
Experiments in Unifying Model
Checking Approaches

Radboud University Nijmegen

Master Thesis

Author:
Peter Maandag

Supervisor:
Hans Zantema

September 3, 2014

Abstract

A new tool is proposed that unifies different model checking approaches
through a new scripting language. The tool makes advantage of this new
language that allows the specification of semantically equivalent models
in many different approaches to be defined just once. This specification
is translated to several back-ends, which are then run in parallel. Ex-
periments show that the unified approach is beneficial to identifying the
optimal model checking approach.

1 Introduction

Model checking refers to a set of algorithms for exploring the state space of
a transition system to determine compliance with a specification or to verify
properties of desired behaviour. These algorithms execute a search of the as-
sociated state transition graphs and can perform exhaustive verification in a
highly automatic manner (Clarke, Biere, Raimi, & Zhu, 2001). The simplest
model checking algorithm traverses the transition graph while looking for desired
properties. During the search a list of visited states is kept in memory to avoid
getting stuck in loops and to make the search process more efficient. Besides this
method, different model checking techniques exist that are based on satisfiability
solving or a combination of these and conventional model checking algorithms.
One of these techniques is called symbolic state space exploration.

In symbolic model checking, a breadth first search of the state space is performed
through the construction of Binary Decision Diagrams (BDDs) (Mishchenko,
2001). The BDDs hold the characteristic functions of sets of states, and al-
low computation of transitions among sets of states rather than individual
states. Although many formulas can be represented efficiently through BDDs,
the method still suffers from state space explosion, because its size is worst case
exponential in the size of the system that is modelled (McMillan, 1993).

A newer type of model checking technique, bounded model checking (BMC)
with satisfiability solving, has given promising results (Yin, He, & Gu, 2013).
The method can be used on its own to verify safety and liveness properties, but
is also commonly used as a complement to BDD-based model checking. Safety
and liveness properties are two important classes of properties. Model checking
with BMC and all aforementioned methods can be used to verify both classes
of properties. The definitions and examples of verifying such properties will be
discussed further in section 2.1.

The research of (Clarke et al., 2001) describes bounded model checking as fol-
lows: “Essentially, there are two steps in bounded model checking. In the first
step, the sequential behaviour of a transition system over a finite interval is
encoded as a propositional formula. In the second step, that formula is given to
a propositional decision procedure, i.e., a satisfiability solver, to either obtain a
satisfying assignment or to prove there is none. Each satisfying assignment that

1

is found can be decoded into a state sequence which reaches states of interest.
In bounded model checking only finite length sequences are explored.” Due to
this limitation some properties cannot be proven, since only counter-examples
of finite length can be found.

As an example of a transition system, consider the graph in Figure 1. In the
paper this example will return frequently. The circles denote the possible states
of the transition system, which consist of the value of a variable x that ranges
from 0 to 100. The initial state is 1, denoted by the incoming arrow. The
property that we want to verify is if state 99 can be reached, depicted by the
circle colored in yellow. This transition system allows substraction with 1 or
multiplication by 2 on the value of x such that it remains in [0, 100]. Obviously
state 99 can be reached, but it is important to notice that there are infinitely
many ways to reach it.

Figure 1: Example transition system

1.1 Motivation

Many different model checking tools of both academic and non-academic nature
have been developed (Dutertre & De Moura, 2006; Cimatti, Clarke, Giunchiglia,
& Roveri, 1999; Behrmann et al., 2006; Barnat et al., 2013). These tools usually
share a common expressive power, but every tool has its own strength and
weakness when dealing with instances of certain problem classes. Often it is not
immediately clear, which tool one should use for a particular type of problem
and it is a hassle to manually test out each tool to find out which one can provide
the fastest answer, since they all have their own unique scripting languages and
particularities. For example it turns out that some searches for counterexamples
can be done with remarkable efficiency with bounded model checking, on designs
that would be difficult for BDD based model checking and vice versa (Clarke
et al., 2001). In bigger applications, such as protocol or program verification,
specifying your problem instance also requires a huge amount of code to be
written or generated that is prone to errors.

To make the declaration of transition systems in these tools easier, a scripting
language is proposed that can express non-deterministic transition systems in

2

a straight-forward manner. This scripting language is interpreted by a custom
developed tool that automatically generates code and includes optimizations
for state-of-the-art SAT-solvers and model checking programs of various classes.
These include a SMT-based satisfiability solver such as (Dutertre & De Moura,
2006), symbolic model checkers such as NuSMV (Cimatti et al., 1999) and a
non-symbolic model checker called UPPAAL (Behrmann et al., 2006). The
tool automatically compiles the custom scripting language to all tool-specific
languages and then runs several instances these tools in parallel, allowing for
quick and easy testing.

The main design principle for this tool keeps the end-user in mind, who often
does not need the full expressiveness of for example the LTL formal language,
but simply wants to verify a protocol or program and check safety or liveness
properties or determine whether loops exists in their specification (See Section
2.1). Also the end-user should not have to worry about multiple back-ends that
can be used to find the solution. The fastest solution is in most cases the desired
solution and the process that leads to the result is usually of less importance.
With these principles and simplifications in mind, the goal is to create a tool that
minimizes the time find to solutions to specific problem instances by combing the
joint effort of several model checking tools and using a new scripting language
that is easy to read and intuitive to use.

3

2 Definitions

Before diving into the specifics of the new tool and language, some formal defi-
nitions are introduced.

Definition 1 (Transition System)
A Transition System is defined by the tuple T S = (S, I,→), where S is a set
of states, I ⊆ S and →⊆ S × S. We call I the set of initial states and →
the transition relation. We write s → s′ if (s, s′) ∈→. In addition we define
Run(T S) = {(s0, . . . , sn) ∈ S? | ∀n−1i=0 : si → si+1 ∧ s0 ∈ I} as the set of state
sequences that represent finite paths through the transition system defined by
T S.

Example 1 (Transition System)
Consider Figure 1 as a transition system T S. It is formally defined as

T S = (S, I,→), where S = {0, . . . , 100}, I = {1} and
→= {(i, j) ∈ S × S |: j = 2i ∨ j = i− 1}.
The sequence (1, 2, 4, 3) ∈ Run(T S) is a possible run of this transition system
that starts in state 1. This run represents a path through the transition system
that corresponds with the state transitions 1→ 2→ 4→ 3.

Definition 2 (Update Transition System)
Let V be a set of variables. Let B = {true, false} and Nab = {a . . . b} with
a, b ∈ N and b > a. Let T : V → {Nab,B} be the function that returns the type
of a variable v ∈ V. Let U ⊆ S 7→ S be a set of partial functions, called update
functions.
Then an Update Transition System is defined by the tuple T U = (S, I, Tr),
where S =

∏
v∈V T (v) is the set of states, I ⊆ S and Tr = {(s, s′) ∈ S × S |

∃u ∈ U : u(s) = s′}. We call I the set of initial states and Tr the transition
relation.

Example 2 (Update Transition System)
Now consider Figure 1 as an Update Transition System T U . It is formally
defined as

T U = (S, I, Tr), where
S = {0, . . . , 100}, I = {1},
V = {x}, T (x) = {0, . . . , 100},
Tr = {(s, s′) ∈ S × S | ∃u ∈ U : u(s) = s′} and
U = {u1, u2} with

u1 : S 7→ S, u1(x) =

{
2x if x ≤ 50
undef otherwise

u2 : S 7→ S, u2(x) =

{
x− 1 if x ≥ 1
undef otherwise

Here, (1, 2, 4, 3) ∈ Run(T U) is a possible run of this transition system that
starts in state 1 and ends in state 3. This run is a result of applying the update
functions in the following order: u1(1) = 2, u1(2) = 4, u2(4) = 3.

4

The next definition combines several transition systems together in one system.
The new state space of the combined system is the Cartesian product of the
state spaces of each involved transition system. The initial state of this system
is comprised of all the initial states of the individual transition systems. The
combined transition relation for the new system allows only discrete updates of
one of the transition systems at a time in the shared state space. The definition
of the combined system expands on the previous definitions and is given below
as Parallel Transition System.

Definition 3 (Parallel Transition System)
Given a set of n transition systems {(S1, I1,→1), . . . , (Sn, In,→n)}.
Then a Parallel Transition System is defined by the tuple T P = (S, I, T),
where S = S1 × . . . × Sn, I ⊆ I1 × . . . × In and T ⊆ S × S such that
((s1, . . . , sn), (s′1, . . . s

′
n)) ∈ T ⇔ ∃i : (si, s

′
i) ∈→i ∧∀nj=1 : i 6= j ⇒ sj = s′j.

Example 3 (Parallel Transition System)
Given a set of two transition systems that are instances of the Update Transition
System defined in Example 2 {t1 ::= (S1, I1, T1), t2 ::= (S2, I2, T2)}, a Parallel
Transition System T P can be formally defined as

T P = (S1 × S2, I1 × I2, T), where
T ⊆ (S1 × S2)× (S1 × S2) such that
((s1, s2), (s′1, s

′
2)) ∈ T ⇔ ∃i : (si, s

′
i) ∈→i ∧∀2j=1 : i 6= j ⇒ sj = s′j.

Transition systems t1 and t2 are both part of the state of the new Parallel Tran-
sition System and will be updated simultaneously during a transition. The se-
quence ((1, 1), (2, 1), (4, 1), (4, 2), (4, 4), (4, 3), (3, 3)) ∈ Run(TP) is an example
of a run of T P. Here, the states that belong to t2 are underlined to easier dis-
criminate between the two systems.
This run corresponds with the following state transitions of t1 and t2:
t1 : 1→ 2→ 4→ 4→ 4→ 4→ 3
t2 : 1→ 1→ 1→ 2→ 4→ 3→ 3.

Finally, we can define a limit on the amount of steps a Transition System can
take as a whole.

Definition 4 (Bounded Transition System)
Given a transition system (S, I, T) and n ∈ {1 . . .∞}.
Then a Bounded Transition System is defined by the tuple T B = (n,N×S, {0}×
I, Tb), where I ⊆ S and Tb = {((i, s), (i+1, s′)) | (s, s′) ∈ S×S∧ i ∈ N∧ i < n}.
We Tb the bounded transition relation.

Example 4 (Bounded Transition System)
Now consider Figure 1 as a Bounded Transition System T B with a maximum
number of 100 allowed steps. It is formally defined as

T B = (n,N× S, {0} × I, Tb), where
n = 100, S = {0, . . . , 100}, I = {1},
V = {x}, T (x) = {0, . . . , 100},
Tb = {((i, s), (i+ 1, s′)) | (s, s′) ∈ S ×S ∧ i ∈ N∧ i < n∧∃u ∈ U : u(s) = s′} and

5

U = {u1, u2} with

u1 : S 7→ S, u1(x) =

{
2x if x ≤ 50
undef otherwise

u2 : S 7→ S, u2(x) =

{
x− 1 if x ≥ 1
undef otherwise

The sequence ((0, 1), (1, 2), (2, 4), (3, 3)) ∈ Run(T B) is an example of a run of
T B. The states are underlined in order to easily discriminate them from the
step counter. This run corresponds with the state transitions 1→ 2→ 4→ 3.

The new language allows the specification of (Bounded) Update Transition Sys-
tems and (Bounded) Parallel Transition Systems that are composed of Update
Transition Systems. On these systems a model checking analysis can be per-
formed to verify several properties that will be discussed now.

2.1 Verification

The newly developed tool offers support to verify reachability, safety and live-
ness properties that are expressed by Boolean formulas. Besides that there is
support for deadlock and infinite run detection. These are special cases of safety
properties that are often used in system verification.
Each of the five different properties will now be defined. During the definition
we assume a given transition system T S = (S, I,→). Furthermore let P ⊆ S
be a set of desired states.

2.1.1 Reachability

During the verification of a reachability property it is asked whether a run exists
of which the final state is in P.

Reach(P)⇔ ∃(s0, . . . , sn) ∈ Run(T S) : sn ∈ P (Reachability)

The verification result will be negative if no such run exists. Otherwise a run is
returned that leads to the final state that is in P.

6

Figure 2: Reachability property is satisfied by s0 → s3

2.1.2 Infinite run

An infinite run exists if there exists a run that can always be extended. A cycle
or loop exists whenever a run exists with two states that are equivalent to each
other. Such a run can be extended infinitely many times by repeating the state
sequence after the first occurrence of the duplicate state. In a finite state space
an infinite run can only exist due to a cycle in the transition system. Therefore
the following definition of a cyclic run is equivalent to an infinite run in the
finite state space:

∃(s0, . . . , sn) ∈ Run(T S) : [∃i < n : si = sn] (Cyclic run)

If a cycle exists, the tool returns a run starting from the initial state s0, that
demonstrates the cycle. The last state of this run will be equivalent to another
state in this run.

Figure 3: Infinite run exists due to s0 → s1 → s2 → s1

2.1.3 Safety

The verification of a safety property involves assuring that a set of undesirable
states is not reachable, or equivalently, that a set of desirable states cannot

7

be escaped from (Biere, Cimatti, Clarke, Strichman, & Zhu, 2003; Alpern &
Schneider, 1985). This means that each state in every possible run must be in
P.

Safe(P)⇔ ∀(s0, . . . , sn) ∈ Run(T S) : sn ∈ P (Safety)

This definition implies that a state that is not in P may not be reachable and
is therefore equivalent to ¬Reach(¬P).
A simple example of a safety property is an invariant, a property that must
hold in all reachable states. If a sequence of states can be found in which the
property does not hold, then the invariant is false. When verifying a safety
property the tool will check for every state if it is in P. It will return a run that
leads to a state that is not in P if it exists. Otherwise it will return a positive
result.

Figure 4: Satisfied safety property

2.1.4 Liveness

The verification of a liveness property assures that something good always keeps
happening. In other words, a collection of desired states is always reachable from
any run. There exist many different variants of liveness definitions (Clarke et
al., 2001; Alpern & Schneider, 1985). The definition given below is the most
general unrestrictive definition of liveness.

Live(P)⇔ ∀(s0, . . . , sn) ∈ Run(T S) : (Liveness)

sn 6∈ P ⇒ [∃(s0, . . . , sn, . . . , sm) ∈ Run(T S) : sm ∈ P]

In practice liveness properties cannot be verified without checking for cycles
and thus infinite runs. An infinite run is live if there is at least one state in its
cycle that is in P. The liveness property is verified if the last state of all other
maximum length runs that do not contain cycles is also in P. Liveness could
therefore be expressed as a combination of a special case of a reachability and
infinite run property.
The tool will return a run that represents a path where a desired state could

8

never be reached if such a run exists. Otherwise it will return a positive re-
sult.

Figure 5: Satisfied liveness property

2.1.5 Deadlock

A deadlock exists whenever a transition system contains a state where no update
rules can be applied.

∃(s0, . . . , sn) ∈ Run(T S) : ¬[∃(s0, . . . , sn, sn+1) ∈ Run(T S)] (Deadlock)

The deadlock check could also be expressed as a reachability property for a
certain P that encapsulates the states where no update rules can be applied.
The tool will return a run that leads to a deadlock state if it exists. Otherwise
it will return a negative result.

Figure 6: Deadlock exists. A possible path is s0 → s3 → s6

9

3 Language

The scripting language allows to define instances of (Bounded) Update Transi-
tion Systems ((B)UTS) and (Bounded) Parallel Transition Systems ((B)PTS)
that are composed of Update Transition Systems. In this section the core lan-
guage syntax is explained using the transition system of Figure 1 as an example.
The complete syntax of the language is given in Appendix I.

Each script is an instance of a Formula:

〈Formula〉 ::= 〈TransitionSystem〉 | 〈ProcessModel〉

First we will begin explaining how a UTS is modelled. In section 3.2 the mod-
elling of a PTS is explained.

3.1 Transition system

The TransitionSystem grammar element corresponds with a (B)UTS. It consists
of a few simple blocks that cover each component of the transition system. This
has the following form:

〈TransitionSystem〉 ::= [‘MAXSTEPS:’ 〈Constant〉]
‘VARS:’ 〈VarDeclTS 〉+
[‘INIT:’ 〈VarInit〉∗]
‘TRANS:’ 〈Stmt〉+
〈Goal〉

〈Goal〉 ::= ‘REACH:’ 〈BoolExp〉
| ‘INF:’
| ‘SAFE:’ 〈BoolExp〉
| ‘LIVENESS:’ 〈BoolExp〉
| ‘DEADLOCK:’

The elements enclosed in square brackets are optional. The last element of
the TransitionSystem is a choice between one of the verifyable properties that
were discussed in section 2.1. They will be closely examined in section 3.1.5
The usage of each element will now be discussed, with a step by step example
implementation of the transition system shown in Figure 1.

3.1.1 The MAXSTEPS block

The MAXSTEPS block corresponds with n, which defines an upper bound on the
amount of steps that can be taken during the exploration of the state space of
the transition system. This is an optional block, but when used, it can cause
a significant increase in performance since it limits the search depth of the
transition system, thus forcing the tools to alternative paths. However if the
maximum sequence length is too short it may prevent a state with a desired

10

property from being detected, even though the transition system allows it to be
reached. If the MAXSTEPS block is defined, n is translated to a steps variable
internally, which may be read from, but not updated.

In the transition system of Figure 1 we may expect the solution to be found
in less than 100 steps, so we can provide this as a limit in the MAXSTEPS

block:

MAXSTEPS:

100

3.1.2 The VARS block

The VARS block corresponds with the set V, which defines all the variables
that are going to be used in the transition system. A variable declaration in a
transition system has the following form:

〈VarDeclTS 〉 ::= ‘const’ 〈Type〉 〈ID〉 ‘=’ 〈Constant〉 ‘;’
| [‘nondet’] 〈Type〉 〈ID〉 [‘:’ 〈Range〉] ‘;’

Variables can be of type int and a type bool, which correspond to commonly
known integer and Boolean types. Some tools require integer variables to be
ranged. If a range is omitted when using such a tool, the default range of [-
1023, 1024] is used. Variables in this block can also be declared const, which
means they need to be given a value immediately and cannot be reassigned or
initialized elsewhere anymore. Finally a variable can also be declared nondet,
which means that it can take any value during a transition if it is not updated
in the corresponding transition rule.
The variable declaration block requires that there must be at least one variable
defined. There are some variables that may not be declared, because they are
used internally. The compiler will throw an error message if a restricted ID is
used.

The transition system of Figure 1 has one variable x, that is updated during
some transitions and must retain the same value otherwise. We declare it as
follows:

VARS:

int x;

3.1.3 The INIT block

The INIT block corresponds to s0, which defines the initial state, i.e. the initial
values of the variables. A variable initialization block in a transition system has
the following form:

〈VarInit〉 ::= 〈BoolExp〉 ’;’ 〈VarInit〉
| 〈BoolExp〉 ’;’

11

| 〈ID〉 ‘=’ 〈Exp〉 ‘;’ 〈VarInit〉
| 〈ID〉 ‘=’ 〈Exp〉 ‘;’

〈Exp〉 ::= 〈BoolExp〉 | 〈NumExp〉

Variable initialization restrictions come either in the form of variable assign-
ments or Boolean expressions over variables or both, according to one’s pref-
erence. It is allowed to spread these restrictions over multiple statements to
improve readability. The variable initialization block is optional. Variables that
are not used in the initialization block may have any value in the initial state.
In the transition system of Figure 1 we want variable x to have value 1 in the
initial state. We can express that as the following Boolean formula:

INIT:

x == 1;

Alternatively, it can be expressed as an initialization statement:

INIT:

x = 1;

3.1.4 The TRANS block

The TRANS block specifies a set of variable update rules that correspond with
the update functions of a (B)UTS. In the grammar such a rule is called a
Stmt :

〈Stmt〉 ::= [‘?’ 〈BoolExp〉 ‘->’] 〈IDEnum〉+ ‘=’ 〈ExpEnum〉+

〈IDEnum〉 ::= 〈ID〉 | 〈ID〉 ‘,’ 〈IDEnum〉

〈ExpEnum〉 ::= 〈Exp〉 | 〈Exp〉 ‘,’ 〈ExpEnum〉

An update rule consists of an ordered list of all variables that need to be updated
followed by another ordered list that specifies their new respective values. The
context-free grammar cannot specify that these lists should be equally long,
however this will be enforced by the compiler via a semantics check. Optionally,
an update rule can be preceded by a guard. A guard is a Boolean expression
that imposes a restriction on whether or not the update rule may be applied. If
variable x is not part of an update rule and the rule is applied, then the value
of x in the next state is equal to its value in the current state, unless x was
declared nondet. In the latter case, x may have any value after the update rule
is applied.

The usage of the nondet keyword has important consequences for the execution
of the update rules. If no variables are declared nondet, mutual exclusion
of update rules is guarenteed. This means that only one update rule can be
applied per step. If some variables are declared nondet, mutual exclusion may
not always be guarenteed. This means that more than one update rule can be

12

applied in one step or parts of one rule and other rules may be applied in one
step. Consider the following script:

MAXSTEPS:

1

VARS:

nondet int truck1;

nondet int truck2;

nondet int amount;

INIT:

truck1 = 100;

truck2 = 100;

TRANS:

truck1 = truck1 - amount; //Rule 1

truck2 = truck2 - amount; //Rule 2

REACH:

truck1 == 10 & truck2 == 10

The script consist of three nondet declared variables. The variables truck1

and truck2 start with the value 100. The transition system is allowed to do
one update operation. The update rules substract any value from truck1 and
truck2. In symbolic model checkers the update rules are translated as Boolean
expressions. If truck1 and truck2 were not declared nondet the update rules
would be translated as follows:

(truck1 == truck1 - amount && truck2 == truck2) ||

(truck2 == truck2 - amount && truck1 == truck1)

This translation guarentees that unused variables keep the same value during
an update. The result of this is that the rules are mutual exclusive and the
final state would never be reachable, since there are at least two steps needed.
However in the script truck1 and truck2 were declared nondet, so the update
rules would be translated as

truck1 == truck1 - amount || truck2 == truck2 - amount

Because the value of truck1 and amount is not explicitly set in Rule 2 and the
value of truck2 and amount is not explicitly set in Rule 1, the result may be
that the rules are applied simultaneously. Therefore the reachability property
can be satisfied in a single step. To avoid this behaviour it is forbidden to
update variables that are declared nondet.

In model checkers like UPPAAL this behaviour would be non-existant since the
update rules are translated as seperate transitions to different states. However
the performance with non-deterministic variables is very bad in non-symbolic
model checkers. For these reasons nondet variables are not supported in those
tools. An extensive explanation is given in section 4.3.

Let us extract the update rules from the example transition system of Figure 1.
It looks quite complicated, but it is actually very simple. Each state allows two

13

basic transitions: either x is decreased by 1 or x is multiplied by two. This can
be directly translated as follows:

TRANS:

x = x-1;

x = x*2;

We could also interpret transition systems like the one shown in Figure 1 as
a finite state machine (FSM). If one would implement a script respresenting
an FSM, it is worth noting that there is no explicit notion of states in the
scripting language. If you would like to directly translate an FSM from paper
to this language, then you can introduce a state variable that keeps track of
which state the machine currently is in. In the guard of an update rule, the
value of the state variable is checked, such that only update rules that belong
to outgoing edges of that particular state can be applied. In the update rule,
the state variable must also be updated appropriately. Update rules without a
guard correspond to a transition that is possible in each state as seen above.
A more complex example of a system where a state variable is used is given in
section 6.1.1.

3.1.5 The verification property block

The last block of a script corresponds with any verifyable property discussed in
section 2.1. In the script this has the following form:

〈Goal〉 ::= ‘REACH:’ 〈BoolExp〉
| ‘INF:’
| ‘DEADLOCK:’
| ‘SAFE:’ 〈BoolExp〉
| ‘LIVENESS:’ 〈BoolExp〉

Either a reachability property, the existance of loops, the existance of deadlock,
an safety property or a liveness property can be verified, specified by a REACH,
INF, DEADLOCK, SAFE or LIVENESS block respectively. The INF and DEADLOCK

block take no parameters. The other blocks must always be parameterized with
a Boolean expression that specifies what conditions should hold in the desired
states.

In the transition system of Figure 1 we want to verify that a state is reachable
in which x equals 100:

REACH:

x == 100

If we want to get a sequence of transitions that represents a cycle in the tran-
sition graph it would be specified as follows:

INF:

14

If we want to verify that x is always bigger than 0, we would specify it as
follows:

SAFETY:

x > 0

If we want to verify that there are always update rules applicable, we would
specify it as follows:

DEADLOCK:

If we want to verify that x always eventually reaches the value 99, we would
specify it as follows:

LIVENESS:

x == 99

The complete implementation of the transition system of Figure 1 is given in
Appendix A. More examples of transition systems are given in Section 6.

3.2 Process model

The ProcessModel grammar element corresponds with a (B)PTS of which each
transition system it is composed of is a UTS. It consists of a few blocks for the
global model definition, followed by a sequence of process declarations. The
process model covers each component of a PTS and is defined as follows:

〈ProcessModel〉 ::= [‘MAXSTEPS:’ 〈Constant〉]
‘VARS:’ 〈VarDeclPM 〉+
[‘INIT:’ 〈VarInit〉∗]
‘PROGRAM:’ 〈ProcExp〉
〈Goal〉
〈Process〉+

A process represents an element of the set of n transition systems of which a
PTS is composed. It consists of a few simple blocks of the following form:

〈Process〉 ::= ‘PROCESS’ 〈ID〉 ‘:’
‘VARS:’ 〈VarDeclTS 〉+
[‘INIT:’ 〈VarInit〉∗]
‘TRANS:’ Stmt+

The elements enclosed in square brackets are optional. The process model script
contains a PROGRAM block that defines through a subset of process algebra which
processes should run in parallel. Furthermore a sequence of processes is defined
through multiple PROCESS blocks. Processes can be thought of as several tran-
sition systems running in parallel, but they are not truly concurrent. Only a
single transition of a single process can be executed during each step. For ex-
ample if process A is allowed to perform an update and process B is allowed to
perform an update, then in the next step either one of the two transitions will

15

be executed. Simultaneous transitions of multiple processes are not possible,
thus a process update rule can be seen as an atomic operation in the execution
chain.

The meaning of each block will now be discussed, with a step by step example
implementation of the transition system shown in Figure 1.

3.2.1 The MAXSTEPS block

The MAXSTEPS block corresponds with m. It is defined once, posing an upper
bound on the amount of steps that can be taken for the complete process model,
rather than an individual process. This means that if there are two processes A
and B specified to run in parallel and MAXSTEPS is set to 2, that either process A
or B completes two steps or both processes complete one step. The implemen-
tation of the MAXSTEPS block for the example transition system as ProcessModel
does not change:

MAXSTEPS:

100

3.2.2 The VARS block

The VARS block corresponds with a set of global variables that can be read/write
accessed from any process. Global constants or non-deterministic variables can
also be declared here. A global variable declaration in a process model has the
following form:

〈VarDeclPM 〉 ::= ‘const’ 〈Type〉 〈ID〉 ‘=’ 〈Constant〉 ‘;’
| [‘nondet’] 〈Type〉 〈ID〉 [‘:’ 〈Range〉] ‘;’
| ‘proc’ 〈ID〉 ‘=’ 〈ID〉 ‘;’

The important difference with the TransitionSystem is that it is now also re-
quired to define one or more variables of type proc. These will hold an instance
of a later to be defined process and must be instantiated immediately in a similar
fashion as constants.

We try to model the transition system of Figure 1 as a process model now. This
means that variable x will be local to a process. Thus in the global variable
block we only need to declare an instance of the example process, which will
later be defined in Section 3.2.6. The new VARS declaration is as follows:

VARS:

proc P = example;

16

3.2.3 The INIT block

In the ProcessModel script the global INIT block can pose restrictions on the
initial values of the global variables. In the example transition system of Figure
1 there are no global variables to initialize, so the INIT block can be omit-
ted.

3.2.4 The PROGRAM block

The PROGRAM block states a process algebraic expression that defines which
processes should be run in parallel. A process algebraic expression has the
following form:

〈ProcExp〉 ::= 〈ID〉 〈ProcOp〉 〈ProcExp〉 | 〈ID〉

〈ProcOp〉 ::= ‘||’

Currently only one operator is defined to combine processes running in parallel.
This may be extended in the future to support full process algebra. Suggestions
on how this may be done are given in the Discussion in section 8.
The transition system of Figure 1 is run as a single process of which the imple-
mentation is given later in the script:

PROGRAM:

P;

3.2.5 The verification property block

The Goal grammar element corresponds with a verifyable property similar to its
TransitionSystem variant. The property may reference global variables as well
as process variables from any process instance. A variable x local to a process p
is accessed through an expression of the form p.x. In the ProcessModel script
for the transition system in Figure 1 our property now refers to local process
variable x:

REACH:

P.x == 100;

3.2.6 The PROCESS block

A PROCESS block corresponds to an element of the n transition systems of a
BPTS. A PROCESS block is given a name, such that it can be referenced during
global initialization.

〈Process〉 ::= ‘PROCESS’ 〈ID〉 ‘:’
‘VARS:’ 〈VarDeclTS 〉+

17

[‘INIT:’ 〈VarInit〉∗]
‘TRANS:’ Stmt+

The variables declared within the VARS block are local to the process and cannot
have the same name as any previously declared global variables. Only the local
variables can be initialized in the corresponding local INIT block. The TRANS

block follows exactly the same rules as in a TransitionSystem script. In here,
the updating of local and global variables is allowed. The transition system of
Figure 1 as a process now looks like this:

PROCESS example:

VARS:

int x;

INIT:

x = 1;

TRANS:

x = x-1;

x = x*2;

The complete implementation of the transition system of Figure 1 as a Process-
Model is given in Appendix B. More examples of process models are given in
Section 6.

18

4 Implementation

The scripting language can be translated to several back-ends. Currently trans-
lations to languages used by Yices, NuSMV and UPPAAL are supported, but
the tool is set up flexibly so that it is easy to extend to other languages in
the future. Different tools have different particularities and in some of them
limitations are unavoidable. This section discusses the different back-ends, the
implementation for each one of them and limitations and optimizations amongst
different back-ends.

4.1 Back-ends

Yices
Yices is an SMT-solver that can process input written in the SMT-Lib notation
(Barrett, Stump, & Tinelli, 2010). This makes it possible to perform Bounded
Model Checking (BMC) that uses satisfiability solving (SAT-solving) techniques,
specifically Satisfiable Modulo Theories (SMT) to formally verify these models.
SAT-solving is the problem of deciding whether it is possible for a given propo-
sitional Boolean formula φ to evaluate to true. If so, an instance can be given
that demonstrates this result, otherwise the formula is unsatisfiable. Satisfiable
Modulo Theories extend on standard SAT-solving techniques by allowing linear
inequations of the following form to be taken into the formula

n∑
i=1

aixi ≤ c

Here, every xi is a variable and ai and c are arbitrary given values. They must
all be in either R or N. With this addition the basic building blocks of propo-
sitional formula φ may be Boolean variables and linear inequalities.
The translation of the transition system that is modelled by the new script
language to a model that can be checked by Yices is done by unfolding the
transition system into a conjunction of n Boolean formulas that each describe a
single transition of one particular state to another. For each variable x, n copies
are made such that the value of xi is the value of x after i steps. For each step
the transition relation is copied n times to update the variables of step i. This
will be explained in detail in section 4.2.1.
Because of this method the depth of the search tree is limited, since the max-
imum amount of discrete transitions that can be taken is bounded by n. Due
to this technique bounded model checkers have the disadvantage of not being
able to prove the absence of errors, however if an error exists it can be found
by increasing the maximum number of steps until the presence of the error can
be shown. Increasing the maximum number of steps can cause the generated
formula to grow very large in big transition systems with many steps. This
often brings along an even bigger decrease in performance, even when a result-
ing trace can be found by means of a trivial case. However, formulas of many

19

megabytes long may still be solved efficiently.

NuSMV
NuSMV is a symbolic model checker that has its own SMV scripting language,
that in many cases resembles the syntax of the new scripting language. Its
solving algorithm is based on a combination of a tableau constructor for the
LTL formula with standard CTL model checking. NuSMV allows writing down
transition rules that specify how the value of variables changes to the next state.
The search space of this model checker is not bounded by a maximum number
of steps, but only by the worst case exponential amount of memory and time
that is needed to solve problems. Numeric variables that are declared must be
bounded to a range. Internally NuSMV uses BDDs to represent numbers, which
grow exponentially in size depending on how many bits it takes to represent a
number. Therefore, problems with variables that have a very wide range become
quickly intractable, even for trivial cases.

UPPAAL
Finally there is the non-symbolic model checker UPPAAL. It is designed as a
tool to verify systems that can be modelled as networks of timed automata, but
it can also handle simpler transition systems that can be specified in our new
scripting language. Non-symbolic model checkers such as UPPAAL tend to run
out of memory very fast, because an array of visited states is stored in memory.
UPPAAL enumerates all possible follow-up states for every transition, which
means that non-deterministic variables quickly cause a state space explosion.
This is a problem on Windows since for this platform there is only a 32 bit
version of the software available. However in many cases and especially trivial
cases UPPAAL returns solutions quickly.

4.2 Code generation

First the code generation for transition systems scripts as described in section
3.1 will be explained. Then the code generation for process models as defined
in section 3.2 follows. Example 5 will be used to explain how different parts of
the syntax are translated. The example is not an executable script and has no
intended meaning, it is merely a collection of a part of the possible syntax to
show how each individual element is translated.

Example 5 (Transition System Syntax)
MAXSTEPS:

30

VARS:

bool bVar;

int iVar : 0..10;

INIT:

iVar = 1;

20

bVar = true;

TRANS:

iVar,bVar = iVar + 1, !bVar; //rule 1

? bVar == true -> iVar = iVar - 2; //rule 2

REACH:

iVar == 10 & bVar //Reachability property

SAFE:

iVar == 10 & bVar //Safety property

LIVENESS:

iVar == 10 & bVar //Liveness property

INF: //Loop checking

DEADLOCK: //Deadlock checking

An Abstract Syntax Tree (AST) based on the formal grammar defined in Ap-
pendix I is built internally when the script is parsed. Depending on the selected
back-end the AST might undergo several transformations. A transformation
that every AST undergoes is simple constant propagation. In this transforma-
tion anywhere a constant variable is used it is replaced with its concrete value.
Then the constant declarations and initialisations are completely removed from
the AST. This is an optimization that benefits the performance of SAT-based
solvers and also makes an impact on memory usage, since there are less vari-
ables to consider. Other transformations like adding a steps variable, adding
extra conditions or rewriting update rules might occur depending on the se-
lected back-end and script type. These transformations will be discussed later
when they are encountered in a specific implementation process.

4.2.1 Transition system

Yices
First each variable declaration is translated to a function that returns a value
that has the type of the variable. Furthermore this function has one integer
parameter that denotes the current step. The variable ranges will be dealt with
later. The example VARS block is translated as follows:

:extrafuns ((bVar Int bool) (iVar Int Int))

This translation allows us to know the value of variables in each step. An
expression like (iVar 0) would return the value of iVar in step 0.

Then, the rest of the translation to Yices basically comes down to a big conjunc-
tion of Boolean formulas. Each part of the script is part of that conjunction.
Its general form is as follows:

21

:formula

(and

;For each step, put parts of the script as Boolean formulas here

)

The transition system is unfolded into n + 1 discrete steps, where n is defined
in the MAXSTEPS block. The first step is an initialization step. In subsequent
steps the update rules are applied. The upper bound n must always be defined.
If the MAXSTEPS block is omitted in a script a default value is used to determine
the number of unfoldings.

Each variable initialization is translated to a Boolean equality formula that is
specified in the initialization step 0 and added to the general conjunction. Any
range constraints on variables are also directly translated for the first step. The
example INIT block would be translated as follows:

;Initial values for iVar and bVar:

(= (iVar 0) 1)

(= (bVar 0) true)

;Range constraint for iVar:

(>= (iVar 0) 0)

(<= (iVar 0) 10)

Then the update rules are translated for n steps. A single step consists of the
disjunction of all update rules. A single update rule is the conjunction of its
guard and the variable updates. In an internal transformation of the AST the
guard is extended with conditions that assure that after the update all variables
are still in their proper range. Then the guards, which are simple Boolean
expressions, can be directly translated per transition. The variable updates can
be translated as Boolean equalities each specifying the value a variable should
have in the next step. Variables that were not in the update rule are also
included as Boolean equalities that state that the variables should remain equal
to themselves in the next step.
Due to this translation all the rules are mutually exclusive and thus can be
placed together in a disjunction. When a variable was declared nondet and
not updated, it is left out of the equation. This can compromise the mutual
exclusivity of the rules if it is assigned a value as was described in section 3.1.4.
Therefore it is forbidden to assign a value to a variable that is declared nondet.
Finally we must always include an identity rule that makes no changes. This
rule must be added to cover the case where no transition rules are applicable.
Without this rule the formula can become unsatisfiable just due to a lack of
applicable update rules, which could unjustifiably influence the result of the
property that is verified. An update rule that has no guard and no updates of
ranged variables can always be applied. If such an update rule exists the identity
rule need not be compiled. The transition rules of the example are translated
as follows for the first step:

;Transition step 0

22

(or

;rule 1

(and

;generated range constraint:

(and (<= (+ (iVar 0) 1) 10) (>= (+ (iVar 0) 1) 0))

(= (iVar 1) (+ (iVar 0) 1))

(= (bVar 1) (not (bVar 0)))

)

(and

;rule 2

(and (= (bVar 0) true) ;guard

;generated range constraint:

(and (<= (- (iVar 0) 2) 10) (>= (- (iVar 0) 2) 0)))

(= (iVar 1) (- (iVar 0) 2)) ;update

(= (bVar 1) (bVar 0)) ;unupdated variable

)

;identity rule:

(and

(not (or

;rule 2 not applicable?

(and (= (bVar 0) true)

(and (<= (- (iVar 0) 2) 10) (>= (- (iVar 0) 2) 0)))

;rule 1 not applicable?

(and (<= (+ (iVar 0) 1) 10) (>= (+ (iVar 0) 1) 0))))

;do nothing

(= (iVar 1) (iVar 0))

(= (bVar 1) (bVar 0))

)

)

Finally the verifyable property has to be translated. Depending on the prop-
erty, the entire formula must be either satisfiable or unsatisfiable. In case of a
reachability problem the final state can be directly translated as a disjunction
of n + 1 times the same Boolean expression for each step. If the formula is
satisfiable an instance is returned that shows all the steps needed to reach the
goal state. The example reachability property is translated as follows:

(or

(and (= (iVar 0) 10) (bVar 0))

(and (= (iVar 1) 10) (bVar 1))

...

(and (= (iVar 30) 10) (bVar 30))

)

During loop checking we verify if two separate states exist in which each variable
is equal in both states. SMT-Lib allows for universal and existential quantifiers,
that realise a very short-hand notation of this property. However running in-

23

stances with quantifiers often leads to significantly worse performance than un-
folding the whole statement. Therefore loop checks are unfolded by comparing
every state with its future states resulting in a still manageable O(k2) increase
in file size, while providing a significant speed increase. This method usually
leads to the fastest results. However if the file size becomes too big there is also
another way to encode this property without making use of quantifiers. In the
generated script we can define a variable i of type int and a variable j of type
int. We can now add a simple and-clause that specifies that there must be some
state i which occurred before state j in which all the variables are equal, like
so:

(and

(< i j)

(<= i 30) ;i <= MAXSTEPS

(<= j 30) ;j <= MAXSTEPS

(> i 0)

(> i 0)

;state i equals state j

(= (iVar i) (iVar j))

(= (bVar i) (bVar j))

)

If the formula is satisfiable an instance is returned that shows all the steps
needed to create a loop. An important thing to note here is that the identity
rule could cause a loop to be detected when no transitions are possible anymore.
Therefore a Boolean loop variable is introduced. It is initialized to true and
not altered in any transition except the identity rule. In the identity rule the
loop variable is set to false. Finally as an addition to the loop property above,
we demand that the loop variable must be true in every step. This ensures that
no loops are possible due to the identity rule:

;Loop conditions:

(= (loop 0) true)

(= (loop 1) true)

...

(= (loop 30) true)

With these conditions, paths that exit from a loop and end up in a deadlock
state are excluded. To improve performance we can relax the loop condition
such that loop only has to be true until the end of the loop. After all we
are only interested in the loop detection and not in the rest of the execution.
Relaxing the loop condition also makes more satisfying assignments available,
which could increase solving performance. With the following condition there
are more possible satisfying assignments, but we can still be sure that a returned
path contains a loop.

(= (loop j) true))

24

Checking for a safety property specified by the Boolean expression p is the same
as checking that ¬p is never reachable. Therefore when we insert the reachability
property ¬p. The formula is unsatisfiable iff the invariant holds. If the formula
is satisfiable it will return a counter-example showing that ¬p is reachable. The
example safety property is translated as follows:

(or

(not (and (= (iVar 0) 10) (bVar 0)))

(not (and (= (iVar 1) 10) (bVar 1)))

...

(not (and (= (iVar 30) 10) (bVar 30)))

)

If none of the transition rules applies the system is in a deadlock. This means
that if the identity rule can be applied, the system is in deadlock. To detect
a deadlock we check in every step if the guard of the identity rule applies. If
the formula is satisfiable a deadlock exists and a trace leading to the deadlock
situation is returned. If the formula is not satisfiable the system is deadlock
free. In case there is always a transition possible (i.e. there is no identity rule)
a deadlock can never occur. In that case we insert false as a property such
that the tool returns the right answer.
The deadlock check for a system consisting of just rule 1 would be translated
as follows:

(or

(not (and (<= (+ (iVar 0) 1) 10) (>= (+ (iVar 0) 1) 0)))

(not (and (<= (+ (iVar 1) 1) 10) (>= (+ (iVar 1) 1) 0)))

...

(not (and (<= (+ (iVar 30) 1) 10) (>= (+ (iVar 30) 1) 0)))

)

Finally we may check for a liveness property. The liveness property states that
always eventually a state where the Boolean expression p holds must be reached.
Since we are working with a limited number of possible steps there is a violation
of the liveness property if either of the two following conditions holds:

• a loop exists wherein property p never holds

• another path exists that is not a loop and ends in a state that does not
satisfy p.

The example liveness property is translated into two parts:

;;Liveness property

(or

;;Detect a loop that is not live

...

;;Detect a path that is not live and has no loops

...

)

25

The first condition uses the same code as used for infinite path checking in
conjunction with a check that verifies if all states inside the loop do not satisfy
p:

;;First condition

(and

(and

;;Insert Inf Path checking conditions here

...

;;Check if all states in the loop are invalid:

(and

(or

(< 0 loopi)

(> 0 loopj)

(not (and (>= (iVar 0) 10) (bVar 0)))

)

(or

(< 1 loopi)

(> 1 loopj)

(not (and (>= (iVar 1) 10) (bVar 1)))

)

...

(or

(< 30 loopi)

(> 30 loopj)

(not (and (>= (iVar 30) 10) (bVar 30)))

)

))

The second condition checks if there is a path that ends in a state that does not
satisfy p. This final state should be in a path that is not a loop. So in addition
it is checked that for every possible section of a path where the start state is
equal to the end state that there is no state that satisfies p.

;;Detect a final invalid state that is not part of any loop

(and

(not (and (>= (iVar 30) 3) (bVar 30)))

(not

;;for each i, j > i, check if it is a loop and if p holds:

(or

(and

(= (iVar 0) (iVar 1))

(= (bVar 0) (bVar 1))

(or

(and (>= (iVar 0) 3) (bVar 0))

)

26

)

(and

(= (iVar 0) (iVar 2))

(= (bVar 0) (bVar 2))

(or

(and (>= (iVar 0) 3) (bVar 0))

(and (>= (iVar 1) 3) (bVar 1))

)

)

...

(and

(= (iVar 29) (iVar 30))

(= (bVar 29) (bVar 30))

(or

(and (>= (iVar 29) 3) (bVar 29))

)

)

)))

NuSMV
In NuSMV we do not need to unfold the transition system in separate steps or
worry about which step we are in if MAXSTEPS is not defined. Only if there is
a MAXSTEPS declaration an extra steps variable is introduced that keeps track
of the amount of steps taken. It is initialized to 0 and incremented after each
transition.

There is some resemblence between the new scripting language and the SMV
language that allows the VARS and INIT blocks to be almost directly copied.
NuSMV requires all variables to have a range. Therefore it is forbidden to com-
pile a script with unranged variables for NuSMV.
Assume a script based on MAXSTEPS, VARS and INIT blocks as defined in Ex-
ample 5. The translation of these blocks to the SMV language would be as
follows:

VAR

bVar : boolean;

iVar : 0..10;

steps : 0..30;

INIT

(iVar = 1) & (bVar = TRUE) & (steps = 0)

The update rules are translated as seperate state transitions that are connected
using the | operator. This operator denotes a choice between transitions. The
update rules are translated as Boolean conjunctions similar to Yices, but with
different syntax. Guards can be translated as the Boolean expressions they are
and variable updates are translated with a next statement that indicates the
value the variable should have after the transition. NuSMV requires that there
is always a transition possible, otherwise the model is considered incomplete.

27

Therefore the identity rule is inserted as was described in the previous section.
This rule is inserted to assure that in every case NuSMV does not return wrong
answers due to an incomplete model specification. The final translation of the
TRANS block of the example is as follows:

TRANS

--rule 1:

(steps + 1 <= 30 &

iVar + 1 <= 10 & iVar + 1 >= 0 &

next(iVar) = iVar + 1 &

next(bVar) = !bVar &

next(steps) = steps + 1) |

--rule 2:

(bVar = TRUE & steps + 1 <= 30 &

iVar - 2 <= 10 & iVar - 2 >= 0 &

next(iVar) = iVar - 2 &

next(steps) = steps + 1 &

next(bVar) = bVar) |

--identity rule:

(!((bVar = TRUE &

steps + 1 <= 30 &

iVar - 2 <= 10 & iVar - 2 >= 0) |

(steps + 1 <= 30 &

iVar + 1 <= 10 & iVar + 1 >= 0)) &

next(steps) = steps &

next(iVar) = iVar &

next(bVar) = bVar)

The verifyable properties are translated to an LTL equivalent in the SMV lan-
guage. Consider an example reachability property p. It can be translated as an
LTL expression that states that finally p should hold:

LTLSPEC F (p)

If this property holds we will not see a trace from NuSMV, because it will only
return a trace if a counter example was found. To circumvent this, we can
inverse the specification as follows:

LTLSPEC G !(p)

Here NuSMV will be verifying that ¬p holds in every possible state, so in the
case where p holds we will get back a trace, presented as counter example.

When verifying a loop checking property an extra loop variable is added and
initialized to TRUE. During a transition this variable keeps its current value. If
no more transitions are allowed the loop variable is put to FALSE in the identity
rule. If the loop variable remains TRUE at all times this means that it is always
possible to execute a transition, hence a cycle exists. When checking for loops,
the usage of the steps variable is forbidden as it will always prevent loops from

28

occurring. These limitations regarding loop checking are explained in detail in
section 4.3. The following loop checking LTL specification will return a trace of
a step sequence that contains a loop:

LTLSPEC F (loop = FALSE)

A safety property p should hold in every state. If p does not hold a counter-
example is returned. The safety property p is translated as follows:

LTLSPEC G (p)

Checking for deadlock is handled in the same way as checking for loops. We
simply use the loop variable in a different way. If the loop variable remains
TRUE at all times, it means that it was always possible to execute a transition.
Here it is also not allowed to use the MAXSTEPS block, since it would always
cause a deadlock if the maximum number of steps is exceeded. The following
LTL specification will return a counter-example if a deadlock exists. It verifies
that no path exists in which no transitions are possible.

LTLSPEC G (loop = TRUE)

Finally a liveness property p can be directly translated to a simple LTL ex-
pression that defines that always eventually p must hold. A counter-example is
returned if the liveness property does not hold.

LTLSPEC G (F (p))

UPPAAL
The translation from a script to a model in UPPAAL is less straight forward
than with the other tools; it poses some serious limitations and requires a few
workarounds to get it right as will be further explained in section 4.3.

A simple transition system will be translated to a single timed automaton in
UPPAAL. The variable declarations and initializations are declared locally to
the automaton. These must be constant initial values, since UPPAAL does
not support non-deterministic variable initialization in the local declaration.
Ranged integer variables can be translated to bouded integer variables in UP-
PAAL. A translation of the VARS and INIT blocks of the example would look
like the following:

bool bVar = true;

int [0,10] iVar = 1;

The rest of the model consists of a timed automaton that has a start state
and at least one transition state. In case there exist no update rules without
guards after the internal transformation of the AST there is also a deadlock
state. The start state contains outgoing arrows that lead to unique other states
of which one is generated for each transition. It may also contain a transition
to the deadlock state to cover the case that no transitions are possible. All the
transition states lead directly back to the start state. An implementation of the
automaton that is translated from the TRANS block from the example is given in

29

Figure 7. We could also omit all the transition states and create only outgoing
edges from the start state to itself. However when UPPAAL returns a trace it
only returns state changes. With the extra transition states we can quickly see
which transitions were taken.

Figure 7: UPPAAL implementation

The update rules defined in the script are translated to functions that are local
to the automaton. The functions are called when a transition is taken. In Figure
7 the function calls are shown in blue. Guards on the transitions can be directly
translated as guards on the edges of a transition arrow. They are shown in
green. The implementation of the transition functions is as follows:

void _trans1()

{

int iVar_old = iVar;

bool bVar_old = bVar;

iVar = iVar_old + 1;

bVar = !bVar_old;

steps = steps + 1;

}

void _trans0()

{

int iVar_old = iVar;

iVar = iVar_old - 2;

steps = steps + 1;

}

There is the possibility to put the update statements directly onto the edge,
which is stated to be a few procent faster than using functions (Behrmann,
David, & Larsen, 2004), but in our case this is very inefficient. With UPPAAL,
the updating of a variable is an atomic step during a transition. The updating
steps are executed in sequence. This means that variables that are updated and

30

then used in another statement of the transition update have already changed
value. For this reason local copies must be made that hold old values of the
variables, which can then be used to update each variable to their new values
without being disturbed by intermediate results. However, in the update field
of the edge it is not possible to create local variables, therefore every variable
has to have a local copy defined in the process definition. This needlessly slows
down execution time and causes out-of-memory exceptions much faster. Luck-
ily UPPAAL supports the definition of local functions in which function-local
temporary variables can be defined. In this way the state variable doubling is
avoided and performance increased.

UPPAAL offers a secondary language to specify properties that need to be
verified. A reachability property can be translated with an existential quantifier
and a diamond operator that specifies that there exists a state that can finally
be reached and satisfies property p:

E<> p

The translation for loop checking is more peculiar. In a similar way as with
translations to other tools a Boolean loop variable is introduced that is set to
false as soon as a transition to the deadlock state is taken. Then a loop could be
checked with the E[] operator of which the definition is as follows: “E[] φ says
that there should exist a maximal path such that φ is always true. A maximal
path is a path that is either infinite or where the last state has no outgoing
transitions.” (Behrmann et al., 2004). If an infinite path exists where the loop
variable is true this proves the existence of a loop:

E[] Process.loop

However since UPPAAL works with timed automata this property will never be
satisfied using just the above translation. Because it is allowed to stay in the
same state for a longer period of time, it is theoretically possible to stay in the
same state forever, thus never satisfying the above property because the path
is not infinite and the state has outgoing transitions. For this reason UPPAAL
must be forced to make a transition after some time units. To accomplish this
a clock variable is defined and in each state the restriction is added that it
can only stay in the same state for one time unit. With this addition the loop
checking is possible. An instance of a loop checking automaton that consists of
just rule 1 of the example syntax is depicted in Figure 8.

31

Figure 8: UPPAAL loop implementation

To the local variable declarations the clock variable is added:

clock klok;

Safety properties can be directly translated to an expression that states that p

should be true in all reachable states:

A[] p

Checking for deadlock is as simple as checking if the deadlock state can be
reached. In this case it is not allowed to use the MAXSTEPS block, since it would
always cause a deadlock if the maximum number of steps is exceeded. The
deadlock checking property would be translated as follows:

E<> Process.Deadlock

Finally checking for liveness properties can be done by using the following ex-
pression which states that p should always be satisfied eventually. Due to the
same reason as with loop checking this also requires the introduction of the
clock variable in order to always progress the system.

A<> p

4.2.2 Process models

Yices and NuSMV
For SMT-Lib and NuSMV the parsed abstract syntax tree of the process model
script is transformed internally to its transition system equivalent. Both SMT-
Lib and NuSMV undergo the same transformation. The entire process consists
of a few steps:

1. The PROGRAM block is evaluated for processes that are being used. The
original PROCESS declarations are removed and for each process instance

32

a new copy is added to the syntax tree. The process identifiers will be
replaced with the name of their corresponding process variable.

2. The local variables in each process are replaced with fresh variables, i.e.
variables with a name that has not been used anywhere else in the script.
The replacements are applied to the VARS, INIT and TRANS blocks. For
easy identifyability the local variables of each process are prefixed with
their process identifier. If this results into name clashes, another ’fresher’
name is chosen internally.

3. The global and local variables from each process are put together, as well
as the INIT and TRANS statements, while the PROGRAM block and remaining
PROCESS syntax and process variable declarations are removed.

What remains after the transformation is the equivalent of the process model,
now expressed as a regular transition system. Take for example the parallel
adding script given in Appendix C. By applying each step the transformation
is as follows:

Step 1: copying processes

PROCESS P:

VARS:

int state : 0..2;

int x : 0..256;

INIT:

x = 0;

state = 0;

TRANS:

? (tx == 0) -> x,state = c,1;

? (tx == 1) -> x,state = x+c,2;

? (tx == 2) -> c,state = x,0;

PROCESS Q:

VARS:

int state : 0..2;

int x : 0..256;

INIT:

x = 0;

state = 0;

TRANS:

? (tx == 0) -> x,state = c,1;

? (tx == 1) -> x,state = x+c,2;

? (tx == 2) -> c,state = x,0;

Step 2: introducing fresh variables

PROCESS P:

VARS:

int P_state : 0..2;

33

int P_x : 0..256;

INIT:

P_x = 0;

P_state = 0;

TRANS:

? (P_tx == 0) -> P_x,P_state = c,1;

? (P_tx == 1) -> P_x,P_state = P_x+c,2;

? (P_tx == 2) -> P_c,P_state = P_x,0;

PROCESS Q:

VARS:

int Q_state : 0..2;

int Q_x : 0..256;

INIT:

Q_x = 0;

Q_state = 0;

TRANS:

? (Q_tx == 0) -> Q_x,Q_state = c,1;

? (Q_tx == 1) -> Q_x,Q_state = Q_x+c,2;

? (Q_tx == 2) -> Q_c,Q_state = Q_x,0;

Step 3: merging the results

MAXSTEPS:

30

VARS:

int c : 0..256;

int P_state : 0..2;

int P_x : 0..256;

int Q_state : 0..2;

int Q_x : 0..256;

INIT:

c = 1;

P_x = 0;

P_state = 0;

Q_x = 0;

Q_state = 0;

TRANS:

? (P_tx == 0) -> P_x,P_state = c,1;

? (P_tx == 1) -> P_x,P_state = P_x+c,2;

? (P_tx == 2) -> P_c,P_state = P_x,0;

? (Q_tx == 0) -> Q_x,Q_state = c,1;

? (Q_tx == 1) -> Q_x,Q_state = Q_x+c,2;

? (Q_tx == 2) -> Q_c,Q_state = Q_x,0;

REACH:

c == 245

34

The result is the transition system equivalent of the original script. The rest
of the compilation proceeds as if it was a regular transition system, which is
described in the previous section.

UPPAAL
The translation from a process model to UPPAAL undergoes a less drastic
transformation and is in fact fairly direct. The PROGRAM block is evaluated for
processes that are being used. Each used PROCESS block is translated to an
UPPAAL automaton following the same rules as a normal transition system.
Each automaton is given the unique process identifier as name.

Then, the PROGRAM block is translated as a system declaration. It defines which
instances of automata to run in parallel. The example script defines two in-
stances of the automaton to run in parallel:

p2 = p();

p1 = p();

system p2, p1;

The global MAXSTEPS, VARS and INIT blocks can be translated as global decla-
rations:

int [0,256] c = 1;

int steps = 0;

Finally the translation of the verifyable property is translated and must now
take into account all the different processes. The translation of the example
reachability property may remain the same:

E<> (c == 165)

A loop checking property should detect any possible loop. A loop can exist in
any running process. Therefore we check that at least one of the processes can
keep its loop variable true at all times:

E[] p1.loop or p2.loop

A safety property p can still be translated as before:

A[] p

Checking for deadlock means that in no case the entire system can progress
anymore. Therefore we check if we can reach a state in which all processes are
in deadlock:

E<> p1.Deadlock and p2.Deadlock

Finally the translation of the liveness property may remain the same:

A<> p

35

4.3 Limitations

Other limitations exist besides the ones mentioned in the previous sections. The
verification of several properties disallows the usage of the MAXSTEPS declaration
in NuSMV and UPPAAL. Since a maximum number of steps is not a required
part for these tools, a step variable is declared internally that is incremented
by one after each transition. In the SMT-Lib translation the step counter can
easily be discarded when checking for loops, but for NuSMV and UPPAAL this
variable prevents finding a loop even if it exists, since the step variable cannot
be excluded from the state. The verification of other properties is also hindered
by the step variable. Therefore for these tools the definition of a maximum
number of steps is only allowed in scripts with a reachability, safety or deadlock
property.

Non-deterministic variables pose serious restrictions on the solving capability of
UPPAAL as was described in the previous sections. Therefore non-deterministic
variables are not supported right now when compiling to UPPAAL. This also
means that all the declared variables must be initialized and they must be
initialized to concrete values instead of non-deterministic Boolean restrictions.
Finally due to the stateless nature of the scripting language the generated models
in UPPAAL will not be the most efficient possible. The translation of the
transition system without explicit states is less efficient in UPPAAL than in
tools that do not need to represent states explicitly, since we cannot optimally
make use of the hidden states that reside in a script. In the case of the parallel
adding problem this results in an automaton that has needless checks to govern
the state, which could have been translated as separate states resulting in a
shorter model.
A lot of other overhead due to checks and needless variable copying also causes
a severe decrease in performance. Even while the translation from a process
model introduces a more ‘natural’ translation to UPPAAL, making use of its
capabilities to define several systems running in parallel, the parallel adding
problem seems to run slower using this model. While the goal was to increase
the performance, instances specified as a process model took the longest to
complete. Instances specified as a normal transition system could be up to two
times faster, but still were not as fast as a manual optimized translation of the
problem. Furthermore the generated instances run out of memory a bit sooner
than the manual translations.
Although these shortcomings may prevent problems to be efficiently solved in
UPPAAL, it is still possible to translate a transition system script defined in the
new language to UPPAAL to make use of its model checking capabilities.

36

5 Usage

In order to use the newly developed tool you may download the prototype that
was used to obtain the results in this paper. It is available in the git-repository
that can be found online1. A warning in advance: the newly developed academic
tool is highly experimental and considered an unstable prototype that contains
unfinished features and may contain bugs.

5.1 Prerequisites

The online repository contains the full Netbeans project, a pre-compiled exe-
cutable jar file and the benchmark results that are presented in this paper. In
order to open the code project you need at least Netbeans 8.02 and the Java
JDK 83. Those that only wish to run the included compiled jar need the Java
Runtime Environment 84. Currently only 64 bit systems running Windows are
supported. The tool was developed and tested on Windows 7 Professional only
so it is recommended to use Windows 7. With these prerequisites you are only
able to compile script files in the new language to script files in languages of
other tools. To make use of the tool’s automatic features that call other pro-
grams you need to download Yices 1.0.405, NuSMV 2.5.46 and UPPAAL 4.0.137

and follow the install instructions that are included in the git-repository. Com-
patibility with any other versions of these tools is not guarenteed.

5.2 Commands

The tool is intended to be used as a command-line utility. The downloadable
version is able to perform the following tasks:

• Compiling scripts that are written according to the language specification
of section 3 to multiple back-ends.

• Calling other model checking programs with the compiled scripts.

• Benchmarking the run time performance of other model checking pro-
grams.

Besides these functions, you might find other useful features, which are described
in the included help file of the tool. To be able to perform the three tasks for

1https://bitbucket.org/VultureX/unifiedmodelcheckingprototype
2https://netbeans.org/downloads/
3http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads

-2133151.html
4http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads

-2133155.html
5http://yices.csl.sri.com/download-yices1.shtml
6http://nusmv.fbk.eu/NuSMV/download/getting-v2.html
7http://www.uppaal.org/

37

https://bitbucket.org/VultureX/unifiedmodelcheckingprototype
https://netbeans.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://yices.csl.sri.com/download-yices1.shtml
http://nusmv.fbk.eu/NuSMV/download/getting-v2.html
http://www.uppaal.org/

Yices, NuSMV and UPPAAL and a custom script named ”a test.script” you
can use the following commands.

• java -jar MCC.jar -compile "a test.script" -y -n -u

• java -jar MCC.jar -run "a test.script" -y -n -u

• java -jar MCC.jar -benchmark "a test.script" -y -n -u 600

The first compiles “a test.script” to Yices, NuSMV and UPPAAL. The second
compiles and runs “a test.script” for Yices, NuSMV and UPPAAL. The last
benchmarks Yices, NuSMV and UPPAAL with a timeout of 600 seconds. The
results are stored in a Benchmarks folder in the parent folder of each tool. A
full list of commands and features is available in the download.

38

6 Example Problems

In this section some guidelines for specifying problems are introduced as well as a
few concrete example problems. These examples are also used in the benchmarks
of Section 7

6.1 Weighted graphs

With the scripting language it is possible to define a weighted graph. A weighted
graph is a directed graph, of which every edge is labeled by a weight. One can
easily write a script that automatically generates an instance of a graph with
n states, m weighted edges, an initial state and update rules that take the
weighted edges into account while traversing the state space.
Take for example the following weighted graph:

Figure 9: Example weighted graph

The states and edges can simply be represented as constant integers, where the
a state constant represents a particular state and an edge constant represents
the weight of a particular edge. An extra variable is introduced that contains
the sum of the weighted edges that have been traversed so far. The initial state
is set to S and the initial sum value is initialized to zero:

VARS:

int sum;

int currentState 0..2;

const int S = 0;

const int A = 1;

const int B = 2;

const int S_A = 10;

const int A_B = 5;

const int B_S = 10;

INIT:

currentState = S;

sum = 0;

39

Transition rules can then be easily added for each edge. The state is changed
and a sum value is increased with the weight of the edge.

TRANS:

currentState == S -> currentState,value = A,value+S_A;

currentState == A -> currentState,value = B,value+A_B;

currentState == B -> currentState,value = S,value+B_S;

Finally a verifyable property for the model of the weighted graph can be speci-
fied. As an example we can ask the question if there is a path starting from S
of total weight 25:

REACH:

sum == 25

A full implementation is given in Appendix D.

6.1.1 Truck delivery problem

A special variant of the weighted graph is the delivery problem. Suppose that
there is a truck with a capacity of c food packages. A city with the name A
also has a maximum capacity of Ac food packages that it can store. The truck
can unload an amount of a food packages in each city, depending on its own
current load and the maximum capacity of a city. Traveling from city to city
takes time. During the travel period of the truck each city consumes an amount
of food packages. If the amount of food packages in a city is 0, the city dies
of starvation. The truck’s starting location is at a depot, which has an infinite
amount of food packages available. When the truck arrives back at the depot it
will be fully reloaded.

The example weighted graph of Figure 9 can be interpreted as a truck delivery
problem. Each state represents a city. Their maximum capacities may be ran-
domly chosen. Each edge represents a traveling time and the amount of food
packages that are consumed during the trip from one city to another. State S
represents the depot.

In addition to the script of the regular weighted graph, the current number of
food packages in each state or city (except the depot) is now represented by
a variable. They are initialized with a self chosen number of food packages.
Additional constants are added to define the maximum capacity of each city
and the truck. The truck starts fully loaded.

VARS:

int truck : 0.. TRUCK_MAX;

int state : 0..2;

int Ac : 0..A_MAX; //Amount of packages in A

int Bc : 0..B_MAX; //Amount of packages in B

const int S = 0; //depot

40

const int A = 1;

const int B = 2;

const int S_A = 10;

const int A_B = 5;

const int B_S = 10;

const int TRUCK_MAX = 20;

const int A_MAX = 30;

const int B_MAX = 30;

INIT:

currentState = S;

truckLoad = TRUCK_MAX;

Ac = 20;

Bc = 20;

A transition now decreases the amount of food packages in each state. And
besides that, the amount of food packages in the truck should also be updated
appropriately. The amount of food packages that the truck can unload in each
state can either be deterministic or non-deterministic. In case of the determin-
istic problem we decide that the truck always unloads a maximum amount of
packages. This involves calculating how many packages can be unloaded in the
state it arrives in, while also taking into account the traveling time:

TRANS:

? state == S & Ac-S_A >= 0 & truck - (A_MAX - (Ac - S_A)) >= 0

-> state, truck, Ac, Bc

= A, truck - (A_MAX - (Ac - S_A)), A_MAX, Bc-S_A;

? state == S & A-S_A >= 0 & truck - (A_MAX - (Ac - S_A)) < 0

-> state, truck, Ac, Bc

= A, 0, (Ac - S_A) + truck, Bc-S_A;

? state == A & Bc-A_B >= 0 & truck - (B_MAX - (Bc - A_B)) >= 0

-> state, truck, A, B

= B, truck - (B_MAX - (Bc - A_B)), A-A_B, B_MAX;

? state == A & Bc-A_B >= 0 & truck - (B_MAX - (Bc - A_B)) < 0

-> state, truck, A, B

= B, 0, (Bc - A_B) + truck, B_MAX;

? state == B

-> state, truck, Ac, Bc

= S, TRUCK_MAX, Ac-B_S, Bc-B_S;

A non-deterministic transition would introduce a new non-deterministic value:

nondet int amount;

The non-deterministic amount simplifies the calculations:

TRANS:

? state == S & Ac-S_A >= 0

41

-> state, truck, A, B

= A, truck - amount, (Ac - S_A) + amount, Bc-S_A;

? state == A & Bc-A_B >= 0

-> state, truck, A, B =

B, truck - amount, Ac-A_B, (Bc - A_B) + amount;

? state == B

-> state, truck, A, B

= S, TRUCK_MAX, Ac-B_S, Bc-B_S;

A property that we want to verify asks the question whether it is possible to
supply each state with a constant stream of packages such that they never starve.
We know that this is the case if a loop is possible:

INF:

A full example of the delivery problem with a deterministic unloading scheme
is given in Appendix E. A full example of the delivery problem with a non-
deterministic unloading scheme is given in Appendix F.

6.2 Sequential programs

Another important use case is the verification of programs. A program consists
of a sequence of statements. The execution of a statement can be interpreted as
a state transition and also implemented as one. Take for example the following
pseudo-code of a program that contains a loop:

1. while(condition) {

2. stmt1;

3. stmt2;

4. }

A pseudo-implementation of this program in the script language would have a
global variable that is the program counter. After each instruction the program
counter is updated such that the correct instruction is executed. The program
counter is represented by a variable PC. After each transition the state updates
are applied and the program counter is updated appropriately:

VARS:

int PC;

...

INIT:

PC = 1;

...

TRANS:

//while loop condition:

? PC == 1 & condition -> PC = PC + 1;

? PC == 1 & !condition -> PC = 4;

42

//while loop body:

? PC == 2 -> ..., PC = ..., PC+1; //stmt1

? PC == 3 -> ..., PC = ..., 1; //stmt2

Possibly one could the replace the program counter and use state variables that
might introduce an optimization in model checking tools like UPPAAL. In the
discussion there is more on the value of state variables that would possibly
optimize these kinds of problems and make scripts easier to read.

6.2.1 Shared variables

Another script that was inspired by examples that can be found at the website
of (Barnat et al., 2013) introduces the usage of the process model. This problem
introduces two program instances running in parallel that manipulate a shared
variable.

Let us consider two processes P and Q running in parallel:

P = loop { x=c; x=x+c; c=x;}

Q = loop { y=c; y=y+c; c=y;}

The variable c is shared between processes and its initial value 1. The claim is
that c can contain any natural value. With the model checking tools that are
used we cannot prove this, but for any value, we can try to find it.

Both processes consist of the same program. The program is translated to a
PROCESS using the guidelines of section 6.2:

PROCESS addingProcess:

VARS:

int state : 0..2;

int x : 0..256;

INIT:

x = 0;

state = 0;

TRANS:

? (tx == 0) -> x,state = c,1;

? (tx == 1) -> x,state = x+c,2;

? (tx == 2) -> c,state = x,0;

The shared variable c is defined globally. To test whether two instances can
reach any value, two instantiations of the process are run in parallel:

VARS:

//Global shared variable that can reach any value

int c : 0..256;

//Several processes that add to c in parallel

proc P = addingProcess;

proc Q = addingProcess;

43

INIT:

c = 1;

PROGRAM:

//Run P in parallel with Q

P || Q

Finally a reachability property for any value of c can be defined. A complete
implementation of this model is given in Appendix C.

6.3 Alternating Bit Protocol

This problem introduces the implementation of a simple variant of the alternat-
ing bit protocol as described below.

Figure 10: Alternating Bit Protocol

A sequence of data packages Sd of length n is sent from a sender S over an
unreliable data channel S2R to a receiver R. This means that during the trans-
mission a data package can be lost and has to be sent again in order for R
to receive it. The receiver stores each received package in its own sequence
Rd, which is initially empty. The receiver can also send information back to
the sender over an unreliable data channel R2S. The sender and receiver each
control a so-called alternating bit Sb and Rb respectively. Initially the sender
and receiver start with their alternating bit set to 0. The receiver constantly
broadcasts the negation of Rb. It is flipped only when a package is received
that carries a bit that is equal to Rb. The sender includes a copy of Sb in each
package that it sends. The sender only flips Sb if it receives a bit that is equal
to Sb.
To represent whether the data channels are currently filled we can use boolean
variables S2Rf and R2Sf for the S2R and R2S channel respectively. If the vari-
able is set to true it means the data channel is filled, it will be false otherwise.
The alternating bits that are currently in the data channels are represented by
variables S2Rb and R2Sb. The value in these variables only has a meaning
if the corresponding data channel is filled. The same principle goes for other
data that is in the data channels, which is represented by variables S2Rd and
R2Sd.

Summed up, the rules of the protocol are as follows:

44

• At any moment the information that is carried in S2R can be lost:
S2Rf := false.

• At any moment the information that is carried in R2S can be lost:
R2Sf := false.

• At any moment S2R can be filled by the first element of Sd, carrying Sb:
S2Rb := S b; S2Rd := head(Sd); S2Rf := true.

• At any moment R2S can be filled by the negation of Rb:
R2Sb := not(Rb); R2Sf := true.

• If R2S carries a bit that has the same value as Sb, then the first element
of Sd may be removed while Sb is flipped:
if R2Sf and R2Sb = Sb { remove head(Sd); Sb := not(Sb) }.

• If S2R carries a data package with a bit that has the same value as Rb,
then the package is added to Rd while Rb is flipped:
if S2Rf and R2Sb = Rb { add Bd to Rd; Rb := not(Rb) }.

There are two properties that must be satisfied:

1. The initial length of Sd must be equal to the final length of Rd.

2. If property 1 holds, then the initial content of Sd must be the same and
in the same order as the final content Rd.

A correct implementation of the protocol guarentees both properties. In the
script we can verify only one property at the time. To verify property 1 we
can specify a reachability property that states that Rd has the same length
as the initial length of Sd for a particular data size. To verify property 2 we
specify that property 1 and the negation of property 2 must be unreachable if
the protocol is implemented correctly. In other words, we try to find a state
in which both lengths of the arrays are equal, but the content is at any place
incorrect. Verifying just one of these properties is not a complete proof of the
correctness of the protocol, but still meaningful to experiment with later on.
An example implementation of the complete protocol that verifies property 2
can be found in Appendix G.

6.4 Robot vacuum cleaner

This problem was taken from (Vaandrager & Verbeek, 2014). It describes a
robot vacuum cleaner that must make its way across an n x n grid such that
it visits all cells and returns in the same state as it started. The robot has no
memory of where it has been, it merely knows its current position and orienta-
tion. The robot is always facing either north, east, south or west and located in
one of the cells of the grid. Initially, the robot starts in cell (0,0) and is facing
north. It is allowed to take two of the following actions in each cell:

• Turn 90 degrees

45

• Move forward if not facing a wall

Hereby it is assumed that all the actions always have the intended effect. The
question asked is whether there exists a strategy for an n x n grid such that
the robot always knows what to do and that it visits all cells infinitely often.
Figure 11 that was taken directly from (Vaandrager & Verbeek, 2014) shows
two possible strategies for a 3 x 3 grid. An example implementation for a 2 x 2
grid is given in Appendix H.

Figure 11: Two strategies of 24 (left) and 26 (right) actions

Results from Vaandrager et al. show that Uppaal runs out of memory for a 5 x
5 grid and the largest instance they could solve using a SAT-solver called zChaff
was a 7 x 7 grid.

46

7 Experiments

In this section, each model checker or solver was benchmarked using the new
tool with custom instances of the example problems of the previous section. All
benchmarks were performed on a Core i7 2700K processor running at a clock
frequency of 4.8GHz with 8GB of RAM running at 2133MHz using Windows 7
Professional as operating system. All the scripts for problem instances were au-
tomatically generated and available online8. The results outlined in this section
were obtained using the following external tools: Yices 1.0.40, NuSMV 2.5.4
and UPPAAL 4.0.13. These versions were common to use during the writing
of this paper, but the tools are still active in development. Using any other or
newer versions of these tools than the ones mentioned may lead to significantly
different results and conclusions.

In these synthetic benchmarks the solutions to the problems and when applicable
the number of steps that are needed to reach the solution were determined
beforehand by custom experiments. The maximum amount of steps needed is
always found by trying different maximum steps values and determining the
lowest value for which the property is still verified. Specifying the maximum
number of steps can have a great impact on solving performance both in negative
and positive way. For each separate problem the choice of whether or not to
specify the maximum steps will be explained. For Yices this value is always
specified, because its implementation depends on it.

What makes it hard to do meaningful and fair benchmarks is that each tool has
its own limitations and perculiarities as was described in section 4.3. Yices is
known to rapidly decrease in performance if the step counter is very high and
NuSMV is known decrease in performance if the variable range is very wide. Fi-
nally UPPAAL has great difficulties with non-deterministic variables and runs
out of memory quickly. This has all been taken into account when designing
experiments.
If a tool takes a very long time to solve a problem, this is usually a signifi-
cant while longer due to the exponential and combinatorial complexity of the
problems and solvers. Therefore a time-out of fifteen minutes is used. Usually
within this time frame at least one of the tools returns an answer for each of
the benchmark problems.

7.1 Weighted graphs

Here a deterministic example of the truck delivery problem was used that is
represented by the following graph:

8https://bitbucket.org/VultureX/unifiedmodelcheckingprototype

47

https://bitbucket.org/VultureX/unifiedmodelcheckingprototype

Figure 12: Truck Delivery Benchmark Instance

The initial parameters for the problem are specified in the following table:

City A B C
Initial value 50 40 150
Maximum value 120 120 200

Table 1: Truck Delivery Benchmark Parameters

Custom testing reveiled that an infinite cycle becomes possible at a maximum
truck capacity of 319 and above and it always takes at least 17 steps to show this.
Since loop checking disallows the specification of the maximum steps variable it
was omitted for NuSMV and UPPAAL. The amount of steps for Yices was tested
with 17, 22 and 27 to gain insight in the performance impact for overestimating
the maximum number of steps for bounded model checking. The maximum
capacity of the truck was varied from 315 to 322.

Truck capacity NuSMV UPPAAL Yices 17 Yices 22 Yices 27 Sat
315 1.03 0.04 0.86 2.46 3.22 No
316 1.10 0.06 1.09 2.30 2.84 No
317 1.24 0.05 1.02 2.20 9.36 No
318 1.12 0.08 1.01 1.34 3.10 No
319 1.10 0.11 0.97 3.32 3.23 Yes
320 1.11 0.08 1.20 3.05 7.02 Yes
321 1.25 0.09 1.35 1.68 4.89 Yes
322 1.17 0.11 1.33 3.40 9.79 Yes
Avg time 1.14 0.08 1.08 2.47 5.43

Table 2: Deterministic Truck results

NuSMV and UPPAAL give a definitive conclusion on the absence of a loop, since
they are not bounded by a number of steps. For Yices, unsatisfiability of the
formula may not be regarded as definitive proof of the absence of a loop.

Additional results between Yices and NuSMV were obtained with the same
instance where each time a non-deterministically chosen amount of packages

48

could be unloaded from the truck. The least amount of steps needed for a cycle
was 11 for an instance with a truck with capacity 318 or higher. The amount
of steps for Yices was tested with 11, 16 and 21.

Truck capacity NuSMV Yices 11 Yices 16 Yices 21 Sat
315 T/O 1.7 19.38 83.92 No
316 T/O 1.89 25.40 63.41 No
317 T/O 2.19 25.90 81.05 No
318 T/O 1.49 25.46 38.93 Yes
319 T/O 1.02 12.19 27.69 Yes
320 T/O 2.26 10.54 58.64 Yes
321 T/O 1.81 20.43 63.53 Yes
322 T/O 2.06 13.35 35.13 Yes
Avg time N/A 1.80 19.08 56.53

Table 3: Non-Deterministic Truck results

7.2 Alternating Bit Protocol

In this experiment instances of the Alternating Bit Protocol (ABP) as described
in section 6.3 were used. To verify the correctness of the protocol, the received
array must be equal to the sent array in all possible configurations and exe-
cutions. However this requires a non-deterministic initialization of the array.
Futhermore, an execution trace may be infinitely long. For full correctness of
the protocol both properties specified in section 6.3 must be verified. During the
experiments we will only verify the correctness of property 2 (see section 6.3) to
keep the number of benchmarks to a minimum. The first property is assumed
to be verified earlier. Due to several limitations of the tools, only NuSMV is
able to give us a definitive answer regarding the verification of property 2 for
Booleans and to some degree for integers, since NuSMV is able to deal with
non-deterministic initialization and is not bounded by a maximum number of
steps.

In order to be able to benchmark each tool, several tests were run using altered
properties such that still a comparison can be made. To be able to run bench-
marks for UPPAAL correctness was only verified for a sender’s array of which
the variables are set to 0 or false and a receiver’s array of which the variables
are initialized to 1 or true depending on the data-type used.
The protocol can only be verified for finite execution traces by Yices. Therefore
we determine via custom testing the amount of steps needed to get send the ar-
ray to the receiver. In order to be fair we use this number + 10 to allow slightly
longer execution paths in which errors may occur. This maximum number of
steps is specified for all tools. Finally, since NuSMV works badly with wide
integer ranges, the maximum range of integer values is set to 0..1023.

49

This results in the first set of experiments that benchmark the ABP using various
queue lengths and maximum steps values, two different data-types and the fixed
starting state. The results are shown in Table 4 and 5.

Queue size Max Steps Yices NuSMV UPPAAL
1 14 0.06 0.04 0.03
2 18 0.17 0.04 0.04
3 22 0.57 0.04 0.03
4 26 1.34 0.06 0.04
5 30 2.79 0.09 0.06
6 34 5.67 0.13 0.07
7 38 36.76 0.21 0.08
8 42 81.70 0.34 0.10
9 46 227.29 0.68 0.12
10 50 335.55 1.01 0.14
11 54 217.49 2.26 0.12
12 58 488.43 7.14 0.16
13 62 T/O 17.14 0.15
14 66 T/O 40.34 0.21
15 70 T/O 89.93 0.26
16 74 T/O 237.68 0.24
17 78 T/O 650.43 0.31
18 82 T/O T/O 0.34

Table 4: Results for a fixed initial Boolean array, limited steps

Queue size Max Steps Yices NuSMV UPPAAL
1 14 0.12 1.34 0.03
2 18 0.30 3.52 0.03
3 22 0.64 5.88 0.04
4 26 2.58 9.02 0.05
5 30 7.78 13.18 0.06
6 34 18.91 19.57 0.06
7 38 41.47 26.51 0.12
8 42 81.36 37.68 0.11
9 46 282.57 55.62 0.11
10 50 256.07 89.44 0.13
11 54 489.57 T/O 0.14
12 58 647.37 T/O 0.16
13 62 632.45 T/O 0.19
14 66 T/O T/O 0.22
15 70 T/O T/O 0.24

Table 5: Results for a fixed initial integer array, limited steps

50

The second set of benchmarks shows the results for a fixed array with an un-
limited amount of steps. As such only NuSMV and UPPAAL could be tested.
The results are shown in Table 6 and 7.

Queue size NuSMV UPPAAL
1 0.06 0.02
2 0.03 0.03
3 0.03 0.03
4 0.04 0.03
5 0.04 0.03
6 0.05 0.03
7 0.06 0.03
8 0.07 0.03
9 0.12 0.03
10 0.19 0.03
11 0.38 0.04
12 0.79 0.03
13 2.32 0.07
14 5.31 0.05
15 11.83 0.04
16 33.38 0.06
17 95.14 0.04
18 209.14 0.06
19 560.95 0.06
20 T/O (mem) 0.04

Table 6: Results for a fixed initial Boolean array, unlimited steps

Queue size NuSMV UPPAAL
1 1.78 0.03
2 3.93 0.03
3 6.54 0.03
4 9.86 0.03
5 13.68 0.03
6 18.29 0.04
7 23.91 0.03
8 32.14 0.06
9 40.31 0.05
10 49.55 0.03
11 T/O 0.03
12 T/O 0.06

Table 7: Results for a fixed initial integer array, unlimited steps

51

The last set of benchmarks uses a non-deterministic starting state, which is only
possible with Yices and NuSMV due to limitations of UPPAAL as discussed in
section 4.3. Again we use the maximum steps value for both tools in order to
remain fair. The results are shown in Table 8 and 9. The last column shows
NuSMV with an unlimited amount of steps.

Queue size Max Steps Yices NuSMV NuSMV (unlim steps)
1 14 0.05 0.03 0.02
2 18 0.23 0.04 0.03
3 22 0.44 0.06 0.02
4 26 1.11 0.13 0.03
5 30 2.49 0.38 0.04
6 34 16.53 1.23 0.08
7 38 40.69 3.69 0.21
8 42 82.14 15.76 0.73
9 46 179.88 70.65 3.91
10 50 311.29 360.48 24.22
11 54 407.93 T/O 199.25
12 58 857.62 T/O T/O

Table 8: Results for a any initial Boolean array

Queue size Max Steps Yices NuSMV NuSMV (unlim)
1 14 0.06 1.82 1.67
2 18 0.32 4.28 3.75
3 22 1.08 7.71 6.27
4 26 3.72 13.55 10.04
5 30 15.9 28.57 14.21
6 34 59.64 74.42 20.58
7 38 89.65 322.79 37.37
8 42 281.91 T/O 435.66
9 46 340.06 T/O T/O

Table 9: Results for any initial integer array

7.3 Shared variables

In this experiment the problem described in section 6.2.1 was benchmarked with
values for the shared variable c between 0 and 1023. During experimenting we
found that specifying a maximum steps value and whether or not the goal value
was a power of 2 had a great impact on performance. Therefore we show results
divided in several categories.

The first set of experiments was performed with a maximum steps value supplied
to all tools. Custom tests reveiled the minimum amount of steps needed to reach

52

the target value. This amount was inserted as maximum steps value. Table 10
shows results where c = 2k for k ∈ {1, . . . , 9}. Table 11 shows results for other
random values.

Shared variable Max Steps Yices NuSMV UPPAAL
2 3 0.02 3.1 0.03
4 6 0.03 2.95 0.02
8 9 0.12 3.05 0.03
16 12 0.41 3.15 0.03
32 15 0.22 3.73 0.04
64 18 8.92 4.16 0.09
128 21 28.16 4.38 0.19
256 24 737.7 4.20 0.29
512 27 T/O 4.00 0.59

Table 10: Results for c = 2k with k ∈ {0, . . . , 9}, limited steps

Shared Variable Max Steps Yices NuSMV UPPAAL
6 9 0.06 4.02 0.02
15 15 0.43 4.04 0.03
31 21 85.96 4.26 0.11
63 24 685.27 4.40 0.23
127 30 T/O 5.41 1.50
156 27 43.61 4.87 0.55
222 30 826.37 5.54 1.48
355 33 T/O 7.75 3.72
404 33 T/O 7.80 3.64
543 36 T/O 13.16 9.59
689 36 T/O 12.96 9.75
713 39 T/O 23.96 24.03
860 36 T/O 13.24 10.6
917 39 T/O 25.35 25.3
1000 36 T/O 13.13 9.22

Table 11: Results for random values of c, limited steps

53

The second set of experiments was performed without a maximum steps value.
For c, the same values as in the first set were used.

c NuSMV UPPAAL
2 T/O 0.02
4 T/O 0.03
8 T/O 0.03
16 T/O 0.03
32 T/O 0.04
64 T/O 0.06
128 T/O 0.10
256 T/O 0.16
512 T/O 0.36

Table 12: Results for c = 2k with k ∈ {0, . . . , 9}, unlimited steps

c NuSMV UPPAAL
6 T/O 0.02
15 266.6 0.04
31 375.24 0.08
63 193.44 0.20
127 110.04 1.11
156 482.46 0.44
222 146.51 1.00
355 76.87 2.57
404 146.52 2.44
543 79.31 6.36
689 78.66 6.05
713 77.41 13.9
860 109.44 6.1
917 78.73 13.97
1000 126.18 5.54

Table 13: Results for random values of c, unlimited steps

Finally some benchmarks were run to see how the maximum steps value impacts
Yices’ performance. The maximum steps value was increased with 3, 6, 9 and
12 compared to values in previous tables.

54

c Max Steps Yices +0 Yices +3 Yices +6 Yices +9 Yices +12
2 3 0.02 0.02 0.03 0.03 0.07
4 6 0.03 0.03 0.04 0.09 0.12
8 9 0.12 0.02 0.03 0.16 0.56
16 12 0.41 0.12 0.41 0.48 1.07
32 15 0.22 0.69 0.45 0.52 0.9
64 18 8.92 1.37 2.1 3.56 5.52
128 21 28.16 11.77 3.95 4.18 17.65
256 24 737.7 44.56 6.54 5.03 15.03
512 27 T/O 362.17 73.55 64.78 64.58

Table 14: Results for c = 2k with k ∈ {0, . . . , 9} for Yices with variable maxi-
mum steps

c Max Steps Yices +0 Yices +3 Yices +6 Yices +9 Yices +12
6 9 0.06 0.03 0.19 0.32 0.5
15 15 0.43 0.88 12.62 19.51 12.51
31 21 85.96 T/O 27.94 611.55 127.57
63 24 685.27 86.95 32.56 75.88 33.09
127 30 T/O T/O T/O T/O T/O
156 27 43.61 45.22 71.24 79.40 697.87
222 30 826.37 782.08 760.88 T/O T/O
355 33 T/O T/O T/O T/O T/O

Table 15: Results for random values of c, for Yices with variable maximum steps

7.4 Robot vacuum cleaner

In this experiment the problem described in section 6.4 was benchmarked with
values for the grid size n between 2 and 5. Custom testing reveiled the mini-
mum amount of actions required to create a looping strategy. This amount was
inserted as maximum steps value for all tools. We were able to verify that a
strategy for a 5 x 5 grid needs at least 40 steps. In Table 16 it is shown that at
36 steps UPPAAL ran out of memory address space due to its 32 bit architec-
ture, but it is interesting to note that NuSMV needed twice as much memory
as UPPAAL’s limit to find the solution.

55

Max Steps Yices NuSMV UPPAAL Satisfiable
34 T/O 199.47 794.75 No
36 T/O 312.08 N/A (mem 705.80) No
38 T/O 437.65 N/A (mem 705.41) No
40 T/O 655.70 N/A (mem 705.19) Yes

Table 16: Results of experiments to determine the shortest strategy in a 5 x 5
grid

Table 17 shows the results for n x n grids with a maximum steps restric-
tion.

n Max Steps Yices NuSMV UPPAAL
2 8 0.08 0.07 0.21
3 24 1.41 0.72 0.55
4 28 6.33 9.99 7.34
5 40 T/O 655.70 N/A (mem)

Table 17: Results for an n x n grid, limited steps

Finally Table 18 shows the results for n x n grids without a maximum steps
restriction.

n NuSMV UPPAAL
2 0.09 0.21
3 1.26 0.39
4 T/O 6.42
5 T/O N/A (mem)

Table 18: Results for n x n grid, unlimited steps

7.5 Conclusions

In general we can conclude that non-determinism greatly increases the solving
time that is needed. This is seen in both the non-deterministic truck delivery
problem and the ABP for any array.

Furthermore we see that whether or not the maximum amount of steps is speci-
fied matters for performance. In general NuSMV and UPPAAL tend to perform
better when they are not bounded by a maximum number of steps, but the op-
posite is true for the shared variable problem. This may have to do with the
fact that the update rules allow one process to update infinitely long while the
other process is not updated at all. This is also known as starvation. In this
case we see that it helps to specify a maximum amount of steps to minimize
depth of the search tree.

56

Yices ultimately starts performing worse if the maximum number of steps is too
high due to huge amounts of variables that are created while unfolding the tran-
sition system. However Yices may benefit from more steps if that means that
more desired states become available. This is very apparent in Table 14, where
Yices performs better if the maximum steps value is higher than the minimum
required for a solution. Also in Table 15 we can see that trying out different
values may benefit performance in a way that is not obvious. Some times in-
creasing the maximum amount of steps increases performance, but many times
the opposite is true.

Table 19 gives a performance ranking for each benchmarking problem. The
tools are rated from 1 to 3, where a rating of 1 is the fastest and 3 is the
slowest.

Problem Yices NuSMV UPPAAL
Truck Delivery, deterministic unload 2 3 1
Truck Delivery, non-deterministic unload 1 2 N/A
ABP Fixed Array, limited Steps 2/3 2/3 1
ABP Fixed Array, unlimited Steps N/A 2 1
ABP Any Array, limited Steps 1 2 N/A
ABP Any Array, unlimited Steps N/A 1 N/A
Shared Var c = 2k 3 2 1
Shared Var c = random 3 2 1
Robot Vacuum Cleaner 2 1 3

Table 19: General Performance Rating

In case of the deterministic ABP with limited steps the result for Yices and
NuSMV was a tie, because Yices performed better with integer arrays while
NuSMV was better with Boolean arrays. Overall it appears that UPPAAL is
the great winner if no non-determinism is involved, but exceptions in the robot
vacuum cleaner problem show that this does not always have to be the case.
With the new unified approach the chances of infeasibility that are inherent to
one approach are decreased. This emphasizes the benefit of the inclusion of
multiple tools, since for all approaches, there are different problems that are
infeasible for one, but very feasible for the other.

57

8 Discussion

A universal scripting language as proposed in this paper can provide an easy
way to expose model checking problems to a whole range of different model
checking tools. It reduces the time needed to implement problem instances,
but in its current form it still misses the full expressiveness of for example the
LTL formal language. Future additions to the language could overcome these
limitations. For now, a great deal of problems can be translated and the most
frequently occurring properties can be verified. A few additions that came to
mind while developing this tool are discussed.

A special state variable could make the description of some problems easier to
read, because it eliminates the need for a variable that keeps track of the current
state. The implementation script for a weighted graph like the one in Figure 9
could be written like this:

VARS:

int value;

state S, A, B; //New state definitions using a state keyword

const int S_A = 10;

const int A_B = 5;

const int B_S = 10;

INIT:

state = S; //New state initialization

value = 0;

TRANS:

//New state transitions. The original update rules are moved

//between curly brackets.

S -> A { value = value+S_A };

A -> B { value = value+A_B };

B -> S { value = value+B_S };

The introduction of the state variable reduces some syntax clutter that is needed
to define constant integers. Furthermore the state transition is immediately
clear, while the rest of the transition rules can remain unaltered and placed
between the curly brackets. Occasional guards can still be used inside the curly
brackets or they can be placed in front of the entire statement according to one’s
preference. A similar syntax is already used in the DIVINE tool (Barnat et al.,
2013).

TRANS:

//Example of state transition from S to A. The transition

//is only taken if the condition holds. The condition is

//specified up front and a new ‘:’ character denotes what

//the state transition should do.

? condition : S -> A { value = value+S_A };

58

//Example with the same meaning as above, but that retains

//the original update rule within the curly brackets.

S -> A { ? condition -> value = value+S_A };

Internally the new syntax would be translated using an integer state variable
for Yices and NuSMV, but the translation to UPPAAL may benefit from this
new syntax, since its own native implementation of states can be used instead
of introducing a superfluous integer that keeps track of the state.

Furthermore the script language is limited in terms of process algebra and ver-
ifyable properties. Now it is possible to run separate process instances, but
merely in parallel. An extension to the language could allow to also sequence
processes or make a non-deterministic choice between processes. For example a
single trace of the following program would either return a trace of Q or a trace
of P followed by R.

PROGRAM:

(P >: R) | Q

In the future it might also be useful to make the language richer in terms of
property verification, i.e. it should be possible to verify more classes of safety
and liveness properties. However the original goal was to avoid a full implemen-
tation of LTL to keep the language easy to read and intuitive to understand.
Perhaps a golden medium can be found in UPPAAL’s syntax that supports a
few more expressions than just reachability and liveness properties as were de-
fined here. For example in UPPAAL it is possible to define an expression p r
that means that if p holds, then eventually r must also hold. Another example
is E[] p, which means that there must exists a maximal path where p holds. A
maximal path is defined as an infinite path or a path that leads to a state with
no outgoing edges (Behrmann et al., 2004).

Finally an improved constant propagation algorithm may improve results. The
constant propagation that is currently used is very simple and is not applied
to more complicated expressions. In (Tzoref, Matusevich, Berger, & Beer,
2003) they use constant propagation in the translation of a finite state machine
(FSM) to SMT. It identifies constant signals that are automatically propagated
throughout the unfolded FSM, which generally results in a performance opti-
mization. The same principal could apply to this scripting language.

59

A Example transition system script

MAXSTEPS:

100

VARS:

int x;

INIT:

x = 1;

TRANS:

x = x-1;

x = x*2;

REACH:

x == 99

B Example process model script

MAXSTEPS:

100

VARS:

proc P = example;

PROGRAM:

P

REACH:

P.x == 99

PROCESS example:

VARS:

int x;

INIT:

x = 1;

TRANS:

x = x-1;

x = x*2;

C Parallel adding script

The following is an example of a reachability problem taken from a set of ex-
ample problems of the DIVINE tool by (Barnat et al., 2013).

Two processes P and Q are running in parallel:

P = loop {x=c; x=x+c; c=x;}

Q = loop {y=c; y=y+c; c=y;}

60

The initial value of global variable c is 1 and x and y are local process variables.
The claim is that c can possibly contain any natural value. With model checkers
we cannot prove this, but for any value, we can try to find it. The following is
an example instance searching for c = 245 encoded as process model.

//Parallel adding problem

MAXSTEPS:

30

VARS:

//Global variable that can reach any value

int c : 0..256;

//Several processes that add to c in parallel

proc P = addingProcess;

proc Q = addingProcess;

INIT:

c = 1;

PROGRAM:

//Run P in parallel with Q

P || Q

REACH:

//Can c reach the value 245?

c == 245

PROCESS addingProcess:

VARS:

int theState : 0..2;

int x : 0..256;

INIT:

x = 0;

theState = 0;

TRANS:

? (theState == 0) -> x,theState = c,1;

? (theState == 1) -> x,theState = x+c,2;

? (theState == 2) -> c,theState = x,0;

D Weighted Graph Example Script

//This script represents a weighted graph:

// S -10-> A -5-> B -10-> S

VARS:

int sum; //sum of the edges

int currentState 0..2; //state variable

const int S = 0; //state S

const int A = 1; //state A

61

const int B = 2; //state B

const int S_A = 10; //edge from S to A with weight 10

const int A_B = 5; //edge from A to B with weight 5

const int B_S = 10; //edge from B to S with weight 10

INIT:

currentState = S; //Start in S

sum = 0;

TRANS:

//For each state transition: update the sum with the edge weight

currentState == S -> currentState,value = A,value+S_A;

currentState == A -> currentState,value = B,value+A_B;

currentState == B -> currentState,value = S,value+B_S;

REACH:

//Is there a path starting from S of total weight 25?

sum == 25

E Truck Delivery Example Script 1

//A script that describes a food truck, traveling from state to

//state. It always unloading as many food packages as possible in

//each state.

VARS:

int truck : 0.. TRUCK_MAX; //Amount of packages in truck

int state : 0..2; //The state the truck is in

int Ac : 0..A_MAX; //Amount of packages in A

int Bc : 0..B_MAX; //Amount of packages in B

const int S = 0; //depot

const int A = 1; //state A

const int B = 2; //state B

const int S_A = 10; //edge from S to A with weight 10

const int A_B = 5; //edge from A to B with weight 5

const int B_S = 10; //edge from B to S with weight 10

const int TRUCK_MAX = 20; //maximum truck capacity

const int A_MAX = 30; //maximum capacity of state A

const int B_MAX = 30; //maximum capacity of state B

INIT:

//The truck begins in S and is fully loaded

currentState = S;

truckLoad = TRUCK_MAX;

Ac = 20;

Bc = 20;

TRANS:

//Transition from S to A

? state == S & Ac-S_A >= 0 & truck - (A_MAX - (Ac - S_A)) >= 0

62

-> state, truck, Ac, Bc

= A, truck - (A_MAX - (Ac - S_A)), A_MAX, Bc-S_A;

? state == S & A-S_A >= 0 & truck - (A_MAX - (Ac - S_A)) < 0

-> state, truck, Ac, Bc

= A, 0, (Ac - S_A) + truck, Bc-S_A;

//Transition from A to B

? state == A & Bc-A_B >= 0 & truck - (B_MAX - (Bc - A_B)) >= 0

-> state, truck, A, B

= B, truck - (B_MAX - (Bc - A_B)), A-A_B, B_MAX;

? state == A & Bc-A_B >= 0 & truck - (B_MAX - (Bc - A_B)) < 0

-> state, truck, A, B

= B, 0, (Bc - A_B) + truck, B_MAX;

//Transition from B to S

? state == B

-> state, truck, Ac, Bc

= S, TRUCK_MAX, Ac-B_S, Bc-B_S;

INF:

F Weighted Graph Example Script 2

//A script that describes a food truck, traveling from state to

//state. It unloads a non-determinstic amount of food packages in

//each state.

VARS:

int truck : 0.. TRUCK_MAX; //Amount of packages in truck

int state : 0..2; //The state the truck is in

int Ac : 0..A_MAX; //Amount of packages in A

int Bc : 0..B_MAX; //Amount of packages in B

const int S = 0; //depot

const int A = 1; //state A

const int B = 2; //state B

const int S_A = 10; //edge from S to A with weight 10

const int A_B = 5; //edge from A to B with weight 5

const int B_S = 10; //edge from B to S with weight 10

const int TRUCK_MAX = 20; //maximum truck capacity

const int A_MAX = 30; //maximum capacity of state A

const int B_MAX = 30; //maximum capacity of state B

nondet int amount; //an amount that the truck unloads

INIT:

//The truck begins in S and is fully loaded

currentState = S;

truckLoad = TRUCK_MAX;

63

Ac = 20;

Bc = 20;

TRANS:

//Transition from S to A

? state == S & Ac-S_A >= 0

-> state, truck, A, B

= A, truck - amount, (Ac - S_A) + amount, Bc-S_A;

//Transition from A to B

? state == A & Bc-A_B >= 0

-> state, truck, A, B =

B, truck - amount, Ac-A_B, (Bc - A_B) + amount;

//Transition from B to S

? state == B

-> state, truck, A, B

= S, TRUCK_MAX, Ac-B_S, Bc-B_S;

INF:

G Alternating Bit Protocol Script

//Alternating bit protocol example with queue length = 3 and

//boolean data type:

VARS:

bool Sb; //Sender bit

bool S2Rb; //Sender to receiver channel bit

bool Rb; //Receiver bit

bool R2Sb; //Receiver to sender channel bit

bool S2Rf; //S2R channel is filled

bool R2Sf; //R2S channel is filled

bool S2Rd; //data currently in S2R

//Sender sequence data:

bool Sd0;

bool Sd1;

bool Sd2;

//Receiver sequence data and whether or not it’s received:

bool Rd0;

bool Rd1;

bool Rd2;

int Snum : 0..3; //Current sender sequence number

int Rnum : 0..3; //Current receiver sequence number

INIT:

//Sender and receiver start at the beginning of the sequence

Snum = 0;

64

Rnum = 0;

//Channels are not filled:

S2Rf = false;

R2Sf = false;

//Initial values of sender and receiver bits:

Sb = false;

Rb = false;

TRANS:

//At any moment data can be lost:

S2Rf = false;

R2Sf = false;

//At any moment the sender can fill S2R with its current

//element, carrying bit Sb:

? Snum == 0 -> S2Rb,S2Rd,S2Rf = Sb,Sd0,true;

? Snum == 1 -> S2Rb,S2Rd,S2Rf = Sb,Sd1,true;

? Snum == 2 -> S2Rb,S2Rd,S2Rf = Sb,Sd2,true;

//At any moment the receiver can fill R2S with not(Rb)

R2Sb,R2Sf = !Rb,true;

//Sender alternating bit and progressing sequence:

? R2Sf & R2Sb == Sb -> Snum,Sb = Snum+1,!Sb;

//Receiver alternating bit:

? S2Rf & S2Rb == Rb & Snum == 0

-> Rd0,Rb,Rnum = S2Rd,!Rb,Rnum+1;

? S2Rf & S2Rb == Rb & Snum == 1

-> Rd1,Rb,Rnum = S2Rd,!Rb,Rnum+1;

? S2Rf & S2Rb == Rb & Snum == 2

-> Rd2,Rb,Rnum = S2Rd,!Rb,Rnum+1;

REACH:

Snum == 3 & Rnum == 3 &

(Sd0 == !Rd0 | Sd1 == !Rd1 | Sd2 == !Rd2)

H Robot Vacuum Cleaner script

//Robot vacuum problem

MAXSTEPS:

8

VARS:

//Room size

const int n = 2;

//Strategy values

const int UNDEF = 0;

const int TURN = 1;

const int FORWARD = 2;

65

//Directions

const int N = 0;

const int E = 1;

const int S = 2;

const int W = 3;

//Strategy as defined so far for each cell and orientation:

int x0y0N : UNDEF..FORWARD; int x0y0E : UNDEF..FORWARD;

int x0y0S : UNDEF..FORWARD; int x0y0W : UNDEF..FORWARD;

int x1y0N : UNDEF..FORWARD; int x1y0E : UNDEF..FORWARD;

int x1y0S : UNDEF..FORWARD; int x1y0W : UNDEF..FORWARD;

int x0y1N : UNDEF..FORWARD; int x0y1E : UNDEF..FORWARD;

int x0y1S : UNDEF..FORWARD; int x0y1W : UNDEF..FORWARD;

int x1y1N : UNDEF..FORWARD; int x1y1E : UNDEF..FORWARD;

int x1y1S : UNDEF..FORWARD; int x1y1W : UNDEF..FORWARD;

//Current coordinates and direction:

const int MAX = 1; //n-1

int x : 0..MAX;

int y : 0..MAX;

int d : N..W;

INIT:

//Begin in cell (0,0) facing north:

x = 0;

y = 0;

d = N;

x0y0N = UNDEF; x0y0E = UNDEF; x0y0S = UNDEF; x0y0W = UNDEF;

x1y0N = UNDEF; x1y0E = UNDEF; x1y0S = UNDEF; x1y0W = UNDEF;

x0y1N = UNDEF; x0y1E = UNDEF; x0y1S = UNDEF; x0y1W = UNDEF;

x1y1N = UNDEF; x1y1E = UNDEF; x1y1S = UNDEF; x1y1W = UNDEF;

TRANS:

//Forward:

? x == 0 & y == 0 & d == N & !(x0y0N == TURN)

-> x,y,d,x0y0N = x,1,d,FORWARD;

? x == 0 & y == 0 & d == E & !(x0y0E == TURN)

-> x,y,d,x0y0E = 1,y,d,FORWARD;

? x == 1 & y == 0 & d == N & !(x1y0N == TURN)

-> x,y,d,x1y0N = x,1,d,FORWARD;

66

? x == 1 & y == 0 & d == W & !(x1y0W == TURN)

-> x,y,d,x1y0W = 0,y,d,FORWARD;

? x == 0 & y == 1 & d == E & !(x0y1E == TURN)

-> x,y,d,x0y1E = 1,y,d,FORWARD;

? x == 0 & y == 1 & d == S & !(x0y1S == TURN)

-> x,y,d,x0y1S = x,0,d,FORWARD;

? x == 1 & y == 1 & d == S & !(x1y1S == TURN)

-> x,y,d,x1y1S = x,0,d,FORWARD;

? x == 1 & y == 1 & d == W & !(x1y1W == TURN)

-> x,y,d,x1y1W = 0,y,d,FORWARD;

//Turn:

? x == 0 & y == 0 & d == N & !(x0y0N == FORWARD)

-> x,y,d,x0y0N = x,y,E,TURN;

? x == 0 & y == 0 & d == E & !(x0y0E == FORWARD)

-> x,y,d,x0y0E = x,y,S,TURN;

? x == 0 & y == 0 & d == S & !(x0y0S == FORWARD)

-> x,y,d,x0y0S = x,y,W,TURN;

? x == 0 & y == 0 & d == W & !(x0y0W == FORWARD)

-> x,y,d,x0y0W = x,y,N,TURN;

? x == 1 & y == 0 & d == N & !(x1y0N == FORWARD)

-> x,y,d,x1y0N = x,y,E,TURN;

? x == 1 & y == 0 & d == E & !(x1y0E == FORWARD)

-> x,y,d,x1y0E = x,y,S,TURN;

? x == 1 & y == 0 & d == S & !(x1y0S == FORWARD)

-> x,y,d,x1y0S = x,y,W,TURN;

? x == 1 & y == 0 & d == W & !(x1y0W == FORWARD)

-> x,y,d,x1y0W = x,y,N,TURN;

? x == 0 & y == 1 & d == N & !(x0y1N == FORWARD)

-> x,y,d,x0y1N = x,y,E,TURN;

? x == 0 & y == 1 & d == E & !(x0y1E == FORWARD)

-> x,y,d,x0y1E = x,y,S,TURN;

? x == 0 & y == 1 & d == S & !(x0y1S == FORWARD)

-> x,y,d,x0y1S = x,y,W,TURN;

? x == 0 & y == 1 & d == W & !(x0y1W == FORWARD)

-> x,y,d,x0y1W = x,y,N,TURN;

? x == 1 & y == 1 & d == N & !(x1y1N == FORWARD)

-> x,y,d,x1y1N = x,y,E,TURN;

? x == 1 & y == 1 & d == E & !(x1y1E == FORWARD)

-> x,y,d,x1y1E = x,y,S,TURN;

? x == 1 & y == 1 & d == S & !(x1y1S == FORWARD)

67

-> x,y,d,x1y1S = x,y,W,TURN;

? x == 1 & y == 1 & d == W & !(x1y1W == FORWARD)

-> x,y,d,x1y1W = x,y,N,TURN;

REACH:

!(x0y0N == UNDEF & x0y0E == UNDEF

& x0y0S == UNDEF & x0y0W == UNDEF) &

!(x1y0N == UNDEF & x1y0E == UNDEF

& x1y0S == UNDEF & x1y0W == UNDEF) &

!(x0y1N == UNDEF & x0y1E == UNDEF

& x0y1S == UNDEF & x0y1W == UNDEF) &

!(x1y1N == UNDEF & x1y1E == UNDEF

& x1y1S == UNDEF & x1y1W == UNDEF) &

x == 0 & y == 0 & d == N

I Syntax

The formal description of the language syntax is as follows.

〈Formula〉 ::= 〈TransitionSystem〉 | 〈ProcessModel〉

〈TransitionSystem〉 ::= [‘MAXSTEPS:’ 〈Constant〉]
‘VARS:’ 〈VarDeclTS 〉+
[‘INIT:’ 〈VarInit〉∗]
‘TRANS:’ 〈Stmt〉+
〈Goal〉

〈ProcessModel〉 ::= [‘MAXSTEPS:’ 〈Constant〉]
‘VARS:’ 〈VarDeclPM 〉+
[‘INIT:’ 〈VarInit〉∗]
‘PROGRAM:’ 〈ProcExp〉
〈Goal〉
〈Process〉+

〈Process〉 ::= ‘PROCESS’ 〈ID〉 ‘:’
‘VARS:’ 〈VarDeclTS 〉+
[‘INIT:’ 〈VarInit〉∗]
‘TRANS:’ Stmt+

〈VarDeclTS 〉 ::= ‘const’ 〈Type〉 〈ID〉 ‘=’ 〈Constant〉 ‘;’
| [‘nondet’] 〈Type〉 〈ID〉 [‘:’ 〈Range〉] ‘;’

〈VarDeclPM 〉 ::= ‘const’ 〈Type〉 〈ID〉 ‘=’ 〈Constant〉 ‘;’
| [‘nondet’] 〈Type〉 〈ID〉 [‘:’ 〈Range〉] ‘;’
| ‘proc’ 〈ID〉 ‘=’ 〈ID〉 ‘;’

68

〈VarInit〉 ::= 〈BoolExp〉 ’;’ 〈VarInit〉
| 〈BoolExp〉 ’;’
| 〈ID〉 ‘=’ 〈Exp〉 ‘;’ 〈VarInit〉
| 〈ID〉 ‘=’ 〈Exp〉 ‘;’

〈Exp〉 ::= 〈BoolExp〉 | 〈NumExp〉

〈BoolExp〉 ::= 〈UnOpBool〉 〈BoolExp〉
| 〈BoolExp〉 〈ConnectorOp〉 〈BoolExp〉
| 〈NumExp〉 〈ComparisonOpArith〉 〈NumExp〉
| 〈BoolExp〉 〈ComparisonOp〉 〈BoolExp〉
| 〈NumExp〉 〈ComparisonOp〉 〈NumExp〉
| ‘(’ 〈BoolExp〉 ‘)’
| 〈BoolTerm〉

〈NumExp〉 ::= 〈NumExp〉 〈ArithOp〉 〈NumExp〉
| ‘(’ 〈NumExp〉 ‘)’
| 〈ArithTerm〉

〈ProcExp〉 ::= 〈ID〉 〈ProcOp〉 〈ProcExp〉 | 〈ID〉

〈Stmt〉 ::= [‘?’ 〈BoolExp〉 ‘->’] 〈IDEnum〉+ ‘=’ 〈ExpEnum〉+

〈Goal〉 ::= ‘REACH:’ 〈BoolExp〉
| ‘INF:’
| ‘SAFE:’ 〈BoolExp〉
| ‘LIVENESS:’ 〈BoolExp〉
| ‘DEADLOCK:’

〈BoolTerm〉 ::= ‘false’ | ‘true’ | 〈ID〉

〈ArithTerm〉 ::= 〈ID〉 | 〈Num〉

〈IDEnum〉 ::= 〈ID〉 | 〈ID〉 ‘,’ 〈IDEnum〉

〈ExpEnum〉 ::= 〈Exp〉 | 〈Exp〉 ‘,’ 〈ExpEnum〉

〈UnOpBool〉 ::= ‘!’

〈ConnectorOp〉 ::= ‘&’ | ‘|’

〈ComparisonOpArith〉 ::= ‘<’ | ‘<=’ | ‘>’ | ‘>=’

〈ComparisonOp〉 ::= ‘==’

〈ArithOp〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈ProcOp〉 ::= ‘||’

〈Constant〉 ::= 〈Num〉 | 〈ID〉

69

〈Range〉 ::= 〈Constant〉 ‘..’ 〈Constant〉

〈Num〉 ::= [‘-’] digit+

〈Type〉 ::= ‘int’ | ‘bool’

〈ID〉 ::= alpha+

〈AccessorID〉 ::= 〈ID〉 ‘.’ 〈AccessorID〉 | 〈ID〉

70

References

Alpern, B., & Schneider, F. B. (1985). Defining liveness. Information processing
letters, 21 (4), 181–185.

Barnat, J., Brim, L., Havel, V., Havlek, J., Kriho, J., Leno, M., . . . Weiser, J.
(2013). DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In Computer Aided Verification (CAV 2013) (Vol.
8044, pp. 863–868). Springer.

Barrett, C., Stump, A., & Tinelli, C. (2010). The satisfiability modulo theories
library (smt-lib). Retrieved from www.SMT-LIB.org

Behrmann, G., David, A., & Larsen, K. G. (2004). A tutorial on uppaal. In For-
mal methods for the design of real-time systems (pp. 200–236). Springer.

Behrmann, G., David, A., Larsen, K. G., Hakansson, J., Petterson, P., Yi, W.,
& Hendriks, M. (2006). Uppaal 4.0. In Quantitative evaluation of systems,
2006. qest 2006. third international conference on (pp. 125–126).

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., & Zhu, Y. (2003). Bounded
model checking. Advances in computers, 58 , 117–148.

Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M. (1999). Nusmv: A new
symbolic model verifier. In Computer aided verification (pp. 495–499).

Clarke, E., Biere, A., Raimi, R., & Zhu, Y. (2001). Bounded model checking
using satisfiability solving. Formal Methods in System Design, 19 (1), 7–
34.

Dutertre, B., & De Moura, L. (2006). The yices smt solver. http://yices.csl
.sri.com/tool-paper.pdf.

McMillan, K. L. (1993). Symbolic model checking. Springer.
Mishchenko, A. (2001). An introduction to zero-suppressed binary decision

diagrams. Jun, 8 , 1–15.
Tzoref, R., Matusevich, M., Berger, E., & Beer, I. (2003). An optimized sym-

bolic bounded model checking engine. In Correct hardware design and
verification methods (pp. 141–149). Springer.

Vaandrager, F., & Verbeek, F. (2014, June). Recreational formal methods:
Designing vacuum cleaning trajectories.

Yin, L., He, F., & Gu, M. (2013). Optimizing the sat decision ordering of
bounded model checking by structural information. In Theoretical aspects
of software engineering (tase), 2013 international symposium on (pp. 23–
26).

71

www.SMT-LIB.org
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

	Introduction
	Motivation

	Definitions
	Verification
	Reachability
	Infinite run
	Safety
	Liveness
	Deadlock

	Language
	Transition system
	The MAXSTEPS block
	The VARS block
	The INIT block
	The TRANS block
	The verification property block

	Process model
	The MAXSTEPS block
	The VARS block
	The INIT block
	The PROGRAM block
	The verification property block
	The PROCESS block

	Implementation
	Back-ends
	Code generation
	Transition system
	Process models

	Limitations

	Usage
	Prerequisites
	Commands

	Example Problems
	Weighted graphs
	Truck delivery problem

	Sequential programs
	Shared variables

	Alternating Bit Protocol
	Robot vacuum cleaner

	Experiments
	Weighted graphs
	Alternating Bit Protocol
	Shared variables
	Robot vacuum cleaner
	Conclusions

	Discussion
	Example transition system script
	Example process model script
	Parallel adding script
	Weighted Graph Example Script
	Truck Delivery Example Script 1
	Weighted Graph Example Script 2
	Alternating Bit Protocol Script
	Robot Vacuum Cleaner script
	Syntax
	References

