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Abstract

In recent years there has been a growing interest in reducing energy consumption of software, all the
while making sure they remain performant. One scenario were these two are important, and can have
a great effect, is in the critical component of the Internet, the Domain Name System (DNS ). However,
developers of DNS server implementations have no way to determine the amount of energy used by
their implementation.

This research aims to use ECALOGIC to model the energy consumption for the DNS implementations
known as BIND and Unbound. ECALOGIC is a recently developed tool that aims to statically provide
upper bounds on the energy consumption of software. The consumed energy is determined by giving
ECAvLoGIC a model of the hardware and a software implementation. This thesis researches which
hardware components must be modeled and develops simplified versions of the servers in ECALOGIC.
These are then populated with energy consumption values. Time is spent to research how the energy
consumption values are acquired. A measurement methodology is presented on how these values can
be obtained. Consumption values are obtained, analyzed and used in the analysis for the DNS servers.

The analysis on the DNS servers not only aims to provide an answer on which implementation is the
most energy efficient, but also look at the limitations and possibilities of ECALOGIC. This result of this
analysis is than compared to another independent research that also looked at the energy consumption
of DNS servers. This is followed by discussing the measurement methodology and the experience of
using ECALoOGIC. Improvements on the measurement method are suggested and future enhancements
to ECALOGIC are presented.
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Chapter 1

Introduction

1.1 Introduction

In recent years there has been a growing interest in reducing energy-consumption of software. The
challenge lies in delivering performant software while reducing its energy-consumption. One example
where energy-consumption reduction can have great effect is in a critical component of the Internet
namely, the Domain Name System (DNS ). The service that the DNS provides is that of translating
user-friendly domain names to Internet Protocol (IP) addresses. Each visit to a website requires the
use of DNS server software. Google alone performed 5.7 billion searches in 2014! per day, and 5.9 billion
in 2013, that each required the services provided by DNS. Therefore, knowing the energy-consumption
of DNS server software is certainly of interest. More so, because the ICT sector accounts for ap-
proximately 2% of global carbon emissions?. Thus, making DNS servers more energy-efficient can help
reduce global carbon emissions. However, developers of DNS server implementations, or of software in
general, currently have no simple way to ascertain how much energy their applications consume.

Reducing energy consumption of software is not only important for DNS servers, the backbone of The
Internet, but also for servers used for large scale systems and devices found in the consumer market.
Take for example companies such as Google, Yahoo, Microsoft and Amazon that have to support
large data centers containing thousands of machines that provide the needed processing capabilities to
support their business services [2]. Furthermore, trends in the consumer technology market show that
more and more consumers are moving towards mobile consumer oriented devices such as smart phones
and tablets. In their ‘Gartner Says’ series, Garnter reports in [10] that in 2014 alone more than 1.2
billion units of smart phone devices had been sold worldwide. Essentially making smart phone sales
two-thirds of the total global phone market in 2014. However, no matter how powerful these mobile
devices have all become during the last few years, they are still limited in the amount of energy they
can retain [16]. Therefore, making applications for mobile devices more energy efficient is of utmost
importance in extending the battery life of these devices and, at the same time, enhance the user
experience.

Currently, one way of determining the energy-consumption footprint of applications is to take measure-
ments while it is operational. However, taking measurements is tedious work and requires measurement
equipment that may not be readily accessible to everyone. Moreover, energy consumption is only mea-
sured for a finite set of test inputs. Generic results, valid for any input, cannot be achieved using
this approach. One laboratory in the Netherlands that is equipped to take such measurements is the
Software Energy Footprint Lab (SEFLab), located in Amsterdam. The laboratory is in possession of a
number of different production grade servers. Each server is equipped to take accurate measurements
directly from most of its hardware components. This is done by equipping the servers with power
sensors on the power lines. The measurement setup is seen as a black box that executes the software
for a determined period of time on the server and outputs the power consumption during this time
period [9]. The output can then be further analyzed.

Lhttp://www.statisticbrain.com/google-searches/
2http://www.giswatch.org/thematic-report /sustainability-climate-change/carbon-footprint-icts
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More recently, a static analysis framework, based on Hoare logic with production rules, has been devel-
oped [13, 21]. The framework provides a developer with an upper bound on the energy-consumption of
their software. This static analysis framework resulted in the implementation of the ECALOGIC? tool
that, given a model of the hardware and a software implementation, can statically determine power
consumption bounds [23]. Essentially, providing application developers with a straightforward method
of determining the energy-consumption of their applications.

In order for ECALOGIC to run its analysis, it must be supplied with a software implementation and
hardware models. The application is written in a ‘while’-type language called ECA that is annotated
with loop bounds [13]. Similarly, each hardware component is modeled in a language called ECM. For
example, for DNS server software, the component models represent the hardware that the DNS server
software uses during its execution. These component models are populated with energy-consumption
values that approximate real world energy-consumption. ECALOGIC gives developers an apparatus
that can perform static analysis on software implementations that have been ported to the ECA lan-
guage (along with its component models). However, it is a new tool and has not yet been used for
analyzing nontrivial software applications.

This thesis sets out to research the limitations and possibilities of ECALOGIC by using the tool for
analyzing the energy-consumption of DNS server software. The result of the analysis is an estimation
on the energy-consumption of two DNS server implementations on a particular hardware server. This
research focuses on using ECALOGIC to model and estimate the energy consumption of DNS servers
once a query request has been received, the validation of these results once ECALOGIC has made its
estimates and the evaluation of the measurements methodology and ECALoGIC. This thesis also looks
into an independent research performed by Remy Bien and commissioned by SURFnet. The research
presented in this thesis uses the same exact software as used by Remy Bien in his thesis.

1.2 Related work

Improvement of energy efficiency in electronics and computer systems is not a new area of research.
Many research projects have been carried out in the realm of hardware and software design in order
to improve energy efficiency. Especially seeing that energy consumption is a ‘first-class system design
constraint’. One example includes how the ‘Intel Nehalem processors cannot simultaneously run all
cores at the maximum frequency and voltage level without exceeding their power envelope’ [24]. A
less explored path has been that of how static analysis can help in making predictions about energy
consumption. Such research investigates how compiler awareness of energy semantics can be developed
for statically determining the energy consumption of applications.

In their paper ‘Energy Types’ [7], Michael Cohen et al. describe one such framework as a ‘practical
type system to reason about energy-aware software’. This type system is known as ‘Energy Types’
The research developed a type system in an object-oriented language named ET that can be used for
developing smart phone applications. The type system is one of the first to build energy management
strategies into a programming language, and abstracts themes such as ‘energy management as the rea-
soning of phases and modes’ The paper demonstrates that ET can lead to ‘significant energy savings
for an Android application’. A system called Green has also been developed on the programming lan-
guage abstraction level and provides a ‘simple and flexible framework’ for supporting ‘energy conscious
programming using loop and function approximation’ [2]. The difference between Green and ET is that
the former does not make use of a type system to make its energy estimations.

Research on how to reduce energy consumption on the software abstraction level include inter alia,
improving the operating systems scheduler for reducing CPU energy [29], research on how architectural
designs can influence energy consumption [5], research on power aware page allocation and ‘cooper-
ative I/O queues hard disk accesses to maximize the standby time’ [16] and how cache size and its
power usage influence energy consumptions [24][26]. Another research path on reducing the energy
consumption of software also includes research on compilers in [11][12][20][26]. In [20] the authors
explore different compiler flags and their effect on minimizing the energy consumption for embedded

3The code is open source and can be found at: https://github.com/squell/ecalogic. A web version can be found at:
http://ecalogic.cs.ru.nl/ecalogic-webapp/
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platforms. They confirm that, generally, for many platforms the execution time and energy consump-
tion are correlated?; a better set of flags, compared to the default ones, exists which produces more
optical applications; and that it is possible to determine the effectiveness of each optimization.

Research on the performance of DNS server implementation are scarce, and research on their energy
consumption is almost none existent. One paper that looked into the performance of DNS servers is
‘A Performance view on DNSSEC migration’ [17]. The authors of the paper, Daniel Migault et. al,
research deployment of DNSSEC and performance aspects that provide ‘experimental measurements for
both DNS and DNSSEC architecture’. The paper looks into unitary tests (measurement without taking
the server load into account), network latency, response times, update operation costs and the impact
of cache hit rate. The research shows that for the unitary tests Unbound is found to be faster by 67%
for DNS requests, 68% for DNSSEC without validation and faster by 46% for DNSSEC that also performs
validation. The results for the maximum query load concludes that BIND is able to handle only 28%
of the maximum query load that is handled by Unbound. Unbound also comes on top when comparing
network latency and the impact of cache hit rate. The picture painted by [17] suggests that Unbound is
more performant than BIND . It remains to be seen if this efficiency also translates to a lower consump-
tion of electric energy. However, taking the results found in [20] into account, it is the expectation
that Unbound would also consume less energy than BIND.

Lastly, in August of 2013 SURFnet put out an assignment® describing that the purpose of the task was
to analyze different DNS resolvers in order to gain more insight on how these servers consume electric
energy. The DNS resolvers to be analyzed were Microsoft DNS, BIND and Unbound. The assignment
was ultimately carried out by Remy Bien, a former student of the Hogeschool van Amsterdam (HvA),
between February 2014 up until the end of June 2014. The assignment replayed DNS queries that were
captured from a live DNS server hosted by SURFnet , on a server in a test environment. Furthermore,
Remy developed a measurement protocol that measures the energy consumption of the servers with an
empty cache and a non-empty cache. The measurements were not only used to determine the most
energy efficient server, but they were also used to calculate the biggest yearly monetary difference
found between the three DNS servers. The results of the assignment is discussed more elaborately in
Section 6.2 and Section 6.3 of this thesis.

1.3 Thesis outline

The structure of this thesis is as follows. Chapter 2 provides the necessary background needed for this
thesis. The chapter discusses the Domain Name System, better known as DNS, introduces terminology
used with DNS, its history, the problem it solves, the Internet and two particular DNS server software
implementations and their differences in implementing the protocol. This chapter also introduces the
energy analysis framework based on Hoare logic and ECALOGIC, an implementation of the framework
in the form of a compiler. An example of a simple ECALOGIC program and its estimation results is
given to provide the reader with a small introduction to ECALOGIC and how it works. Chapter 3 in-
troduces the ECALOGIC models used throughout this thesis. However, these models do not yet contain
the energy values needed for our evaluations. Chapter 4 describes the measurement methodology used
to acquire the energy value needed to populate our ECALOGIC component models. The chapter also
discusses another strategy taken that did not produce any meaningful results. Chapter 5 analyzes the
measurements acquired from the server and populates our models from Chapter 3 with these values.
This is followed by Chapter 6 in which the results of ECALOGIC are compared the measurements in
Chapter 5 and the those found by Remy. In Chapter 7 the experience of working with ECALocGIC and
the measurement methodology introduced in Chapter 4 are evaluated. Chapter 8 concludes the thesis
and presents suggestions for future improvements for ECALOGIC.

4This finding will later be used in this thesis in order to fill in energy consumption values that could not be measured
during the measurement sessions.
Shttp://www.sos.cs.ru.nl/applications/master/SURFnet_ DNS_energy.pdf
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Chapter 2

Background

This chapter discusses the background of DNS and introduces the energy analysis framework and
its tool ECALOGIC. Section 2.1 starts by briefly explaining the history and functionality of name
servers. This is followed by a short introduction to DNS ands some of its terminology. The section
concludes by explaining how the best-known computer network, the Internet, uses name servers and
the DNS protocol to make it operational. Section 2.3 discusses the energy analysis framework and its
accompanying tool. This framework has been developed and presented in the papers ‘A Hoare Logic
for Energy Consumption Analysis’ by Rody Kersten et al. and its accompanying technical report
‘Soundness Proof for a Hoare Logic for Energy Consumption Analysis’ by Paolo et al. Section 2.3.1
introduces the framework and gives a high level overview on how it functions, details the language
grammar and introduces the notion of component models. In Section 2.4 an overview is presented on
how the ECALOGIC tool is structured and a small example of how it can be utilized by developers is
presented.

2.1 Domain Name System

A computer network connects different electronic devices (be it personal computers, servers, routers,
etc.) with each other and has communication of data as its purpose. Each device is given a unique
address where it is accessible for communication. This address can be thought of as the telephone
number of the device. Therefore, accessing a device over the network requires knowing the numeric
address of this resource, such as 173.194.65.101. With billions of devices connected to the Internet,
and millions more being connected every day, it becomes impossible to remember such addresses.
A system dependent on a name server was developed for relieving users of the network of having
to remember long numeric addresses. The Domain Name System (DNS) uses these name servers to
translate user-friendly domain names, such as ‘google.com’, to Internet Protocol (IP) addresses.

2.1.1 History of DNS

When networks were originally developed, each device on the network had a unique numeric physical
address. However, humans have trouble remembering long numeric addresses compared to meaningful
and descriptive names. This lead to the development of a system in which hosts are assigned names,
making it easy for people to use the network [15].

One particular host on the network is responsible for maintaining a list of hosts and their associated
names and addresses [15]. This designated host is known as the primary name server. Such a server
makes it possible that other devices connected to the network are required to only know two things: the
address of the name server, and the name of the host it wishes to communicate with (i.e. google.com).
Devices on the network queries the name server for the address of a particular device. The name server
answers, if possible, with the address of the desired host. Figure 2.1 depicts how this simple interaction
is carried out.

15
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ask for address of HOST B

HOST A Name Server
C["Tem address of HOST B
HOST B

Figure 2.1: Model of name server in a network

2.1.2 Domain Name System

The primary goal of DNS is to provide a consistent way of providing access to resources [18][19]. It
defines procedures for accessing data, referring to other name servers, caching retrieved data and the
periodic refreshing of data. The system can be divided into three components that are important
for its working, namely (i) the domain name space and resource records (ii) name servers and (iii)
resolvers. Name servers and resolvers are often combined for efficiency reasons.

Domain Name Space

The domain name space is a hierarchical, distributed database that stores information used by Internet
applications (also called ‘clients’) to retrieve information for them!. The database is represented as
an inverted tree with the root node representing the ¢ domain, followed by the Top-Level Domains
(TLDs) and then by the Secondary Level Domains (SLDs). The TLDs are split into two different
categories: Generic Top-Level Domains (gTLDs) such as .com, .net, .org; and Country Code Top-Level
Domains (ccTLDs) such as .us, .ca, .uk. Figure 2.2 gives a diagrammatic illustration of the tree. Each
level of the hierarchy delegates responsibility of its domains to a lower level.

Resource Records

Resource records are answers to queries. They are data that is associated with a particular domain
name. Every node in the three has a set of resource information (an empty set is allowed). This set
of resource information, that is associated with a particular name, is composed of various resource
records (RRs). It must be noted that the field RDATA is type, and sometimes class, dependent. For
example, the RDATA of a RR with type ‘A’ only contains the physical 32-bit Internet address, i.e.
IPv4 IP addresses.

Lftp://ftp.isc.org/isc/bind /cur/9.8 /doc/arm/Bv9ARM.ch01.html

root

Root DNS
Delegation

TLD DNS : :

Domain (User) DNS

.student

“mail ® .51

Figure 2.2: DNS hierarchy structure
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Queries

Queries are messages sent to name servers by resolvers in order to retrieve information for a particular
user. A standard query consists of a target domain name, the query type and the query class. The
query asks for resource records that match. Name servers use information found in the fields to look
for resource records that match the description.

Resolvers

Resolvers are responsible for querying domain name servers for data on behalf of user processes, such
as Internet browsers, in order to provide them with the information they need (such as IP addresses).
It is for this reason that RFC 1123 specifies that every host connected to a network must implement a
resolver in order to work within the domain name system. Resolvers can be categorized in two types:
full-service resolvers and stub-resolvers. A full-service resolver implements a complete resolver service
(i.e. capable of dealing with following referrals, failures of name servers, etc.) and must contain a local
cache. Stub resolvers are dependent on the capabilities of a recursive name server and only generate
queries for user processes.

Name Servers

The main activity of a name server is to provide answers to standard queries requested by resolvers.
Queries and their responses are both transmitted according to a standard message format. This
message format is described in [19]. A response may consist of various resource records. How exactly
a server responds to a query is dependent on how the server is configured. A name server can either
be operating in a recursive or a non-recursive mode. A server operating in the non-recursive mode can
only answer queries using local information. Therefore, the response will either be an error response, a
proper answer if it is found locally or a reference to another server that might have the answer. Name
servers operating in the recursive mode always respond with either an error message or an answer to
the query. The server essentially works as a resolver in this mode and will always follow up on referrals
to other name servers in order to provide an answer. RFC 1034 details how the algorithm for a name
server is allowed to behave after receiving a query. The algorithm assumes that resource records are
organized in different tree structures, one for the local cache and one for each zone.

2.1.3 The Internet

The Internet is the best-known computer network in the world. It is a global collection of networks
connected to each other for the purpose of data communication. The Internet uses a specific imple-
mentation of the name server concept that has been optimized for usual conditions of the Internet [1].
It uses the DNS protocol for communication between networks that are connected to each other.

In order for Internet applications to retrieve the resources they need (such as images, text, video, etc.),
they must know the IP address where theses resources are located. Imagine an Internet browser user
that wants to visit ‘www.google.com’. The browser uses the PCs stub resolver to find the IP address
of the website?. The stub resolver creates a query and sends this query ‘to its locally configured DNS
resolver’ [1]. In this example, the query target is ‘google.com’, its type is ‘A’ and its class is IN (the
INTERNET).

The DNS resolver is expected to provide a response to the query. The server first consults its cache
to find out if any resource records match the query when it is received. If a match is found, the
server generates an answer for the query and responds with what was found. If a match is not found
in the cache, the server will recursively search for an answer by first asking one of the thirteen root
servers®. The root server responds with a list of referrals to authoritative gTLD name servers for the
‘com’ domain. Our name server selects a server from the received list and asks the same question to
the selected gTLD name server. The gTLD name server in turn responds with a list of referrals to
authoritative name servers for the ‘google.com’ SLD.

2Modern browsers usually implement their own DNS cache for a faster user experience.
3The Internet has a total of 13 root servers at the top of the DNS hierarchy located at different location around the
world
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The name server selects a server from the list it received and asks the same question to this SLD name
server. The name server responds with the type ‘A’ resource record for ‘google.com’, which in this
case is ‘173.194.65.101°. The name server sends this response to the stub resolver and the stub resolver
informs the browser that the IP address for ‘google.com’ is ‘173.194.65.101". The browser then sends
a request to ‘173.194.65.101° for the web page.

The story depicted above is for when the query and the name server want a recursive solution to the
answer. When the query is to be answered iteratively, a similar approach is followed. One difference
however is that the DNS resolver will return the list of root servers if the answer is not found in its
cache. However, in this case the PCs resolver is only a stub resolver. In such a case it is best that the
configured DNS resolver supports recursive querying.

2.2 DNS Server Software

There exists different software implementations for the DNS protocol, such as Microsoft DNS, BIND,
Unbound, PowerDNS, NSD, etc. This thesis focuses on the BIND and Unbound DNS server implementations.

2.2.1 BIND

The BIND DNS server software was first developed at the University of California, Berkeley, and is
now maintained by the Internet Systems Consortium*. It is the most widely used DNS software on
the Internet and is the de facto standard on Unix-like operating systems.

2.2.2 Unbound

Unbound is a validating, recursive, and caching DNS server implementation developed by NLnet Labs®.
A prototype of the server was developed in 2004 in Java and in 2006 an implementation written in the
portable ‘C’ language, based on ideas from the Java prototype, was developed. Contrary to BIND,
Unbound is not a full fledged authoritative DNS server. The server does boasts higher performance
and better security®. The latest version of this software will be used, namely version 1.4.21 released
September 10, 2013.

2.3 Energy analysis framework and ECALOGIC

This section introduces the energy analysis framework and ECALOGIC presented in [13, 21] and [23]
respectively. This section also provides a simple example in Section 2.4 on how ECALOGIC can be a
benefit to programmers if they ever find themselves needing to choose between two different algorithms
based on their energy efficiency.

2.3.1 Energy analysis framework

In [13] a method for modeling energy-aware systems with hardware and software components has been
developed. This modeling technique is an energy-aware Hoare Logic that is sound with respect to an
energy-aware semantics and can statically estimate the energy-consumption of software. This section
will briefly describe the Hoare logic and further expand on how a hybrid system can be modeled. The
latter is done by describing what the logic can do. The former is shown by giving a small overview
on the language presented in [13] and showing how components can be modeled such as that the logic
can make an approximation on the energy-consumption.

The frameworks semantics and its logic assumes that energy-aware component models are present
within the system. These component models represent hardware or software components within the
system that is to be measured. The analysis is performed on a hybrid system containing both the
hardware and software models. The Hoare logic enables formal reasoning about energy-consumption
by specifying judgments. The logic and its ability to reason about energy consumption allows the

4http://www.isc.org/downloads/bind
Shttp://unbound.net
Shttp://www.infoworld.com/t/applications/new-open-source-dns-server-released-599
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framework to approximate an upper bound on the energy-consumption of the system, and all the com-
ponents that are present during its analysis. Therefore, the framework can give an energy consumption
bound for every component available.

2.3.2 Language

Software plays a vital role in controlling the hardware of a computer system. The energy analysis
presented in [13] is performed on a ‘while’-language with annotated ranking functions for while loops
that is called ECA [21]. ECA is a simple language and therefore only supports the integer type; does
not support global variables; parameters are always passed by value; and does not support recursive
functions. The analysis framework uses ECA in combination with hardware models” to estimate the
energy consumption of a particular program. Therefore, in order for a developer to determine an
application’s energy consumption, it follows that the application must first be ported to ECA. The
language also introduces explicit statements for operations on the hardware components.

2.3.3 Modeling

Kersten et al. introduced a method for modeling the hardware components needed for its analysis.
These models are known as component models. The hardware is modeled in such a way that the
relevant information for energy-consumption analysis is provided. The model for the component effec-
tively captures the behavior in terms of its effects on the program state.

The component model is an abstract model that can be instantiated for any component [21]. Two im-
portant aspects of the model are that everything is a component and the models cannot directly affect
each other®. Each component inside the model consists of a component state C; :: s. The component
state is a collection of variables. A variable v in the state of a component C; can be accessed with the
expression C; :: s.v. As it has been noted previously, variables are all of the integer type, also in the
component state.

The analysis framework assumes that at least one component is always part of the environment, namely
the Implicit component Cimpiicit- This Implicit component model is used to ‘capture the effect of
executing a statement’ inside the language, such as arithmetical operations, assignments and control
structures [13]. Therefore, this component model must have the resource consumption constants
Cepy i+ €q, for the energy usage of a , and Cp, :: Ty, for the time it takes to perform «, where

a € {e,a,w,ite}. The set « corresponds to the energy consumption for the evaluation of arithmetic
expressions and integer comparison (e), assignments (a), while loops (w) and conditionals (ite).

2.4 ECALOGIC

ECALOCGIC is an implementation of the energy consumption framework discussed in Section 2.3. Given
a model of the hardware, as component models, and a software implementation in the input language,
it is possible for the tool to statically determine power consumption bounds. Thus, providing ap-
plication developers with a straightforward method for determining the energy-consumption of their
applications. Figure 2.3 graphically represents how ECALOGIC is able to determine energy consump-
tion bounds.

In order for ECA to estimate the energy bounds for an application, the developer must first develop
the desired functionality of the application in ECA. Each hardware component is modeled in a sim-
ilar language called ECM. Models of the hardware and a software implementation must be supplied
to ECALocic. ECALOGIC then analyzes the software implementation with regards to the supplied
component models and outputs its time and energy consumption bounds.

A part of the grammar for ECA is presented in Figure 2.4. The grammar implemented by ECA is
different than the one presented in [13, 21]. In comparison with the grammar presented in [21], the
grammar shown in Figure 2.4 does not have a return statement for functions.

7See Chapter 2.3.3.
8Later in this thesis we see how this can be detrimental when modeling applications.
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Figure 2.3: Schematic representation of ECALOGIC, taken from [23]

1 component Arr
2 component function get(a, i) uses 1 energy 1 time
component function set(a, i, v) uses 1 energy 1 time
+ end component

Listing 2.1: ECM component implementation for an array type.

As an example of how ECALOGIC works and how it can be utilized by developers, the following use
case is presented. Imagine a developer that must sort an array and must choose between two algo-
rithms: insertion sort and selection sort. Both algorithms have a worst case of O(n?)[8], and
both algorithms belong to the family of in-place comparison sorting algorithms [4]°. The developer,
however, is environment friendly and wants to take the energy consumption of his implementations

into account and wants to pick the algorithm that consumes the least amount of energy.

In order to determine which algorithm consumes the least amount of energy, the developer decides to
implement both algorithms in ECALoOGIC. The developer uses the pseudo-code shown in Listing 2.2
as the reference for insertion sort, and its ECA implementation is seen in Listing 2.3. The C code
shown in Listing 2.4 is used as the reference for the selection sort algorithm. Listing 2.5 shows the
same algorithm implemented in ECA. ECALOGIC does not have a notion of arrays and, therefore, each
developer developing in ECA must implement their own array component that simulates how arrays

9An in-place sorting algorithm sorts its elements with at most a constant size of additional storage for holding
temporary values [8]

(program) = {{comp-imp) (sep)} {(fun-def) (sep)}
(comp-imp) = ‘import’ ‘component’ id {‘.” id} [‘as’ id]
(fun-def) n= ‘function’ id [’ [id {‘,” id}] )] {fun-body)
(fun-body) = o=’ (expr)
| (stat-list) ‘end’ ‘function’
| (empty)
(stat-list) := {(statement) (sep)}
(statement) n= ‘skip’
| id “:= (expr)
| {(fun-call)
| “if’ (expr) ‘then’ (stat-list) ‘else’ (stat-list) ‘end’ ‘if’
| ‘while’ (expr) ‘bound’ {expr) ‘do’ (stat-list) ‘end’ ‘while’
| 0’ (annot-elem) {*,” (annot-elem)} ‘} [(statement)]
(fun-call) = [id 7] id O [(expr) {¢, (expr)}] )’
(annot-elem) = id ‘<=’ (expr)
(expr) == (expr) (bin-op) (expr)
| id
| {(fun-call)
| L(7 <€Z’p7’> L)?
<bl’ﬂ-0p> _ Lor7|4anda|L:7‘4<>7|c>a|n<7|4>:7‘4<:7‘4+a|4_7¢*7|4/’|u\7
(sep) = %’ | end-of-line

Figure 2.4: Grammar of the input language ECA, taken from [23]
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N Time Energy
Implicit Array
100 818805 808505 10300
200 3257605 3217005 40600
300 7316405 7225505 90900
400 12995205 12834005 161200
Complexity 5+ 88N + 81N? 5+ 85N + 80N? 3N + N?

Table 2.1: ECALOGIC energy consumption estimates for insertion sort.

1 INSERTION_SORT(A, N)

2 for j = 2 to N

3 key = A[J]

4 i=3-1

5 while i > 0 and A[i] > key
6 ALi + 1] = A[i]

7 i =1 -1

8 ALi + 1] = key

Listing 2.2: Insertion sort pseudo-code

work (see Listing 2.1 for the implementation used in this thesis). As one can see, ECA allows for a
fairly one-to-one translation of these algorithms.

Let A be an array of length N and is always sorted in its reverse'® order. This means that the algorithms
always perform according to their worst case time. The ECALOGIC implementation of the algorithms
are both run with four different array sizes, namely: 100, 200, 300 and 400. Table 2.1 and Table
2.2 show the energy consumption ECALOGIC estimates for the insertion- and the selection sort
algorithm. The table also shows the complexity of the implemented algorithms. This complexity is
obtained by running ECALOGIC with the variable N instead of a number. The results in the table
show that the complexity class that algorithm belongs too is correctly given by ECALoGIC. The dif-
ference between two algorithms are the constants. Running the algorithms with different sizes arrays
also show that time increases according to this complexity class.

Our developer can now objectively compare energy consumption analysis of his two algorithms. From
the results table our developer decides to use the insertion sort. These examples show how ECA-
LOGIC can be used to easily establish the difference in energy consumption of two distinct algorithms.

10N is the first element of the array and 0 is the last element

N Time Energy
Implicit Array
100 930820 910520 20300
200 3701620 3621020 80600
300 8312420 8131520 180900
400 14763220 14442020 321200
Complexity 20 + 108N + 92N? 20 + 105N + 90N? 3N + 2N?

Table 2.2: ECALOGIC energy consumption estimates for selection sort.
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import component Arr
function insertion_sort(A, N)

i =1

while i < N bound N do
value := Arr::get(A, i)
jo:=1i -1
jvalue := Arr::get(A, j)

while j >= 0 and jvalue > value bound N do
Arr::set(A, j + 1, j)
j =3 -1

end while;

Arr::set(A, j + 1, value)

i =1 +1

end while;
end function

function main(A, N)
insertion_sort(A, N)
end function

Listing 2.3: The Insertion Sort Algorithm implemented in 2.4

void selection_sort(int arr[], int n) {
int i, j, minIndex, tmp;
for (i = 0; 1 < n - 1; i++) {
minIndex = 1i;
for (j =1 + 1; j < n; j++)
if (arr[j] < arr[minIndex])
minIndex = j;

if (minIndex != i) {
tmp = arr[il];
arr[i] = arr[minIndex];
arr[minIndex] = tmp;

}

Listing 2.4: Insertion sort pseudo-code

import component Arr
function selection_sort(A, N)

i =0

j =0

tmp := 0

minIndex := 0

while i < (N - 1) bound N do
minIndex := i
j =1+ 1

while j < N bound N do
if Arr::get(A, j) < Arr::get(A, minIndex) then

minIndex := j
else end if;
j =3 +1

end while;

if minIndex <> i then
tmp := Arr::get(A, i)
Arr::set(A, i, minIndex)
Arr::set(A, minIndex, tmp)

else end if;

end while;
end function

function main(A, N)
selection_sort (A, N)
end function

Listing 2.5: Selection sort implementation in ECA

BACKGROUND



Chapter 3

Energy-Aware Modeling

This chapter discusses the ECALOGIC component models used in the rest of the thesis. Section 3.1
researches which hardware components are needed in general and which are necessary in order to model
the DNS servers.

3.1 Component Models

In order for the Hoare logic to statically estimate the energy consumption, it must be given component
models for which energy consumption information have been defined. Two different methods can be
used to determine the required hardware components. The first method requires brainstorming on
which server components may be used. The second method to determine the hardware components
requires the utilization of the measurement equipment of SEFlab during the execution of a query re-
quest. The results of the former method have shown that three components are needed, namely a CPU,
Memory and a Network Interface Card (NIC) component. One of the early preliminary measurement
tests showed that, other than the CPU and Memory, no other measurable hardware showed an increase
in their consumption.

The NIC is not modeled in this use case analysis, because component has not yet been equipped by
SEFlab to have its energy consumption measured!'. Future research with ECALOGIC on DNS servers
should model this component to make the ECALOGIC analysis more accurate. Especially seeing how
integral the NIC is for DNS servers. Thus, the only hardware components used during this thesis are
the Cimplicit and C,,,,,, component models.

The hardware used is more complicated than needs to be presented in the hardware models for ECA-
LOGIC. This thesis looks at the hardware components as an abstract model and abstracts its energy
consumption to its idle state, and the actual energy consumption of its component functions.

3.1.1 Implicit

Kersten et al. state in [13] that Cimplicit must always be present inside the energy model. The ECM
component model declaration of our Cjypiicit is seen in Listing 3.1 The CPU component model is kept
simple and it will not have any state. The CPU also does not have any methods and, therefore, the
model for Cjmpiicit Will only consists of the set of constants needed by ECALOGIC.

It must be noted, however, that a realistic energy consumption component model of the CPU can never
be modeled completely in the current form of ECALOGIC. The reason for this is that modern CPU do a
lot of extra work, such as branch prediction, that the application developer does not have any control
over. Furthermore, modern processors? often have multiple cores that, at the time of writing, cannot
be modeled within ECALOGIC.

1This was planned as a future improvement to their measurement setup.
2For example, the processor used in this thesis has a total of four cores. All of which cannot be modeled using only
Cimplicit- Therefore, the measurements taken in this thesis only use one of the available cores.
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1 component Implicit

2 component function a uses 5 energy 5 time
3 component function e uses 10 energy 10 time
4 component function w uses 25 energy 25 time

component function ite wuses 25 energy 25 time
¢ end component

Listing 3.1: Implicit component implemented in ECM

1 component Memory

component function retrieve uses 5 energy 5 time
component function store uses 5 energy 5 time
1+ end component

Listing 3.2: Meomory component implemented in ECM

3.1.2 Memory Model

The component model C,,,.,,, represents the memory model, i.e. RAM, found in the server. This model
is shown in Listing 3.2. The model itself implements two functions: store, retrieve. Both functions
take a variable name as parameter and both are used for storing and retrieving data from memory.
The problem that a memory component model presents, is that its use must be explicitly stated in
ECALocIC. This means that each time a variable is assigned to, this must be followed by a call to

Crem it Store. Every reference to a variable must be preceded by C,,,.,,, :: retrieve.

3.1.3 Network Interface Card

The component model C, ;. represents the servers Network Interface Card. This model is shown
Listing 3.3 for future reference, but will not be utilized in this thesis. The model only implements one

function C,;, :: send that is responsible for communicating from the network.

3.2 ECA

This sections introduces the component models of both unbound (Section 3.2.1) and BIND (Section
3.2.2. As mentioned previously, this thesis only looks at the energy consumption of the servers when
a query request has been received by the server. Thus, the approximation of the energy consumed of
the server since it has been started is of no interest to this thesis®.

3.2.1 Unbound

Two sets of component models have been developed for Unbound . The first set represents the cached
component models and ECA source code. These are found in Appendix D.4, Appendix D.5 and Ap-
pendix D.6. The second sets represents the component models and ECA source code used for the
uncached version of Unbound. These models are found in Appendix D.7, Appendix D.8 and Appendix
D.9.

The architecture of Unbound consists of a ‘core’ implementation which supports modules that may
or may not be initialized. Currently, the only modules available are the validator and iterator
modules. The validator module is responsible for DNS query validation, according to RFC 4043, of

3 Another project might only look at it from this perspective

1 component NIC

2 component function send uses 50 energy 25 time

3 component function retrieve uses 50 energy 25 time
+ end component

Listing 3.3: Network Interface Card component implemented in ECM
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responses received from other name servers. The iterator module is responsible for performing the
recursive iterative DNS query processing for answering a query. These modules are configured to be
initialized by default inside the configuration file. The validator module is ignored for the rest of this
thesis.

The modules are implemented as a state machines that can pass control of the thread to another
module. An endless loop keeps track of the of which module has control of the thread and/or if the
next module must be called. The iterator module is also implemented as an endless loop that switches
from state depending on return values from its functions. This return values also decide if the its
time to break out of this loop. The ECA logic code developed presents a simplified version of the state
machine. Each state calls the functions it needs and decides what the next state must be. The state
machine made the implementation in ECA straightforward.

3.2.2 BIND

Two sets of component models have been developed for Unbound . The first set represents the cached
component models and ECA source code. These are found in Appendix E.4, Appendix E.5 and Ap-
pendix E.6. The second sets represents the component models and ECA source code used for the
uncached version of Unbound. These models are found in Appendix E.7, Appendix E.8 and Appendix
E.9.

The architecture of BIND is structured in the different functionalities it provides (such as the named
server application, resolver library, etc.). Unlike Unbound, no module system is implemented in BIND.
The implementation of BIND made its port to ECA somewhat difficult. BIND makes use of labels and
goto statements, which, of course, are not supported by ECA. The code for BIND has thus been
developed with help from the execution path retrieved from the logs. Conditionals have been used to
simulate when certain code paths must be executed. A loop has been used to simulate recursion.
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Chapter 4

Energy Consumption Measurement
Methodology

ECALoGIC is dependent on input of energy consumption values for statements and constructs found
inside ECA. The more these values approximate real world values, the more precise the energy con-
sumption estimations of ECArLoGIC will be. However, these estimations are specific to the underlying
hardware on which the software is executed. Regrettably, most hardware components’ do not come
with their energy consumption values inside a manual?. This leaves researchers with no other choice
but to acquire these consumption information in real world use cases.

In this chapter we develop a measurement methodology on how to obtain these energy consumption
values by taking direct measurements from the hardware itself. This is done by first explaining the
measurement environment, such as the hardware, the hardware measurement setup and the software
setup. This is followed by a detailed explanation on how the measurements are performed and why
this strategy has been selected. The chapter continues by showing how the energy consumption is
calculated. Lastly, we end the chapter with a discussion on an alternate measurement methodology
considered during this research.

4.1 Measurement Environment

The measurement environment was provided by the Software Energy Footprint Lab (SEFlab) at the
Hogeschool van Amsterdam (HvA). SEFLab is equipped to take accurate measurements directly from
hardware components found inside servers. This is achieved by equipping the server with power sensors
on the hardware power lines. The setup can be seen as a black box that executes our software for a
determined period of time on the server [9]. The energy consumption during this time period is the
output of this black box. Analysis of the output is explained in Chapter 5.

Figure 4.1 displays a conceptional view of the SEFlab measurement laboratory [9]. Three components
are important for the setup, namely the server where the software under test (SUT) is executed; the
data acquisition (DAQ) hardware which collects measurements and provides them in a machine read-
able format; and the measurements computer where all measurements are recorded and analyzed. The
server is an HP Proliant DL360 G7 integrated with an Intel Xeon Processor E5630 with 36GB (9x4GB)
1333MHz DDR3 of memory. The measurement computer is an iMac with the Windows operating sys-
tem installed. The server consists of other hardware such as hard drive disks (HDD), NIC, a GPU, etc.
Not all components are used for the analysis. The only components that are of any importance are
the CPU and the RAM. As mentioned previously, the NIC is also taken into account when measuring
however, SEFlab did not have the NIC equipped with measurement hardware.

One component not displayed in the diagram, but extremely important for our energy measurements,
is the USB serial converter connected to the DAQ. The converter connects a USB port on the server
to an independent channel on the DAQ. This extra connection makes it possible to a send electronic

11f not all components, such as the CPU, RAM, HDD, etc.
2Nor can one be found on the Internet
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Figure 4.1: SEFLab measurement infrastructure, modified version of the one found in [9]

pulses to the DAQ. These pulses are sent before and right after our code under test is executed. The
pulses are converted into timestamps that are later aligned with the power measurements once we have
to analyze our measurements.

The operating system installed is CentOS 6.5, the minimal install version. The minimal install has
the absolute minimum needed to have a functional system with no compromise regarding security.
Our DNS servers, both BIND and Unbound, are installed on two different hard drives. Both DNS servers
are configured to only operate on one thread and only listen to IPv4 DNS query requests made from
localhost. Furthermore, the operating system was configured to use only 1 of the 4 available cores.
How this is achieved can be seen in Appendix A. This configuration prevents the operating system
from migrating the running code to a different core and affect our results.

4.2 Baseline energy consumption

Each component in the model uses energy, however, some component models are modeled after hard-
ware that consumes energy when the operating system is idle. This energy consumption is called the
baseline energy consumption. It is defined as the energy consumed by the component when it is not
being utilized by the system.

This baseline energy consumption is acquired by letting the operating system run for ten minutes.
Only processes that are started by the operating system when its booting are allowed to run during
this period. No other applications started by the user should be utilized during this period. This
will let us acquire the amount of energy the operating system consumes when it is idling in a realistic
setting.

4.3 Implicit energy consumption

Chapter 2.3.3 explains that the energy framework assumes that there is always one component available,
namely the CPU component model. This CPU component model is called Implicit inside ECA. A number
of different applications have been developed in C in order to measure the energy consumption of the
constants needed for the Implicit component model. A utility library, seen in Appendix B.2, has
been developed in order to send a start and end pulse to the DAQ; time; and log the results of our
expressions and language statements to a file on the file system. The utility takes measurements
precise to the nanosecond. Furthermore, a script has been developed to build (Appendix B.3), run
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and measure (Appendix B.4) each and every application under test. Appendix B.1 gives an overview
on the structure of the directory and files that are important for the measurements.

4.3.1 Implicit template

A standard template, seen in Listing 4.1, was developed in order to acquire energy consumption values
and is used by all of the C programs that have been developed. The template ensures that each mea-
surement is executed using the same exact approach each time and to only differ in the initialization
section and the body of the loop. Listing 4.1 is divided into three main sections. The first section
imports the required headers, such as the timing utility functions (Appendix B.2). The second section
is the run_test function. The last section is the main function and is the default entry point for any
C program. The POSIX real time library is used for capturing the precise execution time of the state-
ments that need to be measured. The total execution time of each run is logged to a file at the end of
every execution run. This makes it possible the acquire the most accurate execution time, because its
measured by the server itself.

The main function is responsible for initializing and closing the connection with the DAQ. A total of
five measurements is performed by calling the function run_test with the number of instructions to
execute as parameters. Each test doubles the number of instructions executed compared to the test
that precedes it. This gives the possibility to verify that the execution time actually doubles on each
run. This allows for the normalization of the energy consumption to a specific time unit such as
millisecond. The measurements have for a small interval between each measurement in order to see
a clear distinction between the tests in the graphs. The energy consumption graph for one such test
is seen in Figure 4.2. The run_test function is were we perform our measurements and is responsible
for initializing any variable needed by the body of the loop®. On example of such initialization is
the addition of two variables n and m. Such an action requires that both variables are declared and
initialized before the timer is started. Furthermore, this section is also responsible for determining the
number of iterations the loop needs to perform. The number of iterations is determined by dividing

3The initialization section is different for each code under test.
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Figure 4.2: Energy consumption graph of five assignment test using the template from Listing 4.1
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1 // {# IMPORT HEADER FILES ... #}
2> void run_test(int loop) {

3 // {# INITIALIZATION HERE #}

4 set_rts(fd, &flags);

5 start (&time);

6 for(; i < iterations; ++i) {

7 // {# 200 OCCURENCES OF THE STATEMENT #}

8 }

9 end (&time);
10 unset_rts(fd, &flags);
11 logtime("results/{# STATEMENT SPECIFIC FILE FOR LOGGING #3}", &time);

14 int main(int argc, char** argv) {

15 // {# INITIALIZE SERIAL PORT #}

16 run_test (20000000); wusleep(sleep_time);
17 run_test (40000000); usleep(sleep_time);
18 run_test (80000000); usleep(sleep_time);
19 run_test (160000000); usleep(sleep_time);
20 run_test (320000000) ;

21 // {# CLOSE SERIAL PORT #}

Listing 4.1: Measurement Template for Implicit

the loop variable by the number of statements executed inside the body (200) of the loop and is stored
inside the variable iterations. The number 200 has been chosen in order to minimize the impact of
our loop [27, 28]. Different number of statement executions have been tested and 200 has been the
best fit in terms of overall speed. This also confirms the loop body size found in [28].

The DAQ channel is set to high before the timer is started and before the code under test is executed.
This is followed by stopping the timer and setting the DAQ channel to low once the test application has
finished running. The function log_time is then responsible for logging the results to a specific file on
the server. Each statement measurement has its own log file were the results of the measurement can
be found.

4.3.2 Compilation

All applications are written in the programming language C and compiled with the gcc 4.6 compiler.
Unless otherwise noted, all code presented in the following sections are written inside the body of the
loop inside the run_test function as presented in Chapter 4.3.1. All applications are compiled with
the command line instruction seen in Listing 4.2. Appendix B.3 details the contents of the script.

1 gcc -00 ./src/$1.c ./src/utils.c -std=gnu99 -o ./bin/$1 -I"./include/" \
2 -lrt -wall

Listing 4.2: Build settings for our measurement programs

Every application is compiled with no optimizations against the newest standard of C (gnu99) as imple-
mented by the GCC compiler. GNU99 provides interfaces specified by the POSIX standard, most notably
the Realtime Extension. Furthermore, the standard allows for arbitrary definitions of variables inside
functions. All variables must be declared at the beginning of the function if an older standard is used.
The standard has no further implications on the code to be measured.

4.3.3 Component and ECA statement measurements

Main Memory The main memory of a computer is responsible for storing our program and the
data they work on [25]. The CPU can perform two basic operations on the main memory, namely it
retrieves instructions and data from main memory; and it can write the results of its calculations back
to memory. This thesis takes the following view on these operations: storing a value in main memory
is the equivalent of assigning a literal value to a variable inside programming languages; retrieving a

4This is the default GCC compiler version found on a clean installation of Cent0S 6.5
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’» 4 ) )

// force the variable ’a’ in register ’ebx

register int a asm ("ebx");

(S

’

// force the variable ’a
volatile int a;

e W

in main memory

Listing 4.3: Build settings for our measurement programs

value from main memory is the equivalent of using said variable inside programming languages.

Six different scenarios have been identified on how the compiler, in this case GCC, compiles assignment
and retrieval statements of data to and from a variable. Furthermore, its possible to either assign a
variable to a variable or a literal expression to a variable. Let a and b be variables and that b is always
assigned to variable a. The variables can be loaded from either the memory or a CPU register. The
code snippet ‘a = b’ (or ‘a = 1’ when measuring the literal expression) is used to measure the energy
consumption of the assignment statement. The following scenarios with the variables and literals are
possible:

Both variable a and b are in the registers.

Variable a is in the register and variable b is in the main memory.
Variable a is in the main memory and variable b is in the register.
Both variable a and b are in main memory.

Variable a is in the register and is assigned a literal.

S kW

Variable a is in the main memory and is assigned a literal.

No measurements runs were performed for scenarios (2) and (3)°. THe compiler can be forced into

setting the variable in either the register or main memory by using one of the code snippets found in
Listing 4.3. Furthermore, scenarios one through six are executed twice with different values. The first
time b has a value of 1 and the second time it has the value INT_MAX, which is 2147483647 with the
current compile-time flags. The results of the last test may show if there is a correlation between the
numbers of ‘0’s and ‘1’s inside the retrieved data.

Processor The processor is responsible for controlling the operations of the server [25]. It executes
instructions that perform data processing functions on data retrieved from memory. The processor is
represented by Implicit in ECA and requires consumption constants for expression evaluation, such
as arithmetic and boolean expressions, and assignment statements.

In their paper, titled ‘Comparative Analyses of Power Consumption in Arithmetic Algorithms Imple-
mentation’, Alexandre Wagner C. Faria et al. mention that multiplication requires more energy than
addition operations (independent of hardware). However, the latency of executing the different boolean
operations and arithmetic operations are the same®. Therefore, only one expression is measured and
this value is used as the constant for the component model.

The template is compiled with n = a + b inside the loop of the body in order to measure the energy
consumption of the addition statement. This statement translates to assembly code that performs
both an addition instruction and an assignment instruction. This assignment instruction is necessary
because otherwise GCC optimizes away our code if it was just a + b”. The assignment statement forces
the compiler not optimize away the addition instruction.

As with the assignment, different scenarios have been identified in which the variable used in a binary
operation might find themselves. The scenarios are as follows:

1. Both variable a and b are in the registers.

50f course, only one of these scenarios can be used for the component, however, it is still interesting to measure the
effects of the different scenarios.

6See Table C-16, General Purpose Instructions, in the document titled ‘Intel 64 and IA-32 Architectures Optimization
Reference Manual’

"This is a default optimization and cannot be controlled by any the optimization flags
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2. Variable a is in the register and variable b is in the main memory.
3. Variable a is in the main memory and variable b is in the register.

4. Both variable a and b are in main memory.

As with the Main Memory, measurements for scenarios (2) and (3) have not been performed. Its self-
evident that point (1) and (4) already represent the lower and upper bound on the energy consumption,
therefore, point (2) and (3) lies somewhere in between those points and the values are currently of no
interest.

4.3.4 Language constructs

The following measurements concern measuring the overhead of certain concepts found in programming
languages. These constructs are the function call, while-loop, and conditional (i.e. if-then-else)
statements. All these constructs are a combination of different instructions found inside the CPU
instruction set. Therefore, this thesis will look on how the energy consumption of the CPU can be
measured when these constructs are executed.

Function call Functions are important for any programming language. They allow developers to
break up their code into small manageable pieces of code. However useful they are, function calls do
not come for free. Each function call performs the following steps: put variables on the stack; jump to
the address of the function; load variables from the stack; perform instructions of the called function;
clean the stack and then jump back to the function that originally called it.

Listing 4.4 shows the assembly instructions generated for an empty function call. Its possible to see
that these instructions that empty functions still execute instructions®. These instructions are thus the
energy consumption function overhead that each function call generates when its executed. Therefore,
in order to measure the energy consumption of a function call, an empty function must be constructed
and called inside the loop.

1 empty_function:
> .LFBO:
3 .cfi_startproc

| push rbp

5 .cfi_def_cfa_offset 16
6 .cfi_offset 6, -16

7 mov rbp, rsp

8 .cfi_def_cfa_register 6
9 leave

10 .cfi_def_cfa 7, 8

11 ret

12 .cfi_endproc

13 .LFEO:

14 .size empty_function, .-empty_function
15 .comm fd,4,4

16 .section .rodata

17

18 .L5:

19 call empty_function

Listing 4.4: Empty function call GCC assembly

It is not necessary to put miscellaneous code inside the function, because GCC does not optimize away
the empty function at this optimization level.

Loop Executing the same set of instructions inside programming languages is usually accomplished
via recursion or loops. ECALOGIC, being a simple ‘while’-language, opted to implement while-loops
in its grammar and does not allow recursion. The energy consumption of a loop is measured by running
the code snippet found in Listing 4.5. The while-loop cannot be measured the same way as the other
code fragments. The boolean expression cannot simply be applied, because that will cause the loop to
execute infinity. Therefore, the will count too 200. Allowing the outer loop to continue with it next

8If optimizations do not remove dead code
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while(j < 200)
3 t+3;
4 j =05

Listing 4.5: While-loop

iteration.

In order count with the while-loop, the integer variable must first be incremented. This operations
consists of retrieving the value from memory, increment it and storing it back to memory. This in itself
is not a problem because the time it takes to perform an addition and equality expression is known.
These are subtracted from the total time in order to acquire the total time spent inside the while-loop
for 200 iterations.

Conditional The conditional, also known as the if-else statement, has two paths that it can travel.
The condition is either true and the ‘if’ branch is taken, or the condition is false and the ‘else’ branch
is taken. The scenario and the code is almost identical, therefore, only the overhead of the energy
consumed by the conditional when it evaluates to true is measured. The code that shall be used for
the measurements is seen below in Listing 4.6.

> L CifE) { ++ifi; } else {3
Listing 4.6: While-loop

The compiler forces us to perform an action inside the body of the conditional, because otherwise it
will be optimized away by GCC . This poses no problem for the analysis because its known how much
time the addition instruction takes. These are subtracted from the total time in order to acquire the
total time spent inside the conditional statement.

4.4 Measurement methodology DNS servers

In the end, the main objective of this thesis remains to see how well ECALOGIC can estimate the
energy consumption of DNS server software. This section lays out the measurement methodology used
to acquire energy consumption values needed in the ECALOGIC component models of the ECA DNS
server code.

The analysis focuses on the time each server needs in order to answer an incoming query. Two scenarios
on how the server can answer the query are considered, namely it finds the answer to the query inside
its own cache; or the answer is not in its cache and the server must query root servers for the IP
address. See Chapter 2.4 for a more detailed explanation on how the protocol works.

4.4.1 Measurement setup

Chapter 3 mentions that BIND and Unbound DNS server implementations will be examined. The first
step was to install BIND and Unbound on two different hard drives. Secondly, the /etc/resolv.conf
have been configured to only allow the use of localhost for resolving Internet domain names. Thirdly,
both servers are configured to only listen for query request originating from localhost and request
for IPv4 addresses. Furthermore, both servers are configured to use recursion or iteration in order to
answer any received queries. However, the servers are not configured to forward these queries. Lastly,
both servers are configured to log its process each time a new query request is received. The complete
configuration for both BIND and Unbound can be found in Appendix E.1 for BIND and Appendix D.1
for Unbound.
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1 LOGGER("UnboundRBTSearch”, UnboundRBTSearch);
> e = slabhash_lookup(worker->env.msg_cache, h, &qginfo, 0);
;3 END_TIMER (UnboundRBTSearch);

Listing 4.7: Build settings for our measurement programs

dig A google.nl @localhost

Listing 4.8: Command to send our queries to the DNS servers

Three different scripts have been developed for sending queries to the DNS server installed on the server.
The scripts use domain information groper (dig) to send the queries. Dig is a network administration
command-line tool for querying DNS name servers and can be installed by running the command yum
install bind-utils on the command line.

4.4.2 Measurements

There are two scenarios in which the energy consumption for each server must be measured. The first
scenarios measures the energy consumption of both servers when the answer is not found inside the
cache. Followed by taking the energy consumption for each server when the answer is found inside
their cache. In the first scenario a query request is send to the DNS server and instructs it to clear
its cache afterwards. In the second scenario queries are send to the DNS server in order to warm up
its cache. The time it takes to answer a query with a response found inside its cache is verified by
comparing it to the time it took to answer the same query when a response is not found inside the
cache. The scenario can also be verified by looking at the logs of each DNS server. The domain name
that both DNS servers must resolve is google.nl. This domain name is chosen because its located in
the Netherlands and, therefore, the response times will be smaller because of the locality of the server
of Google. The query requests are send out by the command found in Listing 4.8. This command
specifies that only responses with IPv4 IP addresses for the domain name google.nl are wanted, and
also use the DNS server found at localhost.

The ECA component models of our servers needs energy consumption values before ECALOGIC can
try to estimate its energy consumption. These models consists of different function calls that simulate
the servers execution path. This means that measurements of these functions must be taken and the
models will be populated with these values. The strategy used for measuring these functions is the
same as the one used for the component models. Listing 4.7 shows one example of how such a function
is measured. The listing measures the time and energy consumption needed for Unbound to search
for a query in its cache. Both LOGGER and END_TIMER are helper macros defined to simplify taking
measurements of function calls. The LOGGER macro uses the DNS server own logging mechanism to log
to its file. The term UnboundRTBSearch is a custom macro defined for our purposes.

4.4.3 Compilation

In Chapter 4.4.2 an example of how to measure each function needed for the models is shown. The
source of BIND and Unbound are modified with the timing utility code in order to determine the time
spent in functions used to answer a query request. The timing functions have been slightly modified
in order to make use of the servers logging mechanisms. As mentioned in the previous chpater, macros
have been introduces to easily time these functions and log their execution time. These changes and
the complete utility header can be seen in Appendix D.2 for Unbound and Appendix E.2 for BIND.

However, because of these change, both BIND and Unbound must be compiled and installed from
source. Furthermore, the introduction of the timing library means that the build process for both
DNS servers must be modified. This is done by modifying the needed Makefile.in files that control
the build. Appendix D.3 and Appendix E.3 give a detailed explanation on how the build must be
modified for Unbound and BIND in order to allow the use the timing functions.
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Figure 4.3: SEFlabs python script measurement

4.5 Unsuccessful approaches and final remarks

Initially another strategy than the one mentioned in the previous chapters was used for measuring
the energy consumption of the assignment and binary statements. Originally the strategy involved
executing one million, two million, four million and eight million assignment instructions one after an-
other. However, this proved to be somewhat difficult. The compilation time of each program increased
significantly each time the number of instructions doubled. Furthermore, the compiler crashed during
the compilation of the four million and the eight million assignment instructions program. This lead
to the reduction of the number of executed instructions, however, this did not work as expected. The
execution time of the smaller programs was to small to capture any meaningful information. Another
reason for this method not working, is that size of the total number of instruction that have to be
executed is larger than any of the caches (L1, L2 or L3) and bigger than the cache lines (64Kb).
Forcing the CPU to fetch the instructions it needs from memory.

Secondly, the method which SEFlab uses for their own measurements does not work at the level of
time granularity this thesis needs for its measurements and analysis. SEFlab developed a python script
that first sends a pulse for 50ms to the DAQ, starts the program under test, sends another pulse for
50ms and prints the running time on the console screen. Figure 4.3 shows the energy consumption
graph for the CPU and Main Memory when this script was used for the measurements. There are five
points of interest in this image. Number (2) and (4) represent the pulse that is sent at the start and
end of the measurement. The figure shows that the energy consumption of the memory drops for the
duration of the pulse period and increases again to its idle energy consumption at point (5). At point
(1) and (3) its possible to see that the energy consumption of both the CPU and Main Memory increase
right before sending the pulse to the DAQ. The python script uses a library for setting the pulse channel
on high and low. Point (2) and (4) are set to high in the figure and the dip during point (5) is set
to low. The program under test starts when the pulse is set to low. However, from the figure it is
possible to see that there is a time period where both the CPU and Main Memory are idle before the
energy consumption increases again at point (3). Be that as it may, a slight anomaly is seen right
before sending the last pulse that is not seen in point (1). This anomaly can be observed more closely
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Figure 4.4: Measurement figure of assignment using SEFlabs python script

in Figure 4.4 and a closeup is found in 4.5. Furthermore, this anomaly seems to consistently take
place during the preparation of sending the pulse. No satisfiable explanation for why this happens
can be given. The code under test is found in Figure 4.5 by looking at where the CPU energy con-
sumption drops and the energy consumption of the Main Memory increases. It has been verified that
this section is the application under test, because an increase in execution time was seen for this section.

The measurement methodology described in the previous paragraph works great for SEFlabs mea-
surement needs, because the time-scale they work with is larger than the one needed for this thesis.
Furthermore, the extra overhead is insignificant for their experiments. However, this measurement
methodology generates overhead that, in some cases, takes longer than the actual code that needs to
be measured. This overhead and the anomaly observed, which cannot confidently be explained, means
this method cannot be used reliably for the measurements of this thesis. This lead to the creation of
the C template (see Listing 4.1) that talks directly to the DAQ and the methodology used in Chapter 4.3.

Lastly, acquiring an accurate energy consumption has its challenges brought on by the operating
system. The operating system has its kernel space and user space processes that need to run in order
to function properly. Therefore, the system scheduler must allocate time slices for each process to run.
Each slice is then interrupted to give the next process in line its time to execute, this interruption
is better known as the contexrt switch. This switch undoubtedly affects our measurements because it
takes time to switch the context (information of the current context must be saved and reloaded each
time). This means that the energy consumption of this switch and other processes that occurred during
this period are also measured. Thus, essentially providing a measurement that contains consumption
of processes that are of no interest. Only energy consumed by the instructions and DNS servers are
needed and not the consumption of any other process that the operating system is also running at
the same time. Linux, and therefore Cent0S, provides the user a way to designate one specific core to
a specific application. Furthermore, the operating system can be configured in such a way that the
scheduler does not utilize that one specific core. The steps needed to configure the operating system
are documented in Appendix A. This setup would have allowed for the energy consumption of the
processes to be accurately determined, because the energy measured could have only come from the
processes that ran uninterruptedly on that single core. However, SEFlab can only measure individual
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Figure 4.5: Measurement figure of assignment using SEFlabs python script
processors and does not, or cannot, differentiate between the individual cores found inside the servers

processors. This means that this thesis can never be sure that our program under test ran without
being interrupted®.

9There exist other methods for ensuring that a particular program can run without being interrupted. However, this
involves programming each program to be a kernel module and given a high priority. Nonetheless, most developers do
not develop kernel modules and therefore the measurements presented here do represent the majority of code found in
the wild.
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Chapter 5

Energy Consumption Measurement
Results

This chapter analyzes the energy consumption values acquired by using the measurement methodology
discussed in Chapter 4. Section 5.1 explains how the measurement results for the analysis are analyzed.
The section continues by detailing the energy consumption of the server baseline and the constructs
needed for Implicit in ECA. Section 5.2 discusses the measurements for BIND and Unbound by showing
the execution time for each function measured. In some cases this turned out to be the total execution
time, in some cases it did not.

5.1 Measurement Results: Baseline and Implicit

Before analyzing the measurement results, the theoretical execution time limits of the CPU is deter-
mined. Knowing this information gives a view of the speed and total time the CPU needs to execute
the number of instructions used later in this chapter. It has no further implications, but its an in-
teresting piece of information nonetheless. According to the specifications!, the server processor has
a base frequency of 2.53 GHz. On the other hand, turning off the other three cores of the processor
allows the remaining core to operate at a frequency of 2.8 GHz. The theoretical limits of the single
running core of the processor at 2.53 GHz are displayed in Table 5.12. For example, it should take the
processor close to 7.91 milliseconds to execute 20 million instructions. As seen in Listing 4.1 (Section
4.3.1, page 30), the test is run fives times for each statement and the number of executed statements
is doubled on each run of the test.

The baseline energy consumption of the server is determined by calculating the average energy con-
sumption consumed by the server measured in each executed test (as discussed in Chapter 4). The
baseline is measured by letting the server run when idle for ten minutes. The measurements are
taken at a frequency of 10KHz. There are three scenarios for which measurements were taken for,
namely the baseline consumption of the server; the baseline consumption of the server when BIND
is running but is idle; and lastly, the baseline consumption of the server when Unbound is running but

ntel® Xeon® Processor E5630: http://ark.intel.com/products/47924/Intel-Xeon-Processor-E5630-12M-Cache-2_ -
53-GHz-5__86-GTs-Intel-QPI
2The values shown do not take caches and modern CPU optimizations techniques into account.

Number of instructions (10e6) ‘ Time (ms) ‘

20 7.91
40 15.81
80 31.62
160 63.24
320 126.48

Table 5.1: Theoretical time needed by the CPU to run the number of instructions

39
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Figure 5.1: Graph for 320 assignment instructions showing the energy consumption for the CPU and
Main memory.

is idle. The results of these measurements are discussed separately for each statement in Section 5.1.1.

Determining the energy consumption and total execution time for the CPU instructions such as assign-
ments, conditionals, loops and binary operations is not as straight forward as that of determining the
energy consumption of the baseline. Figure 5.1 shows an assignment statement that is executed 320
millions times inside the loop® (Listing 4.1). Figure 5.2 is a close up of Figure 4.2 that shows the
start of that particular measurement. This figure will be used in the upcoming discussion on how the
energy consumption is determined. The areas that are filled represent the energy consumption area
that needs to be determined. The area on top is the total extra energy consumed by the CPU and the
area below is that of the Main Memory.

As mentioned in Chapter 4, a DAQ is connected to the server that sends pulses towards the DAQ . This
allows the time bounds in which the code under test was executed to be identified. The line at the
bottom of Figure 4.2 and Figure 5.2 represents the pulse line. The DAQ channel for the pulse is set to
high at the beginning of the test and is set back to low at the end of the test. This pulse line is also
represented in Figure 5.1 by the leftmost and the rightmost dotted vertical lines. The figures show
how the energy consumption of both the CPU and Main Memory increase in the time period in which
the measurement took place. This pattern is observed for all the other measurements taken.

Working out the execution time of the tests can be accomplished by two different methods. First, there
are the measurements taken from the hardware provided by SEFlab (the pulse line). For example, the
time from Figure 5.1 is determined by identifying the sample when the pulse is set to high and the one
for when it is set back to low. The number of samples taken during this time period is then multiplied
by the frequency to calculate the total execution time. Section 4.3.1 discussed the second method for
determining the performance of the server, i.e. the server takes its own performance measurements
(as shown in Listing 4.1). The server starts its measurements after the start pulse has been send (line
4-5 of Listing 4.1) and ends it before the end pulse is send (line 9-10 of Listing 4.1). Thus, sending

3This is a zoomed in version shown of the last test run seen in Figure 4.2.
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Figure 5.2: Close up of Figure 5.1 at the beginning of the measurement.

the start and end pulse to the DAQ, the first method of taken the execution time, is also taken into the
energy consumption measurements taken by the SEFlab hardware. Hence, the execution time taken
on the server itself is always the most accurate measurement. These values are therefore used by the
component models found in Appendix D and E. The expectation is that the execution time measured

by SEFlab is always higher than those taken by the server?.

The next step is to determine the difference in energy consumption witnessed in Figure 5.1 and Figure
5.2. Of course, the consumed energy during the sample period is continuous but not constant. Not
only that, as seen in Figure 5.2, there is a period were the energy must transition from the baseline
consumption level to a higher state of energy consumption. The area below the lines is determined
by first calculating the mean and standard deviation energy consumption of the higher state. This
is followed determining the area below the triangle formed when going from the baseline state to the
higher state.

First, the histogram for the sample period is determined. The histograms bins are decided by rounding
down the sampled values to one decimal point®. The histogram provides an overview on the most fre-
quently encountered measurement values. Therefore, the average energy consumption should be seen
more frequently. The most frequent histogram value is validated when the mean of the higher state is
determined. These values should either be the same or not too far from each other. The most frequent
value is used in combination with a deviation, in this case 1, in order to discover the position where
the energy consumption values first starts to fall within the limit. The first value that falls inside this
limit is marked as the start of the higher state. The same idea is used for obtaining the end of the

4This is verified later in Section 5.1.2 when the actual measurements are analyzed.
5These values go up to the 16" decimal point, however they are only reliable up to the 12t decimal point.

1 — IR
Azﬁ;ai (5.1) Sy = ﬁ2($i—§)2 (5.2)

799
win’
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baseline
CPU Memory
1st Run 17.421753310000 9.266251231667
2nd Run  17.428363491667 9.271000996167
3th Run 17.431117228333 9.271255357833
Average: 17.427448343333 9.271255357833

Table 5.2: Baseline measurement and average for the server and DNS servers

higher state by using the end pulse. The algorithm is designed to backtrack once the end of the pulse
is reached. The algorithm backtracks until the first value falls within the limits. This sample marks
the end of the area that needs to be determined. The higher state mean and the standard deviation
is then calculated from the values found between these bounds. The value found for the mean is then
multiplied by the number of samples to find the total energy consumed. The mean is determined with
equation 5.1 and the standard deviation is computed with equation 5.2.

Second, the first point found in the previous calculation is consequently used the determine the differ-
ence between this point and when the pulse started. This variation is than multiplied by the difference
between the higher state and the baseline and divided by two. Equation 5.3 is used in order to
calculate the energy consumption of the triangle shown in Figure 5.1 by the dotted lines.

1
T = Sbh (5.3)

Initially it was the intention to add the previous two steps together in order to determine the energy
consumed by the triangle and the rectangle. This value was to be used as the total energy consumed
by the code under test. However, the triangle base turned out to be a constant in every measurement,
which led to the assumption that this is the energy needed to go from the base state to a higher power
state and is therefore not needed by our analysis.

5.1.1 Baseline

The results of the baseline energy consumption are summarized in Table 5.2, Table 5.3 and Table
5.4 respectively for the server baseline; the server running Unbound; and the server executing BIND.
Comparing Table 5.2 with Table 5.3 and Table 5.4 shows that the average energy consumption of
the baseline is below the energy consumption of both Unbound and BIND. This is an expected result,
because the server is performing more work when running the DNS servers. Additionally, comparing
the average consumption between Unbound and BIND reveals that the CPU consumes less energy with
Unbound than BIND when the servers are in the idle state. On the other hand, the averages of the
memory show that Unbound consumes more energy than BIND.

baseline UNBOUND baseline BIND

CPU Memory CPU Memory

1st Run  17.435579417637 9.276596497837 1st Run 17.454938501667 9.271220210667
2nd Run  17.431702985000 9.274902912333 2nd Run  17.459033565000  9.275302389500
3th Run  17.442043279391  9.279161330982 3th Run 17.459982443333 9.272233761333
Average: 17.436441894010 9.276886913717 Average: 17.457984836667 9.272918787167

Figure 5.3: Baseline measurements and averages for

the Unbound DNS server

Figure 5.4: Baseline measurements and averages for

the BIND DNS server
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5.1.2 Implicit

This section discusses the analyses for the Implicit component model by showing the energy con-
sumptions graphs and energy consumption values for each executed test. The tests for assignment and
binary statements were run for multiple scenarios, as mentioned in Section 4.3. These differences will
be shown in the corresponding energy consumption tables. Each implicit statement analysis starts on
its own page due to space considerations.

This section also confirms that, as mentioned previously, the timing measurements taken by the SEFlab
instruments should always be more than those taken by the server itself. The measurements show,
were the data is available, that the SEFlab time is always 1 to 2 milliseconds longer.

Display analysis

The statistics and analysis of each measurement (i.e. the assignment, binary, etc) is shown in three
different tables. The first table shows the measurements of each executed test retrieved from the server.
The table also shows the difference multiplier needed to go from one run to the other. This difference

is shown as values under the column ==». The symbol =X, signifies that the value in the column is
the approximated value needed to get the value in the next column. This is done to validate that the
execution time doubles with each run, i.e. it behaves as expected. Therefore, these values should be
close to double the value of the previous.

The second table shows the values acquired from the SEFlab measurements equipment. The first and
second column of the table shows the start and endpoints of the sync pulses. The third column is the
difference between the first two columns. The fourth column represents the total time in milliseconds it
took to execute between the pulses. The expectation is that the values in this column are always more
than those found in the first table, because SEFlab is also measuring the time for sending the signals
to start and end the pulse. The last column in the table show the difference between the current row

and the previous row. This is comparable to the LN symbol discussed above.

The third table shows the total energy consumption of the measurements taken for that particular
statement. The table also shows the mean , standard deviation and the variance of the higher
state. Figure 5.1 and Figure 5.2 show that the energy consumption is more volatile than that of the
CPU and, therefore, a higher standard deviation is expected.

Assignments

As detailed in Chapter 4.3.3, tests for the assignment statement have been executed multiple times in
order to see the effects of variables that are residing in the CPU cache or main memory. Table 5.3
shows that assigning literals to the register of the CPU is the fastest operation. The table also shows that
assigning the value of one variable to another is slower than assigning literals. Even the assignment of
a variable from one register to another more than doubles the execution time. The values of the row

Gmem = OIne% are used for the component model.

Binary operations

The energy consumption of each instruction executed by the CPU is dependent on the number of 1s
presented in the opcode. Furthermore, the number of 1s in the operand of the instruction can also
influence the energy consumption. Read ‘An accurate Instruction-Level Energy Consumption Model
for Embedded RISC Processors’ [14].

Function calls

Function calls are ideal for splitting a complex application up in manageable parts. However, as seen
in Table 5.9, these calls do not come for free. The execution times of function calls do not need to
subtract anything from its performance. As mentioned in Section 4.3.4, no ‘binary’ and ‘assignment’
statements had to be placed inside the function, because GCC does not remove an empty declaration
at this optimization level.
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Conditionals

The conditional statement, unlike a function call, did have to perform a ‘binary’ and ‘assignment’
operation. Therefore, the total execution time of the ‘binary’ statement has to be subtracted from
values found in the row IFT of Table 5.12.

While-loops

As with the ‘conditional’ statement, the ‘while-loop’ also needed to perform a ‘binary’ and ‘assignment
operation. Therefore, the total execution time of the ‘binary’ statement will be subtracted from the
values found in the row WHILET of Table 5.15.

0mil =5 40mil =5 Somil =5 160mil =% 320mil
e = L1is 7588938  1.994 15132962 1.997 30.219163 2.002  60.504637 1.998  120.890088
amem = INT _MAXy;, 7.682238 1.967 1513125 1.998  30.225473  1.999  60.406026 2.001  120.885101
PR 7701993 1.994 15358931  2.004 30.771551 1.992 61.318672 2.000  122.664805
Amem = bl 779897  1.969 15.359777 1.997 30.678779  1.997 61.274191 2.001  122.659511
reg = Liit 2572832 1.98 500774  1.992  10.155476  2.005 20.364137 1.989  40.506798
reg = INT MAX;;, 2574202 1.97 5004709 1992 10.146604 1.997 20.261365 1.998  40.488136
reg = bleg 5075665  1.99  10.106895 1.995  20.165865 1.998  40.284595  2.002 80.64489
e 507916  2.00  10.206729 1.976 20.165844 1.999  40.305267 2.000  80.624357
eca 7701993  1.994 15.358931 2.004 30.771551 1.992  61.318672  2.000  122.664805

Table 5.3: Server execution time of assignment statements

Energy (J/Instr)(107%) Time (ms/Instr)(10~7) Processor (GHz)

CPU 15.9933 3.8397 2.604
Memory 9.4105 3.8397 2.604

Table 5.4: Total energy consumption assignment

Start End A Time X,
1%t run 25660 26227 567 12.6
27d yun - 37507 38261 754 16.756  1.329806
3th run 49602 51042 1440 32 1.909814
4t run 62384 65174 2790 62 1.935700

5" run 76515 82006 5491 122.022  1.968100

Table 5.5: SEFlab meta data information of assignment statements
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0mil =5 domil - S Somil =25 160mil =% 320mil
Gmem + 110 45186281 1.997  90.237125  1.999  180.341187  2.000 360.737157 2.000  721.391655
Gmem -+ bmem 45.092583  2.001  90.241323  1.998  180.32607 2.003  361.23721 1.997  721.42770
Areg + bleg 7553266  1.994 15.060914 1.999  30.102288  2.000 60.19981  1.997 120.172524
Oreg + 10T 7551816  1.994  15.055053 1.998  30.075312 2.002  60.203944  1.998  120.284149
eca 37.039059  2.022  74.882392 1.997 149.554505 2.005 299.918533 1.996  598.762894

Table 5.6: Server execution time of binary statements

Energy (J/Instr)(107°)

Time (ms/Instr)(10~7)

Processor (GHz)

CPU 81.4350 18.7177 0.443
Memory 48.5577 18.7177 0.443
Table 5.7: Total energy consumption binary
Start End A Total Time diff

1%t run 22775 25031 2256 50.133333

2" run 36332 40462 4130 91.777778  1.830674

3t run 51803 59994 8191  182.022222  1.983293

4th yun 71335 87671 16336 363.022222  1.994384

5% run 99013 131551 32538 1723.066667  1.991797

Table 5.8: SEFlab meta data information of binary statements
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0mil =5 40mil =5 Somil =X 160mil =% 320mil

eca 32.743288 2.018 66.089219 2.029 134.101731 1.971 264.320147 2.001 529.111758

Table 5.9: Server execution time for function calls

Energy (J/Instr)(1075) Time (ms/Instr)(10~7) Processor (GHz)

CPU 99.9164 16.5849 0.603
Memory 43.2519 16.5849 0.603

Table 5.10: Total energy consumption: functions

Start End A Total Time diff

1%t run 22418 24120 1702 37.822222

run 35424 38485 3061 68.022222  1.798472
3t run 49826 55947 6121  136.022222  1.999673
4 yun 67288 79259 11971  266.022222  1.955726
5" run 90600 114497 23897  531.044444  1.996241

2nd

Table 5.11: SEFlab meta data information of function calls
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20mil X, 40mil X 80mil X 160mil =% 320mil
IFF 16.529986  1.996 32.989696  2.003 66.068826  1.999 131.996  2.000 264.007
IFT 56478069  1.999  112.891512  1.995  225.204552  2.000 450.423  2.000 900.625
eca  11.385486  1.989391  22.650189 1.981373  44.878482 1.987272  89.18579  2.00925 179.1973

Table 5.12: Server execution time: conditionals

Energy (J/Instr)(107°) Time (ms/Instr)(10~7) Processor (GHz)

CPU 71.9033 17.2932 0.266
Memory 44.7414 17.2932 0.266

Table 5.13: Total energy consumption: conditionals

Start End A Total Time diff
1%¢ run 28355 31124 2769 61.533333
27d yun 42407 47527 5120 113.777778 1.849043
3th run 58868 69084 10216  227.022222 1.995313
4" run 80425 100767 20342  452.044444 1.991190

5th run 112108  not vailable not vailable not vailable not vailable

Table 5.14: SEFlab meta data information of conditional statements
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20mil =% 40mil =5 Somil =% 160mil =% 320mil
WHILET 53.521318 2.000 107.049075 2.000 214.073906 1.999 428.014755 2.000 856.130674
WHILEF 7.703488  1.993 15.356762  1.998 30.67815  2.002 61.4053 1.998 122.666648
eca 8.428735  2.022 16.807752  1.997 33.74785  2.005 66.77755  1.996  134.702975
Table 5.15: Server execution time: while
Energy (J/Instr)(107°) Time (ms/Instr)(10~7) Processor (GHz)
CPU 68.2897 16.2301 0.280
Memory 42.1377 16.2301 0.280
Table 5.16: Total energy consumption: while
Start End A Total Time diff
1%¢ run 24176 26811 2635 58.555556
2nd yyun 38127 43032 4905 109 1.861480
3th run 54373 64094 9721 216.022222 1.981855
4" run 75436 94788 19352  430.044444 1.990742
5th run 106129 not vailable not vailable not vailable not vailable

Table 5.17: SEFlab meta data information of while statements
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5.2 Measurement Results: Bind and Unbound

This section discusses the values measured at SEFlab for BIND and Unbound. The component models
shown previously for both DNS server implementations are filled with the values presented in the tables
found below. Statistical interesting values such as the mean, variance, and standard deviation are
shown for both the cached and non-cached queries in the Appendices.

Regrettably, due to either hardware failures, configurations settings and/or inconsistencies, only the
execution time found inside the logs of both BIND and Unbound can be used. This means that only
values for the execution time shown in the tables below actually represent real world values. One
assumption has to be taken in order to determine the consumed energy: both the CPU and Memory has
two states, namely idle and the higher state. The energy consumption is determined by multiplying
the mean value by the average energy consumption (the baseline is subtracted from this value) of all
the statements measured in previous section.

The first three columns of the tables show the execution time for each measured range with the fourth
column showing the mean of the first three columns. Each range has been given a unique name that
encompasses the functionality its abstracting. The values of each column are summed up at the bottom
of the table®. The last two columns represent the energy consumption of the CPU and Memory in Joules
based on the assumption taken above.

5.2.1 Measurement Results: BIND

The measurement results for each measured range that is executed during the execution path when
looking up cached and non-cached domain names are shown in Table 5.18 and Table 5.19. The total
execution time for each run is totaled at the bottom of the table. Table 5.18 and Table 5.19 demon-
strate that, for the largest part of the execution path, the same code ranges are encountered. The
table also shows that the majority of these execution points take about the same time to execute.
However, a few execution points show an increase (ParseRequest, RpzZones, CleanUp) and others, such
as AddAuth, are not executed at all.

The timing results table also show that the server consumes more energy in almost every measurement
point. Of course this is expected, because the server must carry out more work. However, because BIND
executes the same path for a cached or non-cached request, in the end this means that each domain
query request significantly increases the energy consumption (as can be seen in the result table).

Measurement anomalies

A measurement mistake has been identified during the analysis of the measurements. Table 5.18 shows
that AccessLevel does not take any time since the value is zero. However, the value is zero because
ParseRequest has been measured twice. The measurements of ParseRequest is not affected, mainly
because the second measurement overwrites the first. Nonetheless, the timing for the AccessLevel can
be measured by subtracting the end of InitialChecks from the start of ParseRequest.

Two query requests during the execution of the BIND uncached experiment, out of a total of thirty
send to the server, a different/longer execution path was taken. BIND recursed and this multiplied the
total performance time by a factor of 30 thousand. These measurements have been left out when the
average execution time was calculated.

5.2.2 Measurement Results: Unbound

As with BIND, the measurement results for each measured check point is shown in Table 5.20. No
anomalies were encountered when taking the measurements for Unbound. However, the measurement
value for the function range IteratorProcessTargetResponse were not found inside the logs, even
though these points have been executed. Of course, this affects the execution time calculated in the
tables below, but the impact of missing this one function range does not have consequences when
Unbound is compared to BIND.

61t must be noted however that the summed value does not represent the total execution time of one request. It only
represents the total execution time if each range has been executed once
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cache run 2

cache run 3

Mean ‘ ‘

CPU

Memory

InitialChecks

0.060022222222

0.058144444444

0.067422222222

0.061862962963

0.611979361

0.358638155

AccessLevel

2.432655555556

2.423788888889

2.536122222222

2.464188888889

24.37698858

14.28564225

ParseRequest

0.161033333333

0.159466666667

0.193300000000

0.171266666667

1.6942555

0.992884247

ClientAllowed

0.009844444444

0.010055555555

0.011111111111

0.010337037037

0.102259139

0.059926905

DestAddrAllowed

0.005411111111

0.00537777TTTT

0.005411111111

0.005400000000

0.0534195

0.03130542

DnsViewAttach

0.010088888888

0.010066666666

0.012277777777

0.010811111110

0.106948917

0.062675254

SignatureChecks

0.021588888888

0.020266666666

0.023544444444

0.021799999999

0.2156565

0.12638114

RecursionAvailable

0.158233333333

0.152444444444

0.176411111111

0.162362962963

1.606175611

0.941266805

PrepareQStart

0.089022222222

0.089211111111

0.108344444444

0.095525925926

0.944990222

0.55379245

PrepareQFind

0.019766666666

0.018511111111

0.022466666666

0.020248148148

0.200304806

0.117384589

QueryGetDB

0.182500000000

0.172566666667

0.200077777778

0.185048148148

1.830588806

1.072779629

ZoneChecks

0.018788888888

0.016711111111

0.018933333333

0.018144444444

0.179493917

0.105188788

SetupSearch

0.0491777777TT

0.048888888888

0.068266666666

0.055444444444

0.548484167

0.321428078

DnsDBFind

0.273733333333

0.265055555556

0.297200000000

0.278662962963

2.756673361

1.615492795

RpzZones

0.007155555555

0.006688888888

0.006844444444

0.006896296296

0.068221611

0.039979899

AnswerFound

0.165522222222

0.155200000000

0.174055555556

0.164925925926

1.631529722

0.95612507

AddAuth

1.285011111111

1.278944444444

1.335600000000

1.299851851852

12.85878444

7.535631141

CleanUp

0.047255555555

0.047511111111

0.052088888888

0.048951851851

0.484256194

0.283788571

QuerySend

1.903277777778

1.852900000000

1.882233333333

1.879470370370

18.59266064

10.89585358

| 9.49632962062 | 68.863670994

40.356164766

Total time

5.3 BIND and Unbound measurements comparison

‘ 6.900088888882  6.791799999995 7.191711111106 ‘ 6.961199999994 H 68.8636709999

Table 5.18: BIND timings results with server caching allowed. All results are in ms x 1072

40.3561647599

One difference is immediately noticeable between the two implementations’. The measurements show
that Unbound is up to seven times faster than BIND when the answer is in their cache. These results
support the claims®® found in [17] that Unbound is faster than BIND. Because of the assumption that
the energy consumption and execution time have a linear correlation, this also means that Unbound
consumes considerably less energy than BIND when answering a request from cache. The tables also
show that unlike BIND, Unbound does not take the same execution path for the cached and uncached
answers. Unbound examines its list of previously cached requests before it decides to ask another server
for an answer. However, BIND has this notion of ‘databases’ for all of its data-structures that hold
information. These structures are then ‘attached’ and ‘detached’ from the search mechanism. This
difference between BIND and Unbound, i.e. taking the same execution path or returning early, is most
likely the difference seen between the performance of BIND and Unbound.

The uncached version of BIND seemed to only add a few extra function ranges compared to Unbound.
The size of Table 5.18 and Table 5.19 are about the same length. However, the cached and uncached
measurement tables of Unbound show an almost threefold increase in size. But, if the uncached tables
of BIND and Unbound are taking at face value, then Unbound is undoubtedly the faster implementation.
Which, again, validates the findings found in [17]. Nevertheless, as mentioned previously, the execution
path found for Unbound inside its logs shows that an average of 125 function ranges have been executed.

7In this case the tables do represent the execution path taken and are thus correct. This is not the case for the
uncached versions.

8http://info.menandmice.com/blog/bid/37244/10-Reasons-to-use-Unbound-DNS

9http://www.circleid.com/posts/unbound_ vs_ bind_ open_ source_dns/
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non-cache run 1 non-cache run 2 non-cache run 3 Mean H CPU (J) Memory (J)

InitialChecks 0.067344444444  0.069211111111  0.072055555555 | 0.069537037037 || 0.687895139 0.403127065
AccessLevel 2.664822222222  2.665900000000 2.681488888889 | 2.670737037037 || 26.42026614 15.48306382
ParseRequest 0.477577777778  0.525922222222  0.507922222222 | 0.503807407407 || 4.983914778  2.920722683
Client Allowed 0.012811111111  0.014077777777  0.013711111111 | 0.013533333333 0.1338785 0.078456793
DestAddrAllowed 0.005655555555  0.005555555555  0.005288888888 | 0.005499999999 0.05440875 0.03188515
DnsViewAttach 0.010355555555  0.009544444444  0.013166666666 | 0.011022222227 || 0.109037333 0.063899129
SignatureChecks 0.035555555555  0.031966666666  0.031511111111 | 0.033011111111 || 0.326562417 0.191375314
RecursionAvailable | 0.186455555556  0.182777777778  0.222444444444 | 0.197225925926 || 1.951057472 1.14337786
PrepareQStart 0.216911111111  0.211377777778  0.232800000000 | 0.220362962963 || 2.179940611 1.277510205
PrepareQFind 0.118522222222  0.114911111111  0.112655555556 | 0.115362962963 || 1.141228111 0.668793705
QueryGetDB 0.213511111111  0.213088888889  0.212222222222 | 0.212940740741 || 2.106516278 1.234481356
ZoneChecks 0.114311111111  0.110877777778  0.115077777778 | 0.113422222222 || 1.122029333 0.657542649
SetupSearch 0.096688888888  0.085411111111  0.084988888888 | 0.089029629629 || 0.880725611 0.516131472
DnsDBFind 0.171344444444  0.181600000000  0.183422222222 | 0.536366666666 5.30600725  3.109478477
RpzZones 0.006911111111  0.007966666666  0.007144444444 | 0.007340740740 || 0.072618278 0.042556476
DnsDbAttach 0.012644444444  0.011722222222  0.015333333333 | 0.013233333333 0.13091075 0.076717603
DnsDbFind 0.222677777778  0.244755555556  0.236644444444 | 0.234692592593 || 2.321696472 1.360583367
DelegationChecks 0.005366666666  0.005033333333  0.004944444444 | 0.005114814814 || 0.050598306 0.029652116
Recurse 2.929222222222  2.905311111111  3.211122222222 | 3.015218518518 || 29.82804919 17.48012632
AnswerFound 0.438211111111  0.454922222222  0.450377777778 | 0.447837037037 || 4.430227889 2.596245655
AddAuth 1.550388888889  1.609022222222  1.543266666667 | 1.567559259259 || 15.50707997 9.087611294
CleanUp 0.085455555555  0.090088888888  0.087000000000 | 0.087514814814 || 0.865740306 0.507349636
QuerySend 312.1836666667  296.5907333333  303.2376777778 | 304.0040259259 || 3007.359826 1762.40254
| | 326670488 || 3231.587803  1893.806820

Total time ‘ 318.6038555 303.066666 310.007088 ‘ 304.004025 H 3007.359826  1762.402539

Table 5.19: BIND timings results with server non-caching. All results are in ms x 1072

Summing the energy consumption for each of these functions reveals the actual execution time, and
thus energy consumption of Unbound. The actual measured execution time and the consumed energy
for Unbound is 2.0531 ms and 3689.034 Joules respectively. Comparing this to the consumption value
found for BIND in Table 5.19, it can be concluded that Unbound also consumes less energy compared
to BIND when answering an uncached query request.
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Mean (ms)(x1072) sy (ms)(x107?) o (ms)(x107?) ‘ CPU (J)  Memory (J)

UnboundTryLocalZoneAnswer 0.1422666666 0.066 0.08137703 | 0.01407373 0.008247625
UnboundAccessControl 0.0740666666 0.009 0.03091206 | 0.007327045 0.004293867
UnboundRBTSearch 0.0688888888 0.151 0.12296742 | 0.006814833 0.003993696
UnboundRequestHeader 0.0124777777 0.023 0.04825344 | 0.001234364 0.000723374
UnboundAnswerFromCache 0.1940111111 3.602 0.60023040 | 0.019192549 0.011247406
UnboundDNSChecks 0.5295222222 0.780 27943505 | 0.052382986 0.030697992
Total time with cache 1.0212333333 3.937 6.2751715 | 0.101025507  0.05920396

Table 5.20: Unbound timing results with server caching allowed

run 1 run 2 run 3 Mean H CPU (J) Memory (J)

UnboundAccessControl 0.07511 0.07440 0.07711 0.07554 || 0.74727945 0.437928042
UnboundRequestHeader 0.01893 0.01820 0.02235 0.0198267 || 0.19613563 0.114941328
UnboundDNSChecks 0.53925 0.54527 0.54458 0.5430333 || 5.37195692  3.14812695
UnboundTryLocalZoneAnswer 0.14924 0.15025 0.15021 0.1499 || 1.48288575  0.86901527
UnboundRBTSearch 0.03119 0.03053 0.03181 0.0311767 || 0.30841550 0.180740683
UnboundAnswerFromCache 0.19100 0.19100 0.19100 0.191 || 1.88946750 1.1072843
UnboundPrepNewRequest 0.01861 0.02051 0.02206 0.0203933 || 0.20174072 0.118226078
IteratorCheckEffort 0.00940 0.00747 0.00774 0.0082033 || 0.08115114 0.047556991
IteratorDNSCacheLookup 0.12935 0.18333 0.12819 0.1469567 || 1.45376915 0.851952077
IteratorQuery Adjustments 0.02557 0.02578 0.02651 0.025953 || 0.25674005 0.150457327
IteratorDNSCacheFindDelegation 0.64394 0.65155 0.64912 0.648203 || 6.41234817 3.757827252
IteratorPrimeRoots 1.30184 1.29907 1.30876 1.303223 || 12.8921335 7.555174698
IteratorUselessDelPoint 0.00973 0.01011 0.01052 0.01012 || 0.10011210 0.058668676
IteratorProcessInitRequest2 0.05331 0.05447 0.05259 0.0534567 || 0.52882040 0.309904527
IteratorProcessInitRequest3 0.01076 0.01056 0.01076 0.0106933 || 0.10578347 0.061992268
IteratorQueryTargetsChecks 0.37243 0.41857 0.37378 0.38826 || 3.84086205 2.250859698
IteratorServerSelection 0.28465 0.27649 0.27366 0.2782667 || 2.75275333 1.61319554
IteratorQueryNetworkTarget 2.56677 2.46420 2.45349 2.49482 || 24.6800068 14.46321999
IteratorDNSPreCheckServerResponse 0.05272 0.08718 0.05794 0.0659467 || 0.65237773 0.382312804
IteratorCleanUpAndCache Answer 0.65526 0.64599 0.65205 0.6511 || 6.44100675  3.77462203
IteratorPrepareRestart 1.59245 1.63489 1.58957 1.6056367 || 15.8837610 9.308357641
TteratorProcessFinished 0.34069 0.33836 0.33989 0.3396467 || 3.35995498 1.969033814
IteratorSendReply 166.72911 174.47736 148.60171 163.269393 || 1615.14244 946.5216346
UnboundCleanupRequest 0.09389 0.09532 0.09476 0.0946567 || 0.93639140 0.548753287

| 172.425407 || 1705.71829

999.601786

Total time

\ 175.8052 183.71086 157.67016 \ 172.4254067 H 1705.71833

Table 5.21: Unbound timings results with no cache. Results are all in ms x 1072

999.601810



Chapter 6

Comparison of Results

The previous chapter analyzed the measurements taken for the CPU and Memory of the server located at
SEFlab for instructions such as addition, multiplication, conditionals, loops. The chapter also analyzed
the measurements when sending a query request to BIND and Unbound. This chapter utilizes the results
found in previously and inputs them in the ECALOGIC component models for Implicit, BIND and
Unbound. This is all discussed in the Section 6.1. This is followed by presenting another research
conducted by HvA student Remy Briem in Section 6.2. Lastly, Section 6.3 discusses any difference
found between the values in Section 6.1, the research discussed in Section 6.2 and the execution time
measurement results found in Chapter 5.

6.1 ECALOGIC results

ECALOGIC only allows integers to be used as values for variables. However, the values determined in
the previous chapter are floating point numbers and cannot be used in ECA or ECM. The values are
thus multiplied by a factor of 10'' and 10° for the energy and execution time to make them compatible
with ECALoGIC. The values calculated by ECALOGIC are then divided by the same factors mentioned
above. The time unit is in milliseconds and Joules is used as the energy unit. The values used for the
BIND ECALOGIC component models are seen in Table 5.18 and Table 5.19 for a cached and uncached
query request to a BIND server. The values used for the Unbound server component models are seen in
Table 5.20 and Table 5.21 for a cached and uncached query request.

An, as close as possible interpretation of the actual implementation, ECALOGIC port of BIND and
Unbound are found in Appendix D and Appendix E. The execution path for both BIND and Unbound
have been retrieved from the logs as a result of using the measurement strategy described in Chapter
4. These execution paths have been used to determine the actual energy consumption of the path
during the answering of a query request. These values are then compared to the energy consumption
estimated by ECALOGIC.

ECALOGIC makes estimations of the models its been given. When ECALOGIC encounters a condi-
tional it takes the branch that exhibits the highest consumption of energy as its value, i.e. it calculates
the consumption of the path that consumes the most energy. However, this is not desired if the energy
consumption of both branches need to be determined. In the case of the DNS servers, both the cached
and uncached execution path are given their own ECA source code and ECM component model. The
approximated energy consumption for the cached and uncached execution paths must therefore be
determined separately.

Table 5.18 and Table 5.19 show the check points encountered during the execution paths of the cached
and uncached requests while analyzing the log files of BIND. The tables shows that BIND executes
roughly the same path in the cached and uncached query request. The tables also show that the
energy consumption and execution time differ slightly, the biggest difference is found in QuerySend,
which is responsible for sending the requested information back to the client.

The execution paths for Unbound paint a different picture compared to that of BIND. The execution
path of the cached version is extremely short (Table 5.20). The uncached execution path for Unbound
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Time Energy (ECA)

BIND

Implicit

Memory 18231121240 + 21407325

Component

Unbound 840023588 + (163374820537 4 8099844949M )N | 404545545 + (27106826129 + 1293373212
Implicit 639732 + (5040213 + 32699351 M
Memory 58580368 + (10013969808 + 466258051 M
Component 345325445 + (17087816108 + 794415810M

314498055680 4 3707189812N 49352495992 + 586196215N
11829493 + 6828846 N

1IN

31109545259 + 365294118 N

)N
)N
)N
)N

Table 6.1: ECALOGIC energy consumption estimates for BIND and Unbound for a cached and uncached
query search.

almost more than triples the total type of check points encountered (Table 5.21). Additionally, Unbound
not only more than triples the amount of check point types, the total executed check point increases
from a total of six, in the cached execution path, to an average of 125 check points during the uncached
execution path.

The symbolic upper bounds determined by ECALOGIC for BIND and Unbound are found in Table 6.1.
The formulas correctly show that Unbound has the form of a quadratic line and BIND has a linear
implementation. The difference however is in the constants within the formulas. These are higher for
BIND than the are for Unbound. This suggests that the methods in Unbound are implemented more
efficiently than those found in BIND.

The approximation results determined for BIND and Unbound are found in Table 6.2. Comparing the
values found for the cached BIND execution path of Table 6.2 with those found in Table 5.18, it can be
concluded that ECALOGIC successfully estimated the energy usage and the amount of time it would
take to execute. The same can be concluded for the values estimated by ECALOGIC for Unbound after
comparing the results of Table 6.2 and Table 5.20. Thus, from the measurements and ECALOGIC
estimations it can be concluded that Unbound answers a cached query request almost seven times as
fast compared to BIND. Furthermore, the measurements validate the results found by ECAvLoaIc.

The results for the uncached versions of the DNS implementations are also found in Table 6.2. The
values are determined by filling in values for N and M. For BIND the value N = 1 is used. For Unbound
the valuesN = 1 and M = 5 are used. These values are based upon the execution path found in the logs.

Time Energy (ECA)

ECA (ms) CPU Memory Component Total EcA (10°) | Total (J)

Cached
BIND
Unbound

6807379345 0.068074 6909478 394000405 672321412 1073231295 1.073231
1024911218  0.010249 1853249 59203963 101025510 102878759 0.162083

Uncached
BIND
Unbound

318205245492  3.182053 18658339 18445194491 31474839377 49938692207 | 49.938692
204714068870 2.047141 | 169176700 12403840431 21405220603 33978237734 | 33.978238

Table 6.2: ECALOGIC energy consumption estimates for BIND and Unbound for a cached and uncached
query search.
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The results presented in Table 6.2 are indeed an over approximation for BIND compared to the values
seen in the previous chapter. The energy estimation of ECALOGIC for the value of BIND does approxi-
mate the expected value. ECALOGIC is meant to produce an upper bound on the energy consumption,
therefore, a higher value is to be expected. Thus, the results of ECALOGIC truly approximate the
expected values.

The energy consumption approximated for Unbound, however, are less than those expected in the
previous chapter. This difference can be explained as follows: the execution logs files show that
Unbound performs a certain loop that cannot be determined by ECALoGIC. ECALOGIC cannot guess
the path that is executed by the implementation, and therefore, a different path is used in order
to determine the energy consumption. The same discrepancy is found for the execution time and,
therefore, the explanation given above also applies.

6.2 SURFnet: Remy Bien

There are virtually no published research on the energy consumption of DNS server implementations.
Therefore, SURFnet formulated an assignment that was to be carried out by a student. The purpose
of the assignment was to analyze different DNS resolvers in order to gain insights on how the server
consumes electric energy!. The research was carried out by Remy Bien, a former student at HvA. Three
different resolvers were analyzed as part of Remy’s research, namely Microsoft DNS, BIND and Unbound.
The main research question that Remy set out to answer was: ‘Which of the three DNS server imple-
mentation is the most energy efficient?’.

Remy answered the research question by measuring the energy consumption of each server when an-
swering query requests. The same dataset is used for each DNS server in order to measure the energy
consumed when answering a workload of DNS queries. The dataset used consisted of 1240548 real DNS
queries sampled from a live DNS server on SURFnet’s network. The total time of the dataset is 10 min-
utes and 20 seconds. The measurement methodology used by Remy is as followed: each measurement is
divided into eight different ‘slots’ and each slot is measured for a total of ten minutes and 20 seconds.
The first two slots are used to measure the idle state of the server. Slots three through eight are
designated to measure the energy consumption when the DNS queries are sent to the server. Slot three
is used for measuring the servers energy consumption with an empty cache. The other slots are used
to measure the energy consumption when the cached is already filled with data.

The results found by Remy conclude that BIND is more energy efficient than Unbound, both on Windows
and Linux?. The results show that, once all slots were averaged, BIND consumes 5.43 Watt per seconds
and Unbound 5.77 Watt per seconds on Cent0S. A server running BIND therefore saves the operator
a total of €0.52 cents each year on energy costs. The results also showed that BIND consumes an
extra 1.5 Watt per second if the dataset was not already cached. However, the energy consumption
of Unbound remained nearly the same compared to the average. It only showed a slight increase in its
energy consumption.

6.3 Result differences

The results found in Section 6.1 show that, given the assumptions made for this thesis, Unbound is
faster and therefore more energy efficient than BIND. The result of ECALOGIC and the measurements
show that Unbound is, at the least, seven times more performant than BIND. However, the results of
Remy show that BIND is found to be most energy efficient of the two implementations. Therefore, the
question to be answered is: which result is the correct one?

First and foremost, one obvious reason for the difference between this thesis and Remy’s results is that
the assumption taken by this thesis is incorrect. Remy does not make any assumptions and the assump-
tion made by this thesis is that the hardware, in this case the CPU and Memory, only has two states of
energy consumption. The results found by Remy show that this must not be the case. However, its
been shown that Unbound is faster than BIND in [17]. Migault et al. show that, in general, Unbound is

Thttp://www.sos.cs.ru.nl/applications/master/SURFnet_ DNS_ energy.pdf
2Technically, Windows DNS is found to be the most energy efficient on Windows
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found to be faster by 67% for DNS requests without taking the query load into consideration. When
the query load is taken into consideration, the research concludes that BIND is only able to handle
28% of the maximum query load that Unbound is able to handle. Unbound also comes on top when
comparing network latency and the impact of cache hit rate. Not to mention that the measurements
by this thesis also found that Unbound is faster than BIND. In the previous section it was mentioned
that the dataset used in Remy’s research consists of a fixed set of query requests in a fixed time period.
Taking the results of the measurements from this thesis and those found in [17] into consideration, it
stands to reason that the work performed by the servers are not equal. The energy consumption is
taken for the same time period for both server, however, the amount of queries processed during this
period is not the same. This means that the results do not take the energy consumption per query
request into consideration. Which, of course, this thesis does.

The difference in the results may also be due to the configuration of the measurements. This thesis
configured the operating system to only utilize one of the available four cores. Furthermore, both BIND
and Unbound have been configured to only use one thread in order to serve client requests. Remy does
not specify the thread configuration of the servers, therefore, it is assumed that the default configura-
tions have been used. This, of course, is done because ECALOGIC does not yet have the capabilities to
model multi-core processors. The amount of threads used for BIND and Unbound is equal to the number
of CPUs present on the system, thus four threads each3*. Thus, in order to make the comparisons more
equal to each other, either the measurement by Remy must be run using the same configurations as
this thesis, or ECALOGIC must be extended to support multiple cores and threads.

Lastly, the most important reason why these results do not math, is that Remy takes the energy
measurement of the server as a whole. This thesis only looked at the energy consumption for the CPU
and Memory hardware components. Remy, however, look at every component that was connected to the
measurement setup. Furthermore, his thesis did not separate the energy consumption per hardware.
Hence, other components that were also measured might influence that total energy consumed during
the measurements.

3https://www.unbound.net/documentation/unbound.conf.html
4http://serverfault.com/questions/339742 /how-to-configure-the-number-of-processes-bind-uses



Chapter 7

Discussion

This chapter discusses the measurement methodology presented in Chapter 4 and provides suggestions
on how to improve the measurement methodology to acquire more accurate values. It continuous by
discussing ECALOGIC and also suggests some improvements.

7.1 Measurements

The measurements methodology described in Chapter 4 seem to provide realistic values. The energy
measurement performed for the assignment statement show that it took almost the same time to per-
form 320 million instructions as was determined in Table 5.1. The methodology used for measuring
the statements needed for ECALOGIC used a similar method described in [28], and both seem to agree
on the size of the body loop!. Furthermore, the execution times measured for BIND and Unbound do
confirm the performance results found in [17]2. The results of these different research give confidence
in the measurement methodology used during this thesis. Also, the methodology used for BIND and
Unbound provided a method to obtain the actual execution path for both servers. However, the ap-
proach taken to measure the energy consumption can still be improvement upon. Some improvements
are provided below.

7.1.1 Context Switching

Chapter 4 presented the measurement methodology used for acquiring the energy consumption values.
The techniques discussed is not perfect and improvement can be made. The values acquired during
the measurement are not the most accurate that could have been collected. The hardware used for
capturing the samples limits the amount of information that can be captured. The highest frequency
possible for the hardware is 45KHz. Ideally, the measurements would have been taken at 100KHz. As
mentioned in Section 4.5, all the benchmarks are executed on one of the four cores available on the
processor. Consequently, this signifies that the occurrences such as context switches are also effectively
measured, because everything has to run on that one core. Thus, every value measured can truly be
seen as an upper bound on the energy consumption and is not regarded as the actual energy consumed
by the measurement methodology. In order to prevent the capturing of the context switches, its
recommended to reserve one specific core on the processor. This strategy is mentioned in Section 4.5.
Of course, the measurement hardware must be equipped to take energy measurements for each specific
core.

7.1.2 Improve measurement implementation

Not only the methodology described in Chapter 4 can be improved upon, but also its implementation
is not optimal. Both servers had to recurse in order to provide the query request with an answer.
However, the implementation of these measurement points does not take this into account. Each time
the server went into recursion, it overwrote the previous values of the check points. This is certainly
a weak point of the energy consumption measurements measured for both DNS servers. In order to fix

1This thesis performed its own measurements to determined the size of the body loop.
20f course, the confirmation is relative to the hardware used. But both research conclude that Unbound out performs
BIND .
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Figure 7.1: Assigning a value from one register to another one

this, an array that keeps track for each check point should be kept. This not only gives an execution
path, which already has been achieved with current the methodology, but also keeps all the execution
time of each individual encountered check point. This also improves the current method, because no
time is needed to log the checkpoints to a file during the execution path. Which, of course, improves
the performance measurement.

7.1.3 Hardware trailing power state

In their paper ‘Fine-grained power modeling for smartphones using system call tracing’ Pathak et
al. mention that certain hardware components exhibit a behavior explained as the ‘trailing power
state phenomenon’ [22]. This phenomenon is known as the tail power state. This state is when the
hardware component does not switch immediately from a high energy consumption level to a level that
demands less energy. Undoubtedly, such an occurrence can skew the energy consumption estimations
that ECALOGIC makes. These estimations can then be lower than the actual energy consumption
of the hardware in question. This can be mitigated by trying to find this trail power state for each
hardware and add this as constant to the components ECM model that is used by ECALOGIC.

7.1.4 Implicit Memory

ECALoGIC has the implicit functions for the CPU, however, the measurements show that also the
memory consumes energy implicitly when assigning from one CPU register to another. Figure 7.1 shows
a measurement of the assembly instruction used for assigning a value from register to another register.
Even though the CPU should not be retrieving values from memory, the figure shows that the energy
consumption of the memory also increases during the measurement. One possible explanation is that
the instruction pipeline is busy fetching instructions from memory. Another explanation is that context
switches during the measurement are causing the constant energy consumption of the memory. This
needs to be studied further, but it also provides an argument to also make the memory component an
integral part of ECALOGIC.
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7.1.5 Circuit switching

In their paper ‘Instruction level power analysis and optimization of software’ Tiwari et al. remarked
that the switching activity of the circuit also consumes energy. Two different instructions cause a
change in its state, and therefore, this changing of state causes the circuit to consume energy [28]. The
same instructions are executed for assignments and binary statement in Chapter 5. Therefore, the
change in state is significantly less during these measurements. This state change is captured for the
other statements measured. The claims made by Tiwari et al. are confirmed in [6] by Chang et al.
Furthermore, in their paper ‘An Accurate Instruction-Level Energy Consumption Model for Embedded
RISC Processors’ by Lee et al. state that the energy consumed in a clock cycle is dependent among
other thing on the number of logical 1’s [14]. The conclusions mentioned above are not taking into
account in this thesis. Therefore, the energy consumption is not entirely accurate, but, in the spirit of
ECALOGIC, are just upper bounds on the energy consumption.

7.2 ECALOGIC

This section discusses various pain points encountered while developing the examples of Section 2.4 and
in porting the C code of the DNS server implementations over to ECA. Such pain points also include
the experience working with the tool itself and its ease of use for an inexperienced user working with
the tool.

ECALOGIC is definitely a novel idea that presents a very interesting approach to energy consumption
analysis. Section 2.4 showed how simple algorithms can be implemented in ECA and analyzed for their
energy consumption and Chapter 3 introduced the DNS servers. The models were for the DNS servers
were implemented without too much trouble, in spite not having every concept available in C. Take
for example structures, pointers and returning values from functions. All these issues can be worked
around by simply abstracting them away. Structures and pointers are used to pass information around
to different functions and return values are usually used to indicate error codes. Working around
structures and pointers is achieved by just leaving them out of the ECA source. Return values can be
‘simulated’. The function must then be used as the expression in an assignment statement and just
assume the function returns a value. ECALOGIC does not throw an error and it does not influence
the power consumption estimation. The only concept that could not be worked around were function
pointers.

Getting used to ECALOGIC does take some time. Thinking of workarounds for every concept does get
tiresome and is a task that should be automated in the future. Trying to write the same application in
ECA should not be encouraged and the developer should accept that certain concepts cannot be modeled
and should be abstracted over, or even left out. This of course influences the energy consumption,
however, the tool should be used as an estimation tool to compare different implementations. It should
be made clear that a accurate consumption of energy should not be expected.

7.2.1 Component models composition

One and important shortcoming of ECAlogic is that the tool does give the developer the possibility
to compose the energy consumption of different component models. Meaning, the developers are pro-
hibited of referencing the energy consumption of other component models inside model functions of
a particular component model. Chapter 3/4/5 introduces the models for namely, the CPU (Implicit)
and Main Memory (Memory). Section 3.2 discusses the component models of both Unbound and BIND.
One advantage that ECALOGIC provides is being able to differentiate and give a detailed report which
component model consumes the most energy. Such as feature can be improved upon. ECALOGIC
should be able to show the number of times each function has been called, along with the total energy
consumed by the function during the execution path of ECALOGIC.

The component models of both Unbound and BIND make use of functions that utilize both the CPU
and Main Memory. However, ECALOGIC does not allow a developer to indicate that one function
can affect two different component models. This forces the developer to be explicit in ECA with every
statement. Take for example a function that utilizes three different component models. All three
must be explicitly stated at each call site of the function. Another problem is that two of the three
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1 import component Memory

> component Implicit

3 component function a (value) uses 5 energy 5 time
4 Memory::store(value)

end function

7 component function e (lhs, rhs) uses 10 energy 10 time

8 Memory::retrieve(lhs)

9 Memory::retrieve(rhs)

10 end function

11

12 component function w uses 25 energy 25 time

13 component function ite uses 25 energy 25 time
14 end component

Listing 7.1: Composable component

components must put there time field equal to zero. Otherwise ECALOGIC will triple its estimation
on the execution time. One solution is to always assume that the energy consumption values assigned
to the component model functions is the total energy consumption of all the hardware components it
uses during the execution of that function®.

7.2.2 Custom implicit component models

The limitations described in Section 7.2.1 have more implications than those mentioned in the section.
Not since the days of assembly have programmers needed to reference memory directly in their own
code. However, programmers of higher level programming languages work with memory implicitly.
For example, accessing the data of variables in these languages implies touching the memory. Like-
wise, assigning data to a variable also means touching the systems memory. Therefore, every use of
a variable and assignment operation carried out by the CPU influences the Memory component model?.

This contradicts the assumptions taken by ECALOGIC, namely that component models do not influence
each other and their energy consumption. Hence, in order to correctly estimate the energy consumption
of saving and retrieving data from and to memory, the developer has to explicitly tell ECALOGIC
that this energy consumption is taking place. This introduces extra complexity for developers using
ECAvLoGIC that could be avoided. Take for example the Insertion sort algorithm presented in
Listing 2.3 from Section 2.4. The ECA code references different variables in various places and also
stores results of calculations in different variables. However, the monolnsertion sort example in ECA
excludes the energy consumed by the memory. An updated version of the ECA code with all of the
memory consumption annotations is seen in Listing 7.2. This new version adds an extra 13 lines of
code to a simple and small example®. Certainly, the implicit nature of the energy consumption of
the memory can be added to the Cinmpiicis component model as a constant. On the other hand, the
developer then loses the fine granularity of insights that ECALOGIC can provide when its analysis is
complete and it outputs the energy consumed by each component used by the ECA source code.

One solution is to allow developers to compose their component models and the energy they consume
as discussed in Section 7.2.2. This solution is the most desirable, because it is simple and does not
change the ECALOGIC implementation that much. Although, it is not immediately obvious from a
theoretical point of view if such a solution is sound. One example of how such a feature implementation
is presented in Listing 7.1. In this example, the Implicit component references C,,.,,. Therefore,
the energy consumption is automatically included in the approximation by ECALOGIC. And more
importantly, the store and retrieve component functions only have to be specified once, making the

source code of ECA less verbose and the energy consumption estimations stay the same.

A second solution, albeit perhaps a less desirable one, is to allow developers to introduce their own

3This is less of an issue if the whole function is written inside ECM, however, this is not always possible. Sometimes you
would want to abstract over the function, but also retain the ability to see precisely were it incurs energy consumption

4This is also seen in the energy consumption graphs from the previous chapters

5This examples is trying to be conservative and does not put each of the Memory component on its own line
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1 import component Arr
2 import component Memory
;3 function insertion_sort(A, N)
4 i =1
Memory::store(i);
6 Memory::retrieve(i); Memory::retrieve(N)
7 while i < N bound N do

8 Memory::retrieve(A); Memory::retrieve(i)

9 value := Arr::get(A, i)

10 Memory::store(value); Memory::retrieve(i)

11 jo:=1i -1

12 Memory::store(j); Memory::retrieve(A); Memory::retrieve(j)
13 jvalue := Arr::get(A, j)

14 Memory::store(jvalue); Memory::retrieve(j);

15 Memory::retrieve(jvalue); Memory::retrieve(value);

16 while j >= 0 and jvalue > value bound N do
17 Memory::retrieve(A); Memory::retrieve(j);

. Arr::set(A, j + 1, j)
19 Memory::retrieve(j);
20 j =3 -1

21 Memory::store(j);

22 end while;

23 Memory::retrieve(A); Memory::retrieve(j)
24 Arr::set(A, j + 1, value)

25 Memory::retrieve(i);

26 i =1+ 1
27 Memory::store(i);

IS I

8 end while;

) end function

30 function main(A, N)

31 Memory::retrieve(A); Memory::retrieve(N)
32 insertion_sort (A, N)

33 end function

Listing 7.2: Insertion sort updated to reflect memory energy consumption in ECA

custom implicit component models. These component models would then allow the developers to
specify which statements and in which situations these custom component implicitly consume energy.
ECAvLoGIC will then be able to add this energy consumption to its final estimation. How this feature
should be implemented of look like is of this moment not known and has to be furthered studied.

7.2.3 Ports to ECALOGIC are essentially rewrites

The main limitation of ECALOGIC is that it requires developer to write their application in an entirely
different language. This means that applications ported to ECA can essentially be considered as com-
plete rewrites. Depending on the complexity of the application and the language concepts it utilizes, it
might not be worth it to port the code to ECALOGIC. Porting the application requires the developers
to maintain two different versions of the same application. Additionally, the developer need to be well
versed in how to translate concepts to ECA. A more intelligent method for developers is to only model
the path that is interesting for their energy consumption needs and keep the abstraction level high.

ECALoGIC has shown that it is easy enough to port simple algorithms to ECA. However, it becomes
increasingly difficult to port code to ECA when they use concepts that are not supported. Take for
example returning values from functions. The current version of ECALOGIC does not support this.
Usually such a limitation can be worked around by just assuming that the function returned a value.
Thus, the lack of certain programming language concepts can limit the accuracy in which an appli-
cation can be ported to ECALOGIC. A more viable solution is to extend ECALOGIC to be able to
analyze existing code bases. Furthermore, the limitation that not everything can be directly ported
to ECALOGIC leave margin for errors in its estimation. This limitation is most likely imposed by
the static analysis. Chapter 6 showed that the estimation for Unbound is less than the actual energy
consumed. The reason for this is the dynamic nature of the application itself. Certain paths were
taken that are difficult to trace without extra information.
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7.2.4 Energy Analysis results of components

ECALOGIC in its current implementation can only show the total energy consumption of its component
models. It does not provide an overview of the energy consumption at the function/statement level.
Thus, ECALOGIC can only show the developer which component consumes the most energy. That in
itself is interesting information to be aware about. However, developers are more likely to be inter-
ested in knowing which functions consume the most energy during the execution of their modeled path.

Take for example the DNS server analysis with ECALOGIC from Chapter 6. Table 6.2 show the results
from ECALoGIC. It shows the energy consumption for the CPU, BIND and Unbound component model
in Joules. Still, it does not show which functions are responsible for consuming the most energy. The
results show that Unbound is more energy efficient than BIND. However, the developers of BIND have
no insight on where exactly the energy is being consumed and which functions they have to improve to
be more energy efficient. Of course, if the developers are taken their own measurements they already
know. But, ECALOGIC should strive to relieve developers of taking their own measurements.

7.2.5 One file for each conditional

Every conditional requires ECALOGIC to make an estimate of the branch that consumes the most
energy. workaround for this limitation is to not use the else branch in the source. The developer
must introduce a variable to keep track of which branch must be taken. The downside to this is that
the energy consumption estimation increases. In order to acquire the energy consumption of a specific
execution path another solution must be considered. This involves creating a brand new ECA source
file to obtain the energy estimations for that particular path. However, if the source has a lot of
branches and each branch must have its own file, the number of files that need to be written grows
exponentially. This, of course, is not what a developer would want. Theoretically, ECALOGIC should
be able to generate energy estimations for all possible branch combinations. For small applications
this could save the developer time. An alternative is to build a switch in that turns this feature on
and off. A



Chapter 8

Conclusion and future work

This chapter concludes the thesis by summarizing the results found in the previous chapters and
presents suggestions for future research on ECALOGIC.

8.1 Conclusion

ECALOGIC is a tool that, given a hardware and software model, is able to statically determine power
consumption bounds for those particular models. This thesis set out to find the possibilities and lim-
itations of ECALOGIC by using it in a use case to determine the energy consumption of DNS server
implementations.

This thesis looked into at which hardware components were needed to model the DNS servers in ECA-
LOGIC, introduced the ECM component models and suggested that its best to model the hardware
components with an as simple as possible API. Hardware components for the CPU, Memory and NIC
have been identified and with the right level of abstraction, all three were simple enough to construct
their components in ECALOGIC.

A measurement methodology has also been introduced and used to acquire the energy values for the
component models. This thesis showed that taking measurements is not as easy as putting the same
instruction a million times in the source code and measure the results. The best strategy found was to
use a loop and execute a set number of statements within the body of the loop in order to minimize
the effect of said loop. The theoretical limits of the processor were determined and the result for the
simplest measurement test showed that the execution times fell close to each other, and thus serves as
a small validation of the methodology. A method to acquire measurement values for the DNS servers
have also been presented and successfully applied. The technique involved surrounding the functions
of interest with logging methods that took the execution time and at the same time mapped the path
taken by the server. Additionally, mistakes and improvements have been identified and solutions have
been proposed.

ECALOGIC makes it possible to determine the energy consumptions of simple algorithms and, this
thesis has shown that, with a certain level of abstraction, complex DNS server implementations can
also be modeled. Two algorithms were compared to each other and their energy consumption have been
determined. Furthermore, implementations for BIND and Unbound have been modeled in ECALOGIC
and their energy consumption determined with real world energy consumption values. The results
showed that the consumed energy for BIND have been correctly estimated and those of Unbound were
underestimated. The results also showed that, given the assumption that the energy consumption and
time are correlated, BIND makes the CPU and Memory, on average, consume more energy than Unbound.
However, the results do not agree with the one found by Remy Bien. The difference can be attributed
to the fact that this research only looked at the CPU and Memory, but Remy took the energy consumption
of every component into consideration. Other factors such as the used number of cores and threads
could have influenced the difference between the research projects. Furthermore, this thesis also made
an assumption that may be invalid because of the results found by Remy. This thesis thus concludes
that further research in which the energy consumption of the servers functions are also measured must
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be performed. This project must therefore confirm whether the assumption made by this thesis is
correct.

8.2 Future Work

Chapter 7 briefly mentioned that context switch occurrences can influence the energy consumption
measured during the tests. In order to get execution time measurements that are more accurate, it
might be interesting the determine how many context switches occur during the time it takes to run
the application under test. Linux has the necessary tools that make it possible to determine how
many context switches occur during the execution of an application. A method must be developed to
discover how long a context switch takes, or literature on this topic has to be found. This time can
then be subtracted from the total execution time of the application. Knowing ensures that a more
accurate time is used for ECAvLOGIC.

ECALOGIC is not capable of analyzing existing code bases. Every application must be ported to
ECA and ECM in order to determine its energy consumption. Therefore, it might be interesting to
extend the capabilities of ECALOGIC to, for example, analyze C applications. The project can use
CLang!? to acquire the Abstract Syntax Tree (AST) of C programs. This AST can then be utilized by
ECALOGIC to apply its energy consumption analysis. Naturally, this means that ECALOGIC must be
extended with new statements, such as pointers and structures (struct), that are available in C but
not ECA. This is needed in order to make an accurate energy consumption estimation of C applications.

Developing best practices and a common style guide is essential for a any programming language>.
Having a uniform manner of programming makes it easy for any developer of the language to quickly
start contributing to a project. ECALOGIC is no different. ECALOGIC can develop best practices
for porting, for example, code from the C programming language. This can help developers that use
ECALoGIC in the future in their journey of learning to work with ECALoGIc. Examples of best
practices include strategies such as converting function with return values to ECALOGIC code. An-
other examples might include details on how to best deal with programming languages that include the
possibility to jump to labels at specific points (such as ‘GOTOQO’ in C and ‘break LABEL’ in Java). Such
style guides can then be used to develop an ECALOGIC transpiler. This certainly can help newcomers
to port their code to ECALOGIC.

The last suggestion can be taken a step further. Once language port strategies have been deter-
mined, source code transpilers can be used to automate the translation of programming languages
to ECALoGIC. For example, the AST output of CLang can be used to automatically transpile the C
programming language to ECALOGIC. The best practices are thus automatically applied to the ECA-
LOGIC source. Effectively, minimizing the amount of effort that is needed to rewrite the ECALOGIC
source by hand. The generated code can then be used by the developers to build their own intuition
on how to port source from other languages to ECALOGIC, or better yet, write their own transpiler.

Finally, another power estimation method has been developed by Bircher et. al in their paper title
‘Complete System Power Estimation using Processor Performance Events’. The authors are able to
estimate that have an average error of less than 9%. This is done without the use of any additional
sensors on the individual hardware components [3].

IClang: a C language family frontend for LLVM
2http://clang.llvm.org/
3Think of C4++ and the different parts that are not allowed by, for example, the ‘Google C++ Style Guide’.
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Appendix A

Reserve a specific core on Linux

In Chapter 4.5 we explained that a Linux based operating system be configured to reserve and utilize
a specific CPU. The following steps need to be carried to configure the operating system:

sudo -i

gedit /boot/grub/grub.conf

add line ‘isolcpus=1" at the end of the appropriate kernel lines (i.e. kernel /boot/...)

save grub.conf

restart OS

CU W =

The line ‘isolcpus=1’ configures the system scheduler to not assign any process or tasks to CPU 1.
This unutilized CPU is then used to execute the applications. This is done by manually assigning an
application to this CPU. This is done by entering one of the following command on the command line:

(1) taskset -c 1 ./{application}
(2) taskset -c 1 -p <pid>

The first command is used to run the application that measure expressions, assignments, conditionals
and loop statements. The second is used to move our DNS server process with pid to CPU 1.

In order to validate that the CPU is not being utilized, the system will be used by opening a browser and
visiting nu.nl. Tt is then verified that the CPU is not utilized by looking at its energy consumption®.

1Ofcourse, the energy consumption of the operation also verified when the CPU has not been reserved
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Appendix B

Implicit measurement setup

B.1 Directory structure

The directory structure for compiling and running the applications needed to measure the energy con-
sumption of needed for the Implicit component model for ECALOGIC.

root

| bin

| _include

| utils.h

| _results

| Src
assignment.c
binary.c
function.c
if_else.c
.utils.c
while.c

| _build

| _measure

B.2 Timing utilities

The header

1 /* %
2 * utils.h
* This file contains global definitions used for measuring energy

consumption.

! * It contains code for keeping the time and a helper function for logging
files.

5 */

¢ #include <time.h>

s typedef struct program_time {
9 struct timespec start;

10 struct timespec end;

11} program_time;

13 /%%

14 * Mark our start time

*/

¢ void start(struct program_timex time);

8 /*xx%

9 * Mark our end time

20 */

21 void end(struct program_timex time);
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APPENDIX B. IMPLICIT MEASUREMENT SETUP

Ve
* Opens a file and appends the run to the log file.

* @param string The name of the application

* @param program_time The time during this execution

*/

void logtime(charx program_name, struct program_timex time);

The source.

1
2
3
1
5

N

#include <time.h>
#include <stdio.h>

#include "utils.h”

void settime(struct timespecx time)

{
clock_gettime (CLOCK_REALTIME, time);
3
void start(struct program_timex time)
{
settime (&time->start);
}
void end(struct program_timex time)
{
settime (&time->end);
}

void logtime(charx program_name, struct program_time* time)

{
FILEx file = fopen(program_name, "ab+");

if(file != NULL)
{

fprintf(file, "------------"-"-"-"-"-"-"-"-"-"-"-"-""-"-"-"-"-""-"—"—~"—~————————

fprintf(file, "start:\t%1ld.%.91d\n",
(long long) time->start.tv_sec, time->start.tv_nsec);

fprintf(file, "end:\t%11ld.%.91d\n",
(long long) time->end.tv_sec, time->end.tv_nsec);

FRrintf(file, "===—======mmmmmmmm e

fclose(file);
}

else

{

n

printf(”"could not open file ’%s’ for writing...\n

3

Build

#!/bin/bash

echo "start build..."
START=$(date +%s.%N)

program_name) ;

gcc -00 ./src/$1.c ./src/utils.c -std=gnu99 -o ./bin/$1 -I"./include/" -1lrt

-Wall
END=$(date +%s.%N)
echo "build succeeded”
echo "build took: " $(echo "$END - $START"” | bc) "seconds”



B.4. MEASURE
B.4 Measure

1 #!/bin/bash
> /home/seflab/bin/seflabtools.sh -t synch -s /dev/ttyUSBO
3 -c /home/thesis/bin/$1 -o ./results/$1.server

-m run \
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Appendix C

Measurement Results

C.1 Assignment

SEFlab (ms)

Total energy (J)(107°)

Energy (J/Instr)

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

13.31
14.31
All components

SEFlab (ms)

6899.28
3764.18

Total energy (J)(107°)

15.9933
9.4105

Table C.1: 2" run

Energy (J/Instr)

3.8397
3.8397

2.604
2.604

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

28.33
29.78

All components

SEFlab (ms)

13617.00
7832.30

Total energy (J)(107°)

17.0212
9.7903

Table C.2: 374 run

Energy (J/Instr)

3.8464
3.8464

2.60
2.60

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

58.89
60.18

All components

SEFlab (ms)

28302.00
15828.26

Total energy (J)(10~°)

17.6888
9.89266

Table C.3: 4" run

Energy (J/Instr)

3.8324
3.8324

2.609
2.609

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

120.49
121.04

All components

57906.96
31837.72

18.0959
9.9493

Table C.4: 5t run
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C.2. BINARY

C.2

Binary

SEFlab (ms)

Total energy (J)(107°)

Energy (J/Instr)

Time (ms/Instr)(10~7)

73

Processor (GHz)

CPU
Memory

All components

87.93
88.86

SEFlab (ms)

38897.31
23114.22

97.2432
07.7855

Table C.5: 274 run

Total energy (J)(107°)

Energy (J/Instr)

22.5603
22.5603

Time (ms/Instr)(1077)

0.443
0.443

Processor (GHz)

CPU
Memory

All components

178.17
179.40

SEFlab (ms)

78816.94
46661.94

98.5211
58.3274

Table C.6: 37¢ run

Total energy (J)(107°)

Energy (J/Instr)

22.5407
22.5407

Time (ms/Instr)(10~7)

0.444
0.444

Processor (GHz)

CPU
Memory

All components

359.15
360.37

SEFlab (ms)

158872.46
93734.26

99.2952
58.5839

Table C.7: 4" run

Total energy (J)(107°)

Energy (J/Instr)

22.5773
22.5773

Time (ms/Instr)(10~7)

0.443
0.443

Processor (GHz)

CPU
Memory

All components

719.64
720.66

318334.72
187445.40

99.4796
58.5766

Table C.8: 5" run

22.5446
3.8332

0.444
22.5446
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C.3

Function

SEFlab (ms)

Total energy (J)(10~°)

APPENDIX C. MEASUREMENT RESULTS

Energy (J/Instr)

Time (ms/Instr)(10~7)

Processor (GHz)

CPU
Memory

All components

63.4888
65.31

SEFlab (ms)

38940.91
17149.06

97.3522
42.8726

Table C.9: 27¢ run

Total energy (J)(107°)

Energy (J/Instr)

16.5223
16.5223

Time (ms/Instr)(10~7)

0.605
0.605

Processor (GHz)

CPU
Memory

All components

131.64
132.77

SEFlab (ms)

80744.12
34864.12

100.9301
43.5801

Table C.10: 37% run

Total energy (J)(10~°)

Energy (J/Instr)

16.7627
16.7627

Time (ms/Instr)(10~7)

0.597
0.597

Processor (GHz)

CPU
Memory

All components

261.95
263.31

SEFlab (ms)

160670.44
15828.26

100.4190
9.89266

Table C.11: 4** run

Total energy (J)(107°)

Energy (J/Instr)

16.5200
16.5200

Time (ms/Instr)(10~7)

0.605
0.605

Processor (GHz)

CPU
Memory

All components

526.75
528.22

323085.52
138697.95

100.9642
43.3431

Table C.12: 5t run

16.5347
16.5347

0.603
0.603



C.4. CONDITIONAL

C4

SEFlab (ms)

Conditional

Total energy (J)(10~°)

Energy (J/Instr)

75

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

110.46
112.02

All components

SEFlab (ms)

47125.08
29019.35

Total energy (J)(10~°)

117.8127
72.5483

Table C.13: 27¢ run

Energy (J/Instr)

28.2228
28.2228

0.354
0.354

Time (ms/Instr)(10~7)  Processor (GHz)

CPU
Memory

223.15
224.64

All components

SEFlab (ms)

95198.16
58194.14

Total energy (J)(1075)

118.9977
72.7426

Table C.14: 374 run

Energy (J/Instr)

28.1505
28.1505

0.355
0.355

Time (ms/Instr)(10~7)  Processor (GHz)

CPU 448.57
Memory 449.13
All components

C.5 Waihile

SEFlab (ms)

191363.28
116347.99

Total energy (J)(107°)

119.6020
72.7174

Table C.15: 4t* run

Energy (J/Instr)

28.1514
28.1514

0.355
0.355

Time (ms/Instr)(10~7)  Processor (GHz)

CPU
Memory

104.77
106.17

All components

SEFlab (ms)

45169.70
27569.06

Total energy (J)(107°)

112.9242
68.9226

Table C.16: 274 run

Energy (J/Instr)

26.7622
26.7622

0.374
0.374

Time (ms/Instr)(10~7)  Processor (GHz)

CPU
Memory

211.88
213.62
All components

SEFlab (ms)

91345.30
55467.01

Total energy (J)(10~°)

114.1816
69.3337

Table C.17: 37 run

Energy (J/Instr)

26.7592
26.7592

0.374
0.374

Time (ms/Instr)(10~7)  Processor (GHz)

CPU

Memory

426.26
427.26

All components

183763.56
110939.79

114.8522
69.3373

Table C.18: 4t* run

26.7509
26.7509

0.374
0.374



Appendix D

Unbound

D.1 Server Configurations

The following configuration has been used when measuring the energy consumption of Unbound:

server:
interface: 192.168.10.11
access-control: *laptop-ip* allow
do-ip6: no

5 root-hints: /etc/unbound/root.hints

6 num-threads: 1 #no threading

N

D.2 Timing utility

The timing utility for Unbound looks like the following:

1 /*x%
2 * utils.h
* This file contains global definitions used for measuring energy

consumption.

4 * It contains code for keeping the time and a helper function for logging
files.

5 *x/

6 #include <time.h>

s typedef struct program_time {
9 struct timespec start;

0 struct timespec end;

} program_time;

// worker.c

1+ #define UnboundAccessControl 1

5 #define UnboundRequestHeader 2

16 #define UnboundDNSChecks 3

17 #define UnboundTrylLocalZoneAnswer 4

15 #define UnboundRBTSearch )

10 #define UnboundAnswerFromCache 6

20 #define UnboundPrepNewRequest 7

21

22 // 1iterator.c

23 #define IteratorCheckEffort 9

24 #define IteratorDNSCachelLookup 10
25 #define IteratorResponseTypeFromCache 11
26 #define IteratorHandleCnameResponse 12
o7 #define IteratorQueryAdjustments 13
25 #define IteratorDNSCacheFindDelegation 14
20 #define IteratorPrimeRoots 15
30 #define IteratorUselessDelPoint 16
31 #define IteratorIsRoot 17
32 #define IteratorLookupRoot 18
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D.3. COMPILATION

33 #define IteratorDomainName 19
34

55 #define IteratorProcessInitRequest?2 20
36 #define IteratorProcessInitRequest3 21
3s #define IteratorQueryTargetsChecks 22
30 #define IteratorServerSelection 23
10 #define IteratorQueryNetworkTarget 24

11 #define IteratorDNSPreCheckServerResponse 25

13 #define IteratorCleanUpAndCacheAnswer 26
14 #define IteratorPrepareRestart 27
15 #define IteratorPrepareCnameReponseRestart 28

17 #define IteratorDNSStore 29
15 #define IteratorProcessFinished 30
49

50 #define IteratorProcessTargetResponse 33

51

s2 // mesh.c

; #define UnboundCleanupRequest 31

. #define IteratorSendReply 32
56 #define START_TIMER(timer) start(&timers[timer])
57 #define END_TIMER(timer) end(&timers[timer])

7

50 #define LOGSTART(str, timer) log_info("START_TIMER \t:: ID %d :: \
60 \t%11ld.%.91d", str, (long long) timer.start.tv_sec, timer.start.tv_nsec)

)

61

62 #define LOGEND(str, timer) log_info("END_TIMER \t:: ID %d :: \
63 \t%11d.%.91d", str, (long long) timer.end.tv_sec, timer.end.tv_nsec);

64

65 #define LOG_ECA(index) LOGSTART(index, timers[index]); LOGEND(index, timers[

index]);

66

67 #define LOG_INFO(str) log_info(”\n"); log_info(str);

6o #define LOGGER(str, index) LOG_INFO(str); START_TIMER(index);

71 [ *%

72 * @brief timers
73 * Global Timer array used by all modules inside
74 */
75 program_time timers[33];

Unbound

77 inline void settime(struct timespec* time) { clock_gettime (CLOCK_REALTIME,

time); 3}

79 inline void end(struct program_timex time) { settime(&time->end); }
80 inline void start(struct program_timex time) { settime(&time->start); 3}

D.3 Compilation

We have to enable the GNU99 flag for the newest standard and link the real time library. Two lines
have to be changed inside the makefile in order to make Unbound compile with our time utility library.

COMPILE=$(LIBTOOL) --tag=CC --mode=compile $(CC)
$ (CFLAGS)

-std=gnu99 $(CPPFLAGS) \

1
3 LINK=$(LIBTOOL) --tag=CC --mode=1link $(CC) $(staticexe) $(RUNTIME_PATH) \
1

$(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -1rt

The added flags must be put exactly after $(CC) and $(LDFLAGS), otherwise the compiler will spew
out error messages. Furthermore, two targets must be modified because they make use of the timing
utility. The targets are worker.lo and worker.o and the following line has to be added to the list of

dependencies:

$(srcdir)/util/timing/utils.h \



78 APPENDIX D. UNBOUND

D.4 ECALocic Evaluation Cached Component Model

1 component UnboundCache

2 component function try_local_zone_answer() uses 14073730 energy 142266667 time
3 component function accesslevel() uses 7327045 energy 74066667 time
| component function search() uses 6814834 energy 68888889 time
5 component function request_header() uses 1234365 energy 12477778 time
6 component function answer_from_cache() uses 19192550 energy 194011111 time
7 component function dns_checks() uses 52382986 energy 529522222 time

s end component

D.5 ECALoGIc Evaluation Cached Memory Component Model

1 component UnboundCacheMem

2 component function try_local_zone_answer() uses 8247626 energy 0 time
: component function accesslevel() uses 4293867 energy 0 time
1 component function search() uses 3993696 energy 0 time
5 component function request_header() uses 723375 energy 0 time
6 component function answer_from_cache() uses 11247407 energy 0 time
7 component function dns_checks() uses 30697992 energy 0 time

s end component

D.6 ECALocGIic Evaluation Cached ECA source

1 import component UnboundCache;
> import component UnboundCacheMem;

i function main()
UnboundCache::accesslevel ();
6 UnboundCacheMem::accesslevel();
7 UnboundCache::request_header();
8 UnboundCacheMem: : request_header ();
9 UnboundCache::dns_checks ();
10 UnboundCacheMem::dns_checks () ;
1 UnboundCache::try_local_zone_answer ();
UnboundCacheMem:: try_local_zone_answer();

1

1

1

1 entry := UnboundCache::search();
15 UnboundCacheMem: :search();
1

1

1

1

7 if entry <> 0 then

8 answered := UnboundCache::answer_from_cache();
9 UnboundCacheMem: : answer_from_cache () ;

20 else end if;

21 end function

D.7 ECALocGIc Uncached Component Model

1 component Unbound

2 component function accesslevel() uses 7472795 energy 75540000 time

3 component function request_header() uses 264202661 energy 19826700 time

| component function dns_checks() uses 53719569 energy 543033300 time

5 component function try_local_zone_answer() uses 14828858 energy 149900000 time

6 component function search() uses 3084155 energy 31176700 time

7 component function prep_new_request() uses 2017407 energy 20393300 time

8 component function check_effort() uses 811511 energy 8203300 time

9 component function dns_cache_lookup() uses 14537692 energy 146956700 time

10 component function query_adjustments() uses 2567401 energy 25953000 time

1 component function dnscache_find_delegation() uses 64123482 energy 648203000 time
component function prime_roots() uses 128921335 energy 1303223000 time

3 component function process_initrequest2() uses 5288204 energy 53456700 time
! component function process_initrequest3() uses 1057835 energy 10693300 time
component function iter_server_selection() uses 27527533 energy 278266700 time
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16 component function query_checks() uses 38408621 energy 388260000 time

17 component function query_network_target() uses 246800069 energy 2494820000 time

18 component function dns_useless_del_point() wuses 1001121 energy 10120000 time

19 component function dns_precheck_server_response() uses 6523777 energy 65946700 time
20 component function cleanup_andcache() uses 64410068 energy 651100000 time

21 component function prepare_restart() uses 158837611 energy 1605636700 time

22 component function process_finished() uses 33599550 energy 339646700 time

23 component function send_reply() uses 16151424703 energy 163269393000 time

24 component function cleanup_request() uses 936391405 energy 94656700 time
25 component function response_type_from_cache() wuses 0 energy 0 time
26 end component

D.8 ECALoGIic Uncached Memory Component Model

1 component UnboundMem

2 component function accesslevel() uses 4379281 energy 0 time
3 component function request_header() uses 1149414 energy 0 time
! component function dns_checks() uses 31481270 energy 0 time
5 component function try_local_zone_answer() uses 8690153 energy 0 time
6 component function search() uses 1807407 energy 0 time
7 component function prep_new_request() uses 11072843 energy 0 time
8 component function check_effort() uses 1182261 energy 0 time
9 component function dns_cache_lookup() uses 8519521 energy 0 time
10 component function query_adjustments() uses 1504574 energy 0 time
11 component function dnscache_find_delegation() uses 37578273 energy 0 time
12 component function prime_roots() uses 75551747 energy 0 time

13 component function process_initrequest2() uses 3099046 energy 0 time
14 component function process_initrequest3() uses 619923 energy 0 time
15 component function iter_server_selection() uses 16131956 energy 0 time

16 component function query_checks() uses 22508597 energy 0 time
17 component function query_network_target() uses 144632200 energy 0 time
18 component function dns_useless_del_point() uses 586687 energy 0 time

19 component function dns_precheck_server_response() uses 3823129 energy 0 time
20 component function cleanup_andcache() uses 37746221 energy 0 time

21 component function prepare_restart() uses 93083577 energy 0 time

22 component function process_finished() uses 19690339 energy 0 time

23 component function send_reply() uses 9465216521 energy 0 time

24 component function cleanup_request() uses 548753287 energy 0 time

25 component function response_type_from_cache() uses 0 energy 0 time

26 end component

D.9 ECALocIc Uncached ECA source

1 import component Unbound;
> import component UnboundMem;

i+ function handle_request(N, M)

5 Unbound::accesslevel ();

6 UnboundMem: : accesslevel ();

7 Unbound::request_header ();

8 UnboundMem: : request_header ();

9 Unbound::dns_checks ();

10 UnboundMem: :dns_checks () ;
11 Unbound::try_local_zone_answer ();
12 UnboundMem::try_local_zone_answer ();
13 Unbound::search();

14 UnboundMem: :search();
15 Unbound::prep_new_request();
16 UnboundMem: :prep_new_request();

18 cont := 1;

19 module_continue := 1;
20 finished := 0;

21 return_msg := 0;

while module_continue <> 0 bound N do
24 while module_continue = 1 and cont <> 0 bound M do
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45

16

18
49

50

APPENDIX D. UNBOUND

// init request state
if cont = 2 then
Unbound::check_effort();
UnboundMem: : check_effort();
msg := Unbound::dns_cache_lookup();
UnboundMem: :dns_cache_lookup();
if msg <> 0 then
Unbound:: response_type_from_cache();
UnboundMem: : response_type_from_cache();
cont := 8;
else end if;

// need to check if we are still in this branch
if cont = 2 then
Unbound:: query_adjustments () ;
UnboundMem: : query_adjustments();
else end if;

inloop := 0;

while cont = 2 and inloop <> 1 bound 1 do
Unbound::dnscache_find_delegation();
UnboundMem: :dnscache_find_delegation();
Unbound::dns_useless_del_point();
UnboundMem: :dns_useless_del_point();
inloop := 1;

end while;

if cont = 2 then
cont := 3;
else end if;
else end if;

// init request 2 state

if cont = 3 then
Unbound::process_initrequest2();
UnboundMem: : process_initrequest2();
cont := 4;

else end if;

// init request 3 state

if cont = 4 then
Unbound::process_initrequest3();
UnboundMem: : process_initrequest3();
cont := 5;

else end if;

// query targets state
if cont = 5 then
Unbound::query_checks();
UnboundMem: : query_checks ();
target := Unbound::iter_server_selection();
UnboundMem::iter_server_selection();
if target = 0 then
cont := 0;
else end if;
if cont <> 0 then
Unbound:: query_network_target();
UnboundMem: : query_network_target();
cont := 6;
else end if;
else end if;

// query response state
if cont = 6 then
result := Unbound::dns_precheck_server_response();
result := UnboundMem::dns_precheck_server_response();
if result = 1 then
Unbound::cleanup_andcache () ;
UnboundMem: :cleanup_andcache();
cont := 8;
else end if;

if cont = 6 and result = 2 then
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Unbound::prepare_restart();
UnboundMem: :prepare_restart();
cont := 5;
else end if;
else end if;

// prime response state

if cont = 7 then
Unbound::prime_roots();
UnboundMem: :prime_roots();

cont := 0;

else end if;

// process finished

if cont = 8 then
Unbound::process_finished();
UnboundMem: : process_finished();
cont := 0;
finished := 1;

else end if;

end while;

if finished = 1 then
if return_msg = 1 then
Unbound::send_reply();
UnboundMem: :send_reply();
else end if;
Unbound::cleanup_request();
UnboundMem::cleanup_request();
module_continue := 0;
else end if;
end while;
end function

function main(N, M)
handle_request (N, M);
end function
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BIND

E.1 Server Configurations

The following configuration has been used when measuring the energy consumption of BIND:

options {
directory "/var/named";
listen-on { 127.0.0.1; 3};
recursion yes;

5 dnssec-enable no;

B W N =

s zone "." IN {
9 type hint;
10 file "named.root”;

11}

13 logging{

14 channel simple_log {

15 file "/home/thesis/thesis/logs/bind.log";
16 severity debug;

17 print-time yes;

18 print-severity yes;

19 print-category yes;

20 };

21

22 category default{
23 simple_log;

1 I3
5 1

7 inlcude "/etc/rndc.key";

NN N NN

o controls {

30 inet 127.0.0.1 port 953

31 allow { 127.0.0.1; 3} key { "rndc-key"; 3};
32 };
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E.2. TIMING UTILITY

E.2

Timing utility

The timing utility for BIND looks like the following:

/**

* utils.h

* This file contains global definitions used for measuring energy
consumption.

* It contains code for keeping the time and a helper function for logging
files.

*/

#ifndef UTILS_H
#define UTILS_H

#include <time.h>

typedef struct program_time {
struct timespec start;
struct timespec end;

} program_time;

// client.c

#define InitialChecks 1
#define AccesslLevel 2
#define ParseRequest 3
#define Flags 4
#define ClientAllowed 5)
#define DestAddrAllowed 6
#define DnsViewAttach 7
#define SignatureChecks 8
#define RecursionAvailable 9
#define PrepareQStart 10
#define PrepareQFind 11
#define QueryGetDB 12
#define ZoneChecks 13
#define SetupSearch 14
#define DnsDBFind 15
#define RpzZones 16
#define DnsDbAttach 17
#define DnsDbFind 18
#define DelegationChecks 19
#define RecursionOk 20
#define Recurse 21

#define CNamePrepareRestart 22

#define AnswerFound 23
#define AddAuth 24
#define CleanUp 25
#define QuerySend 26

#define START_TIMER(timer) start(&timers[timer])
#define END_TIMER(timer) end(&timers[timer])

#define bind_log(fmt, ...) isc_log_write(ns_g_lctx, NS_LOGCATEGORY_CLIENT,
NS_LOGMODULE_CLIENT, \
ISC_LOG_DEBUG (1), fmt, ##__VA_ARGS__);

#define LOGSTART(str, timer) bind_log("START_TIMER \t:: ID %d :: \
\t%11d.%.91d", str, (long long) timer.start.tv_sec, timer.
start.tv_nsec);

#define LOGEND(str, timer) bind_log("END_TIMER \t:: ID %d :: \
\t%11d.%.91d", str, (long long) timer.end.tv_sec, timer.end.
tv_nsec);

#define LOG_INFO_THESIS(str) bind_log("\n"); bind_log(str);
#define LOGGER(str, index) LOG_INFO_THESIS(str); START_TIMER(index);
#define LOG_ECA(index) LOGSTART(index, timers[index]); LOGEND(index, timers[
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index]1);

66 /**

67 * @brief timers

68 * Global Timer array used by all modules inside Unbound
69 */

70 program_time timers[33];

7
72 inline void settime(struct timespec* time);

74 inline void end(struct program_timex time);
75 inline void start(struct program_timex time);

77 #endif

E.3 Compilation

The build of BIND is a little bit more complicated than that of Unbound. Where Unbound only
needed to change one file to include our timing utility, BIND requires changes in multiple files. The
first modification must be added to the file located at bind/bin/named/Makefile.in. The list for OBJS
and SRCS must be modified to include utils.@0@ and utils.c respectively.

The second file that needs changing is located at bind/make/rules.in. As with the makefile for Un-
bound and our implicit applications, here too we add the GNU99 compiler flag and link to the real
time library. The FINALBUILDCMD must be modified to the following:

1 FINALBUILDCMD = \
2 if [ X"${MKSYMTBL_PROGRAM}" = X -0 X"$${MAKE_SYMTABLE:-${ALWAYS_MAKE_SYMTABLE}}" =
X 1; \

3 then \

| ${LIBTOOL_MODE_LINK} ${PURIFY} ${CC} -std=gnu99 ${CFLAGS} ${LDFLAGS} -1lrt \
5 -0 $@ $${BASEOBJS} $${LIBSO} ${LIBS}; \

6 else \

7 rm -f $@tmp0; \

8 ${LIBTOOL_MODE_LINK} ${PURIFY} ${CC} -std=gnu99 ${CFLAGS} ${LDFLAGS} -1rt \
9 -0 $@tmp0 $${BASEOBJS} $${LIBSO} ${LIBS} || exit 1; \
10 rm -f $@-symtbl.c $@-symtbl.@0@; \
11 ${MKSYMTBL_PROGRAM} ${top_srcdir}/util/mksymtbl.pl \
12 -0 $@-symtbl.c $@tmpO || exit 1; \

13 $(MAKE) $@-symtbl.@O@ || exit 1; \
14 rm -f $@tmp1; \

15 ${LIBTOOL_MODE_LINK} ${PURIFY} ${CC} -std=gnu99 ${CFLAGS} ${LDFLAGS} -1rt \
16 -0 $@tmpl $${BASEOBJS} $@-symtbl.@0@ $${LIBSO} ${NOSYMLIBS} || exit 1; \
17 rm -f $@-symtbl.c $@-symtbl.@0@; \
18 ${MKSYMTBL_PROGRAM} ${top_srcdir}/util/mksymtbl.pl \

9 -0 $@-symtbl.c $@tmp1 || exit 1; \

1

20 $(MAKE) $@-symtbl.@O@ || exit 1; \

21 ${LIBTOOL_MODE_LINK} ${PURIFY} ${CC} -std=gnu99 ${CFLAGS} ${LDFLAGS} -1rt \
22 -0 $@tmp2 $${BASEOBJS} $@-symtbl.@0@ $${LIBSO} ${NOSYMLIBS}; \

23 ${MKSYMTBL_PROGRAM} ${top_srcdir}/util/mksymtbl.pl \

24 -0 $@-symtbl2.c $@tmp2; \

25 count=0; \

26 until diff $@-symtbl.c $@-symtbl2.c > /dev/null ; \

27 do \

28 count=‘expr $$count + 1¢ ; \

9 test $$count = 42 && exit 1 ; \

30 rm -f $@-symtbl.c $@-symtbl.e0@; \

31 ${MKSYMTBL_PROGRAM} ${top_srcdir}/util/mksymtbl.pl \
32 -0 $@-symtbl.c $@tmp2 || exit 1; \

33 $(MAKE) $@-symtbl.@0@ || exit 1; \

34 ${LIBTOOL_MODE_LINK} ${PURIFY} ${CC} -std=gnu99 ${CFLAGS} \
35 ${LDFLAGS} -1rt -o $@tmp2 $${BASEOBJS} $@-symtbl.@0@ \
36 $${LIBSO} ${NOSYMLIBS}; \

37 ${MKSYMTBL_PROGRAM} ${top_srcdir}/util/mksymtbl.pl \
38 -0 $@-symtbl2.c $@tmp2; \

39 done ; \

40 mv $@tmp2 $@; \

11 rm -f $@tmp0 $@tmp1 $@tmp2 $C-symtbl2.c; \
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fi

ECALoGIC Evaluation Cached Component Model

component BindCached
component function initial_checks()
component function access_level()
component function parse_request()
component function clientAllowed()
component function destinationsAllowed()
component function dns_view_attach()
component function signature_checks()
component function recursion_available()
component function prepare_gstart()
component function prepare_qfind()
component function query_getdb()
component function zone_checks()
component function setup_search()
component function dnsdb_find()
component function rpz_zones()
component function answer_found()
component function addauth()
component function cleanup()
component function query_send()

end component

uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses

6119794 energy 61862963

243769886 energy 2464188889
16942555 energy 171266667
1022591 energy 10337037
534195 energy 5400000
1069489 energy 10811111
2156565 energy 21800000
16061756 energy 16236296
9449902 energy 95525926
2003048 energy 20248148
18305888 energy 18504814
1794939 energy 18144444
5484842 energy 55444444
27566734 energy 278662963
682216 energy 6896296

16315297 energy 164925926
128587844 energy 1299851852
4842562 energy 48951852
185926606 energy 1879470370

time
time
time
time
time
time
time
3 time
time
time
8 time
time
time
time
time
time
time
time
time
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ECALocGic Evaluation Cached Memory Component Model

component BindCachedMem
component function initial_checks()
component function access_level()
component function parse_request()
component function clientAllowed()
component function destinationsAllowed()
component function dns_view_attach()
component function signature_checks()
component function recursion_available()
component function prepare_gstart()
component function prepare_qfind()
component function query_getdb()
component function zone_checks()
component function setup_search()
component function dnsdb_find()
component function rpz_zones()
component function answer_found()
component function addauth()
component function cleanup()
component function query_send()

end component

uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses

3586382 energy 0 time
142856423 energy 0 time
9928843 energy 0 time
599270 energy 0 time
313055 energy 0 time
626753 energy 0 time
1263812 energy 0 time
9412669 energy 0 time
5537925 energy 0 time
1173846 energy 0 time
10727797 energy 0 time
1051888 energy 0 time
3214281 energy 0 time
16154928 energy 0 time
399799 energy 0 time
9561251 energy 0 time
75356312 energy 0 time
2837886 energy 0 time
108958536 energy 0 time

ECALOGIC Evaluation Cached ECA source

import component BindCached
import component BindCachedMem

function iterate_viewlist(request,
index := length;
while index <> 0 bound length do

length)

client_allowed := BindCached::clientAllowed();

BindCachedMem::clientAllowed();

destaddr_allowed := BindCached::destinationsAllowed();
BindCachedMem: :destinationsAllowed();

if client_allowed = 1 and destaddr_allowed = 1

then
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else

end
end whil
end function

BindCached::dns_view_attach();
BindCachedMem::dns_view_attach();

index
if;
e;

:= index - 1

function bind(request, listlength)
ed::initial_checks();
BindCachedMem::initial_checks ();
BindCached::access_level ();
BindCachedMem::access_level ();
BindCached::parse_request();
BindCachedMem: : parse_request();

BindCach

iterate_viewlist(request, 1)

BindCached::signature_checks();

BindCachedMem: :signature_checks();

recursin

BindCached::recursion_available();

g =1

BindCachedMem: :recursion_available();
BindCached: :prepare_qgstart();
BindCachedMem: : prepare_qgstart();
BindCached: :prepare_qfind();
BindCachedMem: : prepare_qfind();
db := BindCached::query_getdb();
BindCachedMem: : query_getdb () ;

BindCached::zone_checks();
BindCachedMem: : zone_checks () ;
BindCached::setup_search();
BindCachedMem: :setup_search();

result

:= BindCached::dnsdb_find();

BindCachedMem: :dnsdb_find();
BindCached::rpz_zones();
BindCachedMem: :rpz_zones();

BindCached::addauth();
BindCachedMem: : addauth();
BindCached::cleanup();
BindCachedMem::cleanup();
BindCached:: query_send();
BindCachedMem: : query_send();

end function

function main(request, N)

bind(request,

end function

ND);

APPENDIX E. BIND

ECALocIic Evaluation UnCached Component Model

component Bind
component
component
component
component
component
component
component
component
component
component
component
component
component
component
component

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

initial_checks()
access_level ()
parse_request ()
clientAllowed()
destinationsAllowed()
dns_view_attach()
signature_checks()
recursion_available()
prepare_gstart()
prepare_qfind()
query_getdb()
zone_checks()
setup_search()
dnsdb_find()
rpz_zones()

uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses
uses

687895139
26420266139
4983914778
133878500
54408750
109037333
326562417
1951057472
2179940611
1141228111
2106516278
1122029333
880725611
5306007250
72618278

energy
energy
energy
energy
energy
energy
energy
energy
energy
energy
energy
energy
energy
energy
energy

69537037 time
2670737037 time
503807407 time
13533333 time
5500000 time
11022222 time
33011111 time
197225926 time
220362963 time
115362963 time
212940741 time
113422222 time
89029630 time
536366667 time
7340741 time
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17 component function dnsdb_attach() uses 130910750 energy 13233333 time
18 component function dnsdb_find2() uses 2321696472 energy 234692593 time
19 component function delegation_checks() uses 50598306 energy 5114815 time
20 component function recurse() uses 29828049194 energy 3015218519 time
21 component function answer_found() uses 4430227889 energy 447837037 time
22 component function addauth() uses 15507079972 energy 1567559259 time
23 component function cleanup() uses 865740306 energy 87514814 time
24 component function query_send() uses 3007360000 energy 304004025900 time

end component

E.8 ECALocIic Evaluation Uncached Memory Component Model

1 component BindMem

2 component function initial_checks() uses 4031271 energy 0  time
component function access_level() uses 154830639 energy 0 time
| component function parse_request() uses 29207227 energy 0 time
5 component function clientAllowed() uses 784568 energy 0 time
6 component function destinationsAllowed() uses 318852 energy 0 time
7 component function dns_view_attach() uses 638992 energy 0 time
8 component function signature_checks() uses 1913754 energy 0  time
9 component function recursion_available() uses 11433779 energy 0 time
10 component function prepare_gstart() uses 12775103 energy 0 time
11 component function prepare_qfind() uses 6687938 energy 0  time
12 component function query_getdb() uses 12344814 energy 0 time
1 component function zone_checks() uses 6575427 energy 0  time
14 component function setup_search() uses 5161315 energy 0  time
1 component function dnsdb_find() uses 31094785 energy 0 time
16 component function rpz_zones() uses 425565 energy 0 time
17 component function dnsdb_attach() uses 767177 energy 0 time
18 component function dnsdb_find2() uses 13605834 energy 0 time
19 component function delegation_checks() uses 296522 energy 0 time
20 component function recurse() uses 174801264 energy 0 time
21 component function answer_found() uses 25962457 energy 0 time
22 component function addauth() uses 90876113 energy 0 time
23 component function cleanup() uses 5073497 energy 0  time
24 component function query_send() uses 17624025396 energy 0 time

end component

E.9 ECALocIic Evaluation UnCached ECA source

I import component Bind
> import component BindMem

i function iterate_viewlist(request, length)
5 index := length;
6 while index <> 0 bound length do
7 client_allowed := Bind::clientAllowed();
8 BindMem::clientAllowed();
9 destaddr_allowed := Bind::destinationsAllowed();
10 BindMem::destinationsAllowed();

1
12 if client_allowed = 1 and destaddr_allowed = 1 then
1: Bind::dns_view_attach();

14 BindMem::dns_view_attach();

1 else

16 index := index - 1

17 end if;

18 end while;

19 end function

i function bind(request, N)

2 Bind::initial_checks();

3 BindMem::initial_checks();

! Bind::access_level();
BindMem::access_level ();

6 Bind::parse_request();

7 BindMem: : parse_request();
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29 iterate_viewlist(request, 1)

31 Bind::signature_checks();
32 BindMem::signature_checks ();

34 recursing := 1;

35 Bind::recursion_available();

36 BindMem::recursion_available();
37 Bind::prepare_qgstart();

38 BindMem: :prepare_qstart();

39 Bind::prepare_qgfind();

10 BindMem: :prepare_qfind();

11 db := Bind::query_getdb();

12 BindMem: : query_getdb () ;

44 Bind::zone_checks ();

15 BindMem::zone_checks () ;

46 Bind::setup_search();

17 BindMem: :setup_search();

48 result := Bind::dnsdb_find();

19 BindMem: :dnsdb_find();
50 Bind::rpz_zones();
51 BindMem: :rpz_zones();

53 // not found

54 if result = 1 then

55 Bind::dnsdb_attach();

56 BindMem: :dnsdb_attach();
57 Bind::dnsdb_find();

58 BindMem: :dnsdb_find();
59 result := 2;

60 else

61 end if;

63 // delegation

64 if result = 2 then

65 Bind::delegation_checks ();

66 BindMem::delegation_checks () ;
67 Bind::recurse();

68 BindMem::recurse();
69 recursing := 1;

70 else

7 end if;

while recursing <> 0 and result <> 5 bound N do
Bind::prepare_qfind();
BindMem: :prepare_qfind();

6 Bind::rpz_zones();

BindMem: :rpz_zones () ;

79 // not found

80 if result = 1 then

81 Bind::dnsdb_attach();

82 BindMem::dnsdb_attach();
83 Bind::dnsdb_find();

84 BindMem::dnsdb_find();

85 result := 2;

86 else

87 end if;

88

89 // delegation

90 if result = 2 then

91 Bind::delegation_checks();
92 BindMem::delegation_checks();
93 Bind::recurse();

94 BindMem::recurse();

95 recursing := 1;

96 else

97 // assume its been found
98 result := 5;

99 end if;

100 end while
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101

102
103
104
105
106
107
108
109
110
111

112
113

115
116
117
118

119

// answer found

if result = 5 then
Bind::answer_found();
BindMem::answer_found();

else

end if;

Bind::addauth();
BindMem: : addauth();
Bind::cleanup();
BindMem::cleanup();
Bind::query_send();
BindMem: : query_send();

end function

function main(request, N)

bind(request, N);

end function
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