

MODEL-BASED TESTING
OF WEB APPLICATIONS

Author:

J.R. Monsma, BSc
Student No. s4236777

Internal Supervisor:

Dr. ir. G.J. Tretmans

Second Supervisor:

Dr. G. Gousios

External Supervisor

Ing. B. Duijs, MSc

RADBOUD UNIVERSITY NIJMEGEN

MASTER THESIS

COMPUTER SCIENCE

26 May 2015

Radboud University
Comeniuslaan 4
6525 HP Nijmegen
The Netherlands
Faculty of Science
Huygens building
Heyendaalseweg 135
6525 AJ Nijmegen
The Netherlands

1

Abstract
Software shifts more and more to the online world. Testing web applications requires
documents that specify what their correct behaviour is. Lack of documentation for
smaller web application makes testing difficult. In this study, we try to find a solution to
test web application based on a model-based testing approach. We use model-based
testing for detection failures in web applications, the differences between the
behaviours of the System under Test(SUT) and what is expected based on the
specification. We have chosen for the model-based testing approach because it
automates the testing process, adapts quicker to changes, it is time saving, and less error
prone if the system is modelled correctly.

Using G∀ST as a model-based testing tool, we generate test cases based on the model of
the web application. PhantomJS, a headless browser is used to access a web application.
With an adapter, we established the communication with the model-based testing tool
and the headless browser. The adapter communicate with sockets to the model-based
testing tool and translate received input from the model-based testing tool to useable
input for the SUT.

To create a generic model that is capable to test different web applications, we assume
that every web page is the same, based on its content. Each page can hold links, events,
images, and Styling- and JavaScript code. Based on this abstraction we created a small
model that is applicable to test many web applications without any changes to the
model. This model clicks on links and check for content errors. We extended this model
to test forms, based on three options. Testing results show that the model is generic and
capable of testing different web application. However, larger applications the amount of
pages tested decreases based on the random generation of test cases by G∀ST, pages are
tested multiple times instead of testing undiscovered pages.

Testing webshop applications, the model requires an extension to test features that
occur in a webshop. Results show that the model does not suits itself to test different
webshop applications. The checkout phase of a webshop differs and it is hard to model it
to a generic solution. However, the functionalities of a webshop stays the same and
there we have chosen to allow changes in the model. Testing results show we can add
and buy products, but the same problem with hold with generating test cases.

Based on testing two web applications with forms and two webshop applications we can
say that we can improve quality of web applications with model-based testing. However,
the improvement is not enormous. There is improvement required on the test selection
by G∀ST. To increase the quality even further more quality characteristics can be used to
test on.

2

Acknowledgments
I would like to take this opportunity to thank the people that have helped me with this
thesis. First, I would like to thank Jan Tretmans and Bard Duijs for their supervision and
their clear view and thoughts about this topic.

Furthermore, I would like to thank Bard Duijs and Laurens Alers for giving me the
opportunity to write this thesis at Bluenotion. It was great to spar with you guys to get
fresh new insights. I also want to thank you for giving me the freedom to sail my own
course and tackle certain problems I faced.

I would also like to thank the developers of Bluention for setting up a test environment
and solving some internal problems we faced during testing of the use cases. I
appreciated their opinions and insights on the topic and their advice on how to address
a certain problem.

I would like to thank Pieter Koopman for his help with the Model-based testing tool
G∀ST.

Lastly, I would like to thank my friends and family, especially for the refreshing coffee
breaks and having someone to talk to, and my parents and girlfriend for the pep talks
when I needed those.

3

Contents

ABSTRACT ... 1

ACKNOWLEDGMENTS ... 2

1 INTRODUCTION ... 5
1.1 AREA OF ONLINE WEB APPLICATIONS ... 5
1.2 PROBLEM STATEMENT ... 6
1.3 RESEARCH QUESTIONS ... 7
1.4 RESEARCH CONTEXT... 9
1.5 RESEARCH METHOD ... 9
1.6 THESIS OUTLINE .. 9

2 RELATED WORK ... 10

3 BACKGROUND ... 12
3.1 WEB APPLICATIONS .. 12

3.1.1 Forms ...13
3.2 SOFTWARE TESTING ... 16
3.3 MODEL-BASED TESTING .. 18

3.3.1 Modelling languages ..18
3.3.2 Labelled Transition System ...18
3.3.3 Finite State Machine ..19
3.3.4 Extended State Machine ...20

3.4 MODEL-BASED TESTING TOOLS .. 22
3.4.1 Overview of tools ..22
3.4.2 Graphwalker ..22
3.4.3 TorXakis ...23
3.4.4 G∀ST ..23

3.5 CHOICE OF MODELLING LANGUAGE AND MODEL-BASED TESTING TOOL ... 25

4 TEST ARCHITECTURE ... 27
4.1 OVERVIEW OF THE CURRENT SITUATION .. 27
4.2 OVERVIEW OF THE TEST ARCHITECTURE .. 28
4.3 CONTENT MANAGEMENT SYSTEM ... 30
4.4 THE SYSTEM UNDER TEST .. 30

4.4.1 Routing Engine ...30
4.4.2 Application models ...32
4.4.3 Views ..33
4.4.4 Controllers ..33

4.5 THE ADAPTER .. 34

5 BEHAVIOUR OF WEB APPLICATIONS ... 37
5.1 COMMON TESTING GROUND .. 37
5.2 OUR TESTING GROUND ... 39

6 THE SMALL MODEL ... 42
6.1 EXISTING MODEL ... 42
6.2 WHICH PARTS OF A WEB APPLICATION NEED TO BE TESTED? .. 43
6.3 THE SMALL MODEL ... 44
6.4 THE FORM EXTENSION ... 48
6.5 RESULTS ... 51

6.5.1 Use case: Lookinsharp ...51
6.5.2 Use case: Bluenotion ...53

4

7 WEBSHOP MODEL.. 56
7.1 WEBSHOP APPLICATIONS .. 56

7.1.1 Products ...56
7.1.2 Checkout phase ...57

7.2 MODEL .. 59
7.3 RESULTS ... 63

7.3.1 Matrascenter.nl ..63
7.3.2 Wordpress Webshop application ...66

8 REFLECTION .. 69

9 CONCLUSION .. 72
9.1 COMPATIBILITY OF THE TEST TOOL ... 72
9.2 COMPATIBILITY OF WEBSHOP ... 72
9.3 ANSWER RESEARCH QUESTIONS ... 73
9.4 KNOWN ISSUES .. 77
9.5 FUTURE WORK ... 77

10 REFERENCES .. 79

5

1 Introduction
We will start this section with a small introduction about web applications, followed by
section 1.2 where we will discuss the problems surrounding the topic of web application
testing. In section 1.3, we define the research questions related to our problem. In
section 1.4, we will state the research context. The research method is explained in
section 1.5. At last, we mention our thesis outline in section 1.6.

1.1 Area of online web applications
More and more things are shifting to the Internet. Applications that are built for offline
use are now available online[2, 3]. People have the need to be online[4]. Some web
applications are publicly available while others are private and only accessible through
login credentials[5]. Web applications are built with multiple programming languages
and can make use of different design patterns. One way of building web applications is
by using the .NET framework combined with the MVC design pattern. The MVC (Model-
View-Controller) pattern is used to divide a complex system into three components,
each component with their own responsibilities. The model contains data, the view the
presentation, and the controller the logic of the system. The web applications we are
currently interested in are based on the .NET framework supported with this MVC
design pattern[6]. For many years, when applications, for offline purposes, were
developed less effort was spent in testing the software.

Nowadays more effort is spent in testing and measuring quality of software. One of the
reasons is that customers demand a higher quality of software. Testing is now
integrating in development methodologies, like agile development[7]. With the latter,
testing is a part of the development cycle. The development of software contains at least
several cycles and this amount is increasing depending on the size of the software. In
each cycle, testing is performed on the developed code. By testing during these
development phases more faults can be detected, resulting in more sustainable and
higher quality software. The gain in sustainability results from the fact that solving faults
during development time or even preventing them on the drawing board is cheaper than
fixing the same faults afterwards[8]. The software is of better quality, because we know
the system is test and possible faults that could occur are prevented. However, this does
not guarantee that the software is free from bugs. It is possible that faults in the
software still exists but were not detected with testing.

While more effort is nowadays being spent on the testing of normal software
applications, there is still a lack in testing effort during the development of web
applications. Simple web applications, that only have the purpose of serving
informational content, are often either insufficiently tested or not tested at all[9, 10].
Hence, these web applications still contain faults. A specification is often used during the
testing of software. Otherwise, we do not know what we have to test. However, in most
of the cases there is not any specification available, when developing web applications.
Most of the time there is no documentation available. This makes knowing what to test
hard.

A great example is the lack of proper documentation at the company Bluenotion for
small web application. From experience, we know that the actual design of the web
application is the only available documentation. Furthermore, the small web
applications are badly tested and still contain faults after the application is going live.

6

1.2 Problem statement
As explained in section 1.1, more and more effort is being spent on the proper testing of
software. One of the reasons is to deliver higher quality software. Insufficient testing of
web applications still results in unwanted errors and consequently, the quality
diminishes. Users will not use such an application and revenue will decrease. By
adequately testing a web application, we can prevent those errors from happening and
prevent the drop of quality. However, there are still difficulties with testing of web
applications. Of course, manually testing web applications is possible but then a
different problem arises. Manual testing is time consuming and there is often little to no
time available to test after the development of the web application. A better and
desirable option is automated testing or model-based testing. We want to propose a plan
to solve these testing problems with web applications and create a foundation that we
can use to model-based test web applications.

One of the problems with the automated testing of web applications is the lack of proper
documentation. Simplistic web applications, that only have the purpose of serving
informational content, are often implemented without (proper) documentation. This can
lead to inconsistent behaviour and bugs. Without documentation, there is no
explanation what the preferred behaviour of the web application is, which makes testing
even harder. Even worse is that those simplistic applications are often not even tested.
Still even those simplistic web applications can contain bugs. Therefore knowing what
kind of aspects we need to test, and the way to it are important.

A second problem with the testing of web applications is that multiple programming
languages are involved. With the involvement of multiple languages, more mistakes
happen when combining those languages. To let a web application work properly,
languages like HTML for the mark-up, CSS for the looks of the application, and JavaScript
for functionality are commonly used. For dynamic web applications, where our focus in
testing lies, an additional language is used. This is used for retrieving data from
databases and displaying the retrieved data. Certain parts of the web application can be
tested with unit tests, but this is time consuming due to writing specific tests for each
individual application and unit tests do not deal very well with changes.

Today’s web applications are not static anymore but dynamic. Static web applications
are web pages containing information that is not changing anymore. Dynamic web
applications can deal with changing information. By accessing a content management
system (CMS), the owner of the web application can add, remove, or change the data. A
good example is a blog. Once a week we write an article about a certain subject. We
write text about the subject and save it in the CMS. When the data is saved, it is almost
instantly visible in our web application. When we have a blog made in a static way, we
have to open the source code and change the information we want, save it and upload
the new source file. It is intensive, time consuming, and requires some knowledge about
the programming languages mentioned above. In dynamic web applications it is, for
owners, easier when changing information and require no programming skills to use
them.

7

Because of dynamic web applications, owners are able to change, add, or remove
information that is readable on their application instantly. The adjustments are stored in
a database. When users visit the web application, through a web browser, the necessary
data is retrieved from the database and is displayed in the browser. With the changes
the owner makes, it could be possible that the application does not work properly
anymore. For example, links to certain parts of the application are not working, due to
typos or the page does not even exist. Testing with unit tests, which is used to test small
parts of a system are therefore not enough because they do not cover and adapt well to
the changing part in dynamic web applications.

With the introduction of the programming language JavaScript, certain functionality is
added to the web application. This programming language runs on the client-side of the
application, in this case within a web browser. With JavaScript, it is possible to submit
forms or add a product to the shopping cart through an Asynchronous JavaScript and
XML (AJAX) call to the server. This functionality is preferably tested on the client-side of
the application by accessing it through a web browser. This is done by an event
activated by the user through the browser. The other approach of testing AJAX calls is by
manually creating the calls and providing the correct data that is required for this AJAX
request.

Now that we know what kind of difficulties we can face during the testing of a web
application, we want to find a way to solve these difficulties. Automated testing of
software can be performed by testing it with a model. This approach is called model-
based testing. We want to see if we can apply model-based testing techniques to test
web applications. Especially in finding a generic approach to test web applications. This
way the model can be applied to multiple web applications. In the following section, we
define a set of research questions that can help us to see whether model-based testing
can be applied to web applications.

1.3 Research questions
In section 1.2, we named several problems that we have to deal with when we want to
test web applications automatically, preferably by a model-based testing approach. This
brings us to our research question:
RQ 1 How can we improve the quality of web applications by applying model-
based testing techniques?

It is important to know what part of a web application are required to be tested
otherwise we are testing the wrong parts. Are we interested in the graphical user
interface or only interested in the functionality of the web application?
RQ 1.1 What quality aspects are important with testing web applications?

We are interested in testing web applications with a model-based testing approach.
Therefore, it is important to know if it is possible to test web applications with this
approach. By finding a model, which is required to test with model-based testing, that is
capable of simulating our web application we can automatically test the problems we
face with testing web applications. We can run the test multiple times, even when
owners change the content of their application, this way we make sure that each link
that is added by the owner also works.

8

To model a representation of a web application we need to know how we model a web
application without proper documentation. How do we translate input and output
actions from a web application to a model-based testing tool? What information does the
input and output actions contain, what kind of abstraction is used? To see how those
techniques can be applied and achieved we defined the following sub questions:
RQ 1.2 How can we apply model-based testing techniques to web applications?

When using model-based testing techniques a model is required to test the System
under Test (SUT). Therefore, we want to see what kind of models already exist in the
literature and how those can be applied when testing web applications in a model-based
way. Thus, we define the following sub question:
RQ 1.3 What are the advantages and disadvantages of existing modelling
languages, found in literature, with model-based testing of (web) applications?

Certain models have disadvantages we do not like because then the model would be
better of use. It could be possible that some existing models have different advantages
that we would like to combine. In that case, we will need a new model. This leads to a
new sub question:
RQ 1.4 How can we create a new model that is capable of testing web applications
that deals with the disadvantages of existing models?

It is also important to know how the new model performs compared to manual testing
and the coverage of the model. The performance is needed to help us determine if the
quality of the web application increases or not. This leads us to the next sub question:
RQ 1.5 How does the new model perform?

We initially have the intention to test web applications developed with the .NET
framework. To achieve a much broader audience we would like to see what the
capabilities of the model are with regard to web applications developed in different
languages. This brings the following sub question:
RQ 1.6 What are the possibilities with the new modelling framework to test
different web applications?

To be able to test our model we need a selection of tools that makes testing possible.
What tools do we need to translate test input to real actions in a web application and
how do we translate actions from the web application back to test output. What tools do
we need to generate automated test cases based on the type of model that is used?
RQ 1.7 What set of tools are required and available to test web applications?

We want to compare results from the model-based testing tool with results when testing
web applications manually this to determine the improvement of quality. How many
faults are found during automatic testing compared to manual testing the web
application? We are also interested to see if certain types of faults are not found in this
approach with model-based testing.
RQ 1.8 How does the tool perform in coverage with regard to other existing tools
and manual testing?

With the answers of these sub questions, we hope we can answer our main research
question in section 9.

9

1.4 Research context
This study is performed at Bluenotion, a web development company specialised in
building websites, webshops and custom web applications. Applications are built with
the .NET framework combined with the MVC methodology (Section 4.4). Bluenotion has
interests in the ability to automate test those type of web applications, to increase the
quality of their products. Currently testing is done manually with some error detection
tools.

1.5 Research method
We start with a literature study about the subject, which is model-based testing of web
applications. In our literature study, we found enough information about model-based
testing and about testing web applications, but both topics combined left us with only a
few relevant papers. We used these as a base to continue finding more relevant
information. Based on the relevant literature we found out that it should be possible to
test web applications with a model-based approach. With that in mind, we wanted to
know if it is possible to find how general our solution could be, so it is possible to test
multiple web applications with the same model. To find a solution we first need to know
what we want to test.

We identified important quality aspects that we want to test in web applications. Most
quality aspects are ought important to the company Bluenotion. To this list we added
other quality aspects that other companies find relevant to test on web applications. We
narrowed this huge list down to a selection based on the primary requirements of
Bluenotion and aspects that are interrelated.

Based on our quality aspects we search for the best type of modelling language that
could deal with our requirements. Our test tool is chosen based on the modelling
language we selected. We then created a test environment to see how our model
performs. We started with a small web application to see how our model works. We
made some small changes according to our result and started to extend the model so we
could test forms. Based on this result we extended our model so we could test a full
webshop application, now named as webshop. We compared the findings from the test
tool against manual testing of the webshop. We also tried to test our solution on a
different webshop to see what changes were needed to our model. We also compared
coverage with a different tool called Crawljax.

1.6 Thesis outline
In section 2, we state related work within the field of testing web applications. We
mention background information in model-based testing and on web applications in
section 3. The test architecture that we use is defined in section 4. In section 5, we state
the differences in what the companies and we consider relevant to test on web
applications. The new defined model (section 6.3) based on the improvements of
existing models (section 6.1) and an extension with forms, including its results on two
use cases are mentioned in section 6. In section 7 we extend our model even further to
be able to test webshop applications. The results of this webshop model based on the
new uses cases are mentioned in section 7.3. We start finishing with a reflection based
on the choices we made during this research in section 8. We conclude this thesis in
section 9, including known issues (section 9.4) and future work (section 9.5).

10

2 Related work
In our research effort for finding relevant literature about model-based testing of web
applications, we only found a few papers that we find relevant. We do found enough
literature about both topics seperately, model-based testing and web applications.

A document written for the software testing conference STANZ in 2010, is found to be
useful and is about model-based testing of web applications[11]. In this document, the
model-based testing tool TestOptimal is used to test web applications and the modelling
language FSM to model the web application. Their approach resulted in a huge detailed
model, making it unreadable but suitable to test many different quality characteristics.

A similar approach is done by using StateCharts as a modelling language[12]. Ogaard
tries to model web applications as it appears to users. The level of detail is now based on
the content of each web pages instead of the web page itself used in [11]. The content is
based on the HTML structure of the web page, meaning that every HTML element that
matters is represented as a “Blob” in a StateChart. HTML elements that matter are
elements that have a functionality on the web page like links, images, form elements,
and buttons.

Work done by Andrews takes a different approach where the web application is
partitioned into clusters where, for each cluster a separate FSM is created and one
application FSM is to cover all the clusters[13]. A similar approach with the same way of
clustering is done by Kung only based on an object oriented model[14] and Karam uses
the same techniques but uses Workflow Graph Models[15].

Ernits approach to test web applications is based on both client- and server-side
testing[16]. Custom scripts are made to intercepts messages on other interfaces used
besides the front-end to test the server side of the application. NModel is used as the
modelling framework to define model programs. Labelled Transitions Systems (LTS) are
used to support the semantics of these models programs used in NModel.

A different aspect within testing web applications is testing Ajax calls. Ajax,
Asynchronous JavaScript and XML is a bundle of technologies used to simplify
implementation of rich and dynamic web application. The main purpose of Ajax is
asynchronous communication between the client (web browser) and server (web
application). Marchetto and Tonella describe a state-based approach to test Ajax calls
within web applications[17]. Mesbah and van Deursen proposed a method to test AJAX
applications automatically, based on a crawler[18]. This crawler, named Crawljax, tries
to infer a state-flow graph based on all user interface actions.

Other literature we found is about testing sub parts of web applications. Testing the
checkout phase of a e-commerce system is done in[19]. The checkout phase is about
adding products to a shopping cart and the steps it takes to buy these products. Other
interests are in testing HTML forms. Hajiabadi and Kahani proposed a method to derive
input data to test forms[20]. Their approach tries to fill in and test forms automatically
based on ontologies. A complete different approach by Bae is about Graphical User
Interface(GUI) testing[21]. However, it is out of the scope of this research but is still
relevant in testing web applications.

11

We consider the approach to test web application with TestOptimal as a good reference.
We do take other references about model-based testing into account, only we mainly
focus on their approach to test certain quality characteristics and not much on their
modelling language. Web applications that make use of AJAX calls will not be tested as in
the approach mentioned by Marchetto or Mesbah, but probably assumed as a
synchronous call. To compare the testing results from our testing tool we use Crawljax
as a different testing tool to see what differences there are. Furthermore, we take into
account the detailed information about testing forms and a shopping cart.

12

3 Background
In this section, we discuss background information about our study. In section 3.1, we
will provide information about web applications. We focus on the information that is
needed to retrieve data from the web application by a user approach. In section 3.1.1, we
give detailed information about forms within a web application. This level of detail is
necessary to retrieve and set information to those form fields. We explain more about
software testing in section 3.2. In section 3.3, we give details about modelling languages
used with model-based testing followed by section 3.4 where we provide information
about existing model-based testing tools. We end this section with section 3.5 where we
discuss our choice of modelling language and model-based testing tool.

3.1 Web applications
The World Wide Web started with static web pages. We now call this era the Web 1.0.
The Web 2.0 is the successor of Web 1.0. It is not an upgrade to the World Wide Web but
merely a term to address the changes happened in this field. One of the founders of Web
2.0 is Tim O’Reilly and he describes in his paper the shift from Web 1.0 to Web 2.0[22].
Web applications in the Web 2.0 era are dynamic. Users can generate data, which is
stored in databases. With scripting languages like PHP, C#, and Ruby, data is retrieved
and surrounded with HTML code to display it properly in a web browser. HTML
(HyperText Markup Language) is a language, which is used to create webpages. HTML
uses tags to mark-up a webpage. An HTML document consists of a tree of elements and
text leaves. Each node element is denoted with a start stag, such as “<html>”, and a
closing tag, such as “</html>”. Elements have to be nested, such that they are not
overlapping each other. In Example 1 the top line shows a wrong example of nested
elements and the bottom line shows a correct example.

<p>This is a wrong mark up!</p>
<p>This is a correct mark up!</p>

Example 1 – Wrong and correct example of nested html elements.

When a web browser requests a web page, the HTML document is sent from the server
that hosts the web application to the user’s web browser. The web browser tries to
parse the HTML document in a Document Object Model (DOM)[23]. To do that it first
requests, by TCP, all the files that are mentioned in the HTML document. Those could be
image-, JavaScript-, font- and style sheet files, in short media files. It could occur that one
of those files does not exist this file will not be parsed into the DOM object. A DOM object
is an in-memory representation of the HTML document, style sheet, and JavaScript files
combined. The DOM object defines the HTML elements as objects, properties of all
HTML elements, methods to access all HTML elements and events for all HTML
elements.

A style sheet describes how a certain HTML element should look like. We can define for
each HTML element for example its height, width, background-colour, and font size. It is
programmed in the language Cascading Style Sheet (CSS)[24]. The properties for each
element mentioned in the CSS files are set to the corresponding properties for each
element in the DOM object it matches. It is possible to define properties for a single
HTML element, a type of html element or HTML elements that matches the name of the
class or id attribute that is set to that element.

13

JavaScript files mostly contain functions that evoke certain events. With JavaScript it is
possible, to bind events to certain HTML elements. Those events are also stored in the
DOM object that matches the html element. An event can be evoked by a keystroke,
mouse action (click or movement), or time event.

In the DOM object, we have the possibility to search for html elements that match
certain requirements. Using the methods “querySelector” and “querySelectorAll” we can
find the elements that matches our description. If multiple elements matches while
using the “querySelector” method, only the first result is returned. If we use the
“querySelectorAll” method all elements that matches are listed. It is also possible to
combine attributes and element names to only search for specific elements. By searching
with the following command, we only search for links that have a class name menu and
contain the attribute ‘href’:

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡. 𝑞𝑢𝑒𝑟𝑦𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(′𝑎.𝑚𝑒𝑛𝑢[ℎ𝑟𝑒𝑓]′)

The HTML elements we are interested in can be found by their attributes or element
name. Links in a web page are represented by the “<a>” tag. Each link tag holds an
attribute named “href” that describes what page is opened when clicked on. Additionally
we can also identify html elements by the attribute “name”, “action”, “id”, and “class”. For
the name, action, and id-attribute we know that their value must be unique. For the class
attribute, we know that multiple can occur.

A useful and interesting property of an element in the DOM object is the property
“textContent”. This property holds all the text that is used within its html element
including its children elements. If we take the correct html code from Example 1, we can
ask the “textContent” from the paragraph element <p> and this will result in the text:
“This is a correct mark up!”. If we ask the textContent from the element “”
results in the text: “a correct”. This property could be useful for testing values displayed
on a screen for example product prices and product amounts in a webshop application.

We could also use the events that are bound to a certain html element in the DOM object.
For example, a click event is by default added to the <a> tag. Through JavaScript, we can
fire that event so it looks like a mouse clicked on that element. The same hold for
changing checkboxes in forms and submitting forms, which will be explained in Section
3.1.1. For more attributes and detailed information on the DOM object and the HTML
document we refer to the HTML Specification[25].

3.1.1 Forms
With web applications, it is possible to submit forms. Forms are used in many ways for
many purposes. For example, forms are used to add products into a shopping cart or
leaving a comment in a blog. We mention forms specific, because it contributes to
functional testing of web applications. In some occasions, forms are even necessary to
continue testing and discovering more pages that are only accessible by submitting a
specific form.

14

The HTML tag <form> has certain attributes. The name attribute is used to identify a
form and must not be an empty string and should have a unique name amongst the
other forms that exist. The action attribute specifies a URL where the form should get
the data from or sends the data to. The way a browser knows whether it should send or
get data is defined by the “method” attribute. The method attribute exists of two values
GET or POST. The POST method submits data to a specific data source mentioned in the
action attribute. The GET method requests data from a specific data source mentioned in
the action attribute.

Besides its attributes, the form tag also consist of a set containing one or more HTML
elements. There are four kinds of elements that are usable to a form and are listed in
Table 1. It is possible to nest those elements within a form with other html elements like
the <div> tag for design purposes.

HTML element HTML representation
Input <input type="text" name="lastname" value="Mouse">

Textarea <textarea name="message" rows="10" cols="30">
The cat was playing in the garden.
</textarea>

Select <select name="cars">
<option value="volvo">Volvo</option>
<option value="saab">Saab</option>
<option value="fiat">Fiat</option>
<option value="audi">Audi</option>
</select>

Button <button name="click" type="button"
onclick="alert('Hello World!')">Click Me!</button>

Table 1 – Elements used in a form, example by W3Schools [26].

Each element used in a form has some attributes that are required. The name attribute is
required and should have a unique name to identify the field. The value attribute is
required for the input and select elements but is allowed to be empty. When a user
enters some text in the field, the entered text is set to the value attribute of that specific
field. The type attribute is used for the input element to determine what purpose this
field has. The html element “<input>”does not have a closing tag like other html
elements but is self-closing. A few other html elements hold the same behaviour like the
 tag. An input element can have the following types:

 Hidden
 Text
 Password
 Checkbox
 Radio
 File
 Button
 Submit
 Reset

15

With the introduction of HTML 5 more types have been introduced[27]. Among those
are the types like “email”, “tel” (telephone) and “datepicker”. We do not cover the HTML
5 field types because those elements are not commonly used and only modern browsers
have support for those elements.

The hidden input type is used to add values to the form that users do not have to see and
use. It is possible to add multiple hidden fields but each field should have a unique name.
Often this input type is used to add a security aspect to the form to protect it from a
cross-site request forgery attack (CSRF)[28]. When a page with a form is requested, a
random value is generated and set to this hidden field. When the form is submitted, the
server checks the hidden value. If the value matches the generated value, the form is
accepted as a genuine submission. Hidden input fields are not visible on the screen but if
we search in the html code, we can find the following structure:

< 𝑖𝑛𝑝𝑢𝑡 𝑡𝑦𝑝𝑒 = "ℎ𝑖𝑑𝑑𝑒𝑛" 𝑛𝑎𝑚𝑒 = "_𝑐𝑠𝑟𝑓𝑘𝑒𝑦" 𝑣𝑎𝑙𝑢𝑒 = " − 8625438235" >

The input type text is an input type that is a single line field and can hold text as a value.
Commonly it is used for users to fill in their names and addresses. It can hold any text a
user writes, but when a form is submitted, validation of the field value can be done on
the back-end side of the application. This validation is based on the validation properties
specified in a model used in the web application see section 4.4.2 for more on these
application models. If the value does not match against a certain set of rules, the form
with the data is send back and the web page displays errors concerning the fields that
are filled in wrongly.

The password type can hold any text a user types in. It looks almost the same as the text
type but only the text that is written is displayed in dots. This is done to hide the real
password that is entered.

The radio type is used to allow the user to choose between a set of answers. It
represents a choice between a set of values. An example of how a radio button is used is
by a question: “what kind of food do you like to most?”. The user can choose between
three options, apple, banana, and pineapple. Only the value of the radio button that is
checked is sent to the server. All the options where the user can choose between have
the same name attribute but he value attribute differs. This way we know based on the
value which option is selected.

The checkbox type is used to allow the user to choose. It represents a choice between
zero or more elements. Each checkbox that belongs to the set of choices should have the
same name attribute and should have different values in their value attribute. If none of
the options is checked, an empty value is submitted on submission. If one or more
options are checked those are all sent in a list.

A special type is the file type. This type allows you to choose a file from your computer
and upload this to the server. It requires the form element to have its method argument
set to POST and the additional “enctype” attribute set to the value “multipart/form-
data”. In the back-end of the web application, we should deal with this multipart form to
receive both the form data and the chosen file. Due to implementation issues, we cannot
test this kind of forms that contain ‘file’ inputs. In API we use to address a headless
browser would not attach the selected file to this input element. This is know bug to
PhantomJS.

16

The last input type is the button type. The input type is used for buttons in a form. Often,
when it is clicked, it activates a JavaScript function. The “value” attribute in this type of
input element is not used to send stored information to the server but the content of the
value attribute is displayed as text in the button. Often those buttons are used to help
users automate things. For example, they can be used to check/uncheck all the option
for a specific question. There are two more types of buttons to choose from besides the
normal button type. Those are the reset and submit type. Their names already specifies
their purpose within a form. The reset type resets the whole form to their default values,
which is often an empty value. The submit type is a button that submits the form to the
specified url in the action attribute of the form.

3.2 Software testing
Now that we have seen what web applications and forms are, we focus on the testing
part of software. Testing is a growing aspect in the development of software. Nowadays
more effort is spent in testing software. By testing software, we minimize the amount of
defects that can occur in the software. Defects occur in software because humans make
mistakes. Based on the testing results we can conclude if the reliability and quality of the
software is increased. However, this is not a guarantee that the software is error free.
With testing, not every possibility is tested and therefore it is still possible that errors
can occur. The reason why not every possibility is tested is that the amount of
possibilities to test are with huge software immense and not reachable to test within the
time that is given.

Before we test software, we need to know what testing means, otherwise we do not
know what we are doing. Within the field of testing varying definitions of testing exists.
We find the following definitions:

“Testing is a technical operation that consists of the determination of one or more
characteristics of a given product, process, or service according to a specified

procedure.”
Definition 1 – Testing definition by ISO[29].

“Testing is the process of executing a program
with the intent of finding errors.”

Definition 2 – Testing definition by Myers[30].

“Software testing is a technical process performed by executing/experimenting with a
product, in a controlled environment, following a specified procedure, with the intent of

measuring one or more characteristics/quality of the software product by
demonstrating the deviation of the actual status of the product from the required

status/specification.”
Definition 3 – Testing definition by Tretmans[31].

We prefer Definition 3 over the others because testing is not only about finding errors
and determining what characteristics belong to the software. It is also about comparing
and showing deviations to those characteristics. We use Definition 3 to all references to
the word testing. In our definition of testing, we find the word quality. Quality defined by
the ISO 9126-1 standard is:

The totality of characteristics of an entity that bear on its
ability to satisfy stated and implied needs

Definition 4 – Quality definition by the ISO 9126-1 standard.

17

According to Definition 4 quality is about a set of characteristics that is important to the
product. Software quality can be categorised into six characteristics each with their own
sub characteristics mentioned in the ISO 9126-1 standard:

 Functionality – suitability, security, accuracy
 Reliability – maturity, fault tolerance, recoverability
 Usability – operability, understandability, learnability, attractiveness
 Efficiency – time behaviour, resource utilisation
 Maintainability – analysability, changeability, stability, testability
 Portability – adaptability, installability, replaceability

So testing software is about measuring the quality of the software. Testing software can
be performed in different ways. Each sort of test is based on one or more software
characteristics. There exists many different ways to test software. In Table 2, we give a
short overview of what sorts of testing there exist but there are many more than listed.
The testing approaches we mention in Table 2 are applied on many different levels of
testing. Some are testing a small part of a system (Unit-testing) where other are testing a
complete system (System testing). For a more detailed explanation of each sort of
testing can be found in[30].

Sorts of testing
Functional Acceptance Duration Performance
Interoperability Unit Black-box White-box
Regression Reliability Usability Portability
Security Compliance Recovery Integration
Factory Robustness Stress Conformance
Developer Third-Party Production Module
System Alpha Beta Specification

Table 2 – Sorts of testing, used in the course Testing Techniques at Radboud University.

There are three ways to perform tests. One of those ways is manual testing. Manual
testing is labour intensive but very flexible. However, it is not the preferred way to test
software. The opposite of manual testing is automated testing. With automated testing,
we create testing scripts and execute those automatically. In this approach, less effort is
spent in performing the tests, but the creation of those scripts still requires enough time.
A drawback with testing is regression testing, executing test scripts while the code is
changed. Often the scripts will not work anymore. A different approach to test software
is model-based testing. We will explain model-based testing in section 3.3.

18

3.3 Model-based testing
Model-based testing is a relatively new technology to test software. A model that
describes the desired behaviour of the System Under Test (SUT) is the key point in
model-based testing. The desired behaviour is often specified in the specification
document of the SUT. Model-based testing goes beyond automated testing because it
algorithmically generates specified amounts of test cases based on the model of the
desired behaviour. A model-based testing tool (Section 3.4) generates the test cases
based on the model.

The SUT is tested through a black-box approach. Black-box testing means that we only
observe the output of the system considering a certain input, without knowing the code
behind it. The observed output from the SUT is compared to the expected output of the
system given by the model. The opposite of black-box testing is white-box testing where
the internal structure of the system, i.e. the code, is the foundation of testing[32]. To be
able to test the SUT with the generated test cases an adapter is often required. An
adapter translates the generate input from the model-based testing tool to useable input
for the SUT and the observable output form the SUT to the readable output for the tool.

3.3.1 Modelling languages
Testing (web) application with a model-based testing approach requires us to use a
model. A model represents the correct behaviour of our system. The specification of the
system, a documentation about what the system is capable of doing, specifies what the
system does when certain elements are used and what reaction the system should give
on those used elements. For example, the specification tell us what should happen if a
user clicks on a link in a browser. The system should respond with the requested file or
should provide an error. All in all the specification tells us what is required to trigger the
event and what to expect as output of that event. With these known input and output,
we can make a model of the specification.

With a model, we can generate algorithmically test cases to verify if the SUT is behaving
accordingly. A model can be described in different ways each with their own distinction.
Mind that each model-based testing tool uses a different model to generate test cases. In
the following sub sections, we highlight the most common modelling languages used in
model-based testing. Besides the modelling languages mentions in the next sub sections
others exists like PetriNets[33], StateCharts[34] and Abstract State Machines[35].

3.3.2 Labelled Transition System
Labelled Transition Systems (LTS) consist of a set of states and a set of transitions
between those states. There is one state that is the initial state called 𝑠0. Each transition
is labelled by an action. States represent the state of the system and labels represent the
observable actions of the system. Labels are taken from a global set 𝐿. Formally, an LTS
is a quadruple

(𝑆, 𝑠0, 𝐿,→)

where 𝑆 is a set of non-empty states and 𝐿 the set of input labels. We also have a special
label 𝜏 that is not an element of all the labels 𝜏 ∉ 𝐿 and stands for an internal action. The
transition relation → is a subset of the product from the set of states, labels and output
states [32]:

→ ⊆ 𝑆 × (𝐿 ∪ {𝜏}) × 𝑆,𝑤𝑖𝑡ℎ 𝜏 ∉ 𝐿

19

We write 𝑠
𝑢
→𝑡 if there is a transition labelled 𝑢 from state 𝑠 to state 𝑡, i.e.

(𝑠, 𝑢, 𝑡)𝜖 →[36]. States that cannot do an internal action are called stable, whereas states
that cannot do an output or internal action are called quiescence 𝛿. One of the well-
known theories within the scope of LTS is the input/output conformance relation, also
known as ioco [37]. A visual representation of an LTS is shown in Figure 1.

Figure 1 – A visual representation of a labelled transition system.

Equivalence between two LTSs can be reached by determining if their traces are the
same. Trace equivalence is defined as follow:

𝐼 =𝑡𝑟 𝑆 ℎ𝑜𝑙𝑑𝑠 𝑖𝑓𝑓 𝑇𝑟𝑎𝑐𝑒𝑠(𝐼) = 𝑇𝑟𝑎𝑐𝑒𝑠(𝑆)

Meaning that the two LTSs 𝐼 and 𝑆 are trace equivalent if the traces of the two LTSs are
the same. Trace equivalence is used in testing purposes. Traces of an LTS are defined as:

𝑡𝑟𝑎𝑐𝑒𝑠(𝑝) ≡ {𝜎 ∈ 𝐿∗ | 𝑝
 𝜎
⇒ }

A trace is a sequence of observable actions 𝑝
 𝜎
⇒ 𝑞 where 𝜎 ∈ 𝐿 ∪ {𝜏}. The trace 𝜎 can

contain more than one observable action. All the possible traces of process q in Figure 1
are:
𝑡𝑟𝑎𝑐𝑒𝑠(𝑞) = {𝜖, 𝑑𝑖𝑚𝑒, 𝑑𝑖𝑚𝑒 ⋅ 𝑏𝑢𝑡𝑡𝑜𝑛, 𝑑𝑖𝑚𝑒 ⋅ 𝑏𝑢𝑡𝑡𝑜𝑛 ⋅ 𝑐𝑜𝑓𝑓𝑒𝑒, 𝑛𝑖𝑘𝑒𝑙, 𝑛𝑖𝑘𝑒𝑙 ⋅ 𝑛𝑖𝑘𝑒𝑙, 𝑛𝑖𝑘𝑒𝑙 ⋅
𝑛𝑖𝑘𝑒𝑙 ⋅ 𝑏𝑢𝑡𝑡𝑜𝑛, 𝑛𝑖𝑘𝑒𝑙 ⋅ 𝑛𝑖𝑘𝑒𝑙 ⋅ 𝑏𝑢𝑡𝑡𝑜𝑛 ⋅ 𝑐𝑜𝑓𝑓𝑒𝑒}
Some states the system can be 𝒂𝒇𝒕𝒆𝒓 a trace are defined as[32]:

𝑝 𝒂𝒇𝒕𝒆𝒓 𝜎 ≡ {𝑝′| 𝑝
 𝜎
⇒ 𝑝′}

An LTS p is deterministic if ∀𝜎 ∈ 𝐿∗, 𝑝 𝒂𝒇𝒕𝒆𝒓 𝜎 has at most one element. The LTS shown
in Figure 1 is deterministic.

3.3.3 Finite State Machine
Finite State Machine (FSM) has a finite set of states. Formally a deterministic FSM is
defined as a sextuple (𝑆, 𝐼, 𝑂, 𝑠0, 𝛿, 𝜆) where [38],

 𝑆 is a finite non-empty set of states;
 𝑠0 ∈ 𝑆 is the initial state;
 𝐼 is a finite non-empty set of inputs;
 𝑂 is a finite non-empty set of outputs and includes ∅, the null output;
 𝛿 is the state transition function, 𝛿: 𝑆 × 𝐼 → 𝑆
 𝜆 is the output function, 𝜆: 𝑆 × 𝐼 → 𝑂

20

The main difference between an LTS and an FSM is that an FSM has alternating input
and output labels whereas an LTS can have input and output occurring in a random
order. Furthermore, an LTS is allowed to have infinite set of states and an infinite set of
labels, whereas an FSM must have a finite set of states and a finite set of input alphabet.
A Finite State Machine responds on a given input 𝑖 given in a state 𝑠. This produces a
state transition 𝛿(𝑠, 𝑖) and the output 𝜆(𝑠, 𝑖). A visual representation of an FSM is given
in Figure 2, where the input is shown before the / and afterwards the given output. The
empty output is shown as ∅.

Figure 2 – A visual representation of a finite state machine.

It is possible for an FSM to be non-deterministic. This requires some changes to the
formalisation of a deterministic FSM. Instead of the two functions, the state transition
and the output function we only need one behaviour function[39]. This behaviour
function is defined as ℎ: 𝑆 × 𝐼 → 𝑃(𝑆 × 𝑂). In the behaviour function 𝑃(𝑆 × 𝑂) is the set
of all subsets of the set 𝑆 × 𝑂, because it is possible to have multiple outputs and new
states with the current state and input action.

3.3.4 Extended State Machine
Extended State machines (ESM) have similarities to FSMs but are extended with
variables. The modelling language ESM is used to model a system in the model-based
testing tool G∀ST, see section 3.4.4. During the transition from the current state to
another, new values can be assigned to these variables. Using these variables, we can
make an abstraction to our model by diminishing the use of states. With these variables
we can build predicates that can be used as a guard for certain transitions. Guards affect
the behaviour of the state machine by enabling transitions only when the condition
holds. Strictly, an ESM is formalized as

(𝑆, 𝑠0, 𝐼, 𝑂, 𝐷, 𝛿𝑟)

where 𝑆 is a set of states and 𝑠0 represents the initial state and 𝑠0 𝜖 𝑆. The symbol 𝐼
represents the Input alphabet and 𝑂 the Output alphabet[1]. So far, an ESM looks
formally the same as an FSM. However, it is allowed for the set of states, input, and
output to be infinite. As mentioned we want to make use of extra variables. To be able to
use variables we have to parameterize the state to store these variables, otherwise we
cannot use the variables to build predicates.

21

Using variables we introduce domain 𝐷, which is denoted as the space of all possible
values of these variables. Because of the additional variables, we have to change the
transition relation (𝛿𝑟). Elements in the 𝛿𝑟 are a tuple of (𝑠, 𝑖, 𝑝, 𝑎, 𝑜, 𝑡) and can be read as
“in a state 𝑠 with input 𝑖 under the condition that 𝑝 holds, we update the variables by the
actions a, given output 𝑜 an go to state 𝑡”. A transition can be visually represented by a
labelled arrow from one state to the other by:

𝑠
𝑖,𝑝 /𝑎,𝑜
→ 𝑡.

We allow omitting trivial components. This applies to the predicate 𝑝 = 𝑇𝑟𝑢𝑒, the
identity action 𝑎 = 𝑖𝑑, and an empty output. Our transition relation is now formalized as
a set of these tuples:

𝛿𝑟 ⊆ 𝑆 × 𝐼 × 𝑃(𝐷) × [𝑂] × 𝐴(𝐷) × 𝑆

In the transition relation, the output is denoted as [𝑂] meaning that we have a sequence
of elements of type 𝑂. In the transition relation 𝑃(𝐷) denotes all the first order
predicates over the domain 𝐼 × 𝐷, which includes the input alphabet as parameter and
𝐴(𝐷) denotes all possible actions to update those variables. It is not obligated to use
predicates and update actions in every transition.

For an ESM to be deterministic we need the output and new state to be uniquely
determined by the current state and input. However, we have to take into account the
use of predicates as well. It is possible that we have more than one transition with input
𝑖 leaving state 𝑠. Let 𝛿𝑟,𝑗 = (𝑠, 𝑖, 𝑝𝑗, 𝑎𝑗 , 𝑜𝑗 , 𝑠𝑗) with 𝑗𝜖 𝑛 denote these 𝑗 transitions. The

variable values 𝑋𝑘for which predicate 𝑝𝑘 is true need to be mutely disjoint, hence 𝑋𝑗 ∩

 𝑋𝑘 = ∅; ∀𝑗 ≠ 𝑘 and 𝑗, 𝑘 𝜖 𝑛.

It is not required to have a deterministic model, because this modelling language also
supports non-determinism. For a model to be non-deterministic there are 𝑠 ∈ 𝑆 and 𝑖 ∈
𝐼 with more than one tuple in the 𝛿𝑟 . We have to update the transition function because
otherwise the transitions and outputs are unrelated to each other: 𝑆 × 𝐼 → 𝑃(𝑆 × 𝑂)

Example 2 - Deterministic coffee machine (left) and non-deterministic coffee machine (right).

An example to show the difference between non-determinism and determinism is
shown in Example 2. In Example 2, predicates are shown after the | mark. Update
actions are shown directly after the / mark, before the output list, and closed with a
semicolon. In Example 2 the left coffee machine is deterministic and the right coffee
machine non-deterministic. The difference is the additional transition 𝐵𝑢𝑡𝑡𝑜𝑛/[𝑇𝑒𝑎] in
the right coffee machine. This makes the right coffee machine producing either coffee or
tea. It is unknown what to expect when with the input Button it is either Tea or Coffee.
Because when n is 10 and input Button is used the output will be
{(𝑛 = 0, [𝐶𝑜𝑓𝑓𝑒𝑒]), (𝑛 = 0, [𝑇𝑒𝑎])}.

22

3.4 Model-based testing tools
In this section, we discuss several model-based testing (MBT) tools. There are different
kinds of model-based testing tools each depending on the kind of model that is used[32].
Not only is the type of model important but also the quality aspects that are tested, the
level of formality, accessibility, and observability of the system being tested relates to
the choice of tool. The tools we discuss use the models explained in section 3.3.

3.4.1 Overview of tools
During our search of model-based testing tools, we found a collection of tools (Table 3).
We made a selection based on the following conditions to reduce our collection:

 Still in development
 Supports on-the-fly generation (Section 3.4.4)
 Provides useful documentation
 Open source or commercial

The MBT tools mentioned in Table 3 contain several free tools like Spec Explorer[40]
and TestComposer[41]. Spec Explorer, developed by Microsoft is written for testing
reactive, object-oriented systems. Spec Explorer has the possibility to test offline and on-
the-fly. Offline testing means that tests are generated and executed against the SUT,
whereas “on-the-fly” testing, test generation and –execution are interleaved. A great
feature of the tool is that it supports non-deterministic behaviours, e.g. messages
received in different orders than published[35]. Tools like JTorX[42], TorXakis, and
SpecExplorer can deal with the ioco relation mentioned in section 3.3.2.

AETG Graphwalker RT-Tester TestGen (INT)
Agatha Gotcha SaMsTaG TestOptimal
Agedis JTorX SeppMed MBTsuite TGV
All4Tec MaTeLo NModel Smartesting CertifyIt Tigris
Autolink OSMO Spec Explorer TorX
Axini Test Manager ParTeG Statemate TorXakis
Conformiq Qtronic Phact/The Kit STG T-Vec
Cooper QuickCheck TestComposer Tveda
G∀ST Reactis TestGen (Stirling) Uppaal-Cover
 Uppaal-Tron

Table 3 – Overview of MBT tools.

3.4.2 Graphwalker
Graphwalker is a model-based testing tool built in JAVA. Graphwalker has support for
generating tests online and offline[43]. Graphwalker supports both FSM and EFSM as
type of models. Graphwalker has four options to walk through a model:

 Random, also known as the Drunkard’s walk
 Quick random, tries the shortest path but in a fast fashion way
 A* algorithm[44]
 Shortest all paths, the cost of every edge is set to 1.

23

The quick random walk is defined as follows[43]:
 Choose an edge not yet visited by random.
 Select the shortest path to that edge using Dijkstra's algorithm[45]
 Walk that path, and mark all the edges that are being executed as visited.
 When reaching the selected edge in step 1, start all over, repeating steps 1-> 4.
 The algorithm works well on very large models, and generates reasonably short

sequences. The downside is when used in conjunction with EFSM. The algorithm
can choose a path that is blocked by a guard.

Based on one of the four options, Graphwalker walks through the model to generate
tests. The purpose of Graphwalker is explained by the name itself. The tool walks
through a graph, based on a certain algorithm. The tool is still in development and
recently version 2 has been released. Based on our own findings the tool is very basic
and requires time to implement. On each transition, if wanted also on each state, we
have to determine if the SUT is still behaving according to the model. Therefore creating
a test environment that needs little adjustments to test a different web application
requires many changes.

It also turned out that the documentation was not accurate and still lacking information.
After some contact with the owners, we found out that more functions can be used but
were not documented. We have chosen not to use this tool with testing web applications
based the amount of implementation work, the brief experience, and troubles we faced
in a shout amount of time.

3.4.3 TorXakis
TorXakis is a model-based testing that makes uses of LTS models. TorXakis is developed
by ESI-TNO and is still in development. The tool is based on the model-based testing tool
TorX[42], extending it with symbolic test generation capabilities. Test generation and
execution are performed on-the-fly. TorXakis is written in Haskell[46], a functional
programming language and uses its own logical syntax to create models. TorXakis is
used as the model-based-testing tool in a recent project to test Electronic Passport[47].

3.4.4 G∀ST
Generic Automatic Software Test-system shortly G∀ST[48], is a model-based testing tool
and uses models modelled in the languages FSM (Section 3.3.3) and ESM (Section 3.3.4)
to generate test cases. G∀ST is written in the function programming language named
CLEAN[49]. There are two ways to use G∀ST, which is property based or state based. We
are interested in state based testing. G∀ST has the possibility to test software that is
written in different programming languages by communicating over sockets. It is often
not possible to communicate directly between G∀ST and the SUT, therefore an adapter
is developed. The adapter is needed to translate the generated test output to readable
input data for the SUT. It also translates the output, given by SUT as a reaction on the
input, to readable input data for G∀ST. G∀ST has the possibility to generate test output
“on-the-fly”, meaning that test generation, -execution and –analysis are alternatingly
performed, only as far as needed, and that no explicit test case is generated[50].

24

With state based testing we test based on conformance. A SUT is conform the
specification modelled in G∀ST if the observed transitions are part of the specification or
the specification does not specify anything for this combination of state and input:
𝛿𝑟(𝑠, 𝑖) = ∅. Conformance in G∀ST is formalized as:

SUT 𝑐𝑜𝑛𝑓 SPEC ≡ ∀𝜎 ∈ 𝑡𝑟𝑎𝑐𝑒𝑠𝑠𝑝𝑒𝑐 (𝑠0). ∀𝑖 ∈ 𝑖𝑛𝑖𝑡(𝑠0 𝑎𝑓𝑡𝑒𝑟𝑠𝑝𝑒𝑐 𝜎)∀𝑜∈ [𝑂].

(𝑡0𝑎𝑓𝑡𝑒𝑟𝑠𝑢𝑡𝜎)
𝑖/𝑜
→ ⇒ (𝑠0𝑎𝑓𝑡𝑒𝑟𝑠𝑝𝑒𝑐𝜎)

𝑖/𝑜
→ [51]

The observed output 𝑜 should be allowed by each input 𝑖 in the 𝑖𝑛𝑖𝑡 after each trace 𝜎.
A trace 𝜎 is a sequence of inputs and associated outputs for a given state 𝑠. If a model is
non-deterministic multiple outputs are allowed, As said it is possible that the
specification does not specify anything for a certain combination of state 𝑠 and input 𝑖,

this empty trace refers to its own state: 𝑠
𝜖
⇒ 𝑠. It is possible to combine a trace 𝑠

𝜎
⇒ 𝑡 and

a transition 𝑡
𝑖/𝑜
→ 𝑢 to the trace 𝑠

𝜎; 𝑖/𝑜
⇒ 𝑡. The inputs that are allowed in the current state 𝑠

are 𝑖𝑛𝑖𝑡(𝑠) ≡ {𝑖|∃𝑜. 𝑠
𝑖/𝑜
→ }. The states that are available after applying the trace 𝜎 are:

𝑠 𝑎𝑓𝑡𝑒𝑟 𝜎 ≡ {𝑡|𝑠
𝜎
⇒ 𝑡}. There is a possibility to have infinite many traces and

unbounded long trace, only if the state machine contains a loop. Having a transition from

state 𝑠 that refers to itself 𝑠
𝑖/𝑜
→ s is already enough to cause a loop[51].

In the definition 𝑠0 is the initial state of the specification and 𝑡0 is the initial state of the
SUT. The actual states of the SUT are never used because we only compare inputs and
outputs in this conformance definition. We use black-box testing and there can only
compare inputs and outputs, we do not know the internal state of the SUT. However,
input and output of the SUT and the model (specification) should be the same according
a specification.

In Example 3 and Example 4 we have two ESM models of a coffee machine. We use 𝑐1
asa specification and 𝑐2 as a SUT, we can do this because both examples are modelled as
an ESM. The unlabelled transitions in the examples are applicable to any input that are
not explicitly specified and produces the empty output. On the first looks, both models
should behave the same. According the to the trace [{Dime,[]}, {Dime,[]}] both the
specification and SUT are behaving the same. The same hold for the trace [{Nickel,[]},
{Nickel,[]}, {Button,[Coffee]}], which produces in both models the same output [Coffee].
However, if we look further we can find an input sequence where 𝑐2 is not a correct
implementation of the specification.

 Example 3 – c1, coffee machine 1[1]. Example 4 – c2, coffee machine 2[1].

25

For the trace [{Dime,[]}, {Dime,[]}, {Button,[Coffee]}, Button] the specification 𝑐1
produces Coffee for the second time, whereas the SUT 𝑐2 produces an empty output. We
can say that the SUT c2 is not conform to the specification 𝑐1.

G∀ST uses a generic algorithm to generate input data. This generated list of input data is
infinitely long and lazy evaluation is introduced to generate only a fraction of this list
that is actually needed[50].

G∀ST uses pseudo random number to make slightly different permutations in the
generated list, so that not the same input is constantly chosen. G∀ST checks whether this
generate input is possible to use in the current state of the specification. If not, the input
is rejected and continues to test with the following input action in the list. We reduce the
generated list even further so G∀ST only generates input actions that do make sense in
the current state of the model, so we have less rejected input to generate. We do not
want to generate random links that do not make sense at all.

From the generated input, in a certain state, G∀ST observes the output from the SUT. If
the observed output matches the expected output from the model, the trace is accepted
and the state changes accordingly. Each input sequence is started from the initial state. If
the end of a sequence is reached, a reset function is required to restore to the initial
state. If non-conformance is detected, i.e. observed outputs do not match the expected
outputs, the test is aborted and a counter example is given.

3.5 Choice of modelling language and model-based testing tool
In the previous sections, we discussed several modelling languages and model-based
testing tools. For our test architecture we need a modelling language to model a web
application. We have chosen for an ESM as a modelling language. The reason why we
have chosen an ESM is due to its capabilities. It is possible to model non-deterministic
and deterministic systems and an ESM can make use of variables to define predicates
that can be used in guards. It possible to use variables with an LTS only some changes
has to be made with the LTS we defined in section 3.3.2. However, it is not possible to
use variables with an FSM.

We expect from testing a web application that we always receive an output after each
input, because if a request is made to the web application a response should be send
back. In an FSM and ESM, the input and output are a pair in every transition, whereas in
an LTS we have to specify the input and output as a separate transition.

Another difference with the modelling languages is the amount of states, input, and
output. An FSM should have finite set of states, input, and output whereas in an ESM an
infinite set is allowed. An LTS should have a countable finite set of labels.

If we want to use variables to store information in the state, we can leave out an FSM as
a modelling language. This leaves us with the choice between an LTS and an ESM. There
main reason why we prefer an ESM above an LTS is because of the model-based testing
tools each modelling languages supports. An LTS is mainly used as an modelling
language in the model-based testing tool (J)Torx and its successor Torxakis. Torxakis is
not yet mature enough to use in this thesis research. The tool contains some unwanted
behaviour and uses his own language to describe an LTS model.

26

Using an ESM as a modelling language leaves us with the choice of multiple model-based
testing tools. We described in section 3.4.2 the model-based testing tool Graphwalker.
This tool can use an ESM as a modelling language. However, the tool itself is not useful
enough based on the implementation work that needs to be done and its approach it
uses to test the model.

The tool TestOptimal is also suitable to use an ESM as a modelling language[52]. We did
not discussed this tool in section 3.4, only mentioned it as a possible model-based
testing tool. We did not do any detail research about this tool, because we focussed more
on Graphwalker and G∀ST. This tool is a commercial tool and is not our preferred
model-based testing tool to use. We prefer open source model-based testing tools.

One of the tools that is free to use is the model-based testing tool G∀ST. We are familiar
with this tool because we used this testing tool in a project exercise in the course Testing
Techniques given at the Radboud University of Nijmegen. Based on this familiarity we
have chosen to use this model-based testing tool. We know the language, CLEAN where
we have to write our model. Comparing this G∀ST with other testing tools we focussed
on, this is most mature tool and the best option with an ESM as modelling language.

27

4 Test architecture
In this section, we discuss the architecture of the test environment we use. We will
enlighten all aspects of the architecture, stating the purpose of each item in the
architecture and their communication between each item. In section 4.1, we will give an
overview of the flow how current web applications in our setting are used. In section
4.2, we will give an overview of the test architecture we are going to use. In the following
sections, we will discuss the parts of the architecture separately, where in section 4.3 we
will discuss the Content Management System, followed by section 4.4 where the System
Under Test will be discussed. In the final section 4.5, we will discuss the adapter that is
used in the test architecture for communication purposes.

4.1 Overview of the current situation
It is important to have a test architecture. It describes what each component does and its
communication to other components it is connected to. To setup a test architecture it is
important to know what components there are if the system is used in real-life. In Figure
3, we give an overview of systems that are currently involved when using a web
application.

The normal flow to use the application is that a user visits the web application by a
browser on his/her computer. The browser tries to make a connection with the web
application by sending a request. The web application receives this request and based
on the URL it tries to retrieve data from the database. How the web application retrieves
the correct data based on its URL will be explained in section 4.4. Based on this data, the
web application creates a complete HTML document and send this document back to the
web browser it received the request form.

Creating a new web page or adding images to a web page is done through the Content
Management System (CMS). The CMS communicates with the same database the web
application uses. Changes made by the owner to the application are almost instantly
online. The CMS will not be part of the test architecture but is needed for owners to
maintain and update their web application. For this reason, we will explain the CMS
shortly in section 4.3. The web application requests data from the database, but it can
also write data to the database. The latter is not often used, but in situations where the
application is used as a blog, it is common. Users can post comments on a blog item. This
comment is written to the database.

Figure 3 – Overview of systems involved.

28

In Figure 3, we also mention the payment provider, which is needed to pay for the
products a user wants to buy in this webshop. If the user clicks on the buy button, he is
redirected to the payment provider. This payment provider does not belong to the web
application and is an external company that delivers this service to the webshop. Users
can easily pay with this provider and this payment provider almost instantly transfers
the money to the account of the owner of the webshop. As already said users are
redirected from the webshop to the payment provider, they are leaving the webshop
application. When the payment is successful or aborted, users are directed back to a
page of the webshop. The webshop first requests to the payment provider the status of
the transaction of the user we bought the items. This status request allows to webshop
to know if the payment is completed successfully or not and can corresponds with a
message accordingly.

4.2 Overview of the test architecture
Now that we have seen how currently users are using the web(shop) application, we
need to make a test environment to test a web application according to a user’s
approach. In Figure 4, an overview of a test architecture we are using is given, each
block is explained in the following paragraphs.

The Web Application in Figure 4 is the SUT. The SUT responds on the HTTP requests
received from a browser. The received request will first be handled by the routing
engine of the web application (Section 4.4.1). All the data that belongs to a page, that is
requested, will be retrieved from the database and is surrounded with HTML code in the
corresponding view (Section 4.4.3).

We need a web browser to open the SUT and a tool that can receive commands and can
execute these on a web browser. The latter is required otherwise, we cannot extract
information we want to test a web application.

Figure 4 – Overview of the test architecture we use.

29

We found a couple of tools where, for us, Selenium[53] and PhantomJS[54] came out
best. The tool Selenium has support for multiple browsers. Selenium is a tool that
automated web browsers. It can open a browser on a computer and access all its
functionality. The functionality of a browser can be addressed by the API of this tool. An
advantage of this tool is that we can actually see what happens while testing a web
application, because the browser is visible on a screen. Selenium has support to test
simultaneously on multiple browsers. Due to previous experience and difficulties we
faced with Selenium, we have chosen not to use this tool. In the course Testing
Techniques given at the Radboud University of Nijmegen, we tried to use this tool. We
faced many difficulties trying to run Selenium and run tests on a browser. This reason
kept us from starting with Selenium before trying the other tool we found, which is
PhantomJS.

PhantomJS is a headless browser, meaning that they removed the Graphical User
Interface (GUI), but all functionality of the browser remains. PhantomJS uses the Webkit
engine that is also used in the familiar web browser Safari. PhantomJS provides a
JavaScript API to address this headless browser. By using the API, we can open web
pages and retrieve information on the page. One drawback could be that we do not have
a real-time visual image of what is happening. The headless browser within PhantomJS,
allows making a rendering of the web application at the moment it is requested. This
gives us the capability of capturing an image of the web application on moments it is
desired. One of those moments could be when the web application returns an error. This
way we have a visual representation of the moment the error is occurring.

PhantomJS communicates with a web application the same way as done through a
normal web browser. It requests the web page and receives an HTML file of the page
back. This page includes several links to other files that are needed to render the web
page. Those files are Style sheet-, JavaScript-, Font-, Image files and more. Each file is
requested likewise the main file.

To connect PhantomJS with a model-based testing tool we require an adapter, there is
no way we could directly communicate with both tools because each tool has its own
language. The preferred way to communicate is with an adapter using sockets.
PhantomJS does not have the ability to communicate with sockets to an MBT like G∀ST
or to an adapter. Because of the lack of socket communication, we searched for a
different tool that has support for sockets and could easily use the API from PhantomJS.
We found a tool, named NodeJS[55], also built on a JavaScript language but is able to
communicate with sockets and could use the API from PhantomJS.

The purpose of the adapter is to serve as a server, this way the adapter keeps running,
and multiple clients can connect to this server. It possible to add observers as a client to
see what is happening, without interfering the MBT tool. We created a client script to see
if we were able communicate by sockets and test if we could open a web application and
click on a link. The adapter is used for translating generated test cases by the model-
based testing tool to useable input action to the headless browser and vice versa. More
about the adapter is explained in section 4.5. The MBT tool used in this case is G∀ST and
makes use of an ESM as a model.

30

4.3 Content Management System
Today’s web applications, think about informational applications but also webshops, are
commonly provided with a Content Management Systems (CMS). It allows owners to
easily add, change, or remove content on the application. The CMS we use is called
“MyNotion” and is developed by the company Bluenotion. MyNotion is designed to
collaborate with the web applications we test. The CMS delivers functionality to manage
websites and webshops.

When owners of the application create a new page, they can choose between predefined
page types. Each predefined page type looks different. During the development of the
web application, for each predefined page type a view is created. Each page type has a
predefined number of text fields and album images that belong to a view defined in the
web application, which is explained in section 4.4.3. By doing this, owners are restricted
to the set of fields and albums that are allowed but guarantees that owners can almost
do nothing wrong to dysfunction the web application.

Of course, there are still possibilities to dysfunction the web application. However, this
will probably be due to bad programming. Examples like empty text fields or image
albums that are not captured and causes application errors.

4.4 The System Under Test
In this section, we will discuss the relevant parts of the SUT. We will discuss these parts
because they are relevant in understanding what happens at the back-end of the
applications we test. We suggest reading this section only if there is no knowledge in
how web applications works, especially web applications built with the MVC principle. It
also explains where errors that can be found during testing are located in the code.

4.4.1 Routing Engine
When a web request to the application is made, for example visiting the following link:
http://www.bluenotion.nl, the request first gets to the routing engine of the application.
The routing part is necessary to deliver the right content back to the browser. The
routing engine tries to parse to URL and redirects the request to the right controller so
the right content is served. The controller determines the appropriate action method to
handle the request. It is possible to capture certain URL’s and specify where they
redirect too. The Routing engine reads those special cases from top to bottom and tries
to find the first one it matches with [56]. If no match is found the default routing setting
is used.

http://www.bluenotion.nl/blog/index/12
Example 5 - An example of a URL applicable in the application.

URL’s are built in different parts. The first part of a URL is the domain name. We use
Example 5 as an illustration. The domain name in Example 5 is www.bluenotion.nl. The
second part of the URL is “blog”. This second part always corresponds with the name of
a controller. The controller will be explained in section 4.4.4. The third part in the
example is “index” and refers to the name of the action method in the controller. The last
part of the URL is the parameter given to the action in the controller. In this case, the
parameter is an integer with a value of 12.

http://www.bluenotion.nl/
http://www.bluenotion.nl/blog/index/12
http://www.bluenotion.nl/

31

Nevertheless, it is possible to deviate from the default routing settings. We can take a
blog as an example. Each blog item has an id and a title for the application. It is
preferable to have nice user- and search engine friendly URLs like:

http://www.bluenotion.nl/blog/first-item-of-the-website-001
Example 6 - URL for blogs

We still want the URL to redirect to the controller “blog”, with action “index” and an id as
integer. With the URL mentioned in Example 6, the controller will be reached with the
default settings but the action ‘index’ will not be reached. In this situation, we should
create a new routing case that matches the URL we want. With Regular Expressions, it is
possible to create a routing case. Example 7 shows a routing case that should match the
URL mentioned in Example 6 and matches new blog items with different ids and titles.

routes.MapRoute(
 "Blog", // Route name
 "blog/{title}-{id}", // URL with parameters
 new { controller = "blog", action = "index",
 id = UrlParameter.Optional }, // Parameter defaults
 new { controller = @"[^\.]*", action = @"[^\.]*" }
);

Example 7 – Routing case for a blog item.

In Figure 5 a flow of the routing engine is given. As mentioned after the url is parsed the
routing engine tries to find a matching route as shown in Example 7. If no matching
route is found a HTTP 404 error is returned.

Figure 5 – Flow of a routing engine.

http://www.bluenotion/blog/first-item-of-the-website-001

32

4.4.2 Application models
Models also occur in a .NET applications. They differ from the term used within the field
of model-based testing. We use the term application models for models used in the .NET
Web application. Application models basically describes the business logic, data access
login, and validation logic [57].

Normally application models should contain data access logic but this is commonly
separated into a service layer. In this way, we keep the models and controllers clean of
excessive database calls. All these calls are managed in one service layer to keep a better
overview. All the applications we host have the same database calls and are managed in
this layer. An additional advantage is that we only have to update the service layer to fix
a bug instead of writing correct code into each application.

Bluenotion also separated the data access login into a service layer. For each type of
application Bluenotion hosts, website or webshop it has a default set of application
models. Some of the application models used in a website are also applicable to a
webshop because a webshop is an extension of a website. A good example of an
application model used in both applications is the Page model. This page model holds
data about the page, concerning textual information that is displayed on page, images
and more. The application models describe what data they should contain and are
retrieved through the service layer, previously discussed. It is possible to apply
validation on these sort of models. Each data attribute that is mentioned can have
certain validation or restriction rules. Rules like the type of variable, for example a
string, integer or boolean can be applied. Other things are also possible like the length or
range of the value, if it is required, or are allowed to be empty. All these kind of
validation types can be added by annotating the attribute with the correct annotation.

Application models are not always used to retrieve data from the database and display it
in the application but also to represent forms in an application like a login or contact
form. In this way, it restricts the user what he is allowed to fill in. This is based on the
restrictions mentioned in the model. These type of models are called ViewModels
because they behave like an application model but are only used in Views [58]. The
validation after submitting the form should always be performed server-side, but with
these restrictions mentioned in the model, it is also possible to validate this on the
client-side.

Client validation is feasible because the HTML generated from the model is annotated
with those restrictions. With some JavaScript code or a library, it is possible to validate
the form before it is submitted to the server. This reduces the amount of submission to
the server. Validation on the server-side is done automatically only we have to catch if
the validation is wrong. If a submitted form is wrong, the data of the form is returned
and an error message for each wrong input field is shown accordingly. The user will see
what he submitted and an error message for each field summarized or displayed next to
its belonging field.

33

4.4.3 Views
In this section, we discuss how views and its data are constructed. Views represent what
should be displayed on a browser. We discuss with some details how views are
constructed, because views represent parts of the HMTL document that is sent to the
browser.

Views are used to display data from an application model to users on a screen. It has to
know the structure of the model to display the data correctly. Many views can display
the same model in many different ways. The structure of a view is a combination of CSS,
HTML, razor code, and other web rendering code. Razor is a programming language
based on C# and is used in the views to display the data in the application models and
other defined variables[59]. It contains normal programming statements like for-loop,
if-else and while. Razor uses the ‘@’ symbol for all its statements. Razor code in a View
can be used in three different ways:

 Single statement block @{ var myMessage = "Hello";}
 Multi-statement block @{…var myMessage = "hello"; var name = "John";…}
 Inline statement @{<p> Hi @name, this is my message: @myMessage</p>}

Without using the ‘@’ symbol, the code written above will be shown as plain text. It is
possible to use partial views within views as well. This is relevant when we have the
same piece of code used in multiple views. It is better to separate this part because it is
less error prone and better for maintainability. A different aspect of .NET MVC is the
ability to define sections. It allows us to add HTML, CSS, or JavaScript to a section
defined in a parent view. We can define a section named ‘JavaScript’ in the layout view.
Each view uses the layout views and holds most of the HTML code that is similar in each
view. It is now possible to uses the defined section ‘JavaScript’ in other views. In the
section, we can enter html code, text and include files. In this way, we can include only
CSS and JavaScript files that are specific to this view. By using sections to load different
files it reduces the loading time of the application page, because not all the JavaScript
and CSS files have to be loaded at once.

4.4.4 Controllers
Controllers are the centre point of the MVC principle [60]. It connects the application
models and the views together. Controllers have a similar representation like a class
defined in an Object Oriented Programming language, like Java. The class name is the
controller name. Each controller has a constructor and multiple methods. In the
controller, we can define and assign variables that are useful in every method defined in
the controller, this way they are only assigned once.

As explained in section 4.4.1 the routing maps a certain URL to methods defined in
different controllers. A method is like a function and could have several parameters as
input. Each method has its own return type, except for private functions. There are
different return types but the most used are ActionResult and JsonResult. ActionResult
always returns a view that is assigned to the method whereas JsonResult returns a JSON
object. JSON[61] is often used in Ajax[62] calls made in JavaScript.

Bluenotion made a service layer between the controller and the database as explained in
section 4.4.2. The designated services are initialised in the constructor of the controller
[63]. The services are therefore available in each method defined in the controller.

34

If a defined method has to possibility the receive a submitted form, the method should
have a ViewModel with the proper data as in input parameter. The submitted form is
parsed into the ViewModel. With this ViewModel we can check if a form contains no
errors or empty fields. With a simple if statement it is possible to check if the model is
valid or not. The application automatically keeps track of the state of the model.
Therefore, the attribute “ModelState.IsValid” tells if the submitted form corresponds
with all the requirements that are obligated within the ViewModel.

Not all the controllers in the application exist as a physical controller. The application is
dynamic and owners are allowed to create their own pages. To provide this dynamic
behaviour a default controller is introduced. The default controller is used when other
defined controllers are not applicable. The default controller checks if a page in the
database exists that matches the URL from the routing. If not a 404 error will be
displayed. If a page exists, the default controller uses the view that is bound to the page.
This way the owner can create multiple pages.

4.5 The adapter
To communicate between an SUT and an MBT tool an adapter is often required. An
adapter translates the generated test cases, from the MBT tool, to useable input for the
SUT. It also translates the observable output from the SUT to input for the MBT tool. By
using an adapter to make this translate, it should also be easier to replace the MBT tool
with a different testing tool. Often communication is done through a socket connection
whereas the MBT tool serves as a client and the adapter as a server. This way we only
have to start the adapter once and the MBT tool when we want to start testing. It is also
possible in this way to allow multiple connections to the adapter, by sending broadcast
messages from the adapter. This way we can add an observer to see how the SUT is
responding.

To build an adapter it is important to know what kind of messages or information will
be send on the socket. To know this we have to know how to interpret a webpage. We
know how we can retrieve information about a web page by accessing its DOM object.
This way we can search for certain elements we need. We know that links to other pages
have an “<a>” html tag. That tag always contains a “href” attribute that tells us where we
go if we click on that link. We can search for all those href attributes to know what links
the page contains. For testing forms we already know from section 3.1.1 that a form can
be identified through the attributes “action”, “class” and “id” and the elements within a
form can be identified through their name attribute.

As we already mentioned, we communicate information to and from the adapter. We
model a web page in such way that we extract only the information we are interested in
and send the relevant information to the MBT tool. Therefore, the adapter should have
some intelligence. Meaning that the adapter is responsible for extracting the necessary
information. The headless browser provides a JavaScript API and therefore it is
convenient to develop the adapter in JavaScript as well because we can directly address
the PhantomJS API. Fortunately JavaScript provides support for socket communication
and therefore we can communicate with our MBT-tool G∀ST.

35

For G∀ST it is only important to know if the web page is reachable or not and the
relevant information, such as the set of internal links, current URL, visible forms, errors
and visible products. The messages that G∀ST receives from the adapter are listed in
Table 4. The top four rows in the table are only used in the small model and its extension
defined in section 6. The complete table is applicable to the webshop model defined in
section 7.

In the column “Message to G∀ST” in Table 4 the formatted strings are listed. Those
formatted strings are needed to allow G∀ST to parse those strings to the correct output
data type. The meaning of “#” within brackets is the length of the string next to it. This
way G∀ST knows what the length of the string/description is. Each output typed will be
send separately, but G∀ST requires that it should receive every output type. If no
internal links, errors, forms or products exist the output message is therefore still send
for the specific type, only with an empty list, for example “Errors []”.

Output Message to GAST Description
Id “Id [#]string” Url of the page that is

currently open.
[Url] Urls [

Url [#]string,
Url [#]string2]

List of internal links on the
current page.

[Error] Errors [
Error [#]description,
Error [#]description2]

List of errors that occurred
during loading of the current
page.

[Form] Forms [
[#]formId,
[#]formId2]

List of forms that exists on
the current page, found by
their identifying attribute as
its name.

[Products] Products [
(_Tuple3 id, amount, price),
(_Tuple3 id2, amount2, price2)]

List of products that exists on
the current page,
represented as its product-
id, amount, and price.

Amount Amount # Amount of products in the
shopping cart.

Transport Transport # Current transport method
that is selected.

Logged Account Boolean If the user is logged in or not.
Cart Cart [

(_Tuple3 id, amount, price),
(_Tuple3 id2, amount2, price2)]

Products that are added in
the shopping cart.

Payment Payment Current payment method
that is selected.

Table 4 – Messages send from the adapter to G∀ST.

36

For the adapter it is important to receive useable information, because it has to know
what to do. In Table 5, we list the messages that are sent from G∀ST to the adapter. The
top five rows are only applicable to the small model and its extension defined in section
6, whereas the complete table is applicable to the webshop model defined in section 7.
Each label holds one or more parameters. Each parameter is used in the message send to
the adapter. The message that is sent is formatted in a JSON object but sent like a string.
The adapter parses the received message into a JSON object. We prefer using a JSON
object above multiple strings for the reason that it is readable and easier to use in the
adapter. Because the web applications we test have fixed patterns, we can make a
distinction in testing a category-, product-, information-, or form page. Each page has
certain distinctive and overlapping elements to test.

Label Message Description
Visit website {type:”start”,

 website: website}
Open web application

Open url {type:”click”,
 url: url }

Click on requested link

SubmitEmpty
formId

{type:”submit”,
 id:2,
form: formId

Submit form with empty
values

SubmitFalse
formId

{type:”submit”,
 id:0,
form: formId}

Submit form with false values

SubmitTrue
formId

{type:”submit”,
 id:1,
form: formId }

Submit form with true values

Addproduct
(productId, value)

{type:”addproduct”,
 id: productId,
price: value}

Add product to shopping cart

ChangeTransport {type:”changeTransport”,
 id: transportId}

Changes current transport
method

ChangeAmount {type:”changeAmount”,
 id: productId,
price: value}

Changes product amount by
+1

ChangePayment {type:”changePayment”,
 id: paymentId}

Change current payment
method

Delete {type:”deleteProduct”} Deletes first product in
shopping cart

GotoStep2 {type:”gotoStep2”} Goes register/login part of the
checkout

GotoStep3 {type:”gotoStep3”} Goes to payment options page
GotoStep4 {type:”gotoStep4”} Goes to overview page of

checkout
GotoPayment {type:”gotoPayment”} Goes to the desired payment

provider
GotoStep4b {type:”gotoStep4b”} Goes to payment placed page
GotoStepDone {type:”gotoStepDone”} Goes to payment successful

page
Table 5 – Messages send from G∀ST to the adapter.

37

5 Behaviour of web applications
In this section, we will discuss the behaviour of web applications that companies find
important to test. In section 5.1, we discuss what is common to test with web
applications. Section 5.2 discusses the testing ground we find important, partially based
on the common testing ground.

5.1 Common testing ground
Web applications are available in many forms. Each application has its own purpose and
behaves in a different way. However, at the lowest level of interaction almost each
application behaves the same. This behaviour is based on the request and response
principle. A browser requests certain information and the server responds back with an
answer. It is one-directional communication. Almost all applications are built on this
one-directional communication, but there are exceptions. There are applications that are
bi-directional. Those web applications make use of websockets to establish a bi-
directional communication. A nice example of how a bi-directional communication is
implemented is the web application Shootr1. Bi-directional web applications takes a
different approach to test and is therefore beyond our scope of this research.

So back to our request and respond applications. As we explained in section 4.5 when a
webpage is requested an HTML object is received from the server. This HTML object can
contain several links to other files. Those files are also requested and probably received.
After receiving all files, the DOM object is initialized and ready to use. With having this
DOM Object we can start testing.

There still remains a question which is what is important when it comes to testing web
applications? In section 3.2, we mentioned the definition of testing and the quality
characteristics that are applicable. With testing web applications, other quality
characteristics are more important to measure quality [19, 64, 65]:

 Functionality
 Usability
 Human Interface
 Compatibility
 Reliability
 Performance
 Accessibility
 Security

In the next few paragraphs, we will discuss each characteristic shortly. Of course, other
software characteristics still hold like maintainability. We still want a product that is
maintainable and allows changes.

The quality characteristic functionality used with web applications is about mechanism
used on the web application. Mechanisms like search options, fill in forms, (menu)
navigation, level of scrolling (horizontal and vertical). It also contains domain specific
mechanisms like product functionalities in an e-commerce system.

1 http://shootr.signalr.net/

38

The usability characteristic is about understandability of the web application. This could
be helping information with filling in forms, phone numbers and email addresses are
correct annotated. This characteristic is hard to automate, because this is mainly about
the interpretation of a user about the content of a web page. Of course, it is possible to
see if certain parts are in place and function but it is almost not possible to test if it helps
with understanding the contents of the page only assumptions can be made.

The characteristics interface and compatibility strongly related to each other. If we test
compatibility of a web application, we mainly focus on the interface of the web
application. A web application is a product that you want to show to the world.
Therefore, it has to look good and no strange things should happen. Because browsers
have implemented different rules for interpreting and rendering a web page, a web page
could work fine in FireFox but does not look or function properly in Internet Explorer
(IE) or even within older versions of the browser itself.These rules are defined in the
CSS files that are included in the HTML document. The interface of the web application
tells where every html element is located on a page and what design properties is
contains, which are defined in a CSS file. Common web browsers with their recent
version are FireFox(v38), Chrome(v42), Internet Explorer(v11), and Safari(v8). There is
a huge difference in rendering a web page with IE7 or IE9 and higher. Other browsers do
not differ that much with some older versions of the browser.

A different quality aspect companies also consider is mobility but relates to
compatibility. Many mobile devices are used nowadays, each device with different
screen sizes and other specifications. Companies want that their web application can be
used on almost every mobile device everywhere on the world. However guaranteeing
that the system is working on every device there is, is a struggle. Some may say this is a
total different quality characteristic but we assume this mobility characteristic as a part
of the compatibility characteristic.

Reliability with web application can have different options. The first option is about the
uptime of the web application. Here the choice of server and its capacity is important.
Preferably we want a server that can guarantee a uptime of 99,9% or higher. In addition,
unexpected behaviour of the web application is also part of this characteristic.

Performance characteristic is about the speed of the web application. Here it is
important to know how quick pages are loaded. Of course, it depends on the speed of the
internet connection. Nevertheless reducing file sizes of media content and the HTML
document could increase the loading speed of the page.

Accessibility is about how accessible is the web application. Is there any support for
users that are blind or visually impaired? Certain html elements have attribute that help
with telling blind people what this element is about. For example, a link element (<a>)
should have a “title” attribute to tell what this link is about. With this attribute blind
people know what this link is about. The same rule holds for the “alt” attribute in an
image element

39

Security is lately also an important quality aspect to test. Criminals want to abuse web
applications to gain profit of it. One way is by installing malware through advertisement
that is shown on the web application. A different way is stealing credit card information
by using SQL-injection. There are some standard security aspects that probably should
hold for each web application, like preventing SQL-injections. However not every web
application requires a secured connection by a SSL certificate.

5.2 Our testing ground
With our goal of testing web applications with a model-based testing tool, we diminish
our set of quality characteristics that are stated in the previous section. Mainly the
reason why we diminish the set of quality characteristics it is very complicated to
implement every characteristic there is in one total package. Further to cover every
characteristic that exist is too big to cover in this thesis.

We are not interested in the looks and feels of the web application. Therefore, it leaves
out the interface characteristic and testing it on one browser is therefore sufficient. Our
focus lies with testing the functionality of the web application. This means testing links,
forms, media content, indirectly cookies, and mechanisms in forms. Indirectly we still
have some overlap with interface testing. We want to test web applications through a
user perspective. This means where a user clicks on we also click on, but without the
interface and visual representation of the web application. We can achieve the user’s
actions the same way by accessing the DOM object and trigger that action. This way we
do not have to rely on the user interface. However, if we cannot click on an element we
also know that there could be something wrong with the interface. This way we still test
our interface in some way. We also cover the interface characteristic based on testing if
we have no errors in the CSS files that are included. If CSS files are missing, the interface
can look different. Based on the user approach to test web application we heavily make
use of the DOM object to achieve our tests.

We do not deal with compatibility. The web applications we test, built by Bluenotion, are
by default not supported on older browsers and therefore not tested. If a web
application is built for supporting older browsers, than these test cases should be build
specific for that web application. Modern browsers are more compatible with each other
and less changes are needed to behave identically.

Usability is partially covered by testing the content of the page, meaning that all files
should be there and correctly loaded. Because is we miss media files we can conclude
that the web page is probably not useable or readable. It is not interesting enough to
build in spelling checkers to test if the written text is correctly spelled.

Performance is covered but in a different way. G∀ST, the testing tool we use, requires a
timeout value. G∀ST stops testing after it did not receive any message within this
timeout value. This can be translated to the response time of the website. If after a
couple of seconds the web application still not responded with an answer this timeout
could happen, especially if we test the web application on a local machine and the
internet connection has no influence.

40

Accessibility is partially tested. We test if certain html attributes are added to html
element it belongs therefore it should be readable enough to blind people. We test for
existence of attributes like the “title” attribute in the <a> tag and the “alt” attribute in the
 tag. We know that there are tools available that check a web application based on
rules to make the web application readable for blind and visually impaired users[66].
Therefore, we do not test any further aspects of this characteristic.

Finally, we slightly cover the security characteristic as well. We test the possibility to
login with fake credentials and have access to other person’s information. Furthermore,
we also test if restricted pages are accessible without credentials.

While using a web application, especially a webshop, cookies can be set in a web
browser by a web server and used. The purpose of cookies is mainly to identify users
and server customized content. Webpages do not have any memory. A user going page
to page is each time treated by the web application as a new visitor. With the use of
cookies, this same user can be identified. There are basically two types of cookies that
can be used: session cookies and permanent cookies.

Session cookies are temporary cookies and have a short lifespan. This means if we close
the web browser that we use to visit the web application the cookies that are set are
deleted. If you logout from an account the session cookies are also deleted. Some session
cookies are also deleted after a certain time is elapsed. ASP.Net applications that use
session cookies often have a lifespan of twenty minutes. Session cookies allow users to
be recognized within a web application. A familiar example to explain session cookies is
the shopping cart in any webshop application. A cookie is set to keep track of the items
you added to your shopping cart. With each page visit, the server can identify users
based on the id that is set in this cookie and therefor knows what each users has added
to their shopping cart. The server keeps track of a local shopping cart for each users in
its own memory.

Persistent cookies have a more permanent lifespan. They are stored in a folder that is
assigned by the browser. Persistent cookies remain there until they are deleted
manually or when they expire. The expiration date depends on the time that is set by the
web application. Basically the owner of the application sets this. Nowadays this date is
often set to never expire. In March 2015, the cookie law in the Netherlands is changed.
The law is introduced to protect the privacy of the visitor concerning the use of cookies.
With cookies, it is possible to track movements of individuals and create a profile that is
used to address this user with personalized advertisements. Those cookies are named
“tracking cookies” and belong to the persistent cookies. A web application is obligated to
ask permission of the visitor to place these tracking cookies. It is allowed without
consent to place analytical and functional cookies.

41

Functional cookies are cookies that are necessary to a web application to function
properly, like keeping track of the items in a shopping cart mentioned above. Analytical
cookies are cookies that are used for the purpose of statistics of the web application and
give insight to the functioning of the web application. A good example is Google
Analytics. With the Dutch cookie law, we have to make some changes to the Google
Analytics code that sets the analytic cookie to guarantee the privacy of the visitors.
Functional cookies belong to the session cookies. Analytical cookies belong to both types
of cookies.

During testing of the web application mentioned in this thesis, cookies are enabled. This
means cookies can be set and used. We do not test cookies in our test environment but
we allow the web application to set cookies. Most of the cookies that are used are used
for third parties, like Google Analytics and have not use for us to test with the web
application. We do use the session cookies. Those session cookies are used to deal with
the shopping cart items and information about the login status of a visiting user.
Each time we test a web application those cookies are set again with values generated
by the web application. If we end a test those cookies are also deleted and have no
further use. With our user approach, we can search for cookies that are set while testing
the web application. However, we do not have any influence on those cookies, because
they are set by the web application and are encoded. Because of this encoding we do not
know what information is set within a cookie.

42

6 The small model
In this section, we will introduce a small model to see what we can test. We discuss in
section 6.1 an existing way of modelling a web application. In section 6.2, we briefly
recap what we are interested in to test. The small model is introduced in section 6.3 and
followed by an extension of this model in section 6.4. In section 6.5, we will discuss the
results of this extended model based on two use cases.

6.1 Existing model
It is possible to model a web application in a relatively simple way. This kind of model
already exists and is used in some testing environments[11]. One of the weaknesses of
this model is its state explosion. If the application that we test is huge in size, meaning it
contains many features, pages, and elements that we want to test, the model will
explode from the number of states and transitions it contains.

We can apply this approach to model the web applications we are interested in and use
this model the generate test cases with an MBT tool. To achieve this kind of model we
map pages in a web application one-to-one. This means that each web page represents
at least one state in the model and each action that is possible on a page relates to a
transition from its state to the same or another state. Actions in this case are links that
refer to different pages within the application or actions that occur on the same page. To
model a web application this way, it is possible to test many quality characteristics like
the ones mentioned in section 5. Because each page is translated into a state, it is easier
to write detailed tests scenarios for each page. Still with a huge web application and this
way of modelling the model will be unreadable due to the state explosion and it requires
lots of time to implement this.

To visualize this problem we take the webshop Amazon as an example. This company
sells millions of products. Each product has its own page within the application that
describes at least the product information, a number of related products, and a button to
buy it. The minimal number of states based on this assumption will be:

#S ≥ #Products

The web application does not only show product pages but it also contains other pages
concerning the user’s account and buying information. Each page contains links to other
pages within the application. Amazon contains multiple menu’s that reoccur in each
page. Assuming that each link is a transition from the current state to another state. The
number of transitions on a page will be:

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑝𝑎𝑔𝑒 ≥ #𝐿𝑖𝑛𝑘𝑠𝑚𝑒𝑛𝑢 + # 𝐿𝑖𝑛𝑘𝑠𝑓𝑜𝑜𝑡𝑒𝑟

Leaving out the links that occur in middle segment of the web page, because that differs
on each page. At least 50 links are showed in the menu and footer on each page. Amazon
approximately sells 253 million products2. A simple math calculation shows that there
are at least 253 million states and over 12.5 billion transitions. Giving a clear overview
on this model, applied on Amazon, is hard due to the explosion of states and transitions.

2 Number of products offered at Amazon
http://export-x.com/2014/08/14/many-products-amazon-sell-2/

43

There is another downside besides the state explosion when using this kind of model.
The ease of reusing this type of model in different or even similar applications is hard,
because we will have to work out each state and transition all over again for each
application. Therefore, we want to create a model that can be used in multiple
applications with the least amount of adjustments to this model.

6.2 Which parts of a web application need to be tested?
To find a model that is more abstract and better suitable than the approach mentioned
in section 6.1, we first need to know what is relevant in testing web applications. As
mentioned in section 5.2, we are not interested in the design of the web application,
meaning that we do not test the user interface and compatibility characteristics.
Important is that the application does not return any errors. Meaning that the requested
page does exist and the page itself does not contain any errors. If a page does not exist a
404 error will be returned. As already said a page could contain errors itself even if the
page exists. The different kinds of error types are listed in Table 6.

Error type Explanation

Media Image and Video files cannot be found.

Styling Cascading Style Sheets (CSS), LESS, or SASS files cannot be
found

JavaScript JavaScript files cannot be found
JavaScript
Execution

The runtime execution of the include code gives an error

Font Font files cannot be found
Table 6 – Error types occurring on a page.

A JavaScript error is often followed by a JavaScript Execution error. The main file, which
implements a certain JavaScript function, cannot be found. In one of the following
JavaScript files that are loaded, this specific function is used but the application will
return an error that the used function is not defined. Users do not see those errors
unless they open a developers window in their browser. What users do notice is that
certain functionality of the web application is not working, when you click on a button
and nothing happens. In the worst case, when certain errors are occurring the web
application can look different but could also get stuck due to an infinite loop.

We are not only interested in finding errors on a page but also on (successfully)
submitting forms on a webpage. Forms are used not only for sending information to the
owner of the application e.g. a contact form, but also for storing information on the web
application e.g. a registration form. Finally, forms are also used for giving a user access
to certain parts of the application e.g. a login form. We are interested in how forms react
to different values used to fill in these fields. Each field allows different values to pass.
We can think of the validation of an email address, zip code, or phone number. Testing
forms are an important key to achieve full test coverage of the web application under
test. Login forms, when authorized, give access to hidden sections of the application that
could otherwise not be tested. Thus, it is required to successfully submit forms unless
we want to test applications partially. Now that we know where we are interested in we
can start making a definition of our small model.

44

6.3 The small model
If we want to test our web application, we need a suitable model. As already mentioned
in section 3.3.1 many kinds of modelling languages exists. Labelled transitions systems
(LTS), Finite state machine (FSM), and Extended State Machine (ESM) are commonly
used languages. Each modelling language is used in a different kind of testing tool each
with its own purpose as explained in section 3.4. Based on the choice we made in
section3.5, we have chosen for an ESM to model our system and G∀ST as a model-based
testing tool to generate test. ESMs are distinguished from Finite State Machines by the
addition of variables.

The first step in making a model that should be able to test a full web application is to
see if it is possible to test a web application at all. We define a small test model to see if
our test architecture is capable of testing several pages in a web application. The pages
contain information and links to other pages of the web application. We filter out the
links that refer to external web applications and links that do not belong to the pages in
this test model. The reason why we filter external links is that we are not interested in
testing other web applications, like Google. We filter other internal links because we
restrict the model to only test the pages that are modelled.

We take the corporate website of Bluenotion3 as an example. The website application
contains more than four pages but the following pages will be used in the small model:

http://www.bluenotion.nl/
http://www.bluenotion.nl/klanten

http://www.bluenotion.nl/portfolio
http://www.bluenotion.nl/portfolio/lookinsharp

The small test model will start with the homepage as starting page, because this is most
used web page and default way to open a web application. We have to keep in mind that
we should also accept different pages as a starting page as well. During the introduction
of search engines, the way of accessing a web page is namely changed. Now we can enter
the web application on the page that probably contains the most valuable information
the person is looking for.

Figure 6 – Flow between the pages used in the small model.

3 http://bluenotion.nl

http://www.bluenotion.nl/
http://www.bluenotion.nl/klanten
http://www.bluenotion.nl/portfolio
http://www.bluenotion.nl/portfolio/lookinsharp

45

In Figure 6, the relation between each page is shown. As we can see with four states, we
already have ten transitions and this is only a part of the full application. Therefore, we
do not want to model our application in the way explained in section 6.1. However, for
testing the test architecture and its functionalities, mentioned in section 4, this small test
model suffices.

As shown in Figure 6, the page “/portfolio/lookinsharp” is only accessible by visiting the
“/portfolio” page whereas the homepage “www.bluenotion.nl” is accessible by all the
pages. This tells us that each page in the application could refer to the homepage,
meaning that it is probably an item occurring in a menu. Accordingly, we assume that
each page holds at least one link referring to a different page of the application:

#𝑃𝑎𝑔𝑒𝑙𝑖𝑛𝑘𝑠 ≥ 1

There could be a possibility that we end up in a livelock. This could happen if two pages
are referring to each other and one of the pages has an incoming link from a different
page as shown in Figure 7. In Figure 7, the livelock situation is caused by the cycle
between state 2 and 3. There is no possibility to get out of this cycle, because there are
no other links referring to other pages. Currently we allow this to happen, because we
are going to run multiple tests each generating its next input action on the fly. Because of
running multiple tests each generating other input sequences, we assume that we will
cover and test almost every page. However, if we assume that every page has a menu
containing a link to the homepage it is less likely to have livelock because a homepage
should have more than one link to other pages.

With all this information, we created a model shown in Figure 8, which is both abstract
and it is possible to extend it. We made this abstraction to the model based on the
assumption that every web page is the same. Interpreting a web page at a low level, this
assumption is true, because every web page consists of html code, JavaScript files, and
media content. However, the content is not the same on every page but this is not
relevant because we only test what we find on this page. If page does not contain any
media files, we skip the tests that are used to test media files. The same hold if no
JavaScript files are found. Based on this model we can extend the tests that we perform
on every page. Therefore, it is possible to include more quality characteristics than we
focus on. For example, it is possible to include a grammar checker to check the text on
every page.

The model contains an initial state “INIT” and a “RUN” state. Therefore 𝑆 ∶= {𝐼𝑁𝐼𝑇, 𝑅𝑈𝑁}
and 𝑠0 ∶= 𝐼𝑁𝐼𝑇.
The state “INIT” only has one input “Visit website” where the variable website is used
for the website that should be opened. The “RUN” state also contains only one Input:
“Open url”. Our Input alphabet is now:

𝐼 ∶= {𝑉𝑖𝑠𝑖𝑡 𝑤𝑒𝑏𝑠𝑖𝑡𝑒, 𝑂𝑝𝑒𝑛 𝑢𝑟𝑙}

The Output alphabet consists of a sequence of output labels always in the same order.
The output labels are explained in Table 7.

𝑂 ∶= {𝐼𝑑, [𝑈𝑟𝑙1, 𝑈𝑟𝑙2…𝑈𝑟𝑙𝑛], [𝐸𝑟𝑟𝑜𝑟1, 𝐸𝑟𝑟𝑜𝑟2…𝐸𝑟𝑟𝑜𝑟𝑚]}

Figure 7 – Livelock situation.

46

In our model, we make use of predicates. Those predicates are used to guard certain
transitions. The one in particular we would like to know is, if the newly chosen url to
click on exists in the current page. We do not want to open pages that do exist but are
not reachable from the current page. We define the variable 𝑈 for the list of URLs that
exist on the current page whereas 𝐿 is the set of all internal links that exists in the web
application. The variable 𝑈 should be a subset of the set of all URLs that exist in the web
application.

𝑈 ⊆ 𝐿

The variable “url” in the input “Open” refers to the URL that the test tool should click on.
There is one condition to check and that is if the url to be clicked also exists on the
current page. The choice of using an ESM will be convenient now. We parameterize the
state we are using. This way we can store variables in the state and use them to define
predicates. We define two variables in the state. This first variable should hold the
identifier of the webpage where the state currently is. This identifier is updated after
every transition based on the output received from the adapter. The identifier is the
value from the output label “Id”, mentioned in Table 7. The second variable we define
holds the urls we found on the current web page. Those urls are received from the
adapter and can be found as the output label [Url]. We use the stored urls to allow G∀ST
to generate the next url used in the input action Open.

Output label Meaning
Id Url of the opened link.
[Url] List with Urls that occur on the opened page
[Error] List with errors that occur on the opened page, to

continue with testing this list should be empty.
Table 7 – Output labels and their meaning.

One other predicate we use is to check whether or not the output contains errors. To
check this we introduce a variable 𝐸 defined by

𝐸 ∶= {𝑂𝑒𝑟𝑟𝑜𝑟𝑠 == ∅}

Figure 8 – Small model.

47

If the error list contains elements, we stop the test and we show these error messages.
The defined variables are each updated on every transition. We do not mention the
check on the errors in the model, because this check applies for every transitions. This
brings us to the actions that can update our variables, but not before we defined our
Domain 𝐷. In section 3.3.4, we stated that 𝐷 is a space of the domain of all state
variables, therefore we need a domain that holds the variables we need, the id and urls
on the webpage.

𝐷 ∶= 𝐿 × 𝑃(𝐿)

We have stated that 𝐿 is the set of all existing internal links. The “id” variable holds a
value in the set 𝐿 and the urls of a page is a subset of 𝐿 therefore the possible set of
values is a subset of 𝐿 × 𝐿. Now that we defined our domain, only the actions that
update our variables are all that is left. We only need two actions, one the initialize the
variables (INIT) and one action to update all the variables (UPDATE). In Table 8, we
summarized the action and their usage.

Actions Usage
INIT Initialize all variables
UPDATE Update all variables on each page visit

Table 8 – Actions and their usage.

In the “init” state of the model, we initialize all the variables and after each transition, we
update all the variables based on the output of the adapter.

The model shown in Figure 8 suits itself to be implemented in a model-based testing tool
named G∀ST. The model is suitable for running tests exhaustive, meaning that we can
run the tests until we have seen all possibilities. Of course, after a certain amount of test
cases we hope that each page of the web application is visited at least once. The model
allows pages to be visited more than once. This makes sure we have the ability to visit
every page that is linked to the web application. Only with one condition, which is that,
each page holds a links that refers to the homepage of the application. With having this
ability in our model we can reach pages that are only reachable through one specific
page. An example is shown in Figure 6 where the page “portfolio/lookinsharp” is only
accessible by the page “portfolio”.

We have successfully implemented the model mentioned in Figure 8 in the model-based
testing tool G∀ST and used the adapter described in section 4.5 for the communication
between G∀ST and the web application. We used the cooperate website of Bluenotion as
a use case to test our model. We found several JavaScript errors and page errors but we
will discuss these findings in section 6.5.2 where we test the same use case only with a
small extension to this model.

48

6.4 The form extension
Now that we created a base for testing web pages in a web application, we can extend
our model such that it is capable of testing a full webshop application. The first step in
reaching this goal is extending the model with the ability to test forms. Forms exist on a
webshop application in the shape of a registration form, login form, newsletter form and
contact form. A registration form creates an account on the webshop. This is required to
purchase products. A login form is needed for allowing revisiting users to buy other
products. This also grants access to different pages that are not visible when the user is
not logged in, i.e. order overview, order details and account information.

There are many ways to test forms. In our user approach to test web applications, we
are restricted in our choice to test forms. This restriction is because we cannot verify
what data is sent to the server. We can only wait for the response back from the web
application. We have chosen for an approach in which we are able to test all fields, each
with their own restrictions. We are testing each form three times each time with other
values to each field.

The first test shows if fields that are required, are behaving accordingly. Required fields
have the property of not being empty on submission of the form. This means that when
an empty form is submitted it should result in error messages for each field that is
required. We know if this field is required or not based on its annotation in the html
code.

The second test checks the ability of how fields responds to incorrect values. Certain
fields are restricted by accepting only certain values. For example a form could contain
an email field. Obviously, the value of this field should hold a valid email address, but we
can all make mistakes and enter a wrong value in that specific field. Therefore when
clicking on the submit button, the form should give an error saying that the field should
hold a valid email address. In this test, we deliberately enter wrong values for each field
according their type and kind of value it should hold.

The final test checks the submission of a correctly filled in form. Beforehand we know
for each field what kind of values it should accept based on the documentation of the
web application. We choose a subset of these values and enter for each field with their
correct value. If the submission results in an error, we know that something is wrong. If
the submission was correct, we expect that the form is removed from the page and a
success message is shown. We have chosen that forms should be removed after a
successful submission, because it is not common to submit the form again after a
successful submission. However, after seeing the success message and we reload the
page, the form should be visible, and allowed to be filled in again.

There is one thing we should address and that is the possibility to fill in a form in many
ways. There are a million ways to define an email address, a phone number, and all the
other typed fields that exist. There are even more possibilities if we test a combination
of values for each field. However, we have chosen to test only these three types of testing
a form and not to generate million possibilities to test a form. Because on a form
submission with one faulty field, should already return the form and provide an error
message. Why no test every field the same time. This is why we have chosen to test form
three different times instead of testing millions of combinations.

49

To include testing of forms in the model, we have to extend the model discussed in
section 6.3. As we already said, we are testing forms in three different ways namely
empty-, false- and correct values. After each submission, we test if the outcome
corresponds to the model. Therefore, we represent each submission of a form as a state
and we test all three cases of a form submission after each other.

The extended model is shown in Figure 9. The model deals with submitting forms and
visiting other pages. In the “RUN” state it is now possible to submit an empty form. G∀ST
is implemented in such a way that if the page contains a form it can choose to test the
form but can also continue to test other pages that are accessible through this page.
This way we allow G∀ST to choose the path randomly based on the on-the-fly testing
method.

With testing the forms, we keep track of the available forms on the page each time we
test a form. This way, we make sure that the form we currently are testing still exists. It
could happen, during bad programming, that submitting an empty form is accepted and
therefore a success message appears. As already said we keep track of the forms
available on each page and therefore should notice if this submission was accepted. We
added a guard to check if the form we test still exist. The guards used in this model are
listed in Table 9. Due to this form extension, our Input and Output alphabet is changed.
Our Input alphabet is now:
𝐼 ∶= {𝑉𝑖𝑠𝑖𝑡 𝑤𝑒𝑏𝑠𝑖𝑡𝑒, 𝑂𝑝𝑒𝑛 𝑢𝑟𝑙, 𝑆𝑢𝑏𝑚𝑖𝑡𝐸𝑚𝑝𝑡𝑦 𝑖𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝐹𝑎𝑙𝑠𝑒 𝑖𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑟𝑢𝑒 𝑖𝑑}

Moreover, the Output alphabet, which is explained in Table 10 is now:
𝑂 ∶= {𝐼𝑑, [𝑈𝑟𝑙1, 𝑈𝑟𝑙2…𝑈𝑟𝑙𝑛], [𝐸𝑟𝑟𝑜𝑟1, 𝐸𝑟𝑟𝑜𝑟2…𝐸𝑟𝑟𝑜𝑟𝑚], [𝐹𝑜𝑟𝑚1, 𝐹𝑜𝑟𝑚2…𝐹𝑜𝑟𝑚𝑚]}

The update actions defined in section 6.3 stay the same, however the amount of
variables that are updated by these actions are increased. We additionally store the
forms that we find on a webpage in the parameterized state. This way G∀ST can
determine if it should open a link or test a form if one exists. If one or more forms exits
on the page, there are two input actions available where G∀ST can choose between.

Figure 9 – Form extended model.

50

Guards Meaning
G1 isMember(url, urls) Check if the ur lot be clicked exists on

the page
G2 isMember(form, forms) Check if the tested form is present on

the page.
Table 9 – Guards used in the form extended model.

Output label Meaning
Id Url of the opened link.
[Url] List with Urls that occur on the opened page
[Error] List with errors that occur on the opened page, to

continue with testing this list should be empty.
[Form] List of forms that occur on the opened page, each form

has a unique identifier.
Table 10 – Output labels for the form extended model.

51

6.5 Results
We use the form extension model to test two use cases, both developed by Bluenotion.
In the first use case, we take the web application from the company LookinSharp as SUT.
The second use case is the web application from the company Bluenotion. Both
applications have forms and enough pages to test. The LookinSharp use case holds 38
active pages in their CMS system, whereas Bluenotion application is a bit bigger
containing 144 active pages.

Bluenotion has a tool running that registers errors triggered by visitors on a web
application. It provides details about the error and on what page the error occurred.
Those errors are detected while the application is live. This way of detecting is not
idyllically, because we want to prevent those faults instead of detecting them
afterwards. Besides the tool does only detect page faults i.e. page not found or an
internal server error. Detecting missing media files and JavaScript faults are not in the
scope of this tool.

In our findings we compare the results of our testing tool against those detected by the
tool currently running at Bluenotion and the tool Crawljax[67]. Crawljax is a tool for
automated crawling of web applications combined with testing modern web
applications[68]. Crawljax is not a model-based testing tool but tests web applications
based on an event-driven crawling engine. With the default settings of the tool, Crawljax
tests pages on broken links, images, (JavaScript) events, and forms. It is possible to
configure Crawljax to exclude certain elements for testing. Furthermore, it is possible to
add plugins to extend the functionality of the testing tool. We mainly use Crawljax to test
the coverage of our tool. We will use the default web interface with the default settings
of the tool and using fixed input values for submitting forms. The approach we use to
test forms is not comparable to Crawljax’s approach.

6.5.1 Use case: Lookinsharp
Testing the web application from Lookinsharp (www.lookinsharp.nl) resulted in not
finding any page errors with both tools. In addition, we did not found any errors
registered by the tool Bluenotion currently has running. However, we did find one event
error occurring on a page. This error is about a missing function in a JavaScript plugin.
This plugin requires an additional plugin to cycle images but this JavaScript plugin is not
added to the HTML code. In Table 11, an overview is given of the test results gathered
from both tools. Testing the web application manually resulted in finding the same
errors as both tools did. The time it took to test the web application manually was about
30 minutes.

 Crawljax Test tool
Visited URLs 29 29
Seen URLs 29 29
Reachable pages 29 29
CMS pages 38 38
Not reachable 9 9
Number of edges 92 188
Time 9 minutes (exhausted) 59 minutes (3000 test cases)
Page errors 0 0
Event errors 1 1

Table 11 – Testing results from Crawljax and our testing tool for lookinsharp.nl

52

Both tools find identical results as shown in Table 11. The differences between the tools
are the number of edges being tested and the amount of time it takes to test. Both tools
tested 29 pages and found 29 pages. We mention this found property because it could
happen that our model-based testing tool do find links but based on its pseudo random
choices it did not test certain links. In Figure 10, an overview is given of the states found
by Crawljax.

In Table 11, we mention that there are 38 active pages within the web application. The
active pages are counted in the CMS and tell us how many pages there are active and
should be reachable within the web application. From the testing results, nine pages are
active but cannot be addressed through the URLs that exist on the web application. This
way the owner of the web application knows that not all information is accessible.
Probably this page holds information that could be relevant to visitors. The owner
probably forget he did not refer to this page in other pages he created or did not add a
link to the menu of the application.

The time it takes to test the web application is much better with Crawljax than our
testing tool. Crawljax tested all pages within 9 minutes, whereas our tool required
almost an hour to test 3000 test cases and did not test every transition that exists. This
difference can be explained by the approach taken to find and test web pages. Crawljax
uses a shortest path algorithm to discover all the pages that exist, it achieves this by
using the properties in a web browser like ‘reload’ and ‘goback’ in history[69]. The
approach we take in our MBT tool is based on pseudo random choices. The pseudo
random approach discovers more edges because it does not keep track of the already
visited pages and the random choice to visit a certain page. However, it is time
consuming, whereas Crawljax’s approach is quicker, but more errors can possibly be
discovered by repeatedly testing the same page as this turned out in the webshop use
case we will mention in section 7.3.1.

Figure 10 – State overview lookinsharp.nl, by Crawljax

53

6.5.2 Use case: Bluenotion
We also used our tool to test the web application from Bluenotion itself
(www.bluenotion.nl). Running our model-based testing tool resulted in finding several
errors. Results are shown in Table 12. The tool Bluenotion currently has running did not
detect the event errors we found, however the page errors were detected but only
afterwards.

 Crawljax Test tool
Visited URLs 117 77
Seen URLs 117 118
Reachable pages 119 119
CMS pages 144 144
Not reachable 25 25
Number of edges 289 523
Time 29 minutes (exhausted) 1hour 35 minutes

(5000 test cases)
Page errors 5 2
Event errors 3 5

Table 12 – Testing results from Crawljax and our testing tool for Bluenotion.nl

We compared the results gathered from our testing tool against the results found by
Crawljax. From analysis of the Bluenotion application, we know that there are 119 pages
reachable in the web application. In the CMS, there are 144 active pages. This means that
several pages are active but not reachable through the application itself. As explained in
section 6.5.1 this information is useful for the owner of the application. Testing the web
application manually resulted in finding five pages errors and finding four event errors
in all the pages that exists within the application. It took more than an hour to test the
web application manually. The reason why we did not find the event error about the
Google Maps plugin will be explained at the end of this sub section. Comparing the
manual results with the results listed in Table 12 we can say that testing manually
performs better than with a testing tool. We find more errors within less time. However
testing a web application manually multiple times, when changes are made is not
recommendable.

Based on the results we find a clear difference in the amount of pages that are visited
with both the testing tools. Crawljax visited 117 pages whereas 119 are reachable. In
Figure 11, the findings of Crawljax are visually shown. Page errors that are found are
marked with a thick border. The difference in URLs visited by Crawljax and the URLs
that are reachable is due to the interpretation of states with Crawljax, therefore it is
possible that in the visual representation of Crawljax more states are shown than there
are pages found. Within the use case, there are two links each having a different URL,
which refer to an identical web page. This behaviour occurs twice in the use case.
Crawljax interprets this as the same state because the DOM objects are the same,
whereas the links are different. This way Crawljax interprets as if there are 117 pages. In
our interpretation, we assume both links are individual pages and therefore we say that
there are 119 reachable pages.

54

Our testing tool visited 77 pages whereas 118 links are seen. Due to the amount of test
cases and the random choices G∀ST makes we only tested 77 pages. Our tool does see
other links but due to the randomness, those were not tested (yet). G∀ST generates test
cases pseudo randomly. It often chooses a page that is already tested in a previous test
case. The choice G∀ST makes depends on a list of links that exists on the page. Often the
next page to be tested is the first link that exists in this list.

Figure 11 – State overview bluenotion.nl, by Crawljax

The list does not often change and the first few and last few links in this list are almost
the same each time a page is tested. Those links are the navigation menu and footer links
of the page. Because of this randomness, we test more edges, one page to another page,
but we test less pages than Crawljax. Besides that, it will also take more time to test a
whole application. It took an hour and a half to test 5000 test cases. We first started with
3000 test cases, however the results with 3000 test cases were not useful. Not even half
of the existing pages were tested. We therefore increased this number to 5000 we better
results were found.

55

We do however find more event errors than Crawljax. The two event errors we find in
both tools are about validation of a form. The first event error is about a missing
JavaScript file, whereas the second event error occurs because it is missing a JavaScript
file. The next error this if found by both tools is an image file that is missing.

One of the errors we additionally found is the logging of certain data in the console
window of the web browser. We do not want this behaviour and therefore we mark it as
an error. Probably Crawljax is not configured to mark console messages as an error and
therefor did not find this error.

The final error we found is a JavaScript error about the Google Maps plugin located at
the contact page. The error we received was saying “Unable to delete property” and is
caused when the Google Maps plugin is initialized. We did not see this error occurring in
any browser even testing it manually. Besides the Google Maps plugin is functioning
correctly. After some digging, we found why this error occurred. Recently Google
updated their Google Maps API to version 3, the version that is used on the Bluenotion
application is version 2. We can argue if this error is a real error because the web
application and plugin are functioning properly. Our interest lies in unwanted errors
and therefore we mark this as an error.

We also applied mutations to the web application. The reason why we did this is to see if
deliberately made errors are found. We deliberately removed images, JavaScript files
and even made changes to values in a form. All these changes are found with our testing
tool.

Comparing the results from both use cases, we can say that our model-based testing tool
is functioning properly, we do find nice test results even found an error that we did not
know it existed. However, we did not find every error that exist in the web application.
Finding all errors in the use cases is feasible but it will take much more time to
eventually find those, due to the randomness of G∀ST.

56

7 Webshop Model
In this section, we discuss the modelling of the webshop application. This model is based
on the form extension model and should be capable to test at least webshop applications
build by Bluenotion. In section 7.1, we will discuss the additions that are made to a web
application to make it a webshop application. The new model based on a webshop
application is introduced in section 7.2 and the results based on two use cases are
discussed in section 7.3.

7.1 Webshop applications
Now that we have a working model, introduced in section 6.4, to test a web application
we want to extend this further to model a whole webshop application. A webshop
application is more than just a web application. A webshop application allows a user to
buy one or more products. This can be achieved by checking out the shopping cart of the
user and following the steps that are required to buy the products successfully.

Besides buying products, there is also the ability to create an account during the
checkout phase. This allows the user to come back and buy more products. It is possible
to login based on the credentials that are entered when registering the account during
the first time products are bought. When logged in, it is possible to check the order
history of the account. It shows what the user has bought on each order and the total
amount spent on each order. Furthermore, it also allows the user to change his contact
and shipping addresses. While logged in and buying products, all the information that is
required to fill in are already filled in based on the information the user provided while
registering the account. This makes it easier for the user to continue the checkout phase
because he only has to check if the information is still correct. This information is only
available when the person has a registered account and is logged in. Changing contact
information and showing the order history of the user is only available if the user is
logged in. Therefore it is required to test if those pages can be opened or not and if they
show the correct information.

In certain situations, it is possible to reach the pages that are only reachable by the login
action, even if the pages are hidden. One way of doing this, is just by copying the link into
a different browser and see what happens. The web application should not show the
user’s credentials of his account or from any other user, because the user is not logged
in. Instead, it should show the user a message that he is required to login. We want to
test these kind of security aspects.

7.1.1 Products
Besides the checkout phase, a webshop application also contains product pages. The
product page looks the same for each product only the product information differs. A
product page differs from other pages because it contains actions that allows the user to
put the product in his shopping cart. Therefore, we allow the model to choose, if the
page is a product page, to add the product to the shopping cart or continue testing other
pages.

57

For adding a product to the shopping cart, it is important to know that the product is
added. Somewhere on each page, usually on top right of the page, a count is shown of
how many products there are in the shopping cart. This means that when a product is
added this number should be increased by one. Because we know what product we add
to the shopping cart, we can test if the product price that is shown on the page
corresponds to what is entered in the database. If the prices do not match, we know
something is wrong. A good explanation could be that the prices are shown without VAT
instead of included with VAT. We keep track within our model what products are added
to the shopping cart including their price. This is important because we need this
information to test the checkout phase.

7.1.2 Checkout phase
The checkout phase of a webshop application consist of five steps. In the first step an
overview of the added products in the shopping cart is given. Within this page, it is
possible to change the amount for each product and to remove a product from the
shopping cart. Furthermore, the user can give a comment about the order and he can
choose the desired shipping method. Options for the shipping methods are pick-up or
delivery with several shipping couriers, like DHL or PostNL.

In the first step, we test if the products in the overview matches the products that we
keep track of in our model. In Table 13, we give an example how this overview looks
like.

Product Amount Price per piece Price

X 3 €49,95 €149,85
Y 1 €99,95 €99,95

 Subtotal €249,80

 Shipping costs €0,00
 Total €249,80

Table 13 – Example of a product overview in the checkout phase

Each product in the overview has an amount displayed of how many of its kind are
added to the shopping cart. Next to the amount the price per piece is shown. The last
column in the overview shows the user the price he has to pay for the amount he orders
of that specific product. In Table 13 we pay for product “X” €49,95 per piece and we
order three of its kind, so the price will be 49,95 ∗ 3 = €149,85.

The subtotal mentioned in the overview, is the sum of all products times their amount.
Depending on the chosen shipping method there could be shipping costs charged.
Beforehand it is known what the costs are of each shipping method. The chosen shipping
method could affect the total price mentioned in the overview.

As already said, the user can perform different actions in the first step. The amount can
be changed, but also a product can be deleted. If the amount of a product is changed this
directly changes the total price of the product, the subtotal price, and the total price of
the order. If a product is deleted, not concerning the amount of the product, it affects the
overview as well. The number of rows is reduced by one, the subtotal, and the total price
of the order is changed.

58

The next step in the checkout phase is about the contact information. Here the user has
the ability to login with an existing account or choose the register one. If the user
chooses to register an account the user has to fill in a form to where and whom the
company should ship the products to. Among the contact information like first and last
name, phone number and email address the shipping address is required as well. It is
even possible, if wanted, to mention an aberrant delivery address. This way the invoice
will be sent to the normal address but the order will be shipped to the aberrant address.
If the user chooses to login with an existing account the contact information and
shipping address are already filled in, based on the information entered in the previous
purchase.

The third step is about the choice of payment. The default option “payment in advance”
is selected. Here the user has to pay in advance before the order will be shipped. Other
options that are available depend on what the owner of the application prefers. The
following options are possible:

 Cash on delivery
 Credit Card
 PayPal (Worldwide)
 Bitcoin
 iDeal (Netherlands), Mister Cash (Belgium), SOFORT (Germany)

The last payment option mentions several payment providers that make it easier to
transfer money to the company. Each of the payment providers are similar to each other
but only differ in their country coverage. The only thing the buyer has to do is authorize
the payment by his bank account. The company receives the payment within seconds
and can ship the items much faster than waiting for a payment done in advance.

The fourth step contains an overview of the previous steps. It shows the user what he is
buying, where the products are going to be shipped to and what kind of payment
method is chosen. By clicking on the “buy” button, the user accepts the terms and
conditions and the products that he is buying. Depending on the chosen payment option,
the user is redirected to the payment page. If the user has chosen for a payment
provider he is redirected to the payment page of this provider. By doing this the user
leaves the web application and visit the page of the payment provider. After the
payment is completed, the user is redirected back to the final step in the webshop
application. If the user has chosen for payment in advance he is redirected to the final
step but a message is shown explaining where to transfer the money to. If the user has
chosen for the option “cash on delivery” the user is also redirected to the final step.

If the user has chosen for a payment provider, it is important for the web application to
know that the same user returns after paying. This is where cookies play an important
role. While the user is visiting the webshop application, a cookie is stored on the
computer of the user. This cookie contains an identification number, which the web
application uses to identify users. When the user is redirected back to the webshop
application this cookie is still alive. Based on the cookie the webshop application can
determine if it is the same user. If it is not the same user, meaning that the identification
number in the cookie has changed, the user will be logged out.

59

However, the status of the payment is still updated, because the payment provider also
sends a status message to the webshop application notifying it about the new status of
the payment of a certain order id. The webshop knows what order id belongs to a
certain user.

The final step is nothing more than a web page that says: “Thank you for purchasing”.
We mentioned all the steps and their possibilities that we can use in a webshop
application. With this information, we can extend the model mentioned in Section 6.4, to
be capable of testing a full webshop application.

7.2 Model
Based on the previous section where we introduced the parts that are important to test
when testing a webshop application we need to extend our model to cover these parts.
Those parts will be enlightened with reference to the new model in Figure 12. The five
steps we mentioned in section 7.1.2 each represents a state in the model. Step 1 contains
several actions, each of these actions can be found back in the model as a transition.

The deleteFirstProduct transition contains a guard that this transition can only be done
if the shopping cart amount is higher than zero. Because it is not possible to delete a
product in the shopping cart if the shopping cart does not contain any. After the
completion of this action, the new cart amount should subtracted with the amount the
deleted product had. We also test if the subtotal and total price are of the shopping cart
is changed accordingly.

The changeTransport transition will change the shipping method to the id that is
provided. If a certain shipping method adds cost to the total price of the shopping cart
this will be tested. Of course, this transition contains a guard. Because we can only
change the shipping method if there are more than 1 options available.

The transition changeAmount changes the amount of the product in the shopping cart
that matched the productid that is provided. It adds 1 amount to the product in the
shopping cart. With this transition, we can test if the shopping cart is correctly updated
with new amount. We also test if the total price of the product, subtotal and total price
are updated accordingly. Otherwise we have a mismatch in the total price we have to
pay if these prices are not updated.

The last transition is the transition gotoStep2. This transition should bring the
application to step2 of the checkout phase. In this state, the model has three options.

 Test login form, if not logged in
 Test register form, if not logged in
 GotoStep3, if logged in

We extend testing forms with an additional step this is the submitWrong step. This step
is only used when we test the login form. We want to make sure nobody can login with
wrong credentials. We had to extend the amount of input actions of the model, because
there are two ways to login and we have the ability to register an account. Because these
are special forms, we created new input actions and not using the default approach we
modelled to test forms. Those input actions refer to the same command to the adapter
but the name of the form differs.

60

There are two ways to login, one through the account page and through the checkout
phase. Each way holds a different form name and redirects to a different page therefore
we created different states but both forms have the same field names.

To test the login forms we require that there already exists one account to be able to
login with. The username and password to login with both login forms is stored in the
adapter. If we test the register form, we change the email address every time a register
form is tested successfully with true values. We change the email address otherwise we
cannot register multiple accounts. If we test the register form with true values, we are
automatically forwarded to step3 of the checkout phase.

Once we are in step3 of the checkout phase it is possible to choose the payment option.
The changePayment transition will change the payment method to the id that is
provided. Often there is an option to pay by bank or by a certain payment provider
mentioned in section 7.1.2. If go to step4 and we have chosen for the payment by bank,
the purchase is immediately completed but we still have to transfer the money
manually. However, in a test scenario we are not going to transfer money manually,
therefore the order will remain open in the overview of the order history of the user’s
account.

After the selection of the chosen payment provider, we are forwarded to the overview
page in step 4. We can only test if the data we have chosen matches the ones described
in the overview. This means testing the chosen products, shipping method and the
payment provider. If everything matches, we can continue to the payment page.

If we have chosen for a payment provider in step3, we are redirected to the gateway of
the payment provider to pay the money automatically. Because we test the webshop
application in a test environment, we are redirected to the test payment of the chosen
provider. No real information is required to pay. If we have chosen for payment by bank
or cash on delivery, we are redirected to step5 we are success message should be
shown. In step5, we can continue to test new pages. This completes the new shop model.

Based on the shop extension the Input alphabet is now:

𝐼 ∶= {𝑉𝑖𝑠𝑖𝑡 𝑤𝑒𝑏𝑠𝑖𝑡𝑒, 𝑂𝑝𝑒𝑛 𝑢𝑟𝑙,
𝑆𝑢𝑏𝑚𝑖𝑡𝐸𝑚𝑝𝑡𝑦 𝑖𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝐹𝑎𝑙𝑠𝑒 𝑖𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑟𝑢𝑒 𝑖𝑑, 𝑆𝑢𝑏𝑚𝑖𝑡𝑊𝑟𝑜𝑛𝑔 𝑖𝑑,

𝑐ℎ𝑎𝑛𝑔𝑒𝐴𝑚𝑜𝑢𝑛𝑡 (𝑖𝑑 , 𝑝𝑟𝑖𝑐𝑒), 𝑐ℎ𝑎𝑛𝑔𝑒𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑖𝑑, 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑖𝑑, 𝑑𝑒𝑙𝑒𝑡𝑒𝐹𝑖𝑟𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡,
𝐺𝑜𝑡𝑜𝑆𝑡𝑒𝑝2, 𝐺𝑜𝑡𝑜𝑆𝑡𝑒𝑝3, 𝐺𝑜𝑡𝑜𝑆𝑡𝑒𝑝4, 𝐺𝑜𝑡𝑜𝑃𝑎𝑦𝑚𝑒𝑛𝑡, 𝐺𝑜𝑡𝑜𝑆𝑡𝑒𝑝4𝑏, 𝐺𝑜𝑡𝑜𝑆𝑡𝑒𝑝𝐷𝑜𝑛𝑒,

𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝐸𝑚𝑝𝑡𝑦, 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝐹𝑎𝑙𝑠𝑒, 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑊𝑟𝑜𝑛𝑔, 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑇𝑟𝑢𝑒,
𝐿𝑜𝑔𝑖𝑛𝐸𝑚𝑝𝑡𝑦, 𝐿𝑜𝑔𝑖𝑛𝐹𝑎𝑙𝑠𝑒, 𝐿𝑜𝑔𝑖𝑛𝑊𝑟𝑜𝑛𝑔, 𝐿𝑜𝑖𝑛𝑔𝑇𝑟𝑢𝑒,
𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑒𝐸𝑚𝑝𝑡𝑦, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐹𝑎𝑙𝑠𝑒, 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑟𝑢𝑒 }

The Output alphabet is also extended and is explained in Table 14;

𝑂 ∶= {𝐼𝑑, [𝑈𝑟𝑙1, 𝑈𝑟𝑙2…𝑈𝑟𝑙𝑛], [𝐸𝑟𝑟𝑜𝑟1, 𝐸𝑟𝑟𝑜𝑟2…𝐸𝑟𝑟𝑜𝑟𝑚], [𝐹𝑜𝑟𝑚1, 𝐹𝑜𝑟𝑚2…𝐹𝑜𝑟𝑚𝑚],
[𝑃𝑟𝑜𝑑𝑢𝑐𝑡1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡2…𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑚], 𝐶𝑎𝑟𝑡𝐴𝑚𝑜𝑢𝑛𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡, 𝐿𝑜𝑔𝑔𝑒𝑑𝐼𝑛,

[𝐶𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡1, 𝐶𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡2…𝐶𝑎𝑟𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑚], 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡}

61

In the model shown in Figure 12 contains the variable “output” as an output message.
This variable is an abbreviation of the output values mentioned in Table 14. We used
this abbreviation because otherwise the model is not readable if all output values are
shown in every transition. We also defined guards that are required to make sure
certain transitions are only allowed if the guard holds. The guards used in the model are
listed in Table 15.

Figure 12 – The shop model

62

Output label Meaning
Id Url of the opened link.
[Url] List with Urls that occur on the opened page.
[Error] List with errors that occur on the opened page, to continue with

testing this list should be empty.
[Form] List of forms that occur on the opened page, each form has a

unique identifier.
[Product] List of products with their id and piece price that can be added

to the shopping cart
CartAmount Amount of items in the shopping cart.
CurrentTransport Current transport id.
LoggedIn Boolean value if the user is logged in or not.
Cart [Product] List of products added to the shopping cart, each with their id,

amount and piece price.
CurrentPayment The current payment option that is selected

Table 14 – Explanation of the output labels in the shop model

Guards Meaning
G1 isMember(url, urls) Check if the ur lot be clicked exists on the

page
G2 isMember(form, forms) Check if the tested form is present on the

page.
G3 url == “/cart/step1” Url that is going to be opened equals Step 1

of checkout phase.
G4 url == “/Account/Login” Url that is going to be opened equals login

page.
G5 url == “/Account/Logout” Url that is going to be opened equals logout

page.
G6 Login == False User is not logged in.
G7 Login == True User is logged in.
G8 CartAmount > 0 Amount of shopping cart items is more

than 0.
G9 CurrentPayment == 1

Payment method is a local option.

G10 CurrentPayment == 2 Payment method is a payment provider.
G11 isMember(product, cart) Make sure the product we want to change

the amount of exists in the shopping cart.
G12 Transport > 1 The number of transport options should be

more than one. Otherwise, we do not have
to change the shipping method.

G13 products > 0 &&
isMember(product, products)

Make sure we products exists on a page
and we can add the product.

Table 15 – Guards used in the shop model.

63

7.3 Results
To see how the model-based testing tool performs we set up two webshops to be tested.
The first web application is Matrascenter.nl and is a webshop application build by
Bluenotion. The second webshop application is a temporary webshop that is setup for
testing our tool. It is a complete different shop and created in PHP and build on the
Wordpress engine. We have chosen for a different web application to see how generic
our tool is and what modifications are necessary to our tool to be able to test a different
webshop application. Our findings in testing both web applications resulted in some
errors we did not oversee when testing manually.

7.3.1 Matrascenter.nl
While testing Matrascenter.nl, we found a couple of errors. The first error we found is
about submitting an empty search form and resulted in an internal sever error. The
error occurred because the application could not deal with empty search input. A second
error we found is a missing style sheet file on the contact page of the application. The
third is a JavaScript error about enlarging a photo. This error occurred on pages where it
is possible to enlarge a photo. Besides the JavaScript error on those pages a missing
image file also found. The fourth error we found is a page error. A certain page was not
found and did not even exist. The last and probably the most important error we found
is about the shopping cart. The error makes continuing the checkout phase impossible.
The error occurred when buying twice after each other on the same account while
logged in and shipping method is changed the first time to a non-default value. The
second time the page of the shopping cart is opened the current shipping method is not
selected. When continuing to the buying process an internal server error will occur
based on a missing value.

We often faced timeouts or internal server errors while testing the webshop application.
The timeouts happen because G∀ST did not receive any output back within several
seconds after the input was sent. With a normal broadband internet connection, we
assume that within ten seconds, the web application should be loaded and an output is
sent back. However, the upload speed of the internet connection where the test server is
located, which is a basic ADSL connection, is with 5 Mbit/s very low. This upload speed
caused the timeouts we were having. A real web application is hosted in a datacentre
where the internet connection is 1Gbits/s or higher. We tested if we faced the same
timeouts with the web application only hosted in a datacentre. We increased the timeout
value of G∀ST so G∀ST is able to receive usable output from the webshop application.

We also faced errors that are caused by the capacity of the test server. This will also
cause an internal server error but reason is due to a timeout that occurred on a database
call. The processing power and its memory are not realistic compared to a server located
in a datacentre. The test server consist 2GB of memory and shares its processing power
with other virtual machines that are running. One could say that the performance of the
web application is poor because it generates timeouts and that causes internal server
errors. We can find some truth in this opinion but we partially tested this web
application on a live server, without the checkout phase. This resulted in no timeouts
and no internal server errors.

64

We also compared the findings of our tool against those from Crawljax. We must state
that Crawljax could not find everything and cannot test a full webshop application, due
to the reason that with the default settings Crawljax does not deal with external pages
like the payment provider page. An overview of states found by Crawljax is shown in
Figure 13.

 Crawljax Test tool
Visited URLs 382 (350)* 140
Seen URLs 382 (350)* 393 (333)*
Reachable pages 359 359
CMS pages 416 416
Not reachable 58 58
Number of edges 580 1357
Time 3h 51 minutes

(exhausted)
1h 25 minutes (2900)

Page errors 5 6
Event errors 1 1

Table 16 – Test results from Crawljax and our testing tool for matrascenter.nl

Results from both Crawljax and our testing tool are shown in Table 16. Remarkable is
that both tools found more links than that should be reachable. We found out that in the
overview of the shopping cart that the product links hold a different link than how each
product is originally found. These links should contain their category name in the url,
instead of the text “product”. We consider this as an error because this should not occur
according the original implementation. In a category page, we find product links
containing the name of the category, i.e. “matrassen”:
http://www.matrascenter.nl/matrassen/polyethermatras-sg-25-soft-14-cm-80x200-
5403

In the shopping cart overview we do not find this category name back in the url, instead
the name “product” is found:
http://www.matrascenter.nl/product/polyethermatras-sg-25-soft-14-cm-80x200-
5403

This is why we found 382 urls with Crawljax and 393 urls with the testing tool. The
products that are added to the shopping cart are making the difference in this number.
Removing those incorrect product links in the shopping cart overview, because they
should be named properly, we are left with 350 urls found by Crawljax and 333 urls
found by the testing tool. From this result, we can conclude that Crawljax added 32
products to the shopping cart in the time it tested the application and our testing tool
added 60 products to the shopping cart.

65

From the random choices G∀ST makes, our testing tool only tested 140 unique pages. In
those 140 pages, the tool successfully purchased a number of products several times. We
had to change a few settings in Crawljax to test more pages and possible add products to
a shopping cart. We allowed Crawljax to visit each page more often instead of only once.
Because if Crawljax while visiting the shopping cart overview page and chooses to click
on a link instead of checking out the shopping cart we are not able to test this page
again. We also had to increase the maximal number of states that could be found, and we
had to increase the maximal search time several times to find more pages. Because with
enabling the option visiting the same page multiple time it take longer to find more
pages. We ended up with a minimal search time of four hours to find useful results.
Unfortunately, we were not able to purchase products successfully. One reason is that
Crawljax does not deal with external links, like the payment provider page. The other
reason is that it could not fill in a form that is required for contact information.

Because Crawljax does not test forms the way our implementation does, it cannot find
the error the testing tool found about the shipping method. The other errors we found
with the testing tool were also found by Crawljax.

Manual testing this web application took several hours. Mainly because of the size of the
application. We faced the difficulty to keep in mind what pages we already tested. We
overlooked one page that did not exist and the error we found in the shopping cart.
Manual testing web applications of this size, we would not recommend it to anyone. It
was a struggle to find out if we test every page and is time consuming.

Figure 13 – State overview from matrascenter.nl, by Crawljax

66

7.3.2 Wordpress Webshop application
We also tested a complete different webshop application. This web application is written
in PHP instead of .NET. During testing, we found out that our current generic model
shown in Figure 12 is not completely useable in this use case. The way we modelled the
checkout phase, with the five steps, is not applicable to this webshop. The webshop uses
less steps to buy products. Therefore, our generic model does not hold anymore.
However, all the functionality we modelled, changing the shipping method, changing the
product amount, deleting a product, and changing the payment option are still
applicable to this webshop. We therefore have chosen to change to model according the
steps this webshop requires. The new model is shown in Figure 15 and can be found at
the end of this subsection. We removed the states Step3 and Step 4. We removed the
possibility to login within the checkout phase and changed the changePayement
transition from Step3 to Step2.

We also found out during testing of the web application that our implementation on
testing forms did not work properly. The forms we test in .NET web applications are
annotated. These annotations we use to test if an input field shows the correct error
message. Unfortunately, the form fields are not annotated by the PHP implementation
we use. We changed the interpretation of how we test form fields to deal with elements
without annotations. The results from both Crawljax and our testing are shown in
Table 17.

 Crawljax Test tool
Visited URLs 18 32 (21*)
Seen URLs 32
Reachable pages 22 22
CMS pages 22 22
Not reachable 0 0
Number of edges 46 251
Time 9 minutes (exhausted) 3h 30 minutes

(5000 test cases)
Page errors 0 0
Event errors 0 0

Table 17 – Test results from Crawljax and our testing tool for the Wordpress webshop application.

Both tools did not find any error while testing the webshop application. One remarkable
thing is that our testing tool found and tests more pages than there really exist. The
explanation for this strange behaviour is that the web application generates a different
code each time a user wants to login, this code is used for security reasons but visible in
the URL of the page. With our tool, it is possible to visit a page more often and the tool
visited the login page frequently. After filtering out those duplicate links, which referred
to the same page, the tool tested 21 unique URLs.

Based on the gathered result we found that both tools did not test the search form. We
know from the testing result from G∀ST that the model-based testing tool did find this
search form, but probably based on the random choice G∀ST makes it did not test the
search form

67

We have an assumption why Crawljax did not test this search form, but we do not know
this for sure. The search form does not contain a submit button and the submission is
started when the users presses the enter key. Probably Crawljax does not know that the
enter key starts this submission and therefore did not test the search form. Other forms
like the login form, which contain a submit button are tested with Crawljax.

Figure 14 gives an overview of states found by Crawljax. Remarkable is that Crawljax did
not find all existing pages. When we analysed the results of Crawljax we find out that
Crawljax did not complete a purchase. We found out in the results that it stopped in a
state where the web application should be redirected to the payment provider. This is
possible because Crawljax only accepts internal url and does not redirect to other web
applications. In theory, Crawljax should be able to complete the whole checkout phase
by choosing the payment option “payment by bank”. Running Crawljax multiple times
we did not completed the checkout phase in any of the test runs.

We made some changes to this web application to see if Crawljax is capable of
completing the checkout phase if we only allow payments by bank. We removed the
external payment provider from the possible payment options and we started testing
with Crawljax again. This time we indeed completed the checkout phase of the webshop
application. However we did not see the payment success page occurring. Somehow,
Crawljax does not continue this transition and due this reason Crawljax will not find
every page that exists.

Comparing the findings and testing results from both testing tools, we can say that our
tool is performing better in testing the checkout phase of a webshop application than
Crawljax does. Unfortunately, the generic modelling approach does not hold for the
webshop model we introduced in section 7.2. Different webshop applications requires
changes to this model. Nevertheless, we are still pleased with the results we found.

Because we did not found any errors with testing the application, we added some
mutations to the web application. We deliberately added errors to the web application
to see how the test tool responds to those errors. We added a JavaScript file that calls
none existing functions and made changes to the registration form. The tool discovered
both errors. It detected the none existing function calls and errors when submitting
wrong data within a form.

From the previous form extended model we knew that the performance of G∀ST will
decrease if the amount of pages to test increases. This same behaviour is shown with
testing the webshop model. With the wordpress use case, we tested almost every
webpages, but this application only contains a few products. Testing the Matrascenter.nl
use case the amount of test paged decreased. With this use case we also found a
unwanted behaviour in the checkout phase of the application. We did not found this
error with Crawljax or with testing the webshop application manually. We believe that if
we make improvement to G∀ST to find more web pages and decrease the time it takes to
test this tool could be useful in testing web applications.

68

Figure 15 – Shop model applied on Wordpress webshop.

Figure 14 – State overview from Wordpress webshop application, by Crawljax.

69

8 Reflection
Looking back on the work we have done, we could have done things differently. The
result of this research is based on certain choices made during this research. One thing
we know for sure is that not everything that is testable within the field of web
applications is covered. The field of web applications is just too broad.

Black-box testing and user flow
One of the first choices we made to reduce our scope of research is to determine on what
level we want to test web applications. We have chosen to test web applications on the
same level as a visitor would experience the use of the web application. We simulated
actions that a user is able to perform on the web application through a web browser. We
simulated those actions by finding the events that are triggered if a user performs a
certain action and executes that manually. If we had chosen for a different approach, for
example on a code level, we would ended up with different possibilities to test. We could
have ended up with white-box testing instead of black-box testing.

HTML forms
In section 3.1.1, we discussed the different types of form elements there exist. We
mentioned that we did not include the form elements in our test environment that are
introduced in the HTML 5 standard. We have also chosen to rely on the annotations the
.NET frameworks adds to the html code to validation the forms (Section 6.4). Now that
we look back, we could have chosen to test forms based on the validation done in the
HTML5 standard instead of relying on the annotated html made by the .NET framework.
With this way of testing forms, we could include the new input types that are introduced
in the standard. With the HTML5 standard, it is possible to validate the form on both the
client-side and server-side. We implemented testing forms based on how .NET annotates
form elements. However, it turns out that those annotations do not occur in other web
applications developed in a different language. We had to rewrite a part of how we
tested forms to deal with this issue. If we had instead chosen for testing forms using the
validation of the HTML5 standard, we could have done things much easier.

Modelling languages
The choice of modelling languages that can be used to model the behaviour of the SUT is
limited. This limit is set by the quality characteristics we wanted to cover but also by the
abstraction we chose to communicate with. With a different set of requirements, other
modelling languages could have been used, like an LTS. The choice of modelling
language also depended on the suitable testing tools. Each tool deals with different
modelling languages. We searched for open source and commercial model-based testing
tools and what modelling language each tool could use. This way we could see what
tools would work best with the model we created. Our preference went for an open
source tool above a commercial one. In section 3.5, we explained why we have chosen
for the MBT tool G∀ST and the modelling language ESM. The main decision to choose
G∀ST instead of TestOptimal was because of the experience we have with the tool G∀ST
and it is open source. We could have chosen for the tool TestOptimal instead. This could
lead to other results, based on the approach TestOptimal uses to generate test cases. If
we had chosen for a completely different modelling language like an LTS, we were
forced to use a different model-based testing tool, probably ended up with the tool
Torxakis.

70

Quality characteristics
In the next step, we determined the scope of our testing ground. One of the desired goals
from Bluenotion is to test the functionality of web applications. All the functionality
aspects are explained in section 5.2. We thought of testing the design of the web
application but this aspect deserves a research on its own. We explained in section 5
that each browser has its own interpretation of rendering a webpage. Including browser
compatibility in our testing scope would be work intensive but is worth investigating in
the future. Not only design and functionality are important when testing web
applications but security is important as well. We covered only a small part of this
aspect. We only tested if users can access pages without proper credentials. There are a
lot more aspects to test within the field of the security. The organization OWASP[70] is a
non-profit organization that is focused on improving the security aspect of software.
OWASP provides documents and a list of tools that can help organizations with
delivering and maintaining applications that can be trusted. OWASP also maintains a list
of the top 10 most critical web applications security risks. Definitely, there are more
security risks than those mentioned in the OWASP top 10 but those are the most critical.
We have chosen to only focus on security of credentials and access because this is
especially relevant when you have a webshop application. Also many tools[71] already
exist that scan for those top 10 security risks.

Web broswers
In our test architecture, we used the tool PhantomJS combined with NodeJS to
communicate with G∀ST and the web application. At first PhantomJS worked fine until
we started implementing the webshop model. PhantomJS only supports one kind of web
browser so we are bound to the functionality of that browser. However, it is possible to
start multiple instances of this browser. Because the simulation of user events is done in
JavaScript, we were stuck to the JavaScript functions that PhantomJS supports within
this browser. In some cases, we had to find a different way to fire an event, because the
function we knew was not supported. In our search for a suitable tool to approach a web
application, we found an additional tool named, Selenium. Selenium is also open source
tool that is used in many cases of testing web applications. Selenium is implemented in
the tools Crawljax and TestOptimal to open web applications. Multiple browsers are
supported whereas PhantomJS only support one. Besides the support for multiple
browsers, it has the ability to visualize what we are testing. This could have helped us
with debugging challenges we encountered during the construction of our adapter. In
section 4.2, we have chosen not to use Selenium because of previous struggle with
installing the tool. However if we look back on how we used PhantomJS, it could be
worth using Selenium in the future for its features mentioned above.

Generic model
In the beginning of our research to find an approach to model web applications, we
discovered that certain parts of a web application were already being tested with model-
based testing purposes[11]. The results in the literature showed us that it is possible to
apply model-based testing techniques with a small side effect, which is a state explosion.
We explained this downside in section 6.1. This state explosion was one of the
behaviours we do not want to have in our new model.

71

We focused in our search for a new model, on making this model as generic as possible,
so that it is (ideally) applicable to all web applications that exist. With our model
introduced in section 6.3, we are able to test web pages that are reachable within the
web application. We tested this new model with the web application from Bluenotion.
The results looked promising we found several errors that should not occur within this
application. However, we found out that not every web page was tested with the
generated test cases of our model-based testing tool. Forms that exists on a web
application were not tested. Therefore, we extended our model in section 6.4 so it could
test forms. The approach we took was testing forms with three different values in a
following order. First, we tested a form with empty values, secondly with false values
and at last with true values. This way a form should always be submitted successfully at
the end of the test. Beforehand we knew the values each form field should have. We
could have done this differently. For example, we could generate values for each field
type randomly based on a certain set of values. This way we could test more values and
combination of their values if we tested the form another time.

Results
The results of this form extend model looked fine. We deliberately changed values for
certain fields in the form and they were indeed marked as invalid by the tool. However,
with the second use case, the Bluenotion application, we test not all the web pages. We
found out that G∀ST generated test cases randomly and not choosing other web pages
that were not even tested. If we ran longer test cases than we currently did, we probably
found more web pages. However, the time it takes to test was already a couple of hours
for a small web application. With the tool Crawljax, we found more pages and more
errors within less than half an hour.

Our goal at beginning of our research was to test webshop applications so we extended
our model even further so it is able to test a webshop application. With the introduction
of webshop applications more functionality is added to a normal web application. We
extended our model, which is introduced in section 7. We found out that it is almost not
possible to keep a generic model that is applicable to every webshop application that
exists. With webshop applications, multiple variants exist. Each webshop application has
its own interpretation of buying products. It was hard to model this in a generic solution.
We do found out that the functionalities in every webshop is almost the same. However
not every functionality is found on the same web page. We tested our webshop model
with two use cases. With the first use case, we tested every transition in the model and
even found unwanted behaviour in the webshop application. However, the downside of
testing random was now even more noticeable. It is not possible to changes this
behaviour of G∀ST very easy. Nevertheless, to achieve better and faster results we
should change this random behaviour of G∀ST in to a much clever way of generating
input actions.

72

9 Conclusion
In this section, we conclude this thesis. In section 9.1, we will state a conclusion about
the testing tool we used and its usefulness. We discuss in section 9.2 the usefulness of
the webshop model, defined in section 7, with regard to other webshop applications. We
answer the research question we defined at the beginning of this thesis in section 9.3.
We also state known issues that are still open in section 9.4. We end with the future
work in section 9.5.

9.1 Compatibility of the test tool
We used G∀ST as a MBT tool to generate test cases. The tool turned out to be useful in
our test architecture. However, the quality of the on-the-fly generated test cases were
not that useful. The test cases were generated pseudo randomly and turned out to be a
bit disappointing in the bigger use cases we used. With Bluenotion use case, roughly
65% of the existing pages were tested. This number even drops more when we tested
the Matrascenter use case, where almost 40% of the existing pages were tested. To
achieve a better page coverage we need a better solution than generating pseudo
random test cases. This means we need to improve the test generation in G∀ST with a
better solution than pseudo random generation or we have to switch to a different
model-based testing tool that has a clever generation already implemented.

The adapter we created can be used in different model-based testing tools.
Theoretically, it is possible to translate our current ESM model to an LTS model or an
EFSM. With this possibility, we can use different MBT tools to test web applications. We
only have to make sure that the output that is generated by the MBT tool will be
accepted by the adapter. This means that we can easily switch to a better model-based
testing tool than we current used. For example, the tool TorXakis can be used if the
model is translated to an LTS and TestOptimal if the model is translated to an EFSM. By
using other MBT tools, we can explore different approaches of generating test cases and
analysing test results. It also gives users the ability to choose a preferred MBT tool that
users have experience with.

9.2 Compatibility of webshop
As we know from our test cases, the current webshop model is not compatible enough to
test every webshop application that exists. The main reason is that each webshop
application differs from another in such a way that the current model is not applicable to
all of them. We do find enough similarities between each webshop application. Most of
the functionalities are the same, like adding a product to the shopping cart or having a
shopping cart that shows what items are in there. Therefore, we can keep most of the
functionalities we created in our adapter but we have to adjust our model to the
behaviour of other webshops. This change of behaviour is only found in the checkout
phase of the model.

In the two test cases of our webshop model, we indeed found the same functionalities
but there are less steps used in the Wordpress webshop. If we look to other webshops
like Amazon the checkout phase completely differs from the two test cases, but again the
same functionalities hold.

73

9.3 Answer research questions
The goal of this thesis was to find an approach to test web applications with model-
based testing. We wanted to formulate an abstract model that is capable of testing
multiple web applications with the least amount of changes, preferably an out-of-the-
box model. We defined the following research question to find out if we can improve the
quality of web applications with model-based testing.

RQ1 How can we improve the quality of web applications by applying model-
based testing techniques?

To come up with our final answer of the research question we first answer our sub
research questions that should help us answer our main research question.

RQ1.1 What quality aspects are important with testing web applications?

The first sub question RQ 1.1, mentions what quality aspects are important while testing
web applications. To answer this question we first required a definition of testing and
quality, which are both mentioned in section 3.2. To improve quality we need to know
what quality characteristics are important with testing applications we mentioned the
important qualities characteristics in section 5.1. The list of important qualities was too
big to cover in this thesis. We therefore selected a subset of this list where we want to
focus on to improve the quality of web applications. This subset is mentioned in section
5.2, which consist of functionality of the web page, testing performance based on loading
speed of the page, security based on testing login forms, usability based on the existence
of files within a web page and finally accessibility based on the existence of html
attributes.

RQ1.2 How can we apply model-based testing techniques to web applications?

Based on the answer in research question RQ 1.1 we could search for an answer to our
second research question. In RQ 1.2 we asked the question: “How can we apply model-
based testing techniques to web applications?”. We searched for an approach to test web
applications based on a user’s approach. We want to test what users also experiences
while using the web application. We found a way to access the information a user also
sees through a web browser. We used the tool PhantomJS above Selenium to retrieve
this information. The information we needed is stored in the DOM object and could be
retrieved with certain search functions. We even could simulate user actions by using
the events stored in this DOM object. The only thing that is left to be able to test web
applications with model-based testing is a model and a suitable model-based testing
tool. It turned out that with PhantomJS it is not possible to communicate with a model-
based testing tool G∀ST we used. We added NodeJS for the communication between
those two tools.

RQ1.3 What are the advantages and disadvantages of existing modelling
languages, found in literature, with model-based testing of (web) applications?

In research question RQ 1.3, we asked the question what are the advantages and
disadvantages of existing modelling languages, found in the literature, with model-based
testing of (web) applications. We searched in existing literature for modelling languages
that are used to test web applications.

74

We mainly found models of web applications that are modelled in an FSM or
StateCharts[12]. Other literature talked about models in the modelling languages LTS
(Section 3.3.2) and ESM (Section 3.3.4), but are not used to test web applications but
other systems. The main disadvantage, which is also its advantage in an FSM(Section
3.3.3) is the state explosion. State explosion requires lot of time to implement, but is
useful to test very detailed steps in system as done in[11]. In addition, the lack of
variables and a finite set of states, input, and output makes this modelling language not a
favourite language to model web applications.

An LTS, which we discussed in section 3.3.2, allows variables but the support of model-
based testing tools is limited. The possibilities with using an ESM as modelling language
is great. It support the use of variables, stored in a parametrized state and support
deterministic and non-deterministic models. In section 3.5, we explain the reason why
we have chosen for an ESM as modelling language combined with the model-based
testing tool G∀ST.

RQ1.4 How can we create a new model that is capable of testing web applications
that deals with the disadvantages of existing models?

In research question RQ 1.4, we defined the question: How can we create a new model
that is capable of testing web applications that deals with the disadvantages of existing
models? We found one real suitable model of a web application in [11]. This model of a
web application is a state explosion and requires lots of time to model it and not even
speaking of its implementation work. Other models that are introduced in papers are
partial models that only cover the shopping cart functionalities of a web shop
application[19] or testing forms on a web application [14]. With every model that we
found usable to test web applications with, we could not reuse it in a different web
application because it was only modelled for that specific web application.

We wanted to create an abstraction to this model so we do not have to model every web
page that exists within a web application. By assuming that every pages is the same, not
concerning its content we created this abstraction. Therefore, the model should also be
applicable to test other web applications. To realize this abstraction we needed to store
information about a page in the model. With using, an ESM as modelling language this is
possible. We store information about each page, its url, links to other pages, forms,
products, payment option, shipping method, login state, and the shopping cart in the
parametrized state. This information is updated after every transition. With the tool
PhantomJS, we can retrieve the information that we needed.

The new model is introduced in section 6.3 and an extension to test forms in section 6.4.
With this model we saw that we were not able to model a webshop application so we
introduced another extension to this model in section 7. We tried to continue the generic
approach to model a webshop application. However, we were forced to created states
for every step in the checkout phase. This is because we are interested in testing the
shopping cart and modify the shopping cart in certain steps, by changing the amount,
deleting products, adding products, changing shipping method, and change the payment
option. Not every action is available in each page. Therefore, we had to make this
distinction. The webshop model is kept as small and generic as possible but due to many
different webshops, it is not a generic model to test web applications with.

75

A downside to the abstraction we made in the introduced models is the loss of detail. By
keeping the model as generic as possible, we can use the model to test different
applications. However, it is not possible to test every detail in the web application.
Because our focus mainly lies with testing the functionality of the web application this
level of detail is not required.

RQ1.5 How does the new model perform?

To answer our research question RQ 1.5, we have to look to the results of both models.
Based on the results mentioned in the sections 6.5 we can say that the form extension
model delivers interesting results for small web applications. However we are a bit
disappointed in the performance and testing results from the bigger web application we
tested, but lack of performance and results is achieved based on a random walk
algorithm to generate test cases. It is possible to replace this algorithm with a smart
algorithm that keeps track of already visited pages. This should probably lead to better
performance and results.

The form extension model found in section 6.4 is capable of testing web applications
that contain forms, with very few modifications. We can say that this model is capable of
testing every web application that is created by the company Bluenotion, excluding
webshops and custom build applications. The only thing that is required to be changed
are the values for the fields that can be found in each form within the application. We
have to provide a correct and incorrect value for each field the model stays the same.

In a small web application like the one we tested in section 6.5.1, we can test every page
and detect the errors that we are interested in. However when web applications grows
in the amount of pages, we cannot guarantee that we can cover every page that the
application holds, like the one tested in section 6.5.2. The reason we cannot guarantee
this is because of the random walk G∀ST uses to generate test cases.

The same behaviour is found when we tested two webshops. The webshop application
in section 7.3.2 was almost covered, except the search form, which was not tested.
However, this use case contains fewer pages that use case we tested in section 7.3.1. If
we look to the results the Matrascenter.nl use case, we can see that fewer pages are
tested compared to the tool Crawljax. However, Crawljax did not tested every page
either.

RQ1.6 What are the possibilities with the new modelling framework to test
different web applications?

Research question RQ 1.6 states what the possibilities are with the new model to test
web applications. With the model we created in section 6.4, we can test web applications
that also contains forms. It is a generic solution to test informational web applications.
Not every form element that can be used is implemented as explained in section 3.1.1,
but the most occurring elements are supported. However, this model is not suitable for
testing webshop applications.

76

We extended this model further so it is able to test webshop applications. With this
model, we can add products to the shopping cart and follow the steps that are required
to buy these products. It is even possible to pay (in a test environment) with an external
payment provider. When testing this model with the use case mentioned in section 7.3.2,
we found some troubles with the way we modelled. It turned out that not every
webshop application is implemented the same way. They mainly differ in the checkout
phase. We had to change the model so it was able to test a different webshop
application. Nevertheless, the functionalities we test stays the same with this different
model. We can say that our webshop model is not generic enough to test multiple
webshop applications. Changes to the model are still required.

RQ1.7 What set of tools are required and available to test web applications?

Research question RQ 1.7 states what tools are required to test web applications.
Based on our approach we used PhantomJS as a tool to communicate with web
applications through a headless browser. Using this tool required an additional tool
named NodeJS to communicate with a model-based testing tool. We used G∀ST as a
model-based testing tool. G∀ST turned out to be useful but has a huge downside, which
is its pseudo random generation. This tool requires improvement to deal with this
downside. Our environment is created to be able to replace G∀ST is required to use a
different model-based testing tool that may have better test selection.

PhantomJS combined with NodeJS is very usable to access web applications and retrieve
information from it. There is only one downside we can think of to not use this tool,
which is testing browser compatibility. Phantom uses only one browser engine and
therefore we could not test browser compatibility. For testing this quality characteristic,
we suggest using the tool Selenium.

RQ1.8 How does the tool perform in coverage with regard to other existing tools
and manual testing?

We used four use cases, two use cases for each model to test our tool and a different
testing tool Crawljax. We also tested each use case manually. The time it takes to test the
web application is with Crawljax much faster than with our tool. The difference can be
found in the approach taken to test the web application. Crawljax uses a crawl engine to
find pages and tries to test every page it find during this search. G∀ST uses a pseudo
random algorithm to generate test cases on-the-fly based on the given output from the
previous transition. This is the reason why G∀ST take more time to test the web
application.

If we look to the outcome of the results for each use case, we can say that our testing tool
finds more errors, but this is because Crawljax is configured in such way that it does not
detects these errors. In some cases, Crawljax found more page errors but this is because
G∀ST tested less pages due to it random choices.

If we compare our testing tool with manual testing, our testing tool finds more errors. In
particularly the error, we found in the shopping cart of the use case Matrascenter.nl.
Some errors are overlooked in manual testing whereas our model-based testing tool did
not. This shows that automated testing is most of the time better than manual testing.

77

Now that we answered the sub research questions, we can answer our main research
question. We can say that we can improve the quality of web applications with model-
based testing. However, the improvements to the quality are currently not that high. We
say that our solution to test web applications is a first step to improve the quality and
there is lots of room for improvement. We can improve this for example with a better
test selection. We suggest several improvement in section 9.5.

The quality may not be improved that much, but testing is not only about the quality it is
also about time and effort. The time it takes to test is currently high compared to manual
testing and even with Crawljax. Improving the test generation will probably lead to
quicker results. However, the effort that is required is less than that with testing manual.
Our testing tool runs automated we only have to start it. This means we can run the tool
overnight and see the testing results the next morning, without spending effort. With
manual testing, we spent much more effort. We have to test everything and keep track of
what we tested. If changes are made to the application, we can start all over again. If we
want to test a different web application with the form extension model, we only need to
change the values for the forms that exist within the web application. With a webshop
application, more changes are required but still less than testing manually. Therefore,
the effort and time to test a different web application is better with our tool.

9.4 Known issues
One of the issues we faced was the use of third party libraries that are used in the
application. For example the Google Maps API. Recently Google forced users of Google
Maps to use a newer version API. Loading the map in the application works and no
errors are given. However, testing a page that contains an older version of the Google
Maps API result in the following error: “Unable to delete property”. We can argue if this
is a proper error or just a bug in the testing software. After some digging, it turns out
that it is indeed not an error in the web application, but a bug in the software we used to
test. PhantomJS handles certain JavaScript code in a wrong way. This should be resolved
in a newer version, but during the writing of this thesis the problem was not fixed yet.

9.5 Future work
We focussed on finding generic models to test web applications. The two models we
have shown are useable but the last model we showed has still room for improvement.
We did not succeed in developing a total generic solution to test webshop applications,
but we have laid the foundation for an approach. We encourage to the keep searching
for a more generic solution then the one we presented.

A great next step is improving the test tool to cover more qualities characteristics.
Because some quality characteristics, like browser compatibility cannot yet be tested
with our tool, because PhantomJS only supports one browser engine. One quality
characteristic we could test more detailed is about testing forms. We now have fixed
values for each field in each form. We can instead think of possibilities to generate each
value based on their field property. In this way, it would be possible to cover more types
of input fields, like the input types introduced in the HTML 5 standard and test different
values if the form is tested twice or more.

78

We certainly suggest improving the test selection of G∀ST. We suggest to find a clever
way to go through the state space of G∀ST instead of using the current pseudo random
algorithm. Implementing a learning algorithm could be an additional feature to this.
Currently random walk is used to generate test cases. With a learning algorithm, we can
learn from previous test run and improve the test generation even better. With this
improvement, we could diminish the amount of time it takes to discover pages and test a
broader range of pages in the web application.

Furthermore, a good possibility is to continue testing while errors are found. Finding a
way to recover from a page that cannot be found is desirable. A possible solution is
introducing a “goback” function. If the page is not found, we can go back to a previous
working page. This way it should be possible to recover from livelocks as mentioned in
section 6.3.

A possible last step to make is combining Crawljax with our testing tool. We can think of
using Crawljax as a pre-processing tool to find relevant paths or detect broken links in
an earlier stage and using our model-based testing tool to find further unwanted
behaviour.

79

10 References
1. Koopman, P. and R. Plasmeijer, Fully Automatic Testing with Functions as

Specifications, in Central European Functional Programming School, Z. Horváth,
Editor. 2006, Springer Berlin Heidelberg. p. 35-61.

2. Newell, D. 6 Reasons You Should Buy An Online Versus Offline Business. 2014 [cited
2015 12-05-2015]; Available from: http://feinternational.com/blog/6-reasons-
buy-online-versus-offline-business/.

3. Naseer, N., 4 reasons to shift your offline CRM to the cloud now. 2014.
4. Post, H. A Shift from Online to Offline: Adolescence, the Internet and Social

Participation. 2014 [cited 2015 12-05-2015]; Available from:
http://www.huffingtonpost.com/undergraduate-awards/a-shift-from-online-to-
of_b_4431523.html.

5. Catone, J. Adobe Preparing Full Shift to Web Apps. 2007 [cited 2015 12-5-2015];
Available from:
http://readwrite.com/2007/10/18/adobe_preparing_full_shift_to_online_apps.

6. Microsoft. ASP.NET MVC. [cited 2015 6-4-2015]; Available from:
http://www.asp.net/mvc.

7. Highsmith, J. and A. Cockburn, Agile software development: the business of
innovation. Computer, 2001. 34(9): p. 120-127.

8. The Incredible Rate of Diminishing Returns of Fixing Software Bugs. 2009 [cited
2015 14-5-2015]; Available from:
http://superwebdeveloper.com/2009/11/25/the-incredible-rate-of-
diminishing-returns-of-fixing-software-bugs/.

9. magazine, I.s. Three-quarters of US small firms have not tested website
cybersecurity. 2011 [cited 2015 12-05-2015]; Available from:
http://www.infosecurity-magazine.com/news/three-quarters-of-us-small-firms-
have-not-tested/.

10. Pugh, T. Contractors say late changes, lack of testing doomed health care website
launch. 2013 [cited 2015 12-05-2015]; Available from:
http://www.mcclatchydc.com/2013/10/24/206431/contractors-say-late-
changes-lack.html.

11. Achkar, H. Model Based Testing Of Web Applications. 2010.
12. Ogaard, K. and A. Malge, A Model Based Testing Technique to Test Web

Applications Using Statecharts. Information Technology: New Generations, 2008.
ITNG 2008. Fifth International Conference on. 2008. 183--188.

13. Andrews, A.A., J. Offutt, and R.T. Alexander, Testing Web applications by modeling
with FSMs. Software & Systems Modeling, 2005. 4(3): p. 326-345.

14. Kung, D.C., L. Chien-Hung, and P. Hsia. An object-oriented Web test model for
testing Web applications. in Computer Software and Applications Conference, 2000.
COMPSAC 2000. The 24th Annual International. 2000.

15. Karam, M., W. Keirouz, and R. Hage, An Abstract Model for Testing MVC and
Workflow Based Web Applications, in Proceedings of the Advanced Int'l Conference
on Telecommunications and Int'l Conference on Internet and Web Applications and
Services. 2006, IEEE Computer Society. p. 206.

16. Ernits, J., et al., Model-Based Testing of Web Applications Using NModel, in Testing
of Software and Communication Systems, M. Núñez, P. Baker, and M. Merayo,
Editors. 2009, Springer Berlin Heidelberg. p. 211-216.

80

17. Marchetto, A., P. Tonella, and F. Ricca. State-Based Testing of Ajax Web
Applications. in Software Testing, Verification, and Validation, 2008 1st
International Conference on. 2008.

18. Mesbah, A., A. van Deursen, and D. Roest, Invariant-Based Automatic Testing of
Modern Web Applications. Software Engineering, IEEE Transactions on, 2012.
38(1): p. 35-53.

19. Shams, M., D. Krishnamurthy, and B. Far, A model-based approach for testing the
performance of web applications, in Proceedings of the 3rd international workshop
on Software quality assurance. 2006, ACM: Portland, Oregon. p. 54-61.

20. Hajiabadi, H. and M. Kahani. An automated model based approach to test web
application using ontology. in Open Systems (ICOS), 2011 IEEE Conference on.
2011.

21. Bae, G., G. Rothermel, and D.-H. Bae, Comparing model-based and dynamic event-
extraction based GUI testing techniques: An empirical study. Journal of Systems
and Software, 2014. 97(0): p. 15-46.

22. O'Reilly, T., What is Web 2.0: Design Patterns and Business Models for the Next
Generation of Software. 2005.

23. W3C. Document Object Model (DOM). 2015 [cited 2015 14-5-2015]; Available
from: http://www.w3.org/DOM/.

24. W3C. Cascading Style Sheets. 2015 [cited 2015 14-5-2015]; Available from:
http://www.w3.org/Style/CSS/.

25. W3C, HTML5, in A vocabulary and associated APIs for HTML and XHTML. 2014,
W3C.

26. W3Schools. HTML Form Elements. [cited 2015 6-4-2015]; Available from:
http://www.w3schools.com/html/html_form_elements.asp.

27. W3. W3 HTML Elements. [cited 2015 6-5-2015]; Available from:
http://www.w3.org/TR/html-markup/Overview.html#toc.

28. De Ryck, P., et al., Automatic and Precise Client-Side Protection against CSRF
Attacks, in Computer Security – ESORICS 2011, V. Atluri and C. Diaz, Editors. 2011,
Springer Berlin Heidelberg. p. 100-116.

29. ISO/IEC, Guide 2, Standardization and related activities -- General vocabulary
2004.

30. Myers, G.J., et al., The Art of Software Testing. 2004: Wiley.
31. Tretmans, J., Testing Technique lecture notes. Radboud University Nijmegen, 2012.
32. Tretmans, J., Model Based Testing with Labelled Transition Systems, in Formal

Methods and Testing, R. Hierons, J. Bowen, and M. Harman, Editors. 2008,
Springer Berlin Heidelberg. p. 1-38.

33. Bolton, C., Adding Conflict and Confusion to CSP, in FM 2005: Formal Methods, J.
Fitzgerald, I. Hayes, and A. Tarlecki, Editors. 2005, Springer Berlin Heidelberg. p.
205-220.

34. Harel, D., Statecharts: A visual formalism for complex systems. Sci. Comput.
Program., 1987. 8(3): p. 231-274.

35. Veanes, M., et al., Model-based testing of object-oriented reactive systems with spec
explorer, in Formal methods and testing, M.H. Robert, P.B. Jonathan, and H. Mark,
Editors. 2008, Springer-Verlag. p. 39-76.

36. Bijl, M., A. Rensink, and G.J. Tretmans, Component Based Testing with IOCO. 2003:
Centre for Telematics and Information Technology, University of Twente.

81

37. Tretmans, J., Test generation with inputs, outputs, and quiescence, in Tools and
Algorithms for the Construction and Analysis of Systems, T. Margaria and B. Steffen,
Editors. 1996, Springer Berlin Heidelberg. p. 127-146.

38. Broy, M., et al., Model-Based Testing of Reactive Systems: Advanced Lectures
(Lecture Notes in Computer Science). 2005: Springer-Verlag New York, Inc.

39. El-Fakih, K., et al., Fault Diagnosis in Extended Finite State Machines, in Testing of
Communicating Systems, D. Hogrefe and A. Wiles, Editors. 2003, Springer Berlin
Heidelberg. p. 197-210.

40. Campbell, C., et al., Testing Concurrent Object-Oriented Systems with Spec Explorer,
in FM 2005: Formal Methods, J. Fitzgerald, I. Hayes, and A. Tarlecki, Editors. 2005,
Springer Berlin Heidelberg. p. 542-547.

41. Schmitt, M., M. Ebner, and J. Grabowski. Test Generation with Autolink and
TestComposer. 2000.

42. Bohnenkamp, H. and A. Belinfante, Timed Testing with TorX, in FM 2005: Formal
Methods, J. Fitzgerald, I. Hayes, and A. Tarlecki, Editors. 2005, Springer Berlin
Heidelberg. p. 173-188.

43. Olsson, N. and K. Karl. Graphwalker. 2015 [cited 2015 15-01]; Available from:
http://graphwalker.org/.

44. Hart, P.E., N.J. Nilsson, and B. Raphael, A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. Systems Science and Cybernetics, IEEE
Transactions on, 1968. 4(2): p. 100-107.

45. Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische
Mathematik, 1959. 1(1): p. 269-271.

46. Jones, S.P. Haskell. 1990 [cited 2015 14-01]; Available from: http://haskell.org.
47. Mostowski, W., et al., Model-Based Testing of Electronic Passports, in Formal

Methods for Industrial Critical Systems, M. Alpuente, B. Cook, and C. Joubert,
Editors. 2009, Springer Berlin Heidelberg. p. 207-209.

48. Koopman, P., et al., Gast: Generic Automated Software Testing, in Implementation
of Functional Languages, R. Peña and T. Arts, Editors. 2003, Springer Berlin
Heidelberg. p. 84-100.

49. Plasmeijer, R. and M. Eekelen van. CLEAN. 2002 [cited 2015 15-01]; Available
from: http://clean.cs.ru.nl/Clean.

50. van Weelden, A., et al., On-the-Fly Formal Testing of a Smart Card Applet, in
Security and Privacy in the Age of Ubiquitous Computing, R. Sasaki, et al., Editors.
2005, Springer US. p. 565-576.

51. Koopman, P., P. Achten, and R. Plasmeijer, Model Based Testing with Logical
Properties versus State Machines, in Implementation and Application of Functional
Languages, A. Gill and J. Hage, Editors. 2012, Springer Berlin Heidelberg. p. 116-
133.

52. TestOptimal. TestOptimal. 2015 [cited 2015 13-05-2015]; Available from:
http://testoptimal.com/.

53. SeleniumHQ. Selenium HQ, Browser Automation. 2015 [cited 2015 6-5-2015];
Available from: http://www.seleniumhq.org/.

54. PhantomJS. PhantomJS, Full web stack no browser required. 2015 [cited 2015 6-5-
2015]; Available from: http://phantomjs.org/.

55. Inc., J. NodeJS. 2015 [cited 2015 6-5-2015]; Available from: https://nodejs.org/.
56. Microsoft. ASP.NET Routing. 2010 [cited 2014 8-10]; Available from:

http://msdn.microsoft.com/en-us/library/vstudio/cc668201(v=vs.100).aspx.

82

57. Microsoft. Models and Validation in ASP.Net MVC. 2010 [cited 2014 8-10];
Available from: http://msdn.microsoft.com/en-
us/library/dd410405(v=vs.100).aspx.

58. Köhler, R. MVC, MVP, ASP.NET. 2008 [cited 2014 8-10]; Available from:
http://www.codeproject.com/Articles/30597/MVC-MVP-ASP-NET.

59. Guthrie, S., Introducing “Razor” – a new view engine for ASP.NET. 2010, Microsoft.
60. Microsoft. Controllers and Action Methods in ASP.NET MVC Applications. 2011

[cited 2014 8-10]; Available from: http://msdn.microsoft.com/en-
us/library/dd410269(v=vs.100).aspx.

61. International, E., The JSON Data Interchange Format. 2013.
62. W3Schools. AJAX Tutorial. 2014 [cited 2014 8-10]; Available from:

http://www.w3schools.com/ajax/.
63. MVC4Beginner. ASP .NET MVC Accessing Models Data From Controller. 2014

[cited 2014 8-10]; Available from: http://mvc4beginner.com/Tutorial/ASP-.NET-
MVC-Accessing-Models-Data-From-Controller.html.

64. Olsina, L., G. Lafuente, and G. Rossi, Specifying Quality Characteristics and
Attributes for Websites, in Web Engineering, S. Murugesan and Y. Deshpande,
Editors. 2001, Springer Berlin Heidelberg. p. 266-278.

65. Olsina, L. and G. Rossi, Measuring Web application quality with WebQEM.
MultiMedia, IEEE, 2002. 9(4): p. 20-29.

66. W3. Accessibility Evaluation Resources. 2015 [cited 2015 11-5-2015]; Available
from: http://www.w3.org/WAI/eval/Overview.html.

67. Crawljax. Crawling Ajax-based Web Applications. 2015 [cited 2015 19-4-2015];
Available from: http://crawljax.com/.

68. Mesbah, A., et al., Exposing the Hidden-Web Induced by Ajax. 2008.
69. Mesbah, A., E. Bozdag, and A.v. Deursen, Crawling AJAX by Inferring User Interface

State Changes, in Proceedings of the 2008 Eighth International Conference on Web
Engineering. 2008, IEEE Computer Society. p. 122-134.

70. OWASP. OWASP. [cited 2015 5-4-2015]; The Open Web Application Security
Project]. Available from: https://www.owasp.org.

71. OWASP. OWASP Scanning Tools. 2015 [cited 2015 5-4-2015]; Available from:
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools.

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Area of online web applications
	1.2 Problem statement
	1.3 Research questions
	1.4 Research context
	1.5 Research method
	1.6 Thesis outline

	2 Related work
	3 Background
	3.1 Web applications
	3.1.1 Forms

	3.2 Software testing
	3.3 Model-based testing
	3.3.1 Modelling languages
	3.3.2 Labelled Transition System
	3.3.3 Finite State Machine
	3.3.4 Extended State Machine

	3.4 Model-based testing tools
	3.4.1 Overview of tools
	3.4.2 Graphwalker
	3.4.3 TorXakis
	3.4.4 G∀ST

	3.5 Choice of modelling language and model-based testing tool

	4 Test architecture
	4.1 Overview of the current situation
	4.2 Overview of the test architecture
	4.3 Content Management System
	4.4 The System Under Test
	4.4.1 Routing Engine
	4.4.2 Application models
	4.4.3 Views
	4.4.4 Controllers

	4.5 The adapter

	5 Behaviour of web applications
	5.1 Common testing ground
	5.2 Our testing ground

	6 The small model
	6.1 Existing model
	6.2 Which parts of a web application need to be tested?
	6.3 The small model
	6.4 The form extension
	6.5 Results
	6.5.1 Use case: Lookinsharp
	6.5.2 Use case: Bluenotion

	7 Webshop Model
	7.1 Webshop applications
	7.1.1 Products
	7.1.2 Checkout phase

	7.2 Model
	7.3 Results
	7.3.1 Matrascenter.nl
	7.3.2 Wordpress Webshop application

	8 Reflection
	9 Conclusion
	9.1 Compatibility of the test tool
	9.2 Compatibility of webshop
	9.3 Answer research questions
	9.4 Known issues
	9.5 Future work

	10 References

