MASTER THESIS
INFORMATION SCIENCE

h

G .
é.\9 Ny |
orrer

O’”INe-‘?QJ

RADBOUD UNIVERSITY NIJMEGEN

Measuring dependency freshness in
software systems

Author: Internal supervisor:
J.R. Cox Prof. dr. M.C.J.D. van Eekelen
joel.cox@student.ru.nl marko@cs.ru.nl

Student No. 4023390

Ezxternal supervisor:
Prof. dr. ir. J. Visser

j.visser@cs.ru.nl

August 19, 2014

Abstract

Modern software systems often make use of external dependencies to
speed up development and reduce cost. These dependencies have to be
updated to ensure the flexibility, security, and stability of the system. In
this thesis we analyze the dependency update behavior of industry systems.
Several measurements are presented to quantify how outdated an individual
dependency is, as well as a benchmark-based metric to rate a system as a
whole. The system-level metric is validated through three different meth-
ods. First, the usefulness of the metric is validated using interviews with
practitioners. Secondly, the metric is checked for flatlining when a system
is monitored over time. Finally, the metric’s relationship with reported se-
curity vulnerabilities in dependencies is investigated. The latter validation
step shows that systems with outdated dependencies are more than four
times as likely to have security issues in their external dependencies.

Acknowledgements

First of all I would like to thank Marko and Joost for their guidance during
my research. Your questions and insights helped me shape my thesis into
what it has become. Additionally I would like to thank Joost for giving
me the opportunity to write my thesis at the Software Improvement Group
(SIG), which has been a great experience.

Eric Bouwers and Dennis Bijlsma also provided valuable feedback during
the last few weeks. Thank you for helping me put my thoughts into words.
I also want to thank the research team, my fellow interns and everybody
else at SIG who made my stay a pleasant one.

Finally, T would like to thank my parents who always supported and
enabled me in whatever I wanted to pursue. Thank you.

Joél
Amsterdam
August 2014

Contents

1.1 Research questions|
1.2 Methodologyl, .
[L3 Research contextl
1.4 Application|o

2 Dependency freshness at the dependency-level

[2.1 Software dependencies|
2.2 Dependency versions| oL
2.3 Dependency freshness|
2.4 Version distance] Lo

[2.4.1 Version sequence number|

[2.5.1 Dataset of industry systems|
[2.5.2 Dataset of dependency versions|

13.2 Normative versus descriptive metrics|
|3.3 Benchmark-based aggregation metric]
[3.3.1 Measurement aggregation|
[3.3.2 Transformation to ratingl

A Vahdation

[4.1.1 Interview guide| L.
EI2 Resultd . . . o o o oo
[4.1.3 Analysis|. oo
[4.1.4 Threats to validity|
4.2 Vulnerabilities detection|
4.2.1 Methodology|
4.2.2 Results and analysis|

[4.2.3 Threats tovalidity|,
4 g

4.3.1 Methodology|
4.3.2 Results and analysis|
4.4 Threats tovalidity] L.
4.4.1 Construct validity]
4.4.2 External validity|

6.1 Application in practice]
6.2 Future work and opportunities|
[6.2.1 Dependency context|
6.2.2 Version distancel L.
6.2.3 Updateeftort]
[6.2.4 Dataset cleanup|
16.2.5 Impact on software quality]

(Bibliography|

[Appendix A: Software metric catalog format|

30
31
32
33
36
38
38
38
40
41
42
42
42
43
43
44
45

46

48
49
49
49
50
50
o1
o1

51

56

Chapter 1

Introduction

Modern software systems often make use of third-party software compo-
nents in order to function. Components enable developers to reuse code
across systems allowing systems to be developed at a lower cost in a shorter
period of time [34]. When a component is added to a software system, the
system builds upon the functionality provided by the component and thus
starts depending on that component in order to function. The term depen-
dency is used interchangeably to describe both the relationships between
the component and the system, as well as the component itself.

Throughout the system’s lifetime dependencies have to be kept up-to-
date with new releases of the dependency, but updating dependencies can
come at a high cost [6]. Keeping up-to-date can be challenging as the team
working on the software system may have little influence on the development
process of the dependency, yet it relies on the developers of the dependency
to provide non-trivial security and bug fixes [39].

The lack of control over the dependency’s development process and the
trade-offs for updating dependencies make the decision to update a depen-
dency non-trivial. Whether to update a system’s dependencies is a trade-off.
On one hand there is the effort needed to bring dependencies up-to-date and
on the other hand the benefits of having up-to-date dependencies. The ben-
efits include:

Security A dependency may contain security vulnerabilities. When a de-
pendency is not updated to patch such a vulnerability, the system may
be at risk.

Flexibility Up-to-date dependencies allows the organization to respond to
change more quickly, because recent dependency versions are easier to
update than older dependency versions. New functionality in depen-
dencies is already available.

Stability Dependency updates often contain bug fixes, improving the sta-
bility and correctness of the overall system.

Compatibility External changes to the system’s environment may stop
the system from functioning.

There a several reasons why dependencies are not updated, or why it’s hard
to update a system’s dependencies. These reasons can both be attributed
to the dependency’s developers, the software system’s developers as well as
the direct management of the latter.

Testing effort When a system has a low test coverage, manual testing is
required in order to check for regressions after a dependency update.
Because the majority of the dependencies aren’t versioned in a way
that the version number reveals potential breaking changes [38] testing
is required.

Prioritization Bug fixing and adding features to a system is often priori-
tized over preventive maintenance. Dependency updates may contain
trivial changes not directly affecting the system, which makes it hard
to justify the update effort at the time of the release of the dependency.

Implicit dependencies Not all systems explicitly declare their dependen-
cies, making it impossible to get a comprehensive overview of the de-
pendencies, increasing the effort when updating the dependencies.

Deciding whether to update a system’s dependencies is thus a double edged
sword and requires a careful balance of the effort needed to update the
dependencies and the benefits gained by updating. In order to make such a
decision an objective way to quantify whether a system’s dependencies are
up-to-date is needed.

Little research has been done to define what good dependency manage-
ment actually entails. A very low level of freshness is seldom desirable, but
a bit might be. To understand why this may be desirable, consider the fol-
lowing software release cycle. Functionality is added during a major release,
accompanied by bugs which were introduced while adding a feature. In
subsequent minor releases, these bugs are fixed. Not being fully up-to-date
might thus be beneficial for the stability of the system as subsequent mi-
nor releases are more stable than major releases. A function describing the
desirability of a dependency given its version distance is plotted in Figure
Il

An exception to this is when a dependency contains a critical security
vulnerability. Delaying the dependency update leaves the system in a vul-
nerable state and a low dependency freshness may make the upgrade process
difficult. However, the opposite might also be true; a dependency may be
so outdated that vulnerabilities do not apply to the version used by the
system. For the remainder of this study we assume that having the most
recent release of a dependency is the most desirable.

High
|

Desirability

Low
I

T T
Low High

Version distance between used version and latest version

Figure 1.1: Function of version distances between the used dependency and
latest dependency, and desirability.

In practice, dependencies are often installed automatically through pack-
age managers, which also take care of transitive dependencies. Systems
specify their dependencies in a manifest, which are then downloaded and
installed by the package manager. This process is repeated until all de-
pendencies are met. There are several intricacies to this process, such as
dependency compatibility, circular dependencies and interdependency rela-
tions [12][16].

Technical debt

The technical debt metaphor was originally used to describe the problem
of not improving less-than-ideal code to non-technical stakeholders; “not
quite right code which we postpone making it right” [I5]. Over the past
decades this concept has been applied to several kinds of debts related to
software [28]. The notion of update debt can be defined as the buildup of
dependency versions which have yet to be applied to the software system.

In Figure a system is depicted with a single dependency, added at ¢.
At t + 2, the dependency has seen two releases since ¢, thus increasing the
technical debt of the system. At t+ 3, the dependencies are updated within
the system, after which the debt is paid.

In this study the term dependency freshness is used to express how up-
to-date a dependency is. This metaphor is taken from produce; like de-
pendencies they start out fresh, but after a certain period of time they go
bad. A system owner may find it desirable to maintain a certain level of
dependency freshness to keep the overall system healthy. The exact reasons
why this is beneficial are outlined in the previous section. The term fresh-
ness thus refers to how recent a version of a dependency is compared to the
version that is available.

High
|

Major depeyidency release

Technical debt

Mdency release /

T T T
t t+1 t+2 t+3 t+4 t+5
Time

Low
|

Figure 1.2: Applying the technical debt metaphor to dependency updating.

Relevance

Even though external dependencies are widely used in software engineering,
little research has been done on how to manage these dependencies. This
means that most of the industry practices are formed through anecdotal
experience rather than empirical study. With this in mind, this study could
be labelled as fundamental research.

Proper dependency management is not only interesting from a technical
perspective, but is also relevant to our society in which software systems take
an increasingly prominent role. A prime example is the April 2014 end-of-
life of Microsoft’s Windows XP, meaning that no new security updates will
be released to the general public. Net Market Share [42] still reported a
market share of over 26% when support was discontinued for this version of
Windows. This leaves more than a quarter of desktop internet users exposed
to security vulnerabilities.

Organizations that still haven’t upgraded have built up a considerable
amount of debt, but these organizations are only partly to blame. It could
be argued that Microsoft failed to provide an adequate update path in time,
delaying suppliers of the organization to update their applications therefore
slowing down the migration. This illustrates the importance of managing
dependencies and the risk involved of using third-party dependencies.

1.1 Research questions

To define a system-level dependency freshness metric we first need to be
able to measure the dependency freshness of a single dependency. Once a
measurement is established a metric for an entire system can be defined and
subsequently validated. The following research questions are formulated to
guide this research:

RQ1 How can we measure the dependency freshness of a single dependency?

RQ2 How can we measure the dependency freshness of a system as a whole?

The structure of this study is as follows. In chapter two several concepts are
defined and measurements are proposed to express the distance between two
versions of a dependency. These measurements are then compared and used
to analyze a set of industry systems. A single measurement is then used to
define a benchmark-based metric, which can be found in chapter three.

This metric is subsequently validated in chapter four, where we look
into the usefulness of the metric in practice, its relationship to security and
suitability for long-term monitoring. Finally, the related work is covered in
chapter five and the conclusion of the study can be found in chapter six,
together with future work.

1.2 Methodology

In order to answer the stated research questions the concept of freshness
is defined and its different properties explored. Dependencies are mined
from a dataset of industry systems in order to gain further insight in how
dependencies behave in real life systems. In this research dependencies are
considered to be external software libraries which are used by a system. The
database of dependencies mined from the industry systems will be enriched
with data retrieved from Maven.org, a widely used software repository.
The system-level metric is validated using the criteria from the IEEE
Standard 1061-1998 [3]. The general usefulness of the metric is validated
through a series of semi-structured interviews with practitioners. A dataset
created by Cadariu [14] is used to determine whether dependencies contain
reported security vulnerabilities. The metric’s performance through time is
validated by recomputing the system-level dependency freshness rating for
each versions of the system as found in the dataset of industry systems.

1.3 Research context

This study is performed at the Software Improvement Group (SIG), an
independent advisory firm that evaluates the quality of software systems.
Systems are evaluated using the SIG Maintainability Model [23] and employs
a star-based rating system to compare systems to a benchmark of industry
systems. Evaluated systems are added to the benchmark repository that is
used to calibrate the model on a yearly basis.

1.4 Application

The main goal of the system-level dependency freshness metric is to aid
stakeholders in deciding when it is time to update a system’s dependencies.
This metric should given an indication whether a system is still performing
as it should, or requires attention. However, a comprehensive overview of the
state of a system’s dependencies can’t be formed by dependency freshness
alone. In order to get such an overview, the dependency freshness metric
can be incorporated into a metric system.

A widely-used approach for developing such a software metric systems
is the Goal Question Metric approach popularized by Basili et al. [7]. The
GQM approach is top-down, rather than bottom-up. The goal is defined
first, as the main objective of the metric system.

Two additional aspects related to dependency management where iden-
tified as important, namely dependency coupling and security issues within
dependencies. Therefore two additional questions are added to the metric
system. Finally, metrics are assigned to each individual question in order to
complete the metric system. This system is described in Table

While this metric can thus be used in isolation, incorporating the metric
in a metric system will give stakeholders a more complete view of the state
and risks of a system’s dependencies.

Goal Purpose Make informed decisions
Issue about managing

Object software dependencies

Perspective| from the system’s owner perspective.

Question | Do any of the software dependencies contain security vul-
nerabilities?

Metric Vulnerability alert ratio [14]

Question | What is the level of encapsulation and independency of a
dependency within a system?

Metric Dependency profile [10]

Question | Are the system’s dependencies up-to-date?

Metric Dependency freshness

Table 1.1: A GQM approach to a metric system which could incorporate
the dependency freshness metric.

10

Chapter 2

Dependency freshness at the
dependency-level

To gain a better understanding of dependency freshness we first define work-
ing definitions for a dependency in general, dependency versions and depen-
dency freshness itself. After defining these terms, several measurements are
proposed to capture the dependency freshness concept. A number of these
measurements will then be used to analyze a dataset of industry systems
and their dependencies. We describe the dataset and how it was obtained.

2.1 Software dependencies

In component-based software development, systems are assembled from mul-
tiple components which can be developed independently of one another.
These individual components form a cohesive system when put together [34].
In order for the system to function, these individual components have to be
able to communicate amongst each other. Such a component is called a
dependency. Systems can have several types of relationships with a depen-
dency [§], namely:

Mandatory The dependency has to be present for the system to run.

Optional The dependency is not required for the system to run, but this
may impact quality aspects like performance. An example of this
would be a compiled database driver versus a driver in a higher level
language.

Negative The dependency cannot be present to avoid conflicts with other
available components.

Ideally, dependencies are defined explicitly in order to assess fully whether
a system functions properly with regards to its dependencies.

11

Figure 2.1: Example of a dependency graph of system s with two dependen-
cies, excluding one transitive dependency.

Dependencies can have dependencies on their own, resulting in a recur-
sive structure. Omne can look at these dependencies on different levels of
granularity, such as statements and functions [2I]. In this study the fo-
cus is on components, or more specifically, libraries. The relations between
dependencies and systems can be described in a dependency graph.

More formally, a system s can be described using the following definition
in which G describes the dependency graph, V' the vertices and E the edges
in the graph [9]:

G=(V.E)
V = {s,di1,da, d3}
E = {(s,d1), (s,d2), (d2,d3)}

This system has three components; dq, d2 and d3. Component d; and dy
are dependencies of s, while d3 is a dependency of ds.

2.2 Dependency versions

Software version numbers are used to refer to a piece of software at a certain
point in time, but they have no universal semantic meaning. The numbers
can be an indication of amount of change relative to a previous version,
software maturity and even software stability [I7]. They can also be used
to distinguish between different branches of development. While version
numbers may look comparable, their semantic meaning can differ between
projects.

The number of versions released within a single time period is different
between projects and is likely to be variable. Some projects will only see
a handful of releases per year, while other projects may be released several
times per day [25]. This makes it impossible to assign an amount of effort
based on version number.

The Semantic Versioningﬂ standard tries to standardize the meaning of
version numbers across projects. In this versioning scheme, version numbers

"http://semver.org

12

d0 Lo dl L-o_p| d?

— depends on
80 F==% 51 == 82
---» succeeded by
d ﬁ ———
t t+1 t+ 2

Figure 2.2: Example update path of a system with two dependencies.

signify the stability of a public API, the interface which is specifically des-
ignated to be used by third-party developers. The format of these version
numbers is a tuple (x,y, z) or the major, minor and patch version numbers,
respectively.

When a developer makes a change to the public API that breaks back-
ward compatibility (i.e. the software using the API has to be modified in
order to work with a new release of the dependency) the major version
number has to be incremented. The minor version number should be incre-
mented when functionality is added to the library, while the patch version
number should be incremented when bugs are fixed. In practice, very few
projects actually adhere to this versioning scheme [3§].

For this study a public release of a dependency with a distinctive version
number is considered to be a separate version of a dependency, without
making further distinctions.

2.3 Dependency freshness

Dependency freshness can be explained as the difference between a depen-
dency version that is used by a system and the most recent version of that
dependency, at that time. More formally; let d be a dependency of system
s at time t. At t+1 a new version of d becomes available, d'. However, s at
t + 1 still relies on d; the system relies on an older version of a dependency
even though a newer version is available.

Using d at t + 1 is therefore considered less fresh than using d' at t + 1.
In other words, it’s less desirable to use dependencies when a newer version
can be used. It would be impossible for s to depend on d' at t, as d' only
became available at t 4 1.

A more elaborate example is given in Figure [2.2] In this figure a system
with two dependencies is depicted. Dependency d; is kept up-to-date with
every release of s, while a release of do wasn’t updated immediately. This

13

was corrected in the last version of the system, s?. Measurements to quantify
this distances are presented in the next section.

2.4 Version distance

To express how fresh a certain dependency is, we need a measurement which
makes it possible to compare a certain release of a dependency to another
release of that dependency. In this section several measurements are ex-
plored that use different attributes of a dependency. The measurements are
also described using the Software Metrics Catalog Format [I1] and can be
found in the appendix.

Because the system-level metric will be based on a single measurement,
the most appropriate measurement has to be selected. Our criteria for se-
lecting this measurement are based on the criteria described by Heitlager et
al. [23].

Indicator of recentness How well the measurement indicates the times-
pan between two versions of a dependency.

Indicator of change How well the measurement indicates whether a de-
pendency has seen a lot of change.

Ease of implementation How easy the measurement is implemented across
languages, as well as additional data needed to compute the distance
between two versions.

Sensitivity to outliers How sensitive a measurement is to outliers, such
as dependencies with short release cycles or dependencies that see
extensive periods of inactivity.

First we present each individual measurements, after which they are scored.

2.4.1 Version sequence number

The difference between two separate versions of a dependency can be ex-
pressed by the difference of the version sequence numbers of two releases.
This measurement does not necessarily take into account the version num-
ber of a dependency, but can employ the dependency’s release date to order
the difference versions. For a dependency with the versions (d",d"*!, d"+?)
ordered by release date, the version sequence distance between d” and d"*?
is 2.

Considerations

Dependencies with short release cycles are penalized by these measurement,
as the version sequence distance will be relatively high compared to depen-
dencies on longer release cycles.

14

Version | Version number | Delta | Cumulative delta
dr (1,2,0)
dntt (1,2,1) (0,0,1) | (0,0,1)
dnt? (1,3,0) (0,1,0) | (0,1,1)
ants (1,3,1) (0,0,1) | (0,1,2)

Table 2.1: Example of how to compute the version number delta distances
between several versions of a dependency.

2.4.2 Version release date

In order to express how recent a version is, the number of days between
two releases of a dependency can be calculated. This number expresses the
number of days that a new version of a dependency has been available, but
not yet updated to.

Let r be a function which returns the release date for a dependency ver-
sion. The release date distance between r(d") = 10/3/2014 and r(d"*?) =
30/6/2014 is thus 113 days. Note that the difference between d™ and d"*2
can be computed directly rather than via d"*!. Unlike the other measures
presented in this section, this measurement can be calculated without knowl-
edge of intermediate releases.

Considerations

This measurement penalizes dependencies that release a new version of a
dependency after large periods of inactivity. This is often the case for de-
pendencies with a high level of maturity.

2.4.3 Version number delta

Comparing two version number tuples can be done by calculating the delta
of all version number tuples between two releases. A version number is
defined as a tuple (z,y,) where x signifies the major version number, y the
minor version number and x the patch version number. The function v will
return the version numbers tuple for a version of a dependency.

The delta is defined as the absolute difference between the highest-order
version number which has changed compared to the previous version number
tuple. To compare multiple consecutive version number tuples, the deltas
between individual versions are added like normal vectors.

For example, two consecutive versions of a dependency v(d") = (1,2,2)
and v(d"™!) = (1,3,0) will result in the version delta distance (0,1,0). A
more elaborate example can be found in Table

15

Change d"Ad™H | dP L AT
Classes added 3
Classes removed
Methods changed
Methods removed
Delta

Cumulative delta 14

O | O ||
(G200 B RN NOUR el New]

Table 2.2: Example of how to compute the Public API delta between three
versions of a dependency.

Considerations

The main problem with this measurement is that there is no meaningful
way of aggregating the tuple of major, minor and patch version numbers to
ultimately come up with a single number to represent the version delta. It
can be said that x > y > z, but it is impossible generalizable the values
of the variables as it is completely dependent on a dependency’s individual
release cycle.

2.4.4 Public API delta

To express the amount of change between two releases of a dependency, the
source code of the two versions can be compared, as suggested by Raemaek-
ers et al. [38]. In this paper, the authors use a tool called Clil“IEI to analyze
changes in the dependencies API of Java libraries. While Clirr can only
analyze changes in Java code, comparable tools could be written for other
programming languages. These changes include the removal and addition of
classes, methods, fields and more. More details are available in the referred
paper.

The number of changes made between each separate version of a de-
pendency can be accumulated to obtain the delta between releases. These
changes can include properties like classes added, classes removed, methods
changed and methods removed. An example can be found in Table It
is also possible to modify this measurement so that only the changes be-
tween two versions are computed, rather than accumulate the changes of all
intermediate versions.

http://clirr.sourceforge.net

16

Version Version Version Public
sequence | release number API
number date delta delta
Indicator of re- | e + ° -
centness
Indicator of | e — ° +
change
Ease of imple- | + + + -
mentation
Sensitivity to | High High Neutral Low
outliers

Table 2.3: Comparison of the different version distance measurements. Cri-
teria can have a positive relation (+), a negative relation (—) or a neutral
relation (e)

Considerations

Analyzing the API of the dependency is a sensible method because the
system relying on this dependency is a direct consumer of this API. A change
to the API may thus result into an effort in order to reach compatibility
again. However, not every change to the API will require such effort and
the effort involved is determined by the level of code coupling [10] and exact
usage of the API. Implementing this measurement is highly complex and
not compatible across platforms.

2.4.5 Measurement overview

The public API delta has the most favorable rating when looking at Table
[2.3] This measurement has a low sensitivity to outliers and is a good indi-
cator for change. However, it is hard to implement, nor is the measurement
as intuitive as the other measurements.

Because of this, the version release date and version sequence number
measurements were selected as candidate measurements. Both these mea-
surements are easy to implement and don’t make any assumptions about
versioning schemes of the software, unlike the version number delta.

2.5 Datasets

To see how the two selected measurements perform on real data we use
a dataset of industry systems, enriched with data from a central software
repository. This section describes the datasets and how they were used.
Figure gives an overview of how the different datasets were obtained.

17

Industry systems _ Used __Thresholds

repository "| dependencies] |

| |

I I

\ A | |

I

Maven Available | | . [T :
components > . > Tooling —— Rating

. dependencies
repository

Figure 2.3: Overview of how the different datasets are used to compute a
rating.

2.5.1 Dataset of industry systems

To perform our analysis a corpus of industry systems is needed. These sys-
tems were made available for study by SIG. Clients provide SIG with regular
source code snapshot of their systems, allowing for this type of analysis.

A total of 75 systems from 30 different clients were identified as Java
systems which manage their dependencies through MaverEL a tool for build-
ing software projects and managing software dependencies. To perform the
analysis dependencies have to be declared explicitly. Maven systems were
selected as this was the most widely used dependency manager across all
the systems which are analyzed by SIG, although a same type of analysis
could be performed on systems using other package managers.

Extracting dependencies

In order to analyze the dependencies of a system, the exact dependencies
and their versions have to be mined from the system’s source code. Systems
which use Maven for their dependency management specify these dependen-
cies in a manifest file, located in the root directory of the system. Additional
manifests files can be placed in subdirectories. This manifest file is called
pom.xml by convention. An example of such a file can be found in Listing
Version numbers can also be defined through a properties element
and referenced by the name of the property.

Mining a system’s dependencies is a two-step process, resulting in a list
of dependencies specified for a system:

1. Search the system directory for files called pom.xml.

2. Parse the XML files to retrieve the dependencies and remember the
dependency if the dependency wasn’t already specified for this sys-
tem. Variable version numbers are replaced by the value found for the

3http://apache.maven.org

18

key in the <properties> element. Dependencies with undeclared
version numbers are discarded. This was only the case for 34 unique
dependencies in our dataset.

<project>
<properties>
<commons—io—version >2.4</commons—io—version>
</properties>
<dependencies>
<dependency>
<groupld>junit </groupld>
<artifactId >junit </artifactId >
<version >4.8.1</version>
</dependency>
<dependency>
<groupld>commons—io </groupld>
<artifactld >commons—io</artifactId >
<version >{$commons—io—version}</version>
</dependency>

</dependencies>
</project>

Listing 2.1: Example POM file showing the system’s dependencies.

2.5.2 Dataset of dependency versions

The data extracted from the repository of industry systems is incomplete in
two respects. First of all it cannot be expected that every single version of
a dependency is included in this dataset. The intermediate releases between
two versions of a dependency are needed to compute the version sequence
number distance. Secondly, the mined manifest files only contain depen-
dency names and version numbers, but not their release dates. This release
date is needed in order to compute the version release date distance.

In order to complete the database of dependency versions the Maven.org
repository is used. This repository is the most widely used repository of
Java packages and used by the Maven package manager in its default con-
figuration. For every unique dependency (combination of groupId and
artifactId) found in our dataset of industry systems, a query was made
to the Maven.org repository. If an exact match was found all versions of
that unique dependency were added to our database, together with their
respective release dates.

2.5.3 Descriptive statistics

A total of 3107 unique dependencies were retrieved from the dataset of in-
dustry system, consisting out of 8718 unique dependency versions. Of these
dependency versions 5603 (64%) were classified as internal dependencies

19

which are not freely available online. This classification was done by com-
paring the groupId of a system with the groupId of a dependency. If these
are the same it is assumed that the dependency was developed internally.

Querying the Maven.org repository resulted in 2326 unique dependency
versions with release dates out of 3115, a hit percentage of 75%. A total of
23431 unique intermediate dependency versions were retrieved. These are
the dependency versions which were not found in the dataset of industry
systems, but are earlier or later versions of unique dependencies which were
found in this dataset. These dependency versions are used to compute the
release sequence number distance.

2.5.4 Limitations

The sample of systems is limited to systems which use Maven for its depen-
dency management. This means that the dataset is biased towards systems
where the importance of dependency management is understood.

Additionally, the systems are sourced from a repository which were col-
lected by SIG to asses code quality. This raises the possibility that the
analyzed systems are of a higher quality than the average software system.
However, these systems were not rated on dependency freshness specifically.
It could also be argued that the systems are of lower quality, because high
quality systems would not require outside help.

Finally, due to the transitive nature of Maven manifests it might be pos-
sible that systems include more dependencies than the amount which was
ultimately retrieved. The analysis is only performed on first-level dependen-
cies, rather than dependencies of dependencies.

2.6 Dependency freshness in practice

As stated in chapter 1, it is assumed that a high level of freshness is desirable
for a dependency. However, it is expected that distribution of freshness
does not follow this ideal and presumably follows a fat-tailed power-law
distribution, like many other software system properties do [2]. In order to
asses this hypothesis, a histogram was plotted for the dependency freshness
of all dependencies used in the analyzed systems, measured by the version
release distance as well as the version sequence distance.

When analyzing Figure (a) the length of the tail stands out, showing
that some dependencies are over 3000 days old. Upon further investigation
these cases often involve rather mature libraries such as those maintained
by the Apache Commons projectﬂ

An example of this would be the release of the commons-logging.
commons—logging package, version 1.1.1 on 2007-11-26. This release was

“http://commons.apache.org

20

1200

1000

600
|

800
L

Frequency
400
I
q
600

400

r T T T T T 1 r T T T T T 1
0 500 1000 1500 2000 2500 3000 0 20 40 60 80 100 120

Freshness measured by release date distance Freshness measured by release sequence distance

(a) Freshness by release date dis- (b) Freshness by release sequence
tance distance

Figure 2.4: Distribution of freshness across all dependencies.

followed by version 1.1.2 on 2013-03-16. Calculating the release date distance
between the two versions would yield a number found in the tail of the overall
distribution, while its perceived freshness might be a lot higher.

The release sequence histogram (Figure (b)) does more accurately
follow the anticipated power-law distribution. This measurement is more
forgiving to mature dependencies which are updated after several years of
inactivity, as described in the previous paragraph. However, it is more
susceptible to dependencies which have a shorter release cycles. For instance,
the org.eclipse. jetty.jetty—-client package saw 128 releases in a
timespan of less than 5 years.

When performing a Spearman correlation test a value of 0.637 is found,
indicating a strong, significant (P < 0.05) correlation between the two mea-~
surements. A Spearman correlation test is used as a monotonic relationship
between the two measurements is expected and the variables are not nor-
mally distributed. This result confirms that as the version release date
distance increases, it it highly probable that the version sequence number
distances increases, too (and vice versa).

In Figure[2.5]both the version release date distances and version sequence
number distance are plotted. This plot illustrates the different types of
release cycles; data points below the red trend line generally have long release
cycles, while the data points below the diagonal follow a quick release cycle.

When looking at the overall state of dependency freshness using the
version sequence number distance we can conclude that only 16.7% of the
dependencies display no update lag at all; the most recent version of a
dependency is used. Over 50% of the dependencies have an update lag of at
least 5 versions, which is considerable.

The version release date distance paints an even worse picture. The large

21

80 100 120
I I I
£

Version sequence number distance
8

"o o o
8 3R B 50

So
e N fa
wﬁi&éﬁﬁﬁjs °
T T T T
0 500 1000 1500 2000 2500 3000

TR IER Y S
W 8% e I

Version release date distance

Figure 2.5: A plot showing the relation between the release date distance
and version sequence number distance of a dependency.

majority (64.1%) of the dependencies has an update lag of over 365 days,
with a tail up to 8 years. This indicates that dependency management is
neglected across the analyzed dataset.

2.7 Discussion

To answer RQ1: How can we measure the dependency freshness of a single
dependency?
We defined several measurements in order quantify the difference between
two versions of a dependency. Ultimately we used both the version sequence
number distance and version release date distance to analyze a set of indus-
try systems.

While both measurements are sensitive to outliers, the version sequence
number distance is selected as the measurement for the remainder of this
research. The primary reason to choose this measurement is that it dis-
counts dependencies on quick release cycles (which are thus more subject to
change), rather than mature projects which only see minor updates.

In future work further refinements to these measurements could be made
(for instance by normalizing the version release date distance using the ver-
sion sequence number distance) to reduce outlier sensitivity.

22

Chapter 3

Dependency freshness at the
system-level

In this chapter a metric is created that captures dependency freshness at the
system-level. To do this, the version sequence number distance measurement
that was defined in the previous chapter is used.

3.1 Software metrics

“Software metrics is a term that embraces many activities, all of which in-
volve some degree of software measurement.” [19]. Software metrics encom-
pass the software system itself, as well as the process around the software,
respectively measuring its internal and external attributes.

Metrics allow stakeholders, managers and engineers to understand what
is happening during the development process by making certain aspects of
the product or process measurable and thus more visible. This will allow for
additional control over the project as well as acting on possible anomalies
therefor improving the overall outcome of a project [I8] 19].

In order to create a software metrics system, quality factors have to
be identified which are then used to determine the quality of a piece of
software. These factors are then assigned to internal or external attributes
of the system. Next, measurements are established in order to quantify such
an attribute and finally a metric aggregates these measurements to a single
rating [3].

Software metrics must satisfy several properties in order to be consid-
ered valid. Meneely, Smith and Williams [31] conducted a literature study
of 20 relevant papers, identifying 47 unique validation criteria. During the
study they identified two different philosophies within the software metrics
community, favoring different kind of validity criteria, namely a goal-driven-
approach or theory-driven approach. The goal-driven approach prioritizes
pragmatism over theoretical soundness as long as the metric allows for “as-

23

sessment, prediction and improvement” of a system or process. Internal
validity of a metric plays a central role in the theory-driven approach as
these metrics are often used to create a better understanding of a system. A
more succinct set of criteria can be found in IEEE Standard 1061-1998 [3]

3.2 Normative versus descriptive metrics

In the previous section a metric is defined as a function which maps mea-
surements to a quality aspect of a system. Creating a metric thus requires
the understanding of what the optimum of a certain quality aspect actually
is and how far a single measurement deviates from this optimum. This ap-
proach is a normative approach, as it compares the system to a norm; an
ideal model on how a certain aspect of the system should behave.

The problem of this approach is coming up with these models through
empirical research. Setting threshold values to classify measurements often
relies on experience and results are often not reproducible nor generaliz-
able [2]. For instance, the upper bound of the McCabe complexity metric
was set at 10 in its original paper [30], but this number is only backed up
by anecdotal evidence.

An alternative to a normative approach is a descriptive approach. In this
approach measurements are performed on a repository of systems which are
then used as a benchmark [26]. The threshold values are then determined
through a statistical and reproducible process, as explained by Alves et
al. [2]. By doing this, a relative metric is created which allows for ranking
of systems amongst each other, rather than an absolute measure to describe
its quality.

The downside of this approach is that such a metric could rate a system
which is a far from perfect at the upper end of the scale, just because all
systems across the dataset perform poorly. However, a descriptive approach
likely results in a metric with a high discriminative power because it takes the
distribution of the systems into account by definition. The metric will also
be more actionable [40] as improvements made to the system are more clearly
reflected in the metric rating. Ultimately, through continuous recalibration
of the metric, a scenario can be approached in which the majority of systems
are always fully up-to-date.

3.3 Benchmark-based aggregation metric

Because little research has been done on the desired freshness properties
of dependencies a descriptive approach is taken to define the metric. This
allows for a definition of a metric without relying on expert knowledge. The
methodology that is used is benchmark-based and widely used at SIG [4].

24

Frequency

. —r— []

r T T 1
0 50 100 150

Number of external dependencies

Figure 3.1: Distribution of the number of external dependencies per system.

To do this, the version distance of all dependencies in each system in the
benchmark dataset is computed. The version distance distribution is used
to assign risk categories to each dependency, using the thresholds obtained
in the first-level calibration. Next, a mapping is created to rate a system
based on the relative amount of dependencies in each risk category, using
the second-level calibration.

3.3.1 Measurement aggregation

The first step to defining such a metric is by creating a risk profile for each
separate system. A risk profile is the distribution of measurements across a
system, classified into certain risk categories. This results in a risk profile
like (27,9, 5,2) meaning that a system has 27 ‘low risk’, 9 ‘moderate risk’,
5 ‘high risk’ and 2 ‘very high risk’ dependencies.

The threshold values for these classification are determined by plotting a
cumulative density function, containing all version sequence measurements
across the dataset. Figure [3.2] shows the overall distribution of version dis-
tance as well as the distribution for each system. Three red lines are plotted
to indicate the 70", 80*" and 90" percentile, which are used to derive the
values of the thresholds for the risk categories. A wide variety of freshness
can be observed between system, so no additional weight per dependency is
required [2].

After establishing these thresholds, risk profiles for each separate system
can be created as shown in Figure [3.3] Each bar represents a single system
from the dataset and each color within the bar indicates the relative amount
of dependencies in a certain risk category. The length of each differently
colored bar is only an indicator of how many dependencies are present in
a certain risk category. The system with a single red bar is a system with

25

Freshness

).25 0.50 0.75
Quantiles (% of dependencies)

Figure 3.2: Dependency freshness per system, measured by release sequence
distance. The black line indicates the average. Red vertical lines are placed
on the 70", 80" and 90" percentile.

Risk category | Low risk | Moderate risk | High risk | Very high risk
Interval [0,10) [10,16) [16,22) [22, 00)

Table 3.1: First-level calibration thresholds for dependency risk profiles.

only a few dependencies, that are all classified as ‘very high risk‘.

Note that the number of dependencies per system (Figure varies
widely; 24.5 at the first quantile, 37 at the median and 60.5 dependencies
at the third quantile.

The exact numeric thresholds corresponding to the quantiles are listed in
Table The classification of a dependency is done by computing the ver-
sion release sequence distance, after which the corresponding risk category
is determined. For instance, a dependency with a version release sequence
distance of 12 will be classified as a ‘moderate risk’ dependency. This pro-
cess is repeated for each dependency with a known version release sequence
distance.

3.3.2 Transformation to rating

While the risk profiles give a good indicator of the distribution of undesirable
dependency versions, it is hard to compare the different sections of bars.
Alves et al. [I] propose an algorithm for ranking these risk profiles as well
as a way to derive a rating from such a profile. To accommodate this, a
mapping has to be created that assigns a rating based on the relative size
of the risk categories. SIG uses a star rating systems, ranging from one star

26

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: Dependency risk profiles for all systems in the dataset created
using the first-level calibration thresholds.

Risk profiles Low risk | Moderate risk | High risk | Very high risk
Non-cumulative 62.2% 20.7% 13.3% 3.8%
Cumulative 100% 37.8% 17.1% 3.8%

Table 3.2: Non-cumulative risk profiles can be transformed in cumulative
risk profiles by including the dependencies of higher risk categories.

for low quality systems, to five stars for high quality systems.

The first step to aggregating these risk categories is transforming the risk
profile into a cumulative risk profile. This is done by including the depen-
dencies of higher risk categories into the original risk category. Intuitively
this makes sense; dependencies which are of ‘very high risk’ are of at least
‘high risk’, too. An example of this transformation is shown in Table

Once the risk profiles are transformed, exact threshold values for the
categories have to be set. Using the set of systems in the benchmark and
their associated risk profiles, thresholds are computed so that ultimately a
distribution of (5%, 30%, 30%, 30%, 5%) of system ratings is reached.

The rating distribution is arbitrary as the methodology is generalizable
to n partitions with their respective intervals. The reasoning behind this
distribution is that the maximum and minimum ratings are quite rare, while
the ratings closer to the median are more evenly distributed.

To assign a discrete rating to a risk profile the star rating has to be found

27

Rating | Moderate risk | High risk | Very high risk
* kK ok x 8.3% 0% 0%
* Kk Ak 30.4% 14.3% 7.7%
* k% 38.9% 30.6% 19.7%
ok 60.0% 46.3% 27.8%

Table 3.3: Second-level calibration thresholds for cumulative risk profiles.

for which no cumulative risk category from a risk profile is greater than the
threshold. The risk profile shown in Table [3.2) would thus score three stars.

37.8% < 60.0% A 17.1 < 46.3 A 27.8% < 3.8% = **
37.8% < 38.9% AN 17.1 < 30.6 A27.8% < 3.8% = x x *
37.8% > 30.4%

This risk profile satisfies all the threshold for a two and three star rating,
but fails to get a four star rating when the risk profile is compared with the
‘moderate risk’ threshold. The threshold for this category is set at 30.4%
while 37.8% of the dependencies was classified as such.

It is also possible to assign a more fine-grained rating to a risk profile
by using linear interpolation. This is done by first computing the discrete
rating of a system and subtracting the absolute volume of dependencies in
this risk category, normalized by the length of the risk category’s interval.
The lowest value of this computation for each risk category is taken and 0.5
is added for ease of arithmetic rounding when the rating is translated to a
star rating.

Applying this process for the risk profile in Table is as follows.

1
] ing = D — 8—-304)———— = 2.62
moderateRiskRating := 3 + 0.5 — (37.8 — 30)38.9—30.4 629
1
highRiskRating := S—=(171-143)————— = 3.32
ighRiskRating := 3+ 0.5 — (17 3)30.6—14.3 3.328
1
HighRiskRating :==3+0.5— (3.8 —-7.7)———— = 3.825
veryHighRiskRating + ()19'7_7'7

Because this risk profile scored three stars in the discrete rating process, the
continuous risk rating for each risk category is interpolated from the the up-
per and lower bounds of the categories belonging to this rating. Ultimately,
this risk profile will be rated as 2.629, because it is the lowest rating of all
three risk category ratings.

28

3.4 Discussion

To answer RQ2: How can we measure the dependency freshness of a system
as a whole? A benchmark-based metric was defined as there is no normative
data available on good dependency management. A two-step process was
used to define this metric. First, different risk categories were set to classify
dependencies by their version distance. Secondly, a mapping was created so
that the risk profiles can be aggregated to ratings. This rating was calibrated
so that the systems in the benchmark follow a (5%, 30%, 30%, 30%, 5%) dis-
tribution. The validation of this metric will be performed in the next chap-
ter.

29

Chapter 4

Validation

To verify the metric developed in the chapter 3, three different types of
validation studies are performed, namely:

Interviews A series of semi-structured interviews (section [4.1)) are per-
formed to check the usefulness of the metric in practice. The interviews
are also used to check the discriminative power of the metric.

Reported vulnerabilities analysis A dataset of known vulnerabilities is
matched with our dataset of used dependencies (section[4.2). This will
allow us to investigate the relationship between the security aspect of
a system and its dependency freshness rating.

Longitudinal analysis Ratings for systems with multiple versions will be
compared to see whether the rating shows sufficient change through

time (section [4.3).

The metric is checked for the criteria set by IEEE Standard 1061-1998 [3],
as well as the general usefulness of the metric in practice. Finally the claim of
a relationship between dependency freshness and security will be validated.
The criteria in the IEEE Standard 1061-1998 [3] can be summarized as
follows:

Correlation When the metric value changes, the value of the quality factor
has to change sufficiently.

Tracking When the metric value changes, the value of the quality factor
has to change in the same direction, unless the metric and quality
factor are inversely related.

Consistency Metric values and their corresponding quality factor should
have a strictly monotonic relation.

Predictability A change in a metric used in a quality factor has to suffi-
ciently predict a change in a related quality factor.

30

Discriminative power Metric values have to clearly discriminate between
high and low quality systems.

Reliability The metric displays the above criteria over a sufficiently large
amount of systems.

4.1 Usefulness

To validate whether the proposed metric is considered useful, five semi-
structured interviews are performed. In the introduction of this study we de-
fined the goal of this research to create a metric which can quantify whether
a system’s dependencies are up-to-date or not. If this is considered useful
by the interviewees and the metric is an accurate indicator for the attribute,
than the metric must be useful.

During these interviews quantitive information about dependency man-
agement general is collected, as well the information about the application
of the metric. We hope that the information about the dependency man-
agement process in general will give additional insight in why systems often
have outdated dependencies.

The subjects of the interview are SIG technical consultants. Technical
consultants support general consultants on client projects and develop the
tooling to perform their analysis. Technical consultants are generally highly
educated (Master degree or higher) and experienced software engineers.

Semi-structured interviews are used as this data collection method can
be used for collecting quantitive, foreseeable information while still allowing
the collection of new insights [24]. The technical consultants were asked
about two types of systems, known and unknown systems (see below). By
asking technical consultants about a system they are familiar with, we are
able to ask about the system owner’s motivation for (not) updating their
dependencies.

Known system A system from a client that the technical consultant is
assigned to. The exact system was selected by the author by picking a
system assigned to the technical consultant. The system was discarded
if the system had fewer than approximately 20 dependencies, after
which another system was picked.

Unknown systems Five systems from the dataset of industry systems,
with distinctive star ratings. Systems with an extreme high or low
number of dependencies or comparable rating were discarded until 5
systems with distinct star ratings were obtained.

Printouts containing the dependencies and version distance of each de-
pendency were brought to the interviews. An example of such a printout is

31

provided in Listing 4.1. Each line contains the groupId and artifactId
of the dependency, together with the version number. This is followed by the
version sequence number distances as computed using the dataset created
in chapter 2. The last line shows the total amount of dependencies in the
system, the amount of dependencies which were classified as internal and
the number of dependencies with unknown histories. Dependencies with
unknown histories are dependencies not found in the Maven.org repository.
— commons—lang .commons—lang at 2.6.0 with distance 0

— org.springframework.spring—web at 3.2.3 with distance 10
— javax.mail.mail at 1.4.1 with distance 11

Found 58 dependencies, 15 with unknown histories , 10 internal—
only .

Listing 4.1: Example output from the dependency freshness rating tool

showing detected dependencies, their version and distance.

During the interviews the subjects were asked to estimate the rating of
the known system, as well as rank each unknown system from a low-level to
a high-level of dependency freshness. The interview guide below provides a
more elaborate overview of how the interviews were structured.

Interviews were all conducted by the author and generally lasted for 30
minutes. All interviews were conducted at the SIG office. Each technical
consultant was only interviewed once to avoid testing effect biases.

4.1.1 Interview guide

The interview is split in four different phases. After the interviewee has
given a rating for the known system, the printouts of the unknown systems
are provided. When the ranking of unknown systems is established, the
printout of the known system is provided and discussed.

Introduction The interviewer gives a general introduction to the depen-
dency freshness metric, the goal the metric serves and the type of
dependencies that are used.

Awareness and issues Interviewees are asked about their experience with
and attitude towards dependency management.

1. Are you aware of any issues — current or past — related to depen-
dency management in the known system?

2. Is the development team responsible for the known system aware
of issues arising from bad dependency management?

Metric evaluation The utility of the metric is assessed as well as several
of its quality aspects.

32

3. Do you have an idea about the dependency freshness of the known
system?

4. If you were to rate the known system — considering the (5%, 30%,
30%, 30%,5%) distribution — what rating would you give?

5. If you were to rank the following unknown systems from a low to
high dependency freshness rating, how would you rank them?

Metric application The rating of the known system is provided and the
actionability of the metric is discussed.

6. Does the metric correspond with the perceived dependency fresh-
ness of the known system?

7. Do you think this is a valuable metric considering its impact on
security, stability and flexibility of the known system?

8. Would this metric translate to an advice to the customer?

9. Would you take any specific action given the printout of the
known system?

4.1.2 Results

The results of the interviews are summarized in table 4.1l The answers are
formulated in such a way that interview questions are succinctly answered
while still providing context. Results for questions four and six are reported
as a single answer as questions six is a follow-up on question four. The same
applies for question eight and nine.

33

1. Are you aware of any issues — current or past — related to depen-
dency management in this specific system?

1. | Yes, we are aware that some of the dependencies in the main system
are not up-to-date.

No, not as far as we are aware of.

No, this system has no specific issues as far as I know of.

Yes, this is largely due to strict contracts between client and supplier,
and rigid internal processes.

5. | Yes. We've reported this to the client on multiple occasions.

2. Is the development team aware of issues arising from bad depen-
dency management?

1. | Yes. Someone on the team has a monthly reoccurring task on his
calendar. I also keep an eye on this from time-to-time.

2. | I’'m not sure, other than that I assume that they try to use the latest
versions when they add a new dependency.

No, but that might be only for this system, given its age and use.

Yes, they are certainly aware of these issues, but the supplier is
constrained by strict contracts and long change processes at the cus-
tomer.

5. | Yes, they are aware, but there is a lot of process keeping the devel-
opment team back.

3. Do you have an idea about the dependency freshness of the system?

Yes. I have a pretty good idea, mainly because I check this myself
from time-to-time.

2. | No, I have no idea given it has not been an issue. But given this is
a rather small and new system, I expect a high rating.

3. | The components in this system are widely used, but it’s old and not
too actively maintained.

4. | This is a reasonably critical system, running on a high-availability
platform, so I expect it to be somewhat outdated.

5. | I assume this system scores pretty bad, although they might have
improved over the past few years given our advice.

4. If you were to rate the system — considering the
(5%, 30%, 30%, 30%, 5%) distribution — what rating would you give?
and 6. Does the metric correspond with the perceived dependency
freshness of the system?

1. ‘ Prediction: 4, actual: 4.

34

Prediction: 4, actual: 4.

Prediction: 3, actual: 3.

Invalid due to protocol error.

Prediction: 2, actual: 3.

A ol R R

Do you think this is a valuable metric considering its impact on
security, stability and flexibility of the system?

1. | I think it shows how fast a system is able to respond to change.

2. | The rating shows something about the professionality of the team. It
shows whether they think about these things. It’s a good indicator
for all these attributes and maybe for performance, too.

3. | I think it’s a good indicator for all three attributes.

The metric tells something about how the organization and the de-
velopment team works.

5. | It serves as a good indicator to quickly check whether something is
going wrong with regards to dependency management, which might
require further investigation.

8. Would this metric translate to an advice to the customer? and 9.
Would you take any specific action given the following printout?

1. | There are several dependencies we will look into. Mainly Spring
dependencies seem to be quite outdated and there are also some
that I don’t recognize.

2. | I would look into the specific functionality of the different depen-
dencies and see whether something is really important, for instance
from a security perspective.

3. | This is certainly something that we could report back to clients. The
rating becomes kind of a vehicle to start a conversation.

4. | I would be curious to hear whether this is the result of constraints
imposed by the environment this has to run on, or laziness. This
would certainly be something I'd mention to the client.

5. | For this system I won’t be making any recommendations. This sys-
tem is already being split up into smaller systems and seems to per-
form better than expected.

Table 4.1: Summarized answers collected during the interviews with SIG
consultants.

35

Metric ranking

During the interview interviewees were presented with 5 printouts of sys-
tems and asked to rank these systems from a low-level to a high-level of
dependency freshness. Printouts were fully anonymized; only a unique iden-
tifier was displayed on the paper. The results of this test are shown in Table
Numbers in bold indicate systems ranked differently than the metric’s
ranking.

System Subject
Rating | Rank |1 |2 (3|4 |5
1108 5.053 5155|5515
1994 4.105 414124 14]|14
850 3.248 313|13[3]3]3
362 2.188 212(412|2]2
181 1.427 111|111

Table 4.2: Systems as ranked during the interviews and rank produced by
the dependency freshness metric.

As shown in Table all interviewees except for one ranked the systems
identical to the metric. This means that the metric can be considered to be
of good discriminative quality as the highest and lowest scoring systems are
always ranked appropriately. The reason why subject two chose a different
ranking could be attributed to an additional weighing factor the interviewee
applied to certain dependencies during the ranking process.

4.1.3 Analysis

Several of the technical consultants consider dependency management an
issue within the projects they evaluate. This is especially true for older
systems with a relative large number of dependencies. Organizations with
critical application and rigid processes often impose negative restrictions on
dependencies on the (internal) development team, either at the library level
or runtime environment.

Some consultants were not aware of any issues. They either attributed
the absence of problems to the volume, maturity or environment of the
system. Smaller and newer systems may have a higher dependency freshness
because when dependencies are added to a system, the most recent version
of the dependency is included. Internal systems often have lower security
requirements and the system owner thus may find dependency management
not too important from a security perspective.

The consultants were able to accurately rate the system, as shown in

36

question 4 and 6 — in the proximity of one star. This indicates that the
rating is quite well aligned with the perceived dependency freshness of the
system. It also shows that the version distance is a good mapping from
individual dependencies to the system’s dependency freshness, confirming
the predictive quality of the metric.

Some of the consultants were able to reason about this using their knowl-
edge of the system, for instance the system’s age and owner. A few had
actually inspected the system’s dependencies earlier, by hand.

When the consultants where asked to rank the unknown systems, differ-
ent issues and questions came up:

e Are dependencies that are used more often throughout the system
weighed differently?

e Are dependencies of different types weighed differently? For instance
Hibernate (a database abstraction layer) may be more crucial than
JUnit (a testing framework).

e How are dependencies on fast release cycles weighed?
e Are transitive dependencies taken into account?

In spite of these concerns, the consultants were able to accurately rank the
system, as shown in section |4.1.2

All interviewees were favorable towards the usefulness of the metric.
Some saw the metric as an indicator of the client’s or the supplier’s work
processes, or the quality of their work processes. One consultant elaborated
on how the metric served as an indicator of security, stability and flexibility,
ultimately agreeing with all three aspects.

Throughout the interviews the importance of good dependency manage-
ment was stressed, but every interviewee also acknowledged how difficult
this really is. “This is a typical problem developers know about, but there
is no clear overview of the problem and it only becomes apparent when a
new feature has to be implemented and x has to be updated”, was noted by
one of the interviewees.

The importance of keeping up and having a high level of test coverage
was also voiced by several interviewees. Once the freshness starts to slip, it
takes quite the effort to get up-to-date again.

After applying the metric on internal systems at SIG, developers spent
several days on updating dependencies, even though they were aware of these
issues before the rating was computed. This shows that a metric makes these
issues more visible. A high level of test coverage made it possible to update
dependencies quickly, as failing tests report any issues arising from these
updates.

37

4.1.4 Threats to validity

Determining whether the resulting metric is useful depends on context. This
study tried to approach this concept from two different perspectives, namely
whether the metric serves as an indicator of quality attributes of the system
and whether the metric will translate into advice to the system owners.
The author believe that these two perspectives serve the most prevailing
use-cases in which this metric may be used.

There are also several confounding variables which may have influenced
the results of the interviews. For instance, if technical consultants recently
inspected the dependencies of a system manually as part of their regular
work, they are better able to predict the dependency freshness of a sys-
tem. Asking the consultants about different known systems also introduced
another variable as systems vary widely in size, age and functionality. Addi-
tionally, a confirmation bias may have impacted the answers to the questions
regarding the usefulness of the metric.

4.2 Vulnerabilities detection

In the introduction of this study in chapter 1, several system attributes
were presented that suffer when a system has a low dependency freshness.
Amongst these attributes is the system’s security. In order to validate
whether this statement is true the relationships between a system’s depen-
dency freshness and presence of vulnerabilities in the system is investigated.

In this validation a system security is operationalized by looking at the
number of known security vulnerabilities in the system’s dependencies. This
approach directly measures the effects of having an outdated dependency
from a security perspective and may serve as a convincing argument for
stakeholders to keep a high level of dependency freshness.

When a vulnerability in a dependency is reported, a new version of the
dependency is released fixing this vulnerability. Systems that immediately
update the dependency (and thus have a higher dependency freshness) are
no longer vulnerable from attacks using this vulnerability. Systems that do
not update will remain exploitable and are thus less secure.

4.2.1 Methodology

Determining whether a certain dependency contains a reported security vul-
nerability is done through a Common Vulnerabilities and Exposures (CVE)
system, which describes vulnerabilities reported in software systems [5]. De-
velopers use these systems to spread reported vulnerability to the users of
the software. Each vulnerability has a unique CVE-ID, title and description
of the issue.

38

Because CVEs are mostly unstructured the data obtained from the CVE
system has to be processed before it can be matched to a specific dependency.
In this study data from Cadariu [I4] is used in which dependencies found
in the Maven.org ecosystem were matched with CVEs using a tool called
DependencyCheckE This data was formatted as shown in Listing 4.2 and
will be used as a running example.
org.apache. wicketwicket6.5.05048478701057026157.txt (cpe:/

arapache:wicket:6.5.0) : CVE-2013-2055
Listing 4.2: Example of the data obtained from [14] to determine whether
a dependency has reported vulnerabilities.

The first part of each line is the path to a temporary file, containing the
groupld, artifactId, version number and random number. The token
between parentheses is the name of the matches software package according
to the CPE naming convention. The last token refers to the CVE-ID which
was matched. It is clear that this data is not formatted in such a way
that is can be incorporated in the dependency version dataset directly. The
following steps were performed to recreate the fully qualified name of the
dependencies in the dataset.

1. Find the longest repeating token in the file path. This would be
“wicket” in the example.

2. Split the file path after this token, resulting in the dependency’s
groupId “org.apache.wicket” and artifactId “wicket6.5.05048478
701057026157 .txt”.

3. Find the version number either from the CPE definition, or perform
a pattern match on the file path. In the example the version number
can be taken from the CPE definition: “6.5.0”.

4. Strip the version number from the artifactId, resulting in“wicket”.

By using this algorithm 1642 out of 1683 dependency names were recovered.
The remaining 41 records were discarded to keep the steps reproducible.
Ultimately 339 dependency versions were marked as containing at least one
reported security vulnerability. This low number is attributed to a high
number of duplicate and mismatches in this used dataset as well as noise in
the CVEs themselves. An example of such a mismatch is a non-Java project,
matched to a Java project with comparable names.

Finally, the dependency freshness rating of each system in the dataset
was calculated, together with the number of dependencies that had one or
more reported vulnerabilities.

"https://github.com/jeremylong/DependencyCheck

39

a=a

T T T T T
0 1 2 3 4

Number of dependencies with reported vulnerability

(a) Dependency freshness rating by
number of dependencies with re-
ported vulnerabilities.

“Dependency freshness rating

(b) Dependency freshness rating for
systems with and without reported
vulnerabilities.

Figure 4.1: Dependency freshness rating and dependency vulnerabilities

4.2.2 Results and analysis

A box plot was created to assess the number of dependencies with reported
vulnerabilities per system. This plot is displayed in Figure (a). This
type of plot allows for analysis of the the distribution of the dependency
freshness rating by the number of vulnerable dependencies.

The majority of the systems were found to have no reported vulnera-
bilities. The data becomes increasingly sparse as the number of vulnerable
dependencies increases, which can be expected. Because the dependency
freshness metric is calibrated to a (5%, 30%, 30%, 30%, 5%) distribution, the
majority (90%) of the systems has a rating between 1.5 and 4.5, skewing the
distribution, although this is not apparent in the plot.

A relationship between the dependency freshness rating and the number
of vulnerable dependencies can be observed in the box plot, but due to the
sparsity of the data it is impossible to make statistically significant claims.
However, it does indicate that system with a low dependency freshness are
likely to have have more reported vulnerabilities in their dependencies than
systems with a high dependency freshness. In order to make significant
claims about the dataset the results have to be aggregated further.

Figure (b) shows the distribution of systems without vulnerable de-
pendencies and with vulnerable dependencies. This plot clearly shows the
shift in distribution, which is significantly different (Wilcoxon rank-sum test,
W =25, n="71, P <0.05 two-sided). Systems with vulnerable dependen-
cies have a mode of 2.2 and systems without vulnerable dependencies have
a mode of 3.3. The mode is used to describe the central tendency of the
distributions as they are clearly skewed.

When the data is tabulated (Table and grouped by the star rating

40

Rating | No vulnerable dependencies | Vulnerable dependencies
* % Kk K x 2 1
* % Kok 11 3
* * * 18 4
*k 11 15
* 4 2

Table 4.3: Number of systems with vulnerabilities grouped by star rating.

a tipping point can be observed between two and three stars systems. The
distinction that can be made here is that dependencies with three or more
stars are considered fresh, while others are considered stale, from a security
perspective. A change in non-vulnerable versus vulnerable ratio can also be
seen for systems rating two stars, although this can not be observed for one
star systems. This can be attributed to the small number of systems in this
group.

After making this subdivision the effect size can be expressed through
an odds ratio by simple cross-multiplication: (ziﬂig}{gi;’#) = 4.3. This
means that systems which score less than three stars are more than four
times as likely to have vulnerable dependencies.

Systems with vulnerable dependencies and a one or two star rating ac-
count for 24% of the systems in the dataset. This group contains 68% of the
systems with vulnerable dependencies, again showing the relation between
dependency freshness and the possibility of having vulnerable dependencies.

4.2.3 Threats to validity

In this study a correlation was found between the dependency freshness
rating of a system and whether this system has a dependency with a security
vulnerability. However, this does not imply causation as counter examples
can be found in the dataset: systems with a higher dependency freshness
can also have issues. This should not be surprising, as newer software can
also contain reported security vulnerabilities.

Additionally, the data obtained for determining whether dependencies
contained reported vulnerabilities was generated automatically, which has
been shown to be difficult [I4]. Because the actual names of the dependencies
are matched to a known set of systems, there is a high level of confidence that
the resulting data set is correct (no false positives), but not complete. For
instance, popular Java projects like Spring and Hibernate are not included.
It is expected that adding these projects reinforce the conclusions made in
our research as they contain several vulnerabilities and are widely used.

41

4.3 Tracking

When the proposed metric is used to monitor dependency freshness through
time it has to display sufficient change. This is called the tracking aspect
of a metric, according to the IEEE Standard 1061-1998 [3]. There are two
factors which can influence the dependency freshness rating of a system:

1. The dependencies of the system are modified (added, updated, down-
graded or removed).

2. A new version of a dependency included in the system is released.

The main concern is that the metric flatlines, meaning that no or too
little change in the rating is observed when dependencies are modified or
new versions of the dependencies are released. To check whether this is
the case a retroactive longitudinal analysis is performed on the dataset of
industry systems.

4.3.1 Methodology

The dataset made available by SIG contains systems which are constantly
monitored, meaning that system owners deliver updates of their source code
at fixed intervals. A version of a system’s source code is called a snapshot.
The interval between snapshots can range from every week to several months.

For this analysis systems that have fewer than five snapshots are ex-
cluded. This reduced the dataset to 50 systems. No filter was imposed on
the maximum interval between snapshots. The dependency freshness rating
of each individual snapshot was then computed and plotted in Figure 4.2

Although the snapshots of one system goes back as far as 2007, the line
plot is limited to late 2009 when more systems were added to the dataset.
Ratings that are clearly erroneous (caused by invalid or incomplete pom. xm1
files) compared to the other ratings of the same system are removed manu-
ally. Only 4 out of 1796 ratings were removed.

4.3.2 Results and analysis

To assess the change in rating, the variance of all the ratings belonging to a
single system is calculated. These ratings are computed for every snapshot
of a system. The variance of the rating for the different systems turns out to
be quite low, only 0.04 in a range of 5. The median is chosen to describe the
distribution of variance per system because of an apparent power-law distri-
bution. Only nine systems have a variance of 0.2 or greater, meaning that
the majority of the systems sees little changes to its dependency freshness
rating. When excluding the systems without dependency churn the median
variance improves only slightly, to 0.06.

42

However, sufficient change in ratings seems to be present in the dataset
when looking at Figure Snapshots that include dependency updates are
clearly visible in the line plot, displayed as an ascending line. If a snapshot
contains no updated dependencies the line is stable, or slightly declining if
new versions of the dependencies used in the system were released.

When observing Figure [4.2] the following types of systems with regards
to dependency freshness can be distinguished:

Stable Systems with a stable dependency freshness rating. The system’s
dependencies see little to no updates.

Improving Systems with an increasing dependency freshness rating. De-
pendencies are updated faster than they are released.

Declining Systems with an decreasing dependency freshness rating. De-
pendencies are updated slower than they are released.

This analysis shows an interesting concept, namely that a system’s de-
pendency freshness can be characterized using two dimensions: namely the
speed at which the dependencies are updated and the speed at which the
dependencies are released. In turn this shows that good dependency man-
agement (i.e. a high dependency freshness rating) can be achieved by making
the correct combinations of these dimensions. Systems which use dependen-
cies with a short release cycling thus require a high update speed in order
to achieve a high rating, while systems with dependencies on a long up-
date cycling can get away with a slower update speed. Using more mature
(i.e. dependencies on a long update cycle) dependencies will thus require
less effort to maintain a certain dependency freshness rating. On the other
hand, systems with a dependency freshness rating that has been stable for
an extensive period of time might also be an indicator of problems.

4.4 Threats to validity

4.4.1 Construct validity
Data quality

To conduct this study several data sources had to be mined and mixed. The
repository of industry systems is curated by a select amount of people, but
the systems are of course delivered by a third-party, which may led have
led to inconsistencies in the data. An example of this would be a missing
pom.xml file for a given system snapshot. These snapshot were simply
discarded.

The quality of the Maven.org repository is another factor, especially the
release date of the dependencies. Issues with the release date inaccuracies

43

Dependency freshness ratin

1
Time

Figure 4.2: Dependency freshness rating per snapshot grouped by systems
with more than 5 snapshots.

only arose for older dependency versions. Ultimately, the release date dis-
tance measurement was not used for the system-level metric, so no manual
cleanup of this data was performed. The release date was used to order
version numbers chronologically.

4.4.2 External validity
Generalizability to other systems and technologies

The industry systems used in this study are typically systems which are
developed by or developed for larger businesses. This means that the de-
pendency update behavior described in this study may be depicted different
than it really is. However, this dataset has been used across a wide body
of peer-reviewed research and is used to calibrate the SIG Maintainability
Model.

The dataset of systems is also limited to a specific technology stack,
namely JVM based systems which used the Maven dependency manager.
There is no reason why the approach presented in this research could not
be generalized to other version manager using other platforms. However,
the requirement of using a dependency manager may impose a bias as well,
as the need for dependency management is understood by the development
team.

44

Repeatability

The data that is used to calibrate the metric is not public and obtaining a
comparable set of industry systems is difficult. This makes it impossible to
reproduce the exact thresholds that were found in this study. However, the
methodology used to obtain these thresholds is clearly documented, allowing
others to replicate this study using other datasets.

4.5 Discussion

Through the validation studies the quality of the metric can be evaluated us-
ing the criteria in section based on IEEE Standard 1061-1998 [3]. Both
the consistency and reliability criteria are satisfied through the used method-
ology; the benchmark-based approach assigns higher ratings to systems with
a relative large amount of dependencies with a small version distance. The
metric was applied on 71 systems, therefore satisfying the reliability criteria.

The discriminative and predictive quality of the metric were validated
in the interviews. Technical consultants were able to accurately distinguish
between system with a high level and low level of dependency freshness. All
but one technical consultant managed to rank five random systems in the
same way as the metric. The version distance showed to be good mapping
from individual dependencies to the system’s dependency freshness.

The tracking and consistency criteria were validated in the longitudinal
analysis. In this analysis systems with varying amounts of rating variance
were observed. Some systems showed a higher rating variance than others,
but this is inherent to the type of dependencies used, as well as the amount
of dependency updates performed.

The validation using reported security vulnerabilities showed that sys-
tems with a low dependency freshness score are more than four times as
likely to contain security issues in these dependencies. This confirmed the
relationship between the security quality factor of a system and its depen-
dency freshness rating, although no claims of causation could be made.

All interviewees considered the system-level metric useful for various
reasons, also serving as an indicator for several other properties of the system
and it’s development process.

45

Chapter 5

Related work

Little research has been done regarding dependency management in software
systems according to the best of our knowledge. Recent research at Google
acknowledges the importance of proper dependency handling, as it is the
most common build problem [41]. This study on dependency freshness hopes
to expand upon one of these problems.

The concept of update lag that served as the inspiration for the depen-
dency freshness concept was first described by Raemaekers et al. [37] while
researching API stability of popular open source libraries. In a later study it
was concluded that this lag is slightly correlated with the amount of change
introduced in a new version of a dependency [3§].

However, software repository mining in general is an active field of re-
search. It is not only concerned with source code repositories, but also
other repositories related to and created by software or software develop-
ment processes [22]. These include issue trackers as well as runtime logs.
Some research tries to interlink these repositories in order to gain a more
complete insight in the software development process [20].

An example of this is the work of Strohmaier et al. [43], who com-
pared socially-inferred and technically-inferred networks arising from arti-
facts from the Eclipse project. This was done by mining both the Eclipse
source, as well as the project’s Bugzilla issue tracker, taking into account
assigned users and those reporting the issues. Our study will also combine
data from several repositories, namely a repository of industry systems, the
Maven.org dataset and a CVE dataset.

A comprehensive survey of software repository mining research was per-
formed by Kagdi et al. [27], in which a taxonomy is proposed to describe
software repository mining research. It also gives an overview of the differ-
ent types of research conducted, grouped by several categories. According
to the categorization provided in the survey, this research is classified as a
software metrics study

While the dataset used in this research consist of proprietary systems,

46

other studies often use open-source software as these are easily accessible
and as feature-rich as proprietary systems, which are often harder to obtain
access to [22]. The Maven and Java ecosystem has been used in several
studies [29] [38, 37, 44], mainly because of its popularity, available tooling
and widespread use in industry systems.

A longitudinal study of software evolution has been performed by Businge
et al. [13], in which several quality aspects of Eclipse plugins where analyzed.
This analysis also involved the changes made to the external dependencies
of the plugins, through time. It is not clear whether these dependencies
are limited to Eclipse components, or library dependencies in general, like
our study on dependency freshness. The change in dependencies was ex-
pressed in a churn-like metric, counting the amount of dependencies added
and removed.

Research has been done on the API usage of dependencies, for instance to
automate the migration between versions of a dependency [29]. The migra-
tion patterns between dependencies which provide comparable functionality
was also studied, showing how dependencies are swapped within a system
when the used dependency is no longer to be found suitable [44]. While
this study focusses on migrations, our study focusses on updates to a new
version of the same dependency, rather than another dependency.

Mileva et al. [32] performed an analysis of different version of external
dependencies so see which version was the most popular. The “wisdom of
the crowd” is used to determine the “best” dependency version, categorizing
some of the dependency users as earlier adopters or late followers. They also
observed the processes of migrating back to an old version of a dependency
in case of compatibility issues. As part of this research a tool was released
to aid developers in selecting the most appropriate version of a dependency,
based on popularity of the dependency in the Maven repository. Rather
than using usage statistics, our study assumes that the latest version of a
dependency is the most desirable.

The concept of software aging has been studied from several perspec-
tives, most often from a maintenance point of view. The most popular
metaphor is that of technical debt, as touched upon in the introduction
of our research [15] 28]. An interesting analysis on the OpenBSD codebase
showed a positive correlation between software maturity and a software qual-
ity aspect: more mature code had fewer reported vulnerabilities [33]. This
analysis is comparable to the reported security vulnerability analysis that
was performed in chapter 4.

47

Chapter 6

Conclusion

The main goal of this study is to create a metric to aid stakeholders in
deciding on whether a system’s dependencies should be updated. The con-
tributions of this thesis are:

e The definition of several measurements to express the distance be-
tween two versions of a dependency, including their advantages and
disadvantages.

e The analysis of the version distance of dependencies found in a set of
industry systems was used to assess the current state of dependency
management, using two of the presented measurements.

e The definition of a metric using a benchmark approach, so that a single
rating can express the dependency freshness at the system-level. This
metric can help stakeholders when making decisions about updating
dependencies.

e The validation of this metric, showing the importance and usefulness of
such a metric, as well as the relation between low dependency freshness
and vulnerable dependencies. The metric also showed sufficient change
through time, making it suitable for monitoring systems for a longer
period. This validation was based on IEEE Standard 1061-1998 [3].

The main findings include the bad state of dependency management in gen-
eral. Very few systems have been found to have up-to-date dependencies,
which reinforces the need for a metric to describe dependency freshness. No
normative data was found to describe what good dependency management
should entail, which resulted into creating a benchmark-based metric.

Practitioners voiced the importance of having proper dependency man-
agement, but also the challenges for keeping up-to-date. During the vali-
dation of the metric the implications of outdated dependencies where pre-
sented, which serves as a convincing argument for organizations to maintain
a high level of dependency freshness across their systems.

48

6.1 Application in practice

During this study several use cases for this metric were envisioned and some
of these use cases were even brought up during the validation interviews. The
different use cases on how this metric can be incorporated in the software
engineering process are outlined below:

Inspection The metric is used for a one-time inspection of the system to
see whether dependency management is an issue.

Monitoring The system is monitored throughout a period of time to see
whether dependency freshness is improving or declining. This can be
combined with a goal of keeping the dependency freshness of a system
within a certain bandwidth.

Remediation If the dependency freshness of a system is deemed to be
insufficient, this can be remedied by using the additional output as
shown in section The list of outdated dependencies then serves as
a guide to improve the dependency freshness of the system.

The metric can thus be incorporated into several places within the software
engineering process and can take a corrective and preventive role, either
continuously or on a case-by-case basis.

6.2 Future work and opportunities

We have identify several areas of future work, namely:

Metric refinements There are several aspects to our study which can be
improved upon, such as taking into account other attributes of the
dependencies (section [6.2.1]), refinements of the underlying measure-

ments (section [6.2.2)) and effort estimation (section [6.2.3)).

Metric evaluation Assess whether applying the metric in the software
development process improves the dependency freshness of the system

(section [6.2.5]).

Practical use To apply the current dependency freshness in practice we
suggest additional improvements of the used datasets (section [6.2.4)).
6.2.1 Dependency context

This thesis only considered the relationship between a dependency and a
system as a binary one. The metric does not take into account how tightly
a dependency is coupled to the application, or how often it is called. Because

49

tightly coupled dependencies are harder to update, they present a higher risk
to the system than loosely coupled dependencies [35].

Neither does the metric look at properties of the dependency like size
or popularity of the dependency across its ecosystem. While this kept the
metric simple, applying the same weight to each dependency may be counter
intuitive. During the interviews it became apparent that some dependencies
are considered to be more important that others. Some dependencies impose
a lot of structure on a project (such as frameworks like Spring) and are
considered to be more crucial than others.

The same may apply to the systems themselves. Internal systems may be
less subject to security threats, but might be more focussed on keeping tech-
nical debt low due to its legacy status. This would mean that several profiles
for the metric could be created, emphasizing different quality aspects.

Additionally, the type of dependency may also influence the tolerable
dependency freshness level. For instance, a unit-testing framework, like JU-
nit, is less critical to keep up-to-date than an database abstraction layer like
Hibernate. The popularity of a dependency is also a factor to consider [36].

Other system attributes to consider when reasoning about dependencies
is whether having more dependencies has a higher impact on system fresh-
ness than only having a few. It can be argued that having more dependencies
introduces more complexity to the system and introduces problems like de-
pendency compatibility. Furthermore, the functional size of a dependency
can be factored in. Smaller, more focussed dependencies have a smaller at-
tack vector compared to dependencies which provide a lot of functionality.

6.2.2 Version distance

In section several version distance measurements are defined, although
ultimately one of these measures is used in the system-level metric. The
other measurements that are described may provided additional granularity
in version distance, thus improving the overall metric. The version delta
measurement becomes especially meaningful when a project adheres to the
semantic versioning principle [38]. This measurement can then serve as a
lightweight proxy for the public API delta measurement.

6.2.3 Update effort

While the metric gives a good indication of how a system is performing with
regards to dependency freshness, it it still hard to put this number into con-
text. As discussed in the introduction, the choice of updating dependencies
is a balancing act between effort and risk. Yet, the metric does not give a
clear indication what amount of effort has to be put into the system in order
to counter the risk expressed in the dependency freshness rating.

50

This effort estimation is hard for several reasons. The first being that it
is hard to assess the effort it takes to rewrite an implementation of an API
to a new version of that API. While such a change may seem trivial in ret-
rospect, the amount of effort to perform such a task depends on experience,
documentation, test coverage and other variables.

Secondly, without knowing how a dependency is interconnected with the
rest of the system, it is hard to asses the overall impact. This is closely
related to the future work described in section [6.2.1]

6.2.4 Dataset cleanup

The dataset that was used to perform this research was not cleaned up
manually, in order to enhance reproducibility. When applying the metric to
real-life systems this might result in a skewed ratings in certain edge cases.
The following actions could be taken to address this.

1. Add additional repositories other than the central, public Maven repos-

itories, such as vendor-specific repositories (e.g. repositories by Orcale,
IBM, Adobe, etc.).

2. Filter beta and pre-release versions (e.g. 1.2-b2, 3.2RC1).

3. Map dependencies with changed namespaces to the correct version
(e.g.org.apache.commons.langtoorg.apache.commons.lang3)

4. Adjust for dependencies which maintain several branches at the same
time (e.g. a 2.4 stable branch and 2.5 beta branch).

These clean up actions would make the dataset more usable for day-to-day
use.

6.2.5 Impact on software quality

Metrics are often used to monitor and improve the quality of software sys-
tems. Now that a metric is defined to monitor the dependency freshness of
a project it would be interesting to see whether applying this metric has a
positive impact on a system’s dependency management.

In the study several preconditions are outlined in to enable a good de-
pendency management process. These preconditions include a high-level of
automated testing and agile processes. The relationship between these re-
quirements and good dependency management seems worth investigating.

o1

Bibliography

1]

Tiago L Alves, José Pedro Correia, and Joost Visser. Benchmark-
based aggregation of metrics to ratings. In Software Measurement, 2011
Joint Conference of the 21st International Workshop on and 6th Int’l
Conference on Software Process and Product Measurement (IWSM-
MENSURA), pages 20-29. IEEE, 2011.

Tiago L. Alves, Christiaan Ypma, and Joost Visser. Deriving metric
thresholds from benchmark data. In Software Maintenance (ICSM),
2010 IEEE International Conference on, pages 1-10. IEEE, 2010.

IEEE Standards Association et al. IEEE Std 1061-1998 IEEE Standard
for a Software Quality Metrics Methodology, 1998.

Robert Baggen, José Pedro Correia, Katrin Schill, and Joost Visser.
Standardized code quality benchmarking for improving software main-
tainability. Software Quality Journal, 20(2):287-307, 2012.

David W Baker, Steven M. Christey, William H Hill, and David E
Mann. The development of a common enumeration of vulnerabilities
and exposures. In Recent Advances in Intrusion Detection, volume 7,
page 9, 1999.

Victor R. Basili and Barry W. Boehm. COTS-based systems top 10
list. Computer, 34(5):91-95, May 2001.

Victor R. Basili, Gianluigi Caldiera, and H Dieter Rombach. The
goal question metric approach. FEncyclopedia of software engineering,
2(1994):528-532, 1994.

Meriem Belguidoum and Fabien Dagnat. Dependency management in
software component deployment. FElectronic Notes in Theoretical Com-
puter Science, 182(0):17 — 32, 2007. Proceedings of the Third Inter-
national Workshop on Formal Aspects of Component Software (FACS
2006).

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph
theory with applications, volume 6. Macmillan London, 1976.

92

[10]

[11]

[12]

[13]

Eric Bouwers, Arie van Deursen, and Joost Visser. Dependency profiles
for software architecture evaluations. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on, pages 540-543. IEEE,
2011.

Eric Bouwers, Joost Visser, and Arie Van Deursen. Towards a catalog
format for software metrics. In Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics, pages 44—47. ACM,
2014.

Daniel Burrows. Modelling and resolving software dependencies. In
Conferenza Italiana sul Software Libero (CONFSL 2010), 2005.

John Businge, Alexander Serebrenik, and Mark van den Brand. An
empirical study of the evolution of eclipse third-party plug-ins. In Pro-
ceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IW-
PSE), IWPSE-EVOL 10, pages 63-72, New York, NY, USA, 2010.
ACM.

Mircea Cadariu. Tracking vulnerable components in software systems.
Master’s thesis, Delft University of Technology, 2014.

Ward Cunningham. The WyCash portfolio management system. In
ACM SIGPLAN OOPS Messenger, pages 29-30. ACM, 1992.

Roberto Di Cosmo, Stefano Zacchiroli, and Paulo Trezentos. Package
upgrades in foss distributions: Details and challenges. In Proceedings
of the 1st International Workshop on Hot Topics in Software Upgrades,
page 7. ACM, 2008.

Justin R Erenkrantz. Release management within open source projects.
Proceedings of the 3rd Open Source Software Development Workshop,
pages 51-55, 2003.

Norman E. Fenton and Martin Neil. Software metrics: successes, fail-
ures and new directions. Journal of Systems and Software, 47(2):149—
157, 1999.

Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: a
rigorous and practical approach. PWS Publishing Co., 1998.

Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release
history database from version control and bug tracking systems. In
Software Maintenance, 2003. ICSM 2003. Proceedings. International
Conference on, pages 23-32. IEEE, 2003.

93

[21]

[22]

[23]

[24]

[32]

Rishab Aiyer Ghosh. Clustering and dependencies in free/open source
software development: Methodology and tools. First Monday, 8(4),
2003.

Ahmed E. Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance, 2008., pages 48-57. IEEE, 2008.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for
measuring maintainability. In Quality of Information and Communica-
tions Technology, 2007. QUATIC 2007. 6th International Conference
on the, pages 30-39. IEEE, 2007.

Siw Elisabeth Hove and Bente Anda. Experiences from conducting
semi-structured interviews in empirical software engineering research.
In Software Metrics, 2005. 11th IEEE International Symposium, pages
10-pp. IEEE, 2005.

Jez Humble and David Farley. Continuous delivery: reliable software
releases through build, test, and deployment automation. Pearson Edu-
cation, 2010.

Capers Jones. Applied software measurement: global analysis of pro-
ductivity and quality, volume 3. McGraw-Hill New York, 2008.

Huzefa Kagdi, Michael L. Collard, and Jonathan I Maletic. A survey
and taxonomy of approaches for mining software repositories in the
context of software evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 19(2):77-131, 2007.

Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt:
From metaphor to theory and practice. IEEE Software, 29(6), 2012.

Ralf Lammel, Ekaterina Pek, and Jirgen Starek. Large-scale, AST-
based API-usage analysis of open-source Java projects. In Proceedings
of the 2011 ACM Symposium on Applied Computing, pages 1317-1324.
ACM, 2011.

Thomas J. McCabe. A complexity measure. Software Engineering,
IEEE Transactions on, SE-2(4):308-320, Dec 1976.

Andrew Meneely, Ben Smith, and Laurie Williams. Validating software
metrics: A spectrum of philosophies. ACM Transactions on Software
Engineering and Methodology, 21(4):24:1-24:28, February 2013.

Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and An-
dreas Zeller. Mining trends of library usage. In Proceedings of the joint
international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops, pages 57—
62. ACM, 2009.

o4

[33]

[34]

[35]

[36]

[37]

[44]

Andy Ozment and Stuart E Schechter. Milk or wine: does software
security improve with age? In Usenixz Security, 2006.

David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053-1058, 1972.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Exploring
risks in the usage of third-party libraries. In BENEVOL 2011 (10th
BElgian-NEtherlands software eVOLution), 2011.

Steven Raemaekers, Arie van Deursen, and Joost Visser. An analysis
of dependence on third-party libraries in open source and proprietary
systems. In Siaxth International Workshop on Software Quality and
Maintainability, SQM, volume 12, 2012.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring
software library stability through historical version analysis. In Software
Maintenance (ICSM), 2012 28th IEEE International Conference on,
pages 378-387. IEEE, 2012.

Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic
versioning versus breaking changes: A study of the Maven repository.
In Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th

International Working Conference on, 2014.

Donald J. Reifer, Victor R. Basili, Barry W. Boehm, and Betsy Clark.
Eight lessons learned during COTS-based systems maintenance. IEEE
Software, 20(5):94-96, 2003.

John M Roche. Software metrics and measurement principles. ACM
SIGSOFT Software Engineering Notes, 19(1):77-85, 1994.

Hyunmin Seo, Caitlin Sadowski, Sebastian G Elbaum, Edward Af-
tandilian, and Robert W Bowdidge. Programmers’ build errors: a case
study (at Google). In International Conference on Software Engineer-
ing, pages 724-734, 2014.

Net Market Share. Desktop operating system market share.
http://www.netmarketshare.com.

Markus Strohmaier, Michel ~Wermelinger, and Yijun Yu.
Using network properties to study congruence of soft-
ware dependencies and maintenance activities in Eclipse.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.210.1888.

Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc.
A study of library migration in Java software. arXiv preprint
arXiv:1306.6262, 2013.

95

Appendix A: Software metric
catalog format

o6

LG

89

Name: Version release date distance | VRDD Level: Base

Entity: Software project Type: Internal

Attribute: Age Range: [0, oo

Definition: Count the days between two releases of a soft- Expected value: >0
ware project

Rationale (theoretical): Variability:

Scale type: Ratio

The amount of days between two releases expresses how many -

. . . Related metrics:

days a release is lagging on another release.

Version sequence | Correlated
number distance

Implications (practical): Version number | Related
delta
Public API delta Related
Dependency fresh- | Used by
ness
Validation:

Applicable in context: Measuring depen- | Introduction, case
dency freshness in | study
software systems,

Cox

When comparing two releases of software project with
explicit, dated releases.

Solution strategies: Solution type:

69

Name: Version sequence number dis- | VSND Level: Base
tance
Entity: Software project Type: Internal
Attribute: Age Range: [0, o0
Definition: Count the number of releases between two re- Expected value: >0
leases of a software project
Rationale (theoretical): Variability:
Scale type: Ratio
The number of releases between two releases expresses how -
. . Related metrics:
many releases a release is lagging on another release.
Version release date | Correlated
distance
Implications (practical): Version number | Related
delta
Public API delta Related
Validation:
Applicable in context: Measuring depen- | Introduction, case
dency freshness in | study

software systems,
Cox

When comparing two releases of software project with explicit

releases.

Solution strategies:

Solution type:

09

Name: Version number delta VND Level: Base
Entity: Software project Type: Internal
Attribute: Age Range: ([0, o¢], [0, 0], [0, o0])
Definition: The cumulative difference of the most significant Expected value: (>0,>0,>0)
change version number between every successive
release.
Rationale (theoretical): Variability:
The number of major, minor and patch releases between two Scale type: Ratio
releases expresses how many releases a release is lagging on Related metrics:
another release. Version release date | Related
distance
Implications (practical): Version sequence | Related
number distance
Public API delta Related
Validation:
Applicable in context: Measuring depen- | Introduction, case
dency freshness in | study

software systems,
Cox

When comparing two releases of software project using
extends numbers systems for version numbers.

Solution strategies: Solution type:

19

Name: Public API delta PAD Level: Base

Entity: Software project Type: Internal

Attribute: Age Range: [0, o0

Definition: Count the number of breaking changes to the Expected value:

public API between two releases.
Rationale (theoretical): Variability:
. . Scale type: Ratio

The number of breaking changes between two releases is an -

. . Related metrics:

indicator of the functional change.
Version release date | Related
distance

Implications (practical): Version sequence | Related
number distance
Version number | Related
delta
Validation:

Applicable in context: Measuring depen- | Case study
dency freshness in
software systems,
Cox

) . . Semantic wversion- | Introduction, Empirical

When comparing two releases of software project with . . . o

ing in Practice, | validation

explicitly declared public APIs.

Raemacekers et al.

Solution strategies:

Solution type:

Add new interfaces rather than change existing ones.

Treating

¢9

Name: Dependency freshness DF Level: Derived
Entity: Software system Type: Internal
Attribute: Dependency freshness Range: [0.5,5.5]
Definition: Assign components to risk categories based on Expected value: 15 <z <45
their version sequence number distance. Risk
profiles are then transformed to a rating based
on a benchmark dataset.
Rationale (theoretical): Variability:
Having a large amount of software components with a low Scale type: Interval

version sequence number distances is more desirable than a
few software components with a very high version sequence
number distance.

Related metrics:

Version sequence
number distance

Base metric

Implications (practical):

It is undesirable to have a software system with outdated
third-party components. Components should be up-to-date to
attain a high level of dependency freshness.

Validation:

Applicable in context:

Measuring depen-
dency freshness in

software systems,
Cox

Introduction, empirical
validation

Software projects using software components developed by a
third-party.

Solution strategies:

Solution type:

Update third-party components to their latest versions | Solving

	Introduction
	Research questions
	Methodology
	Research context
	Application

	Dependency freshness at the dependency-level
	Software dependencies
	Dependency versions
	Dependency freshness
	Version distance
	Version sequence number
	Version release date
	Version number delta
	Public API delta
	Measurement overview

	Datasets
	Dataset of industry systems
	Dataset of dependency versions
	Descriptive statistics
	Limitations

	Dependency freshness in practice
	Discussion

	Dependency freshness at the system-level
	Software metrics
	Normative versus descriptive metrics
	Benchmark-based aggregation metric
	Measurement aggregation
	Transformation to rating

	Discussion

	Validation
	Usefulness
	Interview guide
	Results
	Analysis
	Threats to validity

	Vulnerabilities detection
	Methodology
	Results and analysis
	Threats to validity

	Tracking
	Methodology
	Results and analysis

	Threats to validity
	Construct validity
	External validity

	Discussion

	Related work
	Conclusion
	Application in practice
	Future work and opportunities
	Dependency context
	Version distance
	Update effort
	Dataset cleanup
	Impact on software quality

	Bibliography
	Appendix A: Software metric catalog format

