
Radboud University Nijmegen
Faculty of Science

Master’s Thesis Computer Science

Kerckhoff’s Institute

IRMA Verified Assurer
Securely storing identity document chip data onto IRMA cards

Author: Supervisor:
G.A. Smelt prof. dr. B.P.F. Jacobs

Reader:
dr.ir. E. Poll

28th October 2015

Abstract

Selectively disclosing personal data in order to gain access to some type
of product or service can be achieved by covering the non-relevant parts
of one’s identity document. However the IRMA implementation is much
more secure and privacy-friendly. This requires the person to have pre-
viously obtained an identifying set of digital characteristics in order to
pass verification by a relying party. IRMA Verified Assurer is an ideal
method for new adopters of IRMA technology to obtain an initial set of
such attribute-based credentials by leveraging one’s identity document,
such as a passport. Due to the nature of IRMA such an initialization
is required to adhere to strict cryptographic rules. In this paper we de-
scribe the theory behind IRMA and passport security. Furthermore we
specify guidelines which such a protocol has to follow and we design the
Assurer protocol. We prove that the protocol is cryptographically secure
by translating it into a model written in the Pi Calculus and proving this
model using the ProVerif cryptographic protocol verifier.

ii

Contents

Contents iii

List of Figures iv

1 Introduction 1

2 Theory 3
2.1 IRMA . 3
2.2 Passport . 5
2.3 Usage scenario . 9

3 Goals 11
3.1 Attack scenarios . 12
3.2 Cryptographic properties . 14

4 Protocols 15
4.1 Transport Layer Security . 15
4.2 IRMA Assurer . 17

5 Formalisation 25
5.1 Discussion . 27

6 Conclusion 30
6.1 Future work . 30

A Model 32
A.1 Definitions . 32
A.2 Queries . 33
A.3 Server process . 34
A.4 Client process . 39
A.5 Initializer process . 43
A.6 System . 44

iii

iv LIST OF FIGURES

Bibliography 45

List of Figures

2.1 IRMA card . 5
2.2 Symbol to indicate a biometric passport 6
2.3 Dutch passport with a Machine Readable Zone 8

4.1 TLS Protocol Hierarchy . 15
4.2 TLS Handshake . 17
4.3 IRMA Assurer including TLS handshake 18

Chapter 1

Introduction

Consider a scenario where you have to legitimize yourself in order to purchase
a particular item such as a pack of cigarettes. The cashier is legally required
to check your identification to ensure you are not underage before allowing
you to purchase the items. Generally the customer presents some form of
identification to the cashier, such as a passport. The cashier then checks your
date of birth to ensure you are of legal age. In this process the cashier may also
learn your name, location of birth and the document number, among other
things. To some this feels like a breach of privacy and these individuals may
wish to share only their date of birth, but ideally just the property ‘of legal age’
with the cashier. This is what the IRMA card is designed to do. The name is
an acronym of I Reveal My Attributes and it is designed in such a way that
you can selectively disclose properties of yourself to select individuals. Before
you can use such a card you would need to add properties about your person
to it, called attributes, which can then be selectively disclosed to gain various
privileges, turning the attributes into attribute based credentials or ABCs. A
particularly good set of starting properties to use for generating ABCs are
the data stored in a person’s passport. For this reason, we have designed the
Assurer protocol.

The IRMA card has a lot of potential. There are many use cases the card could
improve upon. Assurer could potentially allow for a much quicker adaptation
of the IRMA card. The reason for this is that most people already have an
identity card or a passport that contains all their characteristics in one place.
Leveraging this in order to quickly gather many ABCs at once would be an
ideal way to allow newcomers to get started. The passport or identity card
generally holds the most generic characteristics, such as name, birthday, height
and sex, making its conversion into attributes have immediate visual result.

Assurer is a protocol designed to facilitate transfer these passport characterist-
ics to IRMA cards. In this paper we describe the steps taken during the design
process and provide proof it satisfies the goals set out for it. In this protocol

1

2 CHAPTER 1. INTRODUCTION

we identify three actors: the assurer, the verification and issuing server, and
the IRMA card. We will describe these further in chapter 2. The protocol is
used to convert personally identifiable information stored on a passport into
attribute based credentials that can be stored on an IRMA card. This is done
by first verifying the passport both locally and remotely, upon which a set of
attribute based credentials is generated for storing on the IRMA card. We
will explain the protocol in much more detail in chapter 2.3.

Over the course of this paper we use many terms the reader may not be fa-
miliar with. Furthermore, abstraction is sometimes favorable, thus we now
describe the meaning of certain terms that are used throughout this paper.
The IRMA Verified Assurer protocol, denoted ‘Assurer’ from this point on-
wards, makes use of tablets for the clients that connect to the server. We
will simply identify these tablets as ‘clients’ and similarly will refer to the
IRMA card simply as ‘card.’ The clients connect to a central server which
provides the clients with cryptographically signed attribute data, which we
will denote as attribute-based credentials (ABCs). There are many forms of
electronic identity documents (eIDs), such as a driver’s license, ID card or a
passport. For simplicity we will use the term ‘passport’ for all of these vari-
ations. Furthermore, authentication with respect to IRMA cards means the
card is presented to a terminal (e.g. in a supermarket) which verifies the card
user has the required attributes (e.g. age ≥ 18) for purchasing items (e.g.
alcohol).

The paper is structured as follows. We start with the theory behind the
technologies of IRMA and passports in chapter 2. Following that, in chapter 3
we state the goals that the protocol must satisfy and describe several attack
scenarios. Afterwards we delve into the specifics of the TLS protocol that the
Assurer protocol depends on, followed by the cryptographic assumptions we
made with Assurer in mind, and finally the protocol itself. This is found in
chapter 4. Next, in chapter 5 we describe the formalisation of the protocol as a
model in the Pi Calculus for verification using ProVerif and explain the various
implementation choices. Finally we discuss our findings and shortcomings and
provide a basis for future work in chapter 6. The model is listed in appendix A.

Chapter 2

Theory

This chapter describes the theory behind the two main actors of the pro-
tocol that Assurer aims to connect. We start by providing insight into the
IRMA ecosystem, followed by an overview of the electronic passport’s security
measures. Afterwards we sketch a typical run of the IRMA card application
process.

2.1 IRMA
Here we explain the background of the IRMA proofs. IRMA stands for I Re-
veal My Attributes, which is a reference to attribute-based credentials (ABC)
as described by [3, 9, 35]. ABCs (sometimes also referred to as anonymous cre-
dentials) are a way for people to share a part of their digital identity without
disclosing any other information irrelevant to the goal of authentication. A
digital identity is generally considered to be a set of characteristics describ-
ing particular properties about an individual. A distinction is made between
identifying and non-identifying ABCs. Identifying ABCs are typically date
of birth, name and social security number, whereas non-identifying ABCs
may include hair color or a favorite dish. Furthermore the set of ABCs is
context-dependent and dynamic [23]. For the IRMA protocol only the identi-
fying ABCs are relevant and use of the term ABC in the remainder of this
document will refer only to this type.

In addition to the property it describes, any ABC is required to contain two
additional basic attributes. First, an expiry date has to be determined at
issuance, and it is included as an attribute applying to the whole credential.
When the credential is verified, the expiry date can be revealed to confirm
validity. Second, each user has a master secret key, stored in the smart card’s
secure storage, which is also incorporated – technically, like an attribute – in
all credentials [3].

Before it is possible to make use of ABCs for identification these first have

3

4 CHAPTER 2. THEORY

to be provided by a third party, called an issuer. These issuers are parties
who are allowed to give out ABCs. Any issuer cannot simply give out any
ABC however. For example a bank may issue an ABC called ‘customer ID’
for people who are customers with that particular bank, but may not issue
credentials such as ‘date of birth’ for the same people, or any other people for
that matter. There are certain roles that issuers may assume and those they
may not. Issuers determine the particular attributes they give out, but are
verified by a scheme manager. Such a scheme manager effectively facilitates
purpose limitation and data minimization.

To summarize, the ecosystem distinguishes four roles:

1. Users are people who own a smart card that holds valid ABCs; validity
means that the ABCs on the card are valid for the card holder (and are
not expired).

2. Issuers are the authorities that sign credentials with attributes and
provide them to users. For instance, citizen registration authorities are
the obvious issuers of ‘over 18’ ABCs (and of many other ABCs as well)
and banks are authoritative issuers of bank account number ABCs.

3. Verifiers (also called relying parties) are the parties that verify a sub-
set of the available ABCs on a card in order to authorize a transaction.
An example verifier is a website that wants to verify the ABC ‘over 18’
before it allows viewing of a certain video online.

4. The scheme manager is an independent, non-profit organization that
sets the rules for the different parties (users, issuers and verifiers) and is
responsible for the software and smart card management.

Effectively an ABC can be seen as a secure container in which a characteristic
from one’s digital identity is stored. The attribute values are verified by issuer
to ensure they match the individual’s characteristics. Once a characteristic
is verified the issuer will cryptographically sign the corresponding attribute
and store it in the container. A municipality may for instance issue ABCs
that state your place of birth and date of birth, which can then be checked by
relying parties that require access to this information.

The benefit of using ABCs in favor of regular identification via say passports is
the fact that it allows for selective disclosure of characteristics. This enhances
the privacy of your (digital) identity by not revealing anything that is not
strictly necessary. Consider the following example. You wish to rent a movie
that contains violence. These movies typically require a minimum age. In the
Netherlands such movies require you to be at least 18 years of age. When you
wish to rent such a movie, the cashier asks you to prove you are at least 18

2.2. PASSPORT 5

years old. ABCs allow you to digitally tell the cashier that you are ‘at least
18 years old’ and are allowed to rent the movie. Note that the cashier never
learns your actual age.

As stated above the IRMA project makes use of these ABCs, but mainly
focuses on efficiency and practical issues when employing them [23]. All ap-
plicants receive a smart card that only features a photo of the card holder on
the front. No further personally identifiable information is visible on the card.

An IRMA (smart) card is the physical container of attribute-based credentials.
As you can see below, the card shows only a picture of its holder but no other
personal data. This is important for privacy and security reasons.

(a) Front (b) Back

Figure 2.1: IRMA card

1. Your photo enables others to verify that the card belongs to you.

2. In many situations it is not necessary to reveal your name or date of
birth. That’s why they are not printed on the card. However, the card
may contain these values digitally, stored as ABCs.

3. On the back of the card there is a card number. This number is only
used for card administration. For instance, when a new card is handed
over to a user, it is easy to find it based on this number.

4. The card number is not visible, but stored digitally inside the card.

2.2 Passport
The passport is a travel document issued by a country’s government that cer-
tifies the identity and nationality of its holder for the purpose of international
travel [10]. A biometric passport is an upgraded version that contains biomet-
ric information that can be used to authenticate the identity of travelers. This
information is stored on an embedded chip that can be read using contactless
smart card technology. Passports that feature such a chip generally feature

6 CHAPTER 2. THEORY

the symbol shown in figure 2.2 on the cover. The data stored on the passport
chip needs to be protected from modification, cloning, eavesdropping, etc. For
this purpose several protection mechanisms have been implemented. Each of
these mechanisms exists alongside each other and protects against different
types of attacks. This section provides a brief overview of the various secur-
ity protocols supported by passports, i.e. PA, BAC, PACE, SM and AA as
specified by ICAO as well as EAC as specified in by BSI [8, 20].

Passive Authentication
Passive Authentication (PA) is not actually a protocol. It simply indicates that
the chip makes use of digital signatures of its data. PA involves the terminal
reading the data and verifying both its hash and signature. PA is the only
‘protocol’ that is ICAO mandatory; all other protocols are optional [27].

Basic Access Control

Figure 2.2: Symbol
to indicate a biomet-
ric passport

Consider the case where a passport does not feature
an RF chip. In this scenario privacy of the pass-
port data is achieved by being able to keep the pass-
port closed so nobody can read its data. With the
addition of the RF chip this would no longer hold.
Anyone with an RF reader (often called a terminal)
is able to read the data on the chip if it is in close
proximity. The solution to this problem is to protect
the data with a key that the reader needs to know
before being allowed to read the data. This is how the Basic Access Con-
trol (BAC) protocol works. BAC is essentially not required to be used by
ePassports, but is strongly recommended. In the European Union however
the use of BAC is mandatory [20]. The key used for BAC is derived from
three properties of the passport.

1. The document number (usually 9 digits)

2. The date of birth (formatted YYMMDD in Dutch passports)

3. The document expiry date (formatted YYMMDD in Dutch passports)

These three properties are part of the Machine Readable Zone (MRZ) that is
printed in monospace at the bottom of the passport (see figure 2.3). Also part
of the MRZ is the Burger Service Nummer (BSN), which is equivalent to the
social security number and uniquely identifies a Dutch citizen, but this number
is not used for the key derivation for BAC. Combining the aforementioned
properties eventually results in the key with which the reader may access the
chip’s data. Keep in mind the MRZ is not visible while the passport is closed

2.2. PASSPORT 7

and cannot be obtained without opening the passport [21]. Strictly speaking
the MRZ could be obtained from the citizen database, but additional security
checks are in place before it can be accessed. The only method of transferring
the MRZ to the reader is for the reader to either utilize optical character
recognition (OCR) software or for the passport holder to manually enter the
information into the reader. In either case the MRZ is transmitted via an out
of band channel. After the key is used for authenticating the reader to the
passport, all further communication is performed via an encrypted channel
using a session key [20].

In some countries, e.g. the US, the chip is shielded by a very thin metal mesh
that is integrated into the cover of the passport [22]. This prevents readers
from accessing the chip without having the passport holder open his or her
passport first.

Supplemental Access Control

Supplemental Access Control (SAC) was introduced by ICAO in 2009 for
addressing BAC weaknesses. It was introduced as a supplement to BAC (for
keeping compatibility), but will replace it in the future. In principle it is a set
of security features, which specifies the Password Authenticated Connection
Establishment (PACE) protocol [20]. PACE is preferred over BAC if it is
implemented by a passport. It also derives the session key from the MRZ, but
also allows key derivation from the Card Access Number (CAN) that is also
present on the front of passports. The protocol uses a weak password (possibly
of low entropy), verifies the password, and generates cryptographically strong
session keys. It is mandatory from December 2014 onwards [16].

The PACE protocol comprises four steps:

1. The chip randomly chooses a random number, encrypts it with a key
derived from the password and sends the encrypted random number to
the terminal, where it is recovered.

2. Both the chip and the terminal use a mapping function to map the
random number to parameters for asymmetric cryptography.

3. The chip and the terminal perform a Diffie-Hellman protocol based on
the parameters generated during step 2.

4. The chip and terminal derive session keys, which are confirmed by ex-
changing and checking the authentication tokens.

8 CHAPTER 2. THEORY

Figure 2.3: Dutch passport with a Machine Readable Zone

Secure Messaging

The Secure Messaging (SM) protocol is used to protect the integrity and
confidentiality of the communication between terminal and chip. Essentially
the protocol sets up a secure channel, the key for which is agreed upon during
the BAC or PACE protocol. When also performing EAC, the CA part will
refresh the key (see below).

Extended Access Control

Starting in 2006 many countries added their citizens’ finger prints and iris
scans to the chip, by definition turning it into a biometric passport. In the
Netherlands finger prints used to be stored for identity cards as well, but this
decision was reverted and now only the passport holds the finger prints of
Dutch citizens [34]. The biometric data is a lot more sensitive than the data
protected by BAC, meaning it needs to be protected by stronger cryptography.
For this the Extended Access Control (EAC) protocol was developed and
added to the second generation of ePassports in 2009 [16]. Any reader that
has successfully performed BAC may subsequently perform EAC in order to
obtain access to the finger print and iris of the passport holder. EAC is
implemented in all new generation EU passports, but nowhere else.

EAC consists of two protocols, Chip Authentication (CA) and Terminal Au-
thentication (TA), both relying on a public key infrastructure in which certi-
ficates are issued to the passport as well as other governments for verification
purposes. The CA protocol is used for the terminal to authenticate the chip.
It is based on a secret key agreement and a successful run of the protocol
provides both parties with a new key for SM. The TA protocol is used for
authenticating the terminal to the chip and possibly increase access rights.
It actively verifies certificates. After both protocols have finished, mutual
authentication is achieved and a new secure channel is created.

2.3. USAGE SCENARIO 9

Active Authentication

Active Authentication (AA) is a challenge-response protocol that proves the
authenticity of the chip, verifying the chip has not been cloned. The chip
contains a private key, of which the chip proves knowledge during AA, and a
certificate for this key as signed by the passport issuing country. This protocol
is redundant when the passport also supports EAC, since the CA protocol also
(implicitly) proves knowledge of this private key [18]. This means that AA
is only useful in cases where passports do not support EAC, but still wish to
verify knowledge of the private key.

An example scenario of AA would be a passport that has a private key securely
embedded in its chip. The public counterpart of this key is then signed by
the passport’s producer, Morpho1 in the Netherlands. Morpho’s public key
is subsequently signed by the Dutch government, creating a certificate chain.
Sending a challenge to the chip, encrypted with its public key would allow
the chip to solve the challenge by decrypting it using its private key and thus
proving its identity to the terminal.

2.3 Usage scenario

This section describes the basic course of events when a citizen requests a
personal IRMA card and would like it to be initialized with his or her passport
information. Here we only mention assumptions of operational nature. Goals
and assumptions of cryptographic nature are discussed in chapter 4.2.

First of all we assume the citizen in question is an inhabitant of the Nether-
lands and is in possession of an electronic passport. The citizen will fill out an
online application form and enclose a photo in order to request a new IRMA
card. Once the application is received by the IRMA card manufacturer a new
IRMA card will be created. This card is blank, i.e. there are no ABCs on
the card. The application for this card, as well as the blank card itself, will
subsequently be forwarded to one of several dozens of assurers.

These assurers may be situated in a government building, for example in a
town hall, or they could be notaries, they might be something else entirely as
long as they are public figures who either directly or indirectly work for the
government. Assurers are in possession of a tablet device that contains a Near-
Field Communication (NFC) chip that allows for contactless communication
with the IRMA card. This tablet will be kept under lock and key in a safe and
is protected with a PIN in order to prevent unauthorized use. At each location
only one person (a few at most) will be in posession of this key and PIN. The
citizen will go to one of these assurers and present his or her passport to the

1http://www.morpho.com/

http://www.morpho.com/

10 CHAPTER 2. THEORY

tablet if the assurer confirms that the uploaded photo, which is printed on the
front of the IRMA card, matches the citizen.

The data on the passport is verified by the tablet and if confirmed to be valid
will be sent to a (the only) central server. The server repeats these checks
and also performs several additional checks to definitively verify the passport.
Such additional checks may include absence of this particular passport in the
database of stolen and lost passports. The server will then proceed to convert
the passport’s data into ABCs. These ABCs are cryptographically signed by
the server, who is the only party in posession of the private part of the only
attribute signing key pair, i.e. the issuer key pair. Once the passport data is
converted into ABCs the server sends them back to the assurer’s tablet. The
server keeps a log of the passport number plus the time of the request, but
deletes all other traces of the data (both passport and attribute) once it has
been received by the assurer’s tablet.

The ABCs are received by the tablet and the assurer asks the citizen to present
his or her IRMA card. The ABCs are subsequently written to the IRMA card
by the tablet. Upon successful transfer of the ABCs, all traces of the entire
transaction are deleted from the tablet. The citizen has now successfully added
the data from his or her passport to the newly created IRMA card.

Chapter 3

Goals

This chapter focuses on the goals of Assurer. We will describe the goals that
should be met by the protocol and are going to be verified by means of a
protocol prover. First and foremost, the protocol should ensure the clients
will be authenticated to the server and vice versa. These properties should
prevent susceptibility to man-in-the-middle attacks. Furthermore, both the
all application data sent between client and server should be secret and trust-
worthy. Moreover, the protocol should be resistant against replay attacks
targeting ABCs. Finally the protocol should be designed in such a way that
the connection to the server will not cause a denial of service.

To summarize the protocol should offer:

• authentication of client to server;

• authentication of server to client;

• integrity of passport data sent between server and client;

• confidentiality of passport data sent between server and client;

• integrity of ABCs sent between server, client and card;

• confidentiality of ABCs sent between server, client and card;

• resistance against replay attacks.

In addition, we wish to achieve perfect forward secrecy, meaning an attacker
cannot derive previous session keys even if private keys are obtained (see
chapter 3.1). This means we have to use cryptographically strong keys, which
also should be ephemeral.

Note that replay attacks are partly mitigated by policies surrounding the sys-
tem. For example, replaying of ABCs is only possible should an attacker have

11

12 CHAPTER 3. GOALS

access to the assurer’s tablet, which is kept in a safe and is inaccessible. To
improve upon this, implementations of the protocol should ensure it does not
allow or facilitate storing ABCs internally for repeated use. All ABCs should
be stored on the corresponding IRMA card and securely deleted immediately
after.

3.1 Attack scenarios
This section describes possible attack scenarios with respect to the goals de-
scribed above. These are attacks the protocol should be resistant against. The
possible impact of such an attack is described directly after the attack itself,
along with the likelihood of such an attack occurring.

• An attacker reads the passport data sent between client and server. This
attack causes personally identifiable information to be learned, leading
to a breach in confidentiality. This may be likely in the event weak
cryptography is used or if either party loses its key. However, because of
the requirement of perfect forward secrecy this issue is partly mitigated
(see section 3.1).

• An attacker modifies the passport data sent between client and server.
This attack causes the server to receive data inconsistent with the pass-
port data sent by the client, at worst leading to the issuance of ABCs
not corresponding to the passport. This can be mitigated, like the pre-
vious scenario, with the use of sufficiently strong cryptography, but is
still somewhat likely to occur with a powerful adversary.

• An attacker modifies signed ABCs. This attack causes the client to
receive incorrect ABCs, at worst leading to the issuance of ABCs not
corresponding to the passport. This is highly unlikely as it would require
the attacker to be able to sign the ABCs using the issuer’s private key
to keep relying parties from detecting the fraud.

• An attacker intercepts ABCs and stores it onto his own card. This
attack causes false issuance of ABCs, in turn leading to possible fraud.
This may be a likely scenario if the attacker controls the network and
is actively attacking the protocol. A mitigating factor is the fact the
attacker must first obtain access to the tablet, which as described is
kept under lock and key.

• An attacker submits forged passport data to the server. This attack
causes the server to possibly provide ABCs for fictitous people, in turn
leading to possible fraud. Because the server verifies all passport data
before providing ABCs, it may also be possible to query the server,
guessing correct personally identifiable information.

3.1. ATTACK SCENARIOS 13

• An attacker intercepts and later reuses ABCs already stored onto a card
for storing on another card. This attack causes the attacker to be able to
commit fraud. This is likely in the case where ABCs are not protected
against replay attacks. In Assurer we make use of nonces to ensure
timeliness, which should mitigate this issue.

• An attacker replays the sending of passport data to obtain another
identical set of ABCs. This attack effectively facilitates the cloning
of cards. Since the server is keeping a log of all of the ABCs that are
given out a simple lookup would reveal the replay attack, making this
an unlikely scenario.

• An attacker uses different ABCs from different people to authenticate.
This attack allows combining ABCs to achieve the required combination
for authentication. This is hardly an issue, due to the fact the IRMA
card features a photo that should resemble the authenticating person.
Adding to that the fact that switching cards midway would raise eye-
brows leads us to think this attack is unlikely to occur.

• An attacker causes a denial of service on the client. This may cause
clients to not receive the requested ABCs, causing them to restart the
process. This does not lead to a security risk.

• An attacker causes a denial of service on the server. This halts all activ-
ity surrounding the issuance of ABCs, but does not lead to a security
risk.

• An attacker shows up with someone else’s passport. At worst this could
cause incorrect ABCs to be placed onto an IRMA card, however this
is mitigated by verifying the photograph printed on the passport. In
order to pass this test the attacker has to forge the passport, which
is detected upon verification by either the client or the server. This
scenario is therefore unlikely.

• An attacker switches out the non-initialized IRMA cards before they
reach the assurer’s office. This also is a non-issue, because these cards
only contain a unique ID at this point in the process. This ID is not
used by the relying parties for verification of ABCs and therefore has no
impact on the security and privacy of the system.

Perfect Forward Secrecy
In key exchange protocols there is a property called Perfect Forward Secrecy
(PFS) that provides a more secure way of encryption with respect to every-
day session encryption, because the key is deleted immediately after use and
therefore cannot be stolen by an attacker or forced to be handed over by

14 CHAPTER 3. GOALS

the government in an attempt to decrypt intercepted traffic [11]. More spe-
cifically, the exposure of long-term keying material, used in the protocol to
negotiate session keys, does not compromise the secrecy of session keys estab-
lished before the exposure. This property is especially relevant to scenarios in
which exchanged session keys require secrecy protection beyond their lifetime,
such as in the case of session keys used for data encryption. This means it
is relevant in Assurer, since a lot of sensitive information is being transfered
and therefore needs to be kept secret.

The most common way to achieve PFS in a key-exchange protocol is by using
the Diffie-Hellman key agreement with ephemeral exponents to establish the
value of a session key, while confining the use of the longterm keys (such as
private signature keys) to the purpose of authenticating the exchange (see
authentication). One essential element for achieving PFS with the Diffie-
Hellman exchange is the use of ephemeral exponents which are erased from
memory as soon as the exchange is complete. This should include the erasure
of any other information from which the value of these exponents can be
derived such as the state of a pseudo-random generator used to compute these
exponents [24].

3.2 Cryptographic properties
To summarize the previous sections, the protocol should satisfy the following
cryptographic properties.

• Authenticity

• Accountability

• Confidentiality

• Integrity
• Availability

Chapter 4

Protocols

Assurer is an application-level protocol. It is designed to run on top of TLS 1.2.
Only the latest version of the TLS standard is considered cryptographically
secure and therefore is the only version Assurer supports. A second argument
for the use of version 1.2 is the possibility to achieve Perfect Forward Secrecy
(PFS), meaning that in case the long term key is ever compromised, then
the session keys derived from it before compromise are still secure [24]. This
chapter will first describe the TLS protocol, explaining the chosen parameters.
Assurer follows directly after.

4.1 Transport Layer Security

Figure 4.1: TLS Protocol Hierarchy

The Transport Layer Security (TLS)
protocol is a protocol operating on
the presentation layer of the OSI Ref-
erence Model [12]. It is a protocol
that secures the connection between
two parties across an insecure chan-
nel, ensuring secrecy [13]. It also
has the possibility for authentication
based on certificates. TLS is com-
monly used in web browsers to en-
crypt HTTP into HTTPS traffic, but
it is capable of protecting any TCP
connection [4].

TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier
TLS 1.1 specification. It was further refined in RFC 6176 in March 2011
removing their backward compatibility with SSL such that TLS sessions will
never negotiate the use of Secure Sockets Layer (SSL) version 2.0.

The protocol consists of two major parts, TLS Handshake and TLS Record.

15

16 CHAPTER 4. PROTOCOLS

Handshake is used for setting up connections between two parties, with op-
tional authentication, while Record is used for ordering, encrypting and send-
ing of the data. Handshake makes use of Record, so they work both alongside
as well as on top of each other (see figure 4.1).

TLS handshake
Figure 4.2 shows a schematic overview of the TLS handshake, copied from
RFC 5246 [13]. An asterisk indicates a step necessary for client-to-server au-
thentication. The handshake begins when a client connects to a TLS-enabled
server requesting a secure connection and presents a list of supported cipher
suites (ciphers and hash functions). From this list, the server picks a cipher
and hash function that it also supports and notifies the client of the decision.
The server usually then sends back its identification in the form of a digital
certificate. The certificate usually contains the server name, the trusted certi-
ficate authority (CA) and the server’s public encryption key. The client may
contact the server that issued the certificate (the trusted CA) and confirm
the validity of the certificate before proceeding. In order to generate the ses-
sion keys used for the secure connection, the client encrypts a random number
with the server’s public key and sends the result to the server. Only the server
should be able to decrypt it, with its private key. From the random number,
both parties generate a ’master secret’ and then negotiate a session key for
encryption and decryption.

The details about the underlying cryptographic functions selected for the
IRMA Assurer protocol, such as encryption and hashing functions will be
discussed later in chapter 4.2.

TLS record
The record protocol handles the sending and receiving of TLS related mes-
sages. It forms the basis of the TLS protocol. When sending, it will split
the data in blocks, optionally compress it, apply a MAC, encrypt the data,
add a fragment header and finally send the data over TCP port 443. When
receiving, it will decrypt the data, verify the MAC, optionally decompress,
defragment and finally deliver the data to the upper layer. Essentially this
protocol forms the secure channel between client and server [13].

Extensions
TLS also supports extensions. These are additional supported features, each
with its own specification [15]. These extensions can be used in either party’s
Hello message to indicate special wishes. This is useful to upgrade the TLS
connection to a more secure version by increasing the minimum recommended
cryptographic parameters. For example, TLS in its basic form is vulnerable

4.2. IRMA ASSURER 17

Client Server
------ -------
ClientHello -------->

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

<-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->

[ChangeCipherSpec]
<-------- Finished

Application Data <-------> Application Data

Figure 4.2: TLS Handshake

to a handshake renegotiation attack [4]. In essence an attacker may send ar-
bitrary data followed by a renegotiation intercepted from a regular client to
trick a server into believing the arbitrary data was sent by this client instead.
An extension has been developed to combat this, which is described in RFC
5746 [33]. We assume this extension to be used on every handshake performed
during runs of Assurer and do not explicitly mention it in the following sec-
tions.

4.2 IRMA Assurer

Assurer makes use of TLS 1.2 as described above. This means both the server
and the tablets will verify each other’s certificates and agree upon a session
key. Once a secure channel has been successfully set up, we have achieved
privacy and data integrity of all communication over this channel [13].

After the secure channel is established the application data is transferred
between client and server. This entails the sending of the passport data from
the client to the server, followed by the sending of ABCs from the server to
the client. Before passport data can be sent however, the client needs to read
the chip that is present in the passport using special software and hardware.
For the purpose of this protocol we assume the client has already performed
this action and has knowledge of the passport data.

Shown in figure 4.3 is the Assurer protocol using the informal Alice-Bob nota-
tion. Lines that are not numbered indicate an action outside of the scope of

18 CHAPTER 4. PROTOCOLS

the protocol or an assumption that needs to hold before the next line can be
executed. In this notation we denote the client by A and the server by B. Note
that the Active Authentication steps do not involve the client as it only for-
wards communication to and from the passport, denoted by P. Furthermore,
skP indicates the private key stored inside the passport and kAB is the key
that is agreed upon during the handshake.

[Citizen presents passport]
[Client performs PA]

1. A --> B: ClientHello
2. B --> A: ServerHello, Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone
3. A --> B: Certificate, ClientKeyExchange, CertificateVerify,

ChangeCipherSpec, {Finished}kAB
4. B --> A: ChangeCipherSpec, {Finished}kAB
5. A --> B: {{Passport, A, B, Na}kAB, #{Passport}kAB}kAB

[Server performs PA]
6. B --> A --> P: {Nb}kAB
7. P --> A --> B: {{Nb}skP}kAB

[Server verifies response to AA challenge]
8. B --> A: {{ABCs, A, B, Na}kAB, #{ABCs}kAB}kAB

[Client stores ABCs on IRMA card]

Figure 4.3: IRMA Assurer including TLS handshake

Assumptions
In this section we discuss the assumptions made with regard to Assurer. The
section is divided into two parts. The first section discusses assumptions on
the operational level and the second describes assumptions with respect to
cryptography.

Operational

Operational assumptions mostly focus on procedures that have to be followed
for the Assurer protocol to work. We reiterate some parts of the basic course
of events described in chapter 2.3 to make them explicit as assumptions.

The entire ecosystem in which Assurer operates can be described as a star
structure. At the center of the star will be the (only) server. The edges
(points) of the star are formed by the clients. Clients do not communicate with
each other, but only with the server. Each of these clients has their own NFC-
enabled tablet, which is locked up in a safe and PIN code protected to prevent
malicious use. By using an Android app installed on these tablets assurers
may access data on passport chips and IRMA cards. Upon client initialization

4.2. IRMA ASSURER 19

this app is installed on the tablet, as well as the fully qualified domain name
(FQDN) of the server. By using the FQDN the server has the option to switch
IP addresses without breaking the system. Also installed on the tablet are
a client certificate (signed by the server) required for authentication and its
corresponding private key. The server checks the certificate for validity and
also checks if it has not been revoked by accessing Certificate Revocation Lists
(CRL), which mitigates issues with stolen tablets or misuse. Finally the public
key of the server is installed for easy access.

Although subject to change, at the time of writing the communication between
IRMA card and terminal, i.e. tablet, is still being sent in the clear. Upon
reading data from a passport chip the integrity is verified by the client by
executing BAC and PA, and sent to the server for further analysis. The server
performs the same checks, plus AA, and looks up the person corresponding
to the data in a central database. If everything is proven to be valid the
server will create digitally signed attribute-based credentials that correspond
to the passport data. The server will then send these ABCs to the client,
who will in turn install them on the person’s IRMA card. Upon successful
installation onto the IRMA card, the ABCs are securely deleted from both
server and client. Furthermore, the passport data is securely deleted from
the server and client. However, the server does keep a log of the passport
number that was part of the attribute signing request sent by the client, along
with a timestamp. This facilitates traceability in case of anomalies. Finally,
we do not support TLS session resuming. This property allows clients to
send a stored session identifier to the server and then pick up where left off.
Supporting this weakens the strength of the TLS connection, in particular the
PFS property of TLS [37]. Since we wish to have PFS we do not allow session
resuming.

Cryptographic

Before going into the cryptographic choices regarding Assurer it is import-
ant to take a quick look at the transport layer used below. There are two
options, the User Datagram Protocol (UDP) and the Transport Control Pro-
tocol (TCP). We have chosen to make use of TCP for the transport layer
protocol. The main reason for this is that we require the packets to be de-
livered without packet loss. In other words, we favor TCP over UDP for its
high reliability [19]. Furthermore, it is best compatible with the TLS protocol
which we aim to use. Other arguments for choosing TCP include its data flow
control and packet reordering capabilities.

In order to achieve the goals described in chapter 3 several choices have been
made regarding the cryptography. What follows is an argumentation for the
decisions made for Assurer.

20 CHAPTER 4. PROTOCOLS

The guideline for choosing supported cipher suites is to offer perfect forward
secrecy. Any cipher suites that offer PFS capabilities have been selected,
while suites that do not are not selected. In principle, any public key en-
cryption scheme can be used to build a key exchange with PFS by using the
encryption scheme with ephemeral public and private keys [24]. This means
we have the option to use any public key infrastructure as long as we throw
away the keys when we are done using them. Furthermore, we can either
choose elliptic curve cryptography or conventional cryptography. Because we
wish to achieve mutual authentication both parties are required to exchange
certificates. These certificates must be of type X.509v3 in accordance with the
TLS specification [13]. The type of cryptography used for these certificates
may either be RSA or DSA. Generally, in terms of performance, neither is
significantly better than the other, meaning we support both.

As explained above we have chosen TLS 1.2 as basis for Assurer for its resist-
ance against publicly known feasible attacks, as well as for its Perfect Forward
Secrecy capabilities. This requires that the key generation for the encryption
scheme must be fast enough. For most applications this disqualifies, for ex-
ample, the use of ephemeral RSA public key encryption for achieving PFS,
since the latter requires the generation of two long prime numbers for each
exchange, a relatively costly operation [24]. For this reason we have selected
the Diffie-Hellman Key Exchange protocol. Furthermore because of the faster
key generation, better performance and shorter key length while still achieving
the same level of security we have chosen to use elliptic curves [30].

Since Assurer is to be used only on newly developed hardware and software it
is safe to use the newest cryptography; there should not be any compatibility
issues. Mozilla lists the following as the best choice for modern clients in their
documentation on server-side TLS [28]. The list is ordered from most recom-
mended to least recommended. An exclamation mark indicates a technique
which is forbidden.

Ciphersuite ECDHE-RSA-AES128-GCM-SHA256, ECDHE-ECDSA-AES128-GCM-
SHA256, ECDHE-RSA-AES256-GCM-SHA384, ECDHE-ECDSA-AES256-GCM-
SHA384, DHE-RSA-AES128-GCM-SHA256, DHE-DSS-AES128-GCM-SHA-
256, kEDH+AESGCM, ECDHE-RSA-AES128-SHA256, ECDHE-ECDSA-AES-
128-SHA256, ECDHE-RSA-AES128-SHA, ECDHE-ECDSA-AES128-SHA,
ECDHE-RSA-AES256-SHA384, ECDHE-ECDSA-AES256-SHA384, ECDHE-
RSA-AES256-SHA, ECDHE-ECDSA-AES256-SHA, DHE-RSA-AES128-SHA-
256, DHE-RSA-AES128-SHA, DHE-DSS-AES128-SHA256,DHE-RSA-AES-
256-SHA256, DHE-DSS-AES256-SHA, DHE-RSA-AES256-SHA, !aNULL,
!eNULL, !EXPORT, !DES, !RC4, !3DES, !MD5, !PSK

Versions TLSv1.1, TLSv1.2

4.2. IRMA ASSURER 21

RSA key size 2048

DH Parameter size 2048

Elliptic curves secp256r1, secp384r1, secp521r1 (at a minimum)

Certificate signature SHA-256

HSTS max-age=15724800

Note that this is the optimal configuration for Mozilla’s own servers providing
HTTPS connections, which explains the mention of HTTP Strict Transport
Security (HSTS). For the Assurer protocol we are only interested in cipher
suites supported in TLS 1.2, while making use of elliptic curves and Diffie-
Hellman, meaning we can safely ignore anything that is unrelated. Cross-
referencing this list of cipher suites with the list of elliptic curve and TLS 1.2
cipher suites described by the OpenSSL documentation yields the following
list of cipher suites supported by the Assurer, in descending order of prior-
ity [31]. These are named following IANA guidelines, which differs from the
naming convention used by Mozilla who use OpenSSL guidelines, but is in
correspondence with the RFC documents on TLS [32]. The blank lines in-
dicate Mozilla favors either one or more non-elliptic curves or cipher suites
incompatible with TLS 1.2 over the ones that follow.

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

There are many reasons for this particular ordering. We highlight the main
reasons below.

• Ciphers making use of ECDHE featuring AES in Galois Counter Mode
(GCM) are selected first. These are TLS 1.2 ciphers and not widely
supported at the moment. No known attack currently targets these
ciphers.

• PFS ciphersuites are preferred, with ECDHE first, then DHE.

22 CHAPTER 4. PROTOCOLS

• ECDHE provides faster handshakes than DHE [5, 25].

• AES128 is preferred to AES256, because it provides good security, is
really fast, and seems to be more resistant to timing attacks.

• SHA256 is favored over SHA384. This appears to be mainly for inter-
operability purposes.

Galois Counter Mode (GCM) is an Authenticated Encryption (AE) algorithm.
AE algorithms are designed to provide both data authenticity (integrity) and
confidentiality. Since both are goals of Assurer we favor GCM over CBC, but
do not require it explicitly.

For more information about the reasons behind this ordering please see the
Mozilla Wiki page on this subject [28]. In August 2015 the NSA has issued a
new version of their Suite B Cryptography document, in which they withdraw
P-256, SHA-256, and AES-128 in order to start the transition to quantum
resistant algorithms [29]. Mozilla however does not yet have an updated doc-
ument.

Diffie-Hellman parameters

Unfortunately, some widely used clients lack support for ECDHE and must
then rely on DHE to provide perfect forward secrecy. This is true for Android
< 3.0.0, Java < 7 and OpenSSL < 1.0.0, among others. Nowadays many, if
not all, devices run Android versions higher than 3.0.0, so we don’t expect to
see issues in this area. However the Java requirement could lead to issues when
implementing Assurer as an Android app, mainly because of the many IRMA-
related dependencies that such an app has to deal with. These dependencies
may not support Java 7 or 8 yet. Adding to that, Java 6 and 7 do not support
Diffie-Hellman parameters larger than 1024 bits. This has consequences for
the PFS requirement of Assurer. The only way a secure connection can be
achieved from a Java 6 client is to use DHE cipher suites and use 1024-bit
groups.

Use of the most widely used 1024-bit pre-computed Oakley group 2, stand-
ardized by the IETF [17], is considered unsafe, mainly because it is very likely
that a state-level adversary may have broken it. In any case it is recommen-
ded to generate a random DH group instead of using a standardized one when
setting up a new server [1].

CBC ciphers can be attacked with the Lucky Thirteen attack if the library is
not written carefully to eliminate timing side channels. This attack requires
multiple sessions and is possibly detectable due to the low volume of traffic
in Assurer. The attack is mitigated by use of a reasonably up-to-date crypto-
graphic library, i.e. a library released anytime after March 2013. Most of the

4.2. IRMA ASSURER 23

industry’s libraries have released patches throughout February 2013, which
probably makes this a non-issue for Assurer [2].

Logjam When choosing this list of supported cipher suites we have chosen
the “modern” preset described by Mozilla. This is especially important, be-
cause of the recently discovered Logjam attack on the Diffie-Hellman key
agreement, in particular within TLS, SSH and VPN connections [1]. Es-
sentially Logjam is a type of attack that allows an attacker to downgrade the
security of the connection to DHE export cipher suites. It is also possible to
attack weak (≤ 1024-bit) Diffie-Hellman groups by precomputing the group
and then using it for lookups. The short term solution for mitigating Logjam
attacks is for servers to disable export ciphers and use freshly generated groups
of 2048 bits or larger. Clients should no longer accept groups of sizes lower
than 1024 bits. In the long term however it is preferable to switch to elliptic
curve cryptography (ECC) and not allow any other cipher suites. This is be-
cause none of the attacks presented work against ECC. As described above
the Assurer protocol only makes use of a subset of the “modern” preset, which
in turn only makes use of ECC cipher suites, and therefore is not susceptible
to the Logjam attack.

Elliptic curves NIST has defined 15 standard curves [14]. However, in
practice, many implementations only support two of them, P-256 and P-384,
because that is what the NSA recommends. As seen above Mozilla recom-
mends to use at the very least P-256, P-384 and P-521. For Assurer we will
follow that recommendation.

Certificates

Each client posesses one certificate, signed by the server, with which it may
authenticate to the server. This occurs during the run of the TLS handshake
protocol. Furthermore each passport contains one certificate with which the
authenticity may be verified (see chapter 2.2).

Keys

The server owns two keypairs. The first keypair is used for signing and verific-
ation of certificates while the second one is used for the issuing and verification
of attribute-based credentials. A client only owns one keypair, which is used
for signing and verification of certificates. The server’s public key, used for
signing and verification, is pre-loaded onto the clients during their initializa-
tion, while the clients’ public keys are stored within the pre-loaded certificates.

The use of TLS 1.2 with the aforementioned cryptographic options for the
handshake will result in a symmetric session key held by both parties. From

24 CHAPTER 4. PROTOCOLS

this point onwards we therefore have a secure channel to use for application
data transfer.

Application data
All application data is protected with the session key as generated by the
TLS handshake protocol. This ensures the passport and ABCs are sent over
a secure channel. Once this channel has been established the client sends
the passport data, including both parties’ name and a fresh nonce, encrypted
with the session key. Note that this is the same session key negotiated by
the TLS handshake, meaning the passport data is essentially encrypted twice.
Passive Authentication is then performed by the server. This is a double-
check and consequently serves as verification that the client is not malicious.
As described in chapter 2.2 PA is ICAO mandatory and involves verification
of the hash stored in the SOD file to ensure data integrity. After the integrity
of the passport is verified the server continues with Active Authentication.
For this it sends a challenge to the passport via the client, which has to be
solved by the passport. The passport proves knowledge of a private key by
signing the AA challenge using this key, which can in turn be verified by the
server using the public key that was included with the passport data sent to
the server during PA.

After both PA and AA have been performed the server will proceed with
generating attribute-based credentials that resemble the passport data. These
ABCs are signed using the issuer key and combined with the names and nonce
received during PA. This data is then encrypted and an HMAC is computed,
both once again using the same session key, following which the data is sent to
the client. The client checks the HMAC and decrypts the data. If the nonce
and both parties’ name matches the client will store the ABCs on the IRMA
card. If the nonce does not match this may indicate a replay attack. If either
party’s name is incorrect this may indicate a man-in-the-middle attack. In
both cases no ABCs will be stored on the IRMA card and the protocol will
halt.

Chapter 5

Formalisation

In this chapter we describe the formalisation of the assumptions and use cases
into a model written in the Pi Calculus [26]. This model can be proven
to be cryptographically secure using ProVerif. We have chosen ProVerif for
its ability to automatically analyze the security of cryptographic protocols.
ProVerif is capable of proving reachability properties, correspondence asser-
tions, and observational equivalence. These capabilities are particularly useful
to the computer security domain since they permit the analysis of secrecy and
authentication properties. Moreover, emerging properties such as privacy,
traceability, and verifiability can also be considered. Protocol analysis is con-
sidered with respect to an unbounded number of sessions and an unbounded
message space. Moreover, the tool is capable of attack reconstruction: when
a property cannot be proved, ProVerif tries to reconstruct an execution trace
that falsifies the desired property [7].

The model we have constructed for Assurer is listed in appendix A. This
model is based on the TLS handshake model by Tankink and Vullers [36].
Their model makes use of RSA for the key exchange, but our model uses
Elliptic Curve Diffie-Hellman. Similarly to their model we make use of message
tagging, as is generally considered good practice. Furthermore, ProVerif has
trouble finding attacks on variables that are being computed instead of being
declared. Tankink and Vullers solve this by creating a new flag variable and
outputting this on the supposed-to-be secret. This way when an attacker is
able to obtain the flag, then he must have knowledge of the secret and an
attack trace can be found. Furthermore, we have added dead code checks to
the model. This helps determine if the model fails midway. Such a failure
is indicated by the fact that no falsification is found by ProVerif. Finally,
ProVerif appears to have a fixed limit on the amount of RAM that it may
use. It cannot allocate more than 2GB of RAM, even though plenty is still
available, and will consequently report a fatal error. To work around this it
is necessary to do all initialization of fresh names (denoted by new var in the

25

26 CHAPTER 5. FORMALISATION

model) at the beginning of both the client and server processes.

The model consists of three distinct phases. During the first phase the TLS
handshake protocol is executed. As explained before we make use of eph-
emeral Elliptic-Curve Diffie-Hellman (ECDHE) key agreement. This means
that in this protocol the only use for both parties’ keypair is the signing and
verification of messages sent during the key agreement. Because of the nature
of Diffie-Hellman, i.e. the Discrete Logarith Problem, it is not required to
encrypt the protocol parameters as they can be sent in the clear without risk
of an eavesdropper learning the agreed upon key. For authentication purposes
however, we do require these protocol parameters to be signed by the sending
party. This allows the receiving party to verify the identity of the sender
before starting an encrypted session [6, 13].

The second phase starts the actual Assurer application protocol, which takes
place over the encrypted channel for which the key was negotiated during the
TLS handshake of phase one. During this phase the passport is verified on
the client’s side by using passive authentication. This is done by checking the
hash stored in the Security Object file of all the data groups contained within
the passport. Once the client is confident that the integrity of the passport
holds it proceeds by sending the passport data, plus a fresh nonce, to the
server via the encrypted channel. The server will then also perform passive
authentication as a double-check. If the server agrees with the client on the
integrity of the passport, active authentication is performed. To do this, the
server sends a challenge to the passport, through the client, that the passport
has to solve. The passport has to sign this challenge in order to prove it
has knowledge of the embedded private key. During passive authentication
the server has obtained the passport’s public key, which is used to verify the
response to the challenge.

The third and final phase of the protocol is where the issuing of the attribute-
based credentials takes place. As mentioned before the server is the only party
that posesses the issuer private key. Every relying party, i.e. a terminal, for
example at a supermarket has knowledge of the issuer’s public key and is
therefore able to verify the signature placed on the ABCs. The issuer’s public
key is not used in this model, as attribute verification is not included in its
scope. The server creates ABCs and encrypts these, along with the nonce
sent by the client during phase two as well as both parties’ names, using the
session key and computes an HMAC over the result. The encrypted data
and its HMAC are sent to the client, which in turn verifies the HMAC and
decrypts the data. If the decrypted data is found to match the nonce and the
names of both parties, the client accepts the ABCs and stores them onto the
IRMA card and closes the session.

5.1. DISCUSSION 27

5.1 Discussion

Here we reflect on the details of the model. This reflection is split into two
parts: the handshake part and the Assurer part. For each part we first describe
the different functions we use throughout the model, followed by a description
of the queries and finally the parties involved. Should the reader not have
experience with ProVerif, we would recommend familiarizing oneself with the
basics in order to better understand this section [7].

The functions we use for this model are fairly straightforward, apart from
the key derivation functions. First of all is the hash function which used for
both verification of the client’s signature and integrity of the finished mes-
sages. The hmac function is used to ensure integrity of both passport data and
ABCs. We also have encrypt and decrypt functions, which are symmetric
and use the generated session key. This model does not use assymmetric cryp-
tography for encryption and decryption. It does however use key pairs and
certificates, generated by the keypair and cert functions respectively, but
these are used for signing and verification of the Diffie-Hellman parameters
sent by the server. The public and private parts of a key pair are obtained
using the pk and sk functions respectively. It is also important to note that
the verify function does not actually verify a message that was signed, but
rather retrieves the public key that is included in the certificate. For actually
removing the signature and verifying the message the unsign function is used.

Furthermore. we have a pseudo-random number function PRF which results
in an initialization vector when provided with the master secret. With this
initialization vector and the functions clientK and serverK the client and
server derive the session key respectively.

Finally we have the Diffie-Hellman functions G and sm. The G function is
essentially not a function, but a constant instead and represents the gener-
ator point of the finite cyclic group of points on the elliptic curve. The sm
function represents scalar multiplication. The modulus is abstracted from in
this computation, as it proves to be a large challenge in Pi Calculus, and can
be left implied without consequences for the correctness of the model. The
equation defines the relation between the generator point of the group and
the coefficients, and results in a usable key agreement scheme.

The query section describes the goals that must be met after checking it with
ProVerif. These directly reflect the goals we set in chapter 3. First we state
that an attacker may not learn Sa and Sb, which are flags that both A and B
output on the newly generated secure channel s, which in turn is encrypted
using the key agreed upon during the execution of the handshake.

The next set of queries state that an attacker may not learn PMSa, PMSb, MSa
and MSb. These are four flags, half of which are output by both A and B within

28 CHAPTER 5. FORMALISATION

the model to allow ProVerif to check that the attacker cannot learn the Pre-
Master Secret (PMS) and the Master Secret (M), respectively. These constraints
ensure an attacker cannot decrypt the traffic sent over the encrypted channel.

For the application data we have two more queries to be proved by ProVerif.
We add two new flags, passportFlag and abcFlag, which are used to prove
secrecy of the sent passport data and ABCs respectively.

Furthermore we check for the secrecy of the Finished messages sent at the
end of the handshake by both parties. These messages are already encrypted
with the generated session key and for an attacker to have knowledge of the
plaintext would mean the channel is not secure.

Next we check the authentication status for both client and server, as we
require mutual authentication. This is achieved by ensuring the events end-
ServerAuth and endClientAuth must always are being preceded by the events
beginServerAuth and beginClientAuth respectively. These are injective
queries, which means that all end-events must be preceded by exactly one
begin-event, but it is not required that all begin-events lead to an end-event.
For the queries in our model this means that whenever we observe an end-
event, and thus assume a party to have authenticated to another, then there
must have been a session in which the other party has generated a begin-event.
As stated previously, this satisfies mutual authentication between both parties
when both queries hold.

In addition to the mutual authentication we also wish to check Passive Authen-
tication and Active Authentication. For this reason we have added two more
of such injective queries. Finally the last injective query (beginTransaction
and endTransaction) ensures that no ABCs can ever be sent before a client
requests them.

Finally, we use two queries to ensure the entire model correctly executes.
Essentially the output of serverFinished and clientFinished on a public
channel serves as a dead code check. This query must hold, for if it does
not then none of the other queries can be considered to have been proved
succesfully, since the model has not been verified fully.

Both the server and the client process have been designed to closely re-
semble the specifications of RFC 5246 [13]. Differences include message tag-
ging, as mentioned before, for easier reading and ensuring correct execution
of the model. The server process also features replication, which allows for
multiple parallel runs of the process, in turn allowing the server to accept
sessions from multiple clients. This represents the star-architecture of the
client-server connections. Note that a client process will always initiate the
TLS handshake, since it is the client who requests passport data to be turned
into ABCs. Another important difference from the specification is that at the

5.1. DISCUSSION 29

end both processes output the flags mentioned above onto a public channel to
allow for secrecy and dead code checks.

The system shows the client process creates a passport object from a Da-
taGroup, which is the internal representation of a passport’s data. There are
16 of these DataGroups in total, one of which (DG15) is used for storing the
public key of the passport. In our model we have simplified this to a single
DataGroup and have created a separate variable to contain the keypair, the
public part of which is otherwise stored in DG15. These abstractions are
simply to allow for less variables and thus faster verification, without impact-
ing the security proofs. The passport sent to the server therefore contains the
DataGroups, a hash of these DataGroups called the Security Object (SOD
file) and the public key. Also sent along are both parties’ names and a nonce.
This passport is protected by an HMAC generated using the session key.

Upon receiving the passport the server checks the hash and thus performs
Passive Authentication (PA). Only after PA is performed will the server pro-
ceed with Active Authentication. This simply involves the server generating
a nonce (challenge) the passport has to sign (response) to prove it has the
secret key corresponding to the public key within the passport.

After both PA and AA are complete the server proceeds by creating ABCs.
In the model it creates a single characteristic named Char and signs it using
the issuer key. The attribute data is then encrypted along with both parties’
names and the previously received nonce. This is then sent to the client along
with another HMAC generated using the session key. Upon receiving this
the client checks the nonce and the names. At the end of both processes the
parties output another flag to verify an attacker cannot obtain the passport
data or the ABCs, as well as output the dead code check. Once again, if the
dead code check does not pass, the proof of all other queries does not hold.

Apart from the aforementioned two processes there is also the initializer
process that is not part of the TLS specification. This process handles the
task of setting up keypairs and certificates for both client and server. This
initialization takes place on separate (secure) channels, to mimic the pre-
loading of certificates and keypairs that takes place when a person applies for
a new IRMA card as well as the first (and only) time the server is being set up.
It also initializes the server process with a secondary key pair used for issuing
of ABCs. This issuer key pair is sent over yet another private channel to make
sure the server process cannot mistake one for the other. To ensure ProVerif
has all available non-secret parameters we let the initializer process publish
those to a public channel, otherwise some attacks may not be discovered.

Chapter 6

Conclusion

We have developed Assurer, a protocol for migrating personally identifiable
information from identity documents to attribute-based credentials on IRMA
cards. For this we have set several cryptographic goals and made assumptions
regarding the use of the protocol. The protocol should satisfy authenticity,
accountability, confidentiality, integrity and availability.

We have set out to prove these goals hold under the assumptions made, a task
for which it is required to create a model of our protocol in the Pi Calculus
and subsequently verify it using the ProVerif cryptographic protocol verifier.
The creation of such a model has proven to be an error-prone task, mainly due
to the limited amount of available literature on the subject, but also due to
memory limitations of the software used. Thankfully, with the help of Jerry
den Hartog, assistant professor in the security group at Eindhoven University
of Technology, as well as Bruno Blanchet, head of research at the INRIA
research institution, it was possible to overcome these issues.

Using ProVerif we have provided proof that all of our goals, save availability,
are met by the protocol. Since availability in our case constitutes only of the
rule that clients must not cause an amount of traffic sufficiently high as to
cause a denial of service on the server side. Unlike the other goals this is not
really a cryptographic requirement, but instead more of a usability require-
ment, meaning we cannot use ProVerif for proof that this goal is satisfied.

6.1 Future work
The client in this protocol performs the task of storing the ABCs received
from the server on a citizen’s IRMA card. While several checks are performed
to ensure honesty of clients this may still be undesirable. One would probably
wish for less possible interference with the ABC data. Future work on this
protocol might focus on making the transaction process of ABCs more opaque
to the client, who would then only serve as a non-transparent tunnel through

30

6.1. FUTURE WORK 31

which the data is flowing. This in turn would mean the IRMA logic has to be
moved from the client to the server, undoubtedly presenting new challenges.

Furthermore, at the time of writing the communication between IRMA card
and the terminal is still being sent in the clear, i.e. without any cryptography.
A valueable addition obviously would be to improve upon this area by cre-
ating a secure channel, which in fact would be a requirement for making the
transaction process opaque as described above.

Finally one might wish to use this protocol for a software implementation.
Due to the nature of IRMA and its implementations it is advisable to use
Java for this. I have developed a prototype implementation of the protocol in
order to get a good feel for the issues at hand. This implementation however
remains unfinished, because it is now partly obsolete with the availability of
IRMA’s self-enrollment option via smart phones.

Appendix A

Model

A.1 Definitions

(* A public channel *)
free net.

(* Message tags *)
free ClientHello, ClientCertificateRequest, ClientCertificate,

ClientKeyExchange, CertificateVerify, ClientChangeCipher-
Spec, ClientFinished.

free ServerHello, ServerCertificate, ServerKeyExchange, Server-
HelloDone, ServerChangeCipherSpec, ServerFinished.

free ClientPassport, ActiveAuthenticationChallenge,
ActiveAuthenticationReponse.

(* Agent initialization is done over a private channel *)
private free clientInit, serverInit, initChannel.

(** Initialization functions **)
(* Generating certificates for agents *)
private fun cert/2.
(* Generating assymmetric keypairs for agents *)
private fun keypair/1.

(** The cryptographic constructors **)
fun hash/1. (* Hashing *)
fun hmac/2. (* Keyed-hash message authentication code *)
fun encrypt/2. (* Symmetric key encryption *)
fun sign/2. (* Public key signing *)
fun sk/1. (* Extracts secret key of a keypair *)
fun pk/1. (* Extracts public part of a keypair *)

32

A.2. QUERIES 33

(** The cryptographic destructors **)
(* symmetric key decryption *)
reduc decrypt(encrypt(x, y), y) = x.
(* signature verification *)
reduc unsign(sign(x, sk(y)), pk(y)) = x.
(* verification of the agent as owner of the

key and retrieving the key from the certificate *)
reduc verify(cert(x, y), x) = y.

(* Pseudo-random-number function for generating TLS session key
randomness *)

fun PRF/1.

(* Symmetric key construction *)
fun clientK/3.
fun serverK/3.

(* Diffie-Hellman computations *)
fun G/0. (* Generator point of the group *)
fun sm/2. (* Scalar multiplication *)
(* Equality property: x × yG = y × xG *)
equation sm(y, sm(x, G)) = sm(x, sm(y, G)).

A.2 Queries

(* secrecy secure channel *)
private free Sa.
private free Sb.
query attacker: Sa.
query attacker: Sb.

(* secrecy passport *)
private free passportFlag.
query attacker: passportFlag.

(* secrecy ABCs *)
private free abcFlag.
query attacker: abcFlag.

(* secrecy Pre Master secret *)
private free PMSa.
private free PMSb.

34 APPENDIX A. MODEL

query attacker: PMSa.
query attacker: PMSb.

(* secrecy Master secret *)
private free MSa.
private free MSb.
query attacker: MSa.
query attacker: MSb.

(* secrecy Finished messages *)
private free FinishedAFlag.
query attacker: FinishedAFlag.
private free FinishedBFlag.
query attacker: FinishedBFlag.

(* authenticity of the server *)
query evinj: endServerAuth(x, y, z) =⇒ evinj: beginServer-
Auth(x, y, z).

(* authenticity of the client *)
query evinj: endClientAuth(x, y, z) =⇒ evinj: beginClient-
Auth(x, y, z).

(* Passport checks *)
query evinj: endPassiveAuth(x, y, z) =⇒ evinj: beginPassive-
Auth(x, y, z).
query evinj: endActiveAuth(x, y, z) =⇒ evinj: beginActive-
Auth(x, y, z).

(* ABC transaction check *)
query evinj: endTransaction(x, y, z) =⇒ evinj: beginTrans-
action(x, y, z).

(* Dead code check *)
private free clientFinished.
private free serverFinished.
query attacker: clientFinished.
query attacker: serverFinished.

A.3 Server process

let Server =
(** Start of initialization **)

A.3. SERVER PROCESS 35

(* B receives initial agent data over a trusted channel *)
in(serverInit, (B, serverKeypair, serverCert));

(* B receives the issuer keypair over another trusted channel,
double checking to make sure it is in fact intended for B *)

in(initChannel, (=B, issuerKeypair, issuerCert));

(* B retrieves the secret keys from both keypairs *)
(* Secret key used for communication *)
let SKs = sk(serverKeypair) in
(* Secret key used for signing of attributes-based credentials *)
let SKi = sk(issuerKeypair) in

(** End of initialization **)

(** Start of TLS handshake **)

(* Replication to model arbitrary sessions *)
!

(* B receives ClientHello from A *)
in(net, CH); let (=ClientHello, A, Na, SupportedOptions) = CH in

(* B generates fresh nonce Nb *)
new Nb;

(* B creates a new characteristic, such as "student" or "male" *)
new Char;

(* B picks a cipher suite and compression method from
SupportedOptions received from A *)

new SelectedOptions;

(* B sends ServerHello to A *)
let SH = (ServerHello, B, Nb, SelectedOptions) in out(net, SH);

(* B sends ServerCertificate to A *)
let SC = (ServerCertificate, serverCert) in out(net, SC);

(* B generates Diffie-Hellman Key Exchange parameters *)
new p; (* Prime modulus *)
new n; (* Order of generator point G *)
new h; (* Cofactor *)

36 APPENDIX A. MODEL

new a; (* Elliptic curve parameter 1 *)
new b; (* Elliptic curve parameter 2 *)
new beta; (* Server's secret multiplier *)

(* B sends ServerKeyExchange to A, featuring all public ECDHE
parameters *)

let SKE = (ServerKeyExchange, p, a, b, G, n, h, sm(beta, G),
sign((Na, Nb, p, a, b, G, n, h, sm(beta, G)), SKs)) in out(net,
SKE);

(* B creates a list of acceptable certificate types and CAs *)
new Acceptable_certificate_types;
new Acceptable_certificate_authorities;

(* B sends ClientCertificateRequest to A *)
let CCR = (ClientCertificateRequest, Acceptable_certificate_
types, Acceptable_certificate_authorities) in out(net, CCR);

(* B sends ServerHelloDone to A *)
let SHD = ServerHelloDone in out(net, SHD);

(* B receives ClientCertificate from A *)
in(net, CC); let (= ClientCertificate, clientCert) = CC in

(* B receives ClientKeyExchange from A, containing the remaining
ECDHE parameters *)

in(net, CKE); let(= ClientKeyExchange, AG) = CKE in

(* B receives CertificateVerify from A *)
let unsignKey = verify(clientCert, A) in
in(net, CV); let (=CertificateVerify, cvHash) = unsign(CV, un-
signKey) in

(* B verifies client signature *)
let = cvHash = hash((CH, SH, SC, SKE, CCR, SHD, CC, CKE)) in

(** End of Client authentication **)
event endClientAuth(A, B, cvHash);

(* B calculates the Pre-Master Secret *)
let PMS = sm(beta, AG) in

(* B receives ClientChangeCipherSpec from A *)
in(net, CCCS); let = ClientChangeCipherSpec = CCCS in

A.3. SERVER PROCESS 37

(* B receives Finished from A *)
in(net, FA);

(* B calculates the Master secret *)
let M = PRF((PMS, Na, Nb)) in

(* B calculates Finished *)
let Finished = hash((CH, SH, SC, SKE, CCR, SHD, CC, CKE, CV,
CCCS, M)) in

(** Start of Server authentication **)
event beginServerAuth(A, B, Finished);

(* B sends ServerChangeCipherSpec to A, indicating intention to
switch to the encryption negotiated above *)

let SCCS = ServerChangeCipherSpec in out(net, SCCS);

(* B sends Finished to A *)
out(net, encrypt(Finished, serverK(Na, Nb, M)));

(* B verifies received Finished *)
let = Finished = decrypt(FA, clientK(Na, Nb, M)) in

(** End of TLS handshake **)

(** Start of application data **)

(* B creates a new channel secured with the newly agreed upon
session key *)

new s;

(* B sends the channel to A after encrypting *)
out(net, encrypt(s, serverK(Na, Nb, M)));

(** Start of application data **)

(* B receives the encrypted passport and HMAC from A *)
in(s, CP); let (=ClientPassport, EP, HP) = CP in
(* B decrypts the passport data *)
let DP = decrypt(EP, clientK(Na, Nb, M)) in
(* B verifies the HMAC *)
let = HP = hmac(EP, clientK(Na, Nb, M)) in
(* B verifies the participants and stores the nonce *)

38 APPENDIX A. MODEL

let (Passport, = A, = B, Nonce) = DP in
(* B stores passport data, public key and hash *)
(* Note: If BAC is required, everything is inaccessible until BAC

is performed *)
(* We assume BAC is performed once we get to this part *)
let (DG, SOD, PKp) = Passport in

(* B performs Passive Authentication *)
let = SOD = hash(DG) in

event endPassiveAuth(A, B, Passport);

(** Start of Active Authentication **)

(* B creates a challenge *)
new AAC;

event beginActiveAuth(A, B, AAC);

(* B sends ActiveAuthenticationChallenge to A *)
out(s, (ActiveAuthenticationChallenge, AAC));

(* B receives ActiveAuthenticationResponse from A *)
in(s, AAR); let (=ActiveAuthenticationReponse, AAResp) = AAR in

(* B verifies that it is in fact the correct solution to the
challenge *)

let = AAC = unsign(AAResp, PKp) in

(** End of Active Authentication **)
event endActiveAuth(A, B, AAC);

(** Start of ABC logic **)

(* B signs the characteristic, turning it into an ABC,
using the issuer's private key *)

let ABC = sign(Char, SKi) in

event beginTransaction(A, B, ABC);

(* B creates attribute data (AD) containing the credential,
participants and the previously received nonce *)

let AD = (ABC, A, B, Nonce) in

A.4. CLIENT PROCESS 39

(* B encrypts the attribute data (EA) *)
let EA = encrypt(AD, serverK(Na, Nb, M)) in

(* B generates the HMAC of the encrypted attributes (HA) *)
let HA = hmac(EA, serverK(Na, Nb, M)) in

(* B combines both parts and sends the message to A *)
let ABCdata = (EA, HA) in out(s, ABCdata);

(** End of ABC logic **)

(** End of application data **)

(* Secrecy checks *)
(
(* secrecy check on the secure channel *)
(out(s, Sb)) |

(* secrecy of ABC data *)
(out(ABCdata, abcFlag)) |

(* secrecy check on the Master secret *)
(out(M, MSb)) |

(* secrecy check on the Pre-Master Secret *)
(out(PMS, PMSb)) |

(* secrecy check on the finished **)
(out(Finished, FinishedBFlag)) |

(* dead code check *)
(out(net, serverFinished))

).

A.4 Client process

let Client =
(** Start of initialization **)

(* A receives initial agent data over a trusted channel *)
in(clientInit, (A, B, clientKeypair, clientCert));

(* A extracts the secret key from the keypair *)

40 APPENDIX A. MODEL

let SKc = sk(clientKeypair) in

(** End of initialization **)

(** Start of TLS handshake **)

(* A generates fresh nonce Na *)
new Na;

(* A lists supported cipher suites and compression methods *)
new SupportedOptions;

new Np; (* A generates fresh nonce for passport communication *)
new P; (* A creates passport agent (required for the model) *)
new DG; (* A creates the DataGroups *)
let SOD = hash(DG) in (* Contains hashes of all DG values *)
let passportKeypair = keypair(P) in
let Passport = (DG, SOD, pk(passportKeypair)) in

(* A sends ClientHello to B *)
let CH = (ClientHello, A, Na, SupportedOptions) in out(net, CH);

(* A receives ServerHello from B *)
in(net, SH); let (=ServerHello, =B, Nb, SelectedOptions) = SH in

(* A receives ServerCertificate from B *)
in(net, SC); let (=ServerCertificate, serverCert) = SC in

(* A receives ServerKeyExchange from B and stores parameters *)
in(net, SKE); let (=ServerKeyExchange, p, a, b, =G, n, h, BG,
DHSignature) = SKE in

(* A retrieves the server's public key from its certificate *)
let unsignKey = verify(serverCert, B) in

(* A checks the signature on the parameters to ensure the message
was really sent by B *)

let (=Na, =Nb, =p, =a, =b, =G, =n, =h, =BG) = unsign(DHSignature,
unsignKey) in

(* A receives ClientCertificateRequest from B *)
in(net, CCR); let (=ClientCertificateRequest, Acceptable_certifi-
cate_types, Acceptable_certificate_authorities) = CCR in

A.4. CLIENT PROCESS 41

(* A receives ServerHelloDone from B *)
in(net, SHD); let = ServerHelloDone = SHD in

(* A sends ClientCertificate to B *)
let CC = (ClientCertificate, clientCert) in out(net, CC);

(* A generates a new secret multiplier *)
new alpha;

(* A sends ClientKeyExchange to B *)
let CKE = (ClientKeyExchange, sm(alpha, G)) in out(net, CKE);

(* A creates a hash of the past messages *)
let cvHash = hash((CH, SH, SC, SKE, CCR, SHD, CC, CKE)) in

(** Start of client authentication **)
event beginClientAuth(A, B, cvHash);

(* A sends CertificateVerify to B *)
let CV = sign((CertificateVerify, cvHash), SKc) in out(net, CV);

(* A computes the pre-master secret (X × YG) *)
let PMS = sm(alpha, BG) in

(* A computes the master secret *)
let M = PRF((PMS, Na, Nb)) in

(* A sends ClientChangeCipherSpec, indicating intention to switch
to the encryption negotiated above *)

let CCCS = ClientChangeCipherSpec in out(net, CCCS);

(* A computes Finished using the hash function *)
let Finished = hash((CH, SH, SC, SKE, CCR, SHD, CC, CKE, CV,
CCCS, M)) in

(* A sends Finished to B *)
out(net, encrypt(Finished, clientK(Na, Nb, M)));

(* A receives ServerChangeCipherSpec from B, indicating a switch
to the encryption negotiated above *)

in(net, SCCS); let = ServerChangeCipherSpec = SCCS in

(* A receives Finished from B *)
in(net, FB);

42 APPENDIX A. MODEL

(* A verifies received finished *)
let = Finished = decrypt(FB, serverK(Na, Nb, M)) in

(** End of server authentication **)
event endServerAuth(A, B, Finished);

(** End of TLS handshake **)

(* A receives the secure channel created by the server *)
in(net, newChannel); let s = decrypt(newChannel, serverK(Na, Nb,
M)) in

(** Start of application data **)

(** Start of Passive Authentication **)
event beginPassiveAuth(A, B, Passport);

(* A encrypts the passport using the session key *)
let EP = encrypt((Passport, A, B, Np), clientK(Na, Nb, M)) in

(* A computes the HMAC of the encrypted passport,
again reusing the session key *)

let HP = hmac(EP, clientK(Na, Nb, M)) in

(* A combines both parts and sends the combined message *)
let CP = (ClientPassport, EP, HP) in out(s, CP);

(** Start of Active Authentication **)

(* A receives a challenge from B *)
in(s, AAC); let (= ActiveAuthenticationChallenge, Ch) = AAC in

(* A sends the response to the AA challenge *)
let AAR = (ActiveAuthenticationReponse, sign(Ch, sk(passport-
Keypair))) in out(s, AAR);

(** End of Active Authentication **)

(** Start of ABC logic **)

(* A receives the combined message from B *)
in(s, ABCs); let (EA, HA) = ABCs in

A.5. INITIALIZER PROCESS 43

(* A checks the HMAC *)
let = HA = hmac(EA, serverK(Na, Nb, M)) in

(* A decrypts the Attribute Data (AD) *)
let AD = decrypt(EA, serverK(Na, Nb, M)) in

(* A verifies the participants and nonce and stores the ABC(s) *)
let (ABCdata, = A, = B, = Np) = AD in

event endTransaction(A, B, ABCdata);

(** End of ABC logic **)

(** End of application data **)

(** Secrecy checks **)
(
(* secrecy of secure channel *)
(out(s, Sa)) |

(* secrecy of passport data *)
(out(CP, passportFlag)) |

(* secrecy check on the Master secret *)
(out(M, MSa)) |

(* secrecy check on the Pre-Master Secret *)
(out(PMS, PMSa)) |

(* secrecy check on the Finished message *)
(out(Finished, FinishedAFlag)) |

(* dead code check *)
(out(net, clientFinished))

).

A.5 Initializer process

let initializer =
(* Generate agent names (unique) *)
new C;
new S;

44 APPENDIX A. MODEL

(* Generate keypairs *)
let clientKeypair = keypair(C) in
let serverKeypair = keypair(S) in
let issuerKeypair = keypair(S) in

(* Generate certificates *)
let clientCert = cert(C, pk(clientKeypair)) in
let serverCert = cert(S, pk(serverKeypair)) in
let issuerCert = cert(S, pk(issuerKeypair)) in
(

(* Initialize agents *)
out(clientInit, (C, S, clientKeypair, clientCert)) |
out(serverInit, (S, serverKeypair, serverCert)) |
out(initChannel, (S, issuerKeypair, issuerCert)) |

(* Publish all non-secret information, otherwise we might miss
attacks *)

out(net, (C, S, clientCert, serverCert))
).

A.6 System
process !initializer | !Client | !Server

Bibliography

[1] David Adrian et al. Imperfect Forward Secrecy: How Diffie-Hellman Fails
in Practice. Tech. rep. University of Michigan, May 2015. url: https:
//weakdh.org/imperfect-forward-secrecy.pdf.

[2] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Break-
ing the TLS and DTLS Record Protocols. Tech. rep. Egham Hill, Egham,
Surrey TW20 0EX United Kingdom: Royal Holloway University of Lon-
don, Feb. 2013.

[3] Gergely Alpár and Bart Jacobs. ‘Credential Design In Attribute-Based
Identity Management’. In: Bridging distances in technology and regula-
tion, 3rd TILTing Perspectives Conference. 2013, pp. 189–204.

[4] Tuomas Aura. Network Security: TLS/SSL. Lecture in Network Security
course. Nov. 2010. url: http://www.cse.hut.fi/fi/opinnot/T-
110.5241/2011/luennot- files/Network%20Security%2004%20-
%20TLS.pdf.

[5] Vincent Bernat. SSL/TLS & Perfect Forward Secrecy. Nov. 2011. url:
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-
secrecy.html (visited on 21/08/2015).

[6] Simon Blake-Wilson et al. Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS). Informational. Internet En-
gineering Task Force (IETF) Network Working Group, May 2006. url:
https://tools.ietf.org/html/rfc4492.

[7] Bruno Blanchet, Ben Smyth and Vincent Cheval. ProVerif 1.91: Auto-
matic Cryptographic Protocol Verifier, User Manual and Tutorial. 2015.
url: http : / / prosecco . gforge . inria . fr / personal / bblanche /
proverif/manual.pdf.

[8] German Federal Office for Information Security (BSI). Advanced Secur-
ity Mechanisms for Machine Readable Travel Documents and eIDAS
Token – Part 1 — eMRTDs with BAC/PACEv2 and EACv1 — version
2.20. Tech. rep. TR-03110-1. Bonn, Germany: German Federal Office
for Information Security (BSI), Feb. 2015.

45

https://weakdh.org/imperfect-forward-secrecy.pdf
https://weakdh.org/imperfect-forward-secrecy.pdf
http://www.cse.hut.fi/fi/opinnot/T-110.5241/2011/luennot-files/Network%20Security%2004%20-%20TLS.pdf
http://www.cse.hut.fi/fi/opinnot/T-110.5241/2011/luennot-files/Network%20Security%2004%20-%20TLS.pdf
http://www.cse.hut.fi/fi/opinnot/T-110.5241/2011/luennot-files/Network%20Security%2004%20-%20TLS.pdf
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://tools.ietf.org/html/rfc4492
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

46 BIBLIOGRAPHY

[9] Jan Camenisch, Stephan Krenn and Victor Shoup. ‘A Framework for
Practical Universally Composable Zero-Knowledge Protocols’. In: Ad-
vances in Cryptology – ASIACRYPT 2011. Ed. by DongHoon Lee and
Xiaoyun Wang. Vol. 7073. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 449–467. isbn: 9783642253843. doi: 10.
1007/978-3-642-25385-0_24.

[10] Peter Cane and Joanne Conaghan. The New Oxford Companion to Law.
Oxford University Press, 2008. isbn: 9780199290543.

[11] Tom Chothia. Secure Communication. Lecture in Computer Security
course. 2013. url: http://www.cs.bham.ac.uk/internal/courses/
comp-sec/2013/Lectures/8_SSL/8_RemoteAuth.pdf.

[12] John D. Day and Hubert Zimmermann. ‘The OSI reference model’. In:
Proceedings of the IEEE 71.12 (Dec. 1983), pp. 1334–1340. issn: 0018-
9219. doi: 10.1109/PROC.1983.12775.

[13] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Pro-
tocol – Version 1.2. Proposed Standard. Internet Engineering Task Force
(IETF) Network Working Group, Aug. 2008. url: https://tools.
ietf.org/html/rfc5246.

[14] National Institute of Standards and Technology (NIST). Digital Signa-
ture Standard (DSS). Tech. rep. FIPS PUB 186-4. Gaithersburg, MD
20899-8900: National Institute of Standards and Technology (NIST),
July 2013. url: http://dx.doi.org/10.6028/NIST.FIPS.186-4.

[15] Donald Eastlake 3rd. Transport Layer Security (TLS) Extensions: Exten-
sion Definitions. Proposed Standard. Internet Engineering Task Force
(IETF) Network Working Group, Sept. 2010. url: https://tools.
ietf.org/html/rfc6066.

[16] Gemalto. Moving to the third generation of electronic passports – A
new dimension in electronic passport security with Supplemental Access
Control (SAC). Tech. rep. Gemalto, Oct. 2011. url: http : / / www .
securitydocumentworld.com/creo_files/upload/client_files/
moving_to_the_third_generation_of_electronic_passports_
october_20111.pdf (visited on 14/09/2015).

[17] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE). Tech.
rep. Internet Engineering Task Force (IETF) Network Working Group,
1998. url: https://tools.ietf.org/html/rfc2409.

[18] Jaap-Henk Hoepman et al. ‘Crossing Borders: Security and Privacy Is-
sues of the European e-Passport’. In: Advances in Information and Com-
puter Security. Ed. by Hiroshi Yoshiura et al. Vol. 4266. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2006, pp. 152–167. isbn:
9783540476993. doi: 10.1007/11908739_11.

http://dx.doi.org/10.1007/978-3-642-25385-0_24
http://dx.doi.org/10.1007/978-3-642-25385-0_24
http://www.cs.bham.ac.uk/internal/courses/comp-sec/2013/Lectures/8_SSL/8_RemoteAuth.pdf
http://www.cs.bham.ac.uk/internal/courses/comp-sec/2013/Lectures/8_SSL/8_RemoteAuth.pdf
http://dx.doi.org/10.1109/PROC.1983.12775
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://dx.doi.org/10.6028/NIST.FIPS.186-4
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc6066
http://www.securitydocumentworld.com/creo_files/upload/client_files/moving_to_the_third_generation_of_electronic_passports_october_20111.pdf
http://www.securitydocumentworld.com/creo_files/upload/client_files/moving_to_the_third_generation_of_electronic_passports_october_20111.pdf
http://www.securitydocumentworld.com/creo_files/upload/client_files/moving_to_the_third_generation_of_electronic_passports_october_20111.pdf
http://www.securitydocumentworld.com/creo_files/upload/client_files/moving_to_the_third_generation_of_electronic_passports_october_20111.pdf
https://tools.ietf.org/html/rfc2409
http://dx.doi.org/10.1007/11908739_11

BIBLIOGRAPHY 47

[19] Information Sciences Institute. Transmission Control Protocol – DARPA
Internet Program – Protocol specification. Tech. rep. 4676 Admiralty
Way, Marina del Rey, California 90291: University of Southern Califor-
nia, Sept. 1981. url: https://tools.ietf.org/html/rfc793.

[20] ISO/IEC JTC1 SC17 WG3/TF5. Supplemental Access Control for Ma-
chine Readable Travel Documents – Part 1–3. Tech. rep. Doc 9303. In-
ternational Civil Aviation Organization (ICAO), Nov. 2010.

[21] Thomas Kinneging. ‘Basic Access Control and Extended Access Control
in ePassports’. In: Technical Advisory Group on Machine Readable Travel
Documents – Eighteenth meeting. International Civil Aviation Organiz-
ation (ICAO). May 2008. url: http://www.icao.int/Meetings/TAG-
MRTD/Documents/Tag-Mrtd-18/Kinneging.pdf.

[22] Kurt Kleiner. Metal shields and encryption for US passports. News art-
icle. Oct. 2005. url: https : / / www . newscientist . com / article /
dn8227-metal-shields-and-encryption-for-us-passports (vis-
ited on 18/06/2015).

[23] Paulan Korenhof et al. ‘The ABC of ABC: An analysis of attribute-
based credentials in the light of data protection, privacy and identity’.
In: Internet, Law and Politics — A decade of transformations. Ed. by
Joan Balcells Padullés et al. 1st edition. Vol. 10. Barcelona: Huygens
Editorial, June 2014, pp. 357–374. isbn: 9788469708262.

[24] Hugo Krawczyk. ‘Perfect Forward Secrecy’. In: Encyclopedia of Crypto-
graphy and Security. Ed. by Henk C. A. van Tilborg. Springer US, 2005,
pp. 457–458. isbn: 9780387234731. doi: 10.1007/0-387-23483-7_298.
url: http://dx.doi.org/10.1007/0-387-23483-7_298.

[25] Nikos Mavrogiannopoulos. The price to pay for perfect-forward secrecy.
Dec. 2011. url: http://nmav.gnutls.org/2011/12/price-to-pay-
for-perfect-forward.html (visited on 21/08/2015).

[26] Robin Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, May 1999. isbn: 9780521658690.

[27] Wojciech Mostowski and Erik Poll. Electronic Passports in a Nutshell.
Tech. rep. ICIS–R10004. Radboud University Nijmegen, June 2010. url:
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=
2010-Mostowski-ElectronicNutshell.

[28] Mozilla Wiki — Server Side TLS. Version 3.8. Oct. 2013. url: https:
//wiki.mozilla.org/index.php?title=Security/Server_Side_
TLS&oldid=1092713.

[29] National Security Agency (NSA). Suite B - Cryptography Today. Jan.
2009. url: https://www.nsa.gov/ia/programs/suiteb_cryptography/
index.shtml (visited on 22/08/2015).

https://tools.ietf.org/html/rfc793
http://www.icao.int/Meetings/TAG-MRTD/Documents/Tag-Mrtd-18/Kinneging.pdf
http://www.icao.int/Meetings/TAG-MRTD/Documents/Tag-Mrtd-18/Kinneging.pdf
https://www.newscientist.com/article/dn8227-metal-shields-and-encryption-for-us-passports
https://www.newscientist.com/article/dn8227-metal-shields-and-encryption-for-us-passports
http://dx.doi.org/10.1007/0-387-23483-7_298
http://dx.doi.org/10.1007/0-387-23483-7_298
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2010-Mostowski-ElectronicNutshell
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2010-Mostowski-ElectronicNutshell
https://wiki.mozilla.org/index.php?title=Security/Server_Side_TLS&oldid=1092713
https://wiki.mozilla.org/index.php?title=Security/Server_Side_TLS&oldid=1092713
https://wiki.mozilla.org/index.php?title=Security/Server_Side_TLS&oldid=1092713
https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

48 BIBLIOGRAPHY

[30] National Security Agency (NSA). The Case for Elliptic Curve Cryp-
tography. 2009. url: https://www.nsa.gov/business/programs/
elliptic_curve.shtml (visited on 07/06/2015).

[31] OpenSSL Software Foundation. OpenSSL manpage – ciphers. 2015. url:
https://www.openssl.org/docs/manmaster/apps/ciphers.html
(visited on 03/08/2015).

[32] Eric Rescorla. Transport Layer Security (TLS) Parameters. Last up-
dated: 10-07-2015. 2005. url: http://www.iana.org/assignments/
tls-parameters/tls-parameters.xhtml (visited on 03/08/2015).

[33] Eric Rescorla et al. Transport Layer Security (TLS) Renegotiation Indic-
ation Extension. Proposed Standard. Internet Engineering Task Force
(IETF) Network Working Group, Feb. 2010. url: https://tools.
ietf.org/html/rfc5746.

[34] Rijksoverheid. Paspoort twee keer zo lang geldig, ID-kaart zonder vinger-
afdrukken. Dutch. Jan. 2014. url: http://www.rijksoverheid.nl/
nieuws/2014/01/10/paspoort-twee-keer-zo-lang-geldig-id-
kaart-zonder-vingerafdrukken.html.

[35] Ahmad Sabouri, Ioannis Krontiris and Kai Rannenberg. ‘Attribute-
Based Credentials for Trust (ABC4Trust)’. In: Trust, Privacy and Secur-
ity in Digital Business. Ed. by Simone Fischer-Hübner, Sokratis Katsikas
and Gerald Quirchmayr. Vol. 7449. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 218–219. isbn: 9783642322860.
doi: 10.1007/978-3-642-32287-7_21.

[36] Carst Tankink and Pim Vullers. ‘Verification of the TLS Handshake
protocol’. May 2008.

[37] Tim Taubert. The sad state of Server-Side TLS session resumption im-
plementations. Nov. 2014. url: https://timtaubert.de/blog/2014/
11/the-sad-state-of-server-side-tls-session-resumption-
implementations (visited on 23/07/2015).

https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.nsa.gov/business/programs/elliptic_curve.shtml
https://www.openssl.org/docs/manmaster/apps/ciphers.html
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
http://www.rijksoverheid.nl/nieuws/2014/01/10/paspoort-twee-keer-zo-lang-geldig-id-kaart-zonder-vingerafdrukken.html
http://www.rijksoverheid.nl/nieuws/2014/01/10/paspoort-twee-keer-zo-lang-geldig-id-kaart-zonder-vingerafdrukken.html
http://www.rijksoverheid.nl/nieuws/2014/01/10/paspoort-twee-keer-zo-lang-geldig-id-kaart-zonder-vingerafdrukken.html
http://dx.doi.org/10.1007/978-3-642-32287-7_21
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations
https://timtaubert.de/blog/2014/11/the-sad-state-of-server-side-tls-session-resumption-implementations

	Contents
	List of Figures
	Introduction
	Theory
	IRMA
	Passport
	Usage scenario

	Goals
	Attack scenarios
	Cryptographic properties

	Protocols
	Transport Layer Security
	IRMA Assurer

	Formalisation
	Discussion

	Conclusion
	Future work

	Model
	Definitions
	Queries
	Server process
	Client process
	Initializer process
	System

	Bibliography

