

Measuring A rchitectural

T echnical Debt

submitted to the Faculty of Science
of Radboud University in Nijmegen

for the degree of

MASTER OF SCIENCE

in

INFORMATION SCIENCE

by

Michail Kuznetcov
born in Moscow, Russian Federation 1984

ABN AMRO Bank N.V.
Gustav Mahlerlaan 10 (1082 PP)
Amsterdam, the Netherlands
www.abnamro.com

Radboud University Nijmegen

Comeniuslaan 4 (6525 HP)
Nijmegen, the Netherlands
www.ru.nl

http://www.abnamro.com/
http://www.ru.nl/

Author: Michail Kuznetcov
Student number: s4340132
E-mail: michail.kuznetsov@gmail.com

 Abstract
To develop the concept of technical debt in application to modernization of the
architecture of the large information systems, such as the host company of this
research, there is a need in modern measurement approach. Based on the state of
the art described in the scientific literature, we have developed a model which
aims to identify and quantify individual technical debt items.

The method itself includes a measurement model and accompanying estimation
guidelines. The model structure is based on several theoretical concepts in the
research area of technical debt. During the research we specifically focused on
architectural technical debt issues. We developed a taxonomy of types of debt
which included for the architectural level the enterprise architecture methodology
that was used by the company. Estimation guidelines were developed based on the
professional experience of the participants to provide the reference for estimating
each of the assessed types of debt.

Throughout the research we have collected data for several specifically chosen
systems within the host company IT landscape. Data was collected from the
company's employees using a specifically designed collection tool. During data
collection participants estimated the amounts of debt principal and interest
associated with each system against proposed debt categories.

To perform validation of the developed model we have studied the perception of
practitioners by using a feedback questionnaire. This helped us to assess
feasibility of the method and according to the results, the
find the model and the approach in general useful, understandable, and compatible
with industry experience.

K eywords: technical debt, architectural debt, large information systems, TOGAF

University supervisor: Joost Visser, j.visser@sig.eu
Company supervisor: Martin Paris, martin.paris@nl.abnamro.com

mailto:michail.kuznetsov@gmail.com
mailto:j.visser@sig.eu
mailto:martin.paris@nl.abnamro.com

Acknowledgments
This thesis would not have seen the light without the help and support of a number of people. My
gratefulness for these people is simply inexpressible, below I would like to say personal thanks
to most of them.

First and foremost, I would like to thank my company supervisors and mentors Martin Paris and
Raghu Warrier for sharing their experience and time during practical part of the research. Their
constant availability, support and guidance were always helping me to achieve expected results.
Next person I would like to thank is Joost Visser from Radboud University Nijmegen, my
academic mentor, for sharing analytical approaches towards the research, and always giving
logical comments on my work.

Having an opportunity to do my thesis at such a large company with modern approaches towards
IT as ABN AMRO was an amazing final step in my education in Netherlands. And I would like
to say personal thanks to people who helped me on my way to start it Ruth Koppenol, George
Jansen and Jan Robat. Being a part of such a professional team had a great impact on my
personal and professional skills.

Specifically I would like to thank ABN AMRO developers, testers and architects Namrata Sen,
Jaap Teeuwen, Gert Faber, Stefan van Oss for giving their feedback, answering me with any
questions I had and providing me with relevant materials whenever I needed. Moreover, I would
also like to thank TCS employees Kailas Parande and Megha Jindal who also participated in
the study and shared with me their valuable time.

I would like to thank my wife and my parents for their continuous support. Their presence in my
life was always an energy source for making ambitious steps in my life.

- 5 -

Contents	

Chapter 1. Introduction... 7

1.1 Thesis scope ... 7
1.2 Problem statement .. 7
1.3 Research question .. 9
1.4 Document structure .. 9

Chapter 2. Literature overview ... 10
2.1 What is technical debt .. 10

2.1.1 History ... 10
2.1.2 Definitions ... 10
2.1.3 Technical debt in practice .. 14
2.1.4 Layers of technical debt occurrence in systems .. 17
2.1.5 Literature review findings ... 17

2.2 Software quality ... 18

2.2.1 Overview ... 18
2.2.2 Standards ... 18

2.3 Technical debt measurement .. 20

2.3.1 Introduction ... 20
2.3.2 Reported methods .. 22
2.3.3 Tools used to estimate Technical debt .. 25

2.4 Architectural technical debt ... 29

2.5 Approaches to management technical debt .. 30

2.5.1 Introduction ... 30
2.5.2 TD process management ... 31
2.5.3 TD portfolio management ... 32
2.5.4 TD ownership .. 33
2.5.5 Approach by JL. Letouzey .. 33
2.5.7 Other techniques .. 34

Chapter 3.Research design ... 35
3.1 Introduction .. 35

3.2 Defining the techniques .. 35

3.2.1 GQM .. 35
3.2.2 Technical debt template ... 36
3.2.3 Technical debt taxonomy .. 37
3.2.3 Sonar metrics ... 37
3.2.4 Paretto approach .. 37

3.3 Model application rules .. 37

- 6 -

Chapter 4. Model description ... 40
4.1 Introduction .. 40

4.2 Model parts ... 41

4.2.1 TD taxonomy ... 41
4.2.2 Item description ... 43
4.2.3 Estimation guidelines .. 44
4.2.4 Calculating and aggregating tool ... 44

4.3 Model discussion .. 45

Chapter 5. Application of the model ... 46
5.1 Introduction .. 46

5.2 GQM results ... 46

5.3 Technical implementation .. 47

5.4 Data collected on technical debt ... 48

5.5 Evaluation of proposed method .. 52

5.6 Threats to validity ... 55

Chapter 6. Conclusions... 57
6.1 Summary .. 57

6.2 Discussion .. 57

6.3 Contributions .. 58

6.4 Limitations.. 59

6.5 Future work .. 60

Literature list .. 61
Appendixes ... 64

	

1. Introduction

- 7 -

Chapter	
 1.	
 Introduction	

Technical debt is a term that was introduced in the developers community over 20 years ago. Growing from
an easy to understand and use metaphor that connects product developer and product owner to a mature
metric, technical debt (TD) has gained considerable theoretical background for the last decade. One can find
an extensive list of comprehensive scientific papers describing various approaches to TD. Among them: best
practices (for project managers, developers etc.), measurement techniques, success stories in major brands,
tools and techniques, new and adopted by industry and so on.

Most of the literature is targeted at implementing code metrics to produce numerical values representing
various aspects of TD; that is natural by following reasons: developers feel code level debt most strongly;
code metrics are comparably easier to implement. It can be seen now there is a lack of information how
Architecture-level TD (ATD) can be measured, captured and communicated.

1.1 Thesis scope
From a scientific point of view this thesis project will be investigating the theoretical basis to develop a
model of architectural technical debt for further practical implementation. Practical studies will be bounded
to Internet Banking (IB) systems of ABN AMRO in The Netherlands. Most attention will be paid to
architectural technical debt existence, classification and estimation. The whole project can be clearly divided
onto four consecutive phases:

1. Theoretical studies, getting familiar with state of the art approaches;
2. Measurement model development
3. Measurement model application and refinement;
4. Evaluation of the approach and conclusions.

1.2 Problem statement
As any mature enterprise organization successfully operating worldwide for decades already ABN AMRO
heavily relies on information technologies. The organizational domain of IB and related departments use a
vast number of systems to operate. The IT landscape includes systems written in different languages, which
have various times of creation (aged from 12 to 2 years old), developed in-house and by sub-contractors.
Large amounts of code as well as numerous interconnections and inevitable duplication creates a retention
impulse for the whole system. One of the aspects that can be distinguished can be clearly identified as
technical or IT debt.

There is a clear understanding by higher management that a strategic approach to restructure the IT
landscape is needed this request was formulated in program called TOPS2020. From a practical
perspective this means that currently there is a request in a company to:

1) investigate domains and systems that contain TD ;
2) calculate relative amounts of debt and define most relevant points to rework;
3) provide a strategy to control TD and eliminate it in most valuable points.

Formal application of existing debt approaches cannot provide a complete picture of the TD landscape with
enough precision because currently presented TD metrics and techniques are mostly concentrated on code-

1. Introduction

- 8 -

level debt (in more details those approaches are described in Chapter 2). While for the company now
according to stakeholders the most amount of TD is captured on the architectural level. Considering modern
challenges like implementation of cloud infrastructure it becomes extremely valuable to define a detailed TD
vision on systems level not on level of code blocks or modules.

Why A BN A M R O needs to measure T D
The aforementioned TOPS2020 program is targeted to describe both high level principles and detailed
actions that are needed to take the evolution of the technological landscape of the bank to 2020. Among
other strategic ideas the point about technical (IT) debt was introduced.

The current state of the solution regarding IT debt within the bank is that there is a requirement to propose
approaches to measure and manage TD. But as it was mentioned before there is no clear method how this
can be done on a companywide level. Also because of the variety of interconnected systems in the
infrastructure there are no tools that can be set up out of the box.

Development of this method was started as a project by the Multi-channel Services (MCS) department of the
IT division and Martin Paris as a project manager. Part of this ambitious and valuable project has become the
topic for this thesis research.

Why the A rchitectural T D domain was chosen
As will be presented in Chapter 2 scientific approaches for ATD are much less developed today. Available
case studies usually describe investigations of relatively big but separated systems. Starting from
investigating a group of systems in the IB domain the method must be later transformed to a metric that can

 Significant part of the systems landscape is planned to be
investigated later.

Cur rent state of the A BN A M R O I T systems landscape
Today the
than a decade of developing new modules, integrating 3rd party solutions, adjusting processes to changing
laws, regulations and opening business opportunities has led to enormously complex components.

Several years ago ABN AMRO adopted SOA (service oriented architecture) as a main guiding principle for
building new applications. Service orientation is an architectural concept that refers to the loose coupling of
a service (an abstract resource with a defined job) and its provider (the physical asset(s) that perform the job
tasks). A reques
one aware of its implementation.

1. Introduction

- 9 -

1.3 Research question
The study was conducted in a way to answer the following research question:

What techniques for A T D measurement can be applied and how successful are they?

The following list of research sub-questions presents the whole research as a set of logical steps. Each sub
question will be answered by specific parts of the thesis:

1. What is architectural technical debt, how can it be measured, and how does it related to other TD
measurement techniques?

2. How can ATD best be measured in enterprise IT systems such as those of ABN AMRO?
3. How feasible, useful and reliable are the proposed measurements of ATD in practice?

1.4 Document structure
This thesis is organized as follows: Chapter 2 presents a literature overview of the topic. Chapter 3 contains
a description of the research design and its theoretical basis. Chapter 4 is devoted to a description of the
developed measurement model. In Chapter 5 the results of applying the model are presented and also know
issues and model feedback are discussed. Results evaluation and future planning are in Chapter 6. The
appendixes contain various details of the research definitions, taxonomy tree, collected data tables etc.

2. Literature overview

- 10 -

Chapter	
 2.	
 Literature	
 overview	

This chapter describes the foundations of technical debt, its connections with software
quality, its layers of occurrence and approaches to manage it.

2.1	
 What	
 is	
 technical	
 debt	

2.1.1 History
In the literature on technical debt (somet

The WyCash portfolio management

the results of violations of good code and architecture practices. It also described the
dangerous consequence of a team spending more and more time on new feature
implementation (paying debt interest) if earlier violations are not fixed debt is not repaid.

The problem of software that keeps capturing more and more complexity in itself, captured
by Cunningham in the TD definition was mentioned earlier by Meir Lehman1

increases un [2]

Several acknowledged software engineers took part in developing scientific approaches to
technical debt definition and measurements.

 Ward Cunningham the creator of wiki, and aforementioned person who first coined
the TD metaphor [15] in 1992.

 Martin Fowler famous practitioner and speaker on software development and team
productivity. He described the Technical Debt Quadrant2 in 2009.

 Israel Gat head of a consultancy company on software quality, has used the term
implementation3 in his work a lot and wrote a book [20] on technical debt.

 Philippe Kruchten proposed the layers of TD aggregation in IT systems and
participated in formulating other viable concepts of the modern TD ecosystem.

 Steve McConnell - CEO at Construx Software, and famous author of many software
development books. His post in 2007 [16] on categorizing and managing technical
debt.

2.1.2 Definitions
1. Definition by Ward Cunningham [15]
In the report he says that neglecting the design is like borrowing money.

Shipping first time code is like going into debt. A little debt speeds development so long as

it is paid back promptly with a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt. Entire engineering

1 Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the IEEE, 68 (9), 1060 1076.
2 Web link: http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
3 Gat, I. 2010. Revolution in Software: Using Technical Debt Techniques to Govern the Software Executive Report. Cutter Consortium

http://www.construx.com/
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

2. Literature overview

- 11 -

organizations can be brought to a stand-still under the debt load of an unconsolidated
implementation, object-oriented or otherwise

Considering this both parts of money debt idea can be derived like:

1. Refactoring, it's like paying off the principal debt;
2. Developing slower because of this debt is like paying interest on the loan.

Later McConnell and Fowler described approaches for TD categorization into distinct types,
separating issues depending on whether they were introduced specifically or unintentionally.

2. Definition created by Fowler and McConnel4
Martin Fowler famous post in the blog about the TD
quadrant starts with discussing the question whether messy
code or bad system design is TD or not. Further on, 4 types
of approaches to implementing code are described.

 The prudent debt to reach a release may not be
worth paying down if the interest payments are
sufficiently small - such as if it were in a rarely
touched part of the code-base.

 A sloppy and low quality code is a reckless debt,
which results in crippling interest payments or a
long period of paying down the principal.

This reasoning introduces one of the easiest yet powerful
solutions for initial categorizing existing TD the Technical Debt Quadrant (Figure 1).

3. Definition by Bill Curtis et all.[2]
Curtis provides the following definitions:

 Technical Debt the future costs attributable to known structural flaws in production
code that need to be fixed, a cost that includes both principle and interest. A structural
flaw in production code is only included in Technical Debt calculations if those
responsible for the application believe it - em. Technical Debt is a
primary component of the cost of application ownership.

 Principal the cost of remediating must-fix problems in production code. At a
minimum the principal is calculated from the number of hours required to remediate
must-fix problems in production code, multiplied by the fully burdened hourly cost of
those involved in designing, implementing, and testing these fixes.

 Interest the continuing costs primarily in IT attributable to must-fix problems in
production code. These continuing costs can result from the excessive effort to
modify unnecessarily complex code, greater resource usage by inefficient code, and
similar costs.

F igure 1. T echnical Debt Quadrant by M artin Fowler

2. Literature overview

- 12 -

Technical Debt in a more shortened version however.

4. Definitions from article by group of authors [25]
Following a workshop at the Software Engineering Institute on June 2-3, 2010, a group of
authors agreed on the following definitions:
 [TD] Principal given a particular type of technical debt, the estimated cost of eliminating
that debt (e.g., testing, refactoring.)
[TD] Interest probability the probability that a particular type of technical debt will in fact
have visible consequences (e.g., how likely it is that a defect exists in the untested part, or
how likely the code in need of refactoring will have to be modified.)
[TD] Interest amount the added cost of performing maintenance on the part of the system
that contains technical debt (e.g., the cost of fixing a defect when it is discovered by a
customer as compared to earlier when it would have been detected if testing had been
completed, or the extra cost of modifying a component in need of refactoring as compared to
the cost of modifying it after refactoring.)

5. Additional TD definitions
Even bigger list of 20 definitions is collected by [33

. Some of the useful ones, that can give a
better picture on a current topic are enlisted below.

Here most of those descriptions are categorized into two categories considering main groups
of

Those two groups usually seen as having different mindset, using
different tools for work and even producing different parts of resulting product. But still they
have to operate it the same project scope in time, requirements list and market conditions.
That is where the ambiguity and industry value of the term can be seen it can act as an idea
transmitter, common base for building sensible strategy in project development.

Table 1. Additional technical debt definitions

Definition type Definitions examples
Project
management,
business side

1.
concerning code maintenance that lead to the accumulation of
technical
(Torkar et al., 2011)

2. ess value to drive development
so that architectural soundness is compromised] may lead to
increasing maintenance costs and the quality of the end product is

(Heidenberg and Porres, 2010)
3. us private

loan project, as most business and technical decisions were
prioritized

4. If teams are making decisions to sacrifice quality or
maintainability in order to meet those demands [pressures to use
fewer resources, hit timelines and show return on investment],

 (Smith, 2009)
5. -term aspects usually contributes to

2. Literature overview

- 13 -

et al., 2008b)
6. ew firms borrow capital to get started, new software

Maintenance problems that ensue are the interest you pay for

 (Lutz, 1993)

Developer ,
technical side

1. Almost invariably in software projects, developers can be so
focused on accomplishing the needed functionality that the
software itself grows less understandable, more complex, and

 (Shull, 2011)
2. at its broadest, technical debt is any

side of the current system that is considered sub-optimal from a

3.
r code. This includes things like

bugs, design issues, and other code-quality problems that are

(Black et al., 2009)
7.

debt that
2009)

8. -agile infrastructure tends to grow old because changes are
hard to execute in these environments. This can be seen as

9.

-Brock, 2008b)
10.

must be extended, adapted, and modified accordingly as new
requirements, constraints, and environments emerge. Developers,
however, seldom give these efforts the rigorous consideration of
the original design. Consequently, the system decays, resulting in

 (Neill and Laplante,
2006)

Considering that debt idea coming from financial knowledge domain, some of the researches
[23, 2, 35] used other concepts and methods, related in financial area, for describing debt and
activity around it in software development domain. Example can be utilizing Real Option
theory by I.Gat [20] to describe opportunities in that manager and developer have on
consecutive stages of the project. And how choosing cheaper or faster implementation today
can actually cost much more in a month perspective.

Below is a list of financial by origin terms related to technical debt as they are defined by Bill
Curtis et all. In article Estimating the Size, Cost, and Types of Technical Debt [2]:

 Business risk the potential costs to the business if must fix problems in
production code cause damaging operational events or other problems that reduce the
value to be derived from the application.

 Liability the costs to the business resulting from operational problems caused by
flaws in production code. Such operational problems would include outages, incorrect
computations, lost productivity from performance degradation, and security breaches.

2. Literature overview

- 14 -

From a risk perspective, flaws in the code include both must-fix problems included in
the calculation of Technical Debt as well as problems not listed as must-fix because
their risk was underestimated.

 Risk the potential liability to the business if a must-fix problem in production code
was to cause a liability-inducing event. Risk will be expressed in terms of potential
liability to the business rather than the IT costs which are accounted for under

 Opportunity cost benefits that could have been achieved had resources been

committed to developing new capability rather than being assigned to retire Technical
Debt. Opportunity cost represents the tradeoff that application managers and
executives must weigh when deciding

6. Technological gap
TD existence is also a matter of project size. Technical debt can arise due to changes in

may have been made. If the system does not evolve, then new environmental conditions may
start creating high interest payments [25].
This may be referred to as Technical Inflation9 mentioned by Scott Wood - the ground lost
when the current level of technology surpasses that of the foundation of your product to the
extent that it begins losing compatibility with the industry. Examples of this would be falling
behind in versions of a language to the point where your code is no longer compatible with
main stream compilers.
Philip Kruchten also refers this phenomena as Technological gap (refer to Figure. 2) - This
is tech debt that you got by doing nothing, it is just the passing of time, that made the design
choice you made now obsolete in the presence of new technology showing up. To keep the
product current you may have to close that gap (i.e. adapt to the new technology). So at the

2.1.3 Technical debt in practice

Besides scientific approaches Popular literature also. TD examples are collected from various
technical and development blogs and portals.
There can be named plenty of reasons when typical debt generally taken in software
development cycles. By studying Below is a sample list of such cases summed up in the table
below.

Table 2. Examples of technical debt

L evel Examples Comment
A rchitecture level 1. Bad demarcation and

rationalization of the IT
landscape

2. Inconsistent design
approaches

3. Careless mistakes ('we
work agile and our code is

Becomes visible for
considerably large or/and aged
systems when code modules
interrelations can harm project
properties (robustness,
maintainability, future
developments costs) more than

9 Web link: http://www.slideshare.net/lauraxthomson/rewrite-or-refactor-when-to-declare-technical-bankruptcy

http://www.slideshare.net/lauraxthomson/rewrite-or-refactor-when-to-declare-technical-bankruptcy

2. Literature overview

- 15 -

the message')
4. Poor choices of component

decomposition
5. Incoherent designs or more

complexity in designs than
absolutely needed

6. Design choices that turn out
to be wrong in hindsight

code.

Code level debt 7. Violations of coding
standards

8. Code duplication
9. Poor or absent comments
10. General sloppiness
11. Refuse or poor usage of

OOP, patterns, MVC or
other concepts

The most detailed described
domain. Mostly because
authors being developers first
of all apply metaphor on its
initial domain.

T est level debt 12. Poor or absent test
scenarios and/or test
atomization efforts as the
critical solution grows

13. Incomplete test coverage
14. Poor test automation

Testing being a valuable part
of development process can be
underestimated by manages
that leads to loss of time and
quality for the project

Social (managerial) 15. Intentional debt taken for
strategic reasons

16. Debt taken for personal
interest (career or the
expectation to increase
income or to prevent
personal reputation
damage)

Eventually mentioned, but is
quite vaguely defined.

Rationales for accepting T D
As it was stated before, in financial world debt is not a specifically bad thing to have.
Companies consider credits as a tool that can be handy to overcome current market situation
or new development challenges. The danger for the future of the project comes when this tool
used inappropriately. The same can be applied to software development some technical
debt can help to leverage some current conditions. Specific project implementations are
resulting many factors involved in project. Regarding this point of view some of reasons for
taking decisions that make software project to implicitly incur technical debt are presented in
following table.

Table 3. Rationales for taking on technical debt

Reason Explanation Examples [16]
T ime to Mar ket Shortening time to market When time to market is critical,

2. Literature overview

- 16 -

though assuring the debt taken is
mitigated in a short time

incurring an extra $1 in development
might equate to a loss of $10 in
revenue. Even if the development
cost for the same work rises to $5
later, incurring the $1 debt now is a
good business decision.

Preservation of
Startup Capital

Preserving startup capital
though assuring the debt gains
priority in the requirements
backlog

In a startup environment you have a
fixed amount of seed money, and
every dollar counts. If you can delay
an expense for a year or two you can
pay for that expense out of a greater
amount of money later rather than out
of precious startup funds now.

Systems
retirement

Delaying development expenses
assuring capital is preserved to
invest in future technology
replacement

When a system is retired, all of the
system's technical debt is retired with
it. Once a system has been taken out
of production, there's no difference
between a "clean and correct"
solution and a "quick and dirty"
solution. Unlike financial debt, when
a system is retired all its technical
debt is retired with it. Consequently
near the end of a system's service life
it becomes increasingly difficult to
cost-justify investing in anything
other than what's most expedient.

Distinguishing technical debt from other issues
It was mentioned by Robert Martin10 - a [code]mess is not a technical debt. Which in other
words means that you should not refer bad code practices to technical debt sometimes
sloppy code is just sloppy code that needs to be fixed. Several authors refer to a similar point,
especially after talking to practitioners in specific domains one can see that after they get the
essence of the metaphor and its flexibility and power. Then they easily fall into the stage
when every bad implementation or managerial structure or decision is going to be qualified as
technical (business, social, managerial,) debt. Definitely debt is an interesting construct and
it has a lot of useful applications but those domains will stay out of the scope of this paper.

10 Blog post, 09/22/2009, Web link: https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

2. Literature overview

- 17 -

Technical Debt must be distinguished from defects or failures. Failures during test or
operation of the system may be symptoms of IT debt, but most of the structural flaws creating
Technical Debt have not caused test or operational failures [2].

Summing up we must state that again, not all incomplete work is debt. debt because
there is no need in debt interest payments.

2.1.4 Layers of technical debt occurrence in systems

Philippe Kruchten et all, in [26, 4] introduced the diagram for showing presence of various
debt domains across the system. On this picture (Figure 2) one can see the layers that
researcher defines from : architectural debt (or structural debt), documentation debt, test debt
to code-level debt. The last one is presented by a set of characteristics - code complexity,
code smells, coding style violations.

It also can be seen that all the debt domain is behind the visible part of the software

it can be seen that IT debt presence
directly influences the other parts of the software development process.

2.1.5 Literature review findings

Having investigated quite a wide volume of literature on technical debt and related software
quality measurements and approaches the following stats was formed. This also influenced
approach used to build our own model for this research.

Table 4. L iterature review classification

Type I tem A rticles

A
pp

ro
ac

h/
m

et
ric

SQALE [10], [19]
SIG [32], [14]
Matrix [35]
Documents analysis [23], [5], [39], [38]

F igure 3. T echnical debt domains according to Philippe K ruchten

2. Literature overview

- 18 -

CAST [22], [2]
Portfolio [29]
ISO\IEC 9126 [8], [37], [2]
Custom [17], [35], [34], [4], [36], [27]

A
rti

cl
e

ty
pe

 Case study [5], [23], [8], [39], [32], [34], [4], [38], [36], [27], [14], [30], [28]
Theoretical [24], [8], [6], [25], [41], [37], [3], [9], [26], [11], [40], [10, [19,

[31], [29], [21]
Interviews [1], [18]
Systems research [22], [2]

TD

ty
pe

 Architectural TD [4], [36], [27]
Code level TD [35]

Below several findings of our review are discussed:

1. TD studies are still having more theoretical discussions, then practical reports
with detailed values of debt captured;

2. Practitioners tend to combine existing metrics and propose new calculation
approaches based on addressed systems conditions;

3. Documents analysis and questionnaires can serve as powerful method for
obtaining quantitative results on TD

4. Sonar tool is widely used, but not that widely discussed in
scientific TD literature

5. ATD studies are usually separated from code level TD

2.2	
 Software	
 quality	

2.2.1 Overview
The area of software development has been constantly growing in complexity and impact on
economics and society for more than 50 years till now. Being a very practical and also
quantitative area of human activity it also developed the approaches to maintain quality of
the products delivered and how effective the processes (development) are organized.
Considering the context of software engineering, software quality is defined in two aspects11:

1) Software functional quality reflects how well it is aligned with a given design
(functional requirements) or specifications.

2) Structural quality of the software describes to what extent it meets non-functional
requirements (e.g. maintainability). Because they support the delivery of the
aforementioned functional requirements.

2.2.2 Standards
ISO 9126 standard
A first edition of international standard for the evaluation of software quality was issued in
1991. It presented12 six general characteristics that were aimed to give an overview of
software quality: functionality, reliability, usability, efficiency, maintainability, portability.
Each characteristic is divided in sub characteristics to review.

11 Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth, International ed.), McGraw-
Hill Education Pressman
12 Web link: http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

2. Literature overview

- 19 -

Table 5. Characteristics of ISO 9126 standard

M etric name M etric description
Functionality Up to what extent the software performs as per the requirements and

specifications. Testing is used to verify that the requirements are
met.
This basic of quality factors but can be problematic for large,
complex software systems.

Reliability Reliability is the capability of software to maintain its level of
performance under stated conditions for a stated period of time. It is
also defined as the probability of failure-free operation.

Efficiency Indirectly efficiency can be measured by measuring the amount of
time (execution efficiency) or storage (storage efficiency) needed
when running the software through a particular compiler, under a
specific OS, on a designated hardware architecture.

Usability Usability characteristic is an attempt to define user friendliness. It
can be measured in terms of for example physical and intellectual
skill required to learn the system or the net increase in productivity
over the system it replaces.

Maintainability Maintainability aimed to define how is easy is software object the to
understand, enhance, and correct in future.
Sub criteria of maintainability include consistency, simplicity,
conciseness, self-descriptiveness, and modularity

Portability Portability is a set of attributes that bear on the capability of software
to be transferred from one environment to another.

Generally this standard introduced a top-down look at software quality and targeted both
developers as well as project managers. This also lead to the fact that not all characteristics
could be reviewed automatically, for example conformance and compliance relayed on laws
and external standard. It has been replaced by ISO/IEC 25010:2011 in 2011.

ISO/I E C 25010
ISO 2501013 is a product quality model composed of eight characteristics (which are further
subdivided into sub characteristics) that relate to static properties of software and dynamic
properties of the computer system. Some of the selected characteristics derive from those in
ISO 9126. The model is applicable to both computer systems and software products. Those
metrics according to authors provide consistent terminology for specifying, measuring and
evaluating system and software product quality. They also provide a set of quality
characteristics against which stated quality requirements can be compared for completeness.
Those metrics are explained on Figure 3.

13 ISO/IEC25010: Software engineering-System and software Quality Requirements and Evaluation (SQuaRE) - System
and software
Quality Model, 2011.

2. Literature overview

- 20 -

F igure 3. ISO 25010 quality model

Applying of methodology described in the standard can also provide guidance in identifying
software and system requirements, design and testing objectives, identifying acceptance
criteria and establishing combined measures of quality characteristics. Behind this model,
there is an approach called Factor-Criteria-Metric Model14 which is commonly used in the
field of software measurements.

2.3	
 Technical	
 debt	
 measurement	
 	

2.3.1 Introduction
Every day employees involved in the software project have to make decisions. The decisions
are related to different levels: developer chooses the most applicable implementation
technique, architect is planning what libraries or patterns should be used for next
development stages. Also a project manager has to allocate time resources to continue feature
implementation according to the schedule while there is also need to decrease amount of
shortcuts in the code and temporary architectural decisions.
Software development practitioners have made several attempts to define a quantitative rules
and metrics that project stakeholders could utilize to balance speed and productivity versus
quality of the solutions.
But as it will be shown below approaches to quantify the amount of debt have led to
creating of several methods that are still quite diverse. This situation corresponds to words of
Martin Fowler about expressing technical debt The tricky thing about technical debt, of
course, is that unlike money it's impossible to measure effectively .

14 McCall J.A., Richards P.K., Walters G.F., Factors in software quality, Vols. I-III, Rome Air Development
Centre, Italy, 1977

F igure4. T D and T DI growth over time

2. Literature overview

- 21 -

General representation[32] of the TD growing in the system with the time was presented by
Jim Highsmith15 as on Figure 3.
Introducing a straight horizontal line for the case when

presented by dashed graph. Maintenance starts growing even faster if technical debt is
incurred by the system.
So in case if development team created big amount of TD in initial stage that makes further
project development more and more complicated. The more
time line the harder the design choices are.
Another outcome for the graph is that technical debt somewhat similar to entropy always
grows for the addressed software with time - if nothing is done to handle it, then the situation
always gets worse. It also shows that exact TD estimation in applications with high incurred
technical debt becomes nearly impossible.

As it was introduced earlier in the definitions part debt incurred by IT systems has two
compounds: main debt body (principal) and debt interest (penalty, regular fee). General
formula that can be presented as an array.

Those two parts values are independent. For example some inefficient source code problems
are not likely to cause future maintenance problems or affect the overall quality of the
system. In terms of the TD metaphor, the TD principal may be higher than the TD interest
being paid on the debt [28]. Or it can be other way around when code part is changed
often, then shortcuts and general poor quality existing in this part will take a lot of additional
effort every time. While fixing this exact part (TD principal) can be relatively fast.
There also can be the situation when different parts of TD are aligned with conflicting goals
of different stakeholders. For example - the Department1 would like to have well commented
code; whereas the development department (Department2) is focused on producing running
code, so the Department1 department estimates the interest and the development department
estimates the principal [25].
Within one system total debt does not necessarily combine additively, but this can be called
super-additively in the sense that taking on too much debt leads a system into a bad, perhaps
irreparable state (e.g., of code complexity) [24].
A valuable factor for estimating TD interest for a specific organization is availability of
historical data. For instance, by adopting a configuration management system and analyzing
source code repositories data we can see the extent to which a component with high coupling
and cohesion is less maintainable than other components. Historical data can be useful but
might not be available for all the TD [25].

Below is the part describing different techniques to quantify TD principal or TD interest or
both.

2.3.1.1 Estimating T D Principal

15 Highsmith, J. 2009. Agile Project Management: Creating Innovative Products , Addison-Wesley.

 TD : { TDprincipal , TDinterest }

Work to be done, to
remove the debt

Loss of productivity,
every time part of the system is changed

 In hours

2. Literature overview

- 22 -

Measuring only principal for existing debt in the system differs by approach from estimating
both TD parameters. Static software source code at least allows us to estimate the amount of
principal based on actual counts of detectable structural problems. [2]
that principal amount of debt can be calculated using formula:

TDprincipal = N must-­fix problems x t time required to fix x C cost for fixing a problem

But considering that usually in big software systems it never happens that all defects and

constant evolving of codebase makes precise counting all the points that need to be done at
least debatable.

In the research [41] authors combined two diverse techniques for identifying debt in the
system. They asked different team members developers, tester, manager about parts of the
system that contain most debt and also applied code analysis tools to the codebase of their
product. Debt in the system was investigated on several layers, mostly corresponding to
domains introduced by Philippe Kruchten [4]
documentation, testing and one different - usability.

Results show that TD knowledge is dispersed and perceived differently by different
stakeholders each participant named different modules where he expected to have most
debt. It was also found that code analysis tools show good correlation with spots identified by
people. But as tools
can only support the identification of defect and design debt in the project, but not other types
of debt that were found by developers. Unfortunately question of comparing several code
analysis tools on one codebase was not studied in this research.
This paper also contains estimation about how much time and effort it takes employees to
identify the debt occurrences it took participants between 50 minutes and 2
hours to identify and document the TD items for the given system. While answers about

2.3.2 Reported methods

2.3.2.1 SQ A L E method
Developed in France by Inspearit (formerly called DNV ITGS) SQALE method was intended
to measure and manage as objectively as possible the quality of source code that projects
deliver. The method was designed to be as generic as possible and is applicable to any kind of
language and any development methodology. SQALE method is open source and royalty
free. However deploying the method for large IT landscapes is a subject for commercial
expertise and also there are set of commercial tools using this method for calculations
(SonarQube, SQuORE, CodeQ).	

	

Initially defined in16 SQALE method uses quality models which is based on the ISO 9126
standard. Among include characteristics it has: testability, changeability, and reliability.
Specific metric of SQALE method is the so called remediation indices. By means of those
indices the amount of e ort is counted that is required to resolve non-conformities from the

16 J. Letouzey and T. Coq. The SQALE Analysis Model An analysis model compliant with the representation
condition for assessing the Quality of Software Source Code. VALID, 2010.

2. Literature overview

- 23 -

generic requirements of the quality sub-characteristics. Summing up lower level indices one
can get to a general amount of remediation e ort (per system or component). Remediation
e ort can also is an amount of TD in a system.
Among method limitations - there is no present.
Ideally, the remediation indices should be based on empirical data. Also a SQALE method
can only provide estimation of TD amount, but not TD interest parameter [42].

When implementing SQALE method it also requires association of quality parameters with
[10] a nonremediation function. It is used to quantify all resulting costs of the delivery of one
or more nonconformities, such as for example: costs of additional maintenance resources or
costs of additional noncompliance related resources (CPU or memory). In other words, the
nonremediation function estimates the penalty that the product owner might claim as
compensation for accepting violations.

2.3.2.2 SI G/T U ViT method
Developed by software consultancy company SIG based in Amsterdam, this method is main
part of subscription-based service for enterprise customers that provides regular automated
release code analysis.

This method is intended for the standardized
evaluation and certification of the technical
quality of the source code of software products.
The scope of its main metric [12] - evaluation
criteria is limited to the internal quality
characteristic of maintainability and its sub-
characteristics including: analyzability,
modifiability, testability, modularity and
reusability. Evaluation criteria defines 5 quality
levels for maintainability represented by a rating
from one to five stars. The quality characteristics
are determined by measuring a set of software
product properties. These properties include
following: volume, duplication, unit complexity,

unit size, unit interfacing, module coupling, component balance and component
independence.

2.3.2.3 C AST report
Researches in this report have
studied the density of coding
violations with classifying
them to several groups of
issues like: security,
performance, robustness, and
changeability of the code.
They also introduced several
levels of coding violations:
high, medium, and low
violations. Furthermore, the

F igure 4. M apping SI G/T U ViT method
charachteristics

F igure 5. C AST report resulting plot

2. Literature overview

- 24 -

assumption was made that only 50%, 25%, and 10% of the high, medium, and low violations
 [32].

The data in the report17 was extracted from the Appmarq benchmarking repository (source
codes of companies clients maintained by CAST), which contained 745 applications from
160 companies in 14 countries, comprising 365 million lines of code at the time of the
analysis.

In [22] researchers have conducted an investigation of TD-related parameters for almost 700
applications with total 357MLOC. The 18 which
analyzes an entire application using more than 1,200 rules to detect violations of good
architectural and coding practice. The technique include following steps:

 t build time to produce metadata metrics;
 those metrics then are sent to evaluation module, which applies set of 1200 quality

rules that can capture both bad coding practice and architectural miscounts;
 detected violations are grouped in several types and they are processed to form the

output metrics;
 metrics area grouped in following categories: robustness, performance efficiency,

security, transferability and changeability. They are based on ISO/IEC 9126,
however changed due to several reasons.

Each of the violations is weighted according to its severity level from low to high. In real

additional criteria - (% to be fixed) is introduced. It means that desired level of systems
quality change can be set up for example, 100% of high-severity violations and only 10%
of low-severity violations must be fixed to achieve significant results. By using this each
product owners and managers can set specific reduction targets based on strategic quality
priorities. Those measurements are references in the paper as estimations (estimation 1,
estimation 2, estimation 3), ranging from more conservative to best possible. Including all of
the above, the following formula for estimating TD principal is used:

TPDin hours high-­severity violations × (% to be fixed) × (average hours
medium-­severity violations × (% to be fixed) × (average

hours needed to fix)) +
low-­severity violations × (%to be fixed) × (average hours needed to fix))

As a result it was found that for JavaEE applications (which present up to 60% of analyzed
software modules) that :

 most TD is incurred in following categories: transferability, changeability and
robustness

 wide range of costs is presented: from $0.23 per LOC to $253.03 per LOC
This research gives a good insight not only for team willing to estimate the TD incurred in
existing codebase. It also provides good approach for project managers trying to set up a
communication with business using understandable criteria list and set of progress goals
estimates.

2.3.2.4 T echnical debt template

17 CAST worldwi
18 Application Intelligence Platform, web link : http://www.castsoftware.com/products/application-intelligence-
platform

http://www.castsoftware.com/products/application-intelligence-platform
http://www.castsoftware.com/products/application-intelligence-platform

2. Literature overview

- 25 -

An example of formalized
questionnaire form was proposed
in [7] for defining the properties of
each TD issue in the system. Each
occurrence id described by set of
meta-data parameters, such as
location of a shortcut in system
module and/or file, release index,
date added and employee details
and exact description of an issue.
Debt amount is captured by
estimating probability, interest and
principal of each issue.
Measurement of amount can be
done in hours or using more
indirect
Another option is to estimate debt value in hours, days, weeks or months for each issue.
This template was also used in [39] to collect feedback from product development team.
According to this paper it takes employees around 15 minutes to fill in each item. So
measuring debt spots across all the system can be quite time consuming in case of large
systems.

2.3.2.5 Open source projects

T echdebt.org
In 2013 open technical debt collaborative and open benchmarking dashboard was launched
on techdebt.org domain. The site aimed to provide several metrics regarding the technical
debt for a large panel of applications. The idea behind it was to present continuous results on
code quality of a wide range of open source projects using open-source plugin for Sonar. So
that developers could compare the quality of their code with hundreds of other projects from
the open source and software industry. Unfortunately now the website is unavailable.

Drupal C MS
Also an interesting research of technical debt incurred by open source CMS Drupal was
published in one of the blogs on this platform19. In it author analyses queries results to the
main repository, comparing amounts of reported issues, critical bugs and fixes in during the
development of expected new 8th version. As a result of fast incurring debt in the code
modules, the
can be released.

2.3.3 Tools used to estimate Technical debt
There are a lot currently available on the market proprietary and open source tools20 for static
analysis. They can be selected for specifically language or some provide set of language-

19 Web link : http://xjm.drupalgardens.com/blog/technical-debt-drupal-8-or-when-will-it-be-ready
20Web link : http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

F igure 6. T echnical debt template example

http://xjm.drupalgardens.com/blog/technical-debt-drupal-8-or-when-will-it-be-ready
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

2. Literature overview

- 26 -

specific parsers. Using ASA tools during the development is considered a good practice for
long time.

2.3.3.1 Dynamic code analysis
Typical dynamic code analyzers profile your system and monitor its health. Both execution
time and memory usage profilers, figuring out number of database transactions per request,
the average size of an user session object, etc. require the system to be under a load
comparable with the intended in production environment. Dynamic analysis tools often
instrument the code to add tracing of method calls, catching and notifying about exceptions,
and any other statistics they collect.

2.3.3.2 ASA tools
The basic principle is analyzing code structure without executing it. This approach is
generally used to find bugs or ensure conformance to coding guidelines. The classic example
is a compiler which finds lexical, syntactic and even some semantic mistakes.
Static code analysis provides following advantages:

 Full code coverage. Static analyzers check even those code fragments that get control
even very rarely while parts of code usually cannot be tested through other methods.

 Static analysis doesn't depend on the compiler that is used and the environment where
the compiled program will be executed helping to find hidden errors that can
otherwise reveal themselves only a few years later.

 ASA tools also can give recommendations on code formatting, even some static
analyzers can check if the code corresponds to the coding standards used across the
project

 Variety of metrics computation - a numerical value of some property of software or its
specifications. There are lots of various metrics that can be computed with the help of
certain tools.

Static analysis usually presents poor results regarding diagnosing memory leaks and
concurrency errors. The actual code execution is needed to detect such errors. Dynamic
analysis tools are more efficient way to detect those types of errors.
A static analysis often give so called false-positive - it means that the code can actually be
quite correct. So it takes a developer to understand if the analyzer points to a real error or it is
just a false positive.
While being super-fast analyzing hundreds lines of code per fractions of second automated
analysis tools don't find every issue, but rather search for common types of errors and flaws.

if the code has been implemented since it don't
understand how the logic is supposed to work. The source complexity also increases the
ASA demand on system resources - as they exponentially increase the potential paths to be
checked.

Researchers in [8] conducted several case studies against following groups of software
quality characteristics (selected from ISO standard): Functional suitability, Performance
efficiency and Maintainability. According to the results in all cases tools used (Resharper and
FindBugs) point right places where the refactoring should be done to improve corresponding

statement is made that ASA should be used to target specific sites in the software to decrease
TD interest.
Using any solution that provides metrics differentiating logical parts of the project (files,
modules or bigger blocks) can give insights to the team

http://en.wikipedia.org/wiki/Software_metric
http://www.viva64.com/en/a/0045/

2. Literature overview

- 27 -

2.3.3.3 Specific solutions
A. DebtFlag
Is a model application developed in [6] which is implemented in a Eclipse IDE plugin
accompanied with web-application UI. By getting access to development environment it
captures TD in set of recorded related to specific parts of SUD. Each note has a set of
attributes such as description, time and date, author etc. A DebtFlag element is a link between
a technical debt observation and an implementation part defined by the technique. For
example a package, a class or a method in object-oriented technologies. Currently
targeted to the Java environment. DebtFlag facilitates knowledge about the class and module
dependencies to produce an overall map of existing TD issues in the system. Threshold level
and a set of other parameters are used to limit the dependency propagation model. By doing
so tool implements so called micromanagement of TD for the team, on the level of each
developer, by maintaining the presentation of existing issues or TID (Technical Debt Items).
Each TDI has the following events: create, modify, resolve handling the lifecycle of
records. Among its features authors name:

 Documenting the real project code structure of emerging TD - developers can track
changes of TD amount and can make better decisions (ex: not to rely on too
underdeveloped parts of code with large TD incurred)

 All debt records are maintained manually that gives more accurate and targeted
detail level. Whether the TD is intentional or inherited from previous stages of project
development better reasoning of future steps can be made.

Those features are also the limitations the project has in its current stage human time
resources are consumed on enumeration of issues and no additional derivative logic base on
code analysis can be implemented.

B Resharper21, FindBugs22 and others
Those tools mentioned in [23] can be used for analyzing software code for producing metrics
that can point out TD spots. -level TD investigating solution. By applying
large sets of code quality rules (code smells) overall indexes on code quality are calculated.

FindBugs is a byte code analyzer only targeted for Java code, it scans source code for
possible bugs, applying bug patterns23. First software release was developed by
the University of Maryland. is List of found bugs is a ranked list on a 20-point scale. The
lower the number, the more impactful could be the bug. Sometimes FindBugs is used in a
combination with PMD (also ASA tool) cursory check on best practices.
It can be also included in a form of ItelijIDEA or NetBeans plugin.

2.3.3.4 Sonar Qube (formerly Sonar)

This platform is one of the most popular world known solutions for enterprise software
quality measurement. It contains parsers for 20+ different languages, and a plugin-based
enhancement system.
Many dashboards with key metrics are available out of the box. And also possibilities to
extend core functionality by using a plugin systems are available. Sonar applies wide set of

21 Web link: http://www.jetbrains.com/resharper/features/code_analysis.html
22 Web link: http://en.wikipedia.org/wiki/FindBugs
23 Web link: http://findbugs.sourceforge.net/factSheet.html

http://www.jetbrains.com/resharper/features/code_analysis.html
http://en.wikipedia.org/wiki/FindBugs
http://findbugs.sourceforge.net/factSheet.html

2. Literature overview

- 28 -

software quality heuristics like code
duplications, coding standards violations, lacks
of test coverage, potential bugs spots, module
complexity etc. As part of its analyzers, Sonar
core uses tools to find coding rules violations
(PMD, Checkstyle), detect potential bugs
(Findbugs) and measure coverage by unit tests
(Cobertura, Clover). But what makes Sonar
truly unique is Squid, its own code analyzer that
not only parses source code but also byte code
and mixes the results. It can be considered as
high-level project analyzer. Sonar has a flexible
architecture that consists of three main
components:
1) A set of source code analyzers that are
grouped in a Maven plugin and are triggered on
demand. The analyzers use configuration
stored in the database. Although Sonar relies
on Maven to run analysis, it is capable to
analyze Maven and non-Maven projects.
2) A database to not only persist the results of
the analysis, the projects and global
configuration but also to store historical data
for analysis.
3) reporting tool to display code quality
dashboards (web interface) on projects, hunt for defects, check history of changes and to
configure analysis.

When analysis is run through a Maven plugin, Sonar can also be launched in continuous
integration environments. While some researchers report Sonar TD metrics calculator to
result unbelievably huge, digits [34
quality metrics.
In another case study research [5], authors describing implementation of application working
with MS Exchange Server in 2006-2008. Developer team has made a decision of
implementing WebDAV protocol in 2006 already knowing that newer version MS Exchange
2007 will not be compatible with it. This was done with intent to shorten time to the market.
Indeed target was reached - first version was deployed to customers in 2007. Later the same
year industry started little by little migrating their systems into newly released MS Exchange
2007. This created a gap in functionality that had to be fixed by implementing new version
support, which was done. Sufficient efforts were taken to rewrite some application parts.
Authors used unified code count metrics on each release step to estimate the amount of
efforts needed form the teams to overcome previously wrong decisions. This paper provided
a good modeling approach of how wrongly estimated amount of incurred TD significantly
influenced the costs of forgoing development.

2.2.2 Code Q Quality Investment24

24 Web link: http://codeq-invest.org/

F igure 8. Sonar Qube dashboards view

F igure 7. Sonar Qube metr ics presentation

F igure 9. CodeQ quality investment schema

http://codeq-invest.org/

2. Literature overview

- 29 -

This methodology was not widely described
and can be classified as experimental or
derivative from SQALE. CodeQ tries to
connect directly software quality and financial
investment approach.
While the SQ part relies on SQALE method,
the other parts tries to determine which
problems should be fixed to gain an

immediate productivity advantage.
First step is to define quality requirements (e.g. code coverage should be greater than 80%)
and estimate how long it would take to fix the violation of such a requirement. Next the costs
estimation needed - how much is will cost if we to leave the violation untouched.
Remediation costs and the latter the non-remediation costs are include. A profit is derived
from those two measurements - the time/money that can be saved when the violation is
fixed.
Such an approach brings reporting IT debts even closer to business language level. Team and
product owners can think in terms of ROI and profits when discussing internal software
quality.

2.4	
 	
 Architectural	
 technical	
 debt	

What is architecture
According to ISO/IEC 42010 architecture is fundamental concepts or properties of a system
in its environment embodied in its elements, relationships and in the principles of its design
and evolution.
Referring back to scheme by Philippe Kruchten (Figure 2) architecture quality has almost no

developmen That is why also
proper architecture planning and architecture rework are often misguided. This can be
another point why is that TD at the architectural level it is less researched until now.

When significant architectural change is needed, small, local refactoring efforts cannot
compensate for the lack of a coherent system-wide architecture. In the context of large-scale,
long-term projects, there is distinction between code-level and architecture-level abstractions,
especially when it comes to relating these to a global concept such as debt [25].

In the case study research [4] analysis of development process was performed. Given system
- DRNEP26 was developed primarily at the University of British Columbia, with collaborators
in various parts of the world. System architecture consisted of core and distributed simulator
modules. Authors considered 2 different architectural approaches and hence 2 various
development paths:

1) First called deliver soon, this approach assumed incremental addition of new modules,
each time adding various ad hoc adaptors and translators for them to fit communicate
with core.

26 Disaster response network-Enabled Platform

F igure 10. CodeQ schema

2. Literature overview

- 30 -

2) Second, targeted to reduce rework and enable compatibility was in developing
canonical data model, and using an ESB27

Development process was analyzed on a period of 4 releases. Initially choosing 1st lane took
less time to implement and implementation costs were lower that for the 2nd one. But from
one release to another implementation costs for deliver soon approach tend to stay the same
high or even grow, compared with second approach where initial cost where relatively high
but later were kept on the same low level with zero rework costs.
As a result by 4th release cumulative cost release cost of 1st solution became 55% higher
comparing with architecture-wise implementation. Comparing those two paths gives a good
insight into the challenge of balancing rapid deployment and long-term value and a value of
architecture in dealing with technical debt.
Dependency diagrams for both cases are presented in Fig.9 it can be seen that 2nd one is
also much easier to modify and to understand for people outside the project managers and
new developers joining the team for example. Dependency analysis showed following
numbers to compare: 94 vs 116.

F igure 11. Dependency diagrams for 2 different architecture approaches [4]

This research clearly shows the value of the delivered features compared with the impact of
rework costs. Architectural debt can be insensibly incurred by the project later negatively
affecting the agility of development process. This should be taken into account by
stakeholders in decision-making related to delivering a product.

2.5	
 Approaches	
 to	
 management	
 technical	
 debt	
 	

2.5.1 Introduction
Technical Debt is a metaphor, which is helpful in two cases: while thinking about how to deal
with design problems, and also - how to communicate that thinking to the involved
stakeholders.
In business dictionary28 ge - The organization and
coordination of the activities of a business in order to achieve defined objectives.
Management is often included as a factor of production along with machines, materials, and
money Applying this to a certain process management
can be described as organization and coordination of the activities related to this process to
comply with set up objectives.

27 Enterprise service bus
28 Web link: http://www.businessdictionary.com/definition/management.html

http://www.businessdictionary.com/definition/management.html

2. Literature overview

- 31 -

For example in the world of finance and banking debt can only be valid when it is
rationalized. The debt investment returns value faster than the negative interest rate taken
from the debt over a short time.
An example for rationalized reasons to choose for debt could be to strategically shorten time
to market for the proposition expecting to generate revenue (over time) exceeding the debt
taken including interest. Not rationalizing the debt choice introduces the risk your debt
strategy turns into a vicious circle increasing the debt and can ultimately leads to bankruptcy.
Literally any activity taken that does not result in added value now or in the future has
nothing to do with debt; this is simply cost and must be seen as waste.

The above example illustrates taking debt can take positive effects as well as negative. It also
clarifies it would be wise to manage debt. Technical debt works alike the above example.
Technical debt should therefore only be taken if it is proved it pays off in a short time.
Therefore technical debt should only be taken for a short time as interest rates grow for the
time the debt is taken.

Historically technical debt measurements and reasoning across the industry tended to focus
more on programming aspects of software delivery and left out full software development
lifecycle.
Each type of TD can be managed and monitored using different tools and approaches.
Focusing on managing each type of software debt simplifies creation of overall strategy that
promotes hostile perspective.

To provide effective management one needs to collect reliable information. Hence from the
perspective of technical debt management, the goal of identifying and measuring technical
debt is to facilitate decision making [31]. From this point one can see two management
approaches that will be discussed further:

1) process management;
2) portfolio management.

From time perspective as well there can be short-term and strategic TD-related decisions. The
technical debt concept is gaining traction as a way to focus on the long-term management of
accidental complexities created by short-term compromises [25]. The same point is supported
by Robert L. Nord et all. in [4] stating that technical debt management is about navigating a
path that considers both value and cost, to focus on overall return on investment over the
lifespan of the product.

One of the questions for long-term and big projects and is how to establish TD awareness and
continuous management. In other words - how to TD can be made more visible for all
involved parties.

2.5.2 TD process management
Business departments have to govern the processes based on positive outcomes that can
obtained. Since the TD metaphor was introduced, there are several key points were described
by the IT community to convince management that the changes will help the company:

 Better architecture will allow the team to add new features more quickly;

2. Literature overview

- 32 -

 Demonstrate that by continuing along the current path (architecture, development)
they're putting themselves into a corner and the price to get back on the effective
track can be extremely high.

 Providing examples of changes that are very expensive to make in the current system,
but which would be simple and cheap with a better design;

 Keeping track of time spent maintaining legacy code vs. adding saleable features.
This can also be a Help them explain to existing and future customers that while the
existing system was pretty good, the new, modernized architecture will allow many
great new improvements, better reliability, and so forth.

 Mitigate the risk associated with the changes you propose. Managers are risk averse,
and sweeping changes to an existing system seem inherently risky.

 Prioritize modernization of the various components according to cost and benefit, and
make sure that management agrees with your priorities.

 Track the progress of the modernization effort. Show benefits as soon as you
reasonably can, but remind all parties that there's more work to do.

2.5.3 TD portfolio management
The research [23] provides another angle on management issues related to TD. Taking
financial way of perceiving TD Ken Power proposes using financial Real Option29s definition

(whether business unit or entire firm) has a finite amount of (work hours) capacity to invest in
its overall product development efforts. And if the team during initial stages of the project is
only targeted on implementing new features this hence gives excellent results in short-term
perspective. While on the scale of several releases one can see that TD pay-off activities will
become more and more valuable Many teams fail to
invest adequately in managing and reducing technical debt. Not a lot of details of case study

-to date development approaches based on
Scrum, Kanban, XP. For those kinds of teams implementing efficient TD management is
especially valuable because the backlog tend to contain only user-stories without cases
related TD identification and removal [4].
But the concept should not be taken too far away from the initial definition not to create a
paper monster which is far from real work processes taking place. As Steve McConnell states
in his interview30 - I have had the experience of software companies taking the metaphor too
far, saying for example that they would like to track their technical debt on their balance
sheet as a numeric value. The technical debt concept is a house of cards: the numbers we are
using to represent technical debt are only estimates on how much path A would take versus
path B. Some organizations are good at calculating this estimate, but others are fair, at best.
Looking at the foundation of this house of cards and understanding what the technical debt
notion means, I think that it is a helpful concept to start a discussion rather than giving out
specific numbers and

29
account real options can greatly - definition from Investopedia:
http://www.investopedia.com/terms/r/realoption.asp
30 Web link: http://www.ontechnicaldebt.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt/

http://www.investopedia.com/terms/r/realoption.asp
http://www.ontechnicaldebt.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt/

2. Literature overview

- 33 -

2.5.4 TD ownership
Calculation of incur -assets can be converted to countable amount
of money. Since then an important question is who in the business structure of the company
taking responsibility for the technical debt taken for this or that solution. This should
influence budgeting planning in a way that bad resources could be allocated to eliminate
costly TD parts as soon as possible.

Usually it is assumed when the company is not too big and departments structure is not very
diverse then the development department takes this responsibility. As they are who have
mandate to decide what approach to take. But in case when the company is bigger and
products are hence more complicated it can also happened that debt is created and distributed
across several departments. Consider the following example:

 Business department pushes the developers to speed up the process according to
marketing-related deadlines

 Product development department uses fast-and-dirty solutions, and shortcuts. They
probably implement not optimal and costly solutions to deliver another version of
product as soon as possible. Afterwards they need to switch to next planned targets
while the debt is taken here.

 Maintenance department later as a result has to deal with low quality code and
architecture for a long time and lacks sufficient resources for that (the debt has to be
paid here)

Scattering financial responsibility over several departments where TCO costs for a solution
are being managed by different stakeholders (business owner, IT, development department,
operational party, management) and incentives tend to defuse insight on TCO. Financial
responsibility and accountability of one only party for chosen technical solution details. This
party should have the proper mandate to take upon that responsibility so it can be taken

But then there comes a point that a proper and reliable TD measurement and communication
tool must be implemented.

2.5.5 Approach by JL. Letouzey
Jean-Louis Letouzey31 proposes the following 7-steps approach:

1. Define what creates TD in your systems
2. Define how to calculate TD in your systems
3. Set goals at organization and/or project level
4. Monitor TD against goals
5. Compare TD across applications, versions, projects, 3rd party contractors
6. Analyze your existing TD (age, location, impact)
7. Set pay down goals and prioritize them

 into technical decision making and

vice-versa.

31 Jean-Louis Letouzey, The SQALE method: Meaningful insights into your Technical Debt, Web link
http://www.slideshare.net/Letouzey/the-sqale-method-meaningful-insights-into-your-technical-debt . Another even simpler to remember
approach was formulated out of word debt: Discover, Estimate, Break Down and Task & Track.

http://www.slideshare.net/Letouzey/the-sqale-method-meaningful-insights-into-your-technical-debt

2. Literature overview

- 34 -

all decisions made in this context are business decisions. However, businesses have been
flying blind for a long time when it comes to technical debt. The metaphor therefore helps the
business and technical staff have a concrete and open conversation about the technical path to
follow that will make the most sense for the business.

2.5.7 Other techniques
One can find other approaches towards facilitating better TD tracking and introducing general
awareness about the existing debt.
Utilizing defect tracking system
One of the options described [16] TD is captured and tracked via defect tracking system.
Each time a debt is incurred, the tasks needed to pay off that debt are entered into the system
along with an estimated effort and schedule. The debt backlog is then tracked, and any
unresolved debt more than 90 days old is treated as critical.
For another company [16] IT debt listing is included as part of its Scrum product backlog,
with similar estimates of effort required to pay off each debt. In this approach also a size of
defects is regulated by following principle - if the shortcut the developer is considering taking
is too minor to add to the debt-service defect list/product backlog, then , it's too minor to

not to take that shortcut.

3. Research design

- 35 -

Chapter	
 3.Research	
 design	

This chapter describes the steps of the research and summarizes the approaches and methods we used to
build the model.

3.1	
 Introduction	

After literature analysis the following steps were preformed:

1. Defining the techniques that can be used to build the model (Part 3.2)
2. Describing the rules according to which the model can be adjusted (Part 3.3)
3. Model description (described in Chapter 4)
4. Applying the model collecting data (described in Chapter 5)

3.2	
 Defining	
 the	
 techniques	

Among several techniques that are used in software quality studies to build reliable metrics adjusted to
specific conditions include the goal question metric (GQM) approach [13].

3.2.1 GQM
For defining the model application approach the Goal Question Metric approach was chosen. GQM is a top-
down approach when researcher first defines top-level requirements goals, then follows set of questions
and metrics to measure them.

A bottom-up approach will not work in our case because there are many observable characteristics in IT
systems (e.g., time, number of defects, complexity, lines of code, severity of failures, effort, productivity,
defect density), but which metrics one uses and how one interprets them it is not clear without the
appropriate models and goals to define the context.

Due to the way that the project was developing GQM was applied in reversed order
were later retrofitted using this method. Thus, GQM was not so much used for constructing the model but
for validating that it was well-constructed.

3. Research design

- 36 -

About G Q M
The Goal Question Metric approach is based upon the assumption that for an organization to measure in a
purposeful way it must first specify the goals for itself and its projects, then it must trace those goals to the
data that are intended to define those goals operationally, and finally provide a framework for interpreting
the data with respect to the stated goals. Thus it is important to make clear, at least in general terms, what
informational needs the organization has, so that these needs for information can be quantified whenever
possible, and the quantified information can be analyzed to whether or not the goals are achieved[13].

F igure 12. G Q M approach schema

For existing 3 layers
 Goal is defined for an object, for a variety of reasons, with respect to various models of quality, from

various points of view and relative to a particular environment.
 Set of questions is used to define models of the object of study and then focuses on that object to

characterize the assessment or achievement of a specific goal.
 M etrics, based on the models, is associated with every question in order to answer it in a measurable

way.

One can use following steps to implement the approach:
1. Develop a set of corporate, division and project business goals and associated measurement goals

for productivity and quality
2. Generate questions (based on models) that define those goals as completely as possible in a

quantifiable way
3. Specify the measures needed to be collected to answer those questions and track process and product

conformance to the goals
4. Develop mechanisms for data collection
5. Collect, validate and analyze the data in real time to provide feedback to projects for corrective

action
6. Analyze the data in a post mortem fashion to assess conformance to the goals and to make

recommendations for future improvements

3.2.2 Technical debt template
Each issue is described by a set of characteristics derived from TD template [7]. We have additionally
modified it to fit our local requirements. And also we added type of debt by intention (see M Fowler
quadrant) as a part of metadata.

http://en.wikipedia.org/wiki/Productivity
http://en.wikipedia.org/wiki/Quality_(business)
http://en.wikipedia.org/wiki/Corrective_action
http://en.wikipedia.org/wiki/Corrective_action

3. Research design

- 37 -

3.2.3 Technical debt taxonomy
As there are various approaches to classifying TD (in more details it was described in Chapter 2) issues. For
our model we decided to combine several of them.

1. Type of debt by system layer (by P. Kruchten [26])
2. Category within each system layer (TOGAF)

3.2.3 Sonar metrics
As we have code-level TD as one of the domains in our model we decided to collect data no that using Sonar

3.2.4 Paretto approach
decision to apply 20/80 principle. This was done by

using it in both dimensions:
1) Amount of systems for which technical debt that was measured. We have selected 5 systems out of

more than 100 applications based on professional opinion of the practitioners who expect those to be
most impactful in terms of variety of data collected and checking model feasibility.

2) Decreasing amount of ATD subcategories that were derived from TOGAF. We picked 11 most
valuable out of 34 based on professional opinion of the practitioners.

3.3	
 Model	
 application	
 rules	

Model we have defined contains several points that need to be adjusted according to requirements of the
research and local conditions. We have developed the following guide for customizing the model before
actually applying it for gathering data.

Table 5. Stages of customizing the model before applying

T itle Description Examples and sources
1 Select T D

domains
Model in its initial state is targeted to
capture all domains of technical debt. But
it can be customized to leave only relevant
ones depending on the focus of the
project where it will be used.

Available list [26] :
1. Architecture
2. Documentation
3. Testing
4. Code
5. Technological gap

2 Adjust
categories

For each of the selected high level
domains perform additional categorization
providing case-specific taxonomy. This
will form the TD landscape that will be
investigated.
For each group prioritization may be
needed in case if the taxonomy tends to be
too wide and complicated. First level
impact issues can be checked as a priority
others will follow.

2.1 Architectural Depending on what methodology is used
in company categories could be derived

Available list:
 TOGAF

3. Research design

- 38 -

from them Zachman EF
 FEA
 See others37

2.2 Documentation Enlist what types of documentation are
used in company. Include also the ones
that needed but not in place yet.

Available list see model taxonomy

2.3 Testing Enlist what types of testing are used in
company. Consult the employees who take
care of testing - about specific problems
and critical points that are missing.

Available list see model taxonomy

2.4 Code Select a tool for detecting code-level debt
 structural violations, code smells,

complexity etc.

Available list:
1. Sonar
2. Resharper
3. FindBugs
4. Subscription services by SIG,

CAST, etc.

3 Adjust T D
template

Initial template [60] contained 6 fields. In
initial view of our model we have 8 fields.
One should think carefully what indicators
he/she wants to capture for each TD issue.

TD principal and TD interest estimation is
expected to be done in hours. Due to the
fact that it is hard to estimate it so
precisely the following scale of relative
times can be used:
Hours Days Weeks - Months

Obligatory fields:
 TD principal estimation
 TD interest estimation
 Date added
 System name
 Functional part or module

Optional fields:
 Employee name/id
 Type of debt (from TD

quadrant)
 System owner
 Issue description

4 Tool for
collecting
data

This can be done by several ways,
depending on complexity of taxonomy.

Available options:
1. Using advanced Excel sheet
2. In form of online survey
3. Special TD dashboard

5 How-to
manual for
data
collection

colleagues who will be adding information
into this TD database. Depending on the
complexity of the taxonomy and fields in
TD template it can be quite simple or
rather complex.
Measure the time on how long it can take
to fill in the form for one person. Be sure
to allocate sufficient time in employees
schedule.

Manual from current paper can be
used as a basement [see Appendix]

37 Web link: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html

3. Research design

- 39 -

6 Allocate
systems list
and
participants
list

If there is sufficient amount of employees

strongly recommended to have overlap. In
a way that several participants provide
feedback on the same system this will
help to highlight all possible problem
spots.

Participants can be assigned to specific TD
domain according their specialization.

For example testers should fill in the
part about test coverage on selected
systems, not answering questions on
architecture.

As a result of the aforementioned steps one should have following deliverables:

1. Tailored model taxonomy and issue template
2. Accessible tool for collecting data
3. Research participants (both employees and systems) listing and planning

4. Model description

- 40 -

Chapter	
 4.	
 Model	
 description	
 	

This part of the paper is devoted to model description. It shows the model we have developed, what are the
constituent parts and why the decisions were made on each step of the research.

4.1	
 Introduction	

The model itself consists of the following building blocks:

1. A taxonomy of technical debt types and subtypes
2. A template for recording technical debt items that occur in a specific system
3. Guidelines for estimating the size of technical debt items
4. A tool for calculating and aggregating technical debt items

Each of those model elements will be described in this chapter. An overview of the model is presented in
Figure 12 below.

F igure 13. General model view

4. Model description

- 41 -

4.2	
 Model	
 parts	

We will describe the various parts of the model, starting on the left-hand side.

4.2.1 TD taxonomy
Developed taxonomy (Fig. 3) presents all technical debt categories defined in current model version. The
five major debt types from Philippe Kruchten TD model are used in [26]. Each block contains terms and a
definitions list that were intended to provide common language for discussion for project stakeholders:

 Researchers working on overall TD identification and measurement
 Practitioners, specialists in one of the investigated areas (testers, developers, architects etc.)
 Product owners and business representatives

Each TD category is supplemented with additional point domain-specific types. This is planned to be an
extendable item that will contain metrics that can be valuable for specific domain that company operates in.
List of domain-specific types and its impact is be defined though cooperation with local practitioners.
Full schema of TD taxonomy developed is presented in Appendix 1.

F igure 14. T D categories taxonomy

Information on definitions was collected referring to acknowledged scientific papers (IEEE, BSC) as well as
industrial standards and approaches (ISO, TOFAG, SWEBOK).
A rchitectural debt
Supporting methodology for defining ATD categories was chosen according to a EA framework which was
used in the company which is gs that are described in
TOGAF for four layers of system architecture: Business architecture, Data architecture, Application
architecture and Technology architecture.
4 subcategories of ATD are decomposed into following list of subjects according to TOGAF project
implementation guidelines. Applicability of each of them is still a question that needs to be investigated.
Later stakeholders can estimate amount of TD per subtype.
We used TOGAF as a backbone because of several factors:

 internally for several years so it is a common language for employee
stakeholders architects, project managers, developers, testers, etc. TOGAF is a basement of ABN AMRO
application reference document, which provides a model architecture approaches for structuring applications
and providing principles, policies and standards that govern its components.

4. Model description

- 42 -

T O G A F framework is acknowledged by professional community as a high quality product. The
framework was initially developed US Department of Defense and was called TAFIM38. Later
OpenGroup39 reworked it partly
and improved constantly. The latest version is TOGAF 9.1 that was released on 1 December 2011. All the
framework descriptions and schemas are open source which makes it possible for any company to apply it
for its architecture without incurring significant licensing costs.
Documentation and testing
Initially types and definition from ISO/IEC 26515:2011 and SWEBOK were used. Later the list was
adjusted according to techniques list and problems employees (testers, architects, developers) identified in
specific domains during preliminary interviews.
Code level
It was planned that Sonar will be used as ASA tool for collecting data con code-level debt. According to the
model, results on code level TD will be filled in by metrics obtained from Sonar tool. This will add practical
value considering one of the targets of the project to identify spots with maximum TD load.
However at during implementation of Sonar on one of the models smaller application in IB team
experienced technical difficulties. So for now results on Sonar analysis of codebase of IB systems is not
included into the scope of the current thesis paper.
T echnological gap
Collection of artifacts that involve usage of outdated libraries applications and frameworks. This category of
debt is different from others by its nature. Other categories basically present listing of features that are
involved in to software systems development and maintenance accompanies with their status (documents
absence, poor development, good state). Estimation guidelines are used to convert status of the item into
practical hours-measured value.
While TG items serve as a collection of cases on different layers of the systems architecture that describe
outdated technologies that are used.
In current state of the model we outlined several than subtypes of technological gap items. Some of them are
the following:

1. Server side: Java codebase issues
2. Server side: Application server version issues
3. Client side: Javascript/CSS codebase issues

The relative impact of each of technological gap categories is still a question for further investigation.
There is awareness present in software development community about the existence of such a factor as
passive aging of systems. It means that systems that were built according to latest s approaches at one time
can become outdated and incur sufficient amount of debt several years later. Methods to measure this effect
numerically and provide effective reaction are still to be investigated.

38 Web link: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html#tag_38_11
39 The Open Group is a global consortium more with than 400 member organizations, that enables the achievement of business
objectives through IT standards. Web link : http://www.opengroup.org/aboutus

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html#tag_38_11
http://www.opengroup.org/aboutus

4. Model description

- 43 -

4.2.2 Item description
Our research into how should item description look like we started from technical debt template [7]. We
have enhanced it with fields that will contain specific details that would be needed for future analysis of the
results in context of project requirements. For example the Meta data field - that will contain all the

group
of parameters that are presented in Table 1.

Table 6. Extended T D measurement template

Name Description Source Units
1 TD principal Contains TD principal measurement Practitioner

feedback
hours

2 TD additional cost Contains TD interest measurement Practitioner
feedback

hours

3 Occurrences

Number of cases when code was
edited per year, actually payments on
captured TD

Documents
analysis

number

4 Probability

Represents amount of debt per year
that is unexpectedly paid

Multiplication of 2)
and 3)

hours

5 Generic Debt Type Derived from TD quadrant Expertise typed
6 Generic Debt

Status
Describes Accepted Expertise typed

7 Meta data Field containing information about
date added, author, systems owner,
functional area, language

Expertise text

Further on, considering details of technical implementation we have reworked the extended template and
added fields representing taxonomy categories as well as more meta data fields. In a final Microsoft Excel
table that was used for data gathering we had 19 columns. Category titles and groups description is presented
in Table 2.

Table 7. Item description fields in model used

F ields Description
1. Debt ID
2. A rtefact Name*
3. Debt Description*
4. A rtefact Type*
5. Functional A rea*

General information system name and its functional
categorisation.

6. T echnical Debt Domain
7. T echnical Debt Sub domain
8. T echnical Debt - Category

Debt item categorisation according to used TD taxonomy

9. User Added*
10. Debt Type
11. Debt Status
12. System Language*

Debt type and categorisation; item reference in ABN AMRO
systems structure both on technical and business level.

4. Model description

- 44 -

13. System Name*
14. System Business Owner*
15. System I T Owner*
16. Debt (hours)
17. Additional Cost (hours)
18. Occurrences (per year)
19. Probability /(hours)

Details of debt calculation digital parameters of captured debt in
the artefacts

Fields marked with asterisk (*) were removed or anonymised due to security regulations in ABN AMRO.
Codes used in those fields are random and do not relate to any internal names of components.

4.2.3 Estimation guidelines
For each debt category definitions of deliverables are derived from TOGAF standard definitions (Appendix
2). Each deliverable in TOGAF methodology serves as a summary of the development step activity. For
future usage it helps to develop new systems with reducing duplication and other negative effects of bad
architecture. It also provides base for next step of architecture development.
For each category we have 3 types of activities: creating, updating and modifying. Each activity has different
estimated time due to difference in activities and expertise needed to perform this action.
For example creating a document takes most time because it involves the such activities as observing the
existing systems profiles, investigating associated artifacts and communication with stakeholders about
implementation details, functionality, etc. and formalizing the gathered information in a form of a
deliverable.

Estimation guidelines can be called one of the central concepts of the developed method. Because they are a
proving means to convert perceived project status into measurable amount in hours. One of the main tracks
for future method improvement is to them unambitious and also probably define commonly happening
occasions in the architecture and define how a participant should act in each case.
Estimation guidelines we re based on the expertise of practitioners. Some of the Practitioners that are
working on the IB projects were also the participants in method evaluation survey (part 6.2.2). Considering
their education level, professional experience and experience with system utilized in ABN AMRO especially
we concluded that this can serve a sufficient foundation for first data collection round.

4.2.4 Calculating and aggregating tool
Reasoning about available options for technical implementation possibilities we considered the following
options:

1. Microsoft Office Excel sheet with validation rules and pivot tables;
2. Questionnaire or survey (paper or web-based);
3. Specific TD dashboard web application.

Due to time limitations and possible current stage of the project we have chosen option 1, implemented in
current research:

4. Model description

- 45 -

	

4.3	
 Model	
 discussion	

Communication with practitioners at A BN A M R O
We had several meetings with local practitioners in different domains: testing dept. representative,
developers, architects. Meeting consisted of initial project presentation, explanation of the term and its
structure and influence on overall process. Later interviewees were asked to give feedback. Feedback
included 2 types of information: details about specific procedures used in the company and identifying
directly some cases where it was obviously occurrences of technical debt.

Table 8. Examples of T D issues at A BN A M R O

T D domain Issue
T echnological gap items Usage of outdated Java version

Usage of outdated WebSphere version
Usage of outdated STRUTS version
Usage of outdated front end library

T esting domain Insufficient amount of unit tests
Lack of automated test

A rchitecture level debt Localized tables with migration jobs
Not used business configuration objects

5. Application of the model

- 46 -

Chapter	
 5.	
 Application	
 of	
 the	
 model	

This chapter describes the case study data collected during the research. First it goes through theoretical
findings and later presents data on systems that was discovered.

5.1	
 Introduction	

Planned research structure included the following steps:
Model development and adjustments
This stage included constructing the model, communication with practitioners to adjust the debt taxonomy.
We used TD template as a basement and GQM method to refine the model fields.
T echnical implementation and data collection
The model was implemented as a file with data structure (debt taxonomy, TD item fields) and validation to
collect measurements. We also defined the estimation guidelines that were used by participants to estimate
the amount of debt incurred in each case. Employees were filling in the model file for system case by hand.
As is was the first attempt to collect data we selected 5 systems and 3 employees for data collection.
Results analysis and feedback questionnaire
After data is collected analysis of data was carried on. This will included creating a pivot table to present TD
distribution across systems, debt types and architectural layers. This also helped us to identify the spots with
highest amount of TD interest and principal. Later the questionnaire was sent to data collection participants
to measure the feasibility of the model.
Below each of the research steps is described with results obtained.

5.2	
 GQM	
 results	

After several iterations the following goals were formulated. Then they were connected with appropriate
questions while those in turn formed connection to metric used in the model.
Goals

1. Identify are types of TD we should measure
2. Save costs on most often changed components
3. Identify owners of TD issues across systems
4. Identify domains with debt incurred by time of creation / old architecture/code

Questions
1. What EA methodology is used?
2. What is amount of hours of debt associated with each component
3. How often they are updated?
4. Who is the owner of the component?
5. What part of documentation is missing?
6. How often is documentation for modules/components is updated?
7. What are documentation types used for projects?
8. What automated testing tools do we use?
9. How are organized types of testing that are used?
10. Who is in charge for creating test cases?
11. How big is duplication of code in current code base?

5. Application of the model

- 47 -

12. How many lines of code is our average class/method? What are the longest classes/methods?
13. Do we rely on outdated frameworks, libraries, applications?

M etrics
1. Component description (meta-data)
2. Issue description using TD template (meta-data)
3. Group of metrics: architecture and subcategories (TOGAF + prioritization)
4. Group of metrics: code (SQALE + security)
5. Group of metrics: documentation (according to documentation types used)
6. Group of metrics: testing (according to test layers used + automation)
7. List of technological gap items

In graphical representation GQM results are presented on Figure 14.

F igure 15. Goal question metr ic results

5.3	
 Technical	
 implementation	

Currently model measurement tool implementation done as a Microsoft Office Excel sheet with pivots table.
This gives fast and easy tool for both collecting and presenting data. Later model can be re-written as a web-
application.
Manual for the subjects participating in technical debt data collection

-30 minutes.

1. Go through the presentation of the project (attached) to get the idea of TD terminology. Check that
you clearly see the difference between TD principal and TD interest.

2. Open model Excel file (attached)
a.

b. Fill in the columns in meta-data section with data related to the system.

5. Application of the model

- 48 -

c. Go through the sub-categories of architectural, test or documentation debt and fill in the cells
in that row. Definitions of categories are in the attached reference document.

d. For each category, please add descriptive categorization in terms of was this debt taken by
occasion (reckless) or by intent (inadvertent).

e. Estimating amount of debt can be done using following scale: fixing the issue or going on
without fixing it will take you or your colleagues: hours/days/weeks/months.

 Participants of the measurement
Participants of the questionnaire were the same practitioners who added data about technical debt amount
during the main phase of the research. As it can be seen in table below they all are experienced professionals
in the architecture and development area.

Table 9. Employees and systems measured

Employees
/ Systems X X X040 X X X001 X X X509 X X X245 X X X001WS JA V A

B A T C H

PA2778 X
JI0108 X X X

W A2126 X X X X

L ist of systems
Systems researched were built during in house projects run by 3rd party contracting companies (IBM, TCS).
Investigated systems present different layers of the IB infrastructure. They all are written in Java (JEE)as
main programming language. They also utilize SQL for some parts. Ages of those systems vary from 8.5 to
2 years. Mode details about those systems are summarized in Table 10.
Though around 10-12 of business applications used by IB are planned to be retired in the next 2-3 years,
none of the investigated systems fits this category. Total size of all IB systems is approximately 1881
KLOC.

Table 10. Researched systems characteristics

Systems System size, L O C System age, years
X X X001 26668 2.5
X X X 040 2003 8
X X X 001WS 61788 4
X X X245 7656 2
X X X 509 17569 3

5.4	
 Data	
 collected	
 on	
 technical	
 debt	

Results table (Table 10) describes summary on TD for 5 researched systems. All of them act on different
layers of IT infrastructure in IB systems at ABN AMRO. The detailed TD model filled in is presented in

5. Application of the model

- 49 -

Appendix 5. Data collected was only related to architectural TD categories. This presents the focus of the
current paper with is architectural technical debt estimation. It also presents smaller amount of data itself but
we find it sufficient enough to proceed with initial model evaluation. Another reason was that estimation
guidelines for other types of debt (Testing, Documentation) are still in discussion and formalization phase.
As it was described in the TD taxonomy we have selected 11 subcategories for ATD. While in the final table
one can see smaller amount of subcategories (4 to 7) in each systems description. This is because 5 studied
systems present different functional layers. As TOGAF categories describe different levels of EA the not all
the 11 ATD subcategories can be applied to each system. If we consider all the lines of data collected (see
Appendix 5), not filtering for specific system all of the 11 ATD subcategories are present there.

Table 10. Summary on collected T D data

System Debt
principal

Change occurrence
per year , avg.

Debt interest
per year

Debt categories
described

X X X001 84 4 57,8 4
X X X040 22,4 1 5,8 6
X X X001WS 37,5 2 11,25 4
X X X245 11,9 2 11,3 4
X X X509 188,9 2 108,3 7
JA V A B A T C H 40 3 18 1

General notes

we came to the conclusion that on system architecture level any decision is motivated and stakeholders are
aware of it. Also all debt data was described column. This is because

later TD data collection model can become a part of regular metrics and then this field can contain more
detailed information on project TD evolution.

Results for researched systems
The most TD principal and interest incurred is by system XXX509, having 188,9 and 108,3 hours
respectively. It can be seen that this item contains the most ATD categories involved into the description 7.
This fact could influence the amount of calculated debt for this system since the model calculations was not
really adjusted before and this specific system was not cross-measured by different employees.

While the lowest rate is at XXX001WS system, which is 11,9 and 11,3 hours respectively. Also the date of
initial release of the system can have a big impact on the amount of registered architectural debt for
relatively older systems there can be better state of the required architectural documentation provided than it
is for newly developed ones.

If we consider the ratio between the TD principal and interest incurred by different systems we can see that
the largest factor will be (i.e. worst in terms of) in case of XXX245 1. While the amounts of

5. Application of the model

- 50 -

debt are almost the smallest in absolute numbers, this means that in relative amounts, debt of this system is
the most expensive yearly a interest payments are 97% (11.3/11.9 x 100%). Such types of debt in systems
should be eliminated in first place in case if this system is not planned to be retired in reasonable time.
If we compare those results with XXX040 for which this metric has the lowest value of 0.26. One of the
reasons can be that the number of change occurrence per year is lowest, estimated as 1. This case presents a
type of debt that should be identified as such and tracked but can be left intact due to its low costs.

As the XXX001 system has the greatest number of change occurrence per year, which is 4. This lead to the
fact that having quite small amounts of additional costs per category lead to high amount of yearly interest.

F igure 16. Researched systems compared

Analyzing properties of the systems, such as their attribution according to TOGAF layers or systems size or
the amount of debt incurred we could not derive any more direct regularities. One of the reasons for that
could be relatively small amount of data collected.
On Figure 16 is presented a diagram showing comparable size of the systems and their technical debt items
attribution, referencing TOGAF methodology categories.
Here we would like to recap our conclusions for investigated systems, considering their technical parameters
and measured TD amounts for them:

 System XXX040 is a smallest by its codebase and is probably modular
once in a year, which is good. While the system itself is relatively old 8 years. This occasion should
not be treated as urgent TD that must be eliminated.

 XXX245 is the system that has the biggest TD percentage rate, and is relatively small, and new, so
this inconsistency should be probably fixed first.

 For systems XXX001WS, XXX001 that have the biggest sizes in the measured group and also are
second in size of TD percentage rate. Those points should be fixed in second turn.

 XXX509 has average amount in all parameters but it has biggest amount of absolute debt in hours.

Comparing 2 employees answers about the same systems

5. Application of the model

- 51 -

For 2 systems (XXX001 and XXX040) we had 2 different employees adding in data into the model. This
intersection helped us to compare the results and evaluate model feasibility. Considering our amount of data
collected we had only 2 differences in results provided by different participants.
1) When estimating TD data for system XXX001 participants estimated debt associated with Use Case
diagram differently in 3 times 72 hours against 24.
The reason behind is that one of the participants had a wrong approach to estimating amount of use cases for
each business function. In this case there were 3 separate blocks with similar functionality, and there had to

Referring back to the method we used, such inconsistency could be fixed in future by having more detailed
description in estimation guidelines.
2) In XXX040 case we had different participants choosing different categories to describe incurred debt.
While one respondent selected Logical Data Model, another used Process F low diagram and Role / System
Matrix.
In this case the participants approach was different because of difference in their perception of what
deliverable should have been used was different. Talking about the method, it could be improved to avoid
such collisions next time to by providing pre-filled architectural categories to the participants - to strictly
define what participants should measure.

Virtual components
While collecting data we came to understanding that model can also contain high-lev
components. Such an approach can provide a way to capture TD in architecture on different levels while the
system or a module is not physically one piece of software.
in the list of researched systems. Is not a real system but a virtual aggregation of system modules and
components. It can be referenced as a backend platform providing services needed for normal functioning of
front office systems.

Other notes
During data collection we had another example of unreasonable widening the technical debt metaphor.
According to internal regulations at ABN AMRO all the technical documents are to be written in English.
But one of the participants while examining available information discovered that some of them related to
one of the systems are written in Dutch. For him being a non-native Dutch speaker it will take reasonably
longer to appropriately identify current document status and propose possibly existing debt. So he asked
whether this should be called a debt of some type. Sharing the position of Robert Martin40 towards bad code,
this can be qualified as violation of adopted work practice (compare with badly written code in code level
metrics for example) that just needs to be fixed but not a specific type of debt captured by system.

40 Blog post, 09/22/2009, Web link: https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

5. Application of the model

- 52 -

5.5	
 Evaluation	
 of	
 proposed	
 method	

For evaluating the model we used additional feedback questionnaire for all employees who were
participating in data collections on architectural technical debt. More details on the participants employees is
presented in 5.2. Evaluation questionnaire consisted of 3 logical parts :

1.
2. Questions to measure model feasibility
3. Comments of data collection process and general feedback

Full listing of results in presented in the Appendix 5 and 6. Below results discussion is presented.

Model feasibility measurement
For discussing model feasibility we had the following questions list:

4. If the research question about is technical debt measurement, to what degree do you think using the
proposed model will enhance your job performance?

5. To what degree do you think using this model for estimating TD would be easy to use?41
6. To what degree do you think this model is consistent with the existing values, needs and experience

related to TD awareness ?
7. If the research question is about technical debt measurement, to what degree do you think you would

use this model in future?
8. If the research question is about technical debt measurement, to what degree do you think other

colleagues of yours would use this model?
9. To what degree the model is able to measure the amount of TD incurred by system?

For each of the questions respondent could give one of the following answers: Very low degree (1), Low
degree (2) , Average (3) , High degree (4) , Very High degree (5) . The results collected are presented on
Figure 4.

41 Question text in Q5 was reformulated to fit other questions approach. Original version was: To what degree do you think using
this model for estimating TD would require much effort to use?

5. Application of the model

- 53 -

F igure 17. F eedback questionnaire results

As it is presented on Figure 15, mostly participants answers rated the method they used quite high.
The model is stated to be especially good in sense of expected fulfilling the requirements on collecting data
on TD in the systems (every respondent rated it 4 out of 5). It also can be easily speeded across their
colleagues (every respondent rated it 4 out of 5).

The lowest perceptive mark (3, 3 and 4 out of 5) was graded the ability of the model to capture all the TD
incurred by systems. We see this as a result of the fact the model still does not include several parts
describing other valuable domains of TD in the system.

Usage of a tool also implies understanding of its principles, so we wanted to know about difficulties
participants had. That was done by next question - Q11: Did you have any difficulties while understanding
the model or filling in the measurement table? The following responses were collected:

 Not much;
 I had to refer to the category definitions in repository. I was able to understand it with detail text
 Not really

As we can conclude from given answers, that for employees that are experienced enough with systems that
are measured model and the task was well understandable. However interaction with model during adding
the data may involve additional activities for searching and obtaining needed reference materials.

Comments on data collection process

Q10: Do you think there are aspects that
are missing in this model? The following responses were collected:

 There should be some way of capturing the relationship between different categories. E.g; an
incorrect Use case diagram (business architecture) can influence technical debt in testing;

 We only calculated for architectural debt. Will be more clear if others are also done.

1

2

3

4

5

Q4 Q5 Q6 Q7 Q8 Q9

WA2126

JI0108

PA2778

5. Application of the model

- 54 -

Participants replies collected on abovementioned question directly support the point that we discovered
during initial stages of our research. This issue with inner relationships between different categories or
possible duplication was also mentioned by other practitioners in the company before. On current stage we
have no clear solution how this influence can be eliminated for data collected. We see two possible ways to
solve such type of inconsistency on further stages of model development:

 As on empirical level, the elimination can be implemented as a set of rules that would be a part of
the model method, the same as estimation guidelines. Such rules could be directly stating which
types of debt should be measured in what categories, with complete ignoring of the same issue in
others.

 Considering TD amounts calculation, the registration of existing interrelations could be done by
introducing specific coefficients that must be added to model calculation formulas.

Both approaches however require significantly more volume of data collected from various systems.

As the model in the future could be used as a method to measure the TD status of other large information
systems in the company and would involve more participants we wanted to estimate how much time it takes
to work with it on a current stage. The question we had was - Q12: Please estimate how much time it took
you to fill in the measurement table (in total or per component)?
Findings on that questions differ for each of the participants, quite noticeably. Those data is presented in
Table 10. For better presenting our point we have added also the details about the experience of each of the
participants in the area and specifically within company projects.

Table 111. Comparing time for filling in the model with data

Question / Employee W A2126 JI0108 PA2778

How long have you been working in ICT sector? 13 7 6
How long have you been working at ABN AMRO
projects? 8 7 3

Please estimate how much time it took you to fill in the
measurement table (in total or per component) 0.5 1 2

As it can be see seen in the Table 10 there is a direct relationship between years of experience of the
employee and the time needed to fill in the data about the systems. Even considering considerably small
dataset we have now this tendency supports common sense expectations on the questions.

As it was discussed in 6.2.1, we have compared results collected from different participants about the same
system and found that they differ. Also to check the model consistency, we have asked the following
question in our feedback questionnaire: Q13: Please give your comments on following results of comparing
data collection: There are 50% changes in list of TD categories describing XXX040 component. We got the
following answers:

 Employees have personal different professional experience
 Employees have personal view on TD amount estimation

5. Application of the model

- 55 -

We think that those replies also support the results of the previous question. Experience of the employee
plays a significant role in correct estimation

 the estimation guidelines as well as the other empirical parts of the
method must be adjusted and made more formal.

5.6	
 Threats	
 to	
 validity	

During the model development we came across several points that should be considered as things to be
solved in future work.

Duplication on functional level is not measured
On code-level metrics duplication of code blocks occurrences is defined as one of the factors leading to
worse code quality hence technical debt. For code level, however such occasions can be measured and
evaluated automatically.
On architectural level there also can be the case of 2 or more systems or system parts having similar
functionalities up to some degree. Such cases can be common for cases with wide and diverse IT systems in
companies. But investigation of such occurrence of duplication in each case has to be investigated in person.
The currently developed model does not include any approaches towards such duplication evaluation.
One of the ways to handle this could be interviewing stakeholders from different functional domains. Also
detailed analysis of all existing components catalogues/portfolios can help to enumerate such issues and
measure occurrences.

Only A T D domain data collected
 In current research only architectural types of technical debt were investigated. Obtaining additional set of
results by investigating the same systems from other angles code and testing debt, could give a more
detailed picture on the general debt load of the those systems.
This was not discovered because of 2 reasons: first, we could not include this because of the time limitations
of the project. Second comparing those results would require much more work on a model level how one
could properly compare such different pointers.

Estimation of amount of hours
As it was stated earlier, estimation guidelines are a very valuable part of the developed method. They
directly influence the number of registered debt in each of the categories. As such change of expected
amount of hours to fix in estimation guidelines can change the results collected.
We propose that estimation guidelines that need to be adjusted every time when the new larger data set will
be collected.

Appropriate systems selection
In the IB domain there are up to 150 systems and modules present. For our measurement we have selected 5
systems. This selection is based on professional experience of the participated researchers and their
expectations that those systems expected to have biggest debt rates.

5. Application of the model

- 56 -

which is discussed in 5.2) makes us to conclude that selection was done in proper way considering research
setting.

Correct A T D categories selection
For our measurement we have selected 11 ATD categories of 34 that are present in the TOGAF standard for
this stage. This selection is based fully on professional experience of the participated researchers.
This choice had to be done due to setting of the project, but we agree that this can lead to underestimation of
the total debt presence in the researched systems. Question of what should be chosen for estimation - another
subset of categories or full list of ATD categories is still open. The ways to solve it require more data to
analyze and possible more professional feedback expertise.

Too little participants during data collection
During data collection we had only 3 employees as participants for data collection on debt amount
estimation. We have to agree that larger number of participants could give us better data to discuss validity
and feasibility of the model and its parts. Unfortunately this was dictated by the setting of the project on its
current level of development. In future to make the method more mature it will be needed to implement a
larger scale of data collection to be able to apply not only logical reasoning but also statistical data analysis
to see other drawbacks in the model.

Correct participants selection
On data collection stage all the participants were representatives of one 3rd party contracting organization
that worked with ABN AMRO project for several years already.
There can be an argument that the chosen ones are too closely related and may have close point of view on

projects (Table 10) makes us think that this is mature enough to have reliable results in this measurement as
separate respondents.

6. Conclusions

- 57 -

Chapter	
 6.	
 Conclusions	

In this chapter we summarize the findings of the research and provide answers to the research
questions. Additionally, we discuss method limitations and later indicate possible areas for
future work.

6.1	
 Summary	

First we answer the research questions formulated in the beginning of the paper.

R Q1: What is architectural technical debt, how can it be measured, and how does it
related to other T D measurement techniques?
In this research we have presented a definition of architectural technical debt in the form of a
taxonomy, based on literature including TOGAF. Further we have defined the method
including item template and estimation guidelines for measuring technical debt and recording
technical debt items in a structured manner. In our comprehension of architectural technical

four other main types of technical debt.

R Q2: How can A T D best be measured in enterprise I T systems such as those of A BN
A M R O?
It was presented that the measurement model that we developed can be applied to the
enterprise systems of ABN AMRO by providing guidelines and measurement tools for the
practitioners that are familiar with the systems. By this we can state that model described in
current paper can be one of the comprehensive methods for investigating TD in enterprise IT
systems.

R Q3: How feasible, useful and reliable are the proposed measurements of A T D in
practice?

1. Feasibility was shown by applying the model to 5 systems representing different parts

2. Usability was shown on the basis of the perception of practitioners. Practitioners find
the proposed model and the approach easily understandable, and compatible with their
professional industry experience.

3. Reliability was confirmed by comparing the results of measurements of the same
system by different participants.

However initially the method itself should be assessed and adjusted based on wider data set.
This will help to avoid subjectivity of measurements, lack of coverage for specific details and
possible mismatches.

6.2	
 Discussion	

Summing up the results of the evaluation we can highlight several points:
1. Model structure and concepts on which it is based are logical and easy to understand for
practitioners;

6. Conclusions

- 58 -

2. Model has a good relation to practitioners area of expertise and contains references to the
architecture concepts that are used by practitioners in everyday work;
3. There are some occurrences of possible ambiguity in estimation guidelines that can lead to
different estimation results by different practitioners;
4. TD estimation process participants should have a considerable experience with the systems
they are going to measure, otherwise the results can be much less reliable;
5. Currently developed model covers only architectural part of technical debt. Better
feasibility discussion can be done when more data on other layers will be collected.

6.3	
 Contributions	

Summary
We have started from investigating the theoretical state of the art approaches using literature
sources. Then we developed the model that can be used to capture the technical debt
occurrences in the IT systems of the company.

We started from describing overall technical debt types. Then we added more detailed
categorization of each debt type. For more deep investigation the domain of architectural debt
was chosen. TOGAF was used as a backbone methodology for providing ATD
categorization. When the practical tool was outlined we have selected several most valuable
systems for initial investigation.

Data about TD incurred for each system was collected using the TD model, where
practitioners could fill in the details about estimated amount of debt interest and principal for
each debt category for the system. In total we have collected data about architectural
technical debt in 5 IB systems.

To evaluate the developed approach we've conducted a
attitude to the model they had to use. In this survey we asked them to measure the usefulness
of the model for them, their projects in future and their colleagues. The results of the
evaluation are described in block 5.4.

The results obtained can be used as a basis for performing a refinement of the method -
developing a more usable tool and dashboard, adjusting estimation guidelines, providing
additional methodological recommendations. After that the method can be adjusted and
applied for the other systems in the IB environment to collect and analyze this information.

T echnical debt management proceedings
Our research is an initial step in implementing the TD management method in ABN AMRO.
Theoretical approaches on TD management were described in Chapter 2.5. Considering the
practical steps we see the following principles that should be implemented:

1. Define debt interest threshold. So that after assessment, the management could have a
clear picture which cases should be the first targets for rework.

6. Conclusions

- 59 -

2. Visualization of the data collected is one of the means to give the topic more attention
3. Describe managerial mechanisms to establish a feedback loop between data on

technical debt collected and actions that must be performed for most scored systems.
4. Implement a plan do check act approach - when measurements are done on a regular

basis. Also the calculation formula has to be reviewed regularly based on the results
obtained.

F easibility of the method
Considering all of the above we conclude that the proposed method can be a starting point for
developing IT debt management methodology. However current state should be improved in
many aspects (see limitations part) to become a really practical methodology.

First, much more data needs to be collected to see other effects and misconceptions of the
method. A larger number of participants and wider range of investigated systems can provide
data for statistical analysis that can highlight drawbacks of the methodology.

Special attention should be put into estimation guidelines because if their extreme value for
obtaining numerical data on technical debt in the system.

6.4	
 Limitations	

In the subsection, we discuss the method limitations we identified during our research.

Model completeness
During this research the model for identifying different types of TD was developed. It was
based on several theoretical approaches derived from scientific literature. This model follows
requirements of the practical TD investigation project at ABN AMRO. It also implements
some of the state of the art approaches of current technical debt landscape. But considering

be in other organizations we must state that some of the aspects are not covered by it.

Subjectivity of measurements
Several key points of the research (estimation guidelines, data on TD items itself) are based
on expert opinions of participants of measurements and project team which can be subjective.
Estimations done by participants are highly dependent on their professional experience and
on familiarity with the systems researched. Answers given by the consultants are highly
dependent. Nevertheless we implemented evaluation feedback questionnaire and also cross-
measurement of one system by two different participants. This was done to evaluate model
feasibility and to provide input for further improvements of the model.

Model extendibility
Considering a question whether the model developed can be applied outside the context of
current case studies. We think that for systems comparable by size and types the model can
be a good start in reasoning for other practitioners while building their own TD capturing

6. Conclusions

- 60 -

strategy. Direct model applying without adjustments in list of debt types/categories and
methodology used will not give the correct results.
As we got the sufficient feedback from participants involved in the research this makes us
conclude that adoption level of the model in future can be expected to be good. Valuable
point is that participants must have a sufficient level
planning to measure and technical topic of EA and software quality assessment. If we
consider expanding the method to apply for the whole company IT systems landscape our
point is that - there can be no one person/team who can measure all TD across all systems or
departments. Method application must be done by each group of stakeholders separately
based on common principles that are defining the model and estimation guidelines.

Usage of reliable instruments
This research utilized two instruments. First, goal question metric approach, to validate the
model defined based on reviewing literature on the topic. This retrofitting analysis presented
good results. Second, we added feedback questionnaire to see the perceived usefulness and
reliability of the method for the future development. This part also presented good results.

6.5	
 Future	
 work	

Following points should be first subjects for future method enhancement:

1. s IT landscape as
well as on other software modules. This will lead to collecting more data that can
provide better reasoning to see additional improvements that are need to be done in
the model. It also means involvement of more practitioners into the measurement
activities, this will also help to collect more professional feedback and additionally
improve the method.

2. Possible duplication of incurred debt in different categories. Research work need to be
done to figure out how this can be eliminated or at least reduced to an adequate level.

3. Improvement and broadening of estimation guidelines. This part of the method must
be researched against different layers of TD (testing, documentation, etc.) and also
proposed amounts of time could be corrected considering more data to analyse and
additional feedback from practitioners.

Literature list

- 61 -

Literature	
 list	

1 Distributed Agile, Agile T esting, and T echnical Debt

Raja Bavani, 2012 IEEE Software

2 Estimating the Size, Cost, and Types of T echnical Debt
Bill Curtis, Jay Sappidi, Alexandra Szynkarski, MTD 2012, Zurich, Switzerland

3 Towards a Model for Optimizing T echnical Debt in Software Products
Narayan Ramasubbu, Chris F. Kemerer; MTD 2013, San Francisco, CA, USA

4 In search of metric for managing architectural technical debt
Robert L. Nord, Ipek Ozkaya, Philippe Kruchten, Marco Gonzalez-Rojas, 2012 IEEE CS

5 T racking T echnical Debt An Exploratory Case Study
Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti et oth., 2011 27th IEEE
International Conference on Software Maintenance (ICSM)

6 DebtF lag: T echnical Debt Management with a Development Environment Integrated Tool
Johannes Holvitie, Ville Leppanen, MTD 2013, San Francisco, CA, USA

7 M easuring and monitoring technical debt
C. Seaman and Y. Guo, Advances in Computers, vol. 82, pp. 25 46, 2011

8 Using automatic static analysis to identify technical debt
Antonio Vetro, ICSE 2012, Zurich, Switzerland ACM Student Research Competition

9 Searching for Build Debt: Experiences Managing T echnical Debt at Google
 J. David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali, MTD 2012, Zurich,
Switzerland

10 Managing T echnical Debt with the SQ A L E M ethod
Jean-Louis Letouzey and Michel Ilkiewicz, 2012 IEEE Software

11 T echnical Debt as a M eaningful M etaphor for Code Quality
Israel Gat, 2012 IEEE Software

12 Evaluation C riteria T rusted Product Maintainability
Joost Visser, SIG/TÜViT, Version 6.1, Software Improvement Group, 2014

13 The goal question metric approach
Victor R. Basili1 Gianluigi Caldiera1 H. Dieter Rombach2

14 What Is the Value of Your Software?
Jelle de Groot, Ariadi Nugroho, Thomas Back, and Joost Visser, MTD 2012, Zurich, Switzerland

15 The WyCash portfolio management system
W. Cunningham, ACM SIGPLAN OOPS Messenger, vol. 4(2), pp. 29 30, 1993

Literature list

- 62 -

16 T echnical Debt
Web link: http://www.construx.com/10x_Software_Development/Technical_Debt/
2007, Steve McConnell

17
Vinay Krishna, Dr. Anirban Basu;

18 A Balancing A ct: What Software Practitioners Have to Say about T echnical Debt
Erin Lim, Nitin Taksande, Carolyn Seaman, 2012, IEEE Software

19 The SQ A L E M ethod for Evaluating T echnical Debt
Jean-Louis Letouzey, MTD 2012, Zurich, Switzerland

20 T echnical Debt
I. Gat, Cutter IT J., 2010

21 Release duration and enterprise agility
Daniel R Greening, IEEE CS, 2012

22 Estimating the Principal of an Application's T echnical Debt
Curtis, B.; Sappidi, J.; Szynkarski, A. Nov.-Dec. 2012 v.29 p.34-42, ISSN 0740-7459

23 Understanding the impact of technical debt on the capacity and velocity of team and
organizations
Ken Power, MTD 2013, CA USA

24 Practical considerations, challenges and requirements of tool-support for managing technical
debt
Davide Falessi, Michele A. Shaw, Forrest Shull et oth., 2013, CA USA

25 Managing T echnical debt in software-Reliant Systems
Nanette Brown, yuanfang Cai, Yuepu Guo et oth., 2010, ACM, New Mexico USA

26 T echnical Debt: from metaphor to theory and practice
Philippe Kruchten, Robert L.Nord , Ipek Ozkaya., 2012, IEEE Software

27 An Empirical Investigation of Modularity M etr ics for Indicating A rchitectural T echnical Debt
Zengyang Li, Peng Liang, Paris Avgeriou, Nicolas Guelfi et oth., 2014, ACM, France

28 Comparing four approaches for technical debt identification
Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn Seaman,
Forrest Shull. Software Qual J (2014) 22:403 426

29 A portfolio approach to technical debt management
Y. Guo and C. Seaman, Proceeding of the 2nd Workshop on Managing Te
pp. 31-34, 2011

30 Monitoring code quality and development activity by software maps
J. Bohnet and J. Dollner, in Proceedings of the 2nd Workshop on Managing Technical Debt. ACM,
2011, pp. 9 16.

Literature list

- 63 -

31 Using T echnical Debt Data in Decision Making: Potential Decision Approaches
Carolyn Seaman, Yuepu Guo; Clemente Izurieta; Yuanfang Cai; Nico Zazworka, Forrest Shull;
Antonio Vetrò

32 An empirical model of technical debt and interest
A. Nugroho, J. Visser, and T. Kuipers, in Proceeding of the 2nd International Workshop on Managing
Technical Debt. ACM, 2011, pp. 1 8

33 An exploration of technical debt
Edith Toma, Aybüke Auruma, Richard Vidgena; The Journal of Systems and Software 86 (2013)
1498 1516

34 A Threshold Based Approach to T echnical Debt
Robert J. Eisenberg, Lockheed-Martin

35 Prioritizing Design Debt Investment Opportunities
Nico Zazworka; Carolyn Seaman; Forrest Shull

36 M easuring A rchitecture Quality by Structure Plus H istory Analysis.
Robert Schwanke; Lu Xiao, Yuanfang Cai;
ICSE 2013, San Francisco, CA, USA Software Engineering in Practice

37 T echnical Debt from the Stakeholder Perspective
Ted Theodoropoulos; Mark Hofberg, CISA, CRISC; Daniel Kern, PhD

38 Managing T echnical Debt in Practice: An Indust r ial Report,
Clauirton A. Siebra; Graziela S. Tonin, Fabio Q. B. da Silva, Rebeka

20

39 A Case Study on E ffectively Identifying T echnical Debt
16, 2013, Porto de

Galinhas, PE, Brasil.

40 T echnical Debt Aggregation in E cosystems
John D. McGregor, J. Yates Monteith, and Jie Zhang; 2012 IEEE

41 O rganizing the T echnical Debt Landscape - Clemente Izurieta, Antonio Vetrò, Nico Zazworka,
Yuanfang Cai, Carolyn Seaman, Forrest Shull; MTD 2012, Zurich, Switzerland

42 The Squale Model A Practice-based Industrial Quality Model;
Karine Mordal-Manet, Françoise Balmas, Simon Denier, Stéphane Ducasse, Harald Wertz, Jannik
Laval

Appendixes

- 64 -

Appendixes	
 	

1. Model taxonomy

Appendixes

- 65 -

2. Taxonomy definitions

research.

Domain Subtype Definition Source Priority Examples

1. Architectural debt
Debt related to high-level technologies,
approaches, documents involved in system
development. Subcategories are derived from
outputs on several stages of TOGAF ADM cycle.

Business architecture

 Business goals
and objectives

This defines the ways in which a service
contributes to the achievement of a business
vision or strategy.

goals, objectives, and measures that they
support, allowing the enterprise to
understand which services contribute to
similar aspects of business performance.

what constitutes high performance for a
particular service.

1.2 2

 Use case
diagram

Relationships between consumers and
providers of business services.

sumed by actors
or other business services and the Business
Use-Case diagram
provides added richness in describing
business capability by illustrating how and
when that capability is used.

interaction between actors and their roles to
processes and functions.

-
case can evolve from the business level to
include data, application, and technology
details. Architectural business use-cases can
also be re-used in systems design work.

1.2 1

 Events diagram This depicts the relationship between events
and process.

- such as arrival of

or a point in time (e.g. end of fiscal quarter)
cause work and actions to be undertaken
within the business.
The Event Diagram is an Explorer type
diagram that shows Business Events and
the Business Processes that they trigger,
and also where the Business

1.3,
1.2

2

Appendixes

- 66 -

 Process flow
diagram

 1

 Business
Interaction
Matrix /
Functional
Decomposition

It shows on a single page the capabilities of
an organization that are relevant to the
consideration of an architecture.

organization from a functional perspective,
it is possible to quickly develop models of
what the organization does without being
dragged into extended debate on how the
organization does it.

1.2 1

 Business
functions
/services

 2

 Business roles 2

Data architecture

 Business data
model

 3

 Business data
model

 3

 Logical data
model

 1

 Data
management
process model

 3

 Data
interoperability

 2

 Data
Entity/Business
Function matrix

Relationships between systems (i.e.,
application components) and the data
entities that are accessed and updated by
them.

delete specific data entities that are
associated with them. For example, a CRM
application will create, read, update, and
delete customer entity information.

1.2 1

Application architecture

 Application
Portfolio
[Catalog]

Needed to identify and maintain a list of all
the applications in the enterprise. This list
helps to define the horizontal scope of
change initiatives that may impact
particular kinds of applications. An agreed
Application Portfolio allows a standard set
of applications to be defined and governed.
It contains the following meta-model
entities:

1.2 2

Appendixes

- 67 -

 Interface
catalog

 Scope and document the interfaces
between applications to enable the overall
dependencies between applications to be
scoped as early as possible. It contains the
following meta-model entities:

Component

application relationship

1.2 1

 Application/Org
anization matrix

Relationship between systems (i.e.,
application components) and organizational
units within the enterprise.

Component-Organization
Unit relationship is an important step as it
enables the following to take place:
 Assign usage of applications to the
organization units that perform business
functions

 Understand the application support
requirements of the business services and
processes carried out by an organization
unit

 Support the gap analysis and determine
whether any of the applications are missing
and as a result need to be created

 Define the application set used by a
particular organization unit

1.2 2

 Role/
Application
(System)
matrix

Relationship between systems (i.e.,
application components) and the business
roles that use them within the enterprise.

Component-Role relationship is an
important step as it enables the following to
take place:

 Assign usage of applications to the
specific roles in the organization

 Understand the application security
requirements of the business services and
processes supporting the function, and
check these are in line with current policy

 Support the gap analysis and determine
whether any of the applications are missing
and as a result need to be created

 Define the application set used by a
particular business role; essential in
any move to role-based computing

1.2 1

 Application/Fun
ction matrix

The purpose is to show relationship
between data entities and business functions

1.2 2

Appendixes

- 68 -

within the enterprise.
 Application
interaction
matrix

 2

 Implementation
guidelines

 2

 Implementation
specifications

See Implementation guidelines. 3

 Implementation
standards

 1

 Interoperability
requirements

 2

 IT Service
Management
requirements

 2

Technology architecture

 Technology
Standards
catalog

This documents the agreed standards for
technology across the enterprise covering
technologies, and versions, the technology
lifecycles, and the refresh cycles for the
technology. It contains the following meta-
model entities:

Component, Physical Technology
Component

1.2 1

 Technology
platforms and
their
decomposition

Depicts the technology platform that
supports the operations of the Information
Systems Architecture.

infrastructure platform and provides an
overview of the enterprise's technology
platform.

1.2 2

 Environment
and locations

Depicts which locations host which
applications

applications are used at which locations

business users typically interact with the
applications.

location of different deployment
environments
 including non-production environments,
such as development and pre-production.

1.2 1

 Processing
Diagram /
Expected
processing load
and distribution

Focuses on deployable units of
code/configuration and how these are
deployed onto the technology platform.

following:

1.2 1

Appendixes

- 69 -

 Which set of application components
need to be grouped to form a deployment
unit

 How one deployment unit
connects/interacts with another (LAN,
WAN, and the applicable protocols)

 How application configuration and usage
patterns generate load or capacity
requirements for different technology
components
 f
deployment units depends on separation
concerns of the presentation, business logic,
and data store layers and service-level
requirements of the components.

 Physical
(network)
communication
s

The purpose of this diagram is to show the
"as deployed" logical view of logical
application components in a distributed
network computing
environment.

reasons:
 Enable understanding of which

application is deployed where
 Establishing authorization, security, and

access to these technology components
 Understand the Technology Architecture

that support the applications during
problem resolution and troubleshooting

1.2 2

 Hardware and
network
specifications

 2

 Application[sys
tem]/Technolog
y matrix

The System/Technology matrix documents
the mapping of business systems to
technology platform.

 Logical/Physical Application
Components

 Services, Logical Technology
Components, and Physical
Technology Components

 Physical Technology Component realizes
Physical Application Component
relationships

1.2 2

Appendixes

- 70 -

3. Estimation guidelines

Domain,
debt category Guidelines for estimation debt principal Guidelines for

estimation of interest

1 BA,
Use Case diagram

The estimations are per business function.

For removing: (outdated use cases): 1 hour;
For adding: 4 hours;
Refer the Rest Contract Specifications for high
level scenarios.

For updating: 2 hours.

Interest is the hours spent
in discovering the
functionality offered as
part of the use case every
time this use case has to
be reused / changed or
new flow has to be added.

Interest will be incurred
on missing and incorrect
scenarios.
10% of (debt missing
scenarios + debt incorrect
scenarios)

2 BA, Process Flow
diagram

This will be applicable for BPM / long running
processes.

For removing: (outdated processes) 0.5 hours
per process
For adding:
For BPM, probably can be derived from
TIBCO designer or BPEL.
Can be based on the number of steps involved.
2 hours per 5 steps
For Java, this will have to be derived based on
design documents / code
4 hours per 5 steps
For updating: 2 hours per 5 steps

3 BA, Business Interaction
Matrix

Overview of service provider and consumer.
Facilitates service governance. Estimations
will be based on number of services.

For removing (outdated interactions): 0.5
hour per service
For adding / updating:
Additions or corrections can be made based on
contracts / configurations done (SSL MA),
design documents, other knowledge within the
teams (Change and Run)
2 hours per service

Interest is the hours spent
in discovering the services
offered every time a
service has to be reused /
changed or new flow has
to be added.

Interest will be incurred
on missing and incorrect
services.
20% of (missing services
+ incorrect services)

Appendixes

- 71 -

4 DA, Logical Data Model There is no enterprise data model within AAB
as of today. So, the below estimations are
being made per application / business function
as the data models are normally created /
maintained at this level.

For removing(outdated data models): 2 hours
per business function
For adding:
Refer the DDLs (table creation scripts). Some
relationships may be within the applications /
programs accessing the tables.
10 hours per business function
For updating: 3 hours per business function

5 DA,
Data Entity / Business

Function matrix

Overview of relationship between Data
Entities and Business functions.

For removing(outdated relationships): 1 hour
for 5 relationships
For adding / updating:
Refer design documents / application code for
deriving this relationship
2 hours for 5 relationships

6 AA, Interface Catalog Removal (outdated):
Need not be estimated for. Should be much
less.
Adding / updating existing interface
descriptions:
Can be derived from design documents.
1.5 hours per business service

0.25 hr. per business
service spent on
discovering the
interface not present
in the catalog

7 AA, Implementation
Standards

Non-conformance to standards will be the
major debt under this category.

For adding standards:
This type should not be captured as per
application.
For non-existent standards, adding standards is
a debt. This will be based on the platform for
which these standards are missing. There
should be standards for every single building
block in the SOA solution.
E.g.: portal, REST services, ESB, Service
implementation.

In case of non-conformance:
This will also be based on the platform /
building block involved.
Any non-compliance to standards will incur
heavy debts, mostly under the reckless type.

Appendixes

- 72 -

8 AA,
Role / System Matrix

Overview of relationship between Roles and
Systems.

For removing(outdated relationships): 1 hour
for 8 systems
For adding / updating:
Additions or corrections can be made based on
design documents, application configurations
(role task configurations), other knowledge
within the teams (Change and Run)
2 hours per 5 systems

9 TA, Technology
Standards Catalog

Like Implementation standards, the major debt
under this category will be non-compliance.

Adding standards:
This type should not be captured as per
application.
For creating completely new standards.
approx. 800hrs.
In case of non-conformance:
This will depend on the size of the business
function (function points for now).
1 hour for every 1 FP with non-conformance

10 TA, Processing Diagram The estimations will be per environment.
E.g.: Internet, GHIA, JAVABATCH, TIBCO

Adding diagrams: 24 hours;
Removing diagrams (outdated): 2 hours;
Updating diagrams: 8 hour.

11 TA, Environment and
locations

The estimations will be per environment.
E.g.: Internet, GHIA, JAVABATCH, TIBCO

Adding diagrams: 2 hours;
Removing diagrams (outdated):
NA. Should be very less
Updating diagrams: 1 hour.

4. Model data collection results

Following fields were eliminated:

1. Debt Type, Debt Status, TD domain
2. System Language, System Business Owner, System IT Owner

Appendixes

- 73 -

A rtefact
Name

A rtefact
Type

F .
area

T D -
subdo
main

T D -
Category

User
Added

System
Name

Debt,
hours

Add.
Cst,
hour

Occur
rence

p. year

Prob /
hours

1 XXX001 6. BAI 2L BA Use Case
diagram

WA2126 SYS01 72 6.8 4 27.2

2 XXX001 6. BAI 2L BA Business
Interaction
Matrix

WA2126 SYS01 34 6.8 4 27.2

3 XXX001 6. BAI 2L AA Interface
Catalog

WA2126 SYS01 25.5 4.25 4 17

4 XXX001 6. BAI 2L AA Role / System
Matrix

WA2126 SYS01 0.5 1 4 4

5 XXX001 6. BAI 2L BA Use Case
diagram

JI0108 SYS01 24 2.4 4 9.6

6 XXX001 6. BAI 2L BA Business
Interaction
Matrix

JI0108 SYS01 34 6.8 4 27.2

7 XXX001 6. BAI 2L AA Interface
Catalog

JI0108 SYS01 25.5 4.25 4 17

8 XXX001 6. BAI 2L AA Role / System
Matrix

JI0108 SYS01 0.5 1 4 4

9 XXX040 6. BAI 3iD BA Use Case
diagram

JI0108 SYS01 2 0 1 0

10 XXX040 6. BAI 3iD BA Business
Interaction
Matrix

JI0108 SYS01 2 0.5 1 0.5

11 XXX040 6. BAI 3iD DA Logical Data
Model

JI0108 SYS01 6 2 1 2

12 XXX040 6. BAI 3iD AA Implementation
Standards

JI0108 SYS01 16 4 1 4

13 XXX040 6. BAI 3iD BA Use Case
diagram

WA2126 SYS01 4 0.4 1 0.4

14 XXX040 6. BAI 3iD BA Process Flow
diagram

WA2126 SYS01 0 0 1 0

15 XXX040 6. BAI 3iD BA Business
Interaction
Matrix

WA2126 SYS01 2 0.4 1 0.4

16 XXX040 6. BAI 3iD AA Implementation
Standards

WA2126 SYS01 16 4 1 4

17 XXX040 6. BAI 3iD AA Role / System
Matrix

WA2126 SYS01 0.4 1 1 1

18 XXX001
WS

4. Services DA Data Entity /
Business
Function matrix

JI0108 SYS02 1

19 XXX001
WS

4. Services AA Interface
Catalog

JI0108 SYS02 19.5 3.25 1 3.25

20 XXX001
WS

4. Services AA Implementation
Standards

JI0108 SYS02 16 4 1 4

21 XXX001
WS

4. Services TA Environment
and locations

JI0108 SYS02 1 1 4 4

22 XXX245 4. Services 1P DA Data Entity /
Business
Function matrix

WA2126 SYS01 0.4 1 2 2

23 XXX245 4. Services 1P AA Interface
Catalog

WA2126 SYS01 1.5 0.25 2 0.5

Appendixes

- 74 -

24 XXX245 4. Services 1P BA Business
Interaction
Matrix

WA2126 SYS01 2 0.4 2 0.8

25 XXX245 4. Services 1P AA Implementation
Standards

WA2126 SYS03 8 4 2 8

26 XXX509 6. BAI BA Use Case
diagram

PA2778 SYS03 30 3 2 6

27 XXX509 6. BAI BA Process Flow
diagram

PA2778 SYS03 12 6 2 12

28 XXX509 6. BAI BA Business
Interaction
Matrix

PA2778 SYS03 4 0.4 2 0.8

29 XXX509 6. BAI DA Logical Data
Model

PA2778 SYS03 0 0 2 0

30 XXX509 6. BAI AA Interface
Catalog

PA2778 SYS03 22.5 3.75 2 7.5

31 XXX509 6. BAI AA Role / System
Matrix

PA2778 SYS03 0.4 1 2 2

32 XXX509 6. BAI AA Implementation
Standards

PA2778 SYS03 120 40 2 80

33 JAVA
BATCH

10.
Solution
Building

Block

4B AA Implementation
Standards

WA2126 SYS01 40 6 3 18

5. Model feedback questionnaire

Questions

Reply option

1. How long have you been working in ICT sector? Input number

2. What is your main activities in working time: development,
architecture, testing, support, technical design, management, other?

Choose up to 2 main activities

3. How long have you been working at ABN AMRO projects? Input number

4. If the research question about is technical debt measurement, to
what degree do you think using the proposed model will enhance
your job performance?

5. To what degree do you think using this model for estimating TD
would require much effort to use?

6. To what degree do you think this model is consistent with the
existing values, needs and experience related to TD awareness ?

7. If the research question is about technical debt measurement, to
what degree do you think you would use this model in future?

8. If the research question is about technical debt measurement, to
what degree do you think other colleagues of yours would use this
model?

9. To what degree the model is able to measure the amount of TD
incurred by system?

Choose one of the options:

 Very low degree
 Low degree
 Average
 High degree
 Very High degree

10. Do you think there are aspects that are missing in this model?

Input text

Appendixes

- 75 -

11. Did you have any difficulties while understanding the model or
filling in the measurement table?

Input text

12. Please estimate how much time it took you to fill in the
measurement table (in total or per component)

Input number

13. Please give your comments on following results of comparing data
collection:

 There are 50% changes in list of TD categories describing
XXX040 component.

 We found that estimation made by two different people
about two different components may be different by 2-3
times.

Choose one of the options:
 Model is ambiguous?
 Estimation guidelines are

not specific enough?
 Employees have personal

view on TD amount
estimation?

 Employees have personal
different professional
experience?

 Other

6. F eedback questionnaire results

Question
number

W A2126

JI0108

PA2778

1 13 7 6
2 architecture,

technical design
development, technical

design
development, testing

3 8 7 3
4 High degree High degree High degree
5 Low degree Average Average
6 High degree High degree High degree
7 High degree High degree High degree
8 High degree High degree High degree
9 High degree Average Average
10 There should be some way of capturing

the relationship between different
categories. For example an incorrect
Use case diagram (BA) can influence
technical debt in testing.

We only calculated for
architectural debt. It
will be more clear if
others are also done

11 Not much. I had to refer to the category
definitions in repository.

I was able to
understand it with
detail text

Not really

12 0.5 1 2
13 Employees have personal different

professional experience
Employees have
personal view on TD
amount estimation

--

