‘;_.\'aq'N[
crre™

(8)

S~y

A
MiNe<°

Radboud Universiteit Nijmegen

COMPUTER SCIENCE MASTER’S THESIS

Security Evaluation of Mobile
Device Management Solutions

Deloitte

Supervisor RU:

Author: Professor Bart JACOBS
Joost KREMERS Supervisor Deloitte:
Thomas BosBoom MSc

June 4, 2014

1 Abstract

In this paper the interconnection between Android and Mobile Device Manage-
ment (MDM) is analyzed. After a general introduction to Android, the security
related areas in Android are introduced: permissions, sensitive settings, intent
spoofing, encryption and rooting. These vulnerable areas specific for Android
together with some more general threats, like insecure communication and in-
jection attacks, are bundled into a framework that allows security experts to
perform an evaluation of a MDM implementation on Android in a repeatable
and verifiable fashion. This framework is based on Keunwoo Rhee’s research and
is thus dubbed the Extension of Rhee’s Framework (ERF). ERF was discussed
in depth with two senior security consultants that have performed similar tests
in the past.

The current version of ERF consists of seven focus points: enrollment, policy,
device settings and audit data, data protection, secure communication, applica-
tion management and MDM implementation. This results in 23 test cases that
include a roadmap on how to perform a security evaluation of a Mobile Device
Management implementation on Android. Part of this framework is automated
in Mobile Device Management Evaluator, MDM-E. MDM-E tests for exploitable
settings, exported Inter-Process Communication and policy discrepancies. Per-
forming a case study with MDM-E on a cloud-based MDM called Meraki, a
bug was found that the engineers called ”obnoxious”. Tens of thousands users
can be targeted by the stealthy exploit that is discussed in this paper. MDM-E
has thus already proven itself useful when evaluating MDM systems and will be
freely available for researchers and other enthusiasts *.

A survey was filled out by 146 respondents and grants a general overview of
the mobile device usage in a corporate environment. It reflects the restraints
of companies towards Android, since the percentage of Android on personal de-
vices is much higher than on company owned devices. A total of 23 percent of
all respondents have a MDM installed on their device. Personal devices seem
to be at more risk, since those devices are more often rooted and more devices
allow Unknown sources.

Keywords: Mobile Device Management, MDM, Android, Mobile Security,
MDM-E, penetration test, security evaluation, Meraksi.

2 Acknowledgments
During the six months I have worked on the research leading to this paper I

received help from many people. In this section I would like to extend my grat-
itude to everyone who has contributed to my research: I am in your debt.

LGitHub: https://github.com/JKremers/MDM-E

First I would like to thank Keunwoo Rhee for sharing his research with me.
His work was a great starting-point for the Android specific framework pre-
sented in this paper.

My colleagues at Deloitte Cyber Risk Services have helped me to broaden my
horizon and allowed me to focus on my thesis. If they did not share my survey
with their connections through Twitter and LinkedIn, I would have never re-
ceived the response I obtained now. Special thanks to senior consultants Werner
Alsemgeest and Jochem van Kerkwijk for providing me with feedback on my
framework.

The biggest gratitude has to be given to my two supervisors. The scientific
foundation was guaranteed by professor Bart Jacobs, while the hands-on men-
tality and always up-to-date knowledge of Thomas Bosboom opened the door
to my professional career at Deloitte.

My friends and family that have supported me during this research were
indispensable. I want to thank multiple people that have proofread my paper
and have given feedback on it. Paul van Dorst will probably be glad that my
”T don’t feel like writing this paper anymore”-rants are finally over. Thanks for
bearing with me!

Before I begin with the actual content of my thesis, I would like to leave you
with a quote from a highly respected computer scientist, professor Knuth. On
my own I would have never been able to complete this research, but with the
help of other researchers I did.

”People think that computer science is the art of gemiuses but the actual re-
ality is the opposite, just many people doing things that build on eachother, like
a wall of mini stones. - Donald Knuth.

Disclaimer: Any possible statements in this document do not reflect official
Deloitte statements or opinions. Statements made in this document are personal
and are not, in any way, related to Deloitte. Information in this thesis is purely
informational towards Deloitte. And although the research (internship) has been
conducted at Deloitte, it does not contain any official Deloitte information.

Contents

1 Abstract

2 Acknowledgments

3.1 Scope

Introduction

3.2 Methods
3.3 Research overview

4 Technical background
4.1 Android Architecture
4.1.1 Inter-process communication
4.1.2 Encryption o
4.1.3 Rooting
4.1.4 Non-Android specific threats

4.2 Mobile Device Management on Android

4.2.1

Threats for MDM

4.3 Rhee’s MDM framework
4.4 Otherresearch
4.5 SUMMATY . . o v e e e e e e

Approach
5.1 Survey Mobile Devices in a Corporate Environment

5.2 Extension of Rhee’s Framework (ERF)
5.3 Mobile Device Management Evaluator (MDM-E) . .
5.3.1 Policy overview
5.3.2 Setting overview
5.3.3 Exported intents
5.3.4 Not included in PoC

Results
6.1 Survey Mobile Devices in a Corporate Environment

6.2 Extension of Rhee’s Framework (ERF)
6.3 Mobile Device Management Evaluator (MDM-E) . .

Discussion

7.1 Conclusions
7.2 Discussion
7.3 Futurework

A Appendix: Survey

Appendix: Extension of Rhee’s Framework (ERF)

22
22
24
24
26
26
26
27

28
28
33
37

43
43
44
44

49

55

3 Introduction

Mobile devices are booming. In every field of occupation there is an eruption of
portable devices, both personal and work related. These laptops, smartphones,
USB-drives and other machines pose new information security threats, espe-
cially when the individual or the company possesses sensitive information. The
mixture of company owned devices and devices that are owned by an employee
(Bring Your Own Device - BYOD) makes this issue even more difficult. To gain
control over these mobile devices and the data on them, several companies mar-
ket Mobile Device Management (MDM) software. These packages are designed
to manage the mobile devices on the following levels [3]:

e Software management: configuration, updates, monitoring and backups.
e Network service management: billing, support and more.

e Hardware management: physical management over the devices for inven-
torying and (de-)activation.

e Security management: enforcement of security policies.

The main components of a MDM solution are a client and a server [19]. The
client component is installed as an app on the mobile device that needs to be
managed and the server is in charge of distribution of the policy and monitoring
of the devices. This server component can either be on premise or online in the
cloud. After the client is enrolled to its designated control server, the client reg-
ularly sends its device status. The control server reacts with instructions that
the companies security policy demands. When the server requires the client to
perform an action, it sends a push message to the device with the commands
that need to be executed.

From the point of view of a security expert, this may sound like a bullet-
proof solution: all the security policies are enforced by the MDM and due to the
monitoring capabilities fast incidents response can be achieved. Unfortunately
MDM-systems are target of two sorts of attacks. On one side the legitimate user
of the device may want to circumvent policies that are enforced by the MDM,
for instance: he wants to upload his personal photos to Dropbox, but the com-
panies policy and thus the MDM implementation does not allow Cloud-based
services. On the other side there are outside attackers that wants to get their
hands on confidential data stored on the device. The MDM wants to make their
life harder by enforcing a password-policy and encrypting the data on the device
- and an attacker therefore tries to deceive the MDM.

In this paper I will present an overview of topics related to Mobile Device
Management on Android, answering the following Research Question (RQ):

e RQ: How do Mobile Device Management solutions operate on Android?

This broad question allows us to investigate the interrelation between the MDM
and Android and gives us focus on the most crucial and interesting areas re-
garding MDM. Once I have identified the vulnerable areas in Android I will be
able to analyze existing frameworks that test MDM implementations and see
whether they take these areas into account. Since executing these frameworks
can be very time consuming it can be useful to automate (part of) these frame-
works. In this paper the possibility to automate this process will be explored.
The three sub-questions (SQ’s) that are answered are:

e SQ1: How are mobile devices used in a corporate environment? And what
are the risks?

o SQ2: What method is there to structurally test a MDM implementation
on Android? Is this method complete and correct?

o SQ3: Is it possible to automate (part of) this security-testing process?

In this paper I will answer these questions.

3.1 Scope

To prevent ambiguity, a proper terminology has to be used. In this paper I
will use solution or implementation when talking about a specific Mobile De-
vice Management solution. Client stands for the client-side MDM software - or
app - that is installed on the mobile device that is managed. Unless otherwise
written the MDM control server is meant when using the term server.

In this paper the focus lies on the security evaluation of MDM solutions on
the Android platform. The choice for Android was made due to the large market
share: 64,2% of all smartphone sales in the second quarter of 2013 were Android-
based [9]. Other OS’s or modified versions of Android, like the Blackphone or
Samsung’s KNOX may provide a more secure platform for corporations, but
will not be discussed in this paper. Both rooted and unrooted devices are taken
into account, especially due to the risks of rooting which will be investigated
later in this paper.

Containerization is a technique that can be combined with MDM packages.
While MDM focuses on protecting the device, containerization is a technique
to secure the data on the device. This is a complete different approach and will
therefore not be included.

Due to legal obstructions the vulnerability analysis part of this paper only
focuses on the client side, since new MDM solutions tend to run their server
in the cloud. Most cloud providers do not allow pentesting on their servers,
because it may obstruct normal operations.

The mixture of personal and corporate data on a device makes it hard to
determine who is the owner of the device and its data. The legal implications
of this mixture pose a complete new field which will not be addressed in this
thesis.

3.2 Methods

To answer the research questions taking the scope into account, multiple steps
were taken. The basis of this research is literature that was found via libraries ac-
cessible via Radboud University Nijmegen and Deloitte, including white-papers
and dissertations. With this literature the main research question will be an-
swered. The literature also provides information on the vulnerable areas of
Android that should be regarded with extra attention.

To give some insight into what role mobile devices play in a professional en-
vironment, a survey was constructed. This survey focuses on the presence of an
MDM and gauges the risk that these mobile devices users are exposed to. The
literature review also provided one framework that specializes in the security
testing of MDM implementations. This framework was used to analyze a MDM
implementation (i.e. Cisco’s Meraki). From this case study I have created a
list of imperfections found in the existing framework. Based on the existing
framework, the discovered imperfections and the literature a revised version of
the framework is created. A discussion with two senior security professionals at
Deloitte about the revised framework yields feedback on the completeness and
applicability of the framework. Adjustments to the framework are made in line
with this feedback.

Once the framework was completed, part of this framework is implemented
in the Mobile Device Management Evaluator (MDM-E) application. This ap-
plication is scalable and easy to execute. In Figure 1 the total structure of this
research is depicted. The complete approach and all substantiations can be
found in section 4 of this paper.

provides input:

provides

provides

Framework
imperfections

Existing

case study

framework

provides input

basis of

fixed in

Revised

art of is implemented in
framework P P

feedback from security professional
Figure 1: An overview of the research setup.

3.3 Research overview

The next section will discuss the Android Operating System and how MDM
vendors can use the functionality that Android has to offer. To get an under-
standing of the vulnerable areas in Android, the attack vectors will be presented.
Special points of focus in this section are rooting, encryption and sensitive set-
tings. The framework that is available for testing MDM implementations is
discussed, followed by other research in the field of MDM. In the subsequent
section I will discuss the approach taken to answer the other research questions.
This includes explanation of the survey-questions and the idea behind the au-
tomated testing application. In the Results-section, the new framework will be
presented together with justification for the alterations. A vulnerability found
by MDM-E is also explained in depth, together with a PoC of an exploit for
it. This paper ends with a summary of the findings including the conclusions,
future work and recommendations.

4 Technical background

In this section the literature that is the basis of this research is presented. The
idea is to give an insight on the areas of Android that an attacker may want
to target, especially in regards to an MDM implementation. First I will give
a look under the hood of the Android operating system, with special focus
on permissions, intents, encryption and rooting. The next part of this section
zooms in on the interconnection between Android and a Mobile Device Manager,
explaining the functionality and threats to MDM. Following this I will go into
detail on several generic vulnerabilities that are also applicable for Android, but
not Android specific. This ranges from unnecessary logging up to code injection.
Subsequent to this I dive into the existing MDM evaluation framework proposed
by Rhee: T discuss his vision and list the points of interests that are relevant
for Android. Finalizing the section I summarize the list of attack vector an
attacker can utilize to subvert a MDM. This list, together with Rhee’s existing
framework, is the basis of the revised framework that is one of the deliverables
of this paper.

4.1 Android Architecture

The Android operating system was originally designed by the company Android,
before it was bought by Google in 2005. It is build on top of a Linux kernel [12],
which controls the device resources (e.g. camera and network connections). Ap-
plications (apps) are run in the Dalvik virtual machine (which will be replaced
by ART over time). These applications run in an Application sandbox. This
sandbox makes sure an app can only use the system-resources that the app is
given permission to access. Next to the Dalvik VM there are native C-libraries
that can be accessed. When a mobile device with Android is started, a so called
bootloader loads the OS. The OS normally starts in Android-mode, while it is
possible to start it in Recovery-mode. Recovery-mode is used to apply software
updates or to restore the device to factory-defaults.

The application sandbox makes use of the Linux user-permission-model. The
difference in this model between Linux and Android is that in Linux every user
has it’s own ID, while in Android a unique user ID (UID) is provided to an app.
If an app wants to access data that is not within the same UID, it has to have
the same group ID: this can only be the case when the apps are developed (and
thus signed) by the same developer.

The folder structure used in Android is the same as in Linux. An important
folder is the /data folder which contains application settings and data. The
folder is split into sub-folders for every app with the full application name as
folder-title (e.g. com.application.example). Without making changes to the
OS, this folder is not accessible for other applications besides the app itself and
system apps. If malicious applications can access an application specific /data-
folder, they may change settings or content for that specific application. If an

attacker is able to alter the setting file for an MDM implementation and these
settings are then enforced by the MDM, he is thus able to circumvent the MDM.

c
o
Contacts Browser "4';
9
a
Q
<
Activity Window Content View
Manager Manager Providers Manager
Notification c
~
Manager O
s O
Package Telephony Resource Location S %
Manager Manager Manager Manager S €
s g
<
Surface Media
FreeType
RIS framework L Dalvik Virtual
Core libraries . T v
Machine o E
o=
T €
c
: <?Z
OpenGL WebKit
(%]
2
SQLite E
—
el
]
Flash
Binder (IPC
Display driver C:r:nera memory drivér)
e driver
Q
c
—
Q
iFi dri Audio drivers FOMEE <
WiFi driver management §
c
=5

Figure 2: An overview of the Android system Architecture. Based on work from

12).

To protect the user against unwanted access to system resources, apps have
to request permissions. During the production of an application the develop-
ers must list the permissions the application requires in the Android Manifest.
This manifest is packed into the applications installation file, which has the .apk
extension. There are permissions for most of the system resources: vibration
of the phone; access to GPS data; sending an SMS and many more [14]. On
installation of the application the user is prompted whether he agrees or dis-
agrees granting the permissions to that specific application. In the latter case
he waives the installation: it is not possible to deny individual permissions of
an app without a rooted device. Unfortunately research has shown that only 17
percent of the users paid attention to the permission-requests [11]. An attacker
can misuse this knowledge by adding permissions that can give him certain gain.
He can send premium texts [36], forward confidential files [2] and much more.

Since every manufacturer uses its own hardware, they are responsible for
updating the OS to a newer version. This leads to slow adaption of new An-
droid versions and a splintered version spread. The Google Dashboard [16]
shows that versions like 2.3.3-2.3.7 (Codename Gingerbread) and 4.0.3-4.0.4
(Ice Cream Sandwich) still have a solid 15-20% market-share as of March 2014.
The newest version, 4.4 KitKat only has a 2.5% share - but is on the rise: on
the first of April this percentage has risen to 5.3% [16]. These slow updates
can result in various issues, including errors with app compatibility and bugs
remain present in older versions of Android for a long time.

In the Android settings menu there are two settings that should be consid-
ered in regards to security: the Unknown sources setting and the USB-debugging
option. The Unknown sources setting allows the owner of the device to install
applications outside of the Android Play store. This is risky since these appli-
cations have not been tested by Google and may contain malware. The other
setting, USB-debugging is hidden in the Developers settings-menu. Enabling
USB-debugging allows the device to communicate with a computer. You can
for instance open a shell to the device from this computer and push apps to
the device. The program mostly used to do this is called ADB (Android Debug
Bridge) and is part of the Android SDK. If this setting is enabled an attacker
may be able to push applications (with malware) to the device without the
owner knowing. From Android 4.2.2 the device owner is prompted whether he
wants to communicate with a connected computer or the connection will be
blocked.

4.1.1 Inter-process communication

Applications on Android consist of a combination of three different components.
Activities represent the visual side of the apps and are the main entrance point
of an application. Services run in the background, mostly for a long time.
The third component is a broadcast receiver that listens to certain commands
that are send through the system. Inter-process communication (IPC) between

10

different components and even other apps can be done via intents. Like the
name implies an app can send an intent to send an email, for instance. If there
is a broadcast receiver listening to that intent, Android can start an activity
with an email-program. This broadcast receiver is set up to listen to a certain
intent filter. It is possible to let a receiver only listen to internal components
by adding permissions or simply stating that the receiver can only be triggered
from internal components. If this is not done, other applications may trigger
sensitive components of the applications: In [5] possible attacks on IPCs are
presented, which are displayed in Table 1. In a blogpost by Palominolabs it is
shown that unprotected receivers in the Paypal app allow an attacker to make a
legitimate payment-screen [8], which falls in the Exported Activities - Activity
Launch (with data) category.

Unauthorized Intent Receipt

Intent type Potential vulnerability

Send Broadcasts Broadcast Theft (without data)

Send Broadcasts

Broadcast Theft (with data)

Send Activity requests
Send Activity requests

Activity Hijacking (without data)
Activity Hijacking (with data)

Send Service requests
Send Service requests

Service Hijacking (without data)
Service Hijacking (with data)

Intent Spoofing

Component type

Potential vulnerability

Exported Broadcast Receivers
Exported Broadcast Receivers
Exported Broadcast Receivers

Broadcast Injection (without data)
Broadcast Injection (with data)
System Broadcast without Action Check

Exported Activities
Exported Activities

Activity Launch (without data)
Activity Launch (with data)

Exported Services
Exported Services

Service Launch (without data)
Service Launch (with data)

Table 1: Intent attacks on Android components. Courtesy of [5].

For Mobile Device Management applications it is essential that important

intents are protected. When intents can for instance be intercepted, the attacker
may learn more about the internal operations of the MDM or he may be able to
prevent the intent from reaching the right component. In case of intent spoofing
the attacker may be able to spoof the UpdatePolicy intent, which allows him
to change the protection enforced by the MDM. He may also perform a DoS
attack on an activity that is not protected, which will mainly annoy the user of
the device.

11

4.1.2 Encryption

As of Android 3.0 the user is able to encrypt the /data partition. Encryption
is performed by the dm-crypt layer in the kernel [15]. When activating encryp-
tion of the device, the user is required to have a password or PIN code. The
users password/PIN and a salt obtain from /dev/urandom are used as input
in Password-Based Key Derivation Function 2 (PBKDF2). After 2000 rounds,
this function outputs a 32-byte value, which is split in a 16-byte AES-key and
a 16-bit Initialization Vector (IV).

Keylen=32

PBKDF2 Key+IV (32

Password/PIN 2000 bytes)

Key (128 bit)
Salt (128 bit)

/dev/urandom

Master Key AES 128 CBC

Bruteforce-able
Stored in footer Encrypted

\ENCINGY

Figure 3: An overview of the Android Encryption key creation. Based on work
from [4].

The actual encryption uses AES-128 in CBC-mode together with an ES-
SIV:SHA256 IV. The encrypted master key and the used salt are saved unen-

12

crypted at the end of the encrypted folder. The decision to use the user supplied
password has been criticized, especially since this allows offline attacks to obtain
the users password: if you can make an image of the filesystem, you obtain the
encrypted master key and the used salt of the encryption from the footer. You
can perform a bruteforce attack on the password and reverse the AES-operation
to obtain a possible Master key. Since the /data partition always starts with the
same header, you can verify if you have the correct Master key and thus the cor-
rect user password [4]. This means that for a 4-number pincode, you only have
to check for a maximum of 10000 (= 10x10x10x10) PINs. Even when a more
complex password is chosen you can perform this attack offline, circumventing
the maximum amount of password tries enforced by the MDM. In a blogpost
Elenkov recommends users to change the encryption PIN to a different value by
directly calling the cryptfs library from a command-line [10]. The drawback of
this is that the user has to remember an additional key that he needs to enter
at boot-up.

4.1.3 Rooting

Rooting (i0S: jailbreaking) refers to gaining root access on the Linux kernel.
This is the highest user on the system, which means you are allowed to perform
higher privileged actions. On one hand this can provide the user of the system
with extra functionality, but on the other hand it may also cause him or his
company a lot of harm.

Rooting is achieved by privilege escalation due to a security vulnerability mostly
specific to the hardware and the operating system [33]. An example of such a
vulnerability was found in the Exynos 4210 and 4412 processor, which power
the Samsung Galaxy SII, SIII and other popular smartphones and tablets. An
exploit using this vulnerability can ”bypasses system permissions on the ker-
nel level, taking advantage of read/write permissions within the kernel” [29].
Granting the user root access.

Following the lecture by A [21], rooting allows the user to "load custom soft-
ware (ROMs), install custom themes, increase performance, increase battery
life, and the ability to install software that would otherwise cost extra money
(ex: WIiFi tethering)”. He continues by explaining that users normally only
have a guest-account.

On the downside of the slope rooting may cause severe harm, since it circum-
vents security features enforced by the Android OS. The process of rooting may
brick the telephone, which means that the alternations to the OS caused the
telephone to no longer be operable. Furthermore the security of your device can
be compromised. Since every application can request root permissions, every
application potentially has access to all confidential data on the device. In the
case of the previous mentioned Exynos vulnerability, the attacker is even able
to read confidential RAM data.

13

In an article by the Open Web Application Security Project (OWASP) on
rooting, it is mentioned that "many users do not understand that jailbreaking
or rooting can potentially allow malware to bypass many of the device’s built in
security features” [25]. Even the controls enforced by a MDM implementation
can be circumvented. It is therefore a good practice for these packages to imple-
ment root detection mechanisms. In [17] and [25] the following root-detection
techniques are discussed:

e Finding a third party market.
e Attempt to write outside of the sandboxed directory.

e Verify if the ROM is signed by a release-key. If a custom ROM is installed,
it was signed by a different key.

e Search for an app that may provide root access. Examples of these are:
com.noshufou.android.su; com.thirdparty.superuser; eu.chainfire.supersu;
com.koushikdutta.superuser; com.zachspong.temprootremovejb; com.ramdroid.appquarantine
and many more.

e Check whether the command-line command ”su” can be invoked.

There is a growing interest in root-detection evasion methods on forums
like XDA-Developers. In [1] it is for instance explained how to surpass the
root detection techniques that Mobilelron has implemented. AirWatches root
detection ability was also subject of investigation and in [18] it is shown how to
circumvent these methods. Both the Mobilelron and the AirWatch workarounds
are probably not usable anymore, due to patching. To make sure the MDM
correctly detects the modifications made to the device, it is recommended to
implement all root detection methods known at that time and keep them up to
date.

4.1.4 Non-Android specific threats

An important measure for a company to manage its information flows is the
security policy. In this policy it is stated what is allowed and what is disal-
lowed. It is crucial that there is no discrepancy between the policy and the
implementation enforced by the MDM on the device. These discrepancies may
for instance arise when a system administrator makes a typographic error when
setting up the MDM.

A potential information leakage can be found in the form of unnecessary
logging. These logs may contain sensitive information about the device and the
MDM. On Android you can access the logs via ADB, by executing the com-
mand adb.exe logcat. Other logging may be stored on the SD-card or in the
applications /data-folder. An attacker may try to capture these sensitive logs
for information gain. Developers of an MDM should therefore make sure that

14

only crucial issues are logged and these do not contain confidential data.

Communication between the MDM and the server should be done in a se-
cure manner. Using a certificate rolled out via SCEP can be used to set up
a SSL-connection between the application and the MDM. If this connection is
not secured an attacker is able to extrapolate sensitive data that is transmitted,
for instance GPS-location of the device or WiFi credentials pushed to the device.

In the security policy a company has, there may be a section on permitted
and forbidden applications. Most MDMSs use a blacklist or a whitelist to adhere
to these rules. It is recommended to use a whitelist instead of a blacklist for
this purpose. The blacklist - enumerating disallowed applications - may not
be complete and may thus allow the device owner to install applications that
the policy prohibits. A whitelist - enumerating allowed applications - although
less user-friendly, makes sure no disallowed applications can be installed on the
device.

Just like websites, web-pages on Android may also be vulnerable to SQL
injection and other forms of injection. The application’s activity may use a
WebView to display information to the user - and allow the user to input data.
This data, if not properly sanitized, can be used to execute database commands
that allow an attacker to reflect sensitive data. In [31] it is shown that modern
MDM implementations can also be vulnerable to these attacks.

4.2 Mobile Device Management on Android

Since Android 2.2 (Froyo) developers are able to use the Android Device Ad-
ministration API. This API can be used to develop MDMs on Google’s mobile
operating system by allowing specific security system calls. The amount of con-
trol the MDM can enforce by using this API, depends on the version of Android
that is running on the target mobile device. Table 2 visualizes the controls that
the MDM can manage by using the Android Device Administration APT [13].

When the system administrator has pushed the MDM software to the de-
vice, the OS prompts the user if he wants to acknowledge the solution as Device
Manager. The user sees all of the permissions that the MDM requests (depen-
dent on the previously mentioned version restrictions). Once enabled it does
not necessarily mean that all of these permissions are used by the MDM: this
entirely depends on the implementation and the security policy in place. There
is a clear distinction between the app part and the Device Manager part: the
app part has control over the GPS, the network connection and the file system;
while the Device Manager part has control over the security features.

15

y | <21 [>22]>
Password required
Minimum password length X
Alphanumeric password
Complex password

Minimum letters in password
Minimum lowercase in password
Minimum non-letter in password
Minimum digits in password
Minimum symbols in password
Minimum uppercase in password
Password expiration

Password history restriction
Maximum failed password
Maximum inactivity lock
Require storage encryption
Disable camera

Set new password X
Lock device now X be
Restore to factory defaults X X

V
w
ja]
Vv
S
(@)

"

"

A e A L R A A R R e R A R R e

™

A L R A A e R A R e e A R A e R e A R A R e R s

Table 2: The Device Administration API availability [13]. The first 16 are
restrictions, while the last three are direct actions that the Device Administrator
may call.

Having access to this API allows MDM solution developers to customize their
package with more complex rules: the app can request the GPS data; see
whether the mobile devices is located within the company walls and then let the
Device Manager call the setCameraDisabled() function to make sure no on site
company secrets can be photographed. Although this sounds as a good protec-
tion, various methods can be devised that circumvent this feature, for instance:
a dummy location can be redirected to the mobile device to make it think it is
outside of company walls [7] or the phone can be turned off until it is in a room
inside of company walls that does not have GPS coverage.

4.2.1 Threats for MDM

Rhee et al. designed Mobile Device Management requirements by first emulating
a threat and then applying methodology based on Common Criteria [35]. This
allows customers to structurally define the requirements they want from an
MDM solution; developers can improve their system by applying the framework
and evaluators of MDM systems can use it as a guideline. Together with the

16

vulnerable areas of Android, this is a good starting point to keep in mind when
evaluating a MDM solution. They identify 13 threats:

| # | Threat | Description

1 Disclosure Any information that leaks from the MDM system. This
disclosure can be in the form of unnecessary logging, an
attacker listening to an unprotected communication or
access to the /data-folder.

2 Software The MDM or OS can be altered by an attacker. This
includes the pushing of applications to an ADB-enabled
device and the rooting of devices.

3 Bypass The attacker can bypass protections enforced by the
MDM.

4 Data authenticity An attacker alters data in the MDM without authoriza-

tion. Multiple attack vectors are present on Android
for this threat, for instance altering data in the /data-
partition and injection.

Data transfer

An attacker alters communication from or to the MDM
without authorization, for instance when not applying
SSL.

Traffic

An attacker can capture and analyze data on the chan-
nel. The passive variant of the named above threat.

Spoof

An attacker is able to spoof the identify of an authorized
user.

Malware

The MDM system can be infected by malware. Having
a malware-scanner may provide the user with a more
secure device, especially since 99 percent of the malware
is targeting Android devices [6]. From Android 4.2 and
higher Android has a built-in malware scanner.

Denial of Service

Normal operation is disturbed. An example of such a
threat is given in the IPC-section, where an activity can
be started continually.

10

Leakage

An attacker is able to extract sensitive data from the
MDM.

11

Record

The storage can be flooded so that new security events
can no longer be saved.

12

Disaster

An unforeseen natural disaster can interfere with the
normal operations of the MDM. Which is not within
the scope of this paper.

13

Zero-day

A new security vulnerability is found that can be used
to attack the MDM. It is infeasible to prevent a zero-day
attack. It is crucial to detect such an attack and to be
able to respond to it.

Table 3: Threats to a MDM. Courtesy of [35].

17

4.3 Rhee’s MDM framework

To make the life of a security consultant more easy and to make sure all secu-
rity audits are performed in a structured way, multiple frameworks for testing
mobile applications are available. OWASP splits its framework [26] up in three
areas: Information gathering; static analysis and dynamic analysis. The first
area speaks for its self: this includes the permissions, used protocols and finding
out connected entities. The static analysis involves analyzing the source-code,
received from the developers or obtained by reverse-engineering. The last area
requires the security expert to perform more in depth tests, including the ex-
ploration of exported IPCs and SSL checks.

A more specific framework for testing MDM implementations has been de-
veloped by Rhee for his Ph.D. thesis on the Security Evaluation of a MDM
solution [27]. In this thesis he proposes a new threat modeling method based
on Common Criteria, followed by defining the security requirements for MDMs.
Rhee creates a mapping between the threats and the security objectives. His
main contribution in this thesis is the evaluation criteria and process ”to evalu-
ate an agent of the mobile device management system.” This framework consists
of 17 cases that test the security controls of a MDM solution. In his paper Rhee
applies his framework on a (not mentioned) MDM package. His cases consist of
an explanation of the case, the tools needed to perform the test and the criteria
that is needed to pass the test. For every tool he gives a manual, but not an
actual path to follow when performing a security evaluation.

] Category \ Evaluation item
Audit Audit data generation
Authentication User authentication
Authentication Device locking before user authentication
Authentication Authentication failure
Authentication Session locking
Data protection Data encryption
Data protection Data integrity
Data protection Device locking
Data protection Device wiping
Data protection Encryption key and cryptographic data management
Secure communication Transfered data encryption
Secure communication Connectivity
Hardware management Device control
Application management | Application installation, removal, execution, termination
Self protection Protection of an MDM agent
Anti-malware Anti-malware interworking
Detection of modification | Modification detection

Table 4: Test-cases for evaluating a MDM. Courtesy of [27].

18

This framework from 2012, although built very structured, leaves room for
interpretation. His work also does only look at the technical implementation
of the MDM, while policy discrepancies are not taken into account. Platform-
specific vulnerabilities, as described in this paper for Android - are not incorpo-
rated in the framework. He also presented a list of improvements for the tested
MDM implementation, but like mentioned before this is not useful since he has
not disclosed what MDM he tested.

4.4 Other research

Besides all the relevant research shown above there is a large collection of MDM
related papers that are interesting but not usable in this paper. These are pro-
cessed below.

In Wiewiora’s whitepaper [34] he acknowledges that MDM ”is quickly be-
coming a critical necessity for organizations”, due to the large increase in em-
ployee owned devices that are also used for work and the IT department trying
to keep control over the sensitive corporate data. He mentions that companies
often apply MDMs that are platform specific or that they only specialize into one
function (e.g. wiping). He investigated elements that are part of an effective
MDM Strategy, that manages ”the entire life-cycle across multiple platforms
and devices”. The main elements of this strategy are:

e a holistic mobile framework: manage devices and applications with respect
to the user.

e strong security policies: to minimize security threats from leaking informa-
tion onto a system out of reach of the company, strong security policies can
help. Companies are advised to implement strong password policies, data
encryption should be applied and devices should be tracked, locked and
wiped when needed. Passwords should be multi factor-based. Wiewiora
advises a combination of something you have (a smartcard), something
that you know (a password) and something that you are (biometrics).

e full lifecycle device management: following Gartner, Wiewiora says that
enterprises should make their system suitable for multiple platforms and
OS ("managed diversity”). Not all versions should be allowed, for instance
an enterprise should not allow someone to use Android 2.1, since this does
not allow any device manager; or when storage encryption is one of the
requirements Android 3.0 or higher has to be used. He also recommends
to use app black- and whitelisting,

In Joey Janssen’s Masters thesis he introduces Mobile Risk Assessment
Method (M-RAM) [20]. M-RAM is made based on existing industry risk as-
sessment methods and interviews with 22 mobile security experts. The method
consists of three components: a risk assessment process; entities involved in the
system; attention areas that are weak spots in MDM systems. This allows com-
panies or evaluators to evaluate the mobile risks a company has and M-RAM

19

gives possible solutions to minimize the risk. He names four vulnerable areas: 1)
lost and stolen devices; 2) unauthorized data access; 3) personal and enterprise
data mix-up; 4) inability to enforce the security policies.

Rhee wrote a paper in which he and his colleagues designed a MDM based on
Common Criteria [28]. This is supposed to be platform independent, improves
the security of current solutions and is still highly usable. The client side app
consists of the following entities:

Application management module manages the apps installed on the device
(e.g. blacklist, updates, execution).

Audit and report module collects information from the device (e.g. IMEI
and connection status) and talks to the communication module.

Communication module provides the actual communication between the agent
and the server.

Device control module is able to control the actual hardware (e.g. NFC
reader, camera and USB debugging).

Policy management module is in control of the configuration of the other
modules. It also makes sure unauthorized modifications are not possible.

Security management module is in charge of authentication policies (e.g.
password protection and the detecting if the MDM is deleted).

The server side consists five entities:

Application management module: is in control of the whitelisted and black-
listed apps.

Audit and report module: saves the gathered data.

Communication module: provides the actual communication between the
agent and the server.

Identification and authentication module: is in charge of enrolling and
authenticating users.

Policy management module: allows you to configure the policies.

In [30] the discussions about mobile development between multiple Chief
Information Security Officers (CISO) were summarized. They talked about the
upcoming issues regarding BYOD and enterprise supplied mobile devices. Also
potential solutions (MDM and containerization) are presented. They raise a
lot of questions on potential policy issues that have to be taken into account
when implementing one. The counsel recommends looking ahead for other so-
lutions besides MDM packages, but lists some clear questions that should be
answered when evaluating a MDM system, for instance: does it support strong
authentication; does it affect battery life; is root-access detected? The last rec-
ommendation they do is to include mobile development in the long term vision
of the company.

20

4.5 Summary

In this section the Android operating system has been presented including the
interconnection with the MDM. Most of the MDM functionality is utilized by
calls to the Device Management API. It is explained that discrepancies between
the policy and the implementation can lead to problems as well as multiple
sensitive security settings (USB-debug and Unknown Sources). Furthermore
proper care has to be taken when using Inter-Process Communication in an
app. The dangerous of using the basic Android encryption mechanism and
the vulnerabilities introduced by rooting are listed. These attack vectors are
crucial to take into accounts when evaluating a MDM implementation. The
framework made by Rhee in [27] tries to achieve this, but in my opinion leaves
some gaps when it comes to clearness and Android specific cases. These issues
are combined and used as input for the (revised) framework that is proposed in
this paper.

Permission
misuse

Encryption
misconfiguration

Sensitive settings Rooting

Policy
implementation
error

Unnecessary Secure

: B Injection attacks
logging communication

Figure 4: The identified weak spots in Android that should be regarded when
testing a MDM implementation.

21

5 Approach

5.1 Survey Mobile Devices in a Corporate Environment

In section 3.2 I explained the need for a survey. Now the setup of this survey is
presented. The purpose of the survey is to obtain an overview of the way mobile
devices are used in a professional working environment, hence answering SQ1.
After the survey I want to be able to make statements about this usage globally.
To achieve this I need to specify our population. The following formula is used
to determine the sample size [32]:

Nxz2xp(1—p)
N2 =) (N= 15 F?

Variable \ Meaning \ Value used

Sample size -

Sample population 20000
Response probability | 0,50
Error-margin 0,05-0,10
Standard deviation 1,96

SIS

In this formula the sample size does not grow very much above a population
over 20.000, therefore I will use N = 20.000. This makes sure that, based on
the outcome of this survey, I can make valid statements about the global mobile
device usage in a corporate environment. p is the response probability which
means how big the chance is a certain answer is picked. Since this is very hard to
predict for such a survey, the standard value of 50% will be used. The standard
deviation is 1,96 which is used frequently for comparable surveys. The margin
for error F is set between five and ten percent - the final error-margin will be
calculated based on the final number of respondents. An error-margin of 5%
means that if the average value of a question is 50%, the adjusted result lies
between 45% (50-5) and 55% (50+5). To get a broad overview of the mobile
device usage, this error-margin is sufficient.

5% error margin:
20000+1,962+0,50(1—0,50) _
" 2 1 56%:0.50(1—0,50)1 (20000 1)50,052 — S0

10% error margin:
20000+1,962+0,50(1—0,50) B
2 1 56%:0.50(1=0,50)% (20000~ 1)=0.107 — 0

The goal is to reach more than 95 respondents. In a similar research that was
performed early 2013, 148 mobile device users completed their survey [22]. Given
the same population this gives them a error margin of 8%. This is within of the
margins of 5-10% I set, validating my setup. Ideally the amount of respondents

22

is much larger, resulting in a smaller error margin. Besides the size of the sam-
ple, we also want to have an even spread of respondents (aselect survey). A total
aselect survey is very hard to achieve with more than 95 respondents, therefore
I will verify that from all fields of occupation and size of the company there
are roughly the same amount of respondents. The survey is distributed by my
colleagues, friends and me via social media (Facebook, Twitter and LinkedIn)
and through three forums (Tweakers.net, XDA-developers and Fok.nl). The ad-
vantage of social media, especially Facebook - is that you probably will receive
lots of respondents because these people know you. The advantage of posting
it to large forums is that you reach a large audience and you can ask additional
questions on these forums that allow other insights that may be relevant for
this research. The main disadvantage is that the users of a forum mostly fit in
a specific group - so validating the respondents should be done with care - and
that the response percentage will probably be low. The Radboud University of
Nijmegen has provided me with a license for Qualtrics, that allows the survey
to be published online for free.

No company supplied device No personal device

Figure 5: An overview of the survey setup.

In the figure above the structure of the survey is displayed. It starts with
several questions related to their occupation and their own (perceived) computer
knowledge. These questions are used to validate that the sample population is
a sectional of the total population. The (perceived) knowledge is also used to
correlate the knowledge to security related risks (i.e. rooting). A Likert scale is
used to ask the respondent about this knowledge.

The respondent is then asked whether his employer provides a mobile de-
vice. If the respondent answers ”Yes”, he enters a question-path related to this
device. The questions range from ownership of the device; the type of OS; se-
curity and password policies. Following this there are some questions related to
mobile device risks (rooting and sensitive settings). These questions allow me to
make statements about the devices used and the risk the population is exposed
to. After these questions the path ends and the user is prompted if he uses a
personal device for work purposes. If he answers ” Yes” an identical path as be-
fore is started. The answers of the two paths can be compared and I expect the
personally owned devices to be exposed to more risk than the corporate devices.

23

Many questions in this survey rely on previously answered questions. It is
for instance irrelevant to ask for the version of Android the respondent has if he
answered that he has an 10S device. The full survey can be found in Appendix
A. The conditions for displaying a question are listed right before the question
in the ” Answer if...” format. All of the questions are simple to make sure that
they are clear and cannot be interpreted in a different way. If a different (or
non expected) answer has to be given, the respondent can add it in the Other
text-box.

5.2 Extension of Rhee’s Framework (ERF)

From the literature review the only framework specific for MDM implementa-
tion testing was the framework by Rhee [27]. To test whether this framework is
complete and sound a case study on Cisco Meraki has been performed. A special
focus is the applicability of the framework to Android. The actual case study
is not relevant for this research, but the feedback on it is. Therefore the imper-
fections in the framework and the missing cases are documented and reported
in the Results section. These imperfections and missing cases are corrected in
the revised version of the framework and dubbed as Extension of Rhee’s Frame-
work (ERF). To improve the workability and validity of ERF, it has twice been
discussed with senior security consultants at Deloitte. The comments received
from these professionals, that perform similar security tests on a regular basis,
make sure the framework can be used in practice. Once a workable version is
released Rhee will be contacted to discuss ERF with him, if he is interested.
The final cases will be linked to the threats for MDM, as introduced in section
4.2.1. The final version of ERF can be used to test any MDM implementation
on Android and includes a detailed roadmap on how to perform the tests. The
result can be used to answer SQ2.

5.3 Mobile Device Management Evaluator (MDM-E)

To answer SQ3 I propose MDM-E: Mobile Device Management Evaluator. This
Android application automates part of the Extension of Rhee’s Framework. To
show the potential of this project, a Proof of Concept (PoC) of MDM-E is cre-
ated. The main structure of the application can be seen in Figure 6.

24

Connection
analysis

MDM policy
summary

USB-debug
detection

Setting alteration
analysis

MDM permission

Root detection
summary

Unprotected MDM
intent summary

Unknown sources

detection

MDM-E: app

Findings report

Recommendations
based on findings

MDM-E: server

Implemented.
Not implemented.

Figure 6: An overview of Mobile Device Management Evaluator.

The PoC is created using the standard Android SDK and should be scalable
to include more test-cases in the future. The idea of MDM-E is that instead
of manual testing, the application can be downloaded to and executed on the

device. MDM-E has several points of interest on the device:

Policy overview.

Setting overview.

Exported intents.

e Connection analysis.

e Setting alteration analysis.

The result of the tests is pushed to an MDM-E server that is used to visualize
the findings. On the dashboard an executive summary is presented, but also
detailed descriptions of the findings can be requested. These detailed comments
can include the Best Practices that should be implemented for a certain case. In
the following subsections the individual components of MDM-E are explained.

25

5.3.1 Policy overview

Since every MDM application works differently and takes a while to get used
to, MDM-E contains a series of API-calls that displays the policies enforced by
the MDM. This is done by first asking the OS who the current device policy
manager is. The goal of this component is to be able to quickly verify that the
companies information security policy matches the policy implemented by the
MDM. The companies security policy may for instance require a password of 6
characters, but due to a typographic error only 4 characters are enforced by the
MDM.

5.3.2 Setting overview

On Android there are multiple settings that should not be enabled, because
they expose the user to much risk. Like mentioned in the Technical back-
ground, Rooting is dangerous for the security of the device. In that section
also several detection mechanisms were iterated. MDM-E has most of these
mechanisms implemented in it and reports the result to the server. Since the
modular structure of Android applications, additional root-detection methods
can be added easily. This test is implemented in MDM-E to verify if the MDM
correctly reports rooting of a device. As discussed earlier, the root-detection
evasion methods are very popular and this method can thus not be a hundred
percent accurate.

Another potentially harmful setting is USB-debugging, as described in sec-
tion 4.1. An attacker can force the user to connect his device to a computer
(possibly a fake charger) and read data on the device, installing and deleting
data and more. This setting is also checked by MDM-E.

The (for now) last setting that is tested for is Unknown Sources. Enabling
this setting gives the user the possibility to install .apk files that are not in the
store. These files are not checked by Google and may contain malware. MDM-E
reports this setting as well. Since MDM-E is not published in the Google Play
store, the setting Unknown Sources needs to be enabled on the device when
MDM-E is installed. When MDM-E is finalized it can be uploaded to the store
and Unknown Sources can thus be disabled by then.

5.3.3 Exported intents

In the Technical background I have explained how Android components can
interact with each other and pointed out that exported intents can be an entry-
point into an application. It is feasible that a MDM has an intent that updates
the policy on the device - if this was intent is exported any other application can
invoke this update. To make sure the MDM intents are protected, MDM-E enu-
merates the exported intents. The Android API does not make this enumeration
easy, but with a detour it is possible: ask the OS for all services, activities and
receivers; filter all relevant to the component retrieved in the Policy overview

26

step; if it is exported print it. In the future modifications to MDM-E can be
made to automatically test the consequences of these exported intents. For now
this has to be tested manually.

5.3.4 Not included in PoC

The component of MDM-E that verifies secure communication with the MDM-
server is not implemented: communicating with the hardware modules that
connect to the server is hard and requires more research. Another function that
is not in the proof of concept is the ability to automatically change settings
that are stored on the device (mostly in the /data folder). And the usefulness
of this function has to be explored: this component should verify whether the
MDM package’s settings can be changed and if these changes are noticed by
the MDM - but where these settings are stored and how these settings can be
altered depends entirely on the implementation, which makes this component
hard to automate. The last component that will not be implemented in the
PoC of MDM-E is the server. This is mainly a portal that displays findings
for a specific penetration-test and highlights findings that do not meet Best
Practices.

27

6 Results

In this section the results found during this research are presented. First the
findings from the survey are listed, followed by the adjustments made to Rhee’s
framework including the final version of ERF. This chapter ends with results
found when using MDM-E.

6.1 Survey Mobile Devices in a Corporate Environment

The survey that has been performed grants an overview of mobile device usage
in a corporate environment. First I will present the respondents that filled out
the survey. After that I will provide the findings split into company provided
and personal devices.

A total of 146 respondents have started the survey. This leads to an error
margin F of roughly 8 percent:

20000+1,9620,50(1—0,50) — 146
1,962%0,50(1—0,50)+(20000— 1)+ F2 —

Unfortunately only 118 respondents have actually finished question one.
This leads to error margin that is a bit higher (9%). The survey was online
for roughly two months: from the 12th of March 2014 up to the 13th of May
2014. I now have to verify that these respondents are a balanced reflection of
society. The first couple of questions allow me to make statements about this,
as show in the next two images.

My company (roughly) has...

W <10 employees
10-50 employees.
51-250 employees.

M 251-1000 employees
1001-5000 employees

® >5000 employees.

Figure 7: Question 2: My company (roughly) has...

28

| work in the following sector:

W Agriculture.
Ind ustrial.
Construction.
B Trade, Transport and Catering.
Information Technology (IT).
B Financial.
W Real estate.
B Bussiness services.
B Government.
B Education.
B Healthcare.
B Culture and Recreation.
B Retail.
Other

Figure 8: Question 3: I work in the following sector.

From this data we can see that the respondents are nicely split between
company size, but from question 3 we conclude that there is a large portion of
respondents working in the IT-sector. This can be explained due to the nature
of the survey and the methods of finding respondents: people that work in IT
are more likely to fill in an IT-related survey and discussion boards on Tweakers
and XDA-developers draw in a lot of IT-interested people. This also leads to a
higher technical knowledge: 89 percent of the respondents rate their computer
knowledge as Good or Very good. To verify that my survey is not clouded by
the large amount of IT-ers I have to compare the results of the IT-ers and the
non-IT-ers. Doing this for multiple of the control questions shows that the IT-
ers are responsible for the higher computer knowledge. Most of the differences
between the IT-ers and non-IT-ers stay within the 10 percent margin, with a
few exception that will be named as such: in 27 percent of the cases the IT-ers
responded that there were no strict rules about mobile device usage, versus 45
percent with non-IT-ers. Although this slightly distorted image, this survey will
still be able to give a general image of mobile devices in the corporate environ-
ment.

75 percent of the respondents have received a mobile device from their em-
ployer. These devices are mostly used for calling, texting and e-mailing. 14
percent uses the device to report, while 31 percent stores data on it. It is
interesting to see that, despite the much higher sales number for Android in
comparison to i0S, iOS has a much higher share in the corporate world. From
the survey 53 percent have a company supplied phone with iOS, in comparison

29

to 26 percent Android. This supports my research by showing that Android for
corporations is still in its infancy. Or maybe the companies are anxious to use
Android, since it is targeted by malware on various occasions [6]. What supports
this statement is that for the personally owned devices the largest share is held
by Android (43 percent Android versus 41 percent iOS). Only Android-versions
of 4.0 and up were reported in the survey, which is in contradiction with the
current Android Dashboard statistics (where there is still a 17 percent market-
share for older versions) [16]. This may be the case because companies force the
devices to be updated. The complete spread of OS’s on corporate devices can
be found in this chart:

What is the operating system of the
mobile device?

® Android.
Blackberry.
iOS.

B Windows Phone/Mobile.
| do notknow.

B Other.

Figure 9: Question 7: What is the operating system of the mobile device?
(Company provided)

One of the questions asked in the survey was related to their companies mo-
bile security policy. It is interesting to see that 54 percent of the companies do
not have such rules (or they are not known to the end-user). What is striking
about this number is that 23 percent of the people that said their company does
not have a mobile policy, actually have a MDM installed. Having a MDM in-
stalled on your device leads me to believe that the company does have a policy.
Even more alerting is that 81 percent of the users store confidential data on
their device (ranging from e-mails to reports). Planning an awareness session
on the company policies may improve the knowledge of the employee on data
protection. 32 percent of all respondents have a MDM installed on their mobile
device. Like expected, market-leader Mobilelron is at the top of the chart.

30

Which Mobile Device Management system
does your company use?

M“ m Mobilelron
- AirWatch
0,
o Fiberlink
18% 9%

W Zenprise

Good Technology
W Boxtone
u[BM
B SAP
B Symantec
B Meraki
N BBM
H McAfee
H OWA

Figure 10: Which Mobile Device Management system does your company use?

The questions of the vulnerable security settings showed that seven percent
has his company provided device rooted/jailbroken. Some do this to install third
party markets; some to circumvent the policies implemented by the MDM; and
others are required to do so by the company so that it can manage the security
settings. The last one leads to questions, since most sources advise to exclude
your rooted devices from the corporate environment. Due to the anonymous na-
ture of the survey I had no opportunity to ask follow-up questions. 56 percent
of the Android users have the Unknown sources option active, making them an
easier target for attackers - since the attacker can target these users from outside
of the Google Play store. A numeric pincode is the unlock-mechanism for 68
percent of all corporate provided devices; 21 percent have another mechanism
and 11 percent (versus 21 percent on personal owned devices) can unlock his
device without any protections. The length of the average pincode was 5,42
characters, with an upper bound of 23.

63 percent of the respondents also have a personal device that they some-
times use to perform corporate tasks with. They perform the same tasks on
their personal devices as on their company provided devices. With an average
pincode of 5,23 characters the difference between company provided and per-
sonally owned devices is minimal. More than double the amount of devices are
rooted are personally owned, which was to be expected since they actually own

31

the device. In seven percent of the cases this was done to install custom ROMs.
Twelve percent of the respondents with a personally owned device have a MDM
installed on their device, showing that the control companies have over BYOD
devices is not that large. Eighty percent of the owners of personal devices have
Unknown sources activated, which indicates that (in comparison with the 56
percent of the company provided devices) the BYOD devices pose more risk to
the companies data.

Company provided: Root? Personal devices: Root?

W Not rooted

Rooted

| do notknow

Figure 11: Company provided devices versus personal devices: root.

The last information I have drawn from the survey is the understanding of
the permissions asked when an app is installed (on Android) or when it requests
a permission during runtime (on iOS). For this I have congregated the corporate
and personal devices, so I can get a general image on this issue. Unlike most
other questions there is a gap between the I'T people and the other respondents:
73 percent of the IT-ers understand the permissions versus 51 percent non-IT-
ers. This does show a significant increase in understanding if you compare the
overall result of 60 percent ”Yes, I read and understand them” to the survey
performed in [11]. This may be the result of the large amount of media coverage
malware for mobile devices has received lately. The other 40 percent of the
respondents are not aware of the permissions and will most-likely accept any
permission requested. This may be exploited by a piece of malware.

32

Permissions (corporate and personal)

M Yes, | read and
understand them.

Yes, | read them but | do
not know what they
mean.

What permissions?

H No, | do notread them.

% o

Figure 12: Company provided devices and personal devices: permissions.

6.2 Extension of Rhee’s Framework (ERF)

Rhee’s research is a good basis for a MDM implementation testing framework.
However I do not agree with certain cases that Rhee incorporated in the frame-
work. Since the focus of this research lies on MDM implementations on Android,
Android specific cases can be included in the framework.

The case study performed on Cisco Meraki has given me insight in this
framework. First I will give some general remarks on the framework, followed
by detailed comments on cases that are not complete or sound. Based on these
observations I have created a new framework named Extension of Rhee’s Frame-
work, since it is largely based on Rhee’s work.

Rhee’s framework [27] consists of 17 cases that are described in a very gen-
eral manner. Sometimes it is not clear whether the case has PASSed or FAILed
the test. A more concrete explanation of the cases will improve the consistency
of the tests. Also, to be able to refer to cases, numbers should be added so they
can be referenced to. In the detailed comments on all the cases below I have
already done this. Furthermore the two possible results for a case, PASS and
FAIL, are not sufficient in my eyes. A new type named WARNING should be
added to tag states that PASS the test, but may cause additional risks. The
last general remark is that there are no Android specific cases in Rhee’s original
work: these will be incorporated in the final version of ERF.

33

Case 1: Audit data generation. ”The MDM agent should generate audit
data”, but what actually falls within this category is not discussed in
detail. In ERF SIM/IMEI alterations and authentication failures are ex-
plicitly named as well as a (basic) roadmap to check this.

Case 2: User authentication. In this case the enforcement of authentication
policies is tested. In Android this enforcement is done by the Device
Management API. Checking whether the authentication policies apply fall
under the policy overview case in MDM-E.

Case 3: Device locking before user authentication. In Rhee’s Device lock-
ing before user authentication step he verifies that the device can not be
accessed without the proper login details. He FAILs the case-study per-
formed, since ADB can access the file-system. The way he executes this
test-case is not about authentication but about USB-debugging, which is
treated separately in ERF.

Case 4: Authentication failure. "The MDM agent should have countermea-
sures when user fails a certain number of authentication attemps.” As said
in the incompleteness in case 2: this is enforced by the API and should
thus not be checked separately.

Case 5: Session locking. This test case is about the locking of the device
after a certain interval. Just as case 2 and 4 this falls in the Policy category
in ERF.

Case 6: Data encryption. Encryption is enforced by the OS. The policy
should be reviewed in regards to the implementation. Also if encryp-
tion is enabled, it is good practice to change the encryption key such that
it is no more reliant on the user-supplied PIN /password.

Case 7: Data integrity. This case is very relevant. If you can alter the con-
trols enforced by the MDM, this would severely damage the system. When
performing this case on Cisco Meraki I was able to find the configuration
file, but editing this file did not result in changed policies. This is probably
the case because the API-calls are only performed when the app receives
commands from the server and the saved settings are only used to be re-
flected in the application. In ERF this question gives more directions than
the framework by Rhee does.

Case 8: Device locking. This case should only be about the ability of the
administrator to remotely lock the device. Rhee once again FAILs the
test due to USB-debugging, which in my opinion does not match the case
description.

Case 9: Device wiping. Just as the previous case, this should only be about
the ability of the administrator to wipe the device. In ERF this is taken
into account to verify that the developers of the MDM correctly called the
right API-function.

34

Case 10: Encryption key and cryptographic data management. This is
a very good case especially on Android. Since every application can be
reverse engineered without much effort we can search the source code for
relevant information about the protocols the MDM uses and if the devel-
oper is not security aware, we may be able to retrieve encryption keys. In
ERF this case has been expanded with keywords that may be of interest
during this case.

Case 11: Transferred data encryption. This case is to generic. If the data
is encrypted with a Ceasar cipher it would PASS the test, but it does not
provide any security whatsoever. In ERF it is specified that SSL should
be used and if another protocol is used a WARNING will be thrown.

Case 12: Connectivity. A connectivity test should be performed to see whether
the MDM has control over the devices it should be controlling. A good
practice is to disconnect the device for two hours and after-worths verify-
ing if the MDM system has detected this.

Case 13: Device control. On Android the only hardware that can be dis-
abled by the MDM is the camera. This falls under the policy implemen-
tation category in ERF.

Case 14: Application installation, removal, execution, termination. The
method of the application (dis-)allowance should be included in this case.
A Dblacklist can for instance provide some protection, but it is seldom
complete. In the revised version of the framework, having only a blacklist
should result in a WARNING. A whitelist that is not deceivable should
be a PASS.

Case 15: Protection of an MDM agent. When the MDM is disabled from
the device the connectivity-test will yield the same result as Rhee’s test
for protection of the MDM agent and is therefore redundant.

Case 16: Anti-malware interworking. On Android versions 4.2 and higher
the built-in malware-scanner is sufficient.

Case 17: Modification detection. This method basically describes rooting,
but does not name it as such. The MDM should also be tested to see
whether it can detect foreign rooting methods: MDM-E tests the device
for multiple rooting techniques.

The discrepancies between the companies policy, the MDM implementation
and current Best Practices do not play a part in Rhee’s framework. Beside the
incompletenesses listed above, none of the vulnerabilities specific for Android
are taken into account in Rhee’s work. The security relevant settings (USB-
debugging and Unknown sources); exported Intents; the presence of a brute-
forceable encryption key and injection attacks are for instance not included in
the current framework. Also the enrollment protocol is not part of the tests

35

performed in the framework. Therefore I propose ERF, which can be found in
the appendix.

The Extension to Rhee’s Framework consists of 23 cases, split in seven fields:

1.

A T o

Enrollment (two cases).

Policy (two cases).

Device settings and audit data (five cases).
Data protection (five cases).

Secure communication (one case).
Application management (two cases).

MDM implementation (five cases).

A couple of cases from Rhee’s framework have been redesigned to meet
the Android specific threats, others have been combined and several have been
added. This framework gives the security expert a road-map to perform his
work. In section 4.2.1 the threats for MDM as described by Rhee were intro-
duced. The cases from ERF are linked to the following threats, including the
new threat ”Policy flaws”:

| # | Threat | ERF related case(s)
1 Disclosure 5.1,7.2, 73,74
2 Software 3.1,3.2,33,6.1,7.1,72,7.3
3 Bypass 3.1,3.5,4.2,4.5,7.2,7.3
4 Data authenticity 4.2, 7.3
5 Data transfer 1.1, 5.1
6 Traffic 1.1, 5.1
7 Spoof 1.1, 1.2, 5.1, 7.2
8 Malware 3.1,3.2,33,6.2,7.1,7.2,7.3
9 Denial of Service 7.2
10 | Leakage 1.2,3.1,3.2,4.1,45,72, 73,74
11 Record 3.4,3.5,4.2,74
12 Disaster Not within scope.
13 | Zero-day 7.1
14 | Policy flaws 2.1, 2.2

Table 5: ERF cases related to threats to MDM as described in [35].

To ensure that execution of the Extension of Rhee’s Framework, as proposed
in this paper, is repeatable and verifiable a clear list of allowed tools needs to
be used. These tools are all publicly available via the Google Play store or

36

present in the Android SDK, with the exception of MDM-E which has been
discussed earlier. These tasks are all freely available to make sure that there are
no obstructions executing ERF. The following tools are proposed to be used for

the following tasks.

Tools on device

Description

MDM-E

Mobile Device Management Evaluator - allows the
penetration-tester to quickly summarize the enforced
policies, checks for dangerous settings and exported in-
tents.

ProxyDroid

Enables a proxy on the device to connect with Burp.

SQLite Editor

Can open and modify the SQLite databases present on
the device.

Shark for Root

Enable the pen-tester to capture network traffic which
can be read with Wireshark. Only works on rooted de-
vices.

Tools on PC Description

Burp Proxyserver which allows the pentester to route all traf-
fic through the program.

Dex2Jar Part of the .apk-decompiling set. Translates a .apk into
a .jar.

JD-GUI Displays the content of a .jar.

ADB Android Debug Bridge is used to communicate with the
mobile device via USB.

Wireshark Can analyze the .pcap-files obtained with Shark for

Root.

Table 6: Tools allowed to be used when executing ERF.

At the beginning of May 2014, I informed Rhee of my revised version of his
framework. I sent him the current version of ERF together with the thinking
process behind it, hoping to receive comments on it. Unfortunately he was
unable to respond before this paper’s deadline.

6.3 Mobile Device Management Evaluator (MDM-E)

The MDM-E application that has been built during this thesis can be installed
to any device that supports the Android Device Management API. The source
code for the application can be found on GitHub 2. Other researchers are
encouraged to expand and correct MDM-E. Once it is installed on an Android
device the penetration-tester has the option what test he wants to perform, as
shown in the following picture.

2GitHub: https://github.com/JKremers/MDM-E

37

Welcome to the proof of concept of MDM-E. In this version all of the
output can be found in the console.

Start policy summary

Start setting
summary

Start IPC summary

Start permission
summary

Made for Radboud Universiteit Nijmegen.

Figure 13: The main screen in MDM-E

Once the penetration-tester selects the case he needs to execute, the result is
outputted to the console. In the case of the policy test, MDM-E prints twenty
lines that all have relevant information about the MDM in it. This includes what
MDM is installed, its version and the policies it is enforcing. In the example
result in Figure 14, we have identified Meraki System Manager version 0.9.47.
It is furthermore disabling the camera and forcing the user to have a password
of nine characters, with at least one symbol and one number. Multiple steps
from the framework are easier to perform using the information provided by
MDM-E.

38

com

com

com.

com.

com.

com.

com.

.mdme System.out ActiveAdmin name: com.meraki.sm

.Indme System.out ActiveAdmin versionName: 0.9.47
mdme System.out Policy summary:
mdme System.out Camera disabled: true
mdme System.out Keyguard flags: 0
mdme System.out # before wipe: 0
mdme System.out Time before wipe: 0
1. mdme System.out Password expiration in: 0
.mdme System.out Password history length: 1
1. mdme System.out Minimum password length: 9
1. ndme System.out Minimum lowercase: 0
.mdme System.out Minimum nonletter: 0
1. ndme System.out Minimum numeric: 1
.mdme System.out Minimum symbol: 1
.mdme System.out Minimum uppercase: 0
1. mdme System.out Password quality: 262144
.mdme System.out Encryption: false
1. ndme System.out Encryption: 0
1. ndme System.out Is active: true
.mdme System.out @ 2 ———————m—e—me—e————— e

Figure 14: The output in the console created by MDM-E

When performing a case study with MDM-E multiple exported intents were
found in the Cisco Meraki MDM. After manual investigations I found one ex-
ported intent that can be exploited. The relevant part of the Android Manifest
that was vulnerable was the following:

<activity android:label="@string/locate_device_name" android:name=".LocateDeviceActivity" az
<intent-filter>
<action android:name="com.meraki.sm.locate.SHOW" />
</intent-filter>
</activity>

The activity .LocateDeviceActivity can be called without any permissions. In
this case this activity is the function that triggers an alarm. There is no reason
for this activity to be called by any other than the application itself. By adding
the line exported=false you can make sure that the activity is only accessible to
internal components. Since this intent can be sent out by everyone, an attacker
can perform the intent spoofing attack as described in the Technical Background
by launching the activity. A very basic application can exploit this by simply
starting the activity. I have devised a more elaborate attack, which exploits the
bug in the following manner:

1. The attacker creates an application that the target may want to install.
This application requires two permissions: Internet to display the fake

39

content of the application and the permission to start on boot. The URL
of the .apk is distributed to the victim.

2. The victim installs the malicious .apk.

3. When the user starts the application an activity is started that looks like
a legitimate component. This is to make sure the victim does not expect
any malicious actions performed by his new application.

4. When the application is paused or exited, the logo of the malicious appli-
cation is removed from the application menu for obfuscation purposes.

5. The malicious content of the application starts when the device is re-
booted. The BOOT_-COMPLETE command is sent throughout the de-

vice.

6. The broadcast receiver component listens to this BOOT_.COMPLETE
command and starts our listening service.

7. When the user presses the Screen ON/OFF hardware button, the AC-
TION_SCREEN_OFF intent is broadcasted.

8. Our service listens to this intent and triggers the vulnerable component
of Meraki, which rings the alarm.

The graphical overview of the malware can be found in Figure 15. One of
the assumptions of this attack is that the user has the Meraki System Manager
installed, which has been downloaded between 50.000 and 100.000 times. Also
Unknown sources need to be allowed, which between 56 percent and 80 percent
of the users have activated according to my survey. The target also needs to
agree the requested permissions, which between 40 percent (from my own sur-
vey) and 83 percent [11] of the targets do without question. Half of the people
having Unknown sources allowed, do not pay attention to the permission. The
users that actually read and understand the permissions may also allow the
app to install, since it does not directly cost the target any money (like SMS-
messages do). This leads to multiple thousands of targets. The service that is
triggering the .LocateDeviceActivity will keep on running until the malware has
been removed from the device.

Every time the Screen ON/OFF hardware button is pressed, the alarm ac-
tivity is started. This exploit makes the device very difficult to use and the

40

battery is drained since the screen can only be turned off by waiting for the
automatic screen lock that occurs after a set time. Since the alarm activity is
a legitimate activity of Meraki, it is unlikely that they will link this annoying
behavior to the malware described above. The consequence of this may be that
the Meraki helpdesk will be flooded or (even worse) that companies and indi-
viduals lose confidence in Meraki.

The bug and the proof of concept as described above have been reported to
Meraki on the 24th of February in line with their Responsible Disclosure agree-
ment. On the 18th of March Meraki reacted to confirm the issue. After a month
a member of the security team responded that my finding ”is both obnoxious
and a bug”. A few days later they thanked me for my help, but have decided
this does not fall within their reward program. Given the worked out scenario
above and the far stretching implications this has for the application on devices
all around the world and the company itself, this surprises me. I have decided
to publish this vulnerability, since it has been multiple months since I have re-
ported it - and provided a solution to fix it. At the time of writing this bug
has not been fixed. Meraki is aware of this publishing and does accept this.
The vulnerability found shows that MDM-E can be applied to real life MDM
implementations and that it has already contributed to a safer MDM landscape
on Android.

Several steps were taken to hide the malicious intentions of the application:

e A legitimate looking activity is used, this can easily be tailored to the
target: e.g. if he is into Bitcoins make the app display the current Bitcoin
share price or when he is a sports fan give him the soccer rankings.

e The application is removed from the app-drawer to impede deletion. The
application can be deleted from the device from the Apps tab in the Set-
tings menu.

e The malicious components are dormant until the device is rebooted. This
way the target will not suspect the actual malware to be the cause of the
problems his device is facing.

41

Attacker

M

Target

1. Attacker sends URL of malicious .APK to Meraki user. O G

7N

7. User turns off the screen: ACTION_SCREEN_OFF

A\ 4

5. Device is rebooted: BOOT_COMPLETE

2. User installs malicous .APK on device

\ 4

6. Starts

4. Remove application from app drawer

3. Application started

Activity: Legitimate

looking component

Malware

8. Starts

v

.LocateDeviceActivity:

sounds the alarm

Meraki

Legitimate (looking) component

Vulnerable component

Target’s mobile device

Figure 15: An overview of the PoC exploiting an unprotected intent in the

Meraki MDM system.

42

7 Discussion

In this section I will draw the conclusion from my results and discuss where pos-
sible imperfections to my research approach are. Following this I will give some
directions to fellow researchers in need of a thesis topic - or possible subjects to
explore myself.

7.1 Conclusions

RQ: How do Mobile Device Management solutions operate on Android?

In this paper I have shown what is under the Android hood: a Linux kernel and
a Linux based permission-model. I have discussed Android and the vulnerable
areas that an attacker can exploit: security settings, IPC spoofing, rooting and
encryption-flaws. Most of the functionality that a MDM can use on Android
is enforced by the OS. The Device Administrator API allows people to easily
design their own MDM. Many companies now market a MDM that can be used
on Android, but their maturity-level is rather low. Especially when considering
the threats to MDM and to the Android OS.

SQ1: How are mobile devices used in a corporate environment? And what
are the risks?
The survey that was performed for this research gives a general idea on how
people use their mobile devices in a corporate environment. Companies seem
to be restrained when it comes to providing Android mobile devices, especially
when you compare it to personally owned devices (26 percent versus 43 percent).
Most of the devices are used for calling and email, while reporting is done on
a seventh of the devices. Although 81 classify some data on their device as
confidential, only 54 percent of the respondents are aware of the mobile policies
in place at the company. The personally owned devices are at more risk than
their company owned counterparts: a higher percentage has Unknown sources
enabled and more than double the amount is rooted. A total of 32% have a
Mobile Device Management system in use, with market-leader Mobilelron on
the top of the chart.

SQ2: What method is there to structurally test a MDM implementation on
Android? Is this method complete and correct?
Basic frameworks for mobile application testing lack MDM specific cases and
the MDM specific evaluation framework designed by Keunwoo Rhee shows some
incompletenesses as shown in the Results-section. I have adjusted the incom-
pletenesses as I encountered them and added Android specific cases. The Exten-
sion of Rhee’s Framework (ERF) includes a list of tools and a roadmap that can
be taken when performing a security evaluation test for a MDM system. The
23 cases allow the security expert to work in a structured and verifiable manner.

SQ3: Is it possible to automate (part of) this security-testing process?
Yes, the ERF framework is largely implementable for Android. Part of this

43

framework is already incorporated in an application called MDM-E that the se-
curity expert can use to automate seven cases. In multiple other cases MDM-E
can assist with obtaining a result. It is able to give information on the installed
MDM,; verify the enforced policy on the device; detect vulnerable security set-
tings; investigate if a device is rooted and find exported IPC components. I
have also suggested several extensions to MDM-E that would automate more
tasks the security expert otherwise has to perform manually. MDM-E has al-
ready demonstrated its usefulness by exposing a security vulnerability that can
be exploited as shown in this paper.

7.2 Discussion

The survey performed for this research had 146 respondents out of which 118
answered the first question. The largest share of respondents was from the
IT-sector, which I explained by the method of finding respondents. This large
share of respondents may give a biased result for my survey. When repeating a
similar survey it would be wise to have a completely random sample group, that
has much more respondents to decrease the error margin. This can be achieved
by either hiring a marketing company to distribute the survey or to make the
survey more appealing by adding a (potential) reward.

Asking every respondent for their contact details would also be a wise idea.
In my survey I only asked them for their details if they wanted to receive a copy
of my final thesis. I would have liked the ability to contact several respondents
that filled in unexpected answers. Does someone for instance really have a 23
character pincode? And what does the company need rooting for to achieve
more security on the device?

The combination between Rhee’s MDM evaluation framework and the An-
droid specific cases that were investigated in this paper seem like a good starting
point when testing a MDM implementation. It can be used as such, but its
maiden voyage will show its applicability in practice. It has been discussed with
two security professionals, but due to time constraints it was not case-tested yet.
Adjustments can and must be made to ERF to make it accurate and up-to-date.

7.3 Future work

Most MDM implementations rely on the Simple Certificate Enrollment Proto-
col to create the link between the MDM server and client. A vulnerability to
the Simple Certificate Enrollment Protocol has been shown in [23]. There was
just one attempt to formalize this algorithm [24], but this did not include all
elements specifically relevant for MDM device enrollment. Formalizing SCEP
in for instance SPI-calculus, in regards to MDM implementations, and verifying
it with Proverif can give a great insight in potential unknown weaknesses to the

44

algorithm.

The extended mobile device management evaluation framework proposed in
this paper is specific for Android. Some parts may currently be relevant for
other OS’s, while others are Android specific cases and can be altered to be
applicable to iOS or Windows Phone. It is worth creating a similar framework
for the other popular operating systems. It may also be an idea to create one
general framework, with OS specific cases in it.

MDM-E has implemented part of the extended framework proposed in this
paper. The PoC for MDM-E covers a variety of tests, including root-detection
and policy enumeration. There are however some areas that need further inves-
tigation before they can be added to MDM-E. Part of the connectivity and data
integrity tests can potentially be included in application. Also the proposed
server-element has not been developed, but can provide the penetration-tester
with a good overview of the results of the security test. The last step to be taken
to make MDM-E available to the public would be to export it to the Google
Play store.

45

References

[1]

bhilgeman. [solved] update bypass mobileiron and root detection ics, jelly-
bean. http://forum.xda-developers.com/showthread.php?t=1611861.
Accessed on March 28th 2014, 2012.

B. Bosscher. Steal whatsapp database (poc). http://bas.bosschert.nl/
steal-whatsapp-database/. Accessed on May 10th 2014, 2014.

D. Brodie. Practical attacks against mobile device management (mdm),
2013.

T. Cannon. Into the droid - gaining access to android user data, 2012.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner.
Analyzing inter-application communication in android. In Proceedings of
the 9th international conference on Mobile systems, applications, and ser-
vices, pages 239-252. ACM, 2011.

Cisco. Annual security report 2014, 2014.

A. Cox. An analysis of mobile geofencing app security. Technical report,
2014.

A. Cozzette. Intent spoofing on android. http://blog.palominolabs.
com/2013/05/13/android-security/, 2013.

R. Van der Meulen & J. Rivera. Gartner says smartphone sales grew 46.5
percent in second quarter of 2013 and exceeded feature phone sales for first
time. http://www.gartner.com/newsroom/id/2573415, 2013.

N. Elenkov. Changing android’s disk encryption
password. http://nelenkov.blogspot.nl/2012/08/
changing-androids-disk-encryption.html. Accessed on February
20th 2014, 2012.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika
Chin, and David Wagner. Android permissions: User attention, compre-
hension, and behavior. In Proceedings of the Fighth Symposium on Usable
Privacy and Security, page 3. ACM, 2012.

Google. Android security overview. http://source.android.com/
devices/tech/security/index.html. Accessed on March 10th 2014.

Google. Device administration. http://developer.android.com/guide/
topics/admin/device-admin.html. Accessed on April 11th 2014.

Google. Manifest.permission. http://developer.android.com/
reference/android/Manifest.permission.html. Accessed on March

10th 2014.

46

[15]

[16]

[17]

[18]

[19]

Google. Notes on the implementation of encryption in android
3.0. http://source.android.com/devices/tech/encryption/android_
crypto_implementation.html. Accessed on March 10th 2014.

Google. Dashboard on march 3, 2014. http://developer.android.com/
about/dashboards/index.html. Accessed on March 3th 2014, 2014.

E. Gruber. Android root detection techniques. https://www.netspi.com/
blog/entryid/209/android-root-detection-techniques. Accessed on
March 10th 2014, 2013.

E. Gruber. Bypassing airwatch root restriction. https://www.netspi.
com/blog/entryid/192/bypassing-airwatch-root-restriction.
Accessed on March 1st 2014, 2013.

T. Henderson. How mobile device management works.
http://www.itworld.com/mobile-wireless/163465/
how-mobile-device-management-works, 2011.

J. Janssen. Enterprise mobile security. Master’s thesis, Utrecht University,
November 2013.

A John. What is rooting on android? the advantages and disadvantages,
february 15, 2011.

Litra. Mobile device usage and document security survey results. Technical
report, Litra, 2013.

M. Orlando & A. Manion. Vulnerability note vu#971035. http://www.
kb.cert.org/vuls/id/971035, 2012.

Fabio Martinelli, Marinella Petrocchi, and Anna Vaccarelli. Automated
analysis of some security mechanisms of scep*. In Information Security,
pages 414-427. Springer, 2002.

OWASP. Dangers of jailbreaking and rooting mobile devices. https:
//www.owasp.org/index.php/Projects/0OWASP_Mobile_Security_
Project_-_Dangers_of_Jailbreaking_and_Rooting Mobile_Devices.

OWASP. Owasp mobile security project. https://www.owasp.org/index.
php/0OWASP_Mobile_Security_Project.

K. Rhee. A Study on the Security Fvaluation of a Mobile Device Manage-
ment System. PhD thesis, Sungkyunkwan University, April 2012.

Keunwoo Rhee, Sun-Ki Eun, Mi-Ri Joo, Jihoon Jeong, and Dongho Won.
High-level design for a secure mobile device management system. In Hu-
man Aspects of Information Security, Privacy, and Trust, pages 348-356.
Springer, 2013.

47

[29] J. Rice. Samsung exynos 4 exploit discovered: Root and full access to
ram possible in a single app. http://www.androidpolice.com/. Accessed
on February 21st 2014, December 2012. Search for: Samsung Exynos 4
Exploit.

[30] RSA. Realizing the mobile enterprise, 2012. Report based on discussions
with the Security for Business Innovation Council.

[31] R. Sasi. A weekend with cisco meraki bug bounty, a tale of
few web bugs. http://www.garagedhackers.com/content.php?r=
157-A-weekend-with-Cisco-Meraki-Bug-Bounty-a-tale-of-few-web-bugs.
Accessed on May 20th 2014, 2013.

[32] F. Sturrus. Berekening steekproefgrootte. http://marktonderzoek.
punt.nl/content/2006/12/berekening-steekproefgrootte. Accessed
on March 15th 2014, 2006.

[33] Timothy Vidas, Chengye Zhang, and Nicolas Christin. Toward a general
collection methodology for android devices. digital investigation, 8:S14—
524, 2011.

[34] J. Wiewiora. Building an effective mobile device management strategy for
a user-centric mobile enterprise, 2012.

[35] K. Rhee & W. Jeon & D. Won. Security requirements of a mobile device
management system. International Journal of Security and Its Applica-
tions, 6(2):353-358, 2012.

[36] Yajin Zhou and Xuxian Jiang. An analysis of the anserverbot trojan. Tech-
nical report, Tech. Rep., 9 2011.[Online]. Available: http://www. csc. ncsu.
edu/faculty/jiang/pubs/AnserverBot Analysis. pdf, 2011.

48

A Appendix: Survey

Mobile Devices in a Corporate Environment

Q1: This survey is part of the Computer Science Masters Thesis that
Joost Kremers is writing for the Radboud University Nijmegen and De-
loitte Netherlands. In this survey you will be asked to answer questions
regarding the usage of mobile devices in a professional environment. In
this survey the definition of mobile devices is limited to smartphones,
smartwatches and tablets. Laptops are excluded from the definition.
Please answer the questions as honest as possible - the outcome of the
survey is used to obtain an overall view of mobile device usage. Your
individual responses are not used - nor will they be linked to you or your
company. The first part is about mobile devices that your employer has
provided - the second part on personal devices used for work. The survey
takes around 5-10 minutes. Thank you for cooperating.

Q2: My company (roughly) has...
O <10 employees.

O 10-50 employees.

0O 51-250 employees.

0O 251-1000 employees.

0O 1001-5000 employees.

O >5000 employees.

Q3: I work in the following sector:
O Agriculture.

O Industrial.

O Construction.

O Trade, Transport and Catering.
O Information Technology (IT).
O Financial.

O Real estate.

O Business services.

O Government.

O Education.

O Healthcare.

O Culture and Recreation.

O Retail.

O Other

Q4: How would you rate your technical (computer) knowledge?
O Very poor

O Poor

O Moderate

O Good

O Very good

49

Q5: Did your employer provide you with a mobile device? If your employer
provides multiple devices, answer questions from the perspective of the
most frequently used device.

O Yes.

O No.

Q6: Who is the owner of this device?
O I am.

0O My employer is.

O I do not know/unclear.

Q7: What do you use this mobile device for?
O Calling/texting.

O Social networking.

O Connecting to the corporate network.

O Reporting.

O Storing data.

0O Gaming.

O Information gathering.

O E-mail.

O Other

Q8: What is the operating system of the mobile device?
O Android.

O BlackBerry.

O i0s.

O Windows Phone/Windows Mobile.

O I do not know.

O Other

Q9: Does your company have strict rules about mobile devices?
O Yes
O No

Q10: When unlocking my device, I have to enter...
O A pincode (numeric).

O A password (alphanumeric).

O A biometric lock (camera/fingerprint).

O A lock-pattern.

O An other lock.

O Nothing.

Answer If When unlocking my device, I have to enter... A pincode (numeric). Is
Selected Or When unlocking my device, I have to enter... A password (alphanumeric).
Is Selected Or When unlocking my device, I have to enter... A lock-pattern. Is Selected
Q11: The length of this lock is ... numbers/characters.

Q12: Do you store any confidential data (competitively sensi-
tive/customer/private) on the device? Note: e-mail can be confidential
too.

O Yes

50

O No

Q13: Is your mobile device rooted/jailbroken? If yes, what is the main
reason?

O Yes, to install a custom ROM.

O Yes, to install third party markets.

O Yes, to circumvent policies implied by the Mobile Device Manager.

O Yes, other.

O No.

O I do not know.

Q14: Does your company make use of a Mobile Device Management sys-
tem? If yes, which? Note: If you are not sure, check the applications for
the names listed in the answers.

O Yes, Mobilelron.

O Yes, AirWatch.

O Yes, Fiberlink.

O Yes, Zenprise.

O Yes, Good Technology.

O Yes, Boxtone.

O Yes, IBM.

O Yes, SAP.

O Yes, Symantec.

O Yes, Meraki.

O Other

O No.

O I do not know.

Answer If What is the operating system of the mobile device? Android. Is Selected
Q15: What version of Android is installed?
0 2.3

g 3.0

O 4.0

04.1

04.2

04.3

044

O Other.

O I do not know.

Answer If What is the operating system of the mobile device? Android. Is Selected
Q16: Can you install applications from unknown sources (from outside of
the Google Play store)?

O Yes.

O No.

Answer If What is the operating system of the mobile device? BlackBerry. Is Selected
Q17: What version of BlackBerry is installed?

0 5.0

0 6.0

o1

o7.0

o7.1

0O 10

O Other.

O I do not know.

Answer If What is the operating system of the mobile device? Windows
Phone/Windows Mobile. Is Selected

Q18: What version of Windows Mobile/Windows Phone is installed?

ov

av75

a7.8

o8

O Other.

O I do not know.

Answer If What is the operating system of the mobile device? iOS. Is Selected
Q19: What version of iOS is installed?

o3

04

a5

g6

(i

O Other.

O I do not know.

Q20: Do you read the permissions an application requests when you are
installing it/starting it for the first time?

O Yes, I read and understand them.

O Yes, I read them but I do not now what they mean.

O What permissions?

O No, I do not read them.

Q21: Do you have any personally owned mobile devices that you sometimes
use for corporate tasks (i.e. e-mail, logging into the corporate network)?
O Yes
O No

Q22: What do you use this mobile device for?
O Calling/texting.

O E-mail.

O Social networking.

O Connecting to the corporate network.

O Reporting.

O Storing data.

O Gaming.

O Information gathering.

O Other

Q23: What is the operating system of the mobile device?
O Android.

92

O BlackBerry.

0 i0s.

O Windows Phone/Windows Mobile.
O I do not know.

O Other

Q24: When unlocking my device, I have to enter...
O A pincode (numeric).

O A password (alphanumeric).

O A biometric lock (camera/fingerprint).

O A lock-pattern.

O An other lock.

O Nothing.

Answer If When unlocking my device, I have to enter... A pincode (numeric). Is
Selected Or When unlocking my device, I have to enter... A password (alphanumeric).
Is Selected Or When unlocking my device, I have to enter... A lock-pattern. Is Selected
Q25: The length of this lock is ... numbers/characters.

Q26: Do you store any confidential data (competitively sensi-
tive/customer/private) on the device? Note: e-mail can be confidential
too.

O Yes

O No

Q27: Is your mobile device rooted/jailbroken? If yes, what is the main
reason?

O Yes, to install a custom ROM.

O Yes, to install third party markets.

O Yes, other.

O No.

O I do not know.

Q28: Do you have any Mobile Device Management system installed on
your device? If yes, which? Note: If you are not sure, check the applica-
tions for the names listed in the answers.

O Yes, Mobilelron.

O Yes, AirWatch.

O Yes, Fiberlink.

O Yes, Zenprise.

O Yes, Good Technology.

O Yes, Boxtone.

O Yes, IBM.

O Yes, SAP.

O Yes, Symantec.

O Yes, Meraki.

O Other

O No.

O I do not know.

Answer If What is the operating system of the mobile device? Android. Is Selected

]

Q29: What version of Android is installed?
023

0 3.0

O 4.0

04.1

04.2

O 4.3

044

O Other.

O I do not know.

Answer If What is the operating system of the mobile device? Android. Is Selected
Q30: Can you install applications from unknown sources (from outside of
the Google Play store)?

O Yes.

O No.

Answer If What is the operating system of the mobile device? BlackBerry. Is Selected
Q31: What version of BlackBerry is installed?

0 5.0

0 6.0

ao7.0

or7.1

010

O Other.

O I do not know.

Answer If What is the operating system of the mobile device? Windows
Phone/Windows Mobile. Is Selected

Q32: What version of Windows Mobile/Windows Phone is installed?

av

av75

078

o8

O Other.

0O I do not know.

Answer If What is the operating system of the mobile device? i0S. Is Selected
Q33: What version of iOS is installed?

o3

04

ab

a6

ov

O Other.

O I do not know.

Q34: Do you read the permissions an application requests when you are
installing it?
O Yes, I read and understand them.

o4

O Yes, I read them but I do not now what they mean.
O What permissions?
O No, I do not read them.

Q35: Do you have any additional information you would like to provide?

Q36: This was the final question of this survey. If you want to receive a
copy of the final version of this thesis, fill out you e-mailadress in the text
box below. Thank you for your cooperation.

B Appendix: Extension of Rhee’s Framework
(ERF)

On the next page the Extension of Rhee’s Framework is presented in detail.
This includes the roadmap and the tools that are needed to perform the test.
It is crucial to take notes when executing this framework.

To give an idea of the changes made to Rhee’s framework I will in detail
explain the changes made to one case. Case 6 on Data Encryption in Rhee’s
framework has only one step: Check that the MDM agent provides data en-
cryption functions. For Android this is not necessary, since the OS provides the
encryption functionality. This means that if the API-call by the MDM agent is
handled correctly - the storage on the device is encrypted. The roadmap that
is set out in ERF provides steps that install MDM-E; the implemented policies
are requested by MDM-E; and the security vulnerability from section 4.1.2 in
Android Encryption is taken into account. This leads to a more complete and
comprehensive test-case. Since on Android many of the cases rely on an API
call, they are grouped together in ERF under the implementation matches pol-
icy case (2.2). Besides these alterations several Android specific cases have been
added. Examples of this are case 3.2 on USB Debugging and case 7.2 on Intent
protection.

99

Case 1.1 Is the enrollment protocol sound?
Criteria for Investigate if the enrollment protocol is implemented in a reasonable secure
acceptance way. If SCEP: is the privilege escalation attack not applicable?
Test tool Burp, ProxyDroid, Dex2Jar, JD-GUI.
Method 1. Find out what enrollment protocol is used, via either documentation;
setting up a proxy with Burp; or reverse engineering.
2. Burp: use Burp and ProxyDroid to set up a proxy with the PortSwigger
certificate. Enroll to the MDM server.
3. Dex2lJar: To obtain Android Manifest: apktool d <file.apk> <directory
to output to>
a. To obtain java-files: d2j-dex2jar -f -o <output.jar> <input.apk>
b. To display java-files from .jar use JD-GUI
Result
Case 1.2 Is the user authenticated before he can enroll?
Criteria for If an admin needs to approve the new device: PASS. If user has password that
acceptance authenticates the request: PASS. If the MDM accepts all new devices: FAIL.
Test tool -
Method 1. Enroll a new device to the MDM server.
2. Analyse if the enrollment succeeds and if data is pushed to the
device.
Result
Case 2.1 Policy matches Best Practice
Criteria for Manually verify that the policy matches the Best Practice. If it matches PASS.
acceptance If the policy is stricter PASS.
Test tool Manual testing.
Method 1. Request the company’s information security policy.
2. Compare with Best Practices.
Result
Case 2.2 Implementation matches policy
Criteria for If there are no discrepancies between the policy and the implementation
acceptance PASS.
Test tool MDM-E.
Method 1. Request the company’s information security policy.
2. Enable Unknown sources on the device (Settings -> Security ->
Unknown sources).
3. Push MDM-E.apk to the device (e-mail, link, ADB).
4. Press “Policy summary” button.
5. Compare output in console with policy.
Result
Case 3.1 Root detection
Criteria for If the device is rooted and the MDM reports it: WARNING. If the device is
acceptance rooted and the MDM does not report it: FAIL.
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->

Unknown sources).
2. Push MDM-E.apk to the device (e-mail, link, ADB).

3. Press “Settings summary” button. See output in console

Result
Case 3.2 USB debugging
Criteria for If the device has USB-debugging enabled and the MDM reports it: WARNING.
acceptance If the device has USB-debugging enabled and the MDM does not report it:
FAIL.
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->
Unknown sources).
2. Push MDM-E.apk to the device (e-mail, link, ADB).
3. Press “Settings summary” button. See output in console
Result
Case 3.3 Non-Playstore applications
Criteria for If the device allows non-Playstore applications to be installed and the MDM
acceptance reports it: WARNING. If the device allows non-Playstore applications to be
installed and the MDM does not report it: FAIL.
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->
Unknown sources).
2. Push MDM-E.apk to the device (e-mail, link, ADB).
3. Press “Settings summary” button. See output in console
Result
Case 3.4 Audit data generation
Criteria for If the status of the device is correctly recorded and transmitted to the MDM
acceptance server: PASS. Points of interest: SIM/IMEI alteration and authentication
failures.
Test tool -
Method 1. Alter device settings and try to log in with the wrong credentials.
2. Check on the MDM dashboard if these are detected.
Result
Case 3.5 Connectivity
Criteria for If the MDM reports a device being offline for a certain amount of time: PASS.
acceptance Else: FAIL.
Test tool -
Method 1. Putthe device on airplane-mode (Settings -> More -> Airplane-
mode).
2. Wait 2 hours and see if it is displayed on the MDM dashboard.
Result
Case 4.1 Data encryption
Criteria for The MDM should enforce encryption of the storage. If encryption is enabled,
acceptance but the standard encryption key is used: WARNING. If the encryption key is
changed to something not derived from the user’s password: PASS.
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->

Unknown sources).

2. Push MDM-E.apk to the device (e-mail, link, ADB).

Press “Policy summary” button. See “Encrypted” in console.

4. |If True, restart device and check if the encryption password is the
same as the PIN.

w

Note: normally the encryption key is derived from the users PIN/password. In
case this PIN is short, it can be cracked by an attacker within a reasonable
time and even offline. It is therefore good practice to change the encryption
key, granting a key that is more secure against brute force attacks.

Result
Case 4.2 Data integrity
Criteria for Modifications or removal of configuration and audit data on the device
acceptance should be detected or ignored. If the MDM detects change - or changes are
not reflected by the MDM: PASS.
Test tool ADB, Sqlite Editor.
Method 1. Find the application name (com.*). This may be done with MDM-E.
2. Enable USB-debugging (Settings -> Developers options -> USB-
debugging).
3. Type “adb shell” in a shell.
4. Browse to the /data/<applicationname> folder and search for a
settings file.
5. Edit data.
6. Verify if this has any effect on the MDM.
Result
Case 4.3 Device locking
Criteria for The administrator should be able to remotely lock the mobile device.
acceptance
Test tool -
Method 1. Unlock the device.
2. Onthe MDM dashboard, find the test-device.
3. Locate the lock-button.
4. Verify the screen is locked.
Result
Case 4.4 Device wiping
Criteria for The administrator should be able to remotely wipe the mobile device.
acceptance
Test tool -
Method 1. Tryto remotely wipe the device.
2. Verify that the device has actually reset to factory defaults.
Result
Case 4.5 Encryption key and cryptographic data management
Criteria for The MDM does not have any encryption keys or cryptographic data
acceptance hardcoded in it.
Test tool Dex2jar, JD-GUI.
Method 1. Dex2lar: To obtain Android Manifest: apktool d <file.apk> <directory
to output to>
a. To obtain java-files: d2j-dex2jar -f -o <output.jar> <input.apk>
b. To display java-files from .jar use JD-GUI
2. Search for keywords like “password” and “key”.
Result
Case 5.1 Transferred data encryption
Criteria for If the app communicates with the server via SSL: PASS. If the app
acceptance communicates in a different encrypted method: WARNING. Else: FAIL.

Test tool

Shark for Root, Wireshark.

Method 1. Install Shark for Root.
2. Run Shark for Root.
3. Force the MDM to synchronize.
4. Verify the .pcap-file with Wireshark and look for non-encrypted
packets.
Result
Case 6.1 Applications
Criteria for Applications should only be installed if the MDM allows it. Blacklist and not
acceptance deceivable: WARNING. Whitelist and not deceivable: PASS.
Test tool Manual testing.
Method 1. Attempt to install a prohibited application for blacklist-test.
2. Attempt to install MDM-E for whitelist-test.
Result
Case 6.2 Anti-malware
Criteria for The app performs continues checks whether the anti-malware app is present.
acceptance If the app is disabled it tries to activate it and reports to the server.
Test tool -
Method 1. Check the installed App list for anti-malware applications.
Note: Android 4.2+ has a build-in malware scanner.
Result
Case 7.1 Known vulnerabilities
Criteria for There are no known vulnerabilities for the evaluated version of the MDM.
acceptance
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->
Unknown sources).
2. Push MDM-E.apk to the device (e-mail, link, ADB).
3. Press “Policy summery” button. Look at the version name of the
MDM application.
4. Search the internet (CVEDetails.com & OSVDB.org etc.) for known
vulnerabilities on this MDM in combination with the version name.
Result
Case 7.2 Intent protection
Criteria for The MDM app is not vulnerable to intent spoofing.
acceptance
Test tool MDM-E.
Method 1. Enable Unknown sources on the device (Settings -> Security ->
Unknown sources).
2. Push MDM-E.apk to the device (e-mail, link, ADB).
3. Press “IPC summary” button. See output in console
Result
Case 7.3 Injection
Criteria for The MDM app is not vulnerable to injection attacks.
acceptance
Test tool Manual testing.
Method 1. Check whether there are text-fields that are vulnerable to XSS

attacks. (i.e. <script>alert(“XSS”)</script>
2. Check whether you can perform path traversal attacks.

3. Check whether there are text-fields that are vulnerable to SQL(-Lite)-
injection. (i.e. ‘OR “1’="1)

Result
Case 7.4 Unnecessary logging
Criteria for Verify that no sensitive data is logged.
acceptance
Test tool ADB.
Method 1. Enable USB-debugging (Settings -> Developers options -> USB-
debugging).
2. Type “adb logcat” in a shell.
3. Force the MDM to synchronize. Verify that no sensitive data is logged
before or at the time of syncing.
4, Verify that there is no logfile created on the SDCard or in the /data-
partition.
Result
Case 7.5 Secure revocation
Criteria for The MDM has the ability to revoke a client to connect to the MDM server.
acceptance
Test tool Manual testing.
Method 1. Tryto revoke access to a test-device.

Result

