sophisticated solution such as imple-
menting smoothing techniques are required.

ii.  Non-binary to Binary: As it is already stated, to simplify the task all
non-binary features should be translated to binary features. One of the
solution is to translate multi-class feature to several binary features. For
example, for multi -class feature “WordType = {noun, verb, adjective,
adverb}” it would be rational to have four binary feature “WordIsNoun
= {0, 1}” and so on. Furthermore, regression methods can be used for the
translation of numeric features to binary ones.

Although the method is very simple and easy to implement, it has some major
deficiency which makes it not efficient to implement in real sophisticated
word. For instance, Double-Counting. This drawbacks comes from the pro-
cessing of the feature in the independence manner. In other words, a lot of
features has some correlations. However, since in one hand, the contribution
of all features in training set are processed independently and on the other
hand for classifying new input all the features are combined, the contribution
of those correlated features might be overestimated. For example, two feature
F1 and F> stands for ends with(1) and ends with(odd numbers), if the new
input ends with 1 then both features are applicable and their contribution
weights would overrate the final judgments. To come over this deficiency,
Maxent algorithm is a proper alternative which will be discussed in next part.

Maxent Classifier

Maxent stands for Maximum Entropy classifier, sharing a lot of similarities
in terms of model they use. The major difference is that Maxent uses search
methods to find specific parameters which maximizes the total likelihood of
training data, in contrast to Naive Bayes which finding parameters out of us-
ing likelihoods. Direct calculations of P (label | feature), does not merely
contribute to finding a reliable set of parameters due to complicated inter-
relation between some features. The problem is solved by a technique called
iterative optimization.

- Iterative optimization: This techniques consist of following steps,
starting by initializing the model by random parameters, redefine the
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parameters continuously to find the most optimized set. Every itera-
tion guarantee that new set of parameters is more optimized, however
there is no solution to determine whether the most optimized set is
achieved or still there is a room for improvement. This fact makes this
technique time consuming especially when there is a wide range of
features and classes available in the training data.

Mathematically speaking, in Naive Bayes model, each class and pair of (class,
feature) has a parameter to calculates the likelihood. Nevertheless, in maxi-
mum entropy, combination of features and classes has their own parameter

(joint-feature).

2.1.3.2 Unsupervised Learning

In unsupervised learning, all techniques are based on lexical resources and patterns. In
order to find named entities, for every new input, models refers to the most similar clas-
sified word in a lexical resource such as WordNet which is created out of processing a
large amounts of corpus. One of the most outstanding advantages of this method is that
there is no human annotated corpus is required in order to train a model. In other words,
an input of the system is syntactic patterns with specific properties and the system tries
to create a rich list of named-entities. Referring to wide list of entities is not merely
enough since it can cause a lot of ambiguities. Nevertheless, the techniques are covering
ambiguity resolution techniques to achieve reliable results.

An example for unsupervised learning is the method developed by R. Evans at 2003 in
order to identify hypernyms and hyponyms which is capitalized in the text. For instance,
if “Microsoft” is capitalized in the text and we are looking for its hypernyms, the query
of “such as” might contribute to a solution out of searching on the web and retrieving
corpus. The word that preceding the query “such as” is the most probable candidate as
a hypernym for “Microsoft”, in this example “Organization such as Microsoft” was the
most occurrence of passage, giving the clue that the hypernym of “Microsoft” is “Or-
ganization”.

2.1.3.3 Semi-supervised Learning

Semi supervised learning stands between supervised and unsupervised ones. SSL tech-
niques require small amounts of seeds (e.g. hand annotated data) in order to start the
process. The main method in SSL is bootstrapping which is elaborated by an example.
For instance, consider a named entity recognizer system which is implemented using
SSL specifically bootstrapping approach. To initialize the system, names of few organ-
izations are given to the system, out of which system tries to find sentences that include
seed examples, followed by identification of contextual clues which is shared between
seeds. The process is followed by finding new entities and context using contextual clues
extracted previously. Repeating this process continuously contributes to extraction of
numerous new entities and contexts.

The methods might look simple and autonomous which might rise questions over its
performance. However an experiment by Nadeu et al.in 2006 shows that performance
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of Semi-supervised learning methods is comparable to the baseline supervised tech-
niques.

There are some other methods rather than bootstrapping for semi-supervised learning.
Mutual bootstrapping was introduced by E. Riloff and Jones in 1999. It suggest how to
initialize with a handful of seeds of a given type instead of initializing with pre-defined
named entities. Furthermore some techniques were introduced in order to boost the per-
formance of existing methods, such as using syntactic relation in order explore more
reliable contextual evidence near entities which is for the first time used by A . Cucchi-
arelli and Velardi in 2001.
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2.2 Mind map of NERC

In previous chapter, theoretical aspects of named entity recognition embedded into ex-
isting systems has been elaborated. Nevertheless, it is mostly focused on specific and
related topics regarding requirements of the system which will be discuss later. In order
to find which most related techniques, the overview of survey of named entity recogni-

tion is visualized using mind map representation technique.
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Figure 4. Mind Map of NER: Machine Learning Methods
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As can be seen, since the diagram is enormous, the mind map is divided into 3 sub-roots,
namely machine learning techniques, handcrafted rule-based algorithms and feature
space. In addition to the detailed description for each part, some branch contains infor-

mation regarding the related papers such as the name of the authors and their publish
date.

E. Bick 2004

W. Cohen &
Sarawagi
2004

S. Brin 1998, 1.
Witten et al.
1999

J.Zhuetal.
2005
1. Witten et al. i "
1|999 D “job title
Maynard et al.
2001
“book title”
"date"
“time" “research
area” and
“project name”
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"email
“"percent” \ address" and
“phone
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E. Bick 2004
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M. Fleischman Type
and Hovy “miscellaneou
2002 s"
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S Lee & 2P
E. Alfonseca & Geunbae Lee \
2005 \
Manandhar —_— Type
2002. R. “locations”
Evans 2003 M.Fleischman
—— 2001
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categories S. Sekine and Entity type
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Figure 5. Mind Map of NER: Handcrafted Rule-based Algorithms
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The last part of the mind mapping which is the biggest part is allocated to feature space.
As it is already mentioned, features merely are not able to solve complex problems,
therefore it should be coupled with other techniques such a machine learning to accom-
plish the entity recognition task.
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Figure 6. Mind Map of NER: Feature Space

2.3 Evaluation of Named Entity Recognition Systems

The evaluation of named entity recognition simply refers to the comparison between the
results returned by system and human expectations. There is wide range of strategies
and methods available for NER systems which can be implemented regarding tech-
niques embedded into the system. In most of evaluation methods, three attributes play
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vital roles, namely Precision, Recall and F-Measure. Before introducing these attributes,
understanding of 2-by-2 contingency table is required.

2.3.1 Contingency Tables

To evaluate each part of data, 4 states are available, namely true positive, true negative,
false positive and false negative. Describing four states using 2-by-2 contingency table
makes it more clear and understandable. For instance, consider that there is an entity
“Radboud” in the text and the system detect it as an entity “University”. In this case the
answer is correct. Another example, a word “Soluso” is appeared in corpus and the sys-
tem has not recognize as a name of company which is the incorrect perdition. In
contingency tables this attribute can have both value of true and false, based on the
situation which will be described later. One dimension of table stands for mentioned
characteristic, representing true and false prediction using two columns. On the other
side, there is another dimension of table, indicating whether a prediction is accom-
plished or not. In other words, if system predict an data piece as an entity then attribute
assigned to this prediction is positive, while negative is stands for a piece of data which
is not detected as an entity, no matter whether it is true or false. This aspect of the result
evaluation is depicted by two attributes of negative and positive representing rows of
the table.

The combination of both previously mentioned attributes is leaded to a table called 2-
by-2 contingency table.

Correct Not correct
Detected True Positive(t,) False Positive(f,)
Not detected False Negative(f;,) True Negative(t,)

Table 3. The 2-by-2 Contingency Table

As can be seen, the main parameter of the table stands for true predictions, out of which
the accuracy of the system is calculable.

t, + tn
ty+fo+ fottn

However, accuracy does not a good measurement to evaluate the performance of a sys-
tem. For example, consider a system designed to detect name of universities and we
have a corpus of 500,000 words, out of which only 50 words are university names. As-
sume that system could not detect any of them. Then the contingency table would be
filled with values below:

Accuracy =
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Correct Not correct

Detected 0 0

Not detected 50 499,950

Table 4. The 2-by-2 Contingency Table

Then if the accuracy is calculated based on the formula above the result would be:

499,950
Accuracy = £00.000 99.99%

As it is proven, the system which was not able to detect any of entities are considered
as a high accurate system with the accuracy of 99.99 percent. Therefore, this kind of
accuracy is not a reliable indicator of evaluation and another. Effective evaluation re-
quires a solution which take more factors into the account. This issue is solved by using
precision and recall.

2.3.2 Precision and Recall

Precision and recall are two effective attributes which can be calculated out of contin-
gency table. Precision is a factor to measure to how extent the guess of the system was
right, mathematically speaking:

tp
tpt1p

Precision =

On the other hand recall stands for how effective the system detects the entities, in other
words:

Recall s
As it can be noticed, in previous example it was the attribute True Negative (t,,) which
affects the result of the accuracy formula. In both precision and recall true negative is
not involved, contributing to more reliable evaluations. Nevertheless, for having a well-
designed system there should be a proper tradeoff between both precision and recall,
hence based on the requirements some systems are made to have higher precision while
the others are more effective in recall. These differences in terms of evaluation makes it
complicated to have an overall comparison between the performances of different sys-
tems. Establishing a new measurement method called F-measure is a solution to the
case, involving both precision and recall factors.
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2.3.3 F-Measure

F-measure is a sort of weighted harmonic mean for evaluating the trade-off between
precision and recall. There are two equal formulas F, and Fp for the calculation of F

measure using two custom variables a and 3 :

v 1
a= "1 . 1
ocF+(1—a)E
(B2 + 1)PR
Fg = ————r
B2P +R

Arithmetically speaking, both a and 8 should be customized to the amounts which fulfill
the requirements of system via strengthening the impact of whether precision or recall
while weakening the other one.

Out of both formulas introduced for F-Measure, the second latter is more common for
the NER evaluation systems. Consequently [3 is the standard control parameter for using
balanced F measure. When there is no reason for maximizing the impact of precision or
recall rather than the other one, balanced F1 measure is used as evaluation mean which

means initializing 3 = 1 (in other words a = %), creating equal balance between pre-

cision and recall.

2.4 Technical aspects: Existing Technologies for NER

The theoretical aspects of Named Entity Recognition are fully covered in previous
chapter. In order to make a proper decision in choosing the most correspondent package
to the system requirements, having insight over all existing technologies is required.
There is wide variety of software, packages and libraries available which implemented
mentioned algorithms using different techniques and technologies. In this chapter all
available toolkits are introduced. Furthermore, in each part their features, languages and
licences are summarized. The list is sorted by name (A_Z).

e AlchemyAPI *
Type: Web-service
Programming Language: Multiple

Services: Named entity recognition, language identification, concept tagging, con-
tent scraping, web page cleaning, text classification, keyword extraction.

License: Commercial, offered in free, basic, professional and metered versions.

4 http://www.alchemyapi.com/
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Apache Mahout *
Type: Library
Programming Language: Java

Features: User and item based recommendation, mean shift and fuzzy k-means clus-
tering, singular value decomposition, collaborative filtering, random forest decision
tree based and complementary naive bayes classifiers, latent Dirichlet process allo-
cation and parallel frequent pattern mining.

License: Apache software license
Balie ¢

Type: Library

Programming Language: Java

Features: Tokenization, language identification, named entity recognition, sentence
boundary detection, supporting English, French, Spanish, German and Romanian.

License: GNU GPL

ClassifierdJ ’

Type: Library

Language: Java

Features: Text summary, vector and Bayesian text classification

License: Apache software license

Content Analyst

Type: Platform

Language: N/A

Features: Automatic summarization, vector and Bayesian text classification
License: Apache software license

The Dragon Toolkit ?

Type: Development package

Language: Java

Features: Text summarization, text classification, topic modelling and text clustering

License: Open source (Few condition should be met which is stated in their website)

5> Apache Mahout-scalable machine learning algorithm.
6 http://balie.sourceforge.net/

7 http://classifier4j.sourceforge.net/

8 http://contentanalyst.com/html/tech/technologies.html
? http://dragon.ischool.drexel.edu/license.asp
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FreeLing !
Type: Library
Language: C++

Features: Sentence splitting, sSuffix treatment, text tokenization, morphological
analysis, retokenization of clitic pronouns, Rule-based dependency parsing, nominal
correference resolution, contraction splitting, named entity recognition, PoS tag-
ging, probabilistic prediction of unknown word categories, chart-based shallow
parsing and WordNet based sense annotation and disambiguation, supporting Eng-
lish, Austrian, Portuguese, Spanish, Galician, Italian, Catalan and Welsh.

License: GPL GNU

Gate !

Type: Framework

Language: Java

Features: Text processing features, using of external plugins.
License: Apache software license

Illinois Natural Language Processing Group !

Type: Tools/Packages

Language: Java

Features: NLP curator, quantifier, chunker, named entity tagger, part of speech tag-
ger, semantic role labeller (SLR), lemmatizer and lots of more packages.

License: BSD license

Java Text Mining Toolkit (JTMT) "3
Type: Toolkit

Language: Java

Features: Citation based ranking, POS Tagger and recognizer, token recognition, bi-
nary naive and vector space classifier, corrector using word collocation probabilities
and summarization with Lucene.

License: LGPL (Lesser GNU General Public License)
Julie NLP 4

19 http://garraf.epsevg.upc.es/freeling/demo.php

' https://gate.ac.uk/

12 hitp://nlp.cs.illinois.edu/

13 http://jtmt.sourceforge.net/

1 http://www.julielab.de/Resources/NLP+Tools.html
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Type: Toolkit
Language: Java

Features: Named entity recognition, semantic search, text mining and information
extraction.

License: Common Public License
Language Computer '°

Type: Products

Language: N/A

Features: Named entity recognition, PoS tagging, attribute/event/relationship ex-
traction, co-reference resolution, text summarization, sentence splitting and
tokenization.

License: Fully commercial
Lemur Project '

Type: Toolkit

Language: C++, C# and Java

Features: Set of toolkits for information retrieval and text mining such as search
engine (Indri), browser toolbar (Lemur) and data resource (ClueWeb09)

License: BSD license

Lingo3G "

Type: Software

Language: Java, PHP, Ruby and C#

Features: Clustering text collections in hierarchy manner

License: Commercial (but also offering some open source alternatives)

LingPipe '8
Type: Toolkit
Language: Java

Features: Named entity recognition, language identification, sentiment analysis,
clustering, hyphenation and syllabication, Sentence detection, word sense disambig-
uation, spelling correction, string comparisons, interesting phrase detection,
database text mining, Chinese word segmentation, character language modelling,

15 http://www.languagecomputer.com/
16 hitp://www.lemurproject.org/

17 http://carrotsearch.com/lingo3g

18 http://alias-i.com/lingpipe/
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singular value decomposition, logistic regression, expectation maximization, topic
classification, and PoS tagging.

License: Free for academic use and for other purposes commercial licenses are avail-
able

Mallet
Type: Toolkit
Language: Java

Features: Numerical optimization, sequence tagging, text classification and topic
modelling.

License: Common Public Licence

Minor Third ?°

Type: Toolkit

Language: Java

Features: Named entity recognition, text annotation and classification.
License: BSD license

MontyLingua %!

Type: Toolkit

Language: Java and Python

Features: PoS tagging, natural language summarization, lemmatization and tokeni-
zation.

License: MontyLingua version 2.0 License (Free for non-commercial applications)
MorphAdorner *

Type: Command line program

Language: Java

Features: Word tokenization, language recognition, PoS tagging, spelling standard-
ization, text segmentation, name recognition, lemmatization, noun pluralization,
verb conjugation and sentence splitting.

License: NCSA style license
NaCTeM 2

Type: Software tools

19 http://mallet.cs.umass.edu/

20 http://sourceforge.net/projects/minorthird/

2! http://web.media.mit.edu/~hugo/montylingua/
22 http://morphadorner.northwestern.edu/

2 http://www.nactem.ac.uk/
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Language: N/A

Features: Named entity recognition, PoS tagging, text classification, deep syntactic
parsing, sentiment analysis, annotation of named entities, shallow parsing for bio-
medical text and a bilingual dictionary extraction using a Random Forest method.

License: Free and closed source
NLTK *

Type: Toolkit

Language: Python

Features: Text classification, PoS tagging, syntactic parsing, stemming and text to-
kenization.

License: Apache 2.0 license

Open Calais

Type: Web service

Language: N/A

Features: Named entity recognition, fact and event extraction.

License: Free up to 50,000 transactions a day (more transaction requires service li-
cense agreement).

OpenNLP ¢
Type: Library
Language: Java

Features: Named entity recognition, part-of-speech tagging, tokenization, chunking,
sentence segmentation, parsing and coreference resolution.

License: Apache License Version 2.0
Palladian %’

Type: Toolkit

Language: Java

Features: Named entity recognition, Sentence splitting, tokenization, classification
and information retrieval such as crawler and API access.

License: Apache License Version 2.0

RASP 2

24 http://www.nltk.org/

2 http://www.opencalais.com/

26 http://opennlp.apache.org/

27 http://palladian.ws/

28 http://www.sussex.ac.uk/Users/johnca/rasp/
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Type: Toolkit
Language: C and Lisp

Features: Lemmatization, morphological analysis, Tokenization, grammar-based
parsing and PoS tagging.

License: GNU Lesser General Public License (LGPL)
Stanford NLP ?

Type: Library

Language: Java

Features: Named entity recognition, word segmentation, PoS tagging and classifica-
tion.

License: GNU GPL
SRILM *

Type: Toolkit
Language: C++

Features: Statistical tagging and segmentation, Machine translation and speech
recognition.

License: SRILM Research Community License Version 1.1 (Only free for non-com-
mercial use)

TextAnalyst 3!
Type: Software
Language: N/A

Features: Semantic information retrieval, text clustering, text summarization and
meaning extraction.

License: Commercial
VisualText *

Type: Software
Language: C and Lisp

Features: Named entity recognition, text classification, text indexing, text summari-
zation, text grading and text filtering.

License: Commercial

29 http://nlp.stanford.edu/

30 http://www.speech.sri.com/projects/srilm/
3! http://megaputer.com/site/textanalyst.php
32 http://www.textanalysis.com/
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e WEKA®¥
Type: Library
Language: Java

Features: text clustering, classification and regression using support vector ma-
chines, naive bayes, k-nearest neighbour and neural networks.

License: GNU Lesser General Public License (LGPL)

After introducing theoretical aspects of the Natural language processing specifically
Named Entity Recognition and providing latest implementations available, now it is
time to elaborate the requirements of the goal system.

33 http://www.cs.waikato.ac.nz/ml/weka/
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3 Named Entity Recognition in Customer Relation-
ship Management (CRM) Systems

The final goal of this thesis to develop and optimize a named entity recognition system
inside an existing CRM system called Falcon. In first part of this chapter, details about
CRM applications are discussed, followed by the application of named entity recogni-
tion in CRM systems. Falcon CRM will be introduced as well. In the last part of these
chapter the requirements of Falcon for having a proper NER system is elaborated.

3.1 Introduction to CRM

CRM is abbreviation for Customer Relationship Management which refers to a set of
tools for managing all the affairs related to customers, ranging from customer services
and support to marketing, sales, inventory and so on. There is wide variety of CRM
applications available in the market with different prices, features, specifications, ser-
vices, accessibility and a lot of factors which will be offer as software packages, online
web services or any other platforms. Customer relationship management gives the busi-
nesses opportunities improve their relation with existing customers as well as potential
customers out of providing more satisfaction. In general, CRM applications can be cat-
egorized in three major groups below:

3.1.1 Collaborative Systems

Collaborative CRM focuses on communication and direct interaction with customers
through different platforms such as emails, telephone calls, web and etc. Customers can
play a vital role in the improvement of services. Collaborative CRM make it possible
for the business to offer better products out of collaboration with customers.

3.1.2 Operational Systems

Operational CRM systems are used to take care of the customers. In other words, it
offers supports for a variety of business processes such as marketing, managing sales
and customer data such as their contacts, history of purchases, last communications and
so on. All these data can be collected in one place in order to use later on for marketing
purposes or other types of CRM such as Analytical.

3.1.3 Analytical Systems

Analytical systems focus on the analytical aspect of the data. It uses a variety of tech-
niques to process the available data related to sales, customers and services in order to
evaluate the business performance, gaining more insight over the past which helps busi-
nesses to modify and improve the strategies and marketing plans.
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There is a wide range of CRM systems available in the market, offering services via
web application, software or other types of online or even oftline services. At this mo-
ment, market leaders are Microsoft Dynamic CRM, Salesforce.com, Oracle and SAP
AG.

3.2 Named Entity Recognition Applications in CRM Systems

Since the number of features in CRM systems which offer services to the users are
countless, it would not be pragmatic to cover all of them here in this research. However
based on the types of CRM which are discussed in the previous chapter, it is possible to
mention and categorize some of the features which can gain benefit out of the results of
named entity recognition engines:

3.2.1 NER in Collaborative CRM

The most interesting type of CRM for taking advantage of named entity recognition
features is Collaborative. Since the focus is on the communication and direct interaction
with customers, a wide range of applications can be implemented through different strat-
egies to offer better services to the customers. Nowadays most of direct interactions with
the customers are being done through different online communication platforms such as
emails, social media and web. All the data passing through these channels can be passed
through the named entity recognition engine in order to be processed. Once the named
entities are extracted, a variety of services can be offered. For instance, in the calendar
of the user in a CRM application, an event can be automatically created and added to
the calendar of the user using extracted entities (such as date and location) from the plain
text of an email containing a request for a meeting.

3.2.2 NER in Operational CRM

In Operational CRM systems, a named entity recognition engine can play a role of fas-
cinator in the data collection and categorization. As it is already mentioned Operational
CRM systems help the organization to keep track of its business processes and collected
all the data related to the fields. NER engine can help to extract key entities to have a
more organized and structured data. For instance, to collect and store sales and customer
data such as history of purchases, named entity recognition can extract all related entities
such as numbers and date of purchases from plain texts to have an automatic data col-
lection service.

3.2.3 NER in Analytical CRM

Due to the catachrestic of Analytical CRM systems which is the analysis of data to gain
more insight about the business, named entity recognition can only be helpful in the data
collection process which is exactly the same as applications which are discussed in the
previous chapter. However, other Natural Language Processing fields can play im-
portant role in processing the data for having more insight over business. For instance
sentiment analysis of Twits and Facebook posts by customers about an specific products
can give the product owner an insight over opinion of users.
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3.3 Falcon CRM

Falcon is a web application offering a variety of services. The core of the falcon is focus-
ing on collaborative and operative CRM services rather analytical. However, system is
not limited to CRM features but also a lot of extra services such as task management
and project management which are under development.

Major features are Falcon CRM which is under development for the first version of
the product are listed below:

1- Automating a variety of tasks for the employees such as mailings, calendar and
schedule, summary of meetings and upcoming tasks.

2- Keep track of different stage of the project out of automatizing writing reports,
to do lists and an online communication platform

3- Collect data from different resources to evaluate the business performance.

In the next chapter, more detailed descriptions regarding features which use Named En-
tity Recognition to offer services will be discussed.

3.4 Named Entity Recognition in Falcon CRM

As it is already stated, there is a wide variety of features within Falcon. Out of which,
some of them take advantage of Named Entity Recognition. Namely creation of tasks,
events, report and summary out of online communication such as emails, instant mes-
sages and so on which is elaborated below.

3.4.1 Task management system and calendar

There is a task management system coupled with a personalized calendar within Falcon
which help users to create tasks, assign it to another or a group of users, keep track of
its progress, add it to a calendar using due date and lots of more features. However,
features are already implemented in some CRM and task management systems, using
Named Entity Recognition to automatize these tasks is a new method which makes the
features easier than ever before to use. For example, if a user receive an email, they can
open it in a Falcon mail management system (similar to outlook). The falcon Named
Entity Recognition engine can detect if a name of a task (e.g. asking for a meeting, call
or etc.), company (Soluso B.V., Amelink Ltd. And etc.), person (David Notte, Farbod,
De rooij and etc.), location (Silicon Valley, Nijmegen, Kerkenbos St. and etc.), date (30-
10-2014, 16:30, 14 Jan 2004, Sat 21 Feb 2016 and etc.) is stated in the plain text of an
email, report or etc. Based on the detection, it can suggest users to create tasks using
template which is initialized with the specification of the task that should be done such
as a title, specific assignee, due date or other elements which is stated in the text. Another
example can be an email request which a user received by an email from its customer.
The named entity recognition engine suggest the users to create an event in their calen-
dar using a prefilled template with its suggestion regarding the parties involved in the
meeting, date, place and other entities which might be stated in the email.
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3.4.2 Template selection

There is a variety of templates available within Falcon CRM. Users access and use these
forms for different purposes. For instance, a form can be created with the project inquiry
template in order to provide a customer prices regarding a project, so based on the email
conversation, reports or simply the title of the task which users type in the title of the
form, the named entity recognizer engines will detect all entities in the plain text and
based on the extracted keywords it suggests the most related templates.

For instance, a user received an email in his Falcon inbox. It is stated that “Regarding
our meeting, [ would like to inform the place is same as previous time (Looimolenweg
13, 6542JN). I am looking forward to see you at 16:30, 30-10-2014”. The system can
recognize that a place and a date is stated in the email. So it will suggest a template for
adding an event to the user’s calendar. The system will initialize:

e The time of the event with “16:30, 30-10-2014"

e The title of the event with “Meeting with x” where “x can be extracted from the
keywords in the email such as the name of the person in the email signature:

Regards,
Farbod Saraf,

Information Science (M.Sc), Radboud Universiteit Nijmegen
m:+31 6 27350606 | a: Looimolenweg 13 6542 IN Nijmegen Nederland
Linked [ profie

e The location of the email with Looimolenweg 13, 6542JN either from the email text,
the mail signature or even out of referring to the contact manager to find the address
which is allocated to the person or company.

A similar example can be the same process via adding an event manually. In other words,
a user make an appointment with someone on the phone and now he/she wants to add
this event to the calendar. Simply the user can click on adding a new element and start
typing the title for the element:

| Add a new element I

Meeting with Theo at 16:30 10 Oct at Huygensgebouw

Automatically Falcon detects the Entities namely “Theo” as a person, “16:30 10-10-14”
as a date and “Huyegensgebouw” as a location. Therefore the system suggest a user a
template for creating an event in the calendar, initialized with mentioned entities in their
right places.

Lots of example are available to describe the role of named entity recognition in facili-
tating the manual tasks in Falcon CRM such as events and tasks creation, choosing and
filling proper templates in terms of documentation as well as communication and so on.
In the upcoming chapter, technical requirements of the system is analysed.
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4 Requirements Analysis

In previous chapter, high level functionalities of the Falcon using named entity recogni-
tion were discussed. However, in order to have a fully comprehensive solution, the
requirements of Falcon should be examine in the detail, regarding both aspect of func-
tional and technical. The former stands for what the system is supposed to do while the
latter specify how the system is built.

4.1 Technical Requirements

At the moment of writing this thesis, Falcon CRM is under development in terms of
both architecture and implementation aspects. Therefore, to make technical require-
ments clear, a solution is to consider the named entity recognition engine as a separate
element which will be added to the system in order to conduct tasks and prepare the
results for other elements to finalize a specific goal (e.g. form template suggestions,
element creation and etc.). As it is already stated in previous chapter, there is a wide
range of advantages which can be drawn from named entity recognition in the Falcon
CRM system which is not possible to discuss all here in this thesis. However, based on
brainstorming sessions and Falcon requirements, the type of named entities which are
supposed to be extracted were clarified. In upcoming sub-chapters, type of the platform
and its programming language, license requirements, inputs of the NER engine, output
(targeted types of entities) and their specification such as desire data format will be
elaborated. All these factors have impacts on the selection of the NER library, package
or software. At the end, the selection and preparation of the package will introduced.

4.1.1 Platform Specification

Referring to Falcon CRM design documents, all elements should be implemented using
MVC language pattern specifically C# in .Net framework platform. Therefore the pref-
erence for developing an NER engine is to have C# friendly product. It other words, If
the selected product is:

e Aclosed source software/toolkit: There is no requirements for its language since
the product can react as the translator. That is, receiving input data, enter it to the
package, processing and producing the output, finalizing it via passing back the
results to Falcon.

e An open source package/library: A major concrete requirement for a modifiable
package or library is to be adoptable to the Falcon which has been written in C#.
In other words, the language of the library should either have been written in C#
or in a way that is portable to use in C# programs.

4.1.2 License Requirements
There must be no costs involved in either using a package or buying a subscription.
Therefore, the modified named entity recognition engine of the Falcon CRM should be

freely available without any restriction in using it commercially.
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4.1.3 System Input Specification

The input of the named entity recognition engine in Falcon should be a plain text. The
input text stream should be consider as raw data which means either might contain en-
tities or not.

4.1.4 System Output Specification

Base on the goal of the systems, system owners and designers came to a conclusion that
the output of the NER engine in Falcon CRM should be return specific entity types of
“Person’s Name”, “Company’s Name”, “Location”, “Time” and “Date”. The results
must be a plain text as well containing all detected named entities. However, at this
moment there is no requirements on the format of the results. It can be offered as CSV
files or any other formats available for plain-text.

4.2 Functional Requirements

42.1 Algorithm selection

The designers of the Falcon has not imposed any restrictions in terms of algorithms
selection. Therefore, the most efficient algorithms which are implemented in the latest
products will be chosen for the Falcon NER engine, mainly CRF (Conditional Random
Field), Maxent (Maximum Entropy), MEMM (Maximum Entropy), HMM (Hidden
Markov Model) and decision tree.

4.2.2 License Filtrations

In previous chapter it is mentioned that a product should be embedded to Falcon which
has not been restricted for using in commercial software. Therefore all the commercial
products will should be eliminated during the selection process. In second step, it comes
to open source application. Although there are different licenses available which can be
considered as open source, few of them give permission for using them in commercial
applications. For example GNU GPL is one of most common license in the world of
free software. However, if developers wants to use a code which is distributed under
this license in their own product, it should be distribute under GPL as well. In other
words, in commercial closed source application such as Falcon it is not possible to use
full GPL licensed code. So all the products under this license will be eliminated during
the selection procedure. Here is the example directly from the website of Stanford Nat-
ural Language Processing Group:

“All these software distributions are open source, licensed under the GNU General
Public License (v2 or later). Note that this is the full GPL, which allows many free uses,
but does not allow its incorporation into any type of distributed proprietary software,
even in part or in translation. Commercial licensing is also available; please contact us
if you are interested.”**

34 http://nlp.stanford.edu/software/
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Another common license is GNU LGPL which is similar to the GNU GPL with less
restriction for developers who are using the product. In other words, GNU LGPL does
not require the developers to license their own products under the same type. BSD li-
cense is another type which impose less limitation on redistribution. BSD distribution
is allowed to be modified and used in the close source commercial applications. The
most permissive license is MIT which allows users to freely use, copy, and modify. The
only minor restriction is that it should be accompanied by the license agreement. Apache
is another famous license which is applicable to both copyrights and patents. Regarding
copyright which is related to this project, Apache grants user several rights which makes
it prominent. Refer to the official website of Apache:

“Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.” 3

Based on what is elaborated regarding licenses, products under apache licence suit Fal-
con requirements. There are more functional requirements which will be specified after
the product selection such as training classifier, porting other languages to c# and so on.
In the next chapter one product will be selected to be modified in the solution chapter.

4.3 Product selection and preparation

431 OpenNLP vs. Stanford NLP

All packages and tools which were introduced in state of the art chapter were examined
carefully. First step was eliminating all the commercial and closed source packages from
the long list. Then the filtration were done based on the features of the packages. In other
words, packages without named entity recognition feature or weak NER engine were
filtered from the list. At third step, packages which are neither in C# nor capable of
being ported to C# were removed. At the last step, two packages were nominated as the
most suitable options with regards to the requirements of Falcon CRM. Both packages
have proper documentation and functionalities in terms of named entity recognition.
Stanford NLP group used CRF (Conditional Random Field) coupled with some other
methods to implement named entity recognition feature. On the other side, OpenNLP
group implemented NER engine using Maximum Entropy Model. There was a dilemma
regarding the selection of a package out of this two which was solved by the license
restriction. Stanford NLP package is licensed under the GNU GPL and it is clearly stated
in their website that it is not allowed to use this package in any type of distributed pro-
prietary software. There are some possibilities for using the package in the commercial
extent, however it requires some condition from Stanford NLP group. On the other hand,

35 http://www.apache.org/licenses/LICENSE-2.0

-34 -



OpenNLP is licensed under Apache version 2.0 which impose no restrictions on modi-
fying and using the package in the commercial applications. Therefore, at the end
OpenNLP is selected out of all packages introduced in the stated of the art chapter.

432 Porting Java to C#

As it is already stated, OpenNLP libraries has been written in Java. In order to use them
in Falcon two solutions are available. First one is to make a separate system for Named
Entity Recognition and pass the data through a data channel from Falcon to NER system
which returns the result to Falcon. This black box which reacts as translator might cause
unacceptable amount of latency which affects the performance of real time suggestions
by Falcon CRM. The second solution which is selected to implement in this thesis is to
port the Java code to C#.

4.3.2.1 IKVM

IKVM is a free software for converting java files to a .Net assembly (dll). IKVM is
distributed under a permissive free software license, therefore there is no restrictions in
using it either for this thesis or the commercial application (Falcon CRM). The software
makes it possible to run compiled java code of OpenNLP directly on Microsoft .Net
which is the goal since Falcon is being written in C#. A short guide to port OpenNLP
java code to C# using installation guide provided in OpenNLP wiki*®:

e Download and extract files from latest version package of IKVM?’
e Download and extract the latest distribution of OpenNLP

e Copy three files from OpenNLP package namely opennlp-maxent-incubat-
ing jar, jwnl.jar, opennlp-tools-incubating.jar*® to bin folder of IKVM (ikvmbin-
version/bin)

e Open the command prompt and changed the directory to the bin folder of IKVM
e Run this command: ikvmc -target:library -assembly:opennlp opennlp-maxent-
incubating.jar jwnl.jar opennlp-tools-incubating.jar.

e Running the previous command leads to the creation of dll files which can be
used in .Net project. Copy the created files which is listed below to the folder of
the project:

opennlp.dll (the assembly you have just created)
IKVM.Runtime.dll

IKVM.OpenJDK.Core.dll
IKVM.OpenJDK.Jdbc.dll

36 https://cwiki.apache.org/confluence/display/ OPENNLP/
37 http://sourceforge.net/projects/ikvm/files/
38 These names are mostly coupled with numbers indicating versions of the distribution.

-35-



- IKVM.OpenJDK.Text.dll
- IKVM.OpenJDK.Util.dll
- IKVM.Open]DK.XML.APILdIl

Now OpenNLP is ready to use in a .Net project using the references to these assemblies.
In the Appendix, the ported code using IKVM is provided.
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S Recognition of Named Entities

As it is stated in previous chapter, OpenNLP is selected to fulfil the requirements of the
case. In the state of the art chapter OpenNLP is described shortly. However, since the
package is going to be modified, more insight over the whole product is needed. There-
fore, in the next subchapter OpenNLP is elaborated, followed by the introduction to
named entity recognition of the package, preparing the training data, training of a clas-
sifier and the evaluation is described. In the end, a new method for boosting the results
is described, followed by the evaluation and comparison of the results in terms of accu-

racy.

5.1 Introduction to OpenNLP

OpenNLP is a natural language processing library written in Java and distributed under
Apache version 2.0 license. It offers solution for several NLP tasks which are accessible

either via command line or API including:

- Part-of-speech tagging:
POS tagger assign each token a label which corresponds with its appropriate
word type, using the word itself or its context.

- Chunking
OpenNLP chunker divide a sentence into the groups which share the same
syntactic types such as noun group, verb group and so on.

- Tokenization

It segment an input text into tokens such as numbers, words, punctuation and
so on. The output of this feature is vital for some other tasks such as named
entity recognition.

- Parsing
Sentence segmentation: This feature contribute to sentence detection. In other

words, it can determine if a punctuation character in the sentence represent

the end of sentence.
- Named entity recognition:

Named entity recognizer is capable of detecting named entities such as per-
sons, date, locations and so on. In next chapter details regarding this

procedure are described.
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- Coreference resolution

It contributes to finding all tokens refers to the same entity. This feature of
OpenNLP is not fully grown as other tasks, however they already made some

progress in this area.

In addition, OpenNLP offers several pre-built models for different languages using ma-
chine learning techniques such as Maxent and perception. It also provides the sources
for annotated texts which were used to train models. The clear and structured documen-
tation is provided in their website*’, coupled with comments in the raw codes. For each

feature, a guide through evaluation process is described as well.

5.2 Named Entity Recognizer

As it is already mentioned, OpenNLP offers named entity recognition to find entities in
the raw input corpus. There is two way for using name entity recognizer in OpenNLP, a
command line interface and API. For name entity recognition, there are few pre-trained
models available. However to have better performance, training your own model on

proper corpus is required.

521 Training Data Specification
To train a model, annotated corpus is required which should be in a specific format

below:

There should be one sentence per line.
- The entities in the sentences should be tokenized and labelled using spans.
- The separation of the documents are done using empty lines.

- The minimum amount of sentences in the training data to train a high perfor-

mance model is 20000.
Here is an example of the training data:

On <START:date>October 17<END>, during an academic ceremony at the Stevens-
kerk in <START:location>Nijmegen, the Rectorship will be transferred from
<START:person>Bas Kortmann<END>, the Rector for the last seven years, to
<START:person>Theo Engelen<END>.

39 http://opennlp.apache.org/documentation/
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<START:person>Kortmann<END> is looking forward to taking up his professorship
again.

Meanwhile, the newest product of <START:organization>Soluso B.V<END> will be
available online on the website next week on <START-date>Friday 30" Aug<END>.

5.2.2 Training a classifier
For training a classifier in OpenNLP the tree major steps are required:

1. Opening a training data stream

Charset charset = Charset.forName ("UTF-8") ;
ObjectStream<String> lineStream =

new PlainTextByLineStream(new FileInputStream('"en-ner-
person. train"), charset);
ObjectStream<NameSample> sampleStream = new
NameSampleDataStream (lineStream) ;

2. Call the NameFinderME

TokenNameFinderModel model;

try {
model = NameFinderME.train("en", "person", sampleStream,
TrainingParameters.defaultParams (),
null, Collections.<String, Object>emptyMap())
}
finally {
sampleStream.close() ;

}

3. Saving the Model to a file/DB

try {

modelOut = new BufferedOutputStream(new FileOutputStream (mod-
elFile));

model.serialize (modelOut) ;
} finally {

if (modelOut != null)

modelOut.close() ;

}

Since no feature generation is specified, OpenNLP uses its default feature generation.
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5.2.3 Custom Feature Generation Specification

In order to specify a custom feature generation, either the implementation of an interface
called AdaptiveFeatureGenerator or the extension of the FeatureGeneratorAdapter is re-
quired. Here is the example from OpenNLP which shows the specification of its default

feature generator:

AdaptiveFeatureGenerator featureGenerator = new CachedFeatureGenera-
tor (
new AdaptiveFeatureGenerator[] {

new WindowFeatureGenerator (new TokenFeatureGenerator (), 2,
2) o

new WindowFeatureGenerator (new TokenClassFeatureGenera-
tor (true), 2, 2),

new OutcomePriorFeatureGenerator (),

new PreviousMapFeatureGenerator (),

new BigramNameFeatureGenerator (),

new SentenceFeatureGenerator (true, false)

1)

The method which must be used for training is mentioned below. Feature generator can

be an argument for this function:

public static TokenNameFinderModel train(String languageCode, String
type, ObjectStream<NameSample> samples,

TrainingParameters trainParams, AdaptiveFeatureGenerator gen-
erator, final Map<String, Object> resources) throws IOException

In order to detect name entities, both model and the feature generator must be entered

as arguments to the NameFinderME method:

new NameFinderME (model, featureGenerator, NameFinderME.DE-
FAULT BEAM SIZE) ;

In this thesis, the default feature generator was used. However in the future, based on

the new requirements in Falcon, a customized feature generation might be needed.

5.3 Named Entity Recognizer in Falcon Case

5.3.1 Training Data Preparation

The training data is collected from NLP-Geo project*’. The data set is derived automat-
ically from Wikipedia and WordNet. The data is also redefined in the format required

40 https://code.google.com/p/nlp-geo/source/browse/trunk/models/en-ner-location.train?r=11
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for the training, each line a sentence including tags for specific goal. In this case, the
targeted entities were the name of the locations which suits the Falcon requirements as
well. To finalize the preparation phase, all the named entities of locations were labelled.
Now the repository of 5452 sentences per line including tags for location named entities
is ready for the training level. It should be taken into account that all part of the corpus
should be included into the training data and not only parts and sentences containing
named entities.

What do we call the imaginary line along the top of the <START:location> Rocky Mountains <END> ?
What country 's capital is <START:location> Lagos <END> ?
Where does Ray Bradbury 's Chronicles take place ?

Who is the current prime minister and president of <START:location> Russia <END> ?

Who established a Viking colony in <START:location> Greenland <END> about 985 ?

What was the distinguishing mark on the ~° Little Rascals '' dog ?

What is the latitude and longitude of <START:location> El Paso<END> , <LOC>Texas <END> ?

Figure 7. Training Data Sample

5.3.2 Model Training

To train a model inside the application, calling API is more appropriate. In one of the
upcoming chapter, the description of code ported to C# is described. However, during
training, recognition and evaluation the tasks are done via command line. In the training
command, the source and the output file should be specified which is en-ner-loca-
tion.test for the former and en-ner-location.bin for the latter in this case.

nlp-1.5.3-bin\apache-opennlp-1.5 opennlp TokenNameFinderTrainer -model en-ner-lecation.bin -lang en -data en-ner-

After calling this command, the system starts doing specific preparation for computation
namely computing event counts, indexing, sorting and merging events as well as calcu-
lation for the number of event tokens, outcomes and predicates.

After the preparation phase, model parameter are calculated using the likelihood of 100
iteration, followed by saving the model in the specified location.

Now the model is ready to recognize the location named entities.

5.3.3 Entity Recognition using Trained Model

As it is already stated, there are two ways of accessing the NER engine, API as well as
command line interface. To show the result, the command line interface is selected. In
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order to recognize entities, the model should be called. After calling the models, the
command line is ready to receive the input. Once a text is entered, a system print out the
same text coupled with tags for recognized named entities. Here is an example of one
sentence were inserted to the model and two named entities were recognized by it.

C:\Users\Saraf\apache-opennlp-1.5.3-bin\apache-opennlp-1.5.3\bin>opennlp TokenNameFinder en-ner-location.bin
Loading Token Name Finder model done (0.042s)

I will leave Nijmegen on Wednesday since i have a meeting in Amersfoort on Thursday early morning
I will leave <START:location> Nijmegen <END> on Wednesday since i have a meeting in <START:location> Amersfoort <END> on Thursday early morning

5.4 Evaluation

OpenNLP offers an evaluation tool for calculating the performance of named entity rec-
ognizer using three attributes including precision, recall and F-measure. The evaluation
can be done out of either pre-trained model coupled using a test set or cross validation.
To evaluate the model trained in previous chapter, a test dataset is provided. Using the
command below the evaluation is carried out.

-1.5.3\binropennlp TokenNameFinderEvaluator -moedel en-ner-location.bin -data en-ner-local

model

As can be seen, the achieved numbers are 0.84 for Precision and 0.45 for Recall which
were leaded to the overall of 0.59 for F-measure score. The high precision indicates that
84% of all recognized entities were actual locations while average recall shows that 45%
of all the locations mentioned in the test corpus were recognized by the NER engine. In

Falcon system (and most of commercial applications), the strategy is to not to offer the
users a suggestion until there would be a high likelihood that the recognized entity is
correct in order to not irritate users by a numerous suggestions which are not proper. In
other words, the high precision and acceptable recall achieved in this project properly
fulfil the Falcon requirements. However, to make this research applicable and reliable
to a wide range of projects, in the next chapter an innovative way to boost the perfor-
mance specifically recall is introduced.

5.5 Boosting the Performance

One of the first step in improving the result is finding out the algorithm used inside the
NER engine. The OpenNLP named entity recognizer is implemented using Maximum
Entropy (Maxent) algorithm. Below the details about improvement cycle is elaborated.

55.1 Improvement Process

Based on the characteristic of the Maximum Entropy approach which is previously elab-
orated in the state-of-the-art chapter, the best results are achieved when the models are
trained out of running against samples of data. To implement this method, an approach
is to going through steps below recursively:

1) Building a model using annotated data
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2) Reading new dataset

3) Extract named entities using models

4) Go through the results and add the entities which was not recognized by the system to the
list of recognized entities

5) Repeat the process from step two

The reason that cycle above is improving the performance is that each time the model will be
improved base on the fact that in Maxent method the contribution weights of similar features
would not overrate the final judgments.

55.2 Applying the Improvement Process in Falcon

In previous chapters all the steps required for recognizing named entities using
OpenNLP NER Engine is described. However, to have a better insight over the im-
proved process, the default process is depicted in the Figure 8.

OpenNLP NER Process in Falcon

Preparing
training data

e
corpus
Define a propertise

Modifying
properties

v

Classifier
training

Performance
checking

Figure 8. OpenNLP NER Process in Falcon

As can be seen named entity recognition process involves four phases, namely preparing
training data, modifying properties, classifier training and performance checking. In the
improvement cycle a new phase is added called customer data preparation.

To embed the improved method into the Falcon, different strategies are applicable. Out
of which, the most smart one is to use the user interaction with the system to check if
recognized entities are actual ones. To implement this strategy, several features of the
Falcon can be involved.

For instance, when user receive an email containing a request for a meeting, the system
should offer the user “adding an event to the calendar” with some pre-filled data based
on the results of NER, such as the time and place of the meeting. If a user has not change
the fields, it means that the recognized entities were correct. In the case that the user
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changed the pre-filled data, the newly added data should be searched in the text and if it
was included in the body of email, it should be tagged and added automatically to the
training data for the next cycle of the improvement. This improvement cycle period is
varied based on the number of the users and their interactions with the system. At this
moment Falcon is in the development stage and the platform is not ready to have the
full implementation of the solution. Therefore the method is implemented and tested
using real freely available data on the internet. During the whole process the

Default properties is used. In the diagram below, all the phases regarding the Falcon
NER improvement cycle is described

Improved NER Process in Falcon

Customers
data
preparation

Preparing
training data

Modifying
properties

Classifier
training

Insert some input . T Performance
corpus Calculation

Figure 9. Improved NER Process in Falcon

checking

Performance

5.5.3 Validation

To validate the method, an evaluation should be taken into account to compare the new
result and the old method ones. To simulate the improvement cycle, firstly a model is
trained using the same training data. Then an entity recognition is carried out on the
newly added corpus. All entities which were neglected by the system were founded,
annotated and added to the existing training data. The model is trained on the new train-
ing data and tested using the same evaluation method.

S.3\bin>opennlp TokenNameFinderEvaluator -model en-ner-location.bin

As can be seen, the recall was increased dramatically from 0.45 to 0.82 which was lead
to the improvement of F-secure by 44% from 0.59 to 0.85. In addition, the precision has
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also been incremented from 0.84 to 0.88. The chart below shows the comparison be-
tween the results of both methods, indicating the superiority of improved NER engine.

Comparison between the performance of the
traditional and improved NER engine

0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Improved NER Engine Traditional NER Engine

B F-measure M Recall M Precision
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6 Conclusion

6.1 Summary

Named Entity Recognition is one of the natural language processing subfields. It refers
to the recognition of specific entity types such as names of the person, locations and
dates in the plain text. The outcome of NER systems can be used in wide range of ap-
plications to offer better services to the user. In this thesis, the focus was on the
implementation of named entity recognition engine in an existing CRM application as
well as boosting the results via the modification of the system. In order to have a reliable
named entity recognizer, reviewing state-of-the-art of the field was a vital step, finding
out what is already achieved in the field. All of the existing techniques, algorithms and
technologies were reviewed and elaborated in two separate chapters. Next step was to
analyse requirements to be able to choose an appropriate technique and technologies
which suit all needs of the system. With regards to all the requirements OpenNLP has
been nominated, an open source library which has been written in Java under the Apache
license. The named entity recognition offers several natural language services, out of
which the most related library of it which is related to this project is named entity recog-
nition engine which has been implemented using Maximum Entropy probability
distribution. In the solution chapters, a model is trained and the performance of system
has been evaluated using three measurement factor namely Precision, Recall and F-
measure. In the last part, a new method has been introduced and tested which was lead
to boosting the performance up to 44%. The bootstrapping strategy to implement the
improvement method using the customer data has been elaborated as well which helps
the system to have an automatic increase in terms of accuracy out of the user’s interac-
tions with the system.

6.2 Validation

In the chapter 4 all the requirements of the system has been analysed. With regards to
the results of analysis a technique and technology have been selected to be implemented
which means the solution fulfil the all the system requirement.

In the solution chapters, a named entity recognizer engine has been implemented. A
training corpus of 5400 sentences which has been annotated for location entity was used
to train a model. The embedded evaluation tool of OpenNLP was used to check the
accuracy of the system and the result of evaluation was 0.84 for Precision, 0.45 for Re-
call and 0.59 for F-Measure. Although the Recall was low compared to the high
Precision of the system, but still 0.45 is acceptable number for Recall of a named entity
recognizer since in CRM applications most focus is on the precision in order to not
interrupt the users with numerous suggestion.

In order to generalize the solution and make it more applicable to all other problem
areas, the Recall should had been improved. Using a technique which is introduced and
elaborated in previous chapters, the Recall has been amazingly raised from 0.45 to 0.82,
leaded to the improvement by of recall by 82%. Recall has been increased slightly from
0.84 to 0.88. The increments in both Precision and Recall was resulted in the growth of
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F-Measure from 0.59 to 0.85. In other words, the overall performance of the NER engine
has been enhanced by 44%.

6.3 Future Work

As it is already stated the performance has been increased using a technique with hand-
annotated data while the improvement method offer an implementation technique to
have an automatic improvement using bootstrapping method which requires the user’s
interaction data with the system. Therefore the next step is to embed the named entity
recognition engine into the CRM environment to be able to implement and test the im-
provement method with real-time data.

Another step in future work is to solve the privacy issues in using the customer data.
A separate solution is needed to be able to use the data which involves customer inter-
action to improve the accuracy of named entity recognition engine. There is a variety of
strategies such as encryption of the data, asking customers for data access privileges or
using the data in anonymous paradigm which can be chosen with regards to the require-
ments.

The broader aspect of the future work is related to the improvement of OpenNLP tool
itself. At this moment the package is implemented using Maximum entropy probability
distribution model. Embedding some other powerful algorithms such as CRF (Condi-
tional Random Fields, the algorithm which is implemented in the engine of Stanford
NLP package) might help to enhance the overall performance of the toolkit.
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Appendix

An introduction for porting named entity recognizer to C# is provided on the wiki of
OpenNLP*. It has been modified and used inside a .Net application in using Microsoft Visual
Studio. In this chapter the code inside two major classes namely EntityExtractor.cs and Pro-
gram.cs has been provided.

/// Farbod Saraf Jadidian - s4346319
/// Master Thesis Project - Oct 2014

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

namespace OpenNLPtest

{
public class EntityExtractor

{
/// <summary>
/// Extractor for the entity types available in openNLP.
/// Copyright 2013, Don Krapohl www.augmentedintel.com
/// This source is free for unlimited distribution and use

/// TODO:

/// try/catch/exception handling

/17 filestream closure

/// model training if desired

/// Regex or dictionary entity extraction

/// clean up the setting of the Name Finder model path

/// </summary>
/// Call syntax: myList = ExtractEntities(myInText, EntityType.Person);

private string sentenceModelPath = "c:\\models\\en-sent.bin"; //path
to the model for sentence detection

private string nameFinderModelPath; //Name -
Finder model path for English names
private string tokenModelPath = "c:\\models\\en-token.bin"; //model

path for English tokens

public enum EntityType

{
Date = 0,
Location,
Money,
Organization,
Person,
Time

}

public List<string> ExtractEntities(string inputData, EntityType target-
Type)
{
/*required steps to detect names are:
* downloaded sentence, token, and name models from
http://opennlp.sourceforge.net/models-1.5/

4 https://cwiki.apache.org/confluence/display/OPENNLP/Introduction-+to-+us-
ing+openNLP+in+.NET+Projects
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* 1. Parse the input into sentences
* 2. Parse the sentences into tokens
* 3. Find the entity in the tokens

*/

upon entity type-----------------
switch (targetType)
{

case EntityType.Date:
nameFinderModelPath = "c:\\models\\en-ner-date.bin";
break;

case EntityType.Location:
nameFinderModelPath = "c:\\models\\en-ner-location.bin";
break;

case EntityType.Money:
nameFinderModelPath = "c:\\models\\en-ner-money.bin";
break;

case EntityType.Organization:
nameFinderModelPath = "c:\\models\\en-ner-organization.bin";
break;

case EntityType.Person:
nameFinderModelPath
break;

case EntityType.Time:
nameFinderModelPath
break;

default:
break;

1}
@]

:\\models\\en-ner-person.bin";

1}
@]

:\\models\\en-ner-time.bin";

[/------- - Preparation -- load models into objects---------

//initialize the sentence detector

opennlp.tools.sentdetect.SentenceDetectorME sentenceParser = pre-
pareSentenceDetector();

//initialize person names model
opennlp.tools.namefind.NameFinderME nameFinder = pre-
pareNameFinder();

//initialize the tokenizer--used to break our sentences into words
(tokens)
opennlp.tools.tokenize.TokenizerME tokenizer = prepareTokenizer();

[/ Make sentences, then tokens, then get names---

String[] sentences = sentenceParser.sentDetect(inputData); //detect
the sentences and load into sentence array of strings
List<string> results = new List<string>();

foreach (string sentence in sentences)

{
//now tokenize the input.
//"Don Krapohl enjoys warm sunny weather" would tokenize as
//"Don", "Krapohl", "enjoys", "warm", "sunny", "weather"
string[] tokens = tokenizer.tokenize(sentence);

//do the find
opennlp.tools.util.Span[] foundNames = nameFinder.find(tokens);
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//important: clear adaptive data in the feature generators or
the detection rate will decrease over time.
nameFinder.clearAdaptiveData();

results.AddRange(opennlp.tools.util.Span.spansToStrings(found-
Names, tokens).AsEnumerable());

}

return results;

}

#region private methods
private opennlp.tools.tokenize.TokenizerME prepareTokenizer()

{
java.io.FileInputStream tokenInputStream = new java.io.FilelIn-
putStream(tokenModelPath); //load the token model into a stream
opennlp.tools.tokenize.TokenizerModel tokenModel = new
opennlp.tools.tokenize.TokenizerModel (tokenInputStream); //load the token model
return new opennlp.tools.tokenize.TokenizerME(tokenModel); //create
the tokenizer
}
private opennlp.tools.sentdetect.SentenceDetectorME prepareSentenceDe-
tector()
{
java.io.FileInputStream sentModelStream = new java.io.Fileln-
putStream(sentenceModelPath); //load the sentence model into a stream
opennlp.tools.sentdetect.SentenceModel sentModel = new
opennlp.tools.sentdetect.SentenceModel(sentModelStream);// load the model
return new opennlp.tools.sentdetect.SentenceDetectorME(sentModel);
//create sentence detector

}

private opennlp.tools.namefind.NameFinderME prepareNameFinder()
{
java.io.FileInputStream modelInputStream = new java.io.FilelIn-
putStream(nameFinderModelPath); //load the name model into a stream
opennlp.tools.namefind. TokenNameFinderModel model = new
opennlp.tools.namefind.TokenNameFinderModel(modelInputStream); //load the model
return new opennlp.tools.namefind.NameFinderME(model);
//create the namefinder

}

#endregion

using java.util;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace OpenNLPtest

{

class Program

{

static void Main(string[] args)

{

EntityExtractor myExtractor = new EntityExtractor();
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string myInText = "Henk and Nima are going to collaborate for the
new project in San Francisco. The owner of the company, Farbod, has been prom-
ised to help Jan during the collaboration.";

List<string> results = myExtractor.ExtractEntities(myInText, Enti-
tyExtractor.EntityType.Person);

foreach (var item in results)

{
}

// List<string> myListl = NaturallanguageProcessingCSharp.EntityEx-
tractor.ExtractEntities(myInText, EntityExtractor.EntityType.Person);

}

Console.WriteLine(item);

}
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