
Master Thesis Computing Science

Radboud University Nijmegen

August, 2015

Performance improvement in
automata learning

Speeding up LearnLib using parallelization and

checkpointing

Author: Marco Henrix
First supervisor: Dr.ir. Jan Tretmans
Second supervisor: Dr. David Jansen
Third supervisor: Prof. dr. Frits Vaandrager

Contents

1 Introduction 4

1.1 Research question . 6

1.2 Possible improvement techniques 6

1.3 Proposed improvement techniques 7

1.4 Saving and restoring states . 8

2 Preliminaries 9

2.1 Mealy machines . 9

2.2 Learning algorithm . 10

2.3 Equivalence oracle . 14

3 Applying parallelism 15

3.1 Membership queries . 16

3.2 Equivalence queries . 18

3.3 Theoretical benefit . 18

4 Saving and restoring states 19

4.1 Algorithm . 20

4.2 Theoretical benefit . 20

4.3 Selection of states which should be saved 23

5 Implementing saving and restoring software states in prac-
tice 25

6 Evaluation method 27

6.1 Experiments . 27

6.1.1 Bounded Retransmission Protocol 28

6.1.2 Tic-Tac-Toe . 29

6.1.3 Simulation of the Engine State Machine 31

6.2 Learning set-up . 32

6.3 Test run selection . 32

7 Results 33

7.1 Parallelization . 33

7.2 DMTCP . 34

7.2.1 Strategy 1: limiting checkpoints using a linear function 34

1

7.2.2 Strategy 2: limiting checkpoints using an upper limit . 35

7.2.3 Strategy 3: limiting checkpoints using a lower limit . . 36

7.2.4 Strategy 4: limiting checkpoints using an exponential
function . 36

7.2.5 The best performing strategy 37

7.3 Combining parallelism with checkpointing 38

7.4 Slowing down the SULs . 39

8 Evaluation 39

9 Alternative Techniques 41

9.1 Alternatives to DMTCP . 41

9.1.1 Virtualization . 42

9.1.2 Forking . 44

9.1.3 DMTCP combined with QEMU 46

9.1.4 CRIU and Docker . 47

9.2 Alternative improvement techniques 47

9.3 Alternative equivalence oracles 48

10 Future research 48

10.1 Compression . 48

10.2 Deleting saved states . 49

10.3 Saving states of partially executed queries 49

10.4 Just-In-Time determination of saving checkpoints 50

10.5 Prefetching and non-blocking saving of states 51

11 Conclusion 51

A Comprehensive measurement results 58

A.1 Baseline . 58

A.2 Parallelization . 58

A.3 DMTCP . 59

A.3.1 Strategy 1: limiting checkpoints using a linear function 59

A.3.2 Strategy 2: limiting checkpoints using an upper limit . 60

A.3.3 Strategy 3: limiting checkpoints using a lower limit . . 61

A.3.4 Strategy 4: limiting checkpoints using an exponential
function . 61

2

A.4 Combining parallelism with checkpointing 62

A.5 Slowing down the SULs . 63

3

1 Introduction

Nowadays software can be found all around us. Not only on a typical server
or desktop computer, but also embedded into washing machines, cars, air-
planes, medical equipment and even light bulbs. Unfortunately, bugs are
common in software. There are bugs that, for example, only introduce a
minor glitch during playing a video game, but there are also bugs that can
have catastrophic consequences. In 2003, a gigantic blackout that cut off
electricity to 50 million people in the USA and Canada happened due to a
software bug [16].

But even worse, software failure can sometimes be fatal. Recently an Air-
bus A400 plane crashed and caused the death of four crew members. This
crash happened due to a software failure introduced during the installation
of the flight control software [28]. Another recent example is the Boeing 787
Dreamliner. It turned out that a software bug causes total loss of power
of the airplane if the system runs uninterrupted for 248 days [46]. Luckily,
this bug has not yet led to any plane crash, but it could be imagined how
catastrophic the consequences could be. Dozens of fatal car accidents with
Toyotas were caused due to unintended acceleration. Toyota was fined for
more than a billion dollar. The badly designed software that should control
the engine probably played a role in these accidents [37].

We rely more and more on software, as we can see for example with the
emergence of self-driving cars. Thus it becomes more and more important
to prevent software failures.

Model-based testing is an effective approach to reduce the number of software
failures and to improve software quality. A model, such as a finite state
machine could be used to get more insight in how the software should work.
The model could also be formally verified with tools like UPPAAL [30]. If
there is for example a model of the software of the traffic lights at a road
intersection, it can be proven that the lights of crossing directions can not
be green at the same time. Using Model-based testing tools such as JTorX
[31], test cases could be generated from the model, to test whether the actual
implementation is conforming to the model.

A problem with model-based testing is how the model should be generated.
Often this is done manually, which can be very time-consuming and error-
prone. It would be much easier and it would make model-based testing more
accessible if these models could be generated automatically. A model could
be learned to verify properties of existing software. It also could be used to

4

learn a model of a previous version of the software and test whether the new
version has got any newly introduced faults (regression testing). It can be
useful in the case of legacy software, where the source code has been lost or
can hardly be understood due to the lack of documentation. But it is also
useful for security analysis by which the learned model can be analysed for
potential security vulnerabilities. The automatic learning of state machine
models from an actual implementation is called automata learning.

There are two kinds of automata learning: passive and active. In passive
automata learning there is no interaction between the learner and the system
under learning (SUL); a model should thus be learned from existing log files.
Contrary, in active automata learning there is interaction between the learner
and the SUL. The learner sends inputs to the SUL and dependent on the
output new inputs are generated. By applying this repeatedly, a model will
be constructed. In this thesis we will focus on active automata learning. A
popular tool to perform active automata learning is LearnLib. [41]

LearnLib has been successfully used to learn models of real world software
implementations such as network protocols (TCP [36], SSH [45], SIP [23]),
bank cards [21] and control software of printers [42].

A persistent problem of LearnLib is that the time required to learn a model
can be very long. For example one study showed that the learning of a real
world implementation of printer control software took more than 11 days
[42]. The required time to learn a model will even greatly increase when the
number of possible inputs of the SUL increases, the number of states in the
SUL increases, it takes longer to reset the SUL or when it takes longer to
process an input by the SUL. (In section 2.2 we give detailed information
about the complexity of the algorithm.) To give an indication about this:
if the execution of inputs during the learning of the printer control software
[42] would be slower, instead of about 4000 inputs per second only 10 inputs
could be executed in a second, which is a very plausible scenario (there are
a lot of systems that interact slower), the execution would take about 400
times longer, which means a learning time of more than 12 years.

5

1.1 Research question

The research question to be answered in this thesis is:

How can the execution speed of LearnLib be improved?

For this the following sub questions will treated:

• What are possible improvement techniques?

• What are the theoretical effects of these techniques?

• What are the effects when these techniques are applied in practice?
How big is the actual improvement?

1.2 Possible improvement techniques

We distinguish 4 different categories of improvement techniques:

• Modifying or adapting of the algorithm used by LearnLib to reduce the
number of inputs that are sent to the SUL. Many other studies, such as
[43] and [42], have focussed on these kinds of improvements. Many of
these studies modify or replace the equivalence oracle (See section 2.2).

• By applying abstraction the number of different inputs and outputs
can be reduced. Suppose we want to learn the model of a vending
machine. This machine has buttons for every type of candy, so there is
a Mars button, Snickers button, Twix button, etc. Using abstraction
all these different inputs can be seen as a single ’candy button’ input
by the learning algorithm, but there should be a made a mapping so
that during the execution of such an input on the actual SUL a specific
button will be pressed. This way the model to be learned will be much
smaller and easier to understand and the total number of inputs that are
sent to the SUL by LearnLib will be reduced. This has been researched
in previous studies such as [25] and [22]. During these studies the tool
Tomte is developed, which is a tool that fully automatically constructs
such abstractions for automata learning.

• Speeding up the internal code of LearnLib. For example it can be re-
searched whether more efficient data structures could be used, to reduce

6

the overhead of LearnLib itself during the learning process. However,
we want to focus during this research on relatively slow SULs (where
processing a single input takes at least 10ms). In that case the current
overhead of LearnLib seems negligible. Therefore we are not interested
in researching such improvement techniques.

• More efficient execution of the inputs as they are generated by Learn-
Lib. The algorithm as used by LearnLib to generate the inputs that
should be executed by the SUL will not be modified, but by applying
some practical ’tricks’ the execution speed of LearnLib might be im-
proved a lot. We have decided to focus on these kind of improvements
in this thesis, since there have not been many studies yet that research
these kinds of improvements and we have some interesting improve-
ment ideas. In the following sections we describe the two improvement
techniques that we are going to research in this thesis: parallelization
and checkpointing. A third one is described in section 9.2, but will not
be researched in this thesis.

1.3 Proposed improvement techniques

• Parallelization - The current typically used implementation of LearnLib
is single threaded, which means that even if you would have access to
a large computer cluster the required execution time will remain about
the same. By executing multiple instances of the SUL at the same time
the total learning time can be reduced. Thus the total amount of work
that has to be done will not be reduced, but by distributing it, the work
can be done in less time. This is challenging since it is not clear which
parts actually can be parallelized and the scalability is also not known.
If the performance increases a lot if there are 2 parallel instances used
instead of 1, it does not automatically mean that the performance also
can increase equally if there are used 20 parallel instances instead of
10.

• Saving and restoring software states (checkpointing) - This concept
is based on the notion of the software state of the SUL. It could be
only applied in active automata learning and not in passive automata
learning, since the concept requires a running SUL of which the software
state could be saved and reused at a later time during the learning
process. This is challenging since such a technique has never been
applied in this context before as far as we know. Implementing it is far

7

from trivial, the methods which we are going to use in this thesis, such
as DMTCP 5, only exist for a couple of years and are still experimental.
It is also not trivial to decide which software states should be stored
(See section 4.3).

In the following section 1.4 this technique will be explained further.

• Combination of both of the above techniques. Both proposed tech-
niques do not necessarily hinder each other, so they can be combined.
This way even greater speed improvements might be possible.

1.4 Saving and restoring states

When LearnLib learns a model it sends queries to the SUL. A query consists
of resetting the SUL to bring it into the initial state and thereafter executing
a sequence of inputs. A typical fragment of the execution of the queries that
are generated by LearnLib when learning a model of a coffee machine will
look like:

...

Machine reset > coffee button > start button

Machine reset > coffee button > start button > start button

Machine reset > coffee button > start button > coffee button

...

All these queries share the same beginning that will be executed over and
over again. To prevent spending time on duplication of work the following
improvement is proposed:

...

Machine reset > coffee button > start button > save the state of the SUL

Restore the state of the SUL > start button

Restore the state of the SUL > coffee button

...

After the first occurrence of the shared beginning the state of the SUL will
be saved. Each following time a query with the same beginning has to be
executed, that beginning could be skipped. Instead the earlier saved state
could be restored. A saved state is called a checkpoint. It would be nice if
the SUL itself offers the possibility to save and restore its state, but in this

8

Figure 1: Example of a Mealy machine.

thesis we will focus on a generic solution that can also be used even if the
SUL does not support saving and restoring its state by itself.

The concept of reusing the state of previously executed queries is not com-
pletely new. There has been one study that uses this concept [29], but there
were some major drawbacks with their approach, such as that it was not a
generic solution, as will be discussed further in section 4. Our approach using
saving and restoring states of an arbitrary SUL is completely new as far as
we know and does provide a generic solution.

2 Preliminaries

Before discussing possible optimizations, we will first briefly introduce the
underlying technique on which LearnLib is based. For a more elaborative
description, we refer to [40] and [44].

2.1 Mealy machines

The kind of state diagrams that LearnLib uses are Mealy machines. These are
state diagrams that have a finite amount of states and that are deterministic.
The transitions are specified by a tuple of an input and a corresponding
output.
Figure 1 shows an example of a Mealy machine. This machine produces
coffee after inserting at least 2 coins and pressing the start button. In all
other cases this machine gives no output (quiescence).

9

Formally a Mealy machine is defined by a 6-tuple : M = (I, O,Q, q0, δ, λ)
where

• I is the finite alphabet of input symbols

• O is the finite alphabet of output symbols including quiescence

• Q is the finite, non-empty set of states

• q0 is the initial state (q0 ∈ Q)

• δ : Q× I → Q is the transition function

• λ : Q× I → O is the output function

The formal definition of the Mealy machine as shown in Figure 1 would be:

• I = {start,coin}

• O = {coffee,quiescence}

• Q = {init,half paid,fully paid}

• q0 =init

• δ(init,coin) =half paid; δ(init,start) =init;
δ(half paid,coin) =fully paid; δ(half paid,start) =half paid;
δ(fully paid,coin) =fully paid; δ(fully paid,start) =init

• λ(init,coin) =quiescence; λ(init,start) =quiescence;
λ(half paid,coin) =quiescence; λ(half paid,start) =quiescence;
λ(fully paid,coin) =quiescence; λ(fully paid,start) =coffee

2.2 Learning algorithm

In figure 2 we can see an overview how a learning experiment in LearnLib
works. It consists of an experiment object that controls the learning, a so-
called membership oracle that constructs a model, a so-called equivalence
oracle that verifies whether a learned model is correct and a SUL on which
the membership oracle and equivalence oracle can execute queries. To learn
a model first a command is sent to start the learning on the membership ora-
cle (1). Then a number of times the membership oracle sends queries (which

10

Figure 2: Abstract overview of learning a model with LearnLib

are called membership queries) to the SUL (2) and observes the output (3).
Based on the outcomes of those queries a hypothesis (a model that might be
correct) is constructed that is returned to the experiment object (4). Subse-
quently the hypothesis is passed to the equivalence oracle (5). To determine
whether the hypothesis is correct the equivalence oracle can send multiple
queries (which are called equivalence queries) to the SUL (this is called a
round) (6) and observe the corresponding output (7). Next the equivalence
oracle reports its finding whether the hypothesis is correct or not to the ex-
periment object (8), in case the hypothesis is incorrect the equivalence oracle
also provides a counterexample. If the hypothesis was found to be correct by
the equivalence oracle, the algorithm will finish, otherwise it starts all over
by sending a command to refine the hypothesis to the membership oracle
accompanied by the found counterexample (1).

The algorithm that LearnLib uses to learn a state machine is based on An-
gluins L∗ algorithm [26]. However the algorithm originally described by An-
gluin uses deterministic finite automata instead. In LearnLib an adapted
version for Mealy machines of this algorithm is used. Note that the L∗ algo-
rithm does not define how the equivalence oracle should work.

The algorithm uses a so called observation table to keep track of the results
of executed queries and to determine which queries are yet to be carried out.
In table 1 we could see an example of such an observation table.

11

Formally, an observation table OT is defined by a tuple (S,E, T) where

• S ⊆ I∗ is a finite, prefix-closed set

• E ⊆ I∗ is a finite, suffix-closed set

• T is a finite mapping of strings of (S ∪ S · I)·E to elements from the
output alphabet O

From this definition we can deduce row(s). Let s ∈ (S ∪ S · I), then row(s)
denotes the function f defined by f(e) = T (s· e). Now the following two
properties can be defined:

• An observation table OT is called closed if ∀t ∈ S· I.∃s ∈ S.row(t) =
row(s)

• An observation table OT is called consistent (or semantic suffix-
closed) if ∀s1, s2 ∈ S.row(s1) = row(s2) ⇒ ∀i ∈ I.row(s1· i) =
row(s2· i)

The algorithm terminates after at most n2k + k2n + n· log(m) membership
queries, where n is the number of states in the SUL, k is the size of the set
of inputs and m is the length of the longest counterexample.

When we apply the adapted L∗ algorithm to the example from figure 1 we
will get first the result shown in observation table 1. Note that this required
the execution of six membership queries (namely: coin, start, coin · coin,
coin · start, start · coin, start · start).
Since this observation table is closed and consistent. The first hypothesis will
be generated, as shown in figure 3. But this first hypothesis is not correct,
thus the equivalence oracle should provide a counterexample. Let’s assume
the given counterexample is: coin · coin · start
Then the L∗ algorithm will add all the prefixes of the counterexample (coin,
coin · coin and coin · coin · start) to S and will update the observation table.
The result of these steps are shown in observation table2. Eight additional
results are included in the table, of which two can be derived from the coun-
terexample (namely: coin·coin and coin·coin·start), the remainder had to be
found by executing membership queries.
Although the second observation table is closed, it is not consistent. There-
fore L∗ will expand E, in this case with: coin · start. The result is shown in
observation table 3. A column with seven results is added. However if you

12

Algorithm 1 L∗ adapted for Mealy machines. Algorithm from [40]
.

Input Alphabet AI , Output Alphabet AO, Observation Table OT =
(S, E, T) , where initially S = {ε} (the empty input string) and E = I.

do
OT ← update(OT)
while (¬isClosed(OT) ∨ ¬isConsistent(OT)) do

if (¬isClosed(OT)) then
∃s1 ∈ S, i ∈ I. ∀s ∈ S. row(s1 · i) 6= row(s)
S ← S ∪ {s1 · i}
OT ← update(OT)

end if
if (¬isConsistent(OT)) then
∃s1, s2 ∈ S, i ∈ I, e ∈ E. row(s1) = row(s2)∧
T (s1 · i · e) 6= T (s2 · i · e)
E ← E ∪ {i · e}
OT ← update(OT)

end if
end while
Mc ←M(OT)
σc ← EO(Mc)
if (σc 6=⊥) then

S ← S∪Prefix (σc)
end if

while (σc 6=⊥)

EO: Mealy machine → I∗ denotes the call to the equivalence oracle.

The function update is defined as follows: update : OT → OT
where for each s ∈ (S ∪ S · I) and e ∈ E, T (s · e) = MO(s · e)
MO denotes the execution of a single membership query by the member-
ship oracle

Prefix denotes the function that generates the set of all possible prefixes
for a given input string of type I∗, including the full input string itself

The function M is used to compute the hypothesis out of the observation
table as follows: M : OT → Mealy machine
Q = {row(s)|s ∈ S},
δ(row(s), a) = row(s · a)(s ∈ S, a ∈ AI) ,
λ(row(s), a) = T (s · a)(s ∈ S, a ∈ AI) ,
q0 = row(ε) (the initial row) 13

Figure 3: First hypothesis

take a close look, three of these results (namely for the queries coin·start,
coin·coin·start and coin·coin·coin·start) were already present in observation
table 2).
Observation table 3 is both closed and consistent, thus a second hypothesis
will be derived from table 3. This hypothesis is identical to the one as shown
in figure 1, no counterexample could be found by the equivalence oracle, so
this hypothesis is correct.

OT E
coin start

S ε quiescence quiescence

S· I coin quiescence quiescence
start quiescence quiescence

Table 1: First observation table

OT E
coin start

S
ε quiescence quiescence
coin quiescence quiescence
coin· coin quiescence coffee

S· I

start quiescence quiescence
coin · start quiescence quiescence
coin · coin · coin quiescence coffee
coin · coin · start quiescence quiescence

Table 2: Second observation table

2.3 Equivalence oracle

In contrast to the membership oracle, the implementation of the equivalence
oracle is far from trivial. Where the membership oracle simply has to ex-

14

OT E
coin start coin · start

S
ε quiescence quiescence quiescence
coin quiescence quiescence coffee
coin · coin quiescence coffee coffee

S· I

start quiescence quiescence quiescence
coin · start quiescence quiescence coffee
coin · coin · coin quiescence coffee coffee
coin · coin · start quiescence quiescence quiescence

Table 3: Third observation table

ecute the provided query on the actual SUL and return the corresponding
output, the equivalence query has to ’magically’ determine whether a given
hypothesis is correct. The originally described algorithm by Angluin didn’t
provide a method how to implement such an equivalence oracle. Luckily, sev-
eral methods to implement an equivalence oracle have been developed later.
In this thesis we will focus on the random words equivalence oracle, because
it is easy to understand, easy to use and already implemented in LearnLib
(in a non-parallelized version). A minimum query length (QLmin), maximum
query length (QLmax) and a maximum number of queries have to be speci-
fied by the user. This algorithm randomly executes a random query on the
SUL with a length ≥ QLmin and ≤ QLmax. If the result of the executed
equivalence query differs from what is expected from the hypothesis, the
equivalence oracle immediately terminates and the query will be returned as
a counterexample. Otherwise if the specified maximum number of queries
has not been reached yet this procedure of executing a random query will be
repeated.

3 Applying parallelism

Figure 4 shows the concept of parallelization of the learning process. There
is still one instance of LearnLib, but multiple instances of the same SUL plus
potential helper programs that are needed to run the SUL and to communi-
cate with it.
Helper programs could provide a simulated environment. Such a simulated
environment can simulate the physical environment the embedded software
has to operate in, which can make testing more useful. For example in a self
driving car the software could steer left to take a turn, but by simulating the

15

Figure 4: Concept of parallelized learning.

physical effects of a slippery road, the subsequent effects of the software to
keep the car on the road will also be tested.
Helper programs could also be tools used for abstraction, such as the Tomte
tool [20].

LearnLib now has to make sure that the queries are divided amongst the
multiple instances of the SUL, so that they can be executed at the same
time as far as possible.

Note that this approach requires multiple CPUs or CPU cores, to run the
multiple instances of the SUL simultaneously on.

3.1 Membership queries

As we can see in the description of the L∗ algorithm 1, the execution of
membership queries takes place during the update function. The function
is called at three places in the algorithm. The first place can be executed
in two cases, in the case of initialisation in which S only consist of ε and
therefore, the number of cells that has to be filled in the table is the same
as the number of membership queries that has to be executed and that
is the same as the size of the input alphabet. In the other case this first
occurring call to the update function is executed after a counterexample has

16

been found. In that case all prefixes of the counterexample are added to S
and probably also elements to S· I are added. Each of these additions adds
a new row to the observation table. In most cases this would mean that a
lot of membership queries have to be executed at once.
Now let’s look at the two other function calls to the update function. The
second function call is when the algorithm tries to close the observation
table. In that case only a single item is added to S, nevertheless this
introduces a single new row in the observation table and possibly new rows
in the S· I section.
The third call to the update function is when the algorithm tries to make
the table consistent. In that case a element is added to E and thus a new
column is added to the table. This also probably would lead to the execution
of multiple membership queries at once.

Note that it doesn’t necessarily mean that each new cell in the observation
table leads to a new membership query that has to be executed on the SUL,
since multiple cells in the observation table can represent the same query and
thus the result may already be present in the table. Nevertheless, if a large
amount of cells are added at once it is likely that still many membership
queries have to be executed at that time.
Since the execution of membership queries during a single call of the update
function are independent from each other (the execution of such a member-
ship query does not require any outcomes of the other membership queries)
they can be parallelized easily. The set of membership queries could be par-
titioned into several subsets and each subset could be assigned to a different
instance of the SUL. We should wait for the completion of the membership
queries in each of the subsets, before returning the results to the L∗ algo-
rithm, since the results of all queries in a single call to the update function
have to be returned at once.
If for example 20 membership queries have to be executed and suppose we
have 4 instances of the SUL running at the same time, we could execute
membership queries 1-5 on SUL #1, membership queries 6-10 on SUL #2,
membership queries 11-15 on SUL #3 and membership queries 16-20 on SUL
#4.

Note that parallelization of the membership oracle has already been imple-
mented in the new open source version of LearnLib, however it seems to be
nowhere mentioned nor evaluated how effective it is in literature.

17

3.2 Equivalence queries

Instead of executing the random queries, as generated by the random words
algorithm, one by one, we also could execute those random queries simultane-
ously, since they are independent of each other. This is done by generating
in advance the maximum number of random queries. That set is divided
among all instances and then executed by those instances. Once an instance
finds a counterexample, all other instances will be terminated and the found
counterexample will be returned to the L∗ algorithm.

This method works perfectly to divide the work over multiple instances, how-
ever, since the scheduling of the instances is not always exactly the same,
this method introduces non-determinism. If the algorithm is executed mul-
tiple times, it might be the case that one instance is already further ahead
with its tasks compared to another instance, and therefore already discovers
another counterexample. That other counterexample will be returned to L∗

and subsequently therefore the selection and execution order of membership
queries might be influenced.

This does not diminish the correctness of this algorithm. If there exists a
counterexample in the set of pre-generated equivalence queries there will be
found a counterexample, if no counterexample exists in that set, no coun-
terexample will be found.

Parallelization of the equivalence oracle was not implemented in LearnLib,
but could be added in a similar way as the parallelization of membership
queries has been implemented.

3.3 Theoretical benefit

According to Amdahl’s law [35] the speedup of parallelizing software is de-
fined as follows:
Speedup = (s+ p)/(s+ p

N
) = 1

s+ p
N

where N is the number of processors, s the fraction of time spent on the serial
parts of the program and p the fraction of time spent (by a serial processor)
on the parts of the program that can be done in parallel. Since s + p = 1
this formula can be rewritten as: Speedup = 1

(p−1)+ p
N

It follows that the minimum speedup is 1 in the case that nothing can be
done in parallel (p = 0). The maximum speedup is equal to N in case that

18

all queries can be done in parallel.

Which fraction can be parallelized (the values of s and p) during the mem-
bership queries is dependent on the output that the actual SUL gives and
therefore not known in general.

The expected speedup of parallelizing the equivalence queries is N since
they can be executed all in parallel. However, this ignores the fact that an
individual query can not be parallelized and has has to be fully executed
before the equivalence oracle is finished. Thus the executing time of the
equivalence queries is at least the time needed for a single equivalence query.

However, in the preceding, the non-deterministic effects of parallelizing equiv-
alence queries are ignored. Dependent of the returned counterexample by the
equivalence oracle, the subsequent learning process is influenced. Therefore,
which and how many queries will follow might vary. If we would take those
effects in consideration, speedups of below 1 (slow downs) are possible in case
that much more queries have to be executed than in the baseline situation
due to the non-deterministic effects. Speedups of above N are possible in case
that much less queries have to be executed than in the baseline situation.

4 Saving and restoring states

The concept of saving and restoring states is based on the idea that reusing
previously executed states could contribute to a speed improvement of the
learning process. It turned out that our idea of reusing previously reached
states of the SUL is not completely new. There has been a study by Bauer
et al[29] in which this idea has already been described. However this study
makes use of the properties of a specific SUL and is not a good generic
solution. A web application that automatically keeps the current state stored
in a database was used as a SUL. After finishing the execution of a query
they simply do not delete the previous state in the database. During the
execution of a subsequent query there is checked whether an existing state in
the database could be reused or a new entry has to be made in the database.

This approach has three major drawbacks. First, a state could only be reused
once, because after reusing the state of an instance of the SUL its state will
change. This still requires a lot of, potentially time consuming, reset actions
of the SUL. The second drawback is that if a normal desktop application
is used as a SUL, instead of the used database driven web application, all

19

instances of the SUL should remain open, which will cause an enormous
usage of RAM. Third, states are not transferable to another computer.

In our approach states of the SUL are stored explicitly to disk. These check-
points can be restored as many times as necessary. There is no need any more
to reset the SUL to start executing a new query. Instances do not have to
remain open, so the enormous usage of RAM is neither necessary any more.
Checkpoints can be transferred to another computer, which is useful when
combining parallelism using multiple computers with saving and restoring
states.

4.1 Algorithm

A trie (i.e. a prefix tree; a tree where the position in the tree determines the
key to the corresponding node) is used to store information about previously
executed queries. In figure 5 we could see a small sample of such a trie. Each
node consists of an input, a corresponding output and optionally a reference
to the stored state of the machine at that point. To search the outcome
of a query in the trie, you start at the root node and for every input step
in the query you select the corresponding child node. During this process
you could find the corresponding outputs for each step of the query. For
example the query tea button > start button will lead to the outputs
quiescence > tea in figure 5 and the state of the SUL after executing that
query is saved in in checkpoint #2.

During initialization the SUL is started and subsequently an checkpoint of
the initial state of the SUL is made. Algorithm 2 describes the process of
executing a query using checkpoints.

4.2 Theoretical benefit

As we can see, in the current implementation of the L* algorithm in LearnLib
frequently the same input sequences need to be processed by the SUL.

A query consists of a prefix of which the outcomes are already known, because
it has been executed before, and a suffix of which the outcomes are not known
yet because it has not been executed before.

20

Algorithm 2 Executing a query

if the query is completely present in the result trie (the query has been
executed before) then

return the corresponding outputs as found in the trie
else

Find in the result trie the checkpoint c for which the longest part of
the query has already been executed
if No such checkpoint can be found in the result trie then

Use the initial checkpoint
end if
Restart the checkpoint c to restore the SUL to this state
Execute the remaining steps of the query
Add the observed outputs to the result trie
if query needs to be saved (see section 4.3) then

Make a checkpoint of the new state of the SUL
Add a reference to the new checkpoint in the result trie

end if
return the outputs found in the trie that leads to checkpoint c

+ the new observed outputs
end if

Figure 5: Example of a trie to store the results of previously executed queries.

21

In the original situation, to execute this query we would have to perform:

1. Reset the SUL - average time costs: tr

2. Execute the prefix pf (here the output of the SUL is completely ignored,
it is only executed to bring the SUL in the desired state) - average time
costs: tpf

3. Execute the suffix sf - average time costs: tsf

When using saving and restoring states of the SUL instead you could perform:

1. Restore the saved state of the SUL after prefix pf was executed- average
time costs: tl

2. Execute the suffix sf - average time costs: tsf

3. Save the new state of the SUL - average time costs: ts

Thus to have benefit from saving and restoring states it should be true that:

tl + tsf + ts < tr + tpf + tsf

tl + ts < tr + tpf

It seems likely that an increase of the size of the model causes an increase
of the average query length. Consequently, the average length of the queries
would be bigger and therefore the average time to execute the prefix: tpf will
also increase, while tl, ts, tr will probably remain the same. This leads to
the following hypothesis: When the size of the SUL increases it will become
more beneficial to apply techniques to save and restore states of the SUL.

Note that in the formula above, we assume that the state of the SUL after
each query is saved. This is not optimal, since equivalence queries likely con-
sist of long series of randomly chosen inputs. Therefore the chance that the
state after executing an equivalence query can be reused will be very small.
Since in real life situations it can happen that even more equivalence queries
are needed than membership queries to learn a correct model[42], and thus a
lot of time would be wasted on saving states that probably won’t be reused,
we decided to only apply the saving of states after executing membership
queries. However, during the execution of all these equivalence queries there
still can be taken advantage of the saved states of the membership queries.

22

4.3 Selection of states which should be saved

Although it is decided to only save the states after executing membership
queries, there is still a lot of time and memory spent on saving states. A lot
of time might be saved by reducing the number of states to be saved. Instead
of:

1. Restore the saved state of the SUL after prefix pf was executed - average
time costs: tl

2. Execute the suffix sf - average time costs: tsf

3. Save the new state of the SUL - average time costs: tsave

The following should be applied:

1. Restore the saved state of the SUL where the largest part of prefix pf
already has been executed - average time costs: tl

2. Execute the remaining part of prefix pf (here the output of the SUL is
completely ignored, it is only executed to bring the SUL in the desired
state) - average time costs: trpf

3. Execute the suffix sf - average time costs: tsf

4. In some cases: save the new state of the SUL - average time costs: tsave

This will reduce the total time costs of saving states, but introduce more
time costs of executing the remaining parts of the prefixes pf. This will
lead to the following hypothesis: there is a trade-off between the costs of
making more checkpoints and the benefit that those extra checkpoints offer.
Therefore there will be an optimum, which checkpoints need to be saved to
get the fastest execution time. Neither saving none nor saving all possible
states of the SUL is likely to be optimal in most cases. Therefore we would
like to know where the optimum is.

On the one hand will be that the longer the query is the smaller the expected
reuse of the saved state of that query will be. (For example a checkpoint of a
query with a size of 1 could be used by much more queries than a checkpoint
of a query with a size of 10). Therefore you would expect a strategy that
saves more smaller queries will be more useful. On the other hand saving
larger queries might be more useful because if you reuse such a saved state the

23

benefit at a time will be bigger. It is very difficult to theoretically determine
precisely the optimal strategy in general without having information about
how many queries of which length are executed. This depends on the actual
SUL being used. So we decided to empirical evaluate the effect of a couple
of different strategies, see section 6 and section 7. The following strategies
will be researched;

1. Using a linear function. Instead of saving every membership query we
could for example save only membership queries with a size that is a
multiple of 2. A näıve estimation (ignoring the fact that the query
size is not likely to be equally distributed) is that the total time to
save queries will probably be about halved 1

2
· #mq · tsave instead of

#mq · tsave. On average there probably will be an additional 1
2

step
needed to execute a query. In total 1

2
(#mq+ #eq)tstep additional time

is needed to execute all the queries, where tstep is the average time
needed to execute a single step.
If we would save only the queries with a size that is a multiple of 3 the
benefit will be probably about: 2

3
· #mq · tsave while there is a disad-

vantage of about (1
3

+ 2
3
)(#mq + #eq)tstep

In general we would expect a benefit of n−1
n
·#mq · tsave and a disad-

vantage of (
n−1∑
i=1

1/i)(#mq + #eq) · tstep = n−1
2

(#mq + #eq) · tstep

2. Setting a maximum value for the size of a membership query to be
saved.
The expectation is that mainly the execution of equivalence queries
will benefit from this reduction. There are il possible queries, where
i is the number of inputs and l is the length of the query. Suppose
there are 10 inputs, then there are only 103 = 1000 possible queries
with length 3. It is feasible that a large part, or even all of these
1000 possible queries are executed during the execution of membership
queries and the resulting states of the SUL are saved. Therefore, if
during the execution of equivalence queries a query is randomly chosen,
the chance that it can reuse such a saved state will be large. But if you
would look at queries with length 9 then there are 109 possible queries.
Since it is not likely that a billion states are saved, the chance that a
randomly chosen equivalence query shares the same prefix of 9 inputs
with those of a saved state will probably be very small. This will lead
to the hypothesis that randomly chosen equivalence queries will only
profit from saving states of small queries.

24

3. Setting a minimum value for the size of a membership query to be
saved.
This strategy is opposite to the aforementioned method, but neverthe-
less it might be beneficial. Because if a large query could be reused,
the individual benefit of reusing the accompanying saved state will be
larger, since the execution of more steps is superseded. The hypothesis
is that this benefit will only appear during the execution of membership
queries, since membership queries are built upon previously executed
membership queries.

4. Using an exponential function saving only queries with a size of 1,
2,4,8,16. . . steps.
The hypothesis is that this method will combine the benefits from
having saved the state of small queries which is useful for randomly
chosen equivalence queries and having saved the state of large queries
in which the individual profit of reusing especially during member-
ship queries will be large. Nevertheless still a lot less saved states are
needed than when simply every executed query is saved. Now only
20 + 21 + 22 + 23 + 24 + . . .+ 2x = 2x+1 − 1 different query lengths are
saved. This is a lot less than storing all the 1+2+3+4+. . .+2x = 2x+1

2
2x

different query lengths.

5 Implementing saving and restoring soft-

ware states in practice

The idea of saving and restoring states of an arbitrary SUL will lead
inevitably to the question how these states can be saved and restored, since
this is not trivial functionality that is by default available in a lot of SULs.
Luckily, there do exists some possible solutions for this problem. In this
thesis we will focus on application checkpointing using DMTCP.

DMTCP (Distributed MultiThreaded CheckPointing) [27] is a Linux frame-
work that allows to save and restore the state of a group of arbitrary Linux
processes. DMTCP makes basically a kind of RAM dump of a process.
DMTCP runs fully in user-space and does not require any modifications of
the Linux kernel neither of the applications of which the state is stored.
DMTCP was originally designed for cluster computing. In case that a large
workload, for example a large scientific computation that takes 30 days to

25

Figure 6: Combining LearnLib with DMTCP

execute crashes after 29 days due to a hardware failure, it can be ensured that
those 29 days of computational work are not lost. Instead of restarting the
whole computation from the very beginning, a checkpoint which was made
at for example day 28 could be restarted, such that the whole computation
could be finished in only 2 additional days. Since it is focussed on cluster
computing, checkpoints are transferable, thus if they are made at one com-
puter, then they can be restarted at another computer. Apart from cluster
computing DMTCP has already successfully been deployed for, for exam-
ple, a universal reversible debugger [48]. It has also been applied recently in
the field of model checking of distributed systems to handle the problem of
non-deterministic output. [38]

Besides the fact that it has been applied successfully in other studies (al-
though for a different purpose) we chose DMTCP because it is easy to im-
plement, it is reasonably fast and although it is still experimental it is quite
stable and it offers a quite generic solution. Many Linux applications can
run under DMTCP. Although automata learning is especially useful in the
field of embedded software, it doesn’t mean that the software always requires
a real-time OS. Less time-critical software may run natively on Linux and
otherwise the software may run in a simulated environment that runs on
Linux.

Figure 6 shows how DMTCP is integrated in learning a SUL with Learn-
Lib. To run DMTCP the coordinator application has to be started. This
coordinator is able to checkpoint all programs that are running under it, and

26

to restore a previously saved checkpoint. Subsequently, the application to
be checkpointed has to be started with a DMTCP wrapper. Multiple ap-
plications can run under the same coordinator. Through the operation of
DMTCP, TCP/IP sockets, pipes, file descriptors, mutexes/semaphores all
can be used without problems. However, at the moment a checkpoint is
made, there should not be an open TCP/IP connections between applica-
tions that run under the coordinator and the outside world, but an open
TCP/IP connection between two programs that run under the same coordi-
nator will not be a problem. A standard input/output connection will never
give any problem with checkpointing. Suppose there is a SUL that commu-
nicates using a socket connection, then DMTCP could be applied by writing
a simple helper application, which redirects the socket connection over stan-
dard input/output, runs under the same DMTCP coordinator, and thus is
also stored in each checkpoint. This situation is shown in figure 6. If the SUL
can communicate over standard input/output itself, this helper program is
not needed of course.

The run-time overhead of DMTCP is negligible. DMTCP only applies wrap-
pers around some less frequently used system calls, such as open(), getpid()
and socketpair(). More frequently used system calls such as read() and write()
are not interfered by a wrapper [4].

Note that it is possible to run several DMTCP coordinators at the same time
on the same computer. We use this to combine DMTCP with parallelism.

6 Evaluation method

6.1 Experiments

The proposed speed improvement techniques, parallelism and checkpointing
using DMTCP, have been implemented in practice and integrated using Java
in the new open-source version of LearnLib[11]. Here we used an own data
structure to implement the result trie (See section 4.1) to keep track of all
previously executed queries and stored checkpoints. This data structure has
been implemented separate from the existing data structures in LearnLib.
In order to evaluate both speed improvement techniques we have done some
experiments using three sample systems: the Bounded Retransmission Pro-
tocol, Tic-Tac-Toe and a simulation of the Engine State Machine.

27

Figure 7: State diagram of the Bounded Retransmission Protocol. Figure
from [24].

6.1.1 Bounded Retransmission Protocol

The Bounded Retransmission Protocol is a well-studied protocol originating
from Philips for communication between an infrared remote control and
a television set. Figure 7 shows the state diagram of the protocol. This
protocol has already been used before to learn models with LearnLib. Hereby
the side of the sender was learned [24]. This SUL is simulated in a very
simple C++ program, which consists of only 1 file with a couple of switch
statements. Communication takes place using standard input/output. The
tricky part of learning this protocol is to find counterexamples where all
the outputs OCONF (0), OCONF (1) and OCONF (2) appear. In order to
achieve that, the number of retransmissions must become high enough. In
our case this retransmission number is set to 5. The possible values of each
message are restricted to 2.

Some statistics about this SUL:

28

Figure 8: Ostermiller Tic-Tac-Toe webpage

number of inputs 10
number of possible outputs 18
number of states in a correctly learned model 155
default (average) time to process a single step 10ms
default (average) time to reset the SUL 20ms
RAM usage of the SUL 10MB
average size of a DMTCP checkpoint 16MB
average time to take a DMTCP checkpoint 75ms
average time to restore a DMTCP checkpoint 20ms

From figure 7 we can derive that to observe the OCONF (0) output a counter
example of at least 7 inputs is needed (IREQ and subsequently 6 times
ITIMEOUT). To observe the OCONF (1) output a counter example of at
least 4 inputs is needed (IREQ and subsequently 3 times IACK) and to ob-
serve theOCONF (2) output a counter example of at least 10 inputs is needed
(IREQ, subsequently 2 times IACK and finally 7 times ITIMEOUT). As
equivalence oracle the parallelized version of random words is used with a
minimum query length of 10 and a maximum query length of 15, with max-
imum 10000 queries per round. These settings turned out, during all test
runs, to be good to find the needed counter examples and learn a correct
model of the SUL.

6.1.2 Tic-Tac-Toe

The Ostermiller Tic-Tac-Toe webpage[8] contains a JavaScript implementa-
tion of the well known Tic-Tac-Toe game. We use the setting that lets a
human play against the computer.

29

As inputs we use all the 9 different cells in which the human user could
place an X. As outputs we use all the 9 different cells where the computer
subsequently places the O plus the quiescent output (in case that the input
corresponds to a non-empty cell or in case that the game has ended)

If only empty cells are selected as input, no more than 5 inputs are possible
in sequence to end the game and in the case a non-empty cell is selected as
input the state of the SUL will not change, which makes this a manageable
SUL.

In the original source code a random function is used to the make the game
less predictable and more fun to play. But this random function makes
the game non-deterministic and therefore unable to be used with the L*
Algorithm. An adjustment is made to replace the random function with a
function that produces the same semi-random output after each new game,
which makes this SUL deterministic.

To communicate between LearnLib and the SUL the web test automation
software Selenium[13] is used, which is able to send click events to the web-
page in order to send an input to the SUL and retrieve HTML attributes
from the webpage to forward outputs to LearnLib. The HTMLUnit web-
driver (GUI-less browser in Java) is used for rendering the webpage. This
makes it usable with DMTCP to save and restore checkpoints of the SUL
without having to perform tricks to checkpoint GUI applications.

Communication takes again place using standard input/output. To run this
Java based SUL the compact Java virtual Machine JamVM is used [7]. This
reduces the RAM usage by around 10% to 20% compared to the default
OpenJDK virtual machine, which makes checkpoints smaller and faster to
save and restore.

Some statistics about this SUL:
number of inputs 9
number of possible outputs 10
number of states in a correctly learned model 148
default (average) time to process a single step 163ms
default (average) time to reset the SUL 226ms
RAM usage of the SUL 78MB
average size of a DMTCP checkpoint 138MB
average time to take a DMTCP checkpoint 355ms
average time to restore a DMTCP checkpoint 101ms

A game will end after at most 5 inputs. However if a non-empty cell is selected

30

as input, the required number of inputs to end the game will increase. Thus
counter examples with a length of above 5 are needed to learn a correct
model.

As equivalence oracle the parallelised version of random words is used with
a minimum query length of 7 and a maximum query length of 15, with
maximum 5000 queries per round. These settings turned out, during all test
runs, to be good to find the needed counter examples and learn a correct
model of the SUL.

6.1.3 Simulation of the Engine State Machine

The Engine State Machine (ESM) is a piece of embedded software developed
at Océ. It controls transitions between states in a printer. This is a nice
example of real embedded software. There has already been extensively re-
searched how a model of this software could be learned using LearnLib [42].
Instead of using the actual ESM a simulation is used. This Java based sim-
ulator reads a text file with the description of a state machine (a Graphviz
DOT file) and acts like it is the actual machine from the description. Com-
munication takes again place using standard input/output.

Learning the whole SUL with over 4000 states took more than 287 hours
in[42] and in our case we want to test several strategies which require sev-
eral test runs. In addition, our simulation of the ESM reacts slower than
the actual ESM, as used in [42], which would make learning the complete
model with over 4000 states infeasible within a reasonable amount of time.
Therefore a very small subset is taken, by using only a couple of inputs.
This drastically reduces the size of the model to be learnt. Unfortunately,
this makes directly comparing our evaluation results with those found in [42]
impossible.

Some statistics about this SUL:
number of inputs 7
number of possible outputs 149
number of states in a correctly learned model 23
default (average) time to process a single step 50ms
default (average) time to reset the SUL 500ms
RAM usage of the SUL 83MB
average size of a DMTCP checkpoint 81MB
average time to take a DMTCP checkpoint 262ms
average time to restore a DMTCP checkpoint 105ms

31

Note that the size of a checkpoint is slightly smaller than the RAM usage.
This can be explained by the functionality of DMTCP to reduce the size of
a checkpoint if a memory region contains only zeroes.

As equivalence oracle the parallelised version of random words is used with
a minimum query length of 5 and a maximum query length of 15, with
maximum 2000 queries per round. These settings turned out, during all test
runs, to be good to find the needed counter examples and learn a correct
model of the SUL.

6.2 Learning set-up

For the execution of the experiments we used a (super)computer with in
total 60 CPU cores running at 2.3GHz, 3TB RAM and the availability of
RAID storage. This machine is ideal to evaluate our proposed optimization
techniques, since the large number of CPU cores makes it possible to run
many instances of a SUL at the same time which gives good insight in the
scalability of our parallelization technique. This machine also features fast
file storage, which reduces the time to take and restore checkpoints. For
optimal storage speed, we used a RAM disk, with the ability to use the
RAID storage in case the RAM disk is full.

6.3 Test run selection

1. First we evaluate the effect of parallelization on all 3 test systems.

2. Then we evaluate the effect of using DMTCP without parallelization.
For this we will apply the 4 proposed strategies to reduce the number
of checkpoints.

3. Thirdly, we will measure the benefit of combining parallelization with
saving and restoring states. To reduce the number of measurements,
only the best performing strategy is chosen in combination with 60
parallel instances (the highest number of parallel instances that the
computers allows to be executed fully in parallel)

4. In section 4.2 we have seen that in theory the benefit of saving and
restoring states would be bigger when the SUL responds slower. Since
we are also interested in how beneficial the proposed optimizations are

32

on slower responding systems we will vary the response time of the pre-
vious mentioned SULs by slowing them down (using a sleep function).
To reduce the number of measurements (which might have required
several weeks of execution time in total) these slowed down versions
of the SULs are only executed using the best performing strategy to
reduce the number of checkpoints. This does not automatically mean
that this strategy is also the best performing strategy on the slowed
down versions, however, evaluating all strategies again on the slowed
down SULs would take too much time for this thesis, and we think that
the best performing strategy on the non-slowed down SULs would still
perform reasonable on the slowed down SULs.

For each of the slowed down SULs we measure a new baseline, the
execution time with only DMTCP applied, the execution time with 60
parallel instances and finally, the execution time with both DMTCP
and 60 parallel instances.

7 Results

In this section only the summary of the results are shown. The complete
overview of results, including all details, can be found in Appendix A.

7.1 Parallelization

As we can see in Figure 9, applying parallelism is very effective to improve
the learning speed. In most cases, doubling the number of parallel instances
nearly doubles the execution speed; on average the speed will increase with
a factor 1.83.

Note that there is a variation in the number of membership and equivalence
queries. This is caused by the way our parallel equivalence oracle algorithm
works. Due to the non-deterministic effects of process scheduling of the
parallel instances different test runs can result in different counter examples.
Therefore the subsequent learning process can be influenced which can result
in more or less queries that has be executed. This explains the outlier of the
ESM with 16 parallel instances.

33

Figure 9: Results of parallelization

7.2 DMTCP

If only DMTCP is applied without any parallelism, the execution is fully
deterministic. Each test run will have exactly the same (number of) queries
and will always produce exactly the same output. Thus in the following
results it is not needed to take any effects of non-determinism, such as varying
query counts, in account.

7.2.1 Strategy 1: limiting checkpoints using a linear function

In figure 10 we can see that it is indeed not optimal to store every mem-
bership query nor saving no query at all. This strategy is effective, at the
optimum (which lies around a multiplication factor of 2 or 3, i.e. where only
queries with a size of 2,4,6,8,. . . or with a size of 3,6,9,12,. . . are stored) there
is a significant speed improvement over using no DMTCP at all. However,
choosing the wrong multiplication factor might slow down the learning pro-
cess compared to the baseline, because in that case the benefit of having
to execute less inputs on the SUL does not compensate for the additional
time the saving and restoring of checkpoints takes. The dip in the graphs

34

Figure 10: Results of strategy 1

of Tic-Tac-Toe and ESM at a multiplication of 5 could be explained by the
distribution of queries based on their size. If for example much more queries
with a size of 4 and 8 could be reused than with a size of 5 and 10 it is logical
that the speed improvement of a multiplication factor of 5 is lower than a
multiplication factor of 4. The slightly speed increase with a higher multi-
plication factor than 5 could be explained by that a lot less checkpoints have
to be made and the average benefit of reusing a single checkpoint increases.

7.2.2 Strategy 2: limiting checkpoints using an upper limit

Also this strategy can be effective as we can see in figure 11. It depends on
the SUL where the optimum is. For the Bounded Retransmission Protocol it
is less effective than the previous strategy, for Tic-Tac-Toe it is more effective
than the previous strategy. A possible explanation is that the checkpoints
of the Bounded Retransmission Protocol are much smaller, which makes the
overhead of also saving larger queries with a size of 6,9,12,15,. . . smaller and
therefore more beneficial even if those larger queries could be reused only
once. The overhead of saving queries of the Tic-Tac-Toe SUL is much larger
(because it uses much more RAM), so it is more beneficial to save only the

35

Figure 11: Results of strategy 2

first couple of small queries, which could be reused much more often. For the
ESM it turns out to be faster to have the highest maximum size as possible,
thus it is better to save all queries than using an upper limit (The longest
query size used to learn the ESM model is 20). However it can still be an
effective way to reduce the number of checkpoints.

7.2.3 Strategy 3: limiting checkpoints using a lower limit

For this strategy, we can reject our hypothesis, this strategy only worsened
the execution speed regardless of the settings as we can see in figure 12. In
addition it is also not an effective way to reduce the number of checkpoints
while maintaining a relative good execution speed.

7.2.4 Strategy 4: limiting checkpoints using an exponential func-
tion

The speed compared to the baseline of this strategy is respectively: 1.19 for
the bounded retransmission protocol, 1.70 for Tic-Tac-Toe and 2.14 for the

36

Figure 12: Results of strategy 3

ESM model. So, this strategy does work to improve the execution speed.

7.2.5 The best performing strategy

In figure 13 we could see the performance of all 4 strategies, here the average
is taken of all 3 test systems (Bounded Retransmission Protocol, Tic-Tac-
Toe and ESM). In this chart strategy 3 seems to perform slightly worse
than strategy 1 and 2, but we have seen that the only best settings are
reached when all queries are saved, which makes this strategy not useful.
The performance of strategy 4 is around the best settings of strategy 1 and
2. Only for the ESM the speed is a bit behind of the optimal setting of
strategy 1, but the number of checkpoints is lower. Since strategy 4 does
not require any fine-tuning of settings and still performs good we prefer this
strategy.

37

Figure 13: Comparison of the performance of all 4 strategies, the average of
all 3 test systems is taken

7.3 Combining parallelism with checkpointing

Here we combine 60 parallel SULs with checkpointing using the exponential
function (strategy 4).

Tic-Tac-Toe and the ESM show a significant improvement over only applying
parallelism or only applying checkpointing. Tic-Tac-Toe becomes 40.80 times
faster than the baseline and the ESM becomes 42.17 times faster than the
baseline. However, the bounded retransmission protocol shows a significant
worsening compared to only applying parallelism with 60 SULs running in
parallel. There is a speed improvement of 14.79 (parallelism plus checkpoint-
ing)versus 44.04 (only parallelism). A possible explanation is that when a
lot of checkpoints must be saved and restored at the same time, which is the
case due to the very low step and restart times, i.e. the SUL is very fast,
the available disk speed must be shared across all these parallel instances
that want to read and write to the disk at the same time. Therefore the disk
speed will become a bigger bottleneck. This is conformed when the SUL is
slowed down, as we can see in section 7.4.

38

7.4 Slowing down the SULs

Bounded Retransmission:
The bounded Retransmission Protocol is slowed down so that a reset takes
2000ms (instead of 20ms) and a step takes 20ms (instead of 10ms).
Note that the mentioned baseline is the baseline of this slowed down version,
which is 18.03 times slower than the original baseline.

baseline DMTCP parallelism both combined
Speed compared to baseline 1.00 15.44 47.91 297.62

Tic-Tac-Toe:
The Tic-Tac-Toe game is slowed down so that a reset takes 5000ms (instead
of 226ms) and a step takes 500ms (instead of 163ms).
Note that the mentioned baseline is the baseline of this slowed down version,
which is 8.48 times slower than the original baseline.

baseline DMTCP parallelism both combined
Speed compared to baseline 1.00 4.70 34.89 97.68

Engine State Machine:
The Engine State Machine simulation is slowed down so that a reset takes
2000ms (instead of 500ms) and a step takes 100ms (instead of 50ms).
Note that the mentioned baseline is the baseline of this slowed down version,
which is 3.02 times slower than the original baseline.

baseline DMTCP parallelism both combined
Speed compared to baseline 1.00 3.95 25.68 78.62

As we can see, combining parallelism with DMTCP is very effective. De-
pending on the SUL and how slow the SUL reacts it can lead to impressive
speed improvements of up to about 300 times faster than the baseline.

8 Evaluation

Based on the results from the previous section we can derive a number of
generic recommendations:

• Parallelize as much as possible. Except for one test run probably caused
by the non-deterministic effect of parallelism, all our test runs have
shown a huge speed improvement when using parallelism. With an

39

average speed improvement of 1.83 when doubling the number of in-
stances, this approach is definitely worth applying. Although in prac-
tice it requires many available CPU cores, but these may be spread
across multiple computers.

In addition, it must be possible to run multiple parallel instances of
the SUL and potential helper programs, which might not be always be
the case due to technical as well as license restrictions.

Finally, this optimization ensures that the work is carried out faster,
but the amount of work will not be reduced, thus also the total required
power consumption of all CPUs to learn the model will not be reduced.

• If the SUL responds slowly, i.e. it takes a long time to reset and a long
time to take a step (order of magnitude of hundreds of milliseconds or
more for a single step or reset operation), we recommend to apply the
use of checkpointing. DMTCP is an effective way to implement check-
pointing. It provides a generic solution (for applications that can run
under Linux), turned out to be stable although it is still experimental
and is reasonable fast in saving and restoring checkpoints. If DMTCP
is applied for checkpointing, and a very fast storage device is used, such
as a RAM disk, to save the checkpoints and if a SUL reset and step
take in the order of magnitude of hundreds of milliseconds, the execu-
tion speed might me doubled. However, if it takes several seconds the
speed increase will be much larger, possibly even more than 10 times
faster than the baseline. On even slower SULs than that we expect it
to be even more beneficial.

To limit the number of checkpoints, it turns out to be the most con-
venient to make use of the strategy which limits the number of check-
points using an exponential function. This strategy belongs to the best
performing in most cases, without the need for fine-tuning parame-
ters. Only in exceptional cases, for example when there is very little
disk space to store the checkpoints, we recommend to consider other
strategies.

Note that using a fast responding SUL and/or a wrong strategy to
limit the number of checkpoints, the execution speed can be worsened
compared to the baseline.

Obviously it is required that the SUL can be checkpointed using
DMTCP, additionally, it might be needed to write a helper program to
prevent problems with open socket connections of the SUL.

40

• If it is possible, we recommend to combine parallelism with checkpoint-
ing, considering that we have seen speed improvements of up to nearly
300 times with this combination. However, if this combination is used
with a fast responding SUL it can slow down the learning speed com-
pared to using only parallelism, even if, in the same case, applying
checkpointing without parallelism is beneficial compared to the base-
line. (See section 7.3)

9 Alternative Techniques

9.1 Alternatives to DMTCP

In this section we will discuss some alternatives to DMTCP.

Ideally we would like to have a solution to save an restore states that is:

• a generic solution, where the SUL is not restricted to a single operating
system or restrictions such as file handlers, open network connections,
having a GUI or not. DMTCP is a quite generic solution, however it
only works for Linux applications, a solution that also works for other
operating systems would be better.

• as fast as possible in saving and restoring states; Since we apply this
technique to get speed improvement, the overhead should be as low as
possible. Although DMTCP turns out to be reasonable fast, there is
still room for improvement.

• Checkpoints as tiny as possible. This not only leads to faster saving
and restoring of states (in many cases the disk speed is the bottleneck),
but it also leads to less required disk space. Therefore the costs of
additional hard disks, solid state drives or RAM disks are reduced,
or a smaller but faster storage device could be used (solid state drive
instead of a hard disk or a RAM disk instead of a solid state drive). In
addition it also provides the ability to store more checkpoints on the
same storage device, which could be useful when learning large SULs.
The checkpoints of DMTCP are quite large in general, in most cases
they are much bigger than the RAM usage of the SUL. Alternative
solutions might perform much better at this point.

41

• transferable checkpoints; This means that checkpoints made on one
computer can be restarted at another computer. This is useful when
combining parallelism using multiple computers with saving and restor-
ing states. DMTCP is developed with distributed computing in mind,
therefore it completely fulfils this requirement, but that might not be
the case with all alternative solutions.

9.1.1 Virtualization

Software like VMWare[18], Hyper-V[2] and VirtualBox[17] is well-known
for hardware virtualization. These programs simulate a complete virtual
computer that runs a separate operating system. Consequently, this provides
a very generic solution, because it does not restrict SULs to run on a specific
operating system. The virtual computer has the same architecture as
the host, so no full emulation of processor instructions is necessary. This
in combination with x86 hardware virtualization support makes running
software in the virtual machine relatively not much slower than running it
directly on the host.
These virtualization programs have the ability to suspend the state of
a virtual machine and to resume later such a suspended state. These
suspended states are files that contain among others the content of the
virtual RAM and CPU registers. In itself this already provides a sufficient
ability to save and restore the state of an arbitrary SUL that can run inside
the virtual machine. In order to do so, manually keeping an administration
of states and copying back and forth the suspended state files would be
required
In addition, some of these programs also provide support for snapshots.
Snapshots are stored states of the virtual machine of which the virtualization
program keeps an administration and offers the ability to revert a specific
snapshot. This makes implementing it to work with LearnLib easier.
We chose to use VirtualBox in this thesis to perform our experiments
with. VirtualBox is open source software, easy to use, has the ability
to use snapshots, provides scripting capabilities (using the VBoxManage
command-line interface) and it seemed that it was not significantly faster or
slower than comparable virtualization solutions.
Figure 14 shows how LearnLib communicates with VirtualBox and the
SUL that runs inside the virtual machine. We use the VBoxManage
command-line interface to pass commands to VirtualBox. In order to make
a snapshot only a single command with the desired snapshot name has to
be given. In order to restore a snapshot 3 commands have to be given to the

42

Figure 14: Combining LearnLib with VirtualBox

VBoxManage application: shut down the virtual machine, revert the desired
snapshot and resume the virtual machine.

In addition, we need communication between LearnLib and the SUL running
inside the virtual machine. In order to accomplish this, we use the virtual
serial port of the virtual machine. Instead of for example a virtual Ethernet
port, no drivers need to be installed and no re-initialization after resuming
a snapshot is necessary. Inside the virtual machine, the required inputs for
the SUL and the corresponding outputs of the SUL can be transmitted over
this virtual serial port. Since the actual SUL does not communicate over
a serial port in most cases a helper program is created that converts the
stdin/stdout communication to communication over the serial port. Virtual-
Box converts this virtual serial connection outside the VM to a named pipe.
Using Socat[15] this named pipe is converted to stdin/stdout communication.

Each time when creating a snapshot, the entire state of the RAM, including
the operating system and all running applications, is stored to disk. To speed
up this process it is convenient to use an as lightweight operating system
as possible and to reduce as many unnecessary background applications as
possible. Despite the fact that VirtualBox can store and revert the state of
a virtual hard disk, doing so may significantly increase the time to take and
restore a snapshot. Therefore we chose to do not use a virtual hard disk at
all. As operating system we use BartPE[1], which is based on a Windows-NT

43

kernel, can run from a live cd, is able to run many Windows programs and
has a memory footprint of only a few dozen megabytes. The SUL and helper
program (which automatically starts when after booting) are also stored on
a live-cd.

We used VirtualBox to learn a model of the Bounded Retransmission pro-
tocol. In contrast to the previous experiments a less powerful computer was
used (2.1GHz dualcore, 3GB RAM, 256GB SSD). To learn a correct model
within a reasonable amount of time we reduced the retransmission number
to three instead of five and used only three inputs instead of ten. The time to
take a step is set to 1000ms and the time to perform a reset is set to 2000ms.
It turns out that VirtualBox can be used successfully to reduce the execution
time, however it is not as efficient as DMTCP in the same situation, as we
can see in the following table:

baseline with DMTCP with VirtualBox
#MQ 545 545 545

Time MQ (s) 4020 2217 2760
#EQ 504 504 504

Time EQ (s) 3913 1207 1772
#checkpoints/snapshots N/A 76 76

checkpoint/snapshot size (MB) N/A 16 56
Speed compared to baseline 1.00 2.32 1.75

Figure 15 shows the snapshots taken to learn this model. You could see the
tree structure, which corresponds to the result trie as described in section 4.1
with only the nodes listed for which the state is stored.

9.1.2 Forking

POSIX based operating systems (like UNIX and Linux) allow a process to
duplicate itself using the fork system call [10]. When a process calls this
system call the process, including its state, will duplicate.
Linux implements this fork system call using copy-on-write. This means
that not all memory pages have to be duplicated, but only the changes a
child process makes need to be stored. This has two great benefits. Firstly
it improves the speed of forking a process: in just a few milliseconds the
forking can be done. Secondly it reduces the memory usage enormously,
instead of needing many megabytes only a few kilobytes can be enough for
an additional forked process. Thus many more forked processes will fit in
the same amount of RAM.

44

Figure 15: Screenshot of VirtualBox after learning a model of the Bounded
Retransmission Protocol.

We could use this functionality instead of DMTCP or VirtualBox to improve
the learning speed. Instead of taking a checkpoint, nothing has to be done,
apart from adding the process id of the current instance of the SUL to the
result trie and sending a pause signal to the current instance of the SUL.

Instead of restoring a checkpoint we apply algorithm 3.

Algorithm 3 Restoring a forked instance

Send a resume signal to the instance which should be restored
Send a signal to notify the instance that it should fork itself
Read the process id of the new forked instance from StdOut (now is known
that the forking is done)
Send a pause signal to the (old) instance
Send the desired inputs to the new forked instance

Note that using this approach all queries are saved (the corresponding pro-
cesses remain open) to prevent that an additional step needs to be taken to
stop the corresponding process. This is in contradiction to the checkpoint
techniques using DMTCP or VirtualBox, where it takes additional time to
store a query.

45

This requires injecting some code in the SUL. We need to implement a han-
dler that forks the process when a specific user defined POSIX signal is
received. In addition, we need to implement the communication to and from
the process. The output is done using StdOut. However, child processes
share their StdOut file descriptor with their parent process. To identify the
output of each individual process, we add the process id to every print state-
ment. To send inputs to an individual process, other unused user defined
POSIX signals are used, which could be sent to a specific process.

Although forking is in principle an efficient technique, we ran into several
issues when trying to implement this technique in practice. Unfortunately it
doesn’t work if the SUL is multi-threaded and it might also give problems
with open file handlers, which can cause a crash of the whole SUL after a
fork operation. So it cannot be applied in most real-life situations. Ideally
forking could be combined with virtualization technology (such as VirtualBox
or QEMU) by forking instances of virtual machines so that it works with
just about any software and is also very fast, but we didn’t manage to get
that working due to these reasons. Nevertheless, we managed to implement
this forking technique and learn the same simple model from the Bounded
Retransmission protocol as we did with VirtualBox in section 9.1.1. In this
case it gives a much greater speed improvement than DMTCP.

baseline with Forking
#MQ 545 545

Time MQ (s) 4020 2111
#EQ 504 504

Time EQ (s) 3913 443
Speed compared to baseline 1.00 3.11

9.1.3 DMTCP combined with QEMU

The virtualization software QEMU is an alternative to VirtualBox. It could
run a SUL within a virtual Windows,Linux,BSD,etc environment. Therefore
it is a generic solution. QEMU could be used in combination with DMTCP.
Instead of using the built-in support of the virtualization software, DMTCP is
used to create and restore checkpoints. According to [34] creating a snapshot
(even including a guest filesystem and 1GB of allocated RAM) could be done
within 300ms and restarting a checkpoint could be done in about 100ms.
This is a order of magnitude faster than we have seen in our experiments
in section 9.1.1 with the built-in snapshot support of VirtualBox. Therefore

46

this approach would be ideal to have a solution that is both generic and fast.
However, we unfortunately did not manage to reproduce the claimed store
and restart times. So future research is needed to successfully implement
this approach.

9.1.4 CRIU and Docker

CRIU (Checkpoint/Restore In Userspace) [3] is a direct alternative for
DMTCP. Just like DMTCP it is able checkpoint Linux applications and
it works fully in userspace. Contrary to DMTCP checkpoints are not trans-
ferable to another machine.

Docker [5] is a tool that can create software containers in which Linux ap-
plications can run, without the overhead of full virtualization software like
VirtualBox. These containers are transferable to other machines. Docker on
its own does not have the functionality to save the RAM state of the running
applications within the container.

Both CRIU and Docker can be combined (see [9] and [6]) to have both the
ability to checkpoint running Linux applications and to have transferable
checkpoints.

Future research is needed to evaluate whether CRIU, possibly combined
with Docker, provide better results (less overhead, smaller checkpoints) than
DMTCP in speeding up LearnLib.

9.2 Alternative improvement techniques

In this thesis we proposed two improvement techniques, parallelization, ap-
plying checkpointing and the combination of both. Another technique can be
the reduction of the waiting time for already known quiescence. Sometimes
parts of the query have been executed before and therefore the outcome is
already known. To detect quiescence (the absence of an output) LearnLib
normally has to wait a certain time. If we know in advance that from a partic-
ular state a certain input will produce quiescence, we can reduce the waiting
time. This technique is easy to implement. It can work in combination with
parallelization. It could also be used in combination with checkpointing, ex-
cept when all queries are saved, since in that case there will be no execution
of parts of which the outcome is already known.
Nevertheless this technique is tricky, because there should still be enough

47

time for the SUL to go internally to the next state. If only a single transi-
tion would take longer than the waiting time, even during the execution of
thousands of inputs, LearnLib probably will crash or the learned model will
be incorrect. Therefore we decided not to use this technique in this thesis.

9.3 Alternative equivalence oracles

In this thesis we have only used as the random words equivalence oracle. But
our proposed improvement techniques can also work with other equivalence
oracles, such as the W-method [32], the Wp-method [33] or novel algorithms
based on distinguishing strings [43] or a user log metric [47].

Checkpointing can be used with such alternative equivalence oracles without
modification of any source code. Parallelization requires some modifications
to the code of the equivalence oracle. The queries should be divided in sets
that can be executed in parallel and the execution of all parallel instances
should end when a counter example is found.

10 Future research

10.1 Compression

As mentioned earlier, we would like to have as tiny checkpoints as possible.
This would lead to faster saving and restoring of states (in many cases the
disk transfer rate is the bottleneck) and also to less required disk space.
Using compression we could reduce the size of checkpoints. DMTCP has
built-in support for gzip, but compressing and decompressing the checkpoints
requires so much CPU time it only reduces the execution speed. As an
alternative a much faster compression algorithm could be implemented such
as Snappy[14] or QuickLZ[12].

To get even better compression, the fact that most checkpoints are very
similar could be used. For example a delta compression technique could be
implemented in which only the differences between the checkpoint to be made
and the initial checkpoint are stored (This initial checkpoint is then ideally
stored on a very fast storage device such as a RAM disk).

A quick test using Xdelta3 [19], which is an implementation of such a delta

48

compression technique, shows that huge compression ratios of above 99.9%
are possible.

However there still will be a trade-off between the extra CPU time the com-
pression and decompression takes and the benefits of having smaller check-
points. Compression could be done in parallel to improve the compression
speed, however, it is likely to be more efficient to spend the parallel CPU
time on the execution of multiple instances of the SUL.

10.2 Deleting saved states

Suppose there is a node r in the result trie 4.1 that has a corresponding
checkpoint. If at a certain point all possible direct child nodes also have
a checkpoint, then we are sure that the checkpoint of node r will not be
used any more. This is because the algorithm 2 that selects which check-
point should be reused during the execution of new query always selects the
checkpoint for which the longest possible part of the query has already been
executed. At the time it is known that a certain checkpoint will not be reused
any more, the checkpoint can be deleted to save disk space. The deleting
operation will just take additional time, which is not useful, but if the used
disk to store the checkpoints is relatively small, the regained disk space can
be useful to save additional checkpoints on the same disk.

10.3 Saving states of partially executed queries

We have only looked at the saving states after executing complete member-
ship queries in this research. However in some cases it might be useful to
save also some states after the partial execution of queries. Many of the exe-
cuted membership queries are extensions of previous queries, i.e. the partially
executed part has already been a complete previously executed query. How-
ever, that is not the case with equivalence queries, those randomly generated
queries are not based upon each other, so a partially executed equivalence
query might not have been executed before. Since a partial executed query
is shorter than the complete query, the chance that it can be reused will be
larger. Therefore it might be beneficial to save the state of some of those
partial executed equivalence queries.

49

10.4 Just-In-Time determination of saving check-
points

We have seen in section 2.2 and 3.1 that it is likely that many membership
queries have to be executed at the same time. Each time there is a set
of membership queries which can be executed independently of each other.
Instead of determining in advance which membership queries should be saved,
it could also be determined just-in-time at the moment that the queries of a
set are known. At that moment a strategy can be used that only saves the
states of those queries which can be reused as much as possible within that
set.
For example, see the following set of five queries

query potential reuse count
start button 4
start button → coffee button 0
start button → start button 2
start button → start button → coffee button 0
start button → start button → start button 0

For each query of this set the potential reuse count within the set is calcu-
lated. A possible strategy is to save only those queries which have a potential
reuse count higher than a certain threshold value. If for example a threshold
value of 3 is chosen only the state after executing the first query will be saved.

Of course we don’t know which queries can be reused during subsequently
sets. Thus this strategy may not always select the overall best checkpoints to
be saved, but it can guarantee that checkpoints are reused at least a certain
amount of times (the specified threshold value). So there will not be wasted
any more time on saving checkpoint that are never going to be reused.

This strategy could be extended by the knowledge of equivalence queries.
With the used random words algorithm, there could be determined in ad-
vance which queries will be used (by generating the random queries at the
start of the learning process; before any membership/equivalence query has
been executed by the SUL). This will improve the accuracy of the overall es-
timated reuse count and contribute to selecting the overall best checkpoints
to be taken.

Note that applying parallelism in combination with this strategy might not
be ideal, because if parallelism is applied the order in which queries are
executed can vary.

50

10.5 Prefetching and non-blocking saving of states

In the current situation the process of executing a query, saving the corre-
sponding state and restoring a state and executing the remaining part of
the next query is executed sequentially. Two optimizations can be made:
prefetching and non-blocking saving of states.

We have seen in section 2.2 and 3.1 that it is likely that many member-
ship queries have to be executed at the same time. Thus, in the case of
membership queries, there is known shortly in advance that a query will be
executed. In section 2.3 we have seen that all equivalence queries are gen-
erated in advance, so they are also known in advance. With the concept
of prefetching this information could be used. The principle of prefetching
is shown in figure 16(b). Instead of loading a checkpoint at the time it is
needed, the checkpoint could already be loaded during the execution of the
previous query.

The principle of non-blocking saving of states is shown in figure 16(c). The
next query could already be executed during the saving of a checkpoint,
unless the next query requires the checkpoint that is made at the same time.

Both prefetching and non-blocking saving of states could be combined as
shown in figure 16(d).

This is once more a kind of parallelism. But since it is likely that saving and
restoring of states are mainly disk intensive, and the SUL is mainly CPU
intensive, we expect that the saving and restoring of checkpoints would not
hinder the parallel execution of the SUL much.

11 Conclusion

In this thesis we researched how the execution speed of LearnLib could be
improved. We have elaborated extensively two techniques, namely paral-
lelization and a novel approach based on checkpoints. We have seen of both
techniques that they can be beneficial to speedup LearnLib in theory. We
have chosen the relatively new, but promising tool DMTCP to implement
the concept of checkpointing in practice. It turned out that also in practice,
using three on real life based software implementations, both techniques can
be very successful in improving the speed. Parallelization is almost always
very beneficial. Checkpointing using DMTCP can be very beneficial when

51

Figure 16: (a) Standard situation (b) Prefetching applied (c) Non-blocking
saving of states applied (d) both prefetching and non-blocking saving of states
applied

52

applied on a slowly responding SUL, however if applied on a fast respond-
ing SUL or used with a wrongly selected strategy to reduce the number of
checkpoints it can slow down the learning process.
The highest speedups were achieved by combining parallelization with check-
pointing, by which we achieved speed improvements of even up to about 300
times.
In addition, we have provided several ideas for improvements that could be
worked out in future research, so hopefully even greater speed improvements
are made possible in the future.

53

References

[1] Bart’s Preinstalled Environment (BartPE) bootable live windows
cd/dvd http://www.nu2.nu/pebuilder/.

[2] Client Hyper-V http://go.microsoft.com/fwlink/p/?LinkId=

298966.

[3] Criu - checkpoint/restore in userspace http://www.criu.org/.

[4] DMTCP frequently asked questions http://dmtcp.sourceforge.net/
FAQ.html.

[5] Docker - build, ship, and run any app, anywhere https://www.docker.
com/.

[6] How to checkpoint and restore a docker container. http://criu.org/
Docker.

[7] JamVM - a compact java virtual machine http://jamvm.sourceforge.
net/.

[8] Javascript implementation of tic-tac-toe - stephen ostermiller - http:

//ostermiller.org/calc/tictactoe.html.

[9] Kubernetes blog - how did quake demo from dock-
ercon work http://blog.kubernetes.io/2015/07/

how-did-quake-demo-from-dockercon-work.html.

[10] Linux programmerś manual - fork(2) http://man7.org/linux/

man-pages/man2/fork.2.html.

[11] Open-source learnlib: a from-scratch re-implementation of the former
closed-source version http://learnlib.de/.

[12] QuickLZ - fast compression library for C, C# and Java http://www.

quicklz.com/.

[13] Selenium - web browser automation http://www.seleniumhq.org/.

[14] Snappy - a fast compressor/decompressor https://github.com/

google/snappy.

[15] Socat - multipurpose relay http://www.dest-unreach.org/socat/.

54

http://www.nu2.nu/pebuilder/
http://go.microsoft.com/fwlink/p/?LinkId=298966
http://go.microsoft.com/fwlink/p/?LinkId=298966
http://www.criu.org/
http://dmtcp.sourceforge.net/FAQ.html
http://dmtcp.sourceforge.net/FAQ.html
https://www.docker.com/
https://www.docker.com/
http://criu.org/Docker
http://criu.org/Docker
http://jamvm.sourceforge.net/
http://jamvm.sourceforge.net/
http://ostermiller.org/calc/tictactoe.html
http://ostermiller.org/calc/tictactoe.html
http://blog.kubernetes.io/2015/07/how-did-quake-demo-from-dockercon-work.html
http://blog.kubernetes.io/2015/07/how-did-quake-demo-from-dockercon-work.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://learnlib.de/
http://www.quicklz.com/
http://www.quicklz.com/
http://www.seleniumhq.org/
https://github.com/google/snappy
https://github.com/google/snappy
http://www.dest-unreach.org/socat/

[16] Software bug contributed to blackout http://www.securityfocus.

com/news/8016.

[17] VirtualBox https://www.virtualbox.org/.

[18] VMware products http://www.vmware.com/products/.

[19] xdelta - open-source binary diff, differential compression tools, vcdiff (rfc
3284) delta compression http://xdelta.org/.

[20] FD Aarts. Tomte: bridging the gap between active learning and real-
world systems. 2014.

[21] Fides Aarts, Joeri De Ruiter, and Erik Poll. Formal models of bank cards
for free. In Software Testing, Verification and Validation Workshops
(ICSTW), 2013 IEEE Sixth International Conference on, pages 461–
468. IEEE, 2013.

[22] Fides Aarts, Falk Howar, Harco Kuppens, and Frits Vaandrager. Al-
gorithms for inferring register automata. In Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Master-
ing Change, pages 202–219. Springer, 2014.

[23] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of
infinite-state communication protocols using regular inference with ab-
straction. In Testing Software and Systems, pages 188–204. Springer,
2010.

[24] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits W Vaandrager, and
Sicco Verwer. Learning and testing the bounded retransmission protocol.
In ICGI, volume 21, pages 4–18. Citeseer, 2012.

[25] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and ab-
straction of the biometric passport. In Leveraging Applications of Formal
Methods, Verification, and Validation, pages 673–686. Springer, 2010.

[26] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[27] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent
checkpointing for cluster computations and the desktop. In Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Sympo-
sium on, pages 1–12. IEEE, 2009.

55

http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016
https://www.virtualbox.org/
http://www.vmware.com/products/
http://xdelta.org/

[28] Arstechnica. Report: Airbus transport crash caused
by wipe of critical engine control data http://

arstechnica.com/information-technology/2015/06/

report-airbus-transport-crash, 2015.

[29] Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar.
Reusing system states by active learning algorithms. In Eternal Systems,
pages 61–78. Springer, 2012.

[30] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John
Hakansson, Paul Petterson, Wang Yi, and Martijn Hendriks. Uppaal
4.0. In Quantitative Evaluation of Systems, 2006. QEST 2006. Third
International Conference on, pages 125–126. IEEE, 2006.

[31] Axel Belinfante. Jtorx: A tool for on-line model-driven test derivation
and execution. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 266–270. Springer, 2010.

[32] TS Chow. Testing software design modeled by finite-state ma-
chines.(1978). IEEE Trans, on Soft. Engi, pages 178–187.

[33] Susumu Fujiwara, Gregor V Bochmann, Ferhat Khendek, Mokhtar
Amalou, and Abderrazak Ghedamsi. Test selection based on finite state
models. Software Engineering, IEEE Transactions on, 17(6):591–603,
1991.

[34] Rohan Garg, Komal Sodha, and Gene Cooperman. A generic
checkpoint-restart mechanism for virtual machines. arXiv preprint
arXiv:1212.1787, 2012.

[35] John L Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[36] Ramon Janssen, Frits W Vaandrager, and Sicco Verwer. Learning a
state diagram of tcp using abstraction. Bachelor thesis, ICIS, Radboud
University Nijmegen, page 12, 2013.

[37] Phil Koopman. A case study of toyota unintended acceleration and
software safety. Presentation. Sept, 2014.

[38] Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya, Yoshinori
Tanabe, and Mitsuharu Yamamoto. Model checking distributed systems
by combining caching and process checkpointing. In Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software
Engineering, pages 103–112. IEEE Computer Society, 2011.

56

http://arstechnica.com/information-technology/2015/06/report-airbus-transport-crash
http://arstechnica.com/information-technology/2015/06/report-airbus-transport-crash
http://arstechnica.com/information-technology/2015/06/report-airbus-transport-crash

[39] James D McCaffrey. Software Testing: Fundamental Principles and
Essential Knowledge. BookSurge Publishing, 2009.

[40] Oliver Niese. An integrated approach to testing complex systems. PhD
thesis, Universität Dortmund, 2003.

[41] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A li-
brary for automata learning and experimentation. In Proceedings of the
10th international workshop on Formal methods for industrial critical
systems, pages 62–71. ACM, 2005.

[42] Wouter Smeenk. Applying automata learning to complex industrial soft-
ware. Master’s Thesis, Radboud University Nijmegen, 2012.

[43] Rick Smetsers, Michele Volpato, Frits Vaandrager, and Sicco Verwer.
Bigger is not always better: on the quality of hypotheses in active au-
tomata learning. In The 12th International Conference on Grammatical
Inference, pages 167–181, 2014.

[44] Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active
automata learning from a practical perspective. In Formal Methods for
Eternal Networked Software Systems, pages 256–296. Springer, 2011.

[45] Max Tijssen, Erik Poll, and Joeri de Ruiter. Automatic modeling of
SSH implementations with state machine learning algorithms. Bachelor
thesis, ICIS, Radboud University Nijmegen (June 2014), 2014.

[46] The New York Times. F.A.A. Orders fix for possible power loss
in boeing 787 http://www.nytimes.com/2015/05/01/business/

faa-orders-fix-for-possible-power-loss-in-boeing-787.html,
2015.

[47] Petra Van den Bos. Enhancing active automata learning by a user log
based metric. Master’s Thesis, Radboud University Nijmegen, 2015.

[48] Ana-Maria Visan, Kapil Arya, Gene Cooperman, and Tyler Denniston.
Urdb: a universal reversible debugger based on decomposing debugging
histories. In Proceedings of the 6th Workshop on Programming Lan-
guages and Operating Systems, page 8. ACM, 2011.

57

http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html

Appendix

A Comprehensive measurement results

A.1 Baseline

Bounded Retransmission:
#MQ 27215

Time MQ (s) 2739
#EQ 10410

Time EQ (s) 1536

Tic-Tac-Toe:
#MQ 20253

Time MQ (s) 17069
#EQ 5590

Time EQ (s) 6634

Engine State Machine:
#MQ 4848

Time MQ (s) 3864
#EQ 2580

Time EQ (s) 2546

A.2 Parallelization

Bounded Retransmission:
parallel instances: 2 4 8 16 32 60

#MQ 27215 27215 27375 27215 27375 27055
Time MQ (s) 1520 812 443 245 123 66

#EQ 10823 11653 12536 11613 13539 15190
Time EQ (s) 796 430 233 108 68 43

Speed compared to baseline 1.85 3.44 6.32 12.11 22.38 39.22

58

Tic-Tac-Toe:
parallel instances: 2 4 8 16 32 60

#MQ 19785 22567 21937 22819 20487 20721
Time MQ (s) 9115 5630 2690 1453 660 375

#EQ 5412 5700 5553 6157 6189 9275
Time EQ (s) 3313 1752 881 492 266 249

Speed compared to baseline 1.91 3.21 6.64 12.19 25.60 37.99

Engine State Machine:
parallel instances: 2 4 8 16 32 60

#MQ 3971 4115 4187 1990 6313 4302
Time MQ (s) 1900 1046 577 125 244 88

#EQ 2093 2174 2435 2071 4370 6463
Time EQ (s) 1033 542 306 136 179 167

Speed compared to baseline 2.19 4.04 7.26 24.56 15.15 25.14

A.3 DMTCP

A.3.1 Strategy 1: limiting checkpoints using a linear function

Bounded Retransmission:
query size that is a multiple of: 1 2 3 4 5 10 20

#MQ 27215 27215 27215 27215 27215 27215 27215
Time MQ (s) 3174 2224 2046 2134 2107 2656 3089

#EQ 10410 10410 10410 10410 10410 10410 10410
Time EQ (s) 1401 1440 1432 1628 1686 1685 1684
#checkpoints 24594 12008 8130 6717 4734 2503 30

Speed compared to baseline 0.93 1.17 1.23 1.14 1.13 0.98 0.90

Tic-Tac-Toe:
query size that is a multiple of: 1 2 3 4 5 10 20

#MQ 20253 20253 20253 20253 20253 20253 20253
Time MQ (s) 13672 11721 9613 10730 19681 18229 18771

#EQ 5590 5590 5590 5590 5590 5590 5590
Time EQ (s) 3878 4973 4366 5161 7325 7084 7225
#checkpoints 18142 8071 4532 4370 8179 313 1

Speed compared to baseline 1.35 1.42 1.70 1.49 0.88 0.94 0.91

59

Engine State Machine:
query size that is a multiple of: 1 2 3 4 5 10 20

#MQ 4848 4848 4848 4848 4848 4848 4848
Time MQ (s) 1635 1399 1545 1876 2170 2137 2254

#EQ 2580 2580 2580 2580 2580 2580 2580
Time EQ (s) 1140 1190 1296 1434 1748 1525 1528
#checkpoints 3998 1956 1346 996 870 296 7

Speed compared to baseline 2.31 2.48 2.26 1.94 1.64 1.75 1.69

A.3.2 Strategy 2: limiting checkpoints using an upper limit

Bounded Retransmission:
query size that is max: 1 2 3 4 5 10 20

#MQ 27215 27215 27215 27215 27215 27215 27215
Time MQ (s) 2939 2664 2500 2422 2287 2719 3174

#EQ 10410 10410 10410 10410 10410 10410 10410
Time EQ (s) 1590 1509 1419 1383 1372 1395 1398
#checkpoints 11 111 912 2206 3881 16732 24584

Speed compared to baseline 0.94 1.02 1.09 1.12 1.17 1.04 0.94

Tic-Tac-Toe:
query size that is max: 1 2 3 4 5 10 20

#MQ 20253 20253 20253 20253 20253 20253 20253
Time MQ (s) 15499 11654 9357 9046 11844 14827 13672

#EQ 5590 5590 5590 5590 5590 5590 5590
Time EQ (s) 6085 5150 4483 4167 5637 4244 3878
#checkpoints 10 91 820 4563 12402 17015 18142

Speed compared to baseline 1.10 1.41 1.71 1.79 1.36 1.24 1.35

Engine State Machine:
query size that is max: 1 2 3 4 5 10 20

#MQ 4848 4848 4848 4848 4848 4848 4848
Time MQ (s) 2463 1939 1757 1764 1786 1817 1635

#EQ 2580 2580 2580 2580 2580 2580 2580
Time EQ (s) 1652 1310 1209 1172 1194 1171 1140
#checkpoints 7 43 154 407 774 2514 3998

Speed compared to baseline 1.56 1.97 2.16 2.18 2.15 2.15 2.31

60

A.3.3 Strategy 3: limiting checkpoints using a lower limit

Bounded Retransmission:
query size that is min: 1 2 3 4 5 10 20

#MQ 27215 27215 27215 27215 27215 27215 27215
Time MQ (s) 3245 3272 3339 3496 4091 3027 3146

#EQ 10410 10410 10410 10410 10410 10410 10410
Time EQ (s) 1395 1419 1474 2385 1735 1705 1710
#checkpoints 24594 24584 24484 23683 22389 10336 40

Speed compared to baseline 0.92 0.91 0.89 0.73 0.73 0.90 0.88

Tic-Tac-Toe:
query size that is min: 1 2 3 4 5 10 20

#MQ 20253 20253 20253 20253 20253 20253 20253
Time MQ (s) 13672 13070 13690 15097 20965 17956 18771

#EQ 5590 5590 5590 5590 5590 5590 5590
Time EQ (s) 3878 3899 4015 5051 7767 7253 7225
#checkpoints 18142 18133 18052 17323 13580 1440 1

Speed compared to baseline 1.35 1.40 1.34 1.18 0.82 0.94 0.91

Engine State Machine:
query size that is min: 1 2 3 4 5 10 20

#MQ 4848 4848 4848 4848 4848 4848 4848
Time MQ (s) 1635 1730 1632 1745 1764 1891 2254

#EQ 2580 2580 2580 2580 2580 2580 2580
Time EQ (s) 1140 1186 1281 1403 1502 1523 1528
#checkpoints 3998 3992 3956 3845 3592 1774 7

Speed compared to baseline 2.31 2.20 2.20 2.04 1.96 1.88 1.69

A.3.4 Strategy 4: limiting checkpoints using an exponential func-
tion

Bounded Retransmission:
#MQ 27215

Time MQ (s) 2114
#EQ 10410

Time EQ (s) 1479
#checkpoints 4784

Speed compared to baseline 1.19

61

Tic-Tac-Toe:
#MQ 20253

Time MQ (s) 9401
#EQ 5590

Time EQ (s) 4582
#checkpoints 4146

Speed compared to baseline 1.70

Engine State Machine:
#MQ 4848

Time MQ (s) 1760
#EQ 2580

Time EQ (s) 1235
#checkpoints 769

Speed compared to baseline 2.14

A.4 Combining parallelism with checkpointing

Here 60 parallel SULs are combined with checkpointing using the exponential
function (strategy 4).

Bounded Retransmission:
#MQ 27055

Time MQ (s) 185
#EQ 15197

Time EQ (s) 104
#checkpoints 4372

Speed compared to baseline 14.79

Tic-Tac-Toe:
#MQ 22945

Time MQ (s) 376
#EQ 9785

Time EQ (s) 205
#checkpoints 4430

Speed compared to baseline 40.80

62

Engine State Machine:
#MQ 4380

Time MQ (s) 59
#EQ 6784

Time EQ (s) 93
#checkpoints 601

Speed compared to baseline 42.17

A.5 Slowing down the SULs

Bounded Retransmission:
The bounded Retransmission Protocol simulation is slowed down so that a
reset takes 2000ms (instead of 20ms) and a step takes 20ms (instead of 10ms):

baseline DMTCP parallelism both combined
#MQ 27215 27215 26895 27055

Time MQ (s) 53638 2611 967 181
#EQ 10410 10410 15187 14990

Time EQ (s) 23446 2382 642 78
#checkpoints N/A 4784 N/A 4372

Speed compared to baseline 1.00 15.44 47.91 297.62

Tic-Tac-Toe:
The Tic-Tac-Toe game is slowed down so that a reset takes 5000ms
(instead of 226ms) and a step takes 500ms (instead of 163ms):

baseline DMTCP parallelism both combined
#MQ 20253 20253 22945 22945

Time MQ (s) 142236 20646 3484 1064
#EQ 5590 5590 9259 10208

Time EQ (s) 58688 22145 2274 993
#checkpoints N/A 4146 N/A 4429

Speed compared to baseline 1.00 4.70 34.89 97.68

63

Engine State Machine:
The Engine State Machine simulation is slowed down so that a reset takes
2000ms (instead of 500ms) and a step takes 100ms (instead of 50ms):

baseline DMTCP parallelism both combined
#MQ 4848 4848 4380 4380

Time MQ (s) 11720 2813 254 93
#EQ 2580 2580 6469 7083

Time EQ (s) 7620 2088 499 153
#checkpoints N/A 769 N/A 596

Speed compared to baseline 1.00 3.95 25.68 78.62

64

	Introduction
	Research question
	Possible improvement techniques
	Proposed improvement techniques
	Saving and restoring states

	Preliminaries
	Mealy machines
	Learning algorithm
	Equivalence oracle

	Applying parallelism
	Membership queries
	Equivalence queries
	Theoretical benefit

	Saving and restoring states
	Algorithm
	Theoretical benefit
	Selection of states which should be saved

	Implementing saving and restoring software states in practice
	Evaluation method
	Experiments
	Bounded Retransmission Protocol
	Tic-Tac-Toe
	Simulation of the Engine State Machine

	Learning set-up
	Test run selection

	Results
	Parallelization
	DMTCP
	Strategy 1: limiting checkpoints using a linear function
	Strategy 2: limiting checkpoints using an upper limit
	Strategy 3: limiting checkpoints using a lower limit
	Strategy 4: limiting checkpoints using an exponential function
	The best performing strategy

	Combining parallelism with checkpointing
	Slowing down the SULs

	Evaluation
	Alternative Techniques
	Alternatives to DMTCP
	Virtualization
	Forking
	DMTCP combined with QEMU
	CRIU and Docker

	Alternative improvement techniques
	Alternative equivalence oracles

	Future research
	Compression
	Deleting saved states
	Saving states of partially executed queries
	Just-In-Time determination of saving checkpoints
	Prefetching and non-blocking saving of states

	Conclusion
	Comprehensive measurement results
	Baseline
	Parallelization
	DMTCP
	Strategy 1: limiting checkpoints using a linear function
	Strategy 2: limiting checkpoints using an upper limit
	Strategy 3: limiting checkpoints using a lower limit
	Strategy 4: limiting checkpoints using an exponential function

	Combining parallelism with checkpointing
	Slowing down the SULs

