Measuring Architectural
Technical Debt

MASTER’S THESIS

submitted to the Faculty of Science
of Radboud University in Nijmegen
for the degree of
MASTER OF SCIENCE
in

INFORMATION SCIENCE

by

Michail Kuznetcov
born in Moscow, Russian Federation 1984

Radboud
ABN-AMRO s@st University
‘%”o,"me_(@é) Nij megen
ABN AMRO Bank N.V. Radboud University Nijmegen

Gustav Mahlerlaan 10 (1082 PP)
Amsterdam, the Netherlands
[www.abnamro.com|

Comeniuslaan 4 (6525 HP)
Nijmegen, the Netherlands

www.ru.nl

http://www.abnamro.com/
http://www.ru.nl/

Author: Michail Kuznetcov
Student number: s4340132

E-mail:[michail kuznetsov(@gmail.com|

Abstract
To develop the concept of technical debt in application to modernization of the
architecture of the large information systems, such as the host company of this
research, there is a need in modern measurement approach. Based on the state of
the art described in the scientific literature, we have developed a model which
aims to identify and quantify individual technical debt items.

The method itself includes a measurement model and accompanying estimation
guidelines. The model’s structure is based on several theoretical concepts in the
research area of technical debt. During the research we specifically focused on
architectural technical debt issues. We developed a taxonomy of types of debt
which included for the architectural level the enterprise architecture methodology
that was used by the company. Estimation guidelines were developed based on the
professional experience of the participants to provide the reference for estimating
each of the assessed types of debt.

Throughout the research we have collected data for several specifically chosen
systems within the host company’s IT landscape. Data was collected from the
company's employees using a specifically designed collection tool. During data
collection participants estimated the amounts of debt principal and interest
associated with each system against proposed debt categories.

To perform validation of the developed model we have studied the perception of
practitioners by using a feedback questionnaire. This helped us to assess
feasibility of the method and according to the results, the company’s practitioners
find the model and the approach in general useful, understandable, and compatible
with industry experience.

Keywords: technical debt, architectural debt, large information systems, TOGAF

University supervisor: Joost Visser, |j.visser@sig.eul

Company supervisor: Martin Paris, |martin.paris@nl.abnamro.com

mailto:michail.kuznetsov@gmail.com
mailto:j.visser@sig.eu
mailto:martin.paris@nl.abnamro.com

Acknowledgments

This thesis would not have seen the light without the help and support of a number of people. My
gratefulness for these people is simply inexpressible, below I would like to say personal thanks
to most of them.

First and foremost, I would like to thank my company supervisors and mentors Martin Paris and
Raghu Warrier for sharing their experience and time during practical part of the research. Their
constant availability, support and guidance were always helping me to achieve expected results.
Next person I would like to thank is Joost Visser from Radboud University Nijmegen, my
academic mentor, for sharing analytical approaches towards the research, and always giving
logical comments on my work.

Having an opportunity to do my thesis at such a large company with modern approaches towards
IT as ABN AMRO was an amazing final step in my education in Netherlands. And I would like
to say personal thanks to people who helped me on my way to start it — Ruth Koppenol, George
Jansen and Jan Robat. Being a part of such a professional team had a great impact on my
personal and professional skills.

Specifically I would like to thank ABN AMRO developers, testers and architects — Namrata Sen,
Jaap Teeuwen, Gert Faber, Stefan van Oss for giving their feedback, answering me with any
questions I had and providing me with relevant materials whenever I needed. Moreover, I would
also like to thank TCS employees — Kailas Parande and Megha Jindal who also participated in
the study and shared with me their valuable time.

I would like to thank my wife and my parents for their continuous support. Their presence in my
life was always an energy source for making ambitious steps in my life.

Contents

[Chapter 1. INtrOQUCHION.cveveereieieciecieeiie ettt 7
Lol TRESIS SCOPE .eeutieniieeitietieeiteeeite et et e ettt estte e bt esteeesbeensaesabeesseeesbeeaseeensaensseasseessseensaensseenseanssesnsaensseanns 7
1.2 Problem StAtIMENT.eeitiiiiriieieeieeitee ettt ettt et st b ettt se e bt eaeeas 7
1.3 RESEAICH QUESTION ..c.eviiiiiieiiieiie ettt ettt ettt ettt e te et et e e st e estaeseseanbeessaeensaessseenseenssesnsaenseeanne 9
1.4 DOCUMENE STIUCTUTEcouviiiiieiieiiteeiie ettt ettt ettt st ettt sb e st esbt e et esbeeeabeesaeeeabeenseesateenaeeeane 9

|Chapter 2. LItETALUIE OVEIVIEWutiieiiiieeitieeciteeetteeetteeeteeesateeessseeessseaessaa e sseesssseassaessssaesssaaesssesessseeensseesnssens 10

2.1 What 15 teChNICAl @Deouiiiiiiiiiiiieeeee ettt st ettt e 10
B B B =] 1) 2RSSR 10
2.1.2 DEIINITIONS ...vvieivieeiiieeetiee ettt e ettt e ettt e et e e eteeeebeeessseeesaseaeasseaassseeanssaeansseesssseesssseesssseesnsesensseeesseeennns 10
2.1.3 Technical debt iN PraCiCE......cccuiiiiiiieeiieeeiee ettt e et e et e e e taeeeaaeesaaeessbeeesaseeesaseeensseeennns 14
2.1.4 Layers of technical debt 0CCUITENCE 1N SYSLEIMSccuvieviieiieriieeiieiieeieeeee et eee et sere e e seve b e e 17
2.1.5 Literature reVIEW fINAINGSccvveeiiiiiiiiiieiieeie ettt ettt te et e bt e saeebeessaeesbeessseensaessseesseensnas 17

2.2 SOTIWATE QUALTLY ..ottt ettt ettt st b ettt s et st sb et et s be et 18
2.2.1 OVEIVIEW ..ttt ettt ettt ettt ettt sh et e a e e a e et e eat e see e bt enbeest e st enseseeesbeenseeneesseensesneesneentens 18
2.2.2 STANAATAS ...ttt b ettt b et h e bt et e et e bt e bt e st e bt enbeeneeeneenteas 18

2.3 Technical debt MEASUTEIMENTcc.eeiiiiiieeiiieiie ittt ettt et et e et e bt e beesabeebeessbeebeesabeenseesnseenseens 20
2.3.1 INEEOAUCTION ...ttt et sttt e e e bt e st e e bt e eabeesb b e eabeesbeeeabeesaees 20
2.3.2 Reported METhOAScoviiiiiiiiieee ettt ettt et st 22
2.3.3 Tools used to estimate Technical debtcociiiiiiiiiiiiii e 25

2.4 Architectural teChniCal debt..........c.ooiiiiiiiiii et 29

2.5 Approaches to management technical debt............cccuiieiiiiiiiiiiiiicee e 30
2.5.1 INEEOAUCTION ...ttt ettt ettt e et et e st et e e et e e seeeateessteenbeessbeenseenneeenseennnes 30
2.5.2 TD Process MANAZEIMENLcecueerureerueeriierieenireeteesteeteeeteenseesareeseeesseesseesareesteeesneesseesseessneenneenanes 31
2.5.3 TD portfolio MANAZEMENLcceeruiiriiiiieiieieeieriterte ettt sttt ettt st sbe et e sbe et eseesaeenneas 32
2.5.4 TD OWIEISIIP c..eviieiiieeciie ettt ettt ett e st e e st e e ste e e st eeesaeeessaaeansaaeessaeeessseessseeesnseesnsseesnnseennnns 33
2.5.5 Approach DY JL. LEOUZEYcccvieeiuiieiiiieeiieeeiie ettt e et e e stae e e eae e eaae e e e e e snseeesaseeessseeennseeennns 33
2.5.7 Other tECRNIGUESveieiiieeiiieeiee ettt e et e e et e e ste e e aeeesteeesaeeansaeeessaeeassseessseeessseesnsseesnsseennnns 34

|Chapter R Ao 1 o] 1 0 (1 ¥ 4 R 35

3T INEFOAUCTION 1.ttt ettt et a e e bt e s ab e e bt e e ab e e bt e e ab e e e beeenbeesbbeeabeesbeeenbeesseeanbeens 35

3.2 Defining the tECANIQUES.......cc.viiitiiiiieiieeie ettt ettt et e et et e s beessbeesbeessteesseesabeenseeseneenseens 35
0 (0)1 SRS 35
3.2.2 Technical debt teMPIALE........cccuiiiiiiiieiiieie ettt ettt ettt e et e iteebeesnbeenseens 36
3.2.3 Technical debt tAXONOMYcovuiiiiiiiiiieiieiie ettt ettt ettt et e st e et e sateesbeessaeenseessaeenseessseenseens 37
3.2.3 SONAL IMELIICS ..euveetenteeuteriterte ettt et st e et e et e e bt e bt e st e sb e e bt e st e ebe e bt eatesb e e bt estesbeebeeatesbeenbeenneebeenbesaeenne 37
3.2.4 Paretto QPPIOACKeoiiiiiiieiiecit ettt ettt ettt ettt et et e e b e e aae e beeeaeeenbeeesbeebeesaaeenbeensbeensaens 37

3.3 MOdel apPliCatiON TUIEScccueiiiieiiieiieeie ettt ettt e et esateebeessbeenbeessbeenseessbeenseessneenseens 37

[Chapter 4. Model deSCIIPHONvuuiurueeieieiiceceeeeietiseeetee ettt 40

4.1 INEEOAUCTION ..ttt ettt et e ettt e e et e et e e s heeeab e e sabeeabeeeabeembeessbeenbeesnseenbeesnneenbeans 40
i\ (o (<] B o 1 R PSPRRURRRPRP 41
4.2.1 T LAXOMNOMIYtiieiiieeiieeeiteeeiteesiteestteestteesiteeessteeessseeeasseeesseesnsseesnsseesssaeesssseessseeesnseesnnseesnnseesnnns 41
4.2.2 THEIM AESCIIPLION ...vvieeiieiiieeiieette ettt eteeetteeteeeeae e teeseteesseessseeseeesseenseeanseessesnsaensseanseessseensaensseenseensnes 43
4.2.3 EStimation GUIACIINESccccuiiiiiieiiiieiiieeeiteeeiee st e et eesiteeeseaeeestaeeesaeeeaaeesssaeessseeesssesessseeesseennnns 44
4.2.4 Calculating and aggregating toO].........c..iiiiuiiiiiieeciie ettt e e st e e sre e e eeae e e eaeeenens 44

4.3 MOAC] QISCUSSIONuvieiiieiiiieiieeiieette et eteeeteetteseteesteeesbeesseessseensaessseasseessseenseensseenseessseensaessseenseesssesnseens 45
[Chapter 5. Application of the MOGE]c.cceuiuiuiiiieriieieieieieieie ettt 46
ST TNETOAUCLION ..ttt ettt ettt ettt et e et e esbeeeabe e beeesseesseeessaenseeesseesseesnsaessseesseensseensaensseesseensseenseens 46
5.2 GOQIM TESUILS ..ottt ettt e et e e et e e et e e e taeeeetaeeeetaeeeaaeesasaeesaseeeeaseeeanseeeenseeeenseeeenseeennes 46
5.3 Technical IMPIEMENTATIONccvvieiiieiieiieeiieeieeriee ettt e et e et e ebeestaeebeeseaessbeessaeesseessseessaessseesseesssesseens 47
5.4 Data collected on technical debt...........cccuieiiiiiiiiiiiiiieieee ettt e be e e esbeeseaeesee s 48
5.5 Evaluation of proposed method............cccuiiiiiiiiiiiiiiiiicce ettt seaeeae e 52
5.6 TRIEALS 10 VAIIAILYviieuiieiieeiie ettt ettt ettt et e et e esteeesbeeseeesbeessaeesseessseensaessseesseessseenseens 55
|Chapter 0. COMCIUSIONS. ...ttt et ettt et et e et e e bee e bt esbeeeateesateenbeessteenseesaeeenseesnseenseans 57
LT 01001 0 1 P RTSTRPPP 57
0.2 DISCUSSION ...ttt ettt ettt et sa ettt e e b b e et e e sae e e bt e ehb e e bt e eabe e bt e eabe e bt e s ab e e bt e eabeesbbeeabeenbbeenbeenseeenbeens 57
0.3 CONIITDULIONS ...ttt ettt ettt e sa ettt eehb e e bt e sab e e bt e eab e e bt e st e e ebbeeabeesbteeabeenbeeenbeenseeenbeens 58
TR 704111715 1011 PR SRRPRP 59
0.5 FULUIE WOTKeiiiieiie et ettt e a e st e bt e et e e s sbeenbeessbeeabeesnbeenbeesnneenseens 60
LIEEIATUIE TISE ..ttt et b e s et e s bt e et e e bt e st e e sbee et e e bt e e bt e sateenneenaees 61
AAPPEIUAIXES ..ottt ettt ettt et e et e et e e it e e bt e e a e e et eeeate et e e e ab e e bt e enee e bt e eabe e bt e ente e beeente e beeenteenteeenteenneanneas 64

1. Introduction

Chapter 1. Introduction

Technical debt is a term that was introduced in the developers community over 20 years ago. Growing from
an easy to understand and use metaphor that connects product developer and product owner to a mature
metric, technical debt (TD) has gained considerable theoretical background for the last decade. One can find
an extensive list of comprehensive scientific papers describing various approaches to TD. Among them: best
practices (for project managers, developers etc.), measurement techniques, success stories in major brands,
tools and techniques, new and adopted by industry and so on.

Most of the literature is targeted at implementing code metrics to produce numerical values representing
various aspects of TD; that is natural by following reasons: developers feel code level debt most strongly;
code metrics are comparably easier to implement. It can be seen now there is a lack of information how
Architecture-level TD (ATD) can be measured, captured and communicated.

1.1 Thesis scope

From a scientific point of view this thesis project will be investigating the theoretical basis to develop a
model of architectural technical debt for further practical implementation. Practical studies will be bounded
to Internet Banking (IB) systems of ABN AMRO in The Netherlands. Most attention will be paid to
architectural technical debt existence, classification and estimation. The whole project can be clearly divided
onto four consecutive phases:

Theoretical studies, getting familiar with state of the art approaches;
Measurement model development

Measurement model application and refinement;

4. Evaluation of the approach and conclusions.

W=

1.2 Problem statement

As any mature enterprise organization successfully operating worldwide for decades already ABN AMRO
heavily relies on information technologies. The organizational domain of IB and related departments use a
vast number of systems to operate. The IT landscape includes systems written in different languages, which
have various times of creation (aged from 12 to 2 years old), developed in-house and by sub-contractors.
Large amounts of code as well as numerous interconnections and inevitable duplication creates a retention
impulse for the whole system. One of the aspects that can be distinguished can be clearly identified as
technical or IT debt.

There is a clear understanding by higher management that a strategic approach to restructure the IT
landscape is needed — this request was formulated in program called TOPS2020. From a practical
perspective this means that currently there is a request in a company to:

1) investigate domains and systems that contain TD ;
2) calculate relative amounts of debt and define most relevant points to rework;

3) provide a strategy to control TD and eliminate it in most valuable points.

Formal application of existing debt approaches cannot provide a complete picture of the TD landscape with
enough precision because currently presented TD metrics and techniques are mostly concentrated on code-

-7-

1. Introduction

level debt (in more details those approaches are described in Chapter 2). While for the company now
according to stakeholders the most amount of TD is captured on the architectural level. Considering modern
challenges like implementation of cloud infrastructure it becomes extremely valuable to define a detailed TD
vision on systems level not on level of code blocks or modules.

Why ABN AMRO needs to measure TD

The aforementioned TOPS2020 program is targeted to describe both high level principles and detailed
actions that are needed to take the evolution of the technological landscape of the bank to 2020. Among
other strategic ideas the point about technical (IT) debt was introduced.

The 1t of May 2014 is an important milestone: from this day
onwards, all new projects must design and build according to
the TOPS 2020 IT guidelines and standards. By doing this IT

debt is prevented and we work towards the end state
solution!

The current state of the solution regarding IT debt within the bank is that there is a requirement to propose
approaches to measure and manage TD. But as it was mentioned before there is no clear method how this
can be done on a companywide level. Also because of the variety of interconnected systems in the
infrastructure there are no tools that can be set up out of the box.

Development of this method was started as a project by the Multi-channel Services (MCS) department of the
IT division and Martin Paris as a project manager. Part of this ambitious and valuable project has become the
topic for this thesis research.

Why the Architectural TD domain was chosen

As will be presented in Chapter 2 scientific approaches for ATD are much less developed today. Available
case studies usually describe investigations of relatively big but separated systems. Starting from
investigating a group of systems in the IB domain the method must be later transformed to a metric that can
be propagated on the whole company’s IT. Significant part of the systems landscape is planned to be
investigated later.

Current state of the ABN AMRO IT systems landscape

Today the company’s IB architecture contains dozens of applications providing all kinds of services. More
than a decade of developing new modules, integrating 31 party solutions, adjusting processes to changing
laws, regulations and opening business opportunities has led to enormously complex components.

Several years ago ABN AMRO adopted SOA (service oriented architecture) as a main guiding principle for
building new applications. Service orientation is an architectural concept that refers to the loose coupling of
a service (an abstract resource with a defined job) and its provider (the physical asset(s) that perform the job
tasks). A requestor only knows what the service’s job is and how to request it. The service itself is the only
one aware of its implementation.

1. Introduction

1.3 Research question
The study was conducted in a way to answer the following research question:

What techniques for ATD measurement can be applied and how successful are they?

The following list of research sub-questions presents the whole research as a set of logical steps. Each sub
question will be answered by specific parts of the thesis:

1. What is architectural technical debt, how can it be measured, and how does it related to other TD
measurement techniques?

2. How can ATD best be measured in enterprise IT systems such as those of ABN AMRO?

3. How feasible, useful and reliable are the proposed measurements of ATD in practice?

1.4 Document structure

This thesis is organized as follows: Chapter 2 presents a literature overview of the topic. Chapter 3 contains
a description of the research design and its theoretical basis. Chapter 4 is devoted to a description of the
developed measurement model. In Chapter 5 the results of applying the model are presented and also know
issues and model feedback are discussed. Results evaluation and future planning are in Chapter 6. The
appendixes contain various details of the research — definitions, taxonomy tree, collected data tables etc.

2. Literature overview

Chapter 2. Literature overview

This chapter describes the foundations of technical debt, its connections with software
quality, its layers of occurrence and approaches to manage it.

2.1 What is technical debt

2.1.1 History

In the literature on technical debt (sometimes referred as “software debt” or “IT debt”) the
most cited source is Ward Cunningham’s report “The WyCash portfolio management
system” released in 1992. In this paper the word “debt” was used for the first time to describe
the results of violations of good code and architecture practices. It also described the
dangerous consequence of a team spending more and more time on new feature
implementation (paying debt interest) if earlier violations are not fixed — debt is not repaid.

The problem of software that keeps capturing more and more complexity in itself, captured
by Cunningham in the TD definition was mentioned earlier by Meir Lehman' in the 80s. He
posited in one of his laws of software evolution that as a “system evolves its complexity
increases unless work is done to maintain or reduce it.”[2]

Several acknowledged software engineers took part in developing scientific approaches to
technical debt definition and measurements.

e Ward Cunningham —the creator of wiki, and aforementioned person who first coined
the TD metaphor [15] in 1992.

e Martin Fowler — famous practitioner and speaker on software development and team
productivity. He described the Technical Debt Quadrant® in 2009.

e [srael Gat — head of a consultancy company on software quality, has used the term
implementation3 in his work a lot and wrote a book [20] on technical debt.

e Philippe Kruchten — proposed the layers of TD aggregation in IT systems and
participated in formulating other viable concepts of the modern TD ecosystem.

e Steve McConnell - CEO at|Construx Software| and famous author of many software
development books. His post in 2007 [16] on categorizing and managing technical
debt.

2.1.2 Definitions

1. Definition by Ward Cunningham [15]
In the report he says that neglecting the design is like borrowing money.

“Shipping first time code is like going into debt. A little debt speeds development so long as
it is paid back promptly with a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as //116rgst on that debt. Entire engineering

1
Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the IEEE, 68 (9), 1060—1076.
2 Web link:lhttp://martinfowler.com/b]iki/TechnicalDethuadrant.html|
3 Gat, 1. 2010. Revolution in Software: Using Technical Debt Techniques to Govern the Software Executive Report. Cutter Consortium

-10 -

http://www.construx.com/
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

2. Literature overview

organizations can be brought to a stand-still under the debt load of an unconsolidated
implementation, object-oriented or otherwise.”

Considering this both parts of money debt idea can be derived like:

1. Refactoring, it's like paying off the principal debt;
2. Developing slower because of this debt is like paying /nferest on the loan.

Later McConnell and Fowler described approaches for TD categorization into distinct types,
separating issues depending on whether they were introduced specifically or unintentionally.

2. Definition created by Fowler and McConnel*
Martin Fowler’s famous post in the blog about the TD

.)) . Reckless Prudent

quadrant starts with discussing the question whether messy

code or bad system design is TD or not. Further on, 4 types W o' Have tine “We must ship now

of approaches to implementing code are described. for design” and deal with
consequences”

e The prudent debt to reach a release may not be Bickiberute
worth paying down if the interest payments are
Inadvertent

sufficiently small - such as if it were in a rarely
touched part of the code-base. -
. . w , o ow we know how we
e A sloppy and low quality code is a réck/ess debt, What's Layering? should have done it”
which results in crippling interest payments or a
long period of paying down the principal.

Figure 1. Technical Debt Quadrant by Martin Fowler
This reasoning introduces one of the easiest yet powerful

solutions for initial categorizing existing TD — the Technical Debt Quadrant (Figure 1).

3. Definition by Bill Curtis et all.[2]
Curtis provides the following definitions:

e Technical Debt—the future costs attributable to known structural flaws in production
code that need to be fixed, a cost that includes both principle and interest. A structural
flaw in production code is only included in Technical Debt calculations if those
responsible for the application believe it is a ‘must-fix’ problem. Technical Debt is a
primary component of the cost of application ownership.

e Principal—the cost of remediating must-fix problems in production code. At a
minimum the principal is calculated from the number of hours required to remediate
must-fix problems in production code, multiplied by the fully burdened hourly cost of
those involved in designing, implementing, and testing these fixes.

e /nterest—the continuing costs primarily in IT attributable to must-fix problems in
production code. These continuing costs can result from the excessive effort to
modify unnecessarily complex code, greater resource usage by inefficient code, and
similar costs.

-11 -

2. Literature overview

This set of definitions is also used in “Estimating the Principal of an Application’s
Technical Debt”[22] in a more shortened version however.

4. Definitions from article by group of authors [25]
Following a workshop at the Software Engineering Institute on June 2-3, 2010, a group of
authors agreed on the following definitions:

[TD] Principal — given a particular type of technical debt, the estimated cost of eliminating
that debt (e.g., testing, refactoring.)

[TD] Interest probability — the probability that a particular type of technical debt will in fact
have visible consequences (e.g., how likely it is that a defect exists in the untested part, or
how likely the code in need of refactoring will have to be modified.)

[TD] Interest amount— the added cost of performing maintenance on the part of the system
that contains technical debt (e.g., the cost of fixing a defect when it is discovered by a
customer as compared to earlier when it would have been detected if testing had been
completed, or the extra cost of modifying a component in need of refactoring as compared to
the cost of modifying it after refactoring.)

5. Additional TD definitions

Even bigger list of 20 definitions is collected by [33] authors in the list "Explicit and implied
definitions of technical debt in academic literature”. Some of the useful ones, that can give a
better picture on a current topic are enlisted below.

Here most of those descriptions are categorized into two categories considering main groups
of stakeholders in software development process: “business guys” as managers and “technical
people” as developers. Those two groups usually seen as having different mindset, using
different tools for work and even producing different parts of resulting product. But still they
have to operate it the same project scope — in time, requirements list and market conditions.
That is where the ambiguity and industry value of the term can be seen — it can act as an idea
transmitter, common base for building sensible strategy in project development.

Table 1. Additional technical debt definitions

Definition type Definitions examples

Project 1. “This pressure [to meet deadlines] can encourage shortcuts

management, concerning code maintenance that lead to the accumulation of

business side technical debt, that is, a backlog of deferred technical problems”
(Torkar et al., 2011)

2. “This [simplistically allowing business value to drive development
so that architectural soundness is compromised] may lead to
increasing maintenance costs and the quality of the end product is
undermined” (Heidenberg and Porres, 2010)

3. “The technical debt present is a byproduct of the previous private
loan project, as most business and technical decisions were
prioritized by the business team” (Davis and Andersen, 2009)

4. “If teams are making decisions to sacrifice quality or
maintainability in order to meet those demands [pressures to use
fewer resources, hit timelines and show return on investment],
technical debt is incurred” (Smith, 2009)

5. “Changing priority to short-term aspects usually contributes to
increased technical debt and decreased project quality” (Lindgren

S12 -

2. Literature overview

et al., 2008b)

“Just as new firms borrow capital to get started, new software
projects borrow ‘design capital’ (time) to get a product to market.
Maintenance problems that ensue are the interest you pay for
design errors introduced by schedule pressure” (Lutz, 1993)

Developer,
technical side

10.

Almost invariably in software projects, developers can be so
focused on accomplishing the needed functionality that the
software itself grows less understandable, more complex, and
harder to modify” (Shull, 2011)

“As defined by David Draper, at its broadest, technical debt is any
side of the current system that is considered sub-optimal from a
technical perspective” (Ktata and Lévesque, 2010)

“As they deliver software, teams accrue what the agile community
refers to as ‘technical debt’ in their code. This includes things like
bugs, design issues, and other code-quality problems that are
potentially introduced with every addition or change to the code”
(Black et al., 2009)

“Some industry experts view poorly evolvable code as technical
debt that can slow down development” (Mantyla and Lassenius,
2009)

“Non-agile infrastructure tends to grow old because changes are
hard to execute in these environments. This can be seen as
technical debt” (Debois, 2008)

“I’m acutely aware that when I let my design slide, I’'m creating
technical debt” (Wirfs-Brock, 2008b)

“Complex software systems erode over time. Software systems
must be extended, adapted, and modified accordingly as new
requirements, constraints, and environments emerge. Developers,
however, seldom give these efforts the rigorous consideration of
the original design. Consequently, the system decays, resulting in
decreased usefulness and increased errors” (Neill and Laplante,
2006)

Considering that debt idea coming from financial knowledge domain, some of the researches
[23, 2, 35] used other concepts and methods, related in financial area, for describing debt and
activity around it in software development domain. Example can be utilizing Real Option
theory by L.Gat [20] to describe opportunities in that manager and developer have on
consecutive stages of the project. And how choosing cheaper or faster implementation today
can actually cost much more in a month perspective.

Below is a list of financial by origin terms related to technical debt as they are defined by Bill
Curtis et all. In article “Estimating the Size, Cost, and Types of Technical Debt” [2]:

o Business risk— the potential costs to the business if “must fix” problems in
production code cause damaging operational events or other problems that reduce the
value to be derived from the application.

o Ljability — the costs to the business resulting from operational problems caused by
flaws in production code. Such operational problems would include outages, incorrect
computations, lost productivity from performance degradation, and security breaches.

-13 -

2. Literature overview

From a risk perspective, flaws in the code include both must-fix problems included in
the calculation of Technical Debt as well as problems not listed as must-fix because
their risk was underestimated.

e Risk— the potential liability to the business if a must-fix problem in production code
was to cause a liability-inducing event. Risk will be expressed in terms of potential
liability to the business rather than the IT costs which are accounted for under
‘interest’.

e Opportunity cost— benefits that could have been achieved had resources been
committed to developing new capability rather than being assigned to retire Technical
Debt. Opportunity cost represents the tradeoff that application managers and
executives must weigh when deciding

6. Technological gap

TD existence is also a matter of project size. Technical debt can arise due to changes in
environmental factors that are out of the development team’s control even if good decisions
may have been made. If the system does not evolve, then new environmental conditions may
start creating high interest payments [25].

This may be referred to as Technical Inflation’ mentioned by Scott Wood - the ground lost
when the current level of technology surpasses that of the foundation of your product to the
extent that it begins losing compatibility with the industry. Examples of this would be falling
behind in versions of a language to the point where your code is no longer compatible with
main stream compilers.

Philip Kruchten also refers this phenomena as 7échnological gap (refer to Figure. 2) - “This
is tech debt that you got by doing nothing, it is just the passing of time, that made the design
choice you made now obsolete in the presence of new technology showing up. To keep the
product current you may have to close that gap (i.e. adapt to the new technology). So at the
time you made the design choice, it was the right choice. 5 years later it is technical debt.”

2.1.3 Technical debt in practice

Besides scientific approaches Popular literature also. TD examples are collected from various
technical and development blogs and portals.

There can be named plenty of reasons when typical debt generally taken in software
development cycles. By studying Below is a sample list of such cases summed up in the table
below.

Table 2. Examples of technical debt

Level Examples Comment

Architecture level 1. Bad demarcation and Becomes visible for
rationalization of the IT considerably large or/and aged
landscape systems when code modules

2. Inconsistent design interrelations can harm project
approaches properties (robustness,
3. Careless mistakes ('we maintainability, future
work agile and our code is developments costs) more than

® Web link:|http://www.slideshare.net/lauraxthomson/rewrite-or-refactor-when-to-declare-technical-bankruptcyl|

-14 -

http://www.slideshare.net/lauraxthomson/rewrite-or-refactor-when-to-declare-technical-bankruptcy

2. Literature overview

the message')

low quality of each block’s

interest (career or the
expectation to increase
income or to prevent
personal reputation
damage)

4. Poor choices of component code.
decomposition
5. Incoherent designs or more
complexity in designs than
absolutely needed
6. Design choices that turn out
to be wrong in hindsight
Code level debt 7. Violations of coding The most detailed described
standards domain. Mostly because
8. Code duplication authors being developers first
9. Poor or absent comments of all apply metaphor on its
10. General sloppiness initial domain.
11. Refuse or poor usage of
OOP, patterns, MVC or
other concepts
Test level debt 12. Poor or absent test Testing being a valuable part
scenarios and/or test of development process can be
atomization efforts as the underestimated by manages
critical solution grows that leads to loss of time and
13. Incomplete test coverage quality for the project
14. Poor test automation
Social (managerial) 15. Intentional debt taken for Eventually mentioned, but is
strategic reasons quite vaguely defined.
16. Debt taken for personal

Rationales for accepting TD
As it was stated before, in financial world — debt is not a specifically bad thing to have.
Companies consider credits as a tool that can be handy to overcome current market situation
or new development challenges. The danger for the future of the project comes when this tool
used inappropriately. The same can be applied to software development — some technical
debt can help to leverage some current conditions. Specific project implementations are
resulting many factors involved in project. Regarding this point of view some of reasons for
taking decisions that make software project to implicitly incur technical debt are presented in

following table.

Table 3. Rationales for taking on technical debt

Reason

Time to Market

Explanation
Shortening time to market

Examples [16]

When time to market is critical,

-15-

2. Literature overview

though assuring the debt taken is
mitigated in a short time

incurring an extra $1 in development
might equate to a loss of $10 in
revenue. Even if the development
cost for the same work rises to $5
later, incurring the $1 debt now is a
good business decision.

Preservation of
Startup Capital

Preserving startup capital
though assuring the debt gains
priority in the requirements

backlog

In a startup environment you have a
fixed amount of seed money, and
every dollar counts. If you can delay
an expense for a year or two you can
pay for that expense out of a greater
amount of money later rather than out
of precious startup funds now.

Systems
retirement

Delaying development expenses
assuring capital is preserved to
invest in future technology
replacement

When a system is retired, all of the
system's technical debt is retired with
it. Once a system has been taken out
of production, there's no difference
between a '"clean and correct"
solution and a "quick and dirty"
solution. Unlike financial debt, when
a system 1is retired all its technical
debt is retired with it. Consequently
near the end of a system's service life
it becomes increasingly difficult to
cost-justify investing in anything
other than what's most expedient.

Distinguishing technical debt from other issues
It was mentioned by Robert Martin'® - & [code]mess is not a technical debt. Which in other
words means that you should not refer bad code practices to technical debt — sometimes
sloppy code is just sloppy code that needs to be fixed. Several authors refer to a similar point,
especially after talking to practitioners in specific domains one can see that after they get the
essence of the metaphor and its flexibility and power. Then they easily fall into the stage
when every bad implementation or managerial structure or decision is going to be qualified as
technical (business, social, managerial,) debt. Definitely debt is an interesting construct and
it has a lot of useful applications but those domains will stay out of the scope of this paper.

10 Blog post, 09/22/2009, Web link:|https:/sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

-16 -

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

2. Literature overview

Technical Debt must be distinguished from defects or failures. Failures during test or
operation of the system may be symptoms of IT debt, but most of the structural flaws creating
Technical Debt have not caused test or operational failures [2].

Summing up we must state that again, not all incomplete work is debt. It’s not debt because
there is no need in debt interest payments.

2.1.4 Layers of technical debt occurrence in systems

m Mostly invisible Visible

. architecture code
]
New features < Architectural debt Low internal quality Defects

S

Additional functionality | S~ Structural debt Code complexity Code smells Low external quality
c
S Test debt Coding style violations
= Documentation debt

Evolution issues: evolvability

Figure 3. Technical debt domains according to Philippe Kruchten

Philippe Kruchten et all, in [26, 4] introduced the diagram for showing presence of various
debt domains across the system. On this picture (Figure 2) one can see the layers that
researcher defines from : architectural debt (or structural debt), documentation debt, test debt
to code-level debt. The last one is presented by a set of characteristics - code complexity,
code smells, coding style violations.

It also can be seen that all the debt domain is behind the visible part of the software
properties. It’s a very valuable factor especially when it can be seen that IT debt presence
directly influences the other parts of the software development process.

2.1.5 Literature review findings

Having investigated quite a wide volume of literature on technical debt and related software
quality measurements and approaches the following stats was formed. This also influenced
approach used to build our own model for this research.

Table 4. Literature review classification

Articles

2 SQALE [10], [19]

§ o SIG [32], [14]

2 ~ Matrix [35]

& Documents analysis (23], [5], [39], [38]

-17 -

2. Literature overview

CAST [22], [2]
Portfolio [29]
ISO\MEC 9126 [8], [37], [2]
Custom [17], [35], [34], [4], [36], [27]
o Case study [51, 23], [8], [39], [32], [34], [4], [38], [36], [27], [14], [30], [28]
EZ Theoretical [24], [8], [6], [25], [41], [371, [3], [9], [26], [11], [40], [10, [19,
2 [31], [29], [21]
£ Interviews [1], [18]
< Systems research [22], [2]
A g Architectural TD [4], [36], [27]
= 2 Code level TD [35]

Below several findings of our review are discussed:

1. TD studies are still having more theoretical discussions, then practical reports
with detailed values of debt captured;

2. Practitioners tend to combine existing metrics and propose new calculation
approaches based on addressed systems conditions;

3. Documents analysis and questionnaires can serve as powerful method for
obtaining quantitative results on TD

4. Sonar tool is widely wused, but not that widely discussed in
scientific TD literature

5. ATD studies are usually separated from code level TD

2.2 Software quality

2.2.1 Overview
The area of software development has been constantly growing in complexity and impact on
economics and society for more than 50 years till now. Being a very practical and also
quantitative area of human activity it also developed the approaches to maintain quality of
the products delivered and how effective the processes (development) are organized.
Considering the context of software engineering, software quality is defined in two aspects'':
1) Software functional quality reflects how well it is aligned with a given design
(functional requirements) or specifications.
2) Structural quality of the software describes to what extent it meets non-functional
requirements (e.g. maintainability). Because they support the delivery of the
aforementioned functional requirements.

2.2.2 Standards

IS0 9126 standard

A first edition of international standard for the evaluation of software quality was issued in
1991. Tt presented'” six general characteristics that were aimed to give an overview of
software quality: functionality, reliability, usability, efficiency, maintainability, portability.
Each characteristic is divided in sub characteristics to review.

"' Pressman, Scott (2005), Software Engineering: A Practitioner's Approach (Sixth, International ed.), McGraw-
Hill Education Pressman
12 Web link:[http://www.iso.org/iso/catalogue detail.htm?csnumber=22749|

- 18 -

http://www.iso.org/iso/catalogue_detail.htm?csnumber=22749

2. Literature overview

Table 5. Characteristics of ISO 9126 standard

Metric name Metric description

Functionality Up to what extent the software performs as per the requirements and
specifications. Testing is used to verify that the requirements are
met.

This basic of quality factors but can be problematic for large,
complex software systems.

Reliability Reliability is the capability of software to maintain its level of
performance under stated conditions for a stated period of time. It is
also defined as the probability of failure-free operation.

Efficiency Indirectly efficiency can be measured by measuring the amount of
time (execution efficiency) or storage (storage efficiency) needed
when running the software through a particular compiler, under a
specific OS, on a designated hardware architecture.

Usability Usability characteristic is an attempt to define user friendliness. It
can be measured in terms of for example physical and intellectual
skill required to learn the system or the net increase in productivity
over the system it replaces.

Maintainability Maintainability aimed to define how is easy is software object the to
understand, enhance, and correct in future.

Sub criteria of maintainability include consistency, simplicity,
conciseness, self-descriptiveness, and modularity

Portability Portability is a set of attributes that bear on the capability of software
to be transferred from one environment to another.

Generally this standard introduced a top-down look at software quality and targeted both
developers as well as project managers. This also lead to the fact that not all characteristics
could be reviewed automatically, for example conformance and compliance relayed on laws
and external standard. It has been replaced by ISO/IEC 25010:2011 in 2011.

ISO/IEC 25010

I1SO 25010" is a product quality model composed of eight characteristics (which are further
subdivided into sub characteristics) that relate to static properties of software and dynamic
properties of the computer system. Some of the selected characteristics derive from those in
ISO 9126. The model is applicable to both computer systems and software products. Those
metrics according to authors provide consistent terminology for specifying, measuring and
evaluating system and software product quality. They also provide a set of quality
characteristics against which stated quality requirements can be compared for completeness.
Those metrics are explained on Figure 3.

13 ISO/IEC25010: Software engineering-System and software Quality Requirements and Evaluation (SQuaRE) - System

and software
Quality Model, 2011.

-19 -

2. Literature overview

external and
internal

quality

Maintain-
functionality reliability usability efficiency ability portability

suitability m aturit understandability) . analvsabilit adaptability

accuracy fault tolorance learnability time behaviour changeabiliy installability
interoperability recoverability operability resource stability co-existence

security attractiveness utilisation te stability replaceability
functionality reliability usability efficiency maintainability p ortability
compliance compliance com pliance compliance compliance compliance

Figure 3. ISO 25010 quality model

Applying of methodology described in the standard can also provide guidance in identifying
software and system requirements, design and testing objectives, identifying acceptance
criteria and establishing combined measures of quality characteristics. Behind this model,
there is an approach called Factor-Criteria-Metric Model'* which is commonly used in the
field of software measurements.

2.3 Technical debt measurement

2.3.1 Introduction

Every day employees involved in the software project have to make decisions. The decisions
are related to different levels: developer chooses the most applicable implementation
technique, architect is planning what libraries or patterns should be used for next
development stages. Also a project manager has to allocate time resources to continue feature
implementation according to the schedule while there is also need to decrease amount of
shortcuts in the code and temporary architectural decisions.

Software development practitioners have made several attempts to define a quantitative rules
and metrics that proiect stakeholders could utilize to balance speed and productivity versus

A Figure4. TD and TDI growth over time ~ daches to quantify the amount of debt have led to
o o quite diverse. This situation corresponds to words of
al debt — “The tricky thing about technical debt, of
_ e to measure effectively”.
§ Maintenance
L&] i

&
L Interest

'* McCall J.A., Richards P.K., Walters G.F., Factors in software quality, Vols. I-II[, Rome Air Development
Centre, Italy, 1977

-20 -

2. Literature overview

General representation[32] of the TD growing in the system with the time was presented by
Jim Highsmith'” as on Figure 3.

Introducing a virtual “optimal maintenance” — straight horizontal line for the case when
system doesn’t change costs across the years one can compare it with real life maintenance
presented by dashed graph. Maintenance starts growing even faster if technical debt is
incurred by the system.

So in case if development team created big amount of TD in initial stage that makes further
project development more and more complicated. The more we’re moving forward in the
time line the harder the design choices are.

Another outcome for the graph is that technical debt somewhat similar to entropy always
grows for the addressed software with time - if nothing is done to handle it, then the situation
always gets worse. It also shows that exact TD estimation in applications with high incurred
technical debt becomes nearly impossible.

As it was introduced earlier in the definitions part debt incurred by IT systems has two
compounds: main debt body (principal) and debt interest (penalty, regular fee). General
formula that can be presented as an array.

TD : { TDprincipal, TDinterest }
In hours Work to be done, to Loss of productivity,
remove the debt [s “paid” every time part of the system is changed

Those two parts values are independent. For example some inefficient source code problems
are not likely to cause future maintenance problems or affect the overall quality of the
system. In terms of the TD metaphor, the TD principal may be higher than the TD interest
being paid on the debt [28]. Or it can be other way around — when code part is changed
often, then shortcuts and general poor quality existing in this part will take a lot of additional
effort every time. While fixing this exact part (TD principal) can be relatively fast.

There also can be the situation when different parts of TD are aligned with conflicting goals
of different stakeholders. For example - the Department] would like to have well commented
code; whereas the development department (Department2) is focused on producing running
code, so the Department] department estimates the interest and the development department
estimates the principal [25].

Within one system total debt does not necessarily combine additively, but this can be called
super-additively in the sense that taking on too much debt leads a system into a bad, perhaps
irreparable state (e.g., of code complexity) [24].

A valuable factor for estimating TD interest for a specific organization is availability of
historical data. For instance, by adopting a configuration management system and analyzing
source code repositories data we can see the extent to which a component with high coupling
and cohesion is less maintainable than other components. Historical data can be useful but
might not be available for all the TD [25].

Below is the part describing different techniques to quantify TD principal or TD interest or
both.

2.3.1.1 Estimating TD Principal

"> Highsmith, J. 2009. Agile Project Management: Creating Innovative Products , Addison-Wesley.
221 -

2. Literature overview

Measuring only principal for existing debt in the system differs by approach from estimating
both TD parameters. Static software source code at least allows us to estimate the amount of
principal based on actual counts of detectable structural problems. Initially it’s stated in [2]
that principal amount of debt can be calculated using formula:

TDprincipaI =N must-fix problems X t time required to fix X C cost for fixing a problem

But considering that usually in big software systems it never happens that all defects and
flaws are removed completely. First, because it’s always not enough budgeting. Second
constant evolving of codebase makes precise counting all the points that need to be done at
least debatable.

In the research [41] authors combined two diverse techniques for identifying debt in the
system. They asked different team members — developers, tester, manager about parts of the
system that contain most debt and also applied code analysis tools to the codebase of their
product. Debt in the system was investigated on several layers, mostly corresponding to
domains introduced by Philippe Kruchten [4]: design, code (“defect” term was used),
documentation, testing and one different - usability.

Results show that TD knowledge is dispersed and perceived differently by different
stakeholders — each participant named different modules where he expected to have most
debt. It was also found that code analysis tools show good correlation with spots identified by
people. But as code analysis tools mostly can identify debt in code domain, that’s why tools
can only support the identification of defect and design debt in the project, but not other types
of debt that were found by developers. Unfortunately question of comparing several code
analysis tools on one codebase was not studied in this research.

This paper also contains estimation about how much time and effort it takes employees to
identify the debt occurrences. It’s reported that it took participants between 50 minutes and 2
hours to identify and document the TD items for the given system. While answers about
difficulty of the task ranged from “easy” to “difficult/high”.

2.3.2 Reported methods

2.3.21 SQALE method

Developed in France by Inspearit (formerly called DNV ITGS) SQALE method was intended
to measure and manage as objectively as possible the quality of source code that projects
deliver. The method was designed to be as generic as possible and is applicable to any kind of
language and any development methodology. SQALE method is open source and royalty
free. However deploying the method for large IT landscapes is a subject for commercial
expertise and also there are set of commercial tools using this method for calculations

(SonarQube, SQuUORE, CodeQ).

Initially defined in'® SQALE method uses quality models which is based on the ISO 9126
standard. Among include characteristics it has: testability, changeability, and reliability.
Specific metric of SQALE method is the so called remediation indices. By means of those
indices the amount of effort is counted that is required to resolve non-conformities from the

' J. Letouzey and T. Coq. The SQALE Analysis Model An analysis model compliant with the representation
condition for assessing the Quality of Software Source Code. VALID, 2010.

_22 -

2. Literature overview

generic requirements of the quality sub-characteristics. Summing up lower level indices one
can get to a general amount of remediation effort (per system or component). Remediation
effort can also be translated into financial value, which is an amount of TD in a system.
Among method limitations - there is no clear justification for the remediation indices present.
Ideally, the remediation indices should be based on empirical data. Also a SQALE method
can only provide estimation of TD amount, but not TD interest parameter [42].

When implementing SQALE method it also requires association of quality parameters with
[10] a nonremediation function. 1t is used to quantify all resulting costs of the delivery of one
or more nonconformities, such as for example: costs of additional maintenance resources or
costs of additional noncompliance related resources (CPU or memory). In other words, the
nonremediation function éstimates the penalty that the product owner might claim as
compensation for accepting violations.

2.3.22 SIG/TUVIT method

Developed by software consultancy company SIG based in Amsterdam, this method is main
part of subscription-based service for enterprise customers that provides regular automated
release code analysis.

This method is intended for the standardized
evaluation and certification of the technical
quality of the source code of software products.
The scope of its main metric [12] - évaluation
criteria is limited to the internal quality

Product property

Mamanabiity characteristic of maintainability and its sub-
characteristics including: analyzability,

x i * » » e modifiability, testability, = modularity = and

x x = | reusability. Evaluation criteria defines 5 quality

x x| x| levels for maintainability represented by a rating
from one to five stars. The quality characteristics
are determined by measuring a set of software
product properties. These properties include
following: volume, duplication, unit complexity,
unit size, unit interfacing, module coupling, component balance and component
independence.

X X

Figure 4. Mapping SIG/TUViT method
charachteristics

Technical Debt within Each Technology

2.3.2.3 CAST report
Researches in this report have
studied the density of coding
violations with classifying
them to several groups of mml=
issues like: security, .
performance, robustness, and
changeability of the code.

They also introduced several _
levels of coding violations: Technology
high, medium, and low Figure 5. CAST report resulting plot
violations. Furthermore, the

$15,000

Technical Debt ($/KLOC)

5.000 .
L T I
$0
I ava EF Oracle

COBOIL

_23-

2. Literature overview

assumption was made that only 50%, 25%, and 10% of the high, medium, and low violations
respectively are actually being fixed [32].

The data in the report'’ was extracted from the Appmarq benchmarking repository (source
codes of companies — clients maintained by CAST), which contained 745 applications from
160 companies in 14 countries, comprising 365 million lines of code at the time of the
analysis.

In [22] researchers have conducted an investigation of TD-related parameters for almost 700
applications with total 357MLOC. The analysis was performed using CAST’s AIP'® which
analyzes an entire application using more than 1,200 rules to detect violations of good
architectural and coding practice. The technique include following steps:

e parsing an application’s entire source code at build time to produce metadata metrics;

e those metrics then are sent to evaluation module, which applies set of 1200 quality
rules that can capture both bad coding practice and architectural miscounts;

e detected violations are grouped in several types and they are processed to form the
output metrics;

e metrics area grouped in following categories: robusiness, performance efficiency,
security, transferability and changeability. They are based on ISO/IEC 9126,
however changed due to several reasons.

Each of the violations is weighted according to its severity level — from low to high. In real
life projects it’s never possible to fix all point that are needed to be fixed. That’s why
additional criteria - (% to be fixed) is introduced. It means that desired level of systems
quality change can be set up — for example, 100% of high-severity violations and only 10%
of low-severity violations must be fixed to achieve significant results. By using this each
product owners and managers can set specific reduction targets based on strategic quality
priorities. Those measurements are references in the paper as éstimations (estimation 1,
estimation 2, estimation 3), ranging from more conservative to best possible. Including all of
the above, the following formula for estimating TD principal is used:

TPDin hours = (Zhigh-severity violations X (0/0 to be ﬁxed) X (average hours
needed to fix)) + (Zmedium-severity violations X (% to be fixed) x (average
hours needed to fix)) +

(Ziow-severity violations X (%to be fixed) x (average hours needed to fix))

As a result it was found that for JavaEE applications (which present up to 60% of analyzed
software modules) that :

e most TD is incurred in following categories: transferability, changeability and

robustness

e wide range of costs is presented: from $0.23 per LOC to $253.03 per LOC
This research gives a good insight not only for team willing to estimate the TD incurred in
existing codebase. It also provides good approach for project managers trying to set up a
communication with business using understandable criteria list and set of progress goals —
estimates.

2.3.2.4 Technical debt template

'7 CAST worldwide application software quality study: Summary of key findings, 2010.
'* Application Intelligence Platform, web link :[http:/www.castsoftware.com/products/application-intelligence-]

_24 -

http://www.castsoftware.com/products/application-intelligence-platform
http://www.castsoftware.com/products/application-intelligence-platform

2. Literature overview

: ID 37
An example of formalized
questionnaire form was proposed |Pate Yal2ws (Roleasec.2)
in [7] for deﬁning the pI‘OpGI’tiGS of | Responsible Joe Developer
each TD issue in the system. Each |7, Design
occurrence id described by set of Location Method calculateStateTax in Module TaxCalc
meta-data parameters, such as
. . Description In the last release, Joe added method
location of a shortcut in system calculateStateTax quickly and method is overly
module and/or ﬁle, release index, complex and not documented.
. Estimated principal Medium (medium level of effort to refactor and
date added and employee details e o)
and exact descrlptlon of an issue. Estimated interest amount: High (it will be costly to make changes to the
Debt amount 1is Captured by method in future, especially by other developers)
estimating probability, interest and | Estimated interest probability | High (it is very likely that this methods needs to be
changed with each future release)

principal of each issue.
Measurement of amount can be
done in hours or using more
indirect scale: from “high” and “medium” to “low”.

Another option is to estimate debt value in hours, days, weeks or months for each issue.

This template was also used in [39] to collect feedback from product development team.
According to this paper it takes employees around 15 minutes to fill in each item. So
measuring debt spots across all the system can be quite time consuming in case of large
systems.

Figure 6. Technical debt template example

2.3.2.5 Open source projects

Techdebt.org

In 2013 open technical debt collaborative and open benchmarking dashboard was launched
on techdebt.org domain. The site aimed to provide several metrics regarding the technical
debt for a large panel of applications. The idea behind it was to present continuous results on
code quality of a wide range of open source projects using open-source plugin for Sonar. So
that developers could compare the quality of their code with hundreds of other projects from
the open source and software industry. Unfortunately now the website is unavailable.

Drupal CMS

Also an interesting research of technical debt incurred by open source CMS Drupal was
published in one of the blogs on this platform'. In it author analyses queries results to the
main repository, comparing amounts of reported issues, critical bugs and fixes in during the
development of expected new 8™ version. As a result of fast incurring debt in the code
modules, the release team first had to freeze feature and it’s still unclear when new version
can be released.

2.3.3 Tools used to estimate Technical debt

There are a lot currently available on the market proprietary and open source tools® for static
analysis. They can be selected for specifically language or some provide set of language-

' Web link : http://xim.drupalgardens.com/blog/technical-debt-drupal-8-or-when-will-it-be-readvl
'Web link :[http://en.wikipedia.org/wiki/List of tools for static code analysis]

_25-

http://xjm.drupalgardens.com/blog/technical-debt-drupal-8-or-when-will-it-be-ready
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

2. Literature overview

specific parsers. Using ASA tools during the development is considered a good practice for
long time.

2.3.3.1 Dynamic code analysis

Typical dynamic code analyzers profile your system and monitor its health. Both execution
time and memory usage profilers, figuring out number of database transactions per request,
the average size of an user session object, etc. require the system to be under a load
comparable with the intended in production environment. Dynamic analysis tools often
instrument the code to add tracing of method calls, catching and notifying about exceptions,
and any other statistics they collect.

2.3.3.2 ASA tools

The basic principle is analyzing code structure without executing it. This approach is
generally used to find bugs or ensure conformance to coding guidelines. The classic example
is a compiler which finds lexical, syntactic and even some semantic mistakes.

Static code analysis provides following advantages:

e Full code coverage. Static analyzers check even those code fragments that get control
even very rarely while parts of code usually cannot be tested through other methods.

e Static analysis doesn't depend on the compiler that is used and the environment where
the compiled program will be executed — helping to find hidden errors that can
otherwise reveal themselves only a few years later.

e ASA tools also can give recommendations on code formatting, even some static
analyzers can check if the code corresponds to the coding standards used across the
project

e Variety ocomputation - a numerical value of some property of software or its
specifications. There are[lots ofJvarious metrics that can be computed with the help of
certain tools.

Static analysis usually presents poor results regarding diagnosing memory leaks and
concurrency errors. The actual code execution is needed to detect such errors. Dynamic
analysis tools are more efficient way to detect those types of errors.

A static analysis often give so called false-positive - it means that the code can actually be
quite correct. So it takes a developer to understand if the analyzer points to a real error or it is
just a false positive.

While being super-fast analyzing hundreds lines of code per fractions of second automated
analysis tools don't find every issue, but rather search for common types of errors and flaws.
It’s impossible for an automated tool to check if the code has been implemented since it don't
understand how the logic is supposed to work. The source complexity also increases the

ASA demand on system resources - as they exponentially increase the potential paths to be
checked.

Researchers in [8] conducted several case studies against following groups of software
quality characteristics (selected from ISO standard): Functional suitability, Performance
efficiency and Maintainability. According to the results in all cases tools used (Resharper and
FindBugs) point right places where the refactoring should be done to improve corresponding
characteristics. Unfortunately this paper didn’t present any quantitative results. But the
statement is made that ASA should be used to target specific sites in the software to decrease
TD interest.

Using any solution that provides metrics differentiating logical parts of the project (files,
modules or bigger blocks) can give insights to the team

- 26 -

http://en.wikipedia.org/wiki/Software_metric
http://www.viva64.com/en/a/0045/

2. Literature overview

2.3.3.3 Specific solutions

A. DebtFlag

Is a model application developed in [6] which is implemented in a Eclipse IDE plugin
accompanied with web-application UIL. By getting access to development environment it
captures TD in set of recorded related to specific parts of SUD. Each note has a set of
attributes such as description, time and date, author etc. A DebtFlag element is a link between
a technical debt observation and an implementation part defined by the technique. For
example a package, a class or a method in object-oriented technologies. Currently it’s
targeted to the Java environment. DebtFlag facilitates knowledge about the class and module
dependencies to produce an overall map of existing TD issues in the system. Threshold level
and a set of other parameters are used to limit the dependency propagation model. By doing
so tool implements so called micromanagement of TD for the team, on the level of each
developer, by maintaining the presentation of existing issues or TID (Technical Debt Items).
Each TDI has the following events: create, modify, resolve — handling the lifecycle of
records. Among its features authors name:

e Documenting the real project code structure of emerging TD - developers can track
changes of TD amount and can make better decisions (ex: not to rely on too
underdeveloped parts of code with large TD incurred)

e All debt records are maintained manually — that gives more accurate and targeted
detail level. Whether the TD is intentional or inherited from previous stages of project
development better reasoning of future steps can be made.

Those features are also the limitations the project has in its current stage — human time
resources are consumed on enumeration of issues and no additional derivative logic base on
code analysis can be implemented.

B Resharper?’, FindBugs® and others

Those tools mentioned in [23] can be used for analyzing software code for producing metrics
that can point out TD spots. It’s also a code-level TD investigating solution. By applying
large sets of code quality rules (code smells) overall indexes on code quality are calculated.

FindBugs is a byte code analyzer only targeted for Java code, it scans source code for
possible bugs, applying bug patterns™. First software release was in 2006, it’s developed by
the University of Maryland. is List of found bugs is a ranked list on a 20-point scale. The
lower the number, the more impactful could be the bug. Sometimes FindBugs is used in a
combination with PMD (also ASA tool) because it’s better in cursory check on best practices.
It can be also included in a form of ItelijIDEA or NetBeans plugin.

2.3.3.4 SonarQube (formerly Sonar)

This platform is one of the most popular world known solutions for enterprise software
quality measurement. It contains parsers for 20+ different languages, and a plugin-based
enhancement system.

Many dashboards with key metrics are available out of the box. And also possibilities to
extend core functionality by using a plugin systems are available. Sonar applies wide set of

2 Web link httE://www.jetbrains.com/reshager/fe tures/code analzsis.htmll
*2 Web link{ http://en.wikipedia.org/wiki/FindBugs

2z Web link; httg://ﬁndbugs.sourccforgc.nct/factShcct.html|

_27 -

http://www.jetbrains.com/resharper/features/code_analysis.html
http://en.wikipedia.org/wiki/FindBugs
http://findbugs.sourceforge.net/factSheet.html

2. Literature overview

software quality heuristics like code
duplications, coding standards violations, lacks
of test coverage, potential bugs spots, module | m. Lz 2 T

Rules compliance

complexity etc. As part of its analyzers, Sonar | sw™™ i =
core uses tools to find coding rules violations @ E———————

Name Locs + SQALE Rating

(PMD, Checkstyle), detect potential bugs | === ERE

) Apache 42402608

(Findbugs) and measure coverage by unit tests | i g

(Cobertura, Clover). But what makes Sonar | cmce s
truly unique is Squid, its own code analyzer that | = s
not only parses source code but also byte code | =™
and mixes the results. It can be considered as

high-level project analyzer. Sonar has a flexible

architecture that consists of three main

components:

1) A set of source code analyzers that are ;ZZZ::;?;D“‘% v
grouped in a Maven plugin and are triggered on Pty N 148 10574
demand. The analyzers use configuration maintananiy [T 1@ 10426

Figure 8. SonarQube dashboards view

stored in the database. Although Sonar relies Security [213 5514
on Maven to run analysis, it is capable to eiciency [N 526 5301
analyze Maven and non-Maven projects. changeabiity [N 2521 4775

R

2253

2) A database to not only persist the results of Reiabiity [
the analysis, the projects and global Testabity |
configuration but also to store historical data

for analysis. Figure 7. SonarQube metrics presentation

3) reporting tool to display code quality

dashboards (web interface) on projects, hunt for defects, check history of changes and to
configure analysis.

ra
=
[=]

21.0

When analysis is run through a Maven plugin, Sonar can also be launched in continuous
integration environments. While some researchers report Sonar TD metrics calculator to
result unbelievably huge, digits [34] it’s still a useful tool for thanks to its core software
quality metrics.

In another case study research [5], authors describing implementation of application working
with MS Exchange Server in 2006-2008. Developer team has made a decision of
implementing WebDAYV protocol in 2006 already knowing that newer version MS Exchange
2007 will not be compatible with it. This was done with intent to shorten time to the market.
Indeed target was reached - first version was deployed to customers in 2007. Later the same
year industry started little by little migrating their systems into newly released MS Exchange
2007. This created a gap in functionality that had to be fixed by implementing new version
support, which was done. Sufficient efforts were taken to rewrite some application parts.
Authors used unified code count metrics on each release step to estimate the amount of
efforts needed form the teams to overcome previously wrong decisions. This paper provided
a good modeling approach of how wrongly estimated amount of incurred TD significantly
influenced the costs of forgoing development.

2.2.2 CodeQ Quality Investment**

H Web link:|http://codeq—invest.org/ |

-28 -

Figure 9. CodeQ quality investment schema

http://codeq-invest.org/

2. Literature overview

CodeQ Invest Concept
Requrements _cowaimosconnes This methodology was not widely described
l} —ing. and can be classified as experimental or
derivative from SQALE. CodeQ tries to
— ’ SOMLE M ‘Q connect directly software quality and financial
e investment approach.

= ﬁ:} While the SQ part relies on SQALE method,

Figure 10. CodeQ schema the other parts tries to determine which
problems should be fixed to gain an

Investment Decision
results in

immediate productivity advantage.

First step is to define quality requirements (e.g. code coverage should be greater than 80%)
and estimate how long it would take to fix the violation of such a requirement. Next the costs
estimation needed - how much is will cost if we to leave the violation untouched.
Remediation costs and the latter the non-remediation costs are include. A “profit” is derived
from those two measurements - the time/money that can be saved when the violation is
fixed.

Such an approach brings reporting IT debts even closer to business language level. Team and
product owners can think in terms of ROI and profits when discussing internal software
quality.

2.4 Architectural technical debt

What is architecture

According to ISO/IEC 42010 architecture is fundamental concepts or properties of a system
in its environment embodied in its elements, relationships and in the principles of its design
and evolution.

Referring back to scheme by Philippe Kruchten (Figure 2) architecture quality has almost no
or little externally visible value “customer value”. While iterations planning during the agile
development process is driven by as much “customer value” as possible. That is why also
proper architecture planning and architecture rework are often misguided. This can be
another point why is that TD at the architectural level it is less researched until now.

When significant architectural change is needed, small, local refactoring efforts cannot
compensate for the lack of a coherent system-wide architecture. In the context of large-scale,
long-term projects, there is distinction between code-level and architecture-level abstractions,
especially when it comes to relating these to a global concept such as debt [25].

In the case study research [4] analysis of development process was performed. Given system
- DRNEP?® was developed primarily at the University of British Columbia, with collaborators
in various parts of the world. System architecture consisted of core and distributed simulator
modules. Authors considered 2 different architectural approaches and hence 2 various
development paths:
1) First called deliver soon, this approach assumed incremental addition of new modules,
each time adding various ad hoc adaptors and translators for them to fit communicate
with core.

*% Disaster response network-Enabled Platform

-29.

2. Literature overview

2) Second, targeted to reduce rework and enable compatibility — was in developing
canonical data model, and using an ESB*’

Development process was analyzed on a period of 4 releases. Initially choosing 1* lane took
less time to implement and implementation costs were lower that for the 2" one. But from
one release to another implementation costs for dé/iver soon approach tend to stay the same
high or even grow, compared with second approach — where initial cost where relatively high
but later were kept on the same low level with zero rework costs.
As a result by 4th release cumulative cost release cost of 1st solution became 55% higher
comparing with architecture-wise implementation. Comparing those two paths gives a good
insight into the challenge of balancing rapid deployment and long-term value and a value of
architecture in dealing with technical debt.
Dependency diagrams for both cases are presented in Fig.9 — it can be seen that 2" one is
also much easier to modify and to understand for people outside the project — managers and
new developers joining the team for example. Dependency analysis showed following
numbers to compare: 94 vs 116.

Figure 11. Dependency diagrams for 2 different architecture approaches [4]

This research clearly shows the value of the delivered features compared with the impact of
rework costs. Architectural debt can be insensibly incurred by the project later negatively
affecting the agility of development process. This should be taken into account by
stakeholders in decision-making related to delivering a product.

2.5 Approaches to management technical debt

2.5.1 Introduction

Technical Debt is a metaphor, which is helpful in two cases: while thinking about how to deal
with design problems, and also - how to communicate that thinking to the involved
stakeholders.

In business dictionary®® term “management” is defined as follows - The organization and
coordination of the activities of a business in order to achieve defined objectives.
Management is often included as a factor of production along with machines, materials, and
money... Applying this to a certain process management

can be described as organization and coordination of the activities related to this process to
comply with set up objectives.

2 . .
7 Enterprise service bus
28 Web link:| http://www.businessdictionary.com/definition/management.html

-30 -

http://www.businessdictionary.com/definition/management.html

2. Literature overview

For example in the world of finance and banking debt can only be valid when it is
rationalized. The debt investment returns value faster than the negative interest rate taken
from the debt over a short time.

An example for rationalized reasons to choose for debt could be to strategically shorten time
to market for the proposition expecting to generate revenue (over time) exceeding the debt
taken including interest. Not rationalizing the debt choice introduces the risk your debt
strategy turns into a vicious circle increasing the debt and can ultimately leads to bankruptcy.
Literally any activity taken that does not result in added value now or in the future has
nothing to do with debt; this is simply cost and must be seen as waste.

The above example illustrates taking debt can take positive effects as well as negative. It also
clarifies it would be wise to manage debt. Technical debt works alike the above example.
Technical debt should therefore only be taken if it is proved it pays off in a short time.
Therefore technical debt should only be taken for a short time as interest rates grow for the
time the debt is taken.

Historically technical debt measurements and reasoning across the industry tended to focus
more on programming aspects of software delivery and left out full software development
lifecycle.

Each type of TD can be managed and monitored using different tools and approaches.
Focusing on managing each type of software debt simplifies creation of overall strategy that
promotes hostile perspective.

To provide effective management one needs to collect reliable information. Hence from the
perspective of technical debt management, the goal of identifying and measuring technical
debt is to facilitate decision making [31]. From this point one can see two management
approaches that will be discussed further:

1) process management;

2) portfolio management.

From time perspective as well there can be short-term and strategic TD-related decisions. The
technical debt concept is gaining traction as a way to focus on the long-term management of
accidental complexities created by short-term compromises [25]. The same point is supported
by Robert L. Nord et all. in [4] stating that technical debt management is about navigating a
path that considers both value and cost, to focus on overall return on investment over the
lifespan of the product.

One of the questions for long-term and big projects and is how to establish TD awareness and
continuous management. In other words - how to TD can be made more visible for all
involved parties.

2.5.2 TD process management

Business departments have to govern the processes based on positive outcomes that can
obtained. Since the TD metaphor was introduced, there are several key points were described
by the IT community to convince management that the changes will help the company:

e Better architecture will allow the team to add new features more quickly;

-31 -

2. Literature overview

e Demonstrate that by continuing along the current path (architecture, development)
they're putting themselves into a corner and the price to get back on the effective
track can be extremely high.

e Providing examples of changes that are very expensive to make in the current system,
but which would be simple and cheap with a better design;

e Keeping track of time spent maintaining legacy code vs. adding saleable features.
This can also be a Help them explain to existing and future customers that while the
existing system was pretty good, the new, modernized architecture will allow many
great new improvements, better reliability, and so forth.

e Mitigate the risk associated with the changes you propose. Managers are risk averse,
and sweeping changes to an existing system seem inherently risky.

e Prioritize modernization of the various components according to cost and benefit, and
make sure that management agrees with your priorities.

e Track the progress of the modernization effort. Show benefits as soon as you
reasonably can, but remind all parties that there's more work to do.

Basically rule of thumb for the business concerning technical debt sounds as “Pay now or pay
more every day”.

2.5.3 TD portfolio management

The research [23] provides another angle on management issues related to TD. Taking
financial way of perceiving TD Ken Power proposes using financial Real Option?’s definition
for describing teams activities. The same as investor’s money pool is limited, organization
(whether business unit or entire firm) has a finite amount of (work hours) capacity to invest in
its overall product development efforts. And if the team during initial stages of the project is
only targeted on implementing new features this hence gives excellent results in short-term
perspective. While on the scale of several releases one can see that TD pay-off activities will
become more and more valuable — taking more and more team’s time. Many teams fail to
invest adequately in managing and reducing technical debt. Not a lot of details of case study
are provided, but it’s stated that teams are using up-to date development approaches based on
Scrum, Kanban, XP. For those kinds of teams implementing efficient TD management is
especially valuable because the backlog tend to contain only user-stories without cases
related TD identification and removal [4].

But the concept should not be taken too far away from the initial definition — not to create a
paper monster which is far from real work processes taking place. As Steve McConnell states
in his interview™" - “I have had the experience of software companies taking the metaphor too
far, saying for example that they would like to track their technical debt on their balance
sheet as a numeric value. The technical debt concept is a house of cards: the numbers we are
using to represent technical debt are only estimates on how much path A would take versus
path B. Some organizations are good at calculating this estimate, but others are fair, at best.
Looking at the foundation of this house of cards and understanding what the technical debt
notion means, | think that it is a helpful concept to start a discussion rather than giving out
specific numbers and putting them into a spreadsheet”.

29 «An alternative or choice that becomes available with a business investment opportunity. ... Taking into
account real options can greatly affect the valuation of potential investments” - definition from Investopedia:
|http://www.investopedia.com/terms/r/realoption.asp |

% Web link:[http://www.ontechnicaldebt.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt/

-32-

http://www.investopedia.com/terms/r/realoption.asp
http://www.ontechnicaldebt.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt/

2. Literature overview

2.5.4 TD ownership

Calculation of incurred TD across company’s IT-assets can be converted to countable amount
of money. Since then an important question is who in the business structure of the company
taking responsibility for the technical debt taken for this or that solution. This should
influence budgeting planning in a way that bad resources could be allocated to eliminate
costly TD parts as soon as possible.

Usually it is assumed when the company is not too big and departments structure is not very
diverse then the development department takes this responsibility. As they are who have
mandate to decide what approach to take. But in case when the company is bigger and
products are hence more complicated it can also happened that debt is created and distributed
across several departments. Consider the following example:

e Business department — “pushes” the developers to speed up the process according to
marketing-related deadlines

e Product development department uses fast-and-dirty solutions, and shortcuts. They
probably implement not optimal and costly solutions to deliver another version of
product as soon as possible. Afterwards they need to switch to next planned targets —
while the debt is taken here.

e Maintenance department — later as a result has to deal with low quality code and
architecture for a long time and lacks sufficient resources for that (the debt has to be
paid here)

Scattering financial responsibility over several departments where TCO costs for a solution
are being managed by different stakeholders (business owner, IT, development department,
operational party, management) and incentives tend to defuse insight on TCO. Financial
responsibility and accountability of one only party for chosen technical solution details. This
party should have the proper mandate to take upon that responsibility so it can be taken
accountable. And it’s logical to have a business as a responsible point for the decisions made.
But then there comes a point that a proper and reliable TD measurement and communication
tool must be implemented.

2.5.5 Approach by JL. Letouzey

Jean-Louis Letouzey' proposes the following 7-steps approach:
1. Define what creates TD in your systems
Define how to calculate TD in your systems
Set goals at organization and/or project level
Monitor TD against goals
Compare TD across applications, versions, projects, 31 party contractors
Analyze your existing TD (age, location, impact)
Set pay down goals and prioritize them

Nowvbkwd

It’s more a matter of integrating business considerations into technical decision making and
vice-versa.

Jean-Louis Letouzey, The SQALE method: Meaningful insights into your Technical Debt, Web link
http://www.slideshare.net/Letouzey/the-sqale-method-meaningful-insights-into-your-technical-debt| . Another even simpler to remember

approach was formulated out of word debt: Discover, Estimate, Break Down and Task & Track.

-33-

http://www.slideshare.net/Letouzey/the-sqale-method-meaningful-insights-into-your-technical-debt

2. Literature overview

all decisions made in this context are business decisions. However, businesses have been
flying blind for a long time when it comes to technical debt. The metaphor therefore helps the
business and technical staff have a concrete and open conversation about the technical path to
follow that will make the most sense for the business.

2.5.7 Other techniques

One can find other approaches towards facilitating better TD tracking and introducing general
awareness about the existing debt.

Utilizing defect tracking system

One of the options described [16] — TD is captured and tracked via defect tracking system.
Each time a debt is incurred, the tasks needed to pay off that debt are entered into the system
along with an estimated effort and schedule. The debt backlog is then tracked, and any
unresolved debt more than 90 days old is treated as critical.

For another company [16] IT debt listing is included as part of its Scrum product backlog,
with similar estimates of effort required to pay off each debt. In this approach also a size of
defects is regulated by following principle - if the shortcut the developer is considering taking
is too minor to add to the debt-service defect list/product backlog, then , it's too minor to
make a difference hence it’s better not to take that shortcut.

-34 -

3. Research design

Chapter 3.Research design

This chapter describes the steps of the research and summarizes the approaches and methods we used to
build the model.

3.1 Introduction
After literature analysis the following steps were preformed:
1. Defining the techniques that can be used to build the model (Part 3.2)
2. Describing the rules according to which the model can be adjusted (Part 3.3)
3. Model description (described in Chapter 4)
4. Applying the model — collecting data (described in Chapter 5)

3.2 Defining the techniques
Among several techniques that are used in software quality studies to build reliable metrics adjusted to
specific conditions include the goal question metric (GQM) approach [13].

3.2.1 GQM

For defining the model application approach the Goal Question Metric approach was chosen. GQM is a top-
down approach when researcher first defines top-level requirements — goals, then follows set of questions
and metrics to measure them.

A bottom-up approach will not work in our case because there are many observable characteristics in IT
systems (e.g., time, number of defects, complexity, lines of code, severity of failures, effort, productivity,
defect density), but which metrics one uses and how one interprets them it is not clear without the
appropriate models and goals to define the context.

Due to the way that the project was developing GQM was applied in reversed order — metrics we’ve used
were later retrofitted using this method. Thus, GQM was not so much used for constructing the model but
for validating that it was well-constructed.

-35-

3. Research design

About GAM

The Goal Question Metric approach is based upon the assumption that for an organization to measure in a
purposeful way it must first specify the goals for itself and its projects, then it must trace those goals to the
data that are intended to define those goals operationally, and finally provide a framework for interpreting
the data with respect to the stated goals. Thus it is important to make clear, at least in general terms, what
informational needs the organization has, so that these needs for information can be quantified whenever
possible, and the quantified information can be analyzed to whether or not the goals are achieved[13].

‘ Goal 1 Goal 2 \

[Question] [Question l [Question] [Question] [Question l

[Metric] [Metric J [Metric] [Metric] [Metric] [Metric]

Figure 12. GQM approach schema

For existing 3 layers

Goal is defined for an object, for a variety of reasons, with respect to various models of quality, from
various points of view and relative to a particular environment.

Set of questions is used to define models of the object of study and then focuses on that object to
characterize the assessment or achievement of a specific goal.

Metrics, based on the models, is associated with every question in order to answer it in a measurable
way.

One can use following steps to implement the approach:

1.

2.

4.
3.

Develop a set of corporate, division and project business goals and associated measurement goals
for|productivityland|quality|

Generate questions (based on models) that define those goals as completely as possible in a
quantifiable way

Specity the measures needed to be collected to answer those questions and track process and product
conformance to the goals

Develop mechanisms for data collection

Collect, validate and analyze the data in real time to provide feedback to projects for[corrective |

action

6.

Analyze the data in a post mortem fashion to assess conformance to the goals and to make
recommendations for future improvements

3.2.2 Technical debt template
Each issue is described by a set of characteristics derived from TD template [7]. We have additionally
modified it to fit our local requirements. And also we added type of debt by intention (see M Fowler

quadrant) — as a part of metadata.

-36 -

http://en.wikipedia.org/wiki/Productivity
http://en.wikipedia.org/wiki/Quality_(business)
http://en.wikipedia.org/wiki/Corrective_action
http://en.wikipedia.org/wiki/Corrective_action

3. Research design

3.2.3 Technical debt taxonomy
As there are various approaches to classifying TD (in more details it was described in Chapter 2) issues. For
our model we decided to combine several of them.

1. Type of debt by system layer (by P. Kruchten [26])

2. Category within each system layer (TOGAF)

3.2.3 Sonar metrics
As we have code-level TD as one of the domains in our model we decided to collect data no that using Sonar
tool. It’s planned that results obtained could be useful for reasoning about the quality of the model.

3.2.4 Paretto approach
To make initial data collection faster we’ve taken a decision to apply 20/80 principle. This was done by
using it in both dimensions:

1) Amount of systems for which technical debt that was measured. We have selected 5 systems out of
more than 100 applications based on professional opinion of the practitioners who expect those to be
most impactful in terms of variety of data collected and checking model feasibility.

2) Decreasing amount of ATD subcategories that were derived from TOGAF. We picked 11 most
valuable out of 34 based on professional opinion of the practitioners.

3.3 Model application rules

Model we have defined contains several points that need to be adjusted according to requirements of the
research and local conditions. We have developed the following guide for customizing the model before
actually applying it for gathering data.

Table 5. Stages of customizing the model before applying

Title Description Examples and sources |
1 Select TD Model in its initial state is targeted to Available list [26] :
domains capture all domains of technical debt. But 1. Architecture
it can be customized to leave only relevant 2. Documentation
ones — depending on the focus of the 3. Testing
project where it will be used. 4. Code
5. Technological gap
2 Adjust For each of the selected high level
categories domains perform additional categorization

providing case-specific taxonomy. This
will form the TD landscape that will be
investigated.
For each group prioritization may be
needed in case if the taxonomy tends to be
too wide and complicated. First level
impact issues can be checked as a priority
others will follow.
2.1 Architectural Depending on what methodology is used Available list:
in company categories could be derived e TOGAF

-37-

3. Research design

from them

e Zachman EF
e FEA
e Sece others®’

TD template it can be quite simple or
rather complex.

Measure the time on how long it can take
to fill in the form for one person. Be sure
to allocate sufficient time in employees
schedule.

2.2 Documentation Enlist what types of documentation are Available list — see model taxonomy
used in company. Include also the ones
that needed but not in place yet.
2.3 Testing Enlist what types of testing are used in Available list — see model taxonomy
company. Consult the employees who take
care of testing - about specific problems
and critical points that are missing.
24 Code Select a tool for detecting code-level debt Available list:
— structural violations, code smells, 1. Sonar
complexity etc. 2. Resharper
3. FindBugs
4. Subscription services by SIG,
CAST, etc.
3 AdjustTD Initial template [60] contained 6 fields. In ~ Obligatory fields:
template initial view of our model we have 8 fields. e TD principal estimation
One should think carefully what indicators e TD interest estimation
he/she wants to capture for each TD issue. e Date added
e System name
TD principal and TD interest estimation is e Functional part or module
expected to be done in hours. Due to the Optional fields:
fact j[hat it is hard to.estlmate it so . e Employee name/id
precisely the following scale of relative e Type of debt (from TD
times can be used: uadrant)
Hours — Days — Weeks - Months d
e System owner
e Issue description
4 Tool for This can be done by several ways, Available options:
collecting depending on complexity of taxonomy. 1. Using advanced Excel sheet
data 2. In form of online survey
3. Special TD dashboard
5 How-to It’s targeted to provide guidance for Manual from current paper can be
manual for colleagues who will be adding information used as a basement [see Appendix]
data into this TD database. Depending on the
collection complexity of the taxonomy and fields in

37 Web link:[http://pubs.opengroup.org/architecture/togats-doc/arch/chap37.html]

-38 -

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html

3. Research design

6 Allocate If there is sufficient amount of employees
systems list who can take part in the survey it’s
and strongly recommended to have overlap. In
participants a way that several participants provide
list feedback on the same system — this will

help to highlight all possible problem
spots.

Participants can be assigned to specific TD
domain according their specialization.

For example — testers should fill in the
part about test coverage on selected
systems, not answering questions on
architecture.

As a result of the aforementioned steps one should have following deliverables:

1. Tailored model taxonomy and issue template
2. Accessible tool for collecting data

3. Research participants (both employees and systems) listing and planning

-39-

4. Model description

Chapter 4. Model description

This part of the paper is devoted to model description. It shows the model we have developed, what are the
constituent parts and why the decisions were made on each step of the research.

4.1 Introduction
The model itself consists of the following building blocks:

1. A taxonomy of technical debt types and subtypes

2. A template for recording technical debt items that occur in a specific system
3. Guidelines for estimating the size of technical debt items

4. A tool for calculating and aggregating technical debt items

Each of those model elements will be described in this chapter. An overview of the model is presented in
Figure 12 below.

Business Architecture (BA)
Debt ID
Artefact Name
Debt Description
Categorisation
Technical Debt — Domain
Technical Debt — Sub domain

Technical Debt — Category

Data Architecture (DA)

Type
Debt Type
Debt Status

Attribution E
Application architecture (AA)

User Added o

Artefact Type structure
Functional Area

System Language
System Name
System Business Owner

System IT Owner

Calculation %
Debt, hours A
Additional Cost, hours] Exmation

guidelines
Technology architecture (TA) Occurrences, per year
Probability / hours

Technical
debt

Technical debt (TD) types Subtypes of Architectural technical debt Model item description fields

Source: technical debt domains Source: TOGAF deliverables Based on: techincal debt template,
by Philippe Kruchten. techincal debt quadrant

Data completeness: [l - fully covered |1l - partially covered | - future work Items relations: —includes several « - provides data for —{ - includes one of

Figure 13. General model view

- 40 -

4. Model description

4.2 Model parts
We will describe the various parts of the model, starting on the left-hand side.

4.2.1 TD taxonomy
Developed taxonomy (Fig. 3) presents all technical debt categories defined in current model version. The
five major debt types from Philippe Kruchten TD model are used in [26]. Each block contains terms and a
definitions list that were intended to provide common language for discussion for project stakeholders:

e Researchers working on overall TD identification and measurement

e Practitioners, specialists in one of the investigated areas (testers, developers, architects etc.)

e Product owners and business representatives

Each TD category is supplemented with additional point domain-specific types. This is planned to be an
extendable item that will contain metrics that can be valuable for specific domain that company operates in.
List of domain-specific types and its impact is be defined though cooperation with local practitioners.

Full schema of TD taxonomy developed is presented in Appendix 1.

Figure 14. TD categories taxonomy

Overall IT systems technical debt

////7 \ Technological
gap

Documentation Testing Code level
debt debt debt

Architecture debt

Information on definitions was collected referring to acknowledged scientific papers (IEEE, BSC) as well as
industrial standards and approaches (ISO, TOFAG, SWEBOK).

Architectural debt

Supporting methodology for defining ATD categories was chosen according to a EA framework which was
used in the company — which is TOGAF. So as subcategories we use “outputs” listings that are described in
TOGAF for four layers of system architecture: Business architecture, Data architecture, Application

architecture and Technology architecture.

4 subcategories of ATD are decomposed into following list of subjects according to TOGAF project
implementation guidelines. Applicability of each of them is still a question that needs to be investigated.
Later stakeholders can estimate amount of TD per subtype.

We used TOGAF as a backbone because of several factors:

It’s used in ABN AMRO internally for several years so it is a common language for company’s employee
stakeholders — architects, project managers, developers, testers, etc. TOGAF is a basement of ABN AMRO
application reference document, which provides a model architecture approaches for structuring applications
and providing principles, policies and standards that govern its components.

-4] -

4. Model description

TOGAF framework is acknowledged by professional community as a high quality product. The
framework was initially developed in 1980’s US Department of Defense and was called TAFIM™®. Later
OpenGroup®’ reworked it partly and launched TOGAF 1.0 in 1995. Since that date it’s still being reworked
and improved constantly. The latest version is TOGAF 9.1 that was released on 1 December 2011. All the
framework descriptions and schemas are open source which makes it possible for any company to apply it
for its architecture without incurring significant licensing costs.

Documentation and testing

Initially types and definition from ISO/IEC 26515:2011 and SWEBOK were used. Later the list was
adjusted according to techniques list and problems employees (testers, architects, developers) identified in

specific domains during preliminary interviews.

Code level

It was planned that Sonar will be used as ASA tool for collecting data con code-level debt. According to the
model, results on code level TD will be filled in by metrics obtained from Sonar tool. This will add practical
value considering one of the targets of the project to identify spots with maximum TD load.

However at during implementation of Sonar on one of the models — smaller application in IB team
experienced technical difficulties. So for now results on Sonar analysis of codebase of IB systems is not
included into the scope of the current thesis paper.

Technological gap

Collection of artifacts that involve usage of outdated libraries applications and frameworks. This category of
debt is different from others by its nature. Other categories basically present listing of features that are
involved in to software systems development and maintenance accompanies with their status (documents

absence, poor development, good state). Estimation guidelines are used to convert status of the item into
practical hours-measured value.
While TG items serve as a collection of cases on different layers of the systems architecture that describe
outdated technologies that are used.
In current state of the model we outlined several than subtypes of technological gap items. Some of them are
the following:

1. Server side: Java codebase issues

2. Server side: Application server version issues

3. Client side: Javascript/CSS codebase issues

The relative impact of each of technological gap categories is still a question for further investigation.

There is awareness present in software development community about the existence of such a factor as
passive aging of systems. It means that systems that were built according to latest s approaches at one time
can become outdated and incur sufficient amount of debt several years later. Methods to measure this effect
numerically and provide effective reaction are still to be investigated.

¥ Web link:[http:/pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html#tag 38 11]
** The Open Group is a global consortium more with than 400 member organizations, that enables the achievement of business
objectives through IT standards. Web link :|http://www.opengroup.org/aboutus|

-42 -

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap37.html#tag_38_11
http://www.opengroup.org/aboutus

4. Model description

4.2.2 Item description

Our research into how should item description look like we started from technical debt template [7]. We
have enhanced it with fields that will contain specific details that would be needed for future analysis of the
results in context of project requirements. For example the Meta data field - that will contain all the
information about item localization in company’s infrastructure. As a result we obtained the following group
of parameters that are presented in Table 1.

Table 6. Extended TD measurement template

Description Source
1 TD principal Contains TD principal measurement Practitioner hours
feedback
2 TD additional cost Contains TD interest measurement Practitioner hours
feedback
3 Occurrences Number of cases when code was Documents number
edited per year, actually payments on analysis
captured TD
4 Probability Represents amount of debt per year Multiplication of 2) hours
that is unexpectedly paid and 3)
9 Generic Debt Type Derived from TD quadrant Expertise typed
6 Generic Debt Describes Accepted Expertise typed
Status
7 Meta data Field containing information about Expertise text
date added, author, systems owner,
functional area, language

Further on, considering details of technical implementation we have reworked the extended template and
added fields representing taxonomy categories as well as more meta data fields. In a final Microsoft Excel
table that was used for data gathering we had 19 columns. Category titles and groups description is presented
in Table 2.

Table 7. Item description fields in model used

Fields Description

Debt ID General information — system name and its functional
Artefact Name* categorisation.

Debt Description™

Artefact Type*

Functional Area”

Technical Debt — Domain Debt item categorisation — according to used TD taxonomy
Technical Debt — Sub domain

Technical Debt - Category

9. User Added* Debt type and categorisation; item reference in ABN AMRO
10. Debt Type systems structure — both on technical and business level.

11. Debt Status

12. System Language”*

PN~

- 43 -

4. Model description

13. System Name*

14. System Business Owner*

15. System IT Owner*

16. Debt (hours) Details of debt calculation — digital parameters of captured debt in
17. Additional Cost (hours) the artefacts

18. Occurrences (per year)

19. Probability /(hours)

Fields marked with asterisk (*) were removed or anonymised due to security regulations in ABN AMRO.
Codes used in those fields are random and do not relate to any internal names of components.

4.2.3 Estimation guidelines

For each debt category definitions of deliverables are derived from TOGAF standard definitions (Appendix
2). Each deliverable in TOGAF methodology serves as a summary of the development step activity. For
future usage it helps to develop new systems with reducing duplication and other negative effects of bad
architecture. It also provides base for next step of architecture development.

For each category we have 3 types of activities: creating, updating and modifying. Each activity has different
estimated time due to difference in activities and expertise needed to perform this action.

For example creating a document takes most time because it involves the such activities as — observing the
existing systems profiles, investigating associated artifacts and communication with stakeholders about
implementation details, functionality, etc. and formalizing the gathered information in a form of a
deliverable.

Estimation guidelines can be called one of the central concepts of the developed method. Because they are a
proving means to convert perceived project status into measurable amount in hours. One of the main tracks
for future method improvement is to them unambitious and also probably define commonly happening
occasions in the architecture and define how a participant should act in each case.

Estimation guidelines we’re based on the expertise of practitioners. Some of the Practitioners that are
working on the IB projects were also the participants in method evaluation survey (part 6.2.2). Considering
their education level, professional experience and experience with system utilized in ABN AMRO especially
we concluded that this can serve a sufficient foundation for first data collection round.

4.2.4 Calculating and aggregating tool
Reasoning about available options for technical implementation possibilities we considered the following
options:

1. Microsoft Office Excel sheet with validation rules and pivot tables;

2. Questionnaire or survey (paper or web-based);

3. Specific TD dashboard web application.

Due to time limitations and possible current stage of the project we have chosen option 1, implemented in
current research:

-44 -

4. Model description

4.3 Model discussion

Communication with practitioners at ABN AMRO

We had several meetings with local practitioners in different domains: testing dept. representative,
developers, architects. Meeting consisted of initial project presentation, explanation of the term and its
structure and influence on overall process. Later interviewees were asked to give feedback. Feedback
included 2 types of information: details about specific procedures used in the company and identifying
directly some cases where it was obviously occurrences of technical debt.

Table 8. Examples of TD issues at ABN AMRO

TD domain Issue |
Technological gap items Usage of outdated Java version
Usage of outdated WebSphere version
Usage of outdated STRUTS version
Usage of outdated front end library

Testing domain Insufficient amount of unit tests
Lack of automated test

Architecture level debt Localized tables with migration jobs
Not used business configuration objects

- 45 -

5. Application of the model

Chapter 5. Application of the model

This chapter describes the case study data collected during the research. First it goes through theoretical
findings and later presents data on systems that was discovered.

5.1 Introduction

Planned research structure included the following steps:

Model development and adjustments

This stage included constructing the model, communication with practitioners to adjust the debt taxonomy.
We used TD template as a basement and GQM method to refine the model fields.

Technical implementation and data collection

The model was implemented as a file with data structure (debt taxonomy, TD item fields) and validation to
collect measurements. We also defined the estimation guidelines that were used by participants to estimate
the amount of debt incurred in each case. Employees were filling in the model file for system case by hand.
As is was the first attempt to collect data we selected 5 systems and 3 employees for data collection.

Results analysis and feedback questionnaire

After data is collected analysis of data was carried on. This will included creating a pivot table to present TD
distribution across systems, debt types and architectural layers. This also helped us to identify the spots with
highest amount of TD interest and principal. Later the questionnaire was sent to data collection participants
to measure the feasibility of the model.

Below each of the research steps is described with results obtained.

5.2 GQM results

After several iterations the following goals were formulated. Then they were connected with appropriate
questions while those in turn formed connection to metric used in the model.

Goals

1. Identify are types of TD we should measure

2. Save costs on most often changed components

3. Identify owners of TD issues across systems

4. Identify domains with debt incurred by time of creation / old architecture/code

Questions

What EA methodology is used?

What is amount of hours of debt associated with each component
How often they are updated?

Who is the owner of the component?

What part of documentation is missing?

How often is documentation for modules/components is updated?
What are documentation types used for projects?

What automated testing tools do we use?

How are organized types of testing that are used?

10 Who is in charge for creating test cases?

11. How big is duplication of code in current code base?

[a—y

DO N AW

- 46 -

5. Application of the model

12. How many lines of code is our average class/method? What are the longest classes/methods?
13. Do we rely on outdated frameworks, libraries, applications?

Metrics
1. Component description (meta-data)
2. Issue description using TD template (meta-data)
3. Group of metrics: architecture and subcategories (TOGAF + prioritization)
4. Group of metrics: code (SQALE + security)
5. Group of metrics: documentation (according to documentation types used)
6. Group of metrics: testing (according to test layers used + automation)
7. List of technological gap items

In graphical representation GQM results are presented on Figure 14.

Identify are types Save costs on most Identify owners of gj:bnll:?cgzr::'gs :’nl:g
Goals of TD we should often changed TD issues across of creation /)zl)ld
{
measure components systems A
architecture/code
Questions
Whatparof | What f—= e
documentatio are
et oA What is Who is the nis missing? | documa | What :r:::i;:d Who is in ";‘EL‘?[“’" ::; ks st
:‘ amount of How often owner of How often is ntation automated | {CCCCE ¢harge for of code in s Do we raly on
mathodoiogy | hours of debt | they are the documentatio | types testing {osting | creating aae™ | cassmetnos? ohideted
lsued associated updated? component | nfor used for | tooisdowe | NG tost cases? code o frameworks,
o 2 base? at are the
with each 2 modulesicom | projects | use? \iket7 longest il
Somanion proes iy £ classesimethogs? | | @Rplications?
updated?
Metrics
i e ATD DTD T Code TD Technological gap

Figure 15. Goal question metric results

5.3 Technical implementation

Currently model measurement tool implementation done as a Microsoft Office Excel sheet with pivots table.
This gives fast and easy tool for both collecting and presenting data. Later model can be re-written as a web-
application.

Manual for the subjects participating in technical debt data collection
It’s expected that whole process won’t take you more than 20-30 minutes.

1. Go through the presentation of the project (attached) — to get the idea of TD terminology. Check that
you clearly see the difference between TD principal and TD interest.
2. Open model Excel file (attached)
a. Add the system using its code (e.g. “XXX108”) that you’re going to measure as a new row if
it’s not present in the list yet.
b. Fill in the columns in meta-data section with data related to the system.

-47 -

5. Application of the model

c. Go through the sub-categories of architectural, test or documentation debt and fill in the cells
in that row. Definitions of categories are in the attached reference document.

d. For each category, please add descriptive categorization in terms of was this debt taken by
occasion (reckless) or by intent (inadvertent).

e. Estimating amount of debt can be done using following scale: fixing the issue or going on
without fixing it will take you or your colleagues: hours/days/weeks/months.

Participants of the measurement
Participants of the questionnaire were the same practitioners who added data about technical debt amount
during the main phase of the research. As it can be seen in table below they all are experienced professionals
in the architecture and development area.

Table 9. Employees and systems measured

/ES”;‘s’t'Z,.ynes"s XXX040 XXX001 XXX509 XXX245 XXX001WS ghif
PA2778 X
J10108 X X X
WA2126 X X X X

List of systems

Systems researched were built during in house projects run by 3™ party contracting companies (IBM, TCS).
Investigated systems present different layers of the IB infrastructure. They all are written in Java (JEE)as
main programming language. They also utilize SQL for some parts. Ages of those systems vary from 8.5 to
2 years. Mode details about those systems are summarized in Table 10.

Though around 10-12 of business applications used by IB are planned to be retired in the next 2-3 years,
none of the investigated systems fits this category. Total size of all IB systems is approximately 1881
KLOC.

Table 10. Researched systems characteristics

XX X001 26668 2.5
XXX 040 2003 8
XXX 001WS 61788 4
XX X245 7656 2
XXX 509 17569 3

5.4 Data collected on technical debt
Results table (Table 10) describes summary on TD for 5 researched systems. All of them act on different
layers of IT infrastructure in IB systems at ABN AMRO. The detailed TD model filled in is presented in

- 48 -

5. Application of the model

Appendix 5. Data collected was only related to architectural TD categories. This presents the focus of the
current paper with is architectural technical debt estimation. It also presents smaller amount of data itself but
we find it sufficient enough to proceed with initial model evaluation. Another reason was that estimation
guidelines for other types of debt (Testing, Documentation) are still in discussion and formalization phase.
As it was described in the TD taxonomy we have selected 11 subcategories for ATD. While in the final table
one can see smaller amount of subcategories (4 to 7) in each systems description. This is because 5 studied
systems present different functional layers. As TOGAF categories describe different levels of EA the not all
the 11 ATD subcategories can be applied to each system. If we consider all the lines of data collected (see
Appendix 5), not filtering for specific system — all of the 11 ATD subcategories are present there.

Table 10. Summary on collected TD data

Debt Change occurrence Debt interest Debt categories
principal per year, avg. per year described
XXX001 84 4 57,8 4
XXX040 22,4 1 5,8 6
XXX001WS 37,5 2 11,25 4
XX X245 11,9 2 11,3 4
XXX509 188,9 2 108,3 7
JAVA BATCH 40 3 18 1

General notes

All architectural TD is considered to be “Prudent” type according to TD quadrant. This is was done because
we came to the conclusion that on system architecture level any decision is motivated and stakeholders are
aware of it. Also all debt data was described as “Just identified” in “Debt Status” column. This is because
collected data was the first set obtained and it was reasonable to mark it as “Just identified”. As it is expected
later TD data collection model can become a part of regular metrics and then this field can contain more
detailed information on project TD evolution.

Results for researched systems

The most TD principal and interest incurred is by system XXXS509, having 188,9 and 108,3 hours
respectively. It can be seen that this item contains the most ATD categories involved into the description — 7.
This fact could influence the amount of calculated debt for this system since the model calculations was not
really adjusted before and this specific system was not cross-measured by different employees.

While the lowest rate is at XXX001 WS system, which is 11,9 and 11,3 hours respectively. Also the date of
initial release of the system can have a big impact on the amount of registered architectural debt — for
relatively older systems there can be better state of the required architectural documentation provided than it
is for newly developed ones.

If we consider the ratio between the TD principal and interest incurred by different systems we can see that
the largest factor will be (i.e. worst in terms of) in case of XXX245, it’s close to 1. While the amounts of

- 49 -

5. Application of the model

debt are almost the smallest in absolute numbers, this means that in relative amounts, debt of this system is
the most expensive — yearly a interest payments are 97% (11.3/11.9 x 100%). Such types of debt in systems
should be eliminated in first place in case if this system is not planned to be retired in reasonable time.

If we compare those results with XXX040 for which this metric has the lowest value of 0.26. One of the
reasons can be that the number of change occurrence per year is lowest, estimated as 1. This case presents a
type of debt that should be identified as such and tracked but can be left intact due to its low costs.

As the XXX001 system has the greatest number of change occurrence per year, which is 4. This lead to the
fact that having quite small amounts of additional costs per category lead to high amount of yearly interest.

XXX509

XXX001

y DATA

y APPLICATIONS XXX001WS

/ TECHNOLOGY

Figure 16. Researched systems compared

Analyzing properties of the systems, such as their attribution according to TOGAF layers or systems size or
the amount of debt incurred we could not derive any more direct regularities. One of the reasons for that
could be relatively small amount of data collected.

On Figure 16 is presented a diagram showing comparable size of the systems and their technical debt items
attribution, referencing TOGAF methodology categories.

Here we would like to recap our conclusions for investigated systems, considering their technical parameters
and measured TD amounts for them:

e System XXX040 is a smallest by its codebase and is probably modular — it’s changed approximately
once in a year, which is good. While the system itself is relatively old — 8 years. This occasion should
not be treated as urgent TD that must be eliminated.

e XXX?245 is the system that has the biggest TD percentage rate, and is relatively small, and new, so
this inconsistency should be probably fixed first.

e For systems XXX001WS, XXX001 that have the biggest sizes in the measured group and also are
second in size of TD percentage rate. Those points should be fixed in second turn.

e XXX509 has average amount in all parameters but it has biggest amount of absolute debt in hours.

Comparing 2 employees answers about the same systems

- 50 -

5. Application of the model

For 2 systems (XXX001 and XXX040) we had 2 different employees adding in data into the model. This
intersection helped us to compare the results and evaluate model feasibility. Considering our amount of data
collected we had only 2 differences in results provided by different participants.

1) When estimating TD data for system XXX001 participants estimated debt associated with Use Case
diagram differently in 3 times— 72 hours against 24.

The reason behind is that one of the participants had a wrong approach to estimating amount of use cases for
each business function. In this case there were 3 separate blocks with similar functionality, and there had to
be one use case for all 3, but not a separate use case for each. That’s how 3 times difference emerged.
Referring back to the method we used, such inconsistency could be fixed in future by having more detailed
description in estimation guidelines.

2) In XXX040 case we had different participants choosing different categories to describe incurred debt.
While one respondent selected Logical Data Model, another used Process Flow diagram and Role / System
Matrix.

In this case the participants approach was different because of difference in their perception of what
deliverable should have been used was different. Talking about the method, it could be improved to avoid
such collisions next time to by providing pre-filled architectural categories to the participants - to strictly
define what participants should measure.

Virtual components

While collecting data we came to understanding that model can also contain high-level “virtual”
components. Such an approach can provide a way to capture TD in architecture on different levels while the
system or a module is not physically one piece of software. This was done introducing “Java batch” system
in the list of researched systems. Is not a real system but a virtual aggregation of system modules and
components. It can be referenced as a backend platform providing services needed for normal functioning of
front office systems.

Other notes

During data collection we had another example of unreasonable widening the technical debt metaphor.
According to internal regulations at ABN AMRO all the technical documents are to be written in English.
But one of the participants while examining available information discovered that some of them related to
one of the systems are written in Dutch. For him being a non-native Dutch speaker it will take reasonably
longer to appropriately identify current document status and propose possibly existing debt. So he asked
whether this should be called a debt of some type. Sharing the position of Robert Martin*’ towards bad code,
this can be qualified as violation of adopted work practice (compare with badly written code in code level
metrics for example) that just needs to be fixed but not a specific type of debt captured by system.

40 Blog post, 09/22/2009, Web 1ink] https://iites.google.com/iite/unclebobconsultingllc/a-mess-is-not-a-technical-debtI
-51-

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

5. Application of the model

5.5 Evaluation of proposed method
For evaluating the model we used additional feedback questionnaire for all employees who were
participating in data collections on architectural technical debt. More details on the participants employees is
presented in 5.2. Evaluation questionnaire consisted of 3 logical parts :

1. Question about employee’s experience in the field and in company projects

2. Questions to measure model feasibility

3. Comments of data collection process and general feedback
Full listing of results in presented in the Appendix 5 and 6. Below results discussion is presented.

Model feasibility measurement
For discussing model feasibility we had the following questions list:
4. If the research question about is technical debt measurement, to what degree do you think using the
proposed model will enhance your job performance?
5. To what degree do you think using this model for estimating TD would be easy to use?*'
6. To what degree do you think this model is consistent with the existing values, needs and experience
related to TD awareness ?
7. If the research question is about technical debt measurement, to what degree do you think you would
use this model in future?
8. If the research question is about technical debt measurement, to what degree do you think other
colleagues of yours would use this model?
9. To what degree the model is able to measure the amount of TD incurred by system?
For each of the questions respondent could give one of the following answers: Very low degree (1), Low
degree (2) , Average (3) , High degree (4) , Very High degree (5) . The results collected are presented on
Figure 4.

*! Question text in Q5 was reformulated to fit other questions approach. Original version was: To what degree do you think using
this model for estimating TD would require much effort to use?

-52-

5. Application of the model

5
4 -
B WA2126
3 -
J10108
M PA2778
2 -
1 -
Q4 Q5 Q6 Q7 Q8 Q9

Figure 17. Feedback questionnaire results

As it is presented on Figure 15, mostly participants answers rated the method they used quite high.

The model is stated to be especially good in sense of expected fulfilling the requirements on collecting data
on TD in the systems (every respondent rated it 4 out of 5). It also can be easily speeded across their
colleagues (every respondent rated it 4 out of 5).

The lowest perceptive mark (3, 3 and 4 out of 5) was graded the ability of the model to capture all the TD
incurred by systems. We see this as a result of the fact the model still does not include several parts
describing other valuable domains of TD in the system.

Usage of a tool also implies understanding of its principles, so we wanted to know about difficulties
participants had. That was done by next question - Q11: Did you have any difficulties while understanding
the model or filling in the measurement table? The following responses were collected:

e Not much;

e [had to refer to the category definitions in repository. I was able to understand it with detail text

e Notreally

As we can conclude from given answers, that for employees that are experienced enough with systems that
are measured model and the task was well understandable. However interaction with model during adding
the data may involve additional activities for searching and obtaining needed reference materials.

Comments on data collection process
Our questions to get feedback on what’s missing in the model was: Q10: Do you think there are aspects that
are missing in this model? The following responses were collected:
e There should be some way of capturing the relationship between different categories. E.g; an
incorrect Use case diagram (business architecture) can influence technical debt in testing;
e We only calculated for architectural debt. Will be more clear if others are also done.

-53-

5. Application of the model

Participants replies collected on abovementioned question directly support the point that we discovered
during initial stages of our research. This issue with inner relationships between different categories or
possible duplication was also mentioned by other practitioners in the company before. On current stage we
have no clear solution how this influence can be eliminated for data collected. We see two possible ways to
solve such type of inconsistency on further stages of model development:

e As on empirical level, the elimination can be implemented as a set of rules — that would be a part of
the model method, the same as estimation guidelines. Such rules could be directly stating which
types of debt should be measured in what categories, with complete ignoring of the same issue in
others.

e Considering TD amounts calculation, the registration of existing interrelations could be done by
introducing specific coefficients that must be added to model calculation formulas.

Both approaches however require significantly more volume of data collected from various systems.

As the model in the future could be used as a method to measure the TD status of other large information
systems in the company and would involve more participants we wanted to estimate how much time it takes
to work with it on a current stage. The question we had was - Q12: Please estimate how much time it took
you to fill in the measurement table (in total or per component)?

Findings on that questions differ for each of the participants, quite noticeably. Those data is presented in
Table 10. For better presenting our point we have added also the details about the experience of each of the
participants in the area and specifically within company projects.

Table 111. Comparing time for filling in the model with data
Question / Employee WA2126 JI10108 PA2778
How long have you been working in ICT sector? 13 7 6
How long have you been working at ABN AMRO 2 7 3
projects?
Please estimate how much time it took you to fill in the
measurement table (in total or per component) 0.5 1 2

As it can be see seen in the Table 10 there is a direct relationship between years of experience of the
employee and the time needed to fill in the data about the systems. Even considering considerably small
dataset we have now this tendency supports common sense expectations on the questions.

As it was discussed in 6.2.1, we have compared results collected from different participants about the same
system and found that they differ. Also to check the model consistency, we have asked the following
question in our feedback questionnaire: Q73 Please give your comments on following results of comparing
data collection: There are 50% changes in list of TD categories describing XXX040 component. We got the
following answers:

e Employees have personal different professional experience

e Employees have personal view on TD amount estimation

-54 -

5. Application of the model

We think that those replies also support the results of the previous question. Experience of the employee
plays a significant role in correct estimation of the system’s issues and possible amounts of incurred debt. To
eliminate “personal view on TD amount” the estimation guidelines as well as the other empirical parts of the
method must be adjusted and made more formal.

5.6 Threats to validity
During the model development we came across several points that should be considered as things to be
solved in future work.

Duplication on functional level is not measured

On code-level metrics duplication of code blocks occurrences is defined as one of the factors leading to
worse code quality hence technical debt. For code level, however such occasions can be measured and
evaluated automatically.

On architectural level there also can be the case of 2 or more systems or system parts having similar
functionalities up to some degree. Such cases can be common for cases with wide and diverse IT systems in
companies. But investigation of such occurrence of duplication in each case has to be investigated in person.
The currently developed model does not include any approaches towards such duplication evaluation.

One of the ways to handle this could be interviewing stakeholders from different functional domains. Also
detailed analysis of all existing components catalogues/portfolios can help to enumerate such issues and
measure occurrences.

Only ATD domain data collected

In current research only architectural types of technical debt were investigated. Obtaining additional set of
results by investigating the same systems from other angles — code and testing debt, could give a more
detailed picture on the general debt load of the those systems.
This was not discovered because of 2 reasons: first, we could not include this because of the time limitations
of the project. Second comparing those results would require much more work on a model level — how one
could properly compare such different pointers.

Estimation of amount of hours

As it was stated earlier, estimation guidelines are a very valuable part of the developed method. They
directly influence the number of registered debt in each of the categories. As such change of expected
amount of hours to fix in estimation guidelines can change the results collected.

We propose that estimation guidelines that need to be adjusted every time when the new larger data set will
be collected.

Appropriate systems selection

In the IB domain there are up to 150 systems and modules present. For our measurement we have selected 5
systems. This selection is based on professional experience of the participated researchers and their
expectations that those systems expected to have biggest debt rates.

-55-

5. Application of the model

Their long time expertise in company’s systems and diversity of selected systems (on architectural levels,
which is discussed in 5.2) makes us to conclude that selection was done in proper way considering research
setting.

Correct ATD categories selection

For our measurement we have selected 11 ATD categories of 34 that are present in the TOGAF standard for
this stage. This selection is based fully on professional experience of the participated researchers.

This choice had to be done due to setting of the project, but we agree that this can lead to underestimation of
the total debt presence in the researched systems. Question of what should be chosen for estimation - another
subset of categories or full list of ATD categories is still open. The ways to solve it require more data to
analyze and possible more professional feedback expertise.

Too little participants during data collection

During data collection we had only 3 employees as participants for data collection on debt amount
estimation. We have to agree that larger number of participants could give us better data to discuss validity
and feasibility of the model and its parts. Unfortunately this was dictated by the setting of the project on its
current level of development. In future to make the method more mature it will be needed to implement a
larger scale of data collection to be able to apply not only logical reasoning but also statistical data analysis
to see other drawbacks in the model.

Correct participants selection

On data collection stage all the participants were representatives of one 3rd party contracting organization
that worked with ABN AMRO project for several years already.

There can be an argument that the chosen ones are too closely related and may have close point of view on
the details of the systems architecture. Considering their personal experience and experience with company’s
projects (Table 10) makes us think that this is mature enough to have reliable results in this measurement as
separate respondents.

-56 -

6. Conclusions

Chapter 6. Conclusions

In this chapter we summarize the findings of the research and provide answers to the research
questions. Additionally, we discuss method limitations and later indicate possible areas for
future work.

6.1 Summary
First we answer the research questions formulated in the beginning of the paper.

RQ1: What is architectural technical debt, how can it be measured, and how does it
related to other TD measurement techniques?
In this research we have presented a definition of architectural technical debt in the form of a

taxonomy, based on literature including TOGAF. Further we have defined the method
including item template and estimation guidelines for measuring technical debt and recording
technical debt items in a structured manner. In our comprehension of architectural technical
debt we follow Philippe Kruchten’s approach in positioning it as complementary domain to
four other main types of technical debt.

RQ2: How can ATD best be measured in enterprise IT systems such as those of ABN
AMRO?

It was presented that the measurement model that we developed can be applied to the
enterprise systems of ABN AMRO by providing guidelines and measurement tools for the
practitioners that are familiar with the systems. By this we can state that model described in
current paper can be one of the comprehensive methods for investigating TD in enterprise IT
systems.

RQ3: How feasible, useful and reliable are the proposed measurements of ATD in
practice?
1. Feasibility was shown by applying the model to 5 systems representing different parts
of the company’s IB applications stack
2. Usability was shown on the basis of the perception of practitioners. Practitioners find
the proposed model and the approach easily understandable, and compatible with their
professional industry experience.
3. Reliability was confirmed by comparing the results of measurements of the same
system by different participants.
However initially the method itself should be assessed and adjusted based on wider data set.
This will help to avoid subjectivity of measurements, lack of coverage for specific details and
possible mismatches.

6.2 Discussion

Summing up the results of the evaluation we can highlight several points:

1. Model structure and concepts on which it is based are logical and easy to understand for
practitioners;

-57 -

6. Conclusions

2. Model has a good relation to practitioners area of expertise and contains references to the
architecture concepts that are used by practitioners in everyday work;

3. There are some occurrences of possible ambiguity in estimation guidelines that can lead to
different estimation results by different practitioners;

4. TD estimation process participants should have a considerable experience with the systems
they are going to measure, otherwise the results can be much less reliable;

5. Currently developed model covers only architectural part of technical debt. Better
feasibility discussion can be done when more data on other layers will be collected.

6.3 Contributions

Summary

We have started from investigating the theoretical state of the art approaches using literature
sources. Then we developed the model that can be used to capture the technical debt
occurrences in the IT systems of the company.

We started from describing overall technical debt types. Then we added more detailed
categorization of each debt type. For more deep investigation the domain of architectural debt
was chosen. TOGAF was used as a backbone methodology for providing ATD
categorization. When the practical tool was outlined we have selected several most valuable
systems for initial investigation.

Data about TD incurred for each system was collected using the TD model, where
practitioners could fill in the details about estimated amount of debt interest and principal for
each debt category for the system. In total we have collected data about architectural
technical debt in 5 1B systems.

To evaluate the developed approach we've conducted a stakeholder’s survey to collect their
attitude to the model they had to use. In this survey we asked them to measure the usefulness
of the model for them, their projects in future and their colleagues. The results of the
evaluation are described in block 5.4.

The results obtained can be used as a basis for performing a refinement of the method -
developing a more usable tool and dashboard, adjusting estimation guidelines, providing
additional methodological recommendations. After that the method can be adjusted and
applied for the other systems in the IB environment to collect and analyze this information.

Technical debt management proceedings

Our research is an initial step in implementing the TD management method in ABN AMRO.
Theoretical approaches on TD management were described in Chapter 2.5. Considering the
practical steps we see the following principles that should be implemented:

1. Define debt interest threshold. So that after assessment, the management could have a
clear picture which cases should be the first targets for rework.

-58 -

6. Conclusions

2. Visualization of the data collected is one of the means to give the topic more attention

3. Describe managerial mechanisms to establish a feedback loop between data on
technical debt collected and actions that must be performed for most scored systems.

4. Implement a plan do check act approach - when measurements are done on a regular
basis. Also the calculation formula has to be reviewed regularly based on the results
obtained.

Feasibility of the method

Considering all of the above we conclude that the proposed method can be a starting point for
developing IT debt management methodology. However current state should be improved in
many aspects (see limitations part) to become a really practical methodology.

First, much more data needs to be collected to see other effects and misconceptions of the
method. A larger number of participants and wider range of investigated systems can provide
data for statistical analysis that can highlight drawbacks of the methodology.

Special attention should be put into estimation guidelines because if their extreme value for
obtaining numerical data on technical debt in the system.

6.4 Limitations
In the subsection, we discuss the method limitations we identified during our research.

Model completeness

During this research the model for identifying different types of TD was developed. It was
based on several theoretical approaches derived from scientific literature. This model follows
requirements of the practical TD investigation project at ABN AMRO. It also implements
some of the state of the art approaches of current technical debt landscape. But considering
regular evolution of the TD topic in last year’s we and specific needs/requirements that can
be in other organizations we must state that some of the aspects are not covered by it.

Subjectivity of measurements

Several key points of the research (estimation guidelines, data on TD items itself) are based
on expert opinions of participants of measurements and project team which can be subjective.
Estimations done by participants are highly dependent on their professional experience and
on familiarity with the systems researched. Answers given by the consultants are highly
dependent. Nevertheless we implemented evaluation feedback questionnaire and also cross-
measurement of one system by two different participants. This was done to evaluate model
feasibility and to provide input for further improvements of the model.

Model extendibility

Considering a question whether the model developed can be applied outside the context of
current case studies. We think that for systems comparable by size and types the model can
be a good start in reasoning for other practitioners while building their own TD capturing

-59 .

6. Conclusions

strategy. Direct model applying without adjustments in list of debt types/categories and
methodology used will not give the correct results.

As we got the sufficient feedback from participants involved in the research this makes us
conclude that adoption level of the model in future can be expected to be good. Valuable
point is that participants must have a sufficient level of knowledge in both system they’re
planning to measure and technical topic of EA and software quality assessment. If we
consider expanding the method to apply for the whole company IT systems landscape our
point is that - there can be no one person/team who can measure all TD across all systems or
departments. Method application must be done by each group of stakeholders separately
based on common principles that are defining the model and estimation guidelines.

Usage of reliable instruments

This research utilized two instruments. First, goal question metric approach, to validate the
model defined based on reviewing literature on the topic. This retrofitting analysis presented
good results. Second, we added feedback questionnaire to see the perceived usefulness and
reliability of the method for the future development. This part also presented good results.

6.5 Future work
Following points should be first subjects for future method enhancement:

1. Broadening method application on other systems within company’s IT landscape as
well as on other software modules. This will lead to collecting more data that can
provide better reasoning to see additional improvements that are need to be done in
the model. It also means involvement of more practitioners into the measurement
activities, this will also help to collect more professional feedback and additionally
improve the method.

2. Possible duplication of incurred debt in different categories. Research work need to be
done to figure out how this can be eliminated or at least reduced to an adequate level.

3. Improvement and broadening of estimation guidelines. This part of the method must
be researched against different layers of TD (testing, documentation, etc.) and also
proposed amounts of time could be corrected considering more data to analyse and
additional feedback from practitioners.

- 60 -

Literature list

Literature list

1

10

11

12

13

14

15

Distributed Agile, Agile Testing, and Technical Debt
Raja Bavani, 2012 IEEE Software

Estimating the Size, Cost, and Types of Technical Debt
Bill Curtis, Jay Sappidi, Alexandra Szynkarski, MTD 2012, Zurich, Switzerland

Towards a Model for Optimizing Technical Debt in Software Products
Narayan Ramasubbu, Chris F. Kemerer; MTD 2013, San Francisco, CA, USA

In search of metric for managing architectural technical debt
Robert L. Nord, Ipek Ozkaya, Philippe Kruchten, Marco Gonzalez-Rojas, 2012 IEEE CS

Tracking Technical Debt — An Exploratory Case Study
Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti et oth., 2011 27th IEEE
International Conference on Software Maintenance (ICSM)

DebtFlag: Technical Debt Management with a Development Environment Integrated Tool
Johannes Holvitie, Ville Leppanen, MTD 2013, San Francisco, CA, USA

Measuring and monitoring technical debt
C. Seaman and Y. Guo, Advances in Computers, vol. 82, pp. 25—46, 2011

Using automatic static analysis to identify technical debt
Antonio Vetro, ICSE 2012, Zurich, Switzerland ACM Student Research Competition

Searching for Build Debt: Experiences Managing Technical Debt at Google
J. David Morgenthaler, Misha Gridnev, Raluca Sauciuc, and Sanjay Bhansali, MTD 2012, Zurich,
Switzerland

Managing Technical Debt with the SQALE Method
Jean-Louis Letouzey and Michel Ilkiewicz, 2012 IEEE Software

Technical Debt as a Meaningful Metaphor for Code Quality
Israel Gat, 2012 IEEE Software

Evaluation Criterie}_ Trusted Product Maintainability
Joost Visser, SIG/TUVIT, Version 6.1, Software Improvement Group, 2014

The goal question metric approach
Victor R. Basilil Gianluigi Caldieral H. Dieter Rombach2

What Is the Value of Your Software?
Jelle de Groot, Ariadi Nugroho, Thomas Back, and Joost Visser, MTD 2012, Zurich, Switzerland

The WyCash portfolio management system
W. Cunningham, ACM SIGPLAN OOPS Messenger, vol. 4(2), pp. 29-30, 1993

-61 -

Literature list

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Technical Debt
Web link: http://www.construx.com/10x_Software Development/Technical Debt/
2007, Steve McConnell

Minimizing Technical Debt: Developer’s Viewpoint
Vinay Krishna, Dr. Anirban Basu;

A Balancing Act: What Software Practitioners Have to Say about Technical Debt
Erin Lim, Nitin Taksande, Carolyn Seaman, 2012, IEEE Software

The SQALE Method for Evaluating Technical Debt
Jean-Louis Letouzey, MTD 2012, Zurich, Switzerland

Technical Debt
I. Gat, Cutter IT J., 2010

Release duration and enterprise agility
Daniel R Greening, IEEE CS, 2012

Estimating the Principal of an Application's Technical Debt
Curtis, B.; Sappidi, J.; Szynkarski, A. Nov.-Dec. 2012 v.29 p.34-42, ISSN 0740-7459

Understanding the impact of technical debt on the capacity and velocity of team and
organizations
Ken Power, MTD 2013, CA USA

Practical considerations, challenges and requirements of tool-support for managing technical
debt
Davide Falessi, Michele A. Shaw, Forrest Shull et oth., 2013, CA USA

Managing Technical debt in software-Reliant Systems
Nanette Brown, yuanfang Cai, Yuepu Guo et oth., 2010, ACM, New Mexico USA

Technical Debt: from metaphor to theory and practice
Philippe Kruchten, Robert L.Nord , Ipek Ozkaya., 2012, IEEE Software

An Empirical Investigation of Modularity Metrics for Indicating Architectural Technical Debt
Zengyang L1, Peng Liang, Paris Avgeriou, Nicolas Guelfi et oth., 2014, ACM, France

Comparing four approaches for technical debt identification
Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn Seaman,
Forrest Shull. Software Qual J (2014) 22:403-426

A portfolio approach to technical debt management
Y. Guo and C. Seaman, Proceeding of the 2nd Workshop on Managing Technical Debt (MTD’11),
pp. 31-34, 2011

Monitoring code quality and development activity by software maps
J. Bohnet and J. Dollner, in Proceedings of the 2nd Workshop on Managing Technical Debt. ACM,
2011, pp. 9-16.

-62 -

Literature list

31

32

33

34

35

36

37

38

39

40

41

42

Using Technical Debt Data in Decision Making: Potential Decision Approaches
Carolyn Seaman, Yuepu Guo; Clemente Izurieta; Yuanfang Cai; Nico Zazworka, Forrest Shull;
Antonio Vetro

Anempirical model of technical debt and interest
A. Nugroho, J. Visser, and T. Kuipers, in Proceeding of the 2nd International Workshop on Managing
Technical Debt. ACM, 2011, pp. 1-8

An exploration of technical debt
Edith Toma, Aybiike Auruma, Richard Vidgena; The Journal of Systems and Software 86 (2013)
1498—- 1516

A Threshold Based Approach to Technical Debt
Robert J. Eisenberg, Lockheed-Martin

Prioritizing Design Debt Investment Opportunities
Nico Zazworka; Carolyn Seaman; Forrest Shull

Measuring Architecture Quality by Structure Plus History Analysis.
Robert Schwanke; Lu Xiao, Yuanfang Cai;
ICSE 2013, San Francisco, CA, USA Software Engineering in Practice

Technical Debt from the Stakeholder Perspective
Ted Theodoropoulos; Mark Hotberg, CISA, CRISC; Daniel Kern, PhD
MTD’11, May 23, 2011,

Managing Technical Debt in Practice: An Industrial Report,
Clauirton A. Siebra; Graziela S. Tonin, Fabio Q. B. da Silva, Rebeka
ESEM’12, September 19-20

A Case Study on Effectively Identifying Technical Debt
Nico Zazworka, Rodrigo O. Spinola, Antonio Vetro et oth.; EASE’13, April 14-16, 2013, Porto de
Galinhas, PE, Brasil.

Technical Debt Aggregation in Ecosystems
John D. McGregor, J. Yates Monteith, and Jie Zhang; 2012 IEEE

Organizing the Technical Debt Landscape - Clemente Izurieta, Antonio Vetrd, Nico Zazworka,
Yuanfang Cai, Carolyn Seaman, Forrest Shull; MTD 2012, Zurich, Switzerland

The Squale Model — A Practice-based Industrial Quality Model;
Karine Mordal-Manet, Francoise Balmas, Simon Denier, Stéphane Ducasse, Harald Wertz, Jannik
Laval

-63 -

Appendixes
1. Model taxonomy

Appendixes

Juawdojanap azemijos sal03aje) 3qaQ pue sulewoq 1YO0L
ul sadAy uonejuawnioq xunew
ABojouyda) fuonedddy « suawaINbas
el 35 1| »
sfeuoing Homiau pue . I I .
s|enuepy Sujues) o ! " 7
SPIND 45N & (pomiau) leasiyq « suoneaypads uonejuawaiw) o
UOREWRWNIOP 135 o 1jap! I . XJ1BUS UORIUNS S3JNIS5/5UOIIUNY SSAUISNE &
AORENSNEOR IR« pue peoj Buissaood paachig o | xujew uoy 1 uoneddy o 1508 /U3 e1eq o i [euopaun o
SORERMIOP. 5UOe30| pue . ew voipun4/uotejddy o 1 1ee0 . sassa301d @
agnpieuos ul uBjsag/aunpALy o vorpsoduwodap 1By XUlew uonealddy /310y « |3pows ssazoid weideip suan3 o
e RES FAON Semp e pue swiopeid ASojouypal « | Kisew uopezs uen|ddy g Bip asedasn
Syaw paseq 37" juawdojanap suoday 53] e Sojeres Sopered arepia) o [2pow e1ep 1307 o anpslqo
21emyyos ul sadAy Sunsay sue|qd isaL e spiepuess ASojoulpa) e 01j0J3104 uone|ddy |3POW B3P SSAUISNE » pue sjeod ssauisng e
Aypgesnay o xujew
Aupgeaoes) wawainbay o
Bunsa} Jypads-urewoq o uoneaypads
Sunss) aouedany o SuaWANbIY [euoiIuny o
Auaniy3 e Susay waishs o voneayads
Aipgeasuey) o ‘Busysay adepajul Juauodwo) o spuawalnbay wajshs e 6y R S
qeay Sunysay uonesdagu| e« uopejuawnIop SNPIPYI 1 aunpa 1
Aupqeisag e Bunsa) uun » sjuawannbay « ABojouyday uopeaddy e 30:__«3
[I I
sutewoq uanyonay addiyd
1920 ig2a
deg ASojouypay 198Q 2po) JCCTREET uonejuawnIog MYy 193Q [ePos
[I | I I |

192Q [ea1uyday
SWasAs || ||_4aA0

- 64 -

Appendixes

2. Taxonomy definitions
It’s a part of the whole taxonomy definitions documents developed during the theoretical stage of the
research.

Domain Definition Source Priority Examples

1. Architectural debt

Debt related to high-level technologies,
approaches, documents involved in system
development. Subcategories are derived from
outputs on several stages of TOGAF ADM cycle.

Business architecture
Business goals This defines the ways in which a service 1.2 2
and objectives contributes to the achievement of a business
vision or strategy.
« Services are associated with the drivers,
goals, objectives, and measures that they
support, allowing the enterprise to
understand which services contribute to
similar aspects of business performance.
* This also provides qualitative input on
what constitutes high performance for a
particular service.
Use case Relationships between consumers and 1.2 1
diagram providers of business services.
* Business services are consumed by actors
or other business services and the Business
Use-Case diagram
provides added richness in describing
business capability by illustrating how and
when that capability is used.
* They help to describe and validate the
interaction between actors and their roles to
processes and functions.
* As the architecture progresses, the use-
case can evolve from the business level to
include data, application, and technology
details. Architectural business use-cases can
also be re-used in systems design work.
Events diagram This depicts the relationship between events 1.3, 2
and process. 1.2
* Certain events - such as arrival of
information (e.g. a customer’s sales order)
or a point in time (e.g. end of fiscal quarter)
cause work and actions to be undertaken
within the business.
The Event Diagram is an Explorer type
diagram that shows Business Events and
the Business Processes that they trigger,
and also where the Business

-65 -

Appendixes

Process flow
diagram
Business
Interaction
Matrix /
Functional
Decomposition

Business
functions
/services
Business roles

Data architecture

Business data
model
Business data
model

Logical data
model

Data
management
process model
Data
interoperability
Data
Entity/Business
Function matrix

Application architecture

Application
Portfolio
[Catalog]

It shows on a single page the capabilities of 1.2
an organization that are relevant to the
consideration of an architecture.

» By examining the capabilities of an
organization from a functional perspective,

it is possible to quickly develop models of

what the organization does without being
dragged into extended debate on how the

organization does it.

Relationships between systems (i.e., 1.2
application components) and the data

entities that are accessed and updated by

them.

* Systems will create, read, update, and

delete specific data entities that are

associated with them. For example, a CRM
application will create, read, update, and

delete customer entity information.

Needed to identify and maintain a list of all 1.2
the applications in the enterprise. This list
helps to define the horizontal scope of
change initiatives that may impact
particular kinds of applications. An agreed
Application Portfolio allows a standard set
of applications to be defined and governed.
It contains the following meta-model
entities:

*Information System Service

*Logical Application Component

- 66 -

Appendixes

Interface
catalog

Application/Org
anization matrix

Role/
Application
(System)
matrix

Application/Fun
ction matrix

*Physical Application Component

Scope and document the interfaces 1.2
between applications to enable the overall
dependencies between applications to be
scoped as early as possible. It contains the
following meta-model entities:

*Logical Application Component

*Physical Application Component
*Application communicates with
application relationship

Relationship between systems (i.e., 1.2
application components) and organizational
units within the enterprise.

* The mapping of the Application
Component-Organization
Unit relationship is an important step as it
enables the following to take place:

— Assign usage of applications to the
organization units that perform business
functions
— Understand the application support
requirements of the business services and
processes carried out by an organization
unit
— Support the gap analysis and determine
whether any of the applications are missing
and as a result need to be created
— Define the application set used by a
particular organization unit

Relationship between systems (i.e., 1.2
application components) and the business
roles that use them within the enterprise.

» The mapping of the Application
Component-Role relationship is an
important step as it enables the following to
take place:
— Assign usage of applications to the
specific roles in the organization
— Understand the application security
requirements of the business services and
processes supporting the function, and
check these are in line with current policy
— Support the gap analysis and determine
whether any of the applications are missing
and as a result need to be created
— Define the application set used by a
particular business role; essential in

any move to role-based computing

The purpose is to show relationship 1.2
between data entities and business functions

-67 -

Appendixes

Application
interaction
matrix
Implementation
guidelines
Implementation
specifications
Implementation
standards
Interoperability
requirements

IT Service
Management
requirements

Technology architecture

Technology
Standards
catalog

Technology
platforms and
their
decomposition

Environment
and locations

Processing
Diagram /
Expected
processing load
and distribution

within the enterprise.

See Implementation guidelines.

This documents the agreed standards for 1.2
technology across the enterprise covering
technologies, and versions, the technology
lifecycles, and the refresh cycles for the
technology. It contains the following meta-
model entities:

*Platform Service, Logical Technology
Component, Physical Technology
Component

Depicts the technology platform that
supports the operations of the Information
Systems Architecture.

* The diagram covers all aspects of the
infrastructure platform and provides an
overview of the enterprise's technology
platform.

Depicts which locations host which
applications

* Identifies what technologies and/or
applications are used at which locations

* Identifies the locations from which
business users typically interact with the
applications.

* It should also show the existence and
location of different deployment
environments

— including non-production environments,
such as development and pre-production.
Focuses on deployable units of
code/configuration and how these are
deployed onto the technology platform.

* The Processing diagram addresses the
following:

1.2

1.2

1.2

- 68 -

Appendixes

Physical
(network)
communication
S

Hardware and
network
specifications
Application[sys
tem]/Technolog
y matrix

— Which set of application components
need to be grouped to form a deployment
unit
— How one deployment unit
connects/interacts with another (LAN,
WAN, and the applicable protocols)
— How application configuration and usage
patterns generate load or capacity
requirements for different technology
components

* The organization and grouping of
deployment units depends on separation
concerns of the presentation, business logic,
and data store layers and service-level
requirements of the components.

The purpose of this diagram is to show the 1.2
"as deployed" logical view of logical
application components in a distributed
network computing

environment.

* The diagram is useful for the following
reasons:
— Enable understanding of which
application is deployed where
— Establishing authorization, security, and
access to these technology components
— Understand the Technology Architecture
that support the applications during
problem resolution and troubleshooting

The System/Technology matrix documents 1.2
the mapping of business systems to
technology platform.

* The System/Technology matrix shows:

— Logical/Physical Application
Components

— Services, Logical Technology
Components, and Physical

Technology Components

— Physical Technology Component realizes
Physical Application Component
relationships

-69 -

Appendixes

3. Estimation guidelines

Domain,
debt category

Guidelines for estimation debt principal

Guidelines for
estimation of interest

1 BA, The estimations are per business function. Interest is the hours spent
Use Case diagram in dis.cove?ing the
Forre m_oving: (outdated use cases): 1 hour; i:f:g??ﬁ:g;: if;r:ij:ry
For adding: 4 hours; time this use case has to
Refer the Rest Contract Specifications for high be reused / changed or
level scenarios. new flow has to be added.
For updating: 2 hours. on mising and ncomect
scenarios.
10% of (debt missing
scenarios + debt incorrect
scenarios)
2 BA, Process Flow This will be applicable for BPM / long running
diagram processes.
For removing: (outdated processes) 0.5 hours
per process
For adding:
For BPM, probably can be derived from
TIBCO designer or BPEL.
Can be based on the number of steps involved.
2 hours per 5 steps
For Java, this will have to be derived based on
design documents / code
4 hours per 5 steps
For updating: 2 hours per 5 steps
3 BA, Business Interaction ~ Overview of service provider and consumer. Interest is the hours spent
Matrix Facilitates service governance. Estimations L‘}é‘;ﬁf;’iﬁ%ﬁ;fwm%
will be based on number of services. service has 1o be reused /
changed or new flow has
For removing (outdated interactions): 0.5 to be added.
hour per service Interest will be incurred
For adding / updating: > .
Additions or corrections can be made based on g:r\r,?;issl.ng and incorrect
contracts / configurations done (SSL MA), 20% of (missing services
design documents, other knowledge within the + incorrect services)
teams (Change and Run)
2 hours per service

-70 -

Appendixes

4

DA, Logical Data Model

There is no enterprise data model within AAB
as of today. So, the below estimations are
being made per application / business function
as the data models are normally created /
maintained at this level.

For removing(outdated data models): 2 hours
per business function

For adding:

Refer the DDLs (table creation scripts). Some
relationships may be within the applications /

programs accessing the tables.

10 hours per business function

For updating: 3 hours per business function

DA,
Data Entity / Business
Function matrix

Overview of relationship between Data
Entities and Business functions.

For removing(outdated relationships): 1 hour
for 5 relationships

For adding / updating:

Refer design documents / application code for
deriving this relationship

2 hours for 5 relationships

6

AA, Interface Catalog

Removal (outdated): 0.25 hr. per business
Need not be estimated for. Should be much service spent on
less. discovering the
Adding / updating existing interface interface not present
descriptions: in the catalog

Can be derived from design documents.

1.5 hours per business service

7

AA, Implementation
Standards

Non-conformance to standards will be the
major debt under this category.

For adding standards:

This type should not be captured as per
application.

For non-existent standards, adding standards is
a debt. This will be based on the platform for
which these standards are missing. There
should be standards for every single building
block in the SOA solution.

E.g.: portal, REST services, ESB, Service
implementation.

In case of non-conformance:

This will also be based on the platform /
building block involved.

Any non-compliance to standards will incur
heavy debts, mostly under the reckless type.

-71 -

Appendixes

8 AA,
Role / System Matrix

Overview of relationship between Roles and
Systems.

For removing(outdated relationships): 1 hour
for 8 systems

For adding / updating:

Additions or corrections can be made based on
design documents, application configurations
(role task configurations), other knowledge
within the teams (Change and Run)

2 hours per 5 systems

9 TA, Technology
Standards Catalog

Like Implementation standards, the major debt
under this category will be non-compliance.

Adding standards:

This type should not be captured as per
application.

For creating completely new standards.
approx. 800hrs.

In case of non-conformance:

This will depend on the size of the business
function (function points for now).

1 hour for every 1 FP with non-conformance

10 TA, Processing Diagram

The estimations will be per environment.
E.g.: Internet, GHIA, JAVABATCH, TIBCO

Adding diagrams: 24 hours;
Removing diagrams (outdated): 2 hours;
Updating diagrams: 8 hour.

11 TA, Environment and
locations

The estimations will be per environment.
E.g.: Internet, GHIA, JAVABATCH, TIBCO

Adding diagrams: 2 hours;
Removing diagrams (outdated):
NA. Should be very less
Updating diagrams: 1 hour.

4. Model data collection results

Following fields were eliminated:

1. Debt Type, Debt Status, TD domain
2. System Language, System Business Owner, System IT Owner

-72 -

Appendixes

Artefact Artefact F. D TD - System Debt, Add. Occur
Name Type area SUqu Category Name hours CSt'. e
main hour p. year
1 XXX001 6. BAI 2L BA Use Case WA2126 SYSO01 72 6.8 4 27.2
diagram
2 XXX001 6. BAI 2L BA Business WA2126 SYSO01 34 6.8 4 27.2
Interaction
Matrix
3 XXX001 6. BAI 2L AA Interface WA2126 SYSO01 25,5 425 4 17
Catalog
4 XXX001 6. BAI 2L AA Role / System WA2126 SYSO01 05 1 4 4
Matrix
5 XXX001 6. BAI 2L BA Use Case JI0108 SYSO01 24 24 4 9.6
diagram
6 XXX001 6. BAI 2L BA Business JI0108 SYSO01 34 6.8 4 27.2
Interaction
Matrix
7 XXX001 6. BAI 2L AA Interface JI0108 SYS01 255 4.25 4 17
Catalog
8§ XXX001 6. BAI 2L AA Role / System JI0108 SYSO01 05 1 4 4
Matrix
9 XXX040 6. BAI 3iD BA Use Case JI0108 SYSO01 2 0 1 0
diagram
10 XXX040 6. BAI 3iD BA Business JI0108 SYSO01 2 05 1 05
Interaction
Matrix
11 XXX040 6. BAI 3iD DA Logical Data JI0108 SYSO01 6 2 1 2
Model
12 XXX040 6. BAI 3iD AA Implementation JI0108 SYSO01 16 4 1 4
Standards
13 XXX040 6. BAI 3iD BA Use Case WA2126 SYSO01 4 04 1 04
diagram
14 XXX040 6. BAI 3iD BA Process Flow WA2126 SYSO01 0 0 1 0
diagram
15 XXX040 6. BAI 3iD BA Business WA2126 SYSO01 2 04 1 04
Interaction
Matrix
16 XXX040 6. BAI 3iD AA Implementation WA2126 SYS01 16 4 1 4
Standards
17 XXX040 6. BAI 3iD AA Role / System WA2126 SYSO01 04 1 1 1
Matrix
18 XXX001 4. Services DA Data Entity / JI0108 SYS02 1
WS Business
Function matrix
19 XXX001 4. Services AA Interface JI0108 SYS02 195 3.25 1 3.25
WS Catalog
20 XXX001 4. Services AA Implementation JI0108 SYS02 16 4 1 4
WS Standards
21 XXX001 4. Services TA Environment JI0108 SYS02 1 1 4 4
WS and locations
22 XXX245 4. Services 1P DA Data Entity / WA2126 SYSO01 04 1 2 2
Business
Function matrix
23 XXX245 4. Services 1P AA Interface WA2126 SYSO1 15 0.25 2 0.5
Catalog

-73 -

Appendixes

24 XXX245 4. Services 1P BA Business WA2126 SYSO01 2 04 2 0.8
Interaction
Matrix

25 XXX245 4. Services 1P AA Implementation WA2126 SYS03 8 4 2 8
Standards

26 XXX509 6. BAI BA Use Case PA2778 SYS03 30 3 2 6
diagram

27 XXX509 6. BAI BA Process Flow PA2778 SYS03 12 6 2 12
diagram

28 XXX509 6. BAI BA Business PA2778 SYS03 4 04 2 0.8
Interaction
Matrix

29 XXX509 6. BAI DA Logical Data PA2778 SYS03 0 0 2 0
Model

30 XXX509 6. BAI AA Interface PA2778 SYS03 225 3.75 2 75
Catalog

31 XXX509 6. BAI AA Role / System PA2778 SYS03 04 1 2 2
Matrix

32 XXX509 6. BAI AA Implementation PA2778 SYS03 120 40 2 80
Standards

33 JAVA 10. 4B AA Implementation WA2126 SYSO01 40 6 3 18

BATCH Solution Standards
Building
Block

5. Model feedback questionnaire

Questions Reply option

1. How long have you been working in ICT sector? Input number

2. What is your main activities in working time: development, Choose up to 2 main activities
architecture, testing, support, technical design, management, other?

3. How long have you been working at ABN AMRO projects? Input number

4. If the research question about is technical debt measurement, to
what degree do you think using the proposed model will enhance Choose one of the options:
your job performance? e Very low degree

5. To what degree do you think using this model for estimating TD * Lowdegree
would require much effort to use? ¢ Ayerage

6. To what degree do you think this model is consistent with the * High de.gree

. . e Very High degree

existing values, needs and experience related to TD awareness ?

7. If the research question is about technical debt measurement, to
what degree do you think you would use this model in future?

8. If the research question is about technical debt measurement, to
what degree do you think other colleagues of yours would use this
model?

9. To what degree the model is able to measure the amount of TD
incurred by system?

10. Do you think there are aspects that are missing in this model? Tnput text

-74 -

Appendixes

11. Did you have any difficulties while understanding the model or

filling in the measurement table? Input text

12. Please estimate how much time it took you to fill in the

measurement table (in total or per component) Input number

13. Please give your comments on following results of comparing data ~ Choose one of the options:

collection: e Model is ambiguous?
e There are 50% changes in list of TD categories describing e Estimation guidelines are
XXX040 component. not specific enough?
e We found that estimation made by two different people e Employees have personal
about two different components may be different by 2-3 view on TD amount

times. estimation?

e Employees have personal
different professional
experience?

e Other

6. Feedback questionnaire results

Question WA2126 J10108 PA2778
number
1 13 7 6
architecture, development, technical development, testing
technical design design

3 8 7 3
4 High degree High degree High degree
5 Low degree Average Average
6 High degree High degree High degree
7 High degree High degree High degree
8 High degree High degree High degree
9 High degree Average Average
10 There should be some way of capturing We only calculated for

the relationship between different architectural debt. It

categories. For example an incorrect will be more clear if

Use case diagram (BA) can influence others are also done

technical debt in testing.
11 Not much. I had to refer to the category I was able to Not really

definitions in repository. understand it with

detail text

12 0.5 1 2
13 Employees have personal different Employees have --

professional experience personal view on TD

amount estimation

=75 -

