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1. MOTIVATION 
 

This master thesis is written at the Radboud University in Nijmegen for completion of the master 

study Information Science. The subject for this master thesis is combining causal models for biomedi-

cal applications and the existing methods to combine causal models from several different experi-

ments and their differences. 

 

I chose to do my master thesis about combining causal models for biomedical applications because 

of my previous study Bio-Informatics at the HAN in Nijmegen. I have always been interested in the 

combination of biology with informatics because of the many useful applications that can be created. 

At the moment there are, for example, very large amounts of medical data available about patients, 

so it is important to be able to handle this large amount of data correctly and efficiently and to be 

able to draw the right conclusions from it. Though, after graduating from Bio-Informatics, I chose to 

do a master study that was more on the informatics side (Information Science) rather than the biolo-

gy side. I made this decision because I wanted to learn more about this interesting field and to have 

more experience with informatics, but I never lost interest in the combination of informatics with 

biology. 

 

When I had to choose a subject for my master thesis, I knew that I wanted to find a subject that also 

has a bit of a biology side to it. I started to talk about this with Tom Heskes and he proposed this 

topic about combining causal models for biomedical applications and I immediately was very inter-

ested to work on this. 
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2. INTRODUCTION 
 

This master thesis focuses on combining causal models for biomedical applications and the existing 

methods to combine causal models from different experiments and their differences. This master 

thesis will explain what causal models exactly are, what different kind of causal models there are at 

the moment and how these causal models can be used in biomedical applications. Also, the pitfalls in 

using causal models will be discussed and the advantages in using causal models will be explained. 

 

There are a lot of different methods available to create causal models from the variables in a single 

dataset (Tillman R. E., 2014). But in practice it often occurs that you want to combine the variables of 

two or more datasets, including datasets that do not measure all the variables of interest, but have 

an overlap with other datasets. This is not possible with the methods that are used to work with a 

single dataset. At the moment, it is very difficult to find or create a good working and reliable method 

to combine causal models from several different experiments to get a clear and more informative 

overview of the results. So, the goal of this master thesis is to find out what different kind of meth-

ods there are to combine causal models from several different experiments and what their differ-

ences are. In this way there will be a clear overview of those different methods and their differences. 

 

The third chapter will explain more about what a causal model exactly is. The fourth chapter will 

explain what kind of different causal models there are at the moment. Then, the advantages and the 

pitfalls of using causal models will be discussed in the fifth and the sixth chapter. After that, the sev-

enth chapter will explain how causal models can be used in biomedical applications. The eighth chap-

ter will present the findings about the different methods to combine causal models from different 

experiments. The ninth chapter contains a case study. The tenth chapter will present the differences 

between the methods. Finally, in the last chapter, there will be the conclusion of this master thesis. 

 

Four sub questions have been formulated about causal models that will be answered in this master 

thesis. If these questions are answered, there will be a clear overview of the aspects of causal models 

at the moment. Also, I have formulated three main questions, which will be answered in the eighth 

and tenth chapter. To get an answer on these main questions is the main goal of this master thesis. 

 

2.1. SUB QUESTIONS 
- What kind of causal models are there? 

- What are the advantages of causal models? 

- What are the pitfalls of causal models? 

- How are causal models applied in biomedical applications? 

 

2.2. MAIN QUESTIONS 
- What methods are available to combine causal models from different experiments? 

- What are the differences of the methods to combine causal models from different experiments? 

- Which method is to be preferred in which situations? 
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3. CAUSAL MODELS 
 

Causal models are used in a lot of different scientific domains, for example in information technology 

(Grant, 1991), psychology, economics, social sciences (Steel, 2011) and (Russo, 2011), and in biology 

(Le, 2004) and (Kleinberg, 2011). Causal models can also be used for the decision making processes 

in, for example, important business decisions in a company: causal models can clearly show what the 

effects of implementing a new policy are. This master thesis focuses solely on causal models in bio-

medical applications. 

 

A causal model shows which variable is the cause of another variable and what the effect of that 

variable is on another variable, that it is why these models are called causal models. In this way the 

causal relationships between the different variables of interest can be seen easily and clearly. With 

the help of causal models you can also see what happens to the other variables of interest if one of 

the variables would be missing or would be knocked out and predictions can be made about the ef-

fect of such an event on the other variables in the causal model. 

 

3.1. WHAT IS A CAUSAL MODEL? 
A causal model is a graph in which the causal relationships between the different variables of interest 

are shown, so you can see which of the variables have an influence on which other variables. A causal 

model typically consists of nodes, representing the variables, and directed edges, indicating the in-

teractions (causal relationships) between those different variables. Figure 1 shows an example of a 

causal model. Causal models can become very large and very complex with a lot of different variables 

and relationships. (Figure 1 is a very simple and small example of a causal model.) 

 

 
Figure 1 – Example of a causal model 

In figure 1 nodes V, W, X, Y and Z are the different variables of this causal model. The arrowheads on 

the edges show the directions of the causal relationships between these variables. Two variables 

have a causal relationship if there is a directed path from one of these variables to the other variable. 

If this is not the case, these two variables have a noncausal relationship (T. Claassen, 2010). 

 

These are the causal relationships in the causal model in figure 1: 

- Variable X has a causal effect on variable V, so variable X is the parent of variable V and that makes 

variable V a child of variable X. 

- Variable V has a causal effect on both variable W and variable Z, so variable V is the parent of both 
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variable W and variable Z and that makes variable W and variable Z children of variable V. 

- Variable W and variable Z both have a causal effect on variable Y, so variable Y has two parents: 

variable W and variable Z and this makes variable Y a child of both variable W and variable Z. 

 

Variables can also have ancestors and descendants (T. Claassen, 2010). In figure 1, variable X is an 

ancestor of variable W, variable Z and variable Y. Variable W, variable Z and variable Y are descend-

ants of variable X. Variable V is also an ancestor of variable Y and variable Y is thus a descendant of 

variable V. So, a variable can have parents, children, ancestors and descendants, but variables can 

also have non-descendants. The non-descendants of a variable are the variables in the causal model 

that are not a descendant of that particular variable (Daly, 2011). 

 

There are direct causal relationships between the variables and indirect causal relationships between 

the variables in a causal model. An example of a direct causal relationship is the relationship between 

variable Z and variable Y in figure 1. A direct causal relationship means that there is no intervening 

variable between variable Z and variable Y: variable Z has a direct causal effect on variable Y. These 

two variables are also adjacent, this means that there is an edge between those two variables (T. 

Claassen, 2010). An example of an indirect causal relationship is the relationship between variable V 

and variable Y in figure 1. An indirect causal relationship means that variable V does have a causal 

influence on variable Y, but this influence goes through another variable, in this case through variable 

Z. Variable V has an indirect causal effect on variable Y. 

 

Causal models can be used to reason about the effect of an intervention or a manipulation on the 

other variables in the causal model. In biology, causal models are used to show, for example, which 

genes have an effect on which other genes, or what the effect is on the other genes if a particular 

gene would be knocked out. This can help in finding the cause of a disease and in the development of 

a medicine for this disease (Kleinberg, 2011). Chapter 7 about causal models in biomedical applica-

tions will explain more about causal models in biomedical applications. 

 

3.2. CONDITIONAL (IN)DEPENDENCE 

Two variables in a causal model can be conditionally independent or conditionally dependent given a 

third variable. These three variables together are called a triple. This also holds for sets of variables. If 

the conditional independence information about the variables of interest is known, a causal model 

can be constructed from this information. There are three kinds of conditional independencies: tail-

tail, head-tail, and head-head. Figure 2 is an example of a tail-tail conditional independence. Variable 

C stands for cold, variable S stands for sneezing and variable R stands for runny nose. This causal 

model shows that a cold can cause someone to sneeze and to have a runny nose. If you want to 

know if sneezing and having a runny nose are conditionally independent or not, you have to condi-

tion on variable C. This means that if you know that someone has a cold, you know that this person 

can sneeze and can have a runny nose. These two variables depend on having a cold, and not on 

each other, this is why these two variables are conditionally independent conditional on a cold. This 

is called a tail-tail conditional independence because of the orientation of the edges towards the 

variable that is conditioned on. In this case, the tails of the two edges are both at the variable that is 

conditioned on. 
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Figure 2 - Tail-tail: variable S and variable R are conditionally independent given variable C 

 

Figure 3 is an example of a head-tail conditional independence. Variable S stands for smoking, varia-

ble L stands for lung cancer and variable X stands for a positive X-ray. This causal model shows that 

smoking can cause lung cancer and lung cancer can cause a positive X-ray. If you want to know if 

smoking and a positive X-ray are conditionally independent or not, you have to condition on variable 

L. This means that if you know that someone has lung cancer, you know that this person can have a 

positive X-ray, but knowing if this person smokes or not will not affect the positive X-ray anymore. 

Therefore, smoking and a positive X-ray are conditionally independent conditional on lung cancer. In 

this case, one of the two edges has an arrowhead at the variable that is conditioned on and the other 

edge has a tail at the variable that is conditioned on. This is why this is called a head-tail conditional 

independence. 

 

                                                   

Figure 3 - Head-tail: variable S and variable X are conditionally independent given variable L 

 

Figure 4 is an example of a head-head conditional independence. Variable F stands for the flu, varia-

ble A stands for an allergy and variable S stands for sinus inflammation. This causal model shows that 

having the flu and having an allergy can cause a sinus inflammation. If you want to know if having the 

flu and having an allergy are conditionally independent or not, you have to condition on variable S. 

This means that if you know that someone has a sinus inflammation, you know that this can come 

from having the flu or having an allergy. So, variable F and variable A become dependent. In this case, 

the arrowheads of the two edges are both at the variable that is conditioned on. This is why this is 

called a head-head conditional independence. 

 

                                                                    

Figure 4 - Head-head: variable F and variable A are conditionally dependent given variable S. 
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3.3. D-SEPARATION 
The ‘d’ in d-separation stands for directional (Geiger, 1990), because it is applied in directed causal 

models. With d-separation you can directly read the conditional (in)dependencies from the causal 

model. If variable X and variable Y are d-separated given a variable Z, variable X and variable Y are 

also conditionally independent given variable Z. Also, Variable X and variable Y are d-separated given 

variable Z if there are no active paths between variable X and variable Y (Geiger, 1990). A path can be 

divided into triples. Figure 5 shows when a triple is active or inactive. If there is one inactive triple in 

a path, then the whole path is inactive. A path becomes active if each triple in that path is active. The 

shaded variables in figure 5 mean that these are variables that are conditioned on. 

 

 

Figure 5 - Active and inactive triples (the shaded variables are variables that are conditioned on) 

 

Variable X and variable Y are also d-separated given variable Z if all paths from variable A to variable 

B are blocked by variable Z. If variable X and variable Y are not d-separated, they are d-connected. 

This is the opposite of d-separation. These conditions do not only hold for single variables, but also 

for sets of variables. For MAGs m-separation in used, this is the same as d-separation, but then ap-

plied to MAGs (Richardson, 2002). 
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4. TYPES OF CAUSAL MODELS 
 

There are different kinds of causal models that represent different kind of causal relationships, but all 

those causal models look quite similar. This chapter will explain the differences between those causal 

models and their causal relationships. 

 

These are the different types of causal models that will be discussed here: 

- DAG (Directed Acyclic Graph) 

- MAG (Maximal Ancestral Graph) 

- CPAG (Complete Partial Ancestral Graph) 

 

4.1. DAG 
A Directed Acyclic Graph (DAG) is a graph that does not contain a cycle, this is called acyclic. This 

means that there is no path from one particular variable X to the same variable X. A DAG is also di-

rected, this means that the edges all have an arrowhead to show which variable has an influence on 

which other variable. These edges are called directed edges. Figure 1 from the previous chapter is 

also an example of a DAG. A DAG represents both the observed variables and the unobserved, hid-

den variables and the relationships between these different kinds of variables. Observed variables 

are variables that can be measured, like for example gender and age. Unobserved, hidden variables 

are variables that cannot be (easily) measured, like for example behavior and happiness. Although 

the unobserved, hidden variables cannot be measured, they can have a big influence on the other 

variables in a causal model. So, it is very important to know if there are unobserved, hidden variables 

or to allow for the possibility of there being unobserved, hidden variables and to include them in the 

causal model. There is a difference between a DAG and a causal DAG. If a DAG is called a causal DAG, 

it can be used to compute the effect of interventions and of manipulations on the other variables of 

interest. A DAG shows if there is a relationship between the different variables, but a causal DAG 

shows the causal relationships between the different variables of interest in the causal model. 

 

A DAG is the graph structure of a Bayesian network. A Bayesian network is a DAG with probability 

distributions in tables called Conditional Probability Tables (CPT’s). A Bayesian network looks the 

same as a DAG, it also contains variables and edges and a Bayesian network is also acyclic and di-

rected, but the meaning of a Bayesian network is a little bit different than the meaning of a DAG. In a 

Bayesian network the probability of one variable X is shown in the CPT’s given another variable Y. So, 

a Bayesian network does not only consist of variables and edges, but every variable in the graph has 

its own probability distribution (Steel, 2011). A DAG does not show the probability with which an 

effect occurs, but a Bayesian network does show this. Figure 6 shows an example of a Bayesian net-

work (Le, 2004). This figure shows that gene A and gene B both have a probability of 0.5 of being on 

(1). The combination of gene A and gene B has a positive effect on gene C. The table of gene C shows 

what the probabilities of gene C are in all the possible combinations of gene A and gene B (on or off). 

Gene C has a negative effect on gene D. The table of gene D shows that when gene C is off (0), the 

probability of gene D being on is 0.9. When gene C is on, the probability of gene D being off is 0. 
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Figure 6 – Example of a Bayesian network 

 

4.2. MAG 
A Maximal Ancestral Graph (MAG) also looks quite similar to a DAG and a MAG is also acyclic. A MAG 

only represents the observed variables, not the unobserved, hidden variables (Tillman R. E., 2014). 

Out of every DAG a MAG can be created if it is known which variables are the observed variables and 

which variables are the unobserved, hidden variables. A MAG contains two extra types of edges be-

sides the edges in the form of arrowheads (Tillman R. E., 2011). A MAG also contains edges with ar-

rowheads on both ends, these edges are called bi-directed edges. A MAG also contains edges with no 

arrowheads at all, these edges are called undirected edges. A bi-directed edge means that there is a 

hidden common cause between those two variables. This means that there is one other variable that 

causes these two variables. An undirected edge means that you know that there is a causal relation-

ship between those two variables, but you do not know which variable has an effect on which varia-

ble. 

 

4.3. CPAG 
A Complete Partial Ancestral Graph (CPAG) looks similar to a MAG, but a CPAG contains one other 

extra type of edge. A CPAG contains edges with a circle mark at the end (Zhang, 2008). This circle 

mark represents a combination of an undirected edge and an arrowhead. In figure 8 (Claassen, 2010) 

there are four examples of different CPAGs. A CPAG also only represents the observed variables and 

not the unobserved, hidden variables. A CPAG can be created directly from the dataset, this is why 

CPAGs are used as an input for methods to combine causal models from different experiments. From 

one single CPAG several different MAGs can be created. This is the case because of the circle mark 

edges: you do not know for sure if variable X has an influence on variable Y or the other way around. 

So, the several different MAGs show the different options of possible edges. 
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5. ADVANTAGES OF CAUSAL MODELS 
 

Besides the few disadvantages, causal models also have important advantages. These advantages 

outweigh the disadvantages of working with causal models. This chapter will explain the great ad-

vantages in using causal models. 

 

These are the advantages in working with causal models that will be discussed here: 

- Easy to understand 

- Predictions and interventions 

- Prior knowledge 

- Visualization 

 

5.1. EASY TO UNDERSTAND 
Causal models are very easy to understand for everyone, even if the causal model becomes very 

large and complex. A causal model is way easier to understand than a large piece of complicated text 

that explains the same causal relationships, because you only need to know the meaning of the (dif-

ferent) types of edges in a causal model and then you immediately see all the causal relationships 

between the different variables of interest. 

 

5.2. PREDICTIONS AND INTERVENTIONS 
Causal models can be used to do predictions about certain events (Sillignakis, 2001), (Russo, 2011), 

and (Kleinberg, 2011). If you know the value of a particular variable X, you can predict the effect of 

this variable X on the other variables of interest in the causal model. If, for example, gene A from 

figure 6 has a mutation that causes this gene to be off all the time, this would have an important 

effect on gene C and gene D. This would mean that gene C only has a probability of 0.2 to be on if 

gene B is also on. Because of this low probability of gene C being on, gene D has an even higher 

probability of being on. Gene B will not be affected by this mutation in gene A. Causal models are 

also used to do predictions about for example the weather and oil prices (Daly, 2011). 

 

5.3. PRIOR KNOWLEDGE 
It is possible to include prior knowledge about causal relationships into a causal model (Borboudakis, 

2012). This prior knowledge can, for example, be about the absence of particular causal relationships 

between the variables of interest or about the presence of particular causal relationships in the caus-

al model. This makes it easier and faster to create the causal model. 

 

5.4. VISUALIZATION 
Causal models are also very clearly visualized. They only contain the variables of interest (nodes) and 

the causal relationships between those variables of interest (edges). There are no large pieces of text 

or complicated formulas that you have to try to understand. 
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6. PITFALLS OF CAUSAL MODELS 
 

Causal models are a great way to clearly visualize data and to show the causal relationships between 

the different variables of interest, but using causal models also has a few pitfalls (Magidson, 1982). 

This chapter will explain those pitfalls in working with causal models. 

 

These are the disadvantages in working with causal models that will be discussed here: 

- Unobserved, hidden variables 

- Omitted relations between variables 

- Complexity 

- Misinterpretation 

- Missing data 

 

6.1. UNOBSERVED, HIDDEN VARIABLES 
It is possible that an unknown variable X is influencing other variables in the dataset while you do not 

know that this variable X can have an effect on these other variables. This variable X is called an un-

observed, hidden variable. If these unobserved, hidden variables are not shown in the causal model, 

the causal model is not complete and the conclusions that are drawn from this causal model can be 

incorrect or incomplete. Two variables can have a hidden common cause, this means that there is a 

unobserved, hidden variable that has a causal effect on those two variables. This hidden common 

cause can, for example, be a variable that you did not know that could have an effect on the other 

variables, or it can be a variable that you forgot to take into account for this causal model. Figure 7 

shows an example of a situation with a hidden common cause (Neapolitan, 2007). This causal model 

shows that if someone has a cold (C), this causes them to sneeze (S) and to have a runny nose (R). So, 

if someone is sneezing and/or has a runny nose, you would say that this person has a cold. But a cold 

is not the only variable that can cause someone to sneeze and to have a runny nose. There is a hid-

den common cause that can cause the same symptoms as a cold does. This hidden common cause is 

hay fever (H). Without this hidden common cause the wrong conclusion would be drawn from this 

causal model: only a cold can cause someone to sneeze or to have a runny nose. This is not the right 

conclusion because hay fever can also cause someone to sneeze or to have a runny nose. This is why 

it is important to take the unobserved, hidden variables into account in a causal model. 

 

 

Figure 7 – Example of a hidden common cause (variable H) 
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It can also be the case that because of an omitted variable X the causal relationships between some 

other variables in the causal model are not correct and the wrong conclusions are drawn from the 

causal model. So, it is very important to know if there are unobserved, hidden variables or to allow 

for the possibility of there being unobserved, hidden variables and to include them in the causal 

model. It is hard to decide which variables to include in the dataset and which variables not need to 

be included in the dataset, especially when the dataset is already very large. It can happen that you 

forget to include one important variable or that you did not know that a particular variable should 

have been included in the dataset. In this way you also miss a variable in the causal model which can 

have large consequences for the causal relationships in the causal model and the conclusions that 

will be drawn from it. 

 

6.2. OMITTED RELATIONS BETWEEN VARIABLES 
Sometimes a causal relationship between two variables can be omitted by accident. This can also 

have a large effect on the other relationships in the causal model. This can for example also happen 

because of an unobserved, hidden variable. Then, again, the causal model will be incorrect and the 

wrong conclusions can be drawn from this causal model. 

 

6.3. COMPLEXITY 
Causal models can contain a lot of different variables and relationships and because of this they can 

become very large and complex. This can be the case in, for example, biology, when you are model-

ing the effects of a disease in which a large number of genes are involved. If a causal model consists 

of a lot of different variables of interest and becomes very large, it can become very confusing and 

difficult to clearly see the causal relationships between all the different variables of interest. 

 

6.4. MISINTERPRETATION 
A causal model can be misunderstood. If someone does not know the precise meaning of the differ-

ent kind of edges (directed, bi-directed, undirected and circle mark), this person can conclude differ-

ent things from the causal model than he should conclude. Causal models can also have different 

meanings (Daly, 2011). Also, noncausal DAG’s can be mistaken for causal DAG’s. So, it is important to 

know what the background information of the causal model is to correctly understand the meaning 

of the causal model and the relationships between the different variables of interest and to avoid 

misinterpretation. 

 

6.5. MISSING DATA 
Most datasets contain missing values (Daly, 2011). Missing values are values that are not known, but 

these unknown values can have a large effect on the relationships in the causal model. Dealing with 

these missing values is very difficult. There are a few methods on how to work with missing data, but 

missing data stays a big problem in working with causal models. 
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7. CAUSAL MODELS IN BIOMEDICAL APPLICA-

TIONS 
 

Causal models are applied in a lot of different scientific domains, as mentioned before, because they 

are very easy to use and clear to understand. Also in biomedical applications causal models are a 

great help. 

 

7.1. IMPORTANCE 
In biomedical applications causal models can be used to show, for example, which genes have an 

effect on which other genes, as shown in the example model in figure 6. This can help in finding the 

cause of a disease and in the development of a medicine for this disease (Kleinberg, 2011). Causal 

models can also help in finding the cause of some particular symptoms, as shown in the example 

model in figure 7, or causal models can show what the effects of the use of a particular medicine are, 

or what the effect is on the other genes in the causal model if, for example, one gene would be 

knocked out. In this way, predictions about certain events can be made. 

 

7.2.  BIOLOGY 
In biology, there are a lot of important processes in which causal models are being used (Kleinberg, 

2011). Also, being able to combine the information from several different datasets is very important 

in biology. This is often the case in, for example, functional magnetic resonance imaging (fMRI) stud-

ies (Ramsey, 2010). fMRI studies are used, for example, to identify the causal relationships between 

different regions of the brain. These studies are often performed on multiple subjects. In this way 

there will be multiple datasets (one for each subject) that have to be combined to create one causal 

model to clearly see the causal relationships between the different regions of interest (ROI) in the 

brain. 

 

7.3. EXAMPLE 
In chapter 9 the procedure, results, and pitfalls of a case study I did are shown. This case study is an 

example of how causal models can be used in relations to biology. The case study is about combining 

the causal models from three different datasets containing data about ADHD (attention deficit hy-

peractivity disorder) patients. 
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8. METHODS TO COMBINE CAUSAL MODELS 

FROM DIFFERENT EXPERIMENTS 
 

There are several different methods available at the moment that can combine causal models from 

different experiments. It is very useful to use such a method because then there will be one clear 

causal model that contains all the causal information about the variables of interest from all the dif-

ferent experiments, instead of multiple different causal models that have to be compared to each 

other. In this chapter the different methods to combine causal models from several different experi-

ments will be explained. 

 

These are the methods for combining causal models that will be discussed here: 

- MCI-algorithm 

- ION algorithm 

- IOD algorithm 

- cSAT+ algorithm 

 

Figure 8 (Claassen, 2010) explains what a method for combing causal models from several different 

experiments can do. A number of different causal models is used as an input (models 1, 2, and 3) and 

one causal model that contains the causal information of all the different variables of interest from 

the input models combined is the output of the method (the last causal model in figure 8). 

 

 

Figure 8 - Three different causal models combined to one, more informative, causal model 

 

8.3. MCI-ALGORITHM 
The Multiple model Causal Inference (MCI) algorithm (Claassen, 2010) is a reliable and fast method 

to combine the causal information from several different experiments. The MCI-algorithm works with 

a set of CPAGs from several different experiments as an input and gives an easily interpretable and a 

very clear output. The output of the MCI-algorithm is in the form of one causal model, which is very 

concise. Suppose you have two different datasets which contain the different variables of interest. 

Dataset one contains variable A, variable B, variable C, variable E and variable F. Dataset two contains 

variable A, variable B, variable D variable E and variable F. So, in this case, the input for the MCI-

algorithm is in the form of two different CPAGs, one for every dataset. First, the MCI-algorithm cre-

ates a graph G containing all the variables of interest from the different datasets. In this graph G, all 

the variables are connected with edges that have circle marks on both ends. This is called a fully con-
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nected graph. Figure 9 (1, 2, and 3) is an example of this first step of the MCI-algorithm. The first two 

causal models in figure 12 represent the two input CPAGs from the two datasets and the third causal 

model shows the fully connected graph of the variables of the two input CPAGs combined. The 

dashed circles represent the variables that are not present in that dataset. 

 

 

Then, all the edges that do not appear between the variables of interest in the input CPAGs are re-

moved from the graph G. For example, there is no edge between variable A and variable B in both of 

the input CPAGs, so this edge is removed from the graph G. The last causal model in figure 9 shows 

what graph G looks like after this step. In the next step, a causal relations matrix Mc is created. This 

matrix will show all the (non)causal relationships between the different variables of interest. If there 

is a causal relationship from one variable to another variable in the input CPAGs, then there will be a 

green box in the Mc matrix for that relationship between those two variables. If there is no causal 

relationship from one variable to another variable in one of the input CPAGs, then there will be a red 

box in the Mc matrix for that relationship between those two variables. If you do not know yet what 

kind of causal relationship there is between two variables (a circle mark), then there will be a gray 

box in the Mc matrix for that relationship between those two variables. In this way, prior knowledge 

about the causal relationships between the different variables of interest can be shown in the Mc 

matrix. Figure 10 shows what the Mc matrix looks like for the causal relationships between the varia-

bles of interest in the example of figure 9. 

 

 

Figure 10 – Mc matrix, the green boxes represent a causal relationship, the red boxes show that there is no causal rela-
tionship between those variables, and the gray boxes show that there can be a causal relationship (MCI-algorithm) 

 

After this, another matrix (a combined SCI-matrix) is used to represent the causal information about 

Figure 9 - 2 input CPAGs (1 and 2) are combined to one fully connected graph (3) and after that the edges that do not 
appear between the variables of interest are removed (4) (MCI-algorithm) 
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all the triples, this is the most expensive step of the MCI-algorithm. Figure 11 represents an example 

of a combined SCI-matrix. 

 

                                                               

Figure 11 – Example of a combined SCI-matrix, representing causal information about triples (MCI-algorithm) 

 

Finally, in the last step, the MCI-algorithm combines the causal information from the Mc matrix and 

the SCI-matrix and translates this causal information to edges and endpoint orientations in the graph 

G. This graph is the output causal model of the MCI-algorithm. The MCI-algorithm works very well in 

the large sample limit and works for different sets of causal models that consist of up to 20 nodes 

(Claassen, 2010). 

 

8.4. ION ALGORITHM 
The Integration of Overlapping Networks (ION) algorithm (R. Tillman, 2009) is a complete and sound 

method that can combine causal models from several different experiments. To the best of my 

knowledge, the ION algorithm is the first causal algorithm created that can work with variables from 

several different datasets. The ION algorithm also uses a set of CPAGs as input, one for each dataset. 

The output of the ION algorithm is in the form of another set of CPAGs. First, the ION algorithm cre-

ates a fully connected graph K that contains all the variables of interest from the different datasets. 

This first step is the same as the first step from the MCI-algorithm (see figure 9). Then, all the 

nonadjacencies and endpoint orientations of the edges in the input CPAGs are transferred to the 

graph K. So, for example, the edge between variable X and variable Y in graph K will be removed if 

variable X and variable Y are not adjacent in the input CPAGs. This is what also happened to the edge 

between variable A and variable B in the example from figure 9. Also, the endpoint at variable Y from 

the edge between variable X and variable Y will become an arrowhead in graph K if variable X causes 

variable Y in the input CPAGs. Figure 12 shows what the graph K looks like after this step with the 

same variables of interest as from the example in figure 9. 
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Figure 12 - Fully connected graph with endpoint orientations and removed edges (ION algorithm) 

 

After that, all possibly active paths between all the possible pairs of variables are recorded in a table 

called PAT (Possibly Active Trails). If you change the endpoint orientations of one or more edges in a 

path between two variables from a circle mark to a tail or an arrowhead and the path becomes active 

because of this change, this is called a possibly active path. Then, all minimal hitting sets are recorded 

in another table called PC. Minimal hitting sets are changes that can be made to a path that makes 

this path no longer active. The next step is to create a graph Ai of each minimal hitting set. If this 

graph Ai is consistent with every input CPAG, this graph Ai is added to the set of output CPAGs A. If all 

minimal hitting sets are checked and added to the set of output CPAGs A, this set A is the output of 

the ION algorithm. The ION algorithm is a complete and sound algorithm, but it does not work well 

with many variables of interest (Tillman R. E., 2014) and it performs a lot of (brute force) operations. 

Also, the ION algorithm is a computationally hard algorithm, even when there is a small number of 

different variables of interest. The more variables of interest there are, the more likely it is that there 

will be more CPAGs in the output CPAG set. In this way the output of the ION algorithm can become 

very large and this makes it hard to deal with the output. 

 

8.5. IOD ALGORITHM 
The Integration of Overlapping Datasets (IOD) algorithm (Tillman R. E., 2011) is another correct and 

complete algorithm that can combine the variables of interest from several different datasets. The 

IOD algorithm works with a set of different datasets as input and also gives a set of CPAGs as output. 

The IOD algorithm is a complex version of the ION algorithm. The IOD algorithm is more accurate and 

robust than the ION algorithm and the IOD algorithm outperforms the ION algorithm in precision and 

recall. The IOD algorithm works in a different way as the MCI-algorithm and the ION algorithm. The 

IOD algorithm deals with all the data at once instead of dealing with several different input CPAGs. 

The IOD algorithm combines all the variables of interest and tests for conditional independence be-

tween all the possible pairs of variables. Each conditional independence test gets a p-value assigned 

to it. So, for example, dataset one and dataset two both contain variable X and variable Y. First, vari-

able X and variable Y are tested on conditional independence in dataset one, then variable X and 

variable Y are tested on conditional independence for dataset two. The two resulting p-values are 

combined and one p-value is calculated for these two variables. Based on this combined p-value, a 
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conclusion is drawn if variable X and variable Y are independent or not. In this way the IOD algorithm 

can handle contradictory information in the datasets. The IOD algorithm requires less memory and is 

much faster than the ION algorithm (Tillman R. E., 2014). 

 

8.6. CSAT+ ALGORITHM 
The causal SAT+ algorithm (Triantafilou, 2010) is a different method to combine causal models from 

several different variable datasets. The cSAT+ algorithm is much faster than the ION algorithm. The 

cSAT+ algorithm uses a set of CPAGs as input and returns a Pairwise Causal Graph (PCG) as output. A 

PCG is a type of graph that contains two different types of edges (Tsamardinos, 2012): dashed edges 

and solid edges. The PCG contains, just like the CPAG, three types of endpoint orientations to these 

edges: the arrowhead, the tail, and the circle mark. In figure 13 an example of a PCG is shown 

(Tsamardinos, 2012). 

 

 

Figure 13 – Example of a Pairwise Causal Graph (cSAT+ algorithm) 

 

First, the cSAT+ algorithm generates a complete unoriented graph U containing all the variables of 

interest from the input CPAGs. Then, all the missing edges and all the endpoint orientations of the 

input CPAGs are transferred to the graph U. These two steps are the same as the first two steps of 

the ION algorithm. Figure 14 shows what the graph U looks like if we use the same input CPAGs as in 

the example from figure 9. 

 

 

Figure 14 - Graph U (cSAT+ algorithm) 

 

For every input CPAG a set of consistent MAGs is generated. Then, for every edge between two vari-
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ables in graph U the cSAT+ algorithm checks if there is also an edge between those two variables in 

the corresponding set of MAGs. If this edge is present in all the corresponding MAGs, this edge is 

marked as a solid edge in graph U. If this edge is only present in one of the corresponding MAGs, this 

edge becomes a dashed edge in graph U. If this edge is not present in the corresponding set of 

MAGs, this edge is removed from the graph U. After this, every endpoint orientation is checked. If 

there is an edge between variable X and variable Y with an arrowhead on the side of variable Y and 

this is also the case in the set of corresponding MAGs, this arrowhead is added in graph U. If there is 

no arrowhead on the side of variable Y on the edge between variable X and variable Y in the corre-

sponding set of MAGs, the arrowhead is placed on the side of variable X in graph U. If there are no 

more endpoint orientations to be checked, the graph U is returned as output, this is the PCG. Figure 

15 shows what the output PCG looks like for this example. 

 

 

Figure 15 - Output PCG (cSAT+ algorithm) 
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9. CASE STUDY 
 

As an example, I analyzed three different datasets containing data about ADHD (attention deficit 

hyperactivity disorder) patients. The first dataset contains ADHD data about children (Cao, 2009), the 

second dataset contains ADHD data about adolescents (von Rhein, 2014), and the third dataset con-

tains ADHD data about adults (Hoogman, 2012). The data in the childhood and in the adulthood da-

tasets is fMRI data and the data in the adolescence dataset is MRI data. These three datasets do not 

contain the exact same variables, but they do have an overlap in the variables they contain. I have 

selected seven variables from these three datasets to create an example with: gender, age, AD, HI, 

aggression, IQ, and DAT1. The adolescence dataset does not contain information about the variable 

age, so this variable is left out in this dataset. The adulthood dataset does not contain information 

about the variable aggression, so this variable is left out in this dataset. Also, the adulthood dataset is 

corrected for the variable gender, so unfortunately I cannot use gender as a variable for this dataset. 

Instead, information about the gene DAT1 is used in this dataset, this is a gene that has a proven 

effect on ADHD (Hoogman, 2012). Background information was also added to all of the three da-

tasets: nothing can cause gender, age, or DAT1. Figures 16, 17, and 18 show the CPAGs that repre-

sent the causal relationships between the seven variables of interest for each of these three different 

datasets. 

 

 

Figure 16 - CPAG from the ADHD childhood dataset 
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Figure 17 - CPAG from the ADHD adolescence dataset 

 

 

Figure 18 - CPAG from the ADHD adulthood dataset 

 

In the first CPAG (from the childhood dataset) there is a causal link between the variable AD and the 

variable IQ, where IQ has a causal effect on AD. In the second CPAG (from the adolescence dataset) 

there is also a causal link between the variable AD and the variable IQ, but IQ does not have a causal 

effect on AD, instead, AD has a causal effect on IQ. This is conflicting information. The MCI-algorithm, 

the ION algorithm, and the cSAT+ algorithm cannot deal with conflicting information (R. Tillman, 

2009), so these methods cannot be used to combine these three CPAGs. I proposed another method 

to try to deal with this situation. This method is an extension of the MCI-algorithm in combination 

with the BCCD algorithm. The MCI-algorithm is an algorithm that can only say if two variables have a 

causal relationship or not. The BCCD (Bayesian Constraint-based Causal Discovery) algorithm 

(Claassen T. &., 2012) calculates the probability of two variables having a causal relationship. 
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9.1. PROCEDURE 
The three CPAGs are generated with the BCCD algorithm. For each of the three datasets the BCCD 

algorithm also calculates a table containing probability information about all the different causal 

relationships between the seven variables of interest. Those three different tables are put together 

in one table. If there is more than one probability for a particular causal relationship the relationship 

with the lowest probability is removed from the table. After that, I added the causal relationships 

one by one, from high probability to low probability, to the seven variables of interest. If there is a 

contradiction, I will stop adding the causal relationships and the CPAG that remains is the resulting 

CPAG. In this way, there will be no conflicting information in the resulting CPAG anymore. 

 

9.2. RESULTS 
Figure 19 shows the resulting CPAG from this method. 

 

 

Figure 19 – First resulting CPAG 

 

In this resulting causal model a few things stand out. The first thing that stands out is the relationship 

between DAT1 and aggression. This relationship should not be possible because these two variables 

do not occur together in the same dataset. Aggression is present in the childhood dataset and in the 

adolescence dataset and DAT1 is only present in the adulthood dataset. So, there is no data available 

about the possible relationship between aggression and DAT1. There is no statement in the probabil-

ity table that says if there is an edge or if there is not an edge between aggression and DAT1 and that 

is why this edge is still present in the resulting causal model. But you cannot know for sure if this 

edge is really there or not, so to deal with this situation I represented this link as a dashed edge (fig-

ure 20). Also, I had to deal with the conflicting information in the childhood dataset and the adoles-

cence dataset between variable AD and variable IQ. I looked at the probabilities of the contradicting 

causal relationships. The probability of AD influencing IQ in the adolescence dataset is 0,7789. The 

probability of AD not influencing IQ in the childhood dataset is 0,7127. This is not a big difference in 

probability, but I chose to pick the causal relationship with the highest probability (figure 20). So, the 

initial resulting causal model is not totally correct. I created a new resulting causal model with the 
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additions I made. Figure 20 shows this final resulting causal model. 

 

 

Figure 20 – Final resulting CPAG 

 

9.3. PITFALLS 
This does not mean that this final resulting CPAG is the only possible resulting causal model. There is 

no definitive final causal model. The childhood CPAG and the adolescence CPAG contain contradict-

ing information, there could be three reasons for this: something went wrong in the algorithm that 

calculated the CPAG from the childhood dataset, the three different domains cannot be compared to 

each other (children, adolescents, and adults), and this method works with probabilities, so there is a 

chance that something can go wrong. 

 

These three domains may not be suitable to be combined into one causal model. For example, boys 

have a higher chance on AD than girls, so gender has a high influence on AD in the childhood dataset 

and in the adolescence dataset. When these boys grow up, gender does not have a big effect on AD 

anymore. That is why it becomes hard to compare and combine these three different domains into 

one causal model. Also, the strength of, for example, the causal relationship between gender and AD 

can vary between the three datasets. So, the structure of the causal models stays the same, but the 

strength of the same causal relationship can vary. The method that I proposed, in combination with 

the BCCD algorithm, works, but only for datasets that have comparable domains and with some addi-

tions afterwards, like the dashed edge. This addition afterwards is the case if the variables of the 

different datasets are not exactly the same but have an overlap. In this case study, I made the as-

sumption that the three domains of children, adolescents and adults were comparable, but it turned 

out that they might not to be comparable. I also chose to only add the causal relationship from vari-

able age to variable aggression and to leave the causal relationship from variable age to variable IQ 

out because of the lower probability score. But I do not know exactly for sure that the causal rela-

tionship from variable age to variable IQ needed to be removed. So, this is another issue in working 

with this method. You cannot always be completely sure if a particular causal relationship should be 

included or not. 
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10.  DIFFERENCES IN METHODS TO COMBINE 

   CAUSAL MODELS 
 

The MCI-algorithm, the ION algorithm, the IOD algorithm, and the cSAT+ algorithm all have the same 

goal: combining causal models from several different experiments. But these four methods all work 

in a different way and they thus have several differences when you compare them to each other. In 

this chapter these four different methods to combine causal models from different experiments will 

be compared to each other. 

 

These are the differences that will be discussed here: 

- Output 

- Number of variables 

- Conflicting information 

- Speed 

 

10.1. OUTPUT 

The MCI-algorithm has a very clear and easily interpretable output in the form of one causal model 

(Claassen, 2010). This is also the case for the cSAT+ algorithm, the output is in the form of one pair-

wise causal graph (Triantafilou, 2010). This is not the case for the ION algorithm and the IOD algo-

rithm, the output of these two algorithms is in the form of a set of CPAGs (R. Tillman, 2009) and 

(Tillman R. E., 2011). So, the output of the MCI-algorithm and the cSAT+ algorithm is more clear and 

easier to deal with than the output of the ION algorithm and the IOD algorithm. If you compare the 

example output of the MCI-algorithm in figure 9 to the example output of the cSAT+ algorithm in 

figure 15, you can see that the edges of these two causal models are the same but there are three 

more edges in the causal model from the MCI-algorithm. This is because of the fact that the MCI-

algorithm also takes the external environment into account as a set of unobserved, hidden variables. 

Because of this, there are more edges left in the output causal model of the MCI-algorithm than in 

the output model of the cSAT+ algorithm. The cSAT+ algorithm does not take the unobserved varia-

bles into account. For example, when there is a hidden common cause between variable X and varia-

ble Y, this will be recognized by the MCI-algorithm and there will be and edge between variable X and 

variable Y with arrowheads on both ends of this edge (a bi-directed edge). The cSAT+ algorithm will 

not recognize this hidden common cause and because of this there will be no edge between variable 

X and variable Y. 

 

10.2. NUMBER OF VARIABLES 

The MCI-algorithm can work with causal models that consist up to 20 nodes, this is not the case with 

the ION algorithm. The ION algorithm does not work well with many variables of interest (R. Tillman, 

2009). The number of variables of interest also has an effect on the output of the ION algorithm. The 

more variables of interest there are, the more likely it is that the output CPAG set will be larger. This 

makes it harder to deal with the output. The number of variables of interest also has an effect on the 
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cSAT+ algorithm. The more variables of interest there are, the more time and memory the cSAT+ 

algorithm requires. 

 

10.3. CONFLICTING INFORMATION 

The MCI-algorithm, the ION algorithm, and the cSAT+ algorithm cannot deal with conflicting infor-

mation (contradictions). The IOD algorithm can deal with conflicting information because of the test-

ing for conditional independence and assigning p-values to pairs of variables in the first step of the 

IOD algorithm (Tillman R. E., 2011). 

 

10.4. SPEED 

Both the IOD algorithm and the cSAT+ algorithm are faster than the ION algorithm and require less 

memory (Triantafilou, 2010). This is because of the fact that the ION algorithm is a computationally 

hard algorithm and a brute force algorithm, which takes up a lot of time and a lot of memory. 
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11. CONCLUSION 
 

At the moment, there are several different methods available to create causal models from the vari-

ables of interest in a single dataset (Tillman R. E., 2014). But in practice it often occurs that the differ-

ent variables of two or more datasets have to be combined, including datasets that do not measure 

all the variables of interest, but have an overlap with the variables of the other datasets. Combining 

the variables of these different datasets is not possible with the methods that are used to work with 

a single dataset. It is very difficult to find or create a good working and reliable method to combine 

causal models from several different experiments to get a clear and more informative overview of 

the results. There are a few different methods available at the moment that can combine the causal 

models from different experiments. It is very useful to work with such a method because then there 

will be one clear causal model that contains all the causal information about all the variables of in-

terest from all the different datasets, instead of multiple different causal models that have to be 

compared to each other. 

 

I have discussed four of these methods that can combine causal models from several different exper-

iments and compared them to each other: the MCI-algorithm, the ION algorithm, the IOD algorithm 

and the cSAT+ algorithm. They all have the same goal: combining the causal information from several 

different datasets. But they all work in a different way. 

 

The MCI-algorithm and the cSAT+ algorithm produce the clearest output. Both methods give an out-

put in the form of one causal model, which is easily interpretable. The ION algorithm and the IOD 

algorithm both give a larger output. Both methods give an output in the form of a set of CPAGs. The-

se output sets can become very large and that makes it harder to deal with the output. 

 

The MCI-algorithm can deal with a larger number of variables of interest than the ION algorithm and 

the cSAT+ algorithm. The more variables of interest there are, the more computation time and 

memory it costs with the ION algorithm and the cSAT+ algorithm. 

 

The IOD algorithm can deal with conflicting information. This is not the case with the MCI-algorithm, 

the ION algorithm, and the cSAT+ algorithm. 

 

The ION algorithm is not a very fast algorithm. The IOD algorithm and the cSAT+ algorithm are both 

faster algorithms than the ION algorithm. 

 

On theoretical grounds, the MCI-algorithm is the best algorithm if you want to use an algorithm that 

produces a clear output and can handle a larger number of variables of interest. If you want to use an 

algorithm that can deal with conflicting information and is fast, you should use the IOD algorithm. 

This is all theoretically speaking, because in practice these methods all have their own pitfalls, so I 

could not use any of these methods in my case study. That is why I suggested another method. 

 

The method that I used to combine the three CPAGs from the ADHD example datasets is a clear and 

simple method which can handle conflicting information, but this method only works for domains 

that can be compared to each other and with some additions afterwards. 
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