
C   
   

Author
Tim Steenvoorden, BSc

Supervisor
prof. dr. Erik Barendsen

Second Assessor
dr. Sjaak Smetsers

…

field 1

field 2

field 3
fundamental

idea

fundamental
idea

past present future

 field x

high intellectual level

low intellectual level

fundamental
idea

context 1

…

context 2

fundamental
idea

Department of Computer Science
Faculty of Science
Radboud University Nijmegen
August 



A

Computer science as a subject in high schools is a hot topic. Many countries are
looking for methods to teach computing principles to children as soon as possible.
Finding a good way to do this is a difficult task which every country solves in its
own way. In this thesis we present tree main contributions to computer science
education at (junior) high schools.

Firstly we show a quantitative and qualitative comparison of the computer sci-
ence curricula and guidelines from France, England, the United States and the
Netherlands. Using categorisation of concepts in fields of the discipline, we ana-
lyse the content knowledge of each document.

Secondly we exhibit a different angle towards computer science curriculum
contents based on the notion of fundamental ideas. A curriculum based on fun-
damental ideas makes sure students can better relate topics and create a strongly
connected cognitive structure on the subject.

Thirdlywe develop a conceptual framework, based on fundamental ideas, to em-
bed computer science education within . Curricula based on this framework
make sure to fit well into (junior) high school  education and incorporate all
fundamental ideas of computer science.The process towards such a framework un-
covers which fundamental ideas in computer science are similar to  practices
and principles and which are specific for the discipline.





A

Doing research is like wandering a big city you may have heard about, but never
have visited before. It has beautiful lanes, broad promenades and sky-high build-
ings. But there are also may narrow pathways, ending in vain, and deserted dark
streets nobody seems to live.Thankfully there is always your supervisor, Erik Barend-
sen, standing on the corner of a street with a lantern when the sun already set. He
is always willing to lead you through the dark alleys and help you find your way in
that new neighbourhood you would like to explore. Also, when you get caught up
in a big library with lot of interesting (but not related) things, he is there to hurry
you up. The time and patience Erik devoted to me and my work are admirable.

In such a big city, you meet many new people. Jos Tolboom is one of them.
Together with Erik, he gave me the opportunity to enter the city’s laboratories:
join the renewal commission for high school computer science education in the
Netherlands. In this laboratory new and vibrant experiments contributed to this
thesis. Discussion and feedback from all participants in the commission helpedme
to formmy ideas and reflect onmy thoughts. Next to this, Jos gaveme the chance to
present preliminary results of my expedition at the  conference in Enschede.

Sometimes big cities get you caught up in new adventures, which require your
full attention. Luckily, Rinus Plasmeijer put trust in me and allowed me to split
time across two projects. He had patience to stand by till this thesis was fully com-
pleted. Sjaak Smetsers quickly dived into this adventure and shined his light upon
my work.

Fortunately, you can always meet friends that are on the same adventure.Work-
ing together at the department of party businesses was an experience on its own.
In the weekends, study centre Multatuli and monastery Westerhelling were a wel-
come change in habitat.The friends you encounter at these and other places always
had time for a good conversation and a nice cup of tea. Also, I am really grateful

 As we used to call our own, trusted place in this vibrant city.



for the walks we made through the parks and the woods surrounding the city. To-
gether you can watch the sun rising above this intriguing town of research you are
not done with yet.

Tim Steenvoorden
Nijmegen, July 



C

A

A 

 I 

 K  
   

. Theoretical background 
.. Levels of knowledge 
.. Knowledge areas in computer science 
.. International curricula and guidelines 

. Method 
.. Categorisation of  fields 
.. Coding concepts in curricula 
.. Qualitative analysis of curricula 

. Results 
. Analysis 

.. Data 
.. Algorithms 
.. Engineering 
.. Society 
.. Rest 
.. Number of quotations 

. Conclusion 

 F      
. Understanding fundamental ideas 

.. Applicability between and inside fields 



.. Transfer to new situations 
.. In context of knowledge 

. Criteria for fundamental ideas 
.. Criterion of width 
.. Criterion of depth 
.. Criterion of sense 
.. Criterion of time 
.. Overview 

. The quest for fundamental ideas 
.. Cross-computing tools and techniques 
.. Catalogue of fundamental ideas 
.. Central concepts 
.. Overview 

 T    C, S,
T, E  M 

. A framework for - science education 
.. Goals and foundations 
.. Three dimensions 
.. Fundamental ideas 
.. Place of computer science 

. Applicability of practices and principles to computer science 
.. Cross-cutting practises 
.. Cross-cutting principles 

. Applicability of fundamental ideas to practices and principles 
. Embedding remaining fundamental ideas of computer science 

.. Cross-cutting fundamental ideas 
.. Disciplinary fundamental ideas 
.. Overview 

 C 

 L    

 L      

R 




I

Teaching computer science at school is a hot topic. All around the world teachers,
scientists and politicians are thinking about how to teach and what to teach to
students at high school, middle school and primary school. In the Netherlands
there is also an ongoing movement towards a new computer science curriculum at
high school level.

Fortunately, the Netherlands are not alone. We can make use of already pro-
duced curricula in other countries and their approach to fundamental concepts,
skills and attitudes. It is important to know how different countries approach the
development of their computer science curriculum. This background can help oth-
ers in forming their own curriculum on computer science. To get a good overview
of all developments abroad, we need a structured instrument to compare and ana-
lyse them.

The updated Dutch curriculum must conform to a couple of important guide-
lines. These guidelines are imposed by the Dutch government. First of all it should
be modular in its design. The modularity makes sure the subject can be taken by
students in all four tracks provided by Dutch high schools. Interdisciplinarity is an-
other a design objective. Teachers should be encouraged to work together with de-
partments like biology, physics, arts or economics. A further goal is sustainability.
Computer science is a young and fastmoving discipline. Currently used techniques
can be obsolete by ten years. Forcing students to learn possibly obsolete knowledge
would be unfortunate. Therefore it is important to focus on fundamental notions
and ideas.

It is these fundamental notions and ideas that make creating a computer sci-
ence curriculum a difficult and defiant operation. Computer science is a new dis-
cipline, but computer science teaching methods are even younger. The questions
arise what the fundamental ideas in computer science are. Furthermore, how can
we design a curriculum around it? Next to providing the current state of affairs on
(junior) high school computer science curricula and guidelines, we give direction
in the usage of fundamental ideas in curriculum design.

I



S   

In the next chapter, Chapter , we study existing computer science curricula for
high schools and their contents. Using a classical division in knowledge areas, we
investigate the content knowledge of the documents and how it compares. After
a quantitative analysis of contained concepts, we dive deeper into the documents
giving an qualitative analysis of notable knowledge areas.

From Chapter  we take a different approach. There, we take notice of funda-
mental ideas and what criteria they have to satisfy. Applying this theory to com-
puter science, we acquire a list of fundamental ideas.

Chapter  explores a way to use these fundamental ideas in the context of cur-
riculum development. We study a contemporary framework for high school 
subjects. After discussing the structure of the framework, we examine the applica-
bility of it to the field of computer science and the fundamental ideas already incor-
porated in the framework. Subsequently, we propose to extend this framework in
way it incorporates computer science as well as the original science and engineer-
ing disciplines.

In the last chapter, Chapter , we conclude with an overview of the contribu-
tions of this thesis.




K  
  

In this chapterwe study the declarative knowledge of four international computer sci-
ence curricula and guidelines. In comparing the different international documents,
we rely on the next research question:

• How do international curricula and guidelines differ on declarative knowledge?

After introducing some general concepts about knowledge in §., we describe a
method to analyse curricula and guidelines in §..We comeupwith an approach to
code and classify concepts, based on the knowledge areasdescribed by theACM/IEEE.
The results of this comparison will be presented in §. and further analysed in §..
We will end this chapter with a conclusion in §..

. T 

.. Levels of knowledge

From a cognitivistic viewpoint, knowledge is not one uniform category. It can be
divided into three levels:declarative knowledge,procedural knowledge andmetacog-
nitive knowledge (Dillon, ). In the definition belowwe give a short descriptions
of each kind of knowledge.

D . Levels of knowledge Knowledge is split into three levels:

 Declarative knowledge
Declarative knowledge is about definitions, formulas, laws, and phenom-
ena. This kind of knowledge is easily retrieved from knowledge sources
like books and the internet. Declarative knowledge is comparatively easy
to learn but hard to remember when not used actively.

K     



 Procedural knowledge
This is the knowledge of know-how. These are method and procedures
which can range from very specific (cycling), to very general (problem
solving). Learning methods and procedures takes more time and is more
difficult than learning declarative knowledge

 Metacognitive knowledge
Metacognitive knowledge is knowledge about the way we learn and think.
This is sometimes referred to as knowledge of knowledge. Planning, eval-
uating and monitoring are three essential parts of metacognitive regula-
tion (Schraw, ). Every time we think about our learning, we are using
and developing metacognitive knowledge. Metacognition is a fairly new
research discipline in educational sciences and psychology.

Declarative knowledge is sometimes called descriptive knowledge or proposi-
tional knowledge. The OECD () uses the term content knowledge. Procedural
knowledge is occasionally referred to as imperative knowledge.

The taxonomies of Bloom (Bloom, ; Krathwohl, ) and De Block (De
Block andHeene, ) alsomake these distinctions in knowledge levels, although
more elaborate. In case of Krathwohl (), facts are added to distinct them from
concepts. De Block andHeene () propose an evenmore fine grained structure,
adding not only facts but also relations and structures. For our purpose the three
levels presented in . and Figure . are sufficient.

knowledge
procedural
- skills
- methods

metacognitive
- attitudes
- strategies context

declarative
- facts
- concepts

F . From a cognitivistic viewpoint, knowledge can be divided in
three levels: declarative knowledge, procedural knowledge and metacogni-
tive knowledge. Connected to each level are different knowledge objects such
as concepts, skills and attitudes. Knowledge as a whole is learned and ap-
plied in a context.

In the last decade, it becomes more and more common to take the context of
knowledge into account (Bruning and Michels, ). This idea emphasises that

T 



knowledge does not stand on its own. It is always taught and used under certain
conditions or in a specific environment. Boersma, Eijkelhof, van Koten, Siersma,
and van Weert () describe a context as ‘the situation or problem statement
that gives sense to students engaged in learning.’

Each level of knowledge connects to different knowledge objects. As show in
Figure . these are amongst others concepts, skills and attitudes. Throughout this
text we will use these therms to designate knowledge objects from each level.

.. Knowledge areas in computer science

From  till now the  and the  created several curriculum guidelines in
computer science, computer engineering, information systems, information tech-
nology and software engineering. The latest iteration from  defines a body of
knowledge for computer science, organised into a set of  knowledge areas. Each
knowledge area contains topics and learning outcomes and topics are identified as
either core or elective. These guidelines are mostly used by universities to design a
broad undergraduate computer science curriculum. We use the knowledge areas
of the / as a base categorisation for the whole discipline.

.. International curricula and guidelines

We analysed the content of  curricula and guidelines on computer science, all
from different countries, on the declarative knowledge they incorporate. The doc-
uments we study are from:

 France (Ministère de l’Éducation nationale, )
  (CAS Working Group, )
  (CSTA Standards Task Force, )
 The Netherlands (SLO, )

We include the Dutch curriculum for reference purposes. As stated in the pref-
ace, this thesis is written in the context of the renewal of the Dutch computer sci-
ence high school curriculum. Therefore it is helpful to compare the present Dutch
curriculum to newer curricula of surrounding countries and get a sense of the po-
sition of the Netherlands amidst them.

For this research the French and Dutch curricula had to be translated to Eng-
lish. The French curriculum was translated by an automatic translator, but during
coding activities constantly comparedwith the original (see also §..).TheDutch
curriculum was translated by the researcher.

In the next sections we shortly describe each curriculum, including the general
structure, the main goal and the intended grades. We will start each section with
a quote which characterises the curriculum.

 We will refer to these documents as curricula in the rest of this thesis for simplicity.
 Google Translate: https://translate.google.com/.

K     



C  France

Learn to read, write, count, reason, and program.
(Académie des Sciences, , page )

The opinion of the curriculum authors is that programming should be on par
with other standard skills learned during basic education like reading and writing.
The curriculum is developed for students in the last years of their high school ca-
reer (lycée, ages between  and  years old). It is build on four main pillars, each
representing a major area of computer science. The curriculum (Ministère de l’Éd-
ucation nationale, ) and the accompanied document (Académie des Sciences,
) use a slightly different nomenclature which we reflect in Table . below.

T . Nomenclature of the four main pillars of the French curricu-
lum as used by the curriculum itself (left column) and by the accompanied
document (right column).

Ministère de l’Éducation nationale () Académie des Sciences ()
Representation of information Data
Algorithms Algorithms
Languages and programming Languages
Hardware architectures Machines

The choice for these four pillars is motivated by Académie des Sciences ()
as follows. Algorithms are stated as the answer on questions that start with ‘How…’.
To materialise the concept of an algorithm, it has to be written in a language. This
language has to be understandable by both humans and machines. Machines on
their hand, execute instructions stated in a language and manipulate information.
This covers all the activities computer scientists deal with.

The curriculum is very compactly formulated in a table listing ‘knowledge’,
‘skills’ and ‘remarks’. Below we present the first two learning objectives of the sec-
tion ‘Representation of information’ to give a feeling on the formulation.

Knowledge Skills

Binary representation A computer is a Handle elementary
machine that operations on three
manipulates digital basic units: bit, byte,
values represented in word.
binary form.

Boolean operations Introduction to the Express simple logical
basic Boolean operations by
operations (and, or, not, combination of basic
exclusive-or) operators.

(Ministère de l’Éducation nationale, )

T 



C  

Just what is computer science, viewed as a school subject?
(CAS Working Group, , page i)

 divides its curriculum in  sections, which are:

• Algorithms
• Programs

• Data
• Computers

• Communication and
the Internet

These sectionsmostly corresponds to the pillars used in the French curriculum:
Machines is split across Computers and Communication and the Internet, and Lan-
guages corresponds to Programs.

The main goal is to develop a curriculum for the whole trajectory from the be-
ginning of primary school till the end of secondary school. Therefore the curricu-
lum differentiates learning objectives for  different levels, called key stages. As a
consequence, topics are repeated. They first appear in learning objectives aimed at
key stage  and get deepened later on for key stages ,  and .

The section on Data, for example, contains learning objectives about binary
switches to store information. Students from key stage , just have to understand
what they are and that a single switch encodes information:

• Computers use binary switches (on/off) to store information.
• Binary (yes/no) answers candirectly provide useful information (e.g. pres-

ent or absent), and be used for decision.
(CAS Working Group, , page )

At the end of the intended route the curriculum prescribes, students learn about
the problems and limitations binary representation imposes on the encodability of
information:

• Problems of using discrete binary representations:
− Quantization: digital representations cannot represent analogue sig-

nals with complete accuracy (e.g. a grey-scale picture may have ,
or , or more levels of grey, but always a finite number of discrete
steps)

− Sampling frequency: digital representations cannot represent contin-
uous space or time (e.g. a picture is represented using pixels, more or
fewer, but never continuous)

− Representing fractional numbers
(CAS Working Group, , page )

C  

Our lives depend upon computer systems and the people whomaintain them
to keep us safe […] (CSTA Standards Task Force, , page )

K     



The goal of this curriculum is to teach students knowledge and skills to thrive
an global information economy. Computer science spans business, science and en-
gineering and all these problems require thorough analysis, understanding and cre-
ativity. The curriculum is built on  strands:

• Computational thinking
Computing thinking is defined as ‘anapproach to solving problems in away that
can be implemented with a computer’ (Barr and Stephenson, , page ). It
enables students to better conceptualize, analyse and solve complex problems
and help them selecting and applying appropriate strategies and tools (CSTA
Standards Task Force, ). Algorithmic thinking is regarded as a part of com-
putational thinking.

• Collaboration
Teamwork, constructive criticism, project planning andmanagement, and team
communication are all considered necessary st century skills. Because of this
and its multiple usage in software engineering, collaboration receives its own
strand in this curriculum.

• Computing practice and programming
This consists of creating and organise systems and web pages, as well as ex-
ploring the use of programming in solving problems, and selecting appropriate
Application Programming Interfaces (s).

• Computer and communication devices
Because of a global impact of the internet on communication, students should
be able to understand elements of modern computer and communication de-
vices and networks and apply appropriate and accurate terminology. This con-
tains also the organization of web pages and s.

• Community, global and ethical impacts
This is regarded as an essential element of both learning and practice. It con-
tains the norms of ethical use of the internet and topics about personal privacy,
network security, licenses and copyright. Students, for example, should be able
tomake an informed and ethical choice between proprietary software and open
source software.

Like the  curriculum, the  curriculum prescribes learning objectives
for different levels: level ,  and . Each level corresponds to a range of grades.
Learning objectives in each level are grouped in courses. Level  and level  each
own one course, level  has three:

• Level  (grades –)
−  and me

• Level  (grades –)
−  and community

• Level  (grades –)
−  in the modern world
−  concepts and practices
− Topics in 

Courses build upon each other and only ‘Topics in ’ is marked as elective.
The structuring in levels means, as with the  curriculum, that topics can

occurmultiple times. Learning objectives are, after all, repeated and deepened over

T 



the three levels. As an example, we use (again) binary representation and usage
thereof. We first encounter this in the course ‘ and community’ from level :

Describe the relationship between binary and hexadecimal representations
(CSTA Standards Task Force, , page )

And later on in the course ‘ concepts and practices’ from level :

Discuss the interpretation of binary sequences in a variety of forms (e.g., in-
structions, numbers, text, sound, image).

(CSTA Standards Task Force, , page )

Both learning objectives are formulated in the strand ‘Computational thinking’.

C  The Netherlands

A country that innovates is digitally literate. (KNAW, , page )

TheDutch curriculum is currently being revised.The current curriculum dates
from , which is a modified version of the curriculum from . It consists of
 domains:

 Computer science in perspective
 Basic concepts and techniques

 Systems and their form
 General applicability

Domain  and domain  are about the broader, social context of computer science.
The other two domains ( and ) contain computer science specific topics.

The curriculum is oriented towards grades  to  of high school. Special to
the Dutch curriculum is a division in two school types:  (higher general sec-
ondary education) and  (pre-university education). In the Dutch education
system, students at the age of  go to different schools which denote the intellec-
tual level of the students. A diploma from a specific school type gives access to
a specific type of higher education. For example,  gives access to vocational
studies and  to universities. The Dutch computer science curriculum is differ-
ent in that it has to take into account these two types of school.

Belowwe show one of the learning objectives from theDutch computer science
curriculum on databases. The first sentence is a goal for both school types (
and ). The second, emphasised, sentence is marked as ‘ only’ and thus
applies only to students following pre-university education.

The candidate can name the elements of a relational schema and describe
the significance of each element, and can convert information needs into a
command formulated in a query language for a relational database.He can
describe the features and aspects of database management systems, and
name and use them for specific systems ( only). (SLO, , page )

K     



. M

For the content analysis of the curricula, we used a mixed method approach con-
sisting of three phases (Cohen, Manion, and Morrison, ). In the first phase we
created a categorisation of computer science fields, using the knowledge areas as
described by / (). Where reasonable, knowledge areas were merged
into one category, mainly because of the focus on (junior) high school instead of
universities. The second phase comprised coding of the curricula. Coding lead to
a list of concepts mentioned in the curricula. The categories form the first phase
were used to grouped all coded concepts.The third and last phase was a qualitative
analysis of the curriculum texts. We used the results from the second phase as a
starting point into analysing notable categories objectives in more depth.

The method’s three phases will be discussed in more detail in the next sections.

.. Categorisation of  fields

To compare curricula on declarative knowledge, we need a categorisation of com-
puter science in fields. Hereto we use the curriculum guidelines of the /,
which provides us with knowledge areas of computer science. We can expect these
guidelines to cover all fields of computer science. This framework is intended for
higher education, especially an undergraduate degree in computer science. Not
every knowledge area is as important in (junior) high school as it is at universities.
Because we study high school curricula, some knowledge areas can be merged and
others should be split. After taking the structure of our four studied curricula into
account (as discussed in §..), we come to  categories. The  categories and
the / knowledge areas they incorporate are shown in Table ..

The rationale behind merging or splitting knowledge areas is as follows. We
split the knowledge area on ‘SoftwareDevelopment Fundamentals’.This area groups
four sub areas: ‘Algorithms and Design’, ‘Development Methods’, ‘Fundamental
Data Structures’ and ‘Fundamental Programming Concepts’. Each of them contain
fundamental concepts of computer science. They are grouped together by /
 to stress their importance as a foundation for all other knowledge areas. For
(junior) high school it is this knowledge area which will get the most attention.
Therefore we assign each of the sub areas to their own category (algorithms, en-
gineering, data and programming) which are extended by other / knowl-
edge areas. For example: ‘Algorithms andComplexity’ and ‘Parallel andDistributed
Computing’ are merged into algorithms, and ‘Programming Languages’ and its ex-
tensions ‘Platform Based Development’ into programming. Both group basic and
advanced topics of the same area together into one category. Concepts about the
software development process, its tools and its methods (such as collaboration)
are classified in engineering. All of this is summarized in below table.

When comparing these four categories to the structure of our studied curricula,
we encounter they cover most of the sections used by France,  and the .

M



T . Categories used to group computer science declarative knowl-
edge based on the knowledge areas defined by / (). Knowledge
areas are merged due to our accent on (junior) high school instead of uni-
versities, which is the focus of the / Computer Science Curricula
: Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science. The knowledge area ‘Software Development Fundamentals’
() is divided amongst four other categories because of its founding char-
acteristics towards the remaining knowledge areas.

Category Contained knowledge areas from / ()
Algorithms Algorithms and Complexity ()

Parallel and Distributed Computing ()
Algorithms and Design (/)
R: concepts about data structures are covered by Data

Architecture Architecture and Organization ()
Operating Systems ()
System Fundamentals ()

Data Information Management ()
Fundamental Data Structures (/)

Engineering Software Engineering ()
Development Methods (/)
R: contains also concepts on collaboration; conceptswith-
out an engineering component are covered by Programming

Graphics Graphics and Visualisation ()
Intelligence Intelligent Systems ()
Mathematics Discrete Structures ()
Modelling Computational Science ()
Networking Networking and Communication ()
Programming Programming Languages ()

Platform Based Development ()
Fundamental Programming Concepts (/)

Security Information Assurance and Security ()
R: concepts about privacy are covered by Society

Society Social Issues and Professional Practice ()
Usability Human-Computer Interaction ()

We miss, however, categories on machines and networks. These are covered by
the knowledge areas ‘Architecture andOrganization’, ‘Operating Systems’, ‘System
Fundamentals’ and ‘Networking and Communication’. To make a clear distinction
between the architecture of a device and the communication between devices, we
group the first three into a category named architecture and put the last one into

 We refer to §.. for more information on the structure of the curricula.
 Referred to by some curricula as devices or computers.

K     



its own category networking. All knowledge areas in architecture describe lower
level organisational strategies and system architectures and the one in networking
describes the strategies to connect these systems together. Other knowledge areas
are to distinct, even on a high school level, and are used as-is.

.. Coding concepts in curricula

Concepts were coded to detect the declarative knowledge contained in each cur-
riculum. During the coding process, codes were adapted to create a common set of
concepts, applicable to every curriculum (axial coding, Strauss, Corbin, and Oth-
ers ()). For example, the  curriculum formulates a learning objective about
ways ‘information can be represented’ (CAS Working Group, , page ). The
 phrases this as ‘representation [...] of digital information’ (CSTA Standards
Task Force, , page ) and France as ‘digitalisation’ (Ministère de l’Éducation
nationale, ). All three formulations denote the same concept, and are coded
with the label information representation. Such co occurrences were merged or
linked to reflect their relationship. Coding was done using quantitative data analy-
sis software. Only the parts of the curricula containing learning goals were taken
into account, the accompanying text was not considered.

F . Excerpt from the  curriculum showing quotations and as-
sociated labels.The objectives come from the section titled ‘Algorithms’ and
are directed towards key stage  students (children between  and  years
old).

To demonstrate how we distilled concepts from the learning goals, we study
an example. Figure . shows an excerpt from the  curriculum. The learning
objectives are part of the section about algorithms and directed toward key stage 
students (children with an age between  and  years). Each learning objective

 Atlas.ti for Mac, version ..: http://atlasti.com/product/mac-os-edition/.

R



contains the concept algorithm, but it is not the main goal intended by each objec-
tive and therefore not coded as such. The first objective is about representing algo-
rithms, using instructions and languages. The associated quotes are highlighted in
the text and linked to a corresponding label as shown in the rightmargin.We apply
the same argumentation to all next learning objectives. The last two however need
special attention There the words ‘plan’ and ‘tested’ refer to the concepts specifica-
tion and verification as implied by their context. The last objective mentions the
words ‘plan’ and ‘test’ again, but it addresses the concept of separation of concern.

Found concepts were grouped in the categories defined in Table . by using
the topics and learning outcomes described by the /. The concept sort-
ing algorithm, for example, occurs at two places in the / curriculum: at
‘Fundamental Data Structures andAlgorithms ()’ and ‘Processing ()’.The first
topic area is about the implementation and complexity of algorithms. In the sec-
ond topic area, sorting is mentioned as a example of data processing. Because the
meaning of the concept sorting algorithm, as imposed by the high school curricula,
is that of implementing and analysing it, this concept fits in ‘Fundamental Data
Structures and Algorithms ()’ and is therefore filled in the category algorithms
(see also Table .). This categorisation of codes resulted in a list of concepts with
linked quotations for each category defined in the previous section and for each
studied curriculum.

.. Qualitative analysis of curricula

We regard the number of concept occurrences in the categories as an indicator
for the (relative) importance of those categories in a curriculum. For example, in
case the concept occurrences in ‘algorithms’ outweigh those in ‘engineering’ by far,
the curriculum is likely to have a focus towards fundamental computer science. Of
course concepts alone do not determine the content of a curriculum. Most curric-
ula also mention skills and attitudes a student should be aware of. Another remark
is the implicit incorporation of concepts. A curriculum can, for example, desire
students to program in an imperative programming language. To do so, students
have to know about the concepts sequence, repetition and selection. However, the
curriculum does not need to mention these concepts, they are already implied by
the objective to program in an imperative way. That means a curriculum can have
a lower count of concepts in a group, while actually it is as thorough as others on
the subject. To obviate these issues, we did not only count concept occurrences
(phase two), but also analyse the curriculum content in more depth (phase three),
using the frequencies of the respective categories as pointers to interesting text
segments. This qualitative analysis of the curriculum texts complements the quan-
titative analysis from the first two phases.

. R

We present our results in three forms. Firstly, we show the distribution of quota-
tions across all categories for every curriculum in Figure .. Secondly, in Box .

K     



we list for each curriculum all categories sorted from highest to lowest number of
quotations. Thirdly, all found concepts per category can be found in Chapter .

Algorithms Architecture Data Engineering Graphics Intelligence Mathematics

3%
4%

1%

15%

8%

14%

16%

0%0%0%

19%

23%
25%

0%

7%

2%
4%4%

26%

13%12%

2%
0%0%

8%

16%
19%

22%

England France Netherlands USA

Modelling Networking Programming Security Society Usability Rest
0%1%

11%

5%

9%10%

3%

8%
6%

0%
2%

6%
8%

4%

1%0%

5%

0%

14%13%

0% 0%0%1%2%

9%

20%

0%

F . Percentage of quotations that fall into a category for all four
curricula.

. A

Figure . gives us a quick overview how the four studied countries compare on
the thirteen different knowledge categories, including a rest category. We see al-
gorithms, architecture, data and networking cover the biggest parts of these high
school curricula. These four categories all get a place in the top four of  and
France, as we can see in Box .. Although algorithms have the highest overall
score, the Dutch curriculum does not mention anything from this category. No-
table is the focus on data in the French curriculum and the big gap between the
number of quotations in this category, and the next: algorithms. Another interest-
ing point is the diverse scores in the engineering category: the French curriculum
keeps behind the other three curricula. Exceptional is the high score on society
in the  curriculum when comparing this category to the other countries and
the high score of the Dutch curriculum in the rest category. Last noteworthiness is
the total number of quotations coded in each curriculum, as shown at the bottom
of Box .. The Dutch curriculum contains almost a fifth of the coded quotations
when compared to the  curriculum. In the next sections we will analyse all
these points in more depth.

R



B . Rankings of categories in each curriculum sorted from most to
least occurring quotations. Between parenthesis are the number of quota-
tions appearing in the category. The total number of quotations is given at
the end of each list.

France

 Data ()
 Programming ()
 Architecture ()

Networking ()
 Algorithms ()
 Mathematics ()
 Society ()
 Engineering ()

Graphics ()
 Intelligence ()
 Rest ()
 Modelling ()

Security ()
Usability ()

(T: )

The Netherlands

 Architecture ()
 Data ()
 Engineering ()
 Networking ()

Rest ()
 Programming ()

Usability ()
 Modelling ()
 Security ()
 Algorithms ()

Graphics ()
Intelligence ()
Mathematics ()
Society ()

(T: )



 Algorithms ()
 Networking ()
 Architecture ()
 Data ()
 Programming ()
 Engineering ()
 Mathematics ()
 Security ()
 Society ()
 Intelligence ()
 Graphics ()

Modelling ()
Usability ()
Rest ()

(T: )



 Algorithms ()
 Engineering ()
 Architecture ()
 Society ()
 Networking ()
 Programming ()
 Data ()
 Security ()
 Intelligence ()
 Modelling ()
 Mathematics ()
 Graphics ()
 Usability ()
 Rest ()

(T: )

K     



.. Data

Relative to other countries, France spends the biggest part of its curriculum to
teach about data (). The category has the highest position in the ranking from
Box .. Remarkable is the distance to programming (, number two on the list),
which is  ( quotations). This can be explained by the structure of the curricu-
lum. Almost all ( of ) of the coded quotations in this category come from the
section ‘Representation of information’. This is the biggest section in the curricu-
lum, containing  of the in total  learning objectives (more than a third). Of the
remaining quotations,  come from the section on ‘Languages and programming’.
Here the curriculum explicitly states which data types students should know.

Data types Integer; floating point; Choosing a data type based
boolean; natural number; on a problem to solve.
array; string.

(Ministère de l’Éducation nationale, )

Retrieval and storage of data are filled under the section on ‘Computer architec-
ture’.

There are more differences in content when comparing the French section on
data to, for example, the  one.The French curriculum includes objectives about
document formats and directory structure, only parred by the  curriculum.
Document formats are discussed in general, but also specific instances for images
and audio.

Formats Digital data is arranged to Identify some document
facilitate storage and formats, images and sound
processing. The structuring of data. Choose an appropriate
digital data respects either de format compared to a use or
facto standards or norms. need, quality or limitations.

(Ministère de l’Éducation nationale, )

The curriculum also mentions explicitly students have to learn about the represen-
tation of characters, text, numbers, floating points and images.

Digitalisation The computer handles only Encode a number, a
numeric values. A character through a
digitalisation step of standard code, a text in the
physical world objects is form of a list of numeric
essential. values. Encode an image or

sound as an array of
numeric values. [...]

(Ministère de l’Éducation nationale, )

A



The  and  curricula only mention information representation in general
and binary representation.

 Analyze the representation and trade-offs among various forms of digital
information. (CSTA Standards Task Force, , page  (level ))

The Dutch is lacking both.
Exceptionally the  curriculum contains a learning objective on representa-

tion sharing: the fact that one sequence of bits can be interpreted in multiple ways
and yield a number, string or audio fragment dependent on the intended usage.

• Many different things may share the same representation, or “the mean-
ing of a bit pattern is in the eye of the beholder” [e.g. the same bits could
be interpreted as a BMP file or a spreadsheet file; an -bit value could be
interpreted as a character or as a number].

(CAS Working Group, , page  (key stage ))

The curriculum also includes concepts on data errors and sampling frequency.
The high score on data by the Dutch curriculum can be attributed to the learn-

ing objectives on information systems, databases, relational schemas and query
languages.

 The candidate can name the elements of a relational schema and de-
scribe the significance of each element, and can convert information needs
into a command formulated in a query language for a relational data-
base. He can describe the features and aspects of database management
systems, and name and use them for specific systems ( only).

(SLO, , page )

All these concepts are absent from the other three curricula.
The  is the only curriculum which mentions big data, although not explic-

itly.

 Compare techniques for analyzing massive data collections.
(CSTA Standards Task Force, , page  (level ))

.. Algorithms

The  curriculum is special in that it explicitly states sequence, selection and
repetition as concepts in its curriculum text.

• The idea of a program as a sequence of statements written in a program-
ming language [Scratch].

• One or more mechanisms for selecting which statement sequence will be
executed, based upon the value of some data item.

• One or more mechanisms for repeating the execution of a sequence of
statements, and using the value of some data item to control the number

K     



of times the sequence is repeated.
(CAS Working Group, , page  (key stage ))

The  curriculum goes even further and, instead of repetition in general, states
iteration and recursion.

 Explain how sequence, selection, iteration, and recursion are building
blocks of algorithms.

(CSTA Standards Task Force, , page  (level ))

It is the only curriculum which includes recursion in its learning objectives. This
is in contrast to France and the Netherlands, which do not explicitly name these.
Likewise,  and the  make the underlying notion of an instruction explicit,
where France and the Netherlands do not.

• A computer program is a sequence of instructions written to perform a
specified task with a computer.

(CAS Working Group, , page  (key stage ))

Thenotion of an algorithm is a key concept in the  curriculum.Thedefinition of
an algorithm returns at every key stage, each time adding more details appropriate
for the intellectual level of the students.

• Algorithms are sets of instructions for achieving goals, made up of pre-
defined steps [the ‘how to’ part of a recipe for a cake].

• Algorithms can be represented symbolically [flowcharts] or using instruc-
tions in a clearly defined language [turtle graphics].

• An algorithm is a sequence of precise steps to solve a given problem.
• The choice of an algorithm should be influenced by the data structure

and data values that need to be manipulated.
(CAS Working Group, , page – (key stages –))

The gradual nature of the  curriculum could possibly lead to multiple similarly
coded quotations. This imposes restrictions on our analysis. To preclude this, we
list all different concepts on algorithms in both the French and the  curricula
in Box ..

We observe the  curriculum contains almost three times as much different
concepts on algorithms than the France curriculum. We can conclude that 
provides more in depth concepts in the algorithm category. Most notable is the
inclusion of concurrency and parallelism in the  curriculum.

Although searching and sorting are included by France,  and the , the
French curriculum is the only one of the three making some algorithms explicit. It
contains merge sort, breadth first search and depth first search.

 The fragments between brackets are from the original and are intended as example.

A



B . Concepts on algorithms appearing in the French and  cur-
riculum.

France

• algorithm
• breadth first search
• data processing
• depth first search
• finite state machine
• instruction set
• merge sort
• search algorithm
• sort algorithm



• algorithm
representation

• ambiguity
• component
• concurrency
• data processing
• deadlock
• decomposition
• decision
• input
• instruction
• instruction sequence

• instruction set
• live-lock
• output
• performance
• precision
• problem solving
• redundancy
• repetition
• search algorithm
• selection
• sort algorithm
• step
• task

Advanced algorithms Merge sort; search for a Understand and
path in a graph by a explain (orally or in
depth first search (DFS); writing) an algorithm.
finding a shortest path Questioning the
through a wide path effectiveness of an
(BFS). algorithm

(Ministère de l’Éducation nationale, )

Exceptionally, the French curriculum is the only curriculum including finite state
machines.

…describe a single event system with a finite state machine.
(Ministère de l’Éducation nationale, )

The Dutch curriculum does not contain any concepts from the algorithm cat-
egory. Some of the concepts in this category are implicit in the learning objective
on software development.

 The candidate mastered simple data types, program structures and pro-
gramming techniques. (SLO, , page )

However, by notmentioning algorithmic capabilities explicitly, the teaching of these
subjects are not mandatory and are not tested during examinations.

.. Engineering

The French curriculum has a notably low score in category engineering () when
comparing to the other countries. It does contain pointers to testing and verifica-
tion.

K     



Fixing a program Test; instrumentation; Testing a developed
error situations or bugs. program. Optional: using

a development tool.
(Ministère de l’Éducation nationale, )

Concepts on testing and verification can be found in all other curricula, except
for the Dutch curriculum. Its high score in this category is due to the inclusion
of project management and related concepts like specification, requirement, client
and prototype.

 The candidate can asses progress of a simple system development process,
test prototypes,make sure the final productmeets the specifications of the
client and evaluate whether the system meets the requirements.

(SLO, , page )

In the section on programming in the  curriculum, we find various learning
objectives stating concepts about engineering spread amongst multiple key stages.

• Programs are developed according to a plan and then tested. Programs
are corrected if they fail these tests. The behaviour of a program should
be planned.

• Documenting programs to explain how they work.
• Programs are developed to meet a specification, and are corrected if they

do not meet the specification. Documenting programs helps explain how
they work. (CAS Working Group, , page  (key stages –))

Although the curriculum of the  does not explicitly state concepts like spec-
ification and requirement, it does mention the software development process and
software life cycle and the creation of problem statements in general.

 Describe a software development process used to solve software problems
(e.g., design, coding, testing, verification).

(CSTA Standards Task Force, , page  (level ))

Furthermore, the  curriculum has a very strong focus on collaboration dur-
ing software development. This is not surprising when taking the structure of the
curriculum into account. One of the five strands the curriculum is built on is ‘Col-
laboration’ and a big part of the curriculum is dedicated to it. Accompanied con-
cepts next to teamwork, collaboration are peers, experts, pair programming, project
teams, feedback, communication, feedback and socialization.

 Identify ways that teamwork and collaboration can support problem
solving and innovation

(CSTA Standards Task Force, , page  (level ))

 Collaborate with peers, experts, and others using collaborative practices
such as pair programming, working in project teams, and participating
in group active learning activities.

A



 Exhibit dispositions necessary for collaboration: providing useful feed-
back, integrating feedback, understanding and accepting multiple per-
spectives, socialization.

(CSTA Standards Task Force, , page  (level ))

The curriculum also mentions multiple productivity tools, development tools and
collaboration tools explicitly.

 Use productivity technology tools (e.g., word processing, spreadsheet, pre-
sentation software) for individual and collaborative writing, communi-
cation, and publishing activities.

(CSTA Standards Task Force, , page  (level ))

 Use collaborative tools to communicate with project team members (e.g.,
discussion threads, wikis, blogs, version control, etc.).

(CSTA Standards Task Force, , page  (level ))

The inclusion of collaboration and tools make the  curriculum stand apart
from the other three. Although  the Netherlands and the  all spend a rea-
sonable part of their curriculum to engineering, only the  consider collabora-
tion as a main component of computer science.

.. Society

A major difference between the  and the other three countries is the focus on
computer science and society (). As with collaboration, this is also one of the
five strands of the curriculum. Although  and France mention privacy () or
personal information and ownership (), they leave it to that.

Persistence of information Data, including Awareness of the
personal, may be persistence of
stored for long information on
periods without digital networks.
control by the persons Understand the
concerned. general principles to

behave responsibly in
relation to the rights
of individuals in
digital platforms.

(Ministère de l’Éducation nationale, )

The  go further with the inclusion of  other concepts ranging from career
perspectives, via different software licenses to software piracy and legal behaviour.

 Exhibit legal and ethical behaviors when using information and technol-
ogy and discuss the consequences of misuse.

(CSTA Standards Task Force, , page  (level ))

K     



.. Rest

Exceptional in Figure . is that the Dutch curriculum has a high score in the rest
category (). It has to do with the fact that this curriculum contains subjects on
management and organisation structures which are not mentioned in the /
 body of knowledge. The Dutch curriculum explicitly states students should
know about project management and business structures as we can see in the next
learning objective from domain , ‘Basic concepts and techniques’.

 The candidate knows the overall organizational structure of companies.
He knows the characteristics of a project and can indicate why, during
major changes in a information system of a company, one often chooses
to use a project. (SLO, , page )

No other curriculum mentions these kind of objectives.
The one concept filled in the rest category from the French curriculum is due to

a reference to standards. In this context, standards indicate technical global guide-
lines by, for example, the .

.. Number of quotations

The total number of coded quotations is give at the end of each list in Box .. The
reason that France and the Netherlands have less coded quotations, is because the
learning goals are very compactly formulated and concepts often are mentioned
just once (see also §..).  and the  put together their curriculum in a
more constructive way, first formulating learning goals for lower grades and after
that for higher grades. As an example, we show the learning objective about infor-
mation representation from the Dutch curriculum.

 The candidate can describe and apply common digital encodings of data.
(SLO, , page )

Where the  French and  curricula fill multiple sections on the matters
of data, information and representation, the Dutch curriculum states one line and
thus containing much less concepts.

. C

For France, we encounteredmostly concepts about data, which is no surprise when
taking the structure of the curriculum into account. Furthermore it is notable that
the whole curriculum is fairly theoretically oriented, focussing on concepts of fun-
damental computer science leaving engineering practices but especially social as-
pects behind.

We already noted that the overall structure of the  curriculum resembles
that of the French. Taking this into account, the  curriculum seems to focus
on the theoretical foundations of computer science, as does the French. However

C



it does take software engineering and a small amount of security and society into
account. Another main difference is the focus on algorithmic thinking instead of
data and information representation.

Thepresents uswith a practically oriented curriculum. Software engineer-
ing and social and ethical topics cover together a quarter of the curriculum. This
focus is also reflected in the structure of the curriculum. That does not mean this
curriculum comprises on fundamental computer science. Computational thinking
is broadly represented.

The Dutch curriculum is exceptional in two ways. Firstly, it does not contain
any concepts in the category on algorithms. Secondly, it includes concepts about
databases, project management and business which is not included in any other
studied curriculum.

In addition to a difference in declarative knowledge, our research also produced
a list of computer science concepts, grouped in  categories, which should be
taught to (junior) high school students according to  international curricula. This
list can be used in other studies like Barendsen, et al. () to analyse key concepts
in - education and their assessment.

K     






F     

In this chapter we introduce fundamental ideas, ideas that are at the basis of a dis-
cipline (Bruner, ). We will take a look at why fundamental ideas are important
for learning and how they can help building a curriculum in §.. Fundamental
ideas are a way to explore a discipline, but we need tools to recognize and catego-
rize them. These tools are introduced in §. and utilised in §. where we present
some fundamental ideas of computer science.

We address the following questions in this chapter:

• What are fundamental ideas and how do we recognize them?
• What are the benefits of fundamental ideas in designing a (computer science)

curriculum?
• What are fundamental ideas of computer science?

. U  

As discussed in Chapter , a concept is part of declarative knowledge. ISO -
() defines it as ‘a unit of knowledge created by a unique combination of char-
acteristics’. Although Schwill () tries to differentiate concepts from ideas, it is
a very difficult task. The notion of an idea dates back to Plato and is discussed by
many philosophers. In Platonic thought it is defined as ‘an eternally existing pat-
tern of which individual things in any class are imperfect copies’ (Oxford University,
). Ideas are thus much broader than concepts or procedures.

In  Bruner published his well known book on developmental psychology
entitled The Process of Education. Although his work mainly investigates the devel-
opment of young children, it had a big impact on educational studies and curricu-
lum studies as well. He formulated the principle that lessons should be orientated
towards what he called fundamental ideas. Also, he argued curricula should be
build around these fundamental ideas. It will help to make a curriculum more sus-
tainable and complete.

F     



.. Applicability between and inside fields

There are several advantages Bruner attributes to fundamental ideas. They have
‘wide as well as powerful applicability’ (Bruner, , page ). Thus fundamental
ideas have to be part of multiple fields. Students can easily extend their knowledge
to other fields by structuring new concepts around already known fundamental
ideas. When students understand the fundamental principles, concepts and ideas
they will be able to create a better and stronger cognitive structure about the whole
discipline. Subject in other fields will therefore be more comprehensible.

Bruner states that

…intellectual activity anywhere is the same, whether at the frontier of knowl-
edge or in a third-grade classroom. (Bruner, , page )

This implies theremust be some kind of general principles connecting earlier learn-
ed knowledge with subjects learned at an later age.Thus fundamental ideas have to
extend on all intellectual levels. Students can continually deepen their knowledge
inside a particular field. When students are introduced to new concepts and prin-
ciples inside a particular field, these are easier to learn. As with new knowledge
in other fields, new principles inside a field are easily enriched in their existing
cognitive structure.

.. Transfer to new situations

Next to the connections among and inside fields, fundamental ideas improve the
ability to apply knowledge under new or different conditions. Knowledge learn-
ed during school, college and university can only be used later on by transferring
this knowledge to new situations. Transfer comes in two forms: specific transfer
and non-specific transfer (Bruner, ). Both are schematically represented in Fig-
ure ..

Specific transfer means students can apply learned knowledge to situations
which resemble already known ones. Maybe the student has to change or extend
his solution schema to be applicable in the new situation, but only slightly. Schemas
usable for specific transfer, are usually applicable in a narrow, well defined field.
Specific transfer is mainly applied by continuing and vocational education.

Knowledge that is not taught in a form to applied immediately, is usable for
non-specific transfer. It is taught in a way to be applied on the long term. Non-
specific transfer is based on knowledge of fundamental notions and principles and
ways of thinking. Students learn and develop attitudes to, for example, problem
solving, research, heuristics, observations and so on. This kind of transfer requires
a meta cloud to store this knowledge. Where specific transfer relates directly to
a new situation, non-specific transfer goes through this meta cloud. Non-specific
transfer is mainly taught by universities.

 We use the term field to characterize a part of a discipline.

U  



new situation

meta cloud

non-specific
transfer

specific
transfer

old situation

old situation

old situation

F . Transfer directly from an old situation to a new situation is
called specific. Fundamental notions, attitudes and ways of thinking are not
directly applicable in new situations. Instead they are stored in ameta cloud
(grey arrows).We call transfer non-specificwhen knowledge from thismeta
cloud is applied to a new situation. (Bruner, ; Schwill, )

Because fundamental ideas are so general, they allow many problems to be
treated as special cases. Fundamental ideas condense information into ameta cloud
whichwill be kept inmind for a longer time. It is alsomore easy to construct details
out of this big structure.

.. In context of knowledge

In §. we discussed the terms concepts, skills and attitudes. Each of them are tied
to a particular level of knowledge, respectively declarative knowledge, procedural
knowledge and metacognitive knowledge. In this chapter we encountered a new
term, that of an idea. In contrast to concepts, skills and attitudes, an idea is gen-
erally not tied to one specific level of knowledge: it cuts across all three levels as
depicted in Figure . This supports the view of Bruner, that ideas can be used to
easily extend understanding of a subject in every possible way. Ideas can be used
to learn new concepts, but it can even so be used to acquire a new skill or acquaint
a new attitude.

E . Resources Take for example the idea of a resource. Several
questions about resources come to mind:

• What is a resource?
• Where to find a resource?
• How to process it?
• When is a resource trustworthy?

The first question is about declarative knowledge and, using our definition
from page , about the concept ‘resource’. The next two encourage the devel-
opment of new skills, namely how to use resources. The last question is not

F     



knowledge
procedural
- skills
- methods

metacognitive
- attitudes
- strategies context

declarative
- facts
- concepts

ideas

F . Ideas span all three levels of knowledge: declarative, proce-
dural and metacognitive.

just about a skill (‘How to judge when a resource is trustworthy?’), but also
about an attitude towards resources (‘When do I think a resource is trustwor-
thy and why?’). It is about evaluating knowledge from others and belongs in
the level of metacognitive knowledge.
We can conclude the idea resource can be used to teach knowledge at all three
levels defined in §.. Not just concepts, skills and attitudes come into play as
well.

. C   

Bruner can give us a feeling about fundamental ideas. He shows intuitively what
they are, how they can be used, what their purpose is, how they can improve learn-
ing and curriculum design and so on. He does not, however, give us a formal defin-
ition of a fundamental idea, or some guides to recognize them. In fact he used the
terms fundamental idea, basic idea and general principle interchangeable. Schwill
() extends the intuition of Bruner by giving four criteria a fundamental idea
should satisfy. These are the criteria of width, depth, sense and time. Each of these
criteria is discussed in the following sections. Along each description we show an
example of a fundamental idea satisfying the particular criterion.

.. Criterion of width

First of all, a fundamental idea has to be applicable in a wide area of the discipline:
it has to be relevant to multiple fields and appear across the entire discipline. In

 Schwill () calls the first two criteria the horizontal criterion and the vertical criterion. We
like a more consistent naming scheme.

C   



other words, if a concept is only used in a very narrow domain, it cannot be a
fundamental idea. Schwill visualises this by a horizontal axis, penetrating a great
number of application fields as shown in Figure ..

…

field 1

field 2

field 3
fundamental

idea

F . A fundamental idea has to appear across the entire discipline.
Thus it should appear in multiple fields of the domain.

E . Process  () acknowledges twelvemain fields of com-
puting in their Computing Classification System. These are:

• Hardware
• Computer systems organisation
• Networks
• Software and its engineering
• Theory of computation
• Mathematics of computing

• Information systems
• Security and privacy
• Human-centred computing
• Computing methodologies
• Applied computing
• Social and professional topics

The term process is applicable in every field stated above. In the context of
hardware we can discuss signal processing. When using networks, protocols
and other communication processes play an important role. The scheduling
of processes by an operating system is a part of software and its engineering.
Mathematics of computing covers stochastic processes. For each field we can
give an examples of the usage and importance of this idea. Hence we can say
process satisfies the criterion of width in computer science and is a candidate
for a fundamental idea.

.. Criterion of depth

Next to applicability in multiple fields, a fundamental idea has to be of great impor-
tance inside a particular field. That is, it should play a central role in that field. A
fundamental idea always relevant at a very basic level of understanding, as well as
on a advanced level. Not only should a fundamental idea be explainable to children
in easy terms, it should also be used by professionals and researchers on a much
higher intellectual level. Bruner hypothesizes that

…any subject can be taught effectively in some intellectually honest form to
any child at any stage of development. (Bruner, , page )

F     



A fundamental idea can thus be taught at every school level: at the level of primary
school as well as at the level of universities. Only the amount of detail and formal-
isation differ. Formulated the other way around: topics that cannot be taught to
students in primary school cannot be fundamental ideas (Fischer, ).

This idea is visualised by Schwill by a field, divided inmultiple intellectual levels,
from low to high. A vertical axis representing a fundamental idea pierces the field,
as shown in Figure ..

 field x

high intellectual level

low intellectual level

fundamental
idea

F . A fundamental idea should be apparent at every level of un-
derstanding inside a particular field.The vertical axis, representing the fun-
damental idea, pierces all intellectual levels of the field, from low to high.

The criterion of depth is, in particular, relevant to lessons and curricula (Bruner,
; Schwill, ). When an idea satisfies the criterion of depth, it can serve as
a guideline on every level of the educational process. This leads to the concept
of the spiral curriculum, in which topics are revisited several times throughout a
curriculum or a course (Harden, ).

E . Worst/best/amortized case analysis Complexity is a main
part of computer science. Let us examine if it satisfies the criterion of depth
and can qualify as candidate for a fundamental idea. Worst case analysis and
best case analysis can already start in primary school using questions like:
‘How long does it take to get to school in the worst case? For example if the
bus is late, if all traffic lights are red, if the roads are icy? And how long does
it take in the best case? If there is no traffic jam, if you put all your energy
in cycling, and so on?’ During middle school and high school students can
develop a more elaborate approach to worst case analysis. They can relate the
number of steps needed to find a name in a phone book and compare different
approaches like linear search and binary search. In other words, they can cor-
relate the runtime of an algorithm with the length of the input. At the end of

 Example taken from the massive open on-line course  (http://cs.tv/) by David J.
Malan.

C   



high school or in university, teachers can show the formal definition of worst,
average and amortized case, order etcetera. These explenations make worst,
best and amortized case analysis meet the requirements of the criterion of
depth and give us new candidates for fundamental ideas.

.. Criterion of sense

The next criterion is about ‘embodiment in everyday life’ (Schreiber, ). Accord-
ing to Schreiber, a fundamental idea is characterized by its usage in a context which
is practical and unscientific.

We can visualize this everyday thinking argument by a Venn diagram of sev-
eral contexts. We have to be aware of the fact that these context are practical, for
example home, holiday, family and so on. A fundamental idea should be usable in
all of these contexts. So the place where all the contexts overlap, is the where the
fundamental idea prevails. This is show in Figure ..

context 1

…

context 2

fundamental
idea

F . The criterion of sense prevails on the intersection of every day
contexts.

E . Divide-and-conquer Quicksort is an algorithm performing
sort on a list of comparable values. The algorithm itself consists of instruc-
tions on how to perform sorting. Although sorting can be done in a way like
the algorithm prescribes, it is based on a more fundamental principle: that of
divide-and-conquer. It is this principle that can be used by many in every day
life. Familymembers can for example divide cleaning tasks in and round home,
merging the results. At work projects are divided amongst a group of people,
to finally conquer it together. Even children building a sandcastle in a sandbox
can divide tasks like ‘filling buckets with sand’ or ‘building the west wing’. We

 The intersection in mathematical terms.

F     



see that divide-and-conquer satisfies the criterion of sense and therefore is a
candidate for a fundamental idea.

.. Criterion of time

The last of the four criteria is the criterion of time. This criterion is important in
two ways. First, a concept which is central in the development of a domain, is a
good candidate for a fundamental idea. So observing the historical evolution of
a domain, can give us a clue on how to find fundamental ideas (Schwill, ).
Second, because the notion was important in history, it probably will be in the
future.

Other things being equal, ideas that have impressed our predecessors are
more likely to continue to impress our successors than our latest discoveries
will. (Nievergelt, , page )

Figure . visualises these ideas with a time line and a fundamental idea which
connects different points in history as well as in the feature.

fundamental
idea

past present future

F . A fundamental idea should have importance in history and
probably will stay important in the future.

E . Language The notion of language has a long history in com-
puter science. Grammars and syntax of formal languages where studied by
Chomsky and Kleene in the s. To let computers use languages, Knuth in-
vented  parsers in .This was in  extended to  parsers by DeRe-
mer. Recursive descent parsers by Lucas and  parsers by Lewis and Stearns
are other examples. Studies to the semantics of formal languages were done
by Hoare (axiomatic semantics), Scott (denotational semantics) and Manna
(operational semantics) around the s. All these developments in formal
languages suggest this notion is in the centre of computer science. Therefore
it is a good candidate for a fundamental idea.

T    



.. Overview

Collecting all thoughts from last sections we can present a definition for a funda-
mental idea, as stated by Schwill ():

D . Fundamental idea A fundamental idea is a schema for
thinking, acting, describing or explaining fulfilling four criteria:

• Criterion of width
The idea is applicable or observable in multiple ways in different areas of
the domain.

• Criterion of depth
The idea may be demonstrated and taught at every intellectual level.

• Criterion of sense
The idea is related to everyday language and/or thinking.

• Criterion of time
The idea can be clearly observed in the historical development of the do-
main and will be relevant in the longer term.

. T    

Now that we know what fundamental ideas are and which criteria they have to
satisfy, we can start our search for fundamental ideas of computer science. In the
next sections, we present three alternative ways to look for fundamental ideas in
our discipline. Two of them are theoretical of nature, one is empirically grounded.
At the end of the section we shortly discuss the differences between and relevance
of each approach.

.. Cross-computing tools and techniques

In Example . we encountered a categorisation of computer science by the .
Next to a conceptual categorisation, theACMalso acknowledges some ‘cross-computing
tools and techniques’ appearing in all fields. They are listed in Box .. We can see
the tools and techniques are strongly influenced by engineering.

B . Cross-computing tools and techniques by ACM ()

• Reliability
• Empirical studies
• Measurement
• Metrics

• Evaluation
• Experimentation
• Estimation
• Design

• Performance
• Validation
• Verification

 The Computing Classification System can be found on-line at http://www.acm.org/about/class
/class/.

F     



.. Catalogue of fundamental ideas

Schwill () does not only formalize Bruner’s notion of fundamental ideas, he
also proposes a procedure of four steps to obtain a set of fundamental ideas which
satisfy his four criteria. These steps are:

 Analyse the concrete contents of a science and determine relationships and
analogies between its subjects (criterion of width) as well as between different
intellectual levels (criterion of depth).

 Revise and improve this set by checking whether each idea has a meaning and
can be found in everyday life (criterion of sense).

 Try to review the historical development of each idea (criterion of time).
 Tune the set of ideas according to the following questions:

− Do the ideas have a similar level of abstraction?
− Is it possible to structure or group the ideas somehow?
− Are there any hierarchical or network dependencies between them?
− Are the ideas linearly independent?

Schwill initiates the above procedurewith the analysis of the software development
process, because it is ‘a central purpose of computer science’ (Schwill, , page
). After revising and tuning he comes to a set of fundamental ideas as presented
in Box .. The fundamental ideas are hierarchically structured and categorized in
three master ideas: algorithmisation, structural dissection and language.

Algorithmisation is breaking processes down into single steps (Schwill, ,
page ). Dividing a system into components and determining their interrelations,
however, is called structured dissection. An example is writing down a problem
analysis in a precise and structured way as opposed to writing down the proce-
dure to do such an analysis, which is algorithmisation. The divide-and-conquer
approach, for instance, contains both an algorithmic and a dissection aspect. It
is assigned to algorithmisation since the dynamic aspect (process aspect) prevails.
On the contrary, dissection stresses the static aspect, i.e. the result of the dissection
process and not the way the result is achieved.

Because formal languages return in almost all facets of computer science, these
ideas are in a separate category. Not only programming languages, but also speci-
fication languages, query languages, command languages and logic come to mind.

Furthermore several ideas occur multiple times in different contexts in the cat-
alogue. Reduction and transformation, for instance, denote translation processes,
translation on the other hand appears again as an idea for implementing hierar-
chies. So it can be seen that ideas are intertwined inmanyways, an exact separation
and assignment is hardly possible.

.. Central concepts

The lists of tools, techniques and fundamental ideas from the previous two sec-
tions, have one main downside: they relay on the judgement of one or just a few

T    



B . Catalogue of fundamental ideas by Schwill (). Names writ-
ten between parentheses are added by Schwill to denote groups and are
not meant as fundamental ideas themselves. All fundamental ideas are cat-
egorized in three ‘master ideas’: algorithmisation, structural dissection and
language.

Algorithmisation

• (Design paradigms)
− Branch-and-bound
− Divide-and-conquer
− Greedy-approach
− Plane-sweep
− Backtracking

• (Programming concepts)
− Concatenation
− Alternation
− Iteration
− Recursion
− Non-determinism
− Parametrisation

• Process
− Concurrency
− Processor

• Verification
− Correctness
− Termination
− Consistency
− Completeness
− Fairness

• Complexity
− Reduction
− Diagonalisation
− Order
− Unit-cost measure
− Log-cost measure
− Worst/best/average/amortized case

Structured Dissection

• Modularisation
− Top-down method
− Bottom-up method
− Information hiding
− Locality of objects
− Specification
− Abstract data type
− Team work

• Hierarchisation
− Nesting
− Tree
− Parentheses
− Indentation
− Translation
− Interpretation
− Operational extension

• Orthogonalisation
− Emulation

Language

• Syntax
− Accepting
− Generating

• Semantics
− Consistency
− Completeness
− Transformation

F     



experts. Zendler and Spannagel advocate the need of a systematic and empirical
investigation. Instead of looking for fundamental ideas from theory, they set up an
empirical study where the list of fundamental ideas is based on ratings of numer-
ous experts.They surveyed experts in computer science to rank fundamental ideas
and formed a catalogue based on their oppinion.

Zendler and Spannagel filtered  concepts from the Computing Classification
System, discussed in §... Only concepts which are mentioned more than ten
times were taken into account. Thereafter, professors from fourteen universities
in Germany were asked to fill in a questionnaire. This questionnaire consisted of
four sections each related to one criterion (width, depth, sense and time) and each
section contained questions about the same  concepts of computer science. The
subjects were asked to rate their agreement to the concept satisfying each criterion
on a five-point Likert scale. The result, determined by using clustering techniques,
is a list of  central concepts of computer science.They are important in computer
science education regarding the four criteria. These are listed in Box ..

B . Central concepts by Zendler and Spannagel ().

• Problem
• Data
• Computer
• Test
• Algorithm

• Process
• System
• Information
• Language
• Communication

• Software
• Program
• Computation
• Structure
• Model

.. Overview

We have three lists of fundamental ideas, each acquired with a different approach.
These three separate lists however, complement each other. The  Computing
Classification System contain cross-computing tools and techniques and a classifica-
tion of the discipline in  fields.The tools and techniques are fairly engineering ori-
entated and indeed cross-cutting through the discipline, they can directly be used
as fundamental ideas. The classification is used by Zendler and Spannagel ()
as a base for their study on fundamental ideas of computer science.They let a panel
of experts check which terms satisfy the criteria of Schwill (). Schwill himself
created a procedure, incorporating his own criteria, to produce a list of fundamen-
tal ideas. By combining these three approaches we gain a list of fundamental ideas
from an engineering perspective, an empirical approach and a computer science
theory viewpoint. Table . summarises all three approaches.

T    



T . Overview of approaches to fundamental ideas by the three au-
thors discussed in this section. Two of the three approaches are theoretical
based, one is empirical. Two are based on theComputing Classification Sys-
tem (), one is entirely based on own theory.

Author Name Approach Source
 () Cross-computing tools and

techniques
theoretical 

Schwill () Fundamental ideas theoretical –
Zendler and Spannagel () Central concepts empirical 

F     






T    C, S,
T, E  M

In Chapter  we have analysed a different method to structure computer science,
based on fundamental ideas. It is a method orthogonal to the fields described in
Chapter . In this chapter we develop a conceptual framework which incorporates
fundamental ideas of computer science and can help to build computer science cur-
ricula for middle and high school. This framework will be based on ‘A Framework
for K- Science Education’ by The National Research Council (). By doing so,
we create a framework which can be used to design a curriculum for any  sub-
ject, including computer science, rooted in fundamental ideas. Questions that arise
are:

• Howdo the components of the framework for- science education fit computer
science?

• Where do the fundamental ideas obtained in §. fit into this framework?
• How can we extend the existing - science education framework to include

computer science fundamental ideas?

After we have introduced the framework by The National Research Council in
§., this chapter consists of two main parts. First we study the applicability of the
existing framework to computer science in §., discussing which parts are relevant
to computing and why. Then we change perspective in §., and check which fun-
damental ideas from §. fit into the framework. After a review of our findings we
propose somemodifications to the framework to better fit in computer science in §..
Graphically we can represent the structure of this chapter in the following diagram.

Framework

- practices
- principles
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

§4.1 §3.3

§4.2

§4.3

§4.4

T    



. A   -  

Framework

- practices
- principles
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

In this section we examine the overall structure of A Framework for K- Sci-
ence Education by The National Research Council and discuss the usage of funda-
mental ideas in the framework.

.. Goals and foundations

The American National Research Council appointed a committee to design a con-
ceptual framework for new - science education standards. The goal of this
framework is multiple fold. As stated by The National Research Council (),
at the end of th grade, all students:

• Should have some appreciation of the beauty and wonder of science.
• Possess sufficient knowledge of science and engineering to engage in public

discussions on related issues.
• Are careful consumers of scientific and technological information related to

their everyday lives.
• Are able to continue to learn about science outside school.
• Have the skills to enter careers of their choice, including (but not limited to)

careers in science, engineering, and technology.

.. Three dimensions

The framework is composed of three dimensions. The dimensions outline knowl-
edge in science and engineering every student should learn at the end of high
school. The National Research Council stresses all dimensions should be used to-
gether in standards, curricula, instructions and assessments to support students
learning. The three dimensions are:

 Practices of science and engineering.
 Principles applicable across all  disciplines.
 Themes for every  discipline.

 The National Research Council () speaks of cross-cutting concepts instead of principles and
core ideas instead of themes. Because we divided knowledge in concepts, skills and attitudes
before, we like to make a clear distinction between concepts as defined in §. and the principles

A   -  



Practices and principles are cross-cutting through all  subjects, but themes
differ by discipline. A schematic overview of the framework and its dimensions is
given in Figure .. We discuss each of these dimensions shortly in the following
sections.

C1 C2 C3 ⋯C4

T1

P3

 ⋮

P2

P1

T2

D2 Principles

D1 Practices

D3 Themes

T3

⋮

F . The structure of the framework developed in this document.
Principles form a foundation for every  discipline. The practices are
cross-cutting through eachpractice and supports the foundation. Every dis-
cipline is based on themes which are build upon the shared practices and
principles.

D  Practices Practices are the pillars on which  subjects in mid-
dle and high school should be build as drawn in Figure .. All practices are drawn
from major methods and skills scientists and engineers use in their daily business.
Students are encouraged to immerse themselves in these practices and to explore
why they are so important in science and engineering. Each practice comes with
major competencies a student should have at the end of th grade. These goals
and the way students competence level progresses during preceding grades, can be
found in the original document. The eight practices introduced by The National
Research Council () are:

 Asking questions and defining problems
 Developing and using models
 Planning and carrying out investigations

introduced in this framework. Also, we want to make a distinction between fundamental ideas
as defined in §. and core ideas. Therefore we prefer to use the terms principles and themes
instead of cross-cutting concepts and core ideas.

 And thus the curricula build on this framework.

T    



 Analysing and interpreting data
 Using mathematics and computational thinking
 Constructing explanations and designing solutions
 Engaging in argument from evidence
 Obtaining, evaluating, and communicating information

With respect to the practices,TheNational ResearchCouncil ()makes two
remarks. First is the usages of the term practices instead of skills. This way the au-
thors want to emphasize that engaging in scientific investigation and engineering
inventions requires not only skill but also knowledge. This knowledge is specific to
each practice. Second is that in doing science or engineering, all practices are used
iteratively and in combination. The practices should not be used as linear and, in
particular, not sequential in the way they are presented.

D  Principles Principles are intertwined in every practice. They hold
the pillars formed by the practices together (see also Figure .) and support all
themes from the third dimension.Theapplication of these sevenprinciples is across
all domains of science:

 Patterns
 Cause and effect
 Scale, proportion, and quantity
 Systems and system models
 Flows, cycles and conservation of energy and matter
 Structure and function
 Stability and change

As intended by the criterion of width, these concepts help students to organize and
connect knowledge from various disciplines into a coherent cognitive structure.
The authors stress their role in the development of standards, curricula, instruc-
tions and assessments.

D  Themes The third dimension consists of themes in , grouped
by four disciplines:

• Physical sciences
• Life sciences
• Earth and space sciences
• Engineering, technology and application of science

A curriculum for a  subject combines cross-cutting practices, cross-cutting
principles and disciplinary themes. Themes covered by by above disciplines are
listed in Box .. In general themes should satisfy four points:

 Have broad importance across multiple sciences or engineering disciplines or
be a key organizing principle of a single discipline.

 Provide a key tool for understanding or investigating more complex ideas and
solving problems.

A   -  



 Relate to the interests and life experiences of students or be connected to soci-
etal or personal concerns that require scientific or technological knowledge.

 Be teachable and learnable over multiple grades at increasing levels of depth
and sophistication.That is, the idea can bemade accessible to younger students
but is broad enough to sustain continued investigation over years.

 . Themes for each of the four disciplines covered by the original
framework (The National Research Council, ).

Physical Sciences

 Matter and its interactions
 Motion and stability: Forces and interactions
 Energy
 Waves and their applications in technologies for information transfer

Life Sciences

 From molecules to organisms: Structures and processes
 Ecosystems: Interactions, energy, and dynamics
 Heredity: Inheritance and variation of traits
 Biological evolution: Unity and diversity

Earth and Space Sciences

 Earth’s place in the universe
 Earth’s systems
 Earth and human activity

Engineering, Technology, and Applications of Science

 Engineering design
 Links among engineering, technology, science, and society

.. Fundamental ideas

The framework developed goes well with the message of fundamental ideas. The
authors articulate their point of view as follows:

…the committee concludes that- science and engineering education should
focus on a limited number of disciplinary themes and cross-cutting concepts,
be designed so that students continually build on and revise their knowledge

T    



and abilities over multiple years, and support the integration of such knowl-
edge and abilities with the practices needed to engage in scientific inquiry
and engineering design. (The National Research Council, , page )

Two main points present itself. The first is that the authors created a framework
based on a ‘limited number of disciplinary themes and cross-cutting concepts’.Mean-
ing the framework is build on some sort of fundamental ideas per discipline and
fundamental ideas that fit each  subject. The second striking similarity is the
goal the authors envision by using themes and cross-cutting concepts: ‘so that stu-
dents continually build on and revise their knowledge and abilities over multiple
years’. This is exactly the main benefit Bruner () advocates, as we already dis-
cussed in §...

Also, the criteria disciplinary themes should adhere, as listed on page , are in
agreement with the criteria Schwill () conceived for fundamental ideas. First,
point  states exactly the same as the criterion of width. Both point  and point 
are implied by the criterion of depth. And at last, the criterion of sense is equivalent
to point . Only the criterion of time is not reflected in above points.

.. Place of computer science

Notably absent from the disciplines covered by A Framework for K- Science Edu-
cation is computer science. The National Research Council does not address com-
puter science, arguing it can be ‘seen as a branch of the mathematical sciences, as
well as having some elements of engineering’ and having ‘a history and a teaching
corps that are generally distinct from those of the sciences’ (The National Research
Council, , page ). Therefore the committee has not taken integrating com-
puter science into the framework as part of their charge. The authors stress, how-
ever, computer science should not be excluded from the - curriculum and cer-
tainly has a place in - education. The notion of computational thinking is men-
tioned as a practice though, recognising the need of computing in a modern 
framework.

. A       

The first step in adapting A Framework for K- Science Education to computer
science, is to examine the applicability of the framework for this discipline. Before
making any changes to the framework, we step over each cross-cutting practice
and cross-cutting principle to check in which way they can be used in computer
science.

 Statistics is another discipline not included in the framework.

A       



.. Cross-cutting practises

Framework

- practices
- principles
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

All practices apply to both scientists as well as engineers in general. Some no-
tions however, are used differently by scientists and engineers. Science is focused
on investigating and creating models and theories about the world. Engineering in-
stead focuses on designing and building systems. As computer science is regarded
as a scientific and as an engineering discipline, both viewpoints apply equally well
(Tedre, ). The practices discussed in the next sections are therefore easily ap-
plicable to computer science. Students in middle and high school are most likely
to come into contact with the creation and developing part of computer science.
Hence we discuss each practice focussing on the engineering viewpoint to com-
puter science.

P  Asking questions and defining problems The development cycle of
a software project usually starts with a problem, need or desire. As in engineering,
this problem needs to be pinpointed, narrowed down and described in a clear and
well defined way using a specification. Software developers ask questions to narrow
down the class of the problem, determine criteria a solution has to satisfy and write
all these constraints down.

E . Non-linearity of practices We use this practice as an exam-
ple to emphasize the fact that practices are not linear, as mentioned before at
page . Developers continually ask questions to help them and their team in
defining new (sub)problems, change perspective on current work and control
their next steps. During the design phase of a new product, multiple solutions
are compared and evaluated (see also Practice ).When creating an implemen-
tation, a developer will ask questions like ‘Will it meet the design criteria?’,
‘Can multiple ideas be combined to produce a better solution?’, ‘Are ther pos-
sible trade-offs of this implementation?’ and so on. Also in the time of testing,
a product faces numerous quality assurance questions. Some of them it will
abide, others will reveal bugs or incompletenesses.

P  Developing and using models Software developers make extensively
use of models and simulations to analyse data flow and program flow. Programs
are written in a paradigm, such as object orientated, functional orientated, aspect
orientated and many more. Choosing for a particular paradigm or language, or us-
ing a specific framework gives a programmer tools to model a problem for a device.

T    



At the same time such a choice constrains the developer in the way he/she can de-
sign a solution. Software developers have to, like scientists, commit to a paradigm
and use the concepts common to it. But they can also explore paradigms at a meta
level, extend them or find a new ones. Paradigms and models are never complete
and can always be changed and updated. Developersmust be aware of intrinsic lim-
itations of models, paradigms, languages and s they use. Abstracting from the
real world in a model and instantiating a model to a real world object are central
to this practice.

P  Planning and carrying out investigations Next to creating and us-
ing models or producing an explanation or artifact, computer scientists use experi-
mentation andmeasurement to gain data for different purposes. One such purpose
could be during the initialization of a project, when investigating the requirements
of a product. Another is during the design phase, where investigations help to de-
termine how effective, efficient, durable, user friendly and so on a designmay be. In
software development, and also engineering in general, this is often called quality
assurance. Thus investigations to gain data are essential for both specifying design
criteria or parameters, as well as testing prototypes and products.

The usage of this practice in engineering is mainly to test designs. This fact
reminds of verification, validation, correctness, consistency, completeness, fairness
and testing. These terms, however, are not directly mentioned by the authors of
the framework. We like to make these fundamental ideas more visible in this prac-
tice. For now, we just check how this practice is applicable to computer science.
Therefore we like to delay these extensions to §...

P  Analysing and interpreting data A great part of computer science is
about data: data analysis, data storage, data communication, data manipulation…
However, that is a component specific to computer science and should be a theme
connected within the discipline. We will come back to this later, in §... This
practice is about ordering collected data during investigations (see also Practice )
to reveal patterns, find explanations and give answers. In doing so, one needs a form
to visualize these patterns and relationships and allows the result to be presented
to others.

The intended meaning of data by this practice is thus data collected during re-
quirements engineering, testing, prototyping and other empirical studies done by
software developers and engineers in general. This data is used to compare differ-
ent solutions to a problem and determine how well solutions meet specified crite-
ria. Engineers like to know ‘which design best solves the problem within the given
constraints’ (The National Research Council, , page ). They make decisions
based on the result of such an evaluation and use it as evidence that a given solution
will work, instead of falling back on trail and error. These metrics can be used to
make informed design decisions and as estimations of performance and quality af-
ter delivery. It helps clarifying problems, determine economic feasibility, evaluate
possible alternatives and investigate possible failures. Analysis can be done using a

A       



model (see also Practice ) or by creating prototypes. Data can be gathered through
testing under different conditions.

P  Using mathematics and computational thinking As in every 
subject, mathematics is really important in computer science. Computer science
even originated as a mathematics discipline (Tedre, ). Of course the inclusion
of computational thinking in a practice emphasizes the importance of computer
science as a school subject. Mathematical and computational thinking can be de-
veloped inside every  subject, but the theoretical foundations have to be de-
veloped in their own subjects. For mathematical thinking these will be courses con-
taining calculus, statistics, linear algebra and geometry. For computational think-
ing these will be courses about programming, algorithms, data and computer de-
vices.

P  Constructing explanations and designing solutions The first part of
this practice, ‘construction explanations’, is directed towards science. Scientists like
to construct theories to explain properties of the world. This explanation should
be consistent with available evidence and utilized theories. The second part, ‘de-
signing solutions’, is directed towards engineers. Computer scientists and software
engineers give explanations to test results during verification processes: explaining
quality aspects like time and space complexity, usability and so on. The main con-
cern of an (software) engineer is designing solutions, solutions to problems society,
business, science or organisations ask for.

P  Engaging in argument from evidence Reasoning and argumentation
are essential in finding the best explanation of a phenomenon or the best solutions
to a problem. For example, in an initial stage, software engineers have to compare
multiple design ideas. Later on in the design process, they test prototypes and col-
lect data (see also Practice ). This data is used as evidence in argumentation about
the strengths and weaknesses of the proposed designs. Without argumentation sci-
entists and engineers could not discuss and examine their explanations and solu-
tions. Next to systematic methods to compare alternatives, usage of test data to
formulate evidence and so on, there is also an epistemic argument supporting the
importance of this practice:

The knowledge and ability to detect “bad science” are requirements both for
the scientist and the citizen.

(The National Research Council, , page )

P  Obtaining, evaluating, and communicating information Like scien-
tists, software developers have to obtain information form various sources. It is not
enough to find information and use it without thinking. As stated above, evaluation
of the gathered information is crucial. Controlling the source and having a sense
of rightness of the information is important. Epistemic knowledge plays a crucial
role in this practices.

T    



.. Cross-cutting principles

Framework

- practices
- principles
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

The second dimension of the framework consists of cross-cutting principles.
These principles are as important as the practices in each of the  disciplines.
As with the practices we discuss shortly the applicability of each principle to com-
puter science in the next sections.

P  Patterns Patterns are everywhere in science, engineering and com-
puter science. Recognising, ordering and using patterns is a core business of every
computer scientist and software engineer during the whole software development
cycle, including definition, designing and verifying. Pattern matching is used by in-
ductive definitions used by many mathematical theories in computer science. It is
also made explicit in many (functional) programming languages.

P  Cause and effect Every effect or result produced by an information
system is caused the exact instructions a computer has been told to do. The goal of
engineers is to design a solution which causes a desired effect. The understanding
of the causal relationships of a model or design will help students to explain and
reason about the system.Most of the time it is not the case that ‘the computer does
not do what you want it to do,’ but ‘it does exactly as you told it to do’ and you prob-
ably told it to do the wrong thing. Cause and effect are essential principles when
modelling systems, writing and debugging programs and other common scientific
and engineering practices a computer scientist uses.

P  Scale, proportion, and quantity This principle is important in soft-
ware development when, for example, scaling up a solution to address more con-
nections, customers, data and so on. Also this concept applies very well in complex-
ity theory when analysing worst case, average case, best case and amortized case of
runtime and data usage.

P  Systems and system models Information systems are a main object
of study for computer scientists. Everything from a chip to a computer (hardware)
and from a script to an operating system (software) can be regarded as a system get-
ting input, processing data and producing output. (See also Principle . Modelling
is already discussed in Practice  at page .)

A       



P  Flows, cycles and conservation of energy and matter Computer sci-
entists are not concerned with matter and energy. Although energy consumption
by computer systems and software is starting to become a research subject, we
cannot say it is a main aspect of computer science as it is in all other science and
engineering disciplines.

Flowof data on the other hand is core business of computer scientists. To reflect
this idea we will modify this principle in §...

P  Structure and function To illustrate this principle, we give a simple
example: the structure of a program (the way it is build) has to reflect the function
of it (the way it will be used). It is the same as the design of a bike: the structure of
the frame has to reflect that it has to carry a person and be mounted to two wheels.
When developing a program, software engineers continually need to evaluate the
structure of their code to meet the function of the solution.

P  Stability and change Some computer systems have to be stable,
serving information to a lot of people for instance. Others have to change rapidly,
like altering the amount of products in a warehouse. This concept is as important
in computer science as it is in engineering in general.

. A       

Framework

- practices
- principles
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

Ourmain concern in this section is taking a look at the fundamental ideas from
§. and relate them to the practices and principles from the framework. The fun-
damental ideas we link here are general enough to be applicable to all  dis-
ciplines. They can be removed from our ‘check-list’ and do not have to appear in
the disciplinary themes on computer science. As the reader gets along, he/she can
keep a record of the fundamental ideas already included in the original framework.
To ease this tracking of fundamental ideas throughout the chapter, we emphasise
their occurrences. All fundamental ideas can be found in Appendix .

L   The  tools and techniques are strongly orientated towards en-
gineering. It is almost trivial to look for practices and principles that incorporate
these ideas. The ideas of empirical studies, experimentation and measurement can
be found in Practice  and Practice . Evaluation, metrics and estimation are part
of Practice . Design is off course the base of Practice . As stated before, ideas
like reliability, performance, validation and verification are good candidates to be

T    



added to Practice . We come back to this in §.., where we will put forward
some modifications to the framework.

L  Schwill The fundamental ideas listed by Schwill are fairly algorithmic in
nature and most of them are not general enough to be covered by a cross-cutting
practice or principle. Structured dissection however is covered by Principle  and
Principle . The ideas of hierarchisation, nesting, tree, parentheses are indentation
part hereof. The same applies to orthogonalisation, emulation,modularisation and
top-down method and bottom-up method, which can also be found throughout
both practices. Ideas about complexity like worst case, average case, best case and
amortized case of runtime and data usage can be found in Principle . A fundamen-
tal idea of Schwill which clearly covers engineering is specification.

L  Zendler and Spannagel The idea problem is in the top five of the list
Zendler and Spannagel () put together in their empirical search for fundamen-
tal ideas. A question is on the same line as a problem, but mainly focused towards
science. Both are part of Practice . Practice  covers model.

We can find some other fundamental ideas mentioned by Zendler and Span-
nagel in the principles of the framework. For example, a system is studied in Prin-
ciple  and a process is part of Principle . The idea of structure manifests itself in
Principle . Once more we do not have a evident place to classify test. Practice 
would be a good candidate, but is not specific enough towards testing and verifica-
tion.

. E      

In this section we divide the remaining fundamental ideas in two classes. The first
class contains ideas which can be applicable to all  disciplines, including com-
puter science. Therefore they should be embedded in already existing practices or
principles. We will present some modifications compared to the original - sci-
ence education framework discussed in the sections above.Of course, when extend-
ing original practices or practices, we have to be sure this extensions are relevant to
all  subjects. In §.. we extend two practices (Practice  and Practice ) and
alter one principle (Principle ) to better reflect cross-cutting fundamental ideas
found in Chapter . Next to that, we add one new practice.

The second class contains ideas which are not applicable to all  subject.
That means these fundamental ideas are pure computer science orientated. They
will not fit into cross-cutting practices or principles and we have to fit them into
disciplinary themes for computer science. In §.. we define three disciplinary
themes for computer science which incorporate all left over fundamental ideas.

In expanding the cross-cutting dimensions anddefining the disciplinary themes,
we also incorporate our results from Chapter  by enacting the focus of the curric-
ula and guidelines in our additions.

 The term question was not an object of study for Zendler and Spannagel ().

E      



.. Cross-cutting fundamental ideas

Framework

- practices…
- principles…
- themes

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

Because of the relevance of verification and structuring in computer science,we
like tomodify two practices from the original framework:  Planning and carrying
out investigations, and  Analysing and interpreting data. The value of collabora-
tion is demonstrated by the  curriculum guidelines and the fundamental idea
team work by Schwill. To reflect this importance, as well to computer science as to
all other  subjects, we add one more cross-cutting practice:  Collaborating
with peers and experts.The non-applicability of the principle  (Flows, cycles and
conservation of energy and matter) to computer science, can be fixed by slightly
generalising the topic and adding data to energy and matter. All modifications and
additions are summarized in Table .. In the next sections we will discuss these
four adjustments one by one.

T . Modifications to the original framework as defined by The Na-
tional Research Council (). Old names of practices and principles are
listed (if applicable) with the new names after the arrow.

 Planning and carrying out investigations
⇝ Planning and carrying out investigations and verifications

 Analysing and interpreting data
⇝ Structuring, analysing and interpreting data

 –
⇝ Collaborating with peers and experts

 Flows, cycles and conservation of energy and matter
⇝ Flows, cycles and conservation

P  Planning and carrying out investigations and verifications An im-
portant objective for software developers is to test or verify their products against
requirements and specifications.Thisweightiness is reflected by theV-model (IEEE,
), which assigns one of its two branches to verification, making it as important
as creation. To stress the importance of verification, we change the name of this
practice from ‘Planning and carrying out investigations’ to ‘Planning and carrying
out investigations and verifications’. At a glance, it should be clear verification and
validation plays as big a role in this practice as is investigation. Even more so in
engineering as in science. Other fundamental ideas about quality assurance fit in
as well: correctness, consistency, completeness, fairness, reliability, performance and
testing.

T    



We have to validate the addition of verification to this practice for every 
subject. Where engineers speak of the ‘verification of a product’, scientists speak
of ‘verifying a hypothesis’. Engineers test prototypes or products for quality assur-
ance. Scientists collect data to ‘test existing theories and explanations or to revise
and develop new ones’ (The National Research Council, , page ). Testing
and verification are thus as applicable to computer science as to every other 
discipline.

P  Structuring, analysing and interpreting data This practice is not just
about analysis and interpretation. Before raw data can be analysed or interpreted,
it has to be structured an organized in a way to reveal its information. Science and
engineering use tools like tabulating, graphing, visualizing and statistical analysis
to find the explanations and relationships between variables and concepts. Hence
we like to add ‘structuring’ to this practice, to express the necessity of ordering data
before analysing or interpreting it.

To systematically analyse something, one can use differentmodularisation and
hierarchisation techniques as discussed by Schwill (). Scientists and engineers
can use a top-downmethod or a bottom-upmethod to structure their data or set up
their research or design. To visualize data in a hierarchical way, one can use nesting,
trees, parentheses and indentation.

P  Collaborating with peers and experts An important omission in the
original framework is the lack of collaboration and teamwork. Although Practice 
implies collaboration in science and engineering, the framework does not stress
this directly. Schwill () mentions team work as a fundamental idea. It is not
a fundamental idea specific to computer science and it is general enough to be
in one of the cross-cutting dimension of the framework. However, it can not be
placed in any of the existing practices or principles. We regard collaboration is not
sufficiently brought to the attention by the original framework. To put this right,
we add the practice ‘Collaborating with peers and experts’.

Students should be taught to work together with peers, as a pair or in bigger
teams, and with experts, within the same field as well as multidisciplinary. Com-
puter artefacts, for example, are not created by one person. Groups of developers
are working together to produce new software. Not only do these teams have a
multi disciplinary character, they often consist of people with different levels of
expertise. Communication between team members, giving feedback etcetera, are
skills every student should be able to use during middle school, high school and be-
yond.Collaboration ismentioned as a central practice in st century skills (KNAW,
). Although collaboration manifests itself in software development, it is too a
main part of science and engineering.

P  Flows, cycles and conservation Energy andmatter are not objects of
study for computer scientists. They do however study flow and cycles in a system,

E      



but it is all about data instead of energy or matter. Therefore we alter this princi-
ple to reflect the importance of data in computer science in particular and science
and engineering in general. This is also done by the Dutch incarnation of A Frame-
work for K- Science Education in the section on technology (Ottevanger, et al.,
). When speaking about data flows and cycles, the idea of a process comes into
mind, as well as flows operating at the same time inside a system: concurrency. An
overview of this altered principle is given in Figure .

input

output

process:
flow

process:
cycle

system

F . Systems are isolated parts of the universe. They receive an in-
put and produce an output. Flow is energy, matter or data moving into the
system, moving through the system and then moving out again. A cycle is
when energy,matter or data is recycled over and over againwithin a system.
The energy, matter or data inside a system is changing shape and form, it is
being processed.

.. Disciplinary fundamental ideas

Framework

- practices
- principles
- themes…

⊆

⊇

Computer Science

- ACM
- Schwill
- Zendler & Spannagel

We have altered some practices and principles and we added a new one to em-
bed cross-cutting fundamental ideas into the framework. We will incorporate the
remaining fundamental ideas into the disciplinary themes on computer science. In
formulating these themes, we also use our results from Chapter . The structure
of the French and  curriculum and guidelines greatly help to assemble the re-
maining fundamental ideas. Analysing the unused fundamental ideas we come to
these three disciplinary themes:

T    



 Representation and interpretation of data
 Algorithms: their usage and implementation
 Digital devices and communication over networks

Belowwe discuss each disciplinary theme and showwhich remaining fundamental
ideas from the lists in §. they contain.

T  Representation and interpretation of data Computer science is about
data and the transformation of data. Data is the input of an algorithm or program
where it is processed and manipulated (Principle  at page ). In the end the out-
put of a system is also data, which should be interpreted. Humans and computers
both have a very different view on data and information.

Data appears in numerousways. For a computer to process data, it has to be in a
specific form.Computer scientistsmake use of abstract data types and information
hiding to model information in a computer. Also the representation of data in a
digital device or over a network is highly important. Translating data from and to
its representation is done continually.

T  Algorithms: their usage and implementation Computer science is not
just about data. Systems are made to process the data. The main model introduced
in Principle  comes in hand. Computer programs are built to process input and
produce output. An algorithm is used to manipulate data and perform a computa-
tion.

Algorithms, among others, are expressed in a language. Formal languages be-
came a major research area of computer science. As physicists use mathematics
to express themselves and their theories, computer scientists create their own for-
mal language to express their systems andmodels. Languages are not only used for
programming andmaking software. Different type of languages exist: specification
languages, query languages, command languages and logic for example. Specifica-
tion languages are used to formalize system requirements. Different command lan-
guages exist to express instructions for an operating system. To question a database
computer scientists engineered query languages. This list can go on and on, grow-
ing much bigger. In designing an algorithm or program, students can use multiple
design paradigms like branch-and-bound, divide-and-conquer, greedy-approach,
plane-sweep and backtracking.

To study languages students have to understand the difference between syntax
and semantics. Study grammars that generating and accepting languages, possibly
using simple automata. This way students will learn the underpins of formal lan-
guages. Using fundamental ideas like reduction, termination and diagonalisation,
students can be exposed to computation models.

Algorithmisation is the process of dividing a process into small steps. Students
should be able to deduce and describe such steps and form an algorithm out of it
using a language. During the creation of algorithms and programs, students need
to know the building blocks they can use. These are concatenation (or sequencing),

E      



alternation (or branching or choosing) and repetition in the form of iteration, recur-
sion or looping. Next are notions of abstraction like parametrisation (using func-
tions andprocedures),hierarchisation andmodularisation. Special techniqueswhen
developing algorithms are non-determinism and concurrency. Analysing the com-
plexity of algorithms should be another major topic in this theme. Fundamental
ideas like order, unit-cost measure, log-cost measure come to mind in this context.

T  Digital devices and communication over networks The development
of software and the analysis of algorithms are not the only creative part of com-
puter scientists. They also shape the world by creating computer and let these de-
vices communicate with each other and their environment. Students should know
the components of devices, most importantly the processor, which is the central
unit processing data and performing algorithms. Communication between devices
often happens over a network; client-server set-ups come to mind. The locality of
objects and sharing of it is difficult to understand for students and demands great
attention of teachers. The World Wide Web with all its technologies is of course a
great example of a well known and very big network. Communicationwith the envi-
ronment happens through sensors, displays, and many other peripherals. Robotics
and human computer interaction can be gathered in this theme.

.. Overview

Our overall goal was to provide a conceptual framework to structure and design
computer science curricula based on the notion of fundamental ideas. A curricu-
lum based on such a framework gains all the benefits Bruner claims about funda-
mental ideas.These benefits were discussed in §...We have adapted the original
framework by extending the cross-cutting dimensions or by adding new themes
for computer science to the disciplinary dimension. We have created a conceptual
framework for - computing, science, technology, engineering and mathematics
education. In grouping these disciplines together we make computing a major part
of it. To abbreviate this list of disciplines, we introduce the term . The final
list of the cross-cutting practices and principles and the disciplinary themes for
computer science can be found in respectively Box . and Box . on the next
pages.

T    



 . Final list of practices, principles of the  framework. Prac-
tices and principles are cross-cutting through all  disciplines. Ad-
ditions with respect to the original framework of The National Research
Council () are emphasized.

Practices

 Asking questions and defining problems
 Developing and using models
 Planning and carrying out investigations and verifications
 Structuring, analysing and interpreting data
 Using mathematics and computational thinking
 Constructing explanations and designing solutions
 Engaging in argument from evidence
 Obtaining, evaluating, and communicating information
 Collaborating with peers and experts

Principles

 Patterns
 Cause and effect
 Scale, proportion, and quantity
 Systems and system models
 Flows, cycles and conservation
 Structure and function
 Stability and change

E      



 . Final list of themes of the  framework.Themes are discipli-
nary and grouped by area. Additionswith respect to the original framework
of The National Research Council () are emphasized.

Physical Sciences

 Matter and its interactions
 Motion and stability: Forces and interactions
 Energy
 Waves and their applications in technologies for information transfer

Life Sciences

 From molecules to organisms: Structures and processes
 Ecosystems: Interactions, energy, and dynamics
 Heredity: Inheritance and variation of traits
 Biological evolution: Unity and diversity

Earth and Space Sciences

 Earth’s place in the universe
 Earth’s systems
 Earth and human activity

Engineering, Technology, and Applications of Science

 Engineering design
 Links among engineering, technology, science, and society

Computer Science

 Representation and interpretation of data
 Algorithms: their usage and implementation
 Digital devices and communication over networks

T    






C

In this thesis we presented our contributions to computer science education in
three parts.

 An analysis of the content knowledge of four international curricula and guide-
lines on computer science.

 A different viewpoint on computer science curricula using fundamental ideas,
instead of a classical division in fields of the discipline.

 An implementation of fundamental ideas of computer science embedded in an
existing conceptual framework for - education.

Each part contributes in its own way to computer science education in (junior)
high schools.

 The analysis of differences between and similarities of international curricula
provides us with information useful on designing new curricula for computer
science. It helps to reflect on topics taught in (junior) high school and their
substance in a curriculum. In addition, it yields a categorised list of concepts in
computer science, teachable to students in different stages of - education.

 Fundamental ideas allow us to create a sustainable curriculum for computer sci-
ence. Curricula based on fundamental ideas motivate students to extend their
knowledge inside fields and across field borders, allowing for stronger cogni-
tive structures and better non-specific transfer. We presented the criteria for
fundamental ideas by Schwill (). Evaluation of theoretical and empirical
studies produced a list of fundamental ideas that should be apparent in every
(junior) high school curriculum on computer science.

 A framework which contains  subjects as well as computer science gives
us opportunities to work interdisciplinary and better integrate common prac-
tices and principles. We show how computer science can fit in the existing
framework A Framework for K- Science Education in two ways:
− How the existing framework covers computer science: which cross-cutting

practices and principles are applicable to computer science and why.

C



− How the fundamental ideas of computer science are apparent in the cross-
cutting practices and principles.
After this investigation we extended the original framework by modifying

two practices and one principle and by adding one practice. Next to this cross-
cutting part, we developed three themes specific for computer science. These
adjustments make sure all fundamental ideas of computer science are embed-
ded in this  framework. Curricula based on this framework make sure
to benefit from a wide, deep and sensible usage of fundamental ideas.




L   

The next pages contain a list of all fundamental ideas mentioned in this document.
The page references are to the place where they are defined in a theory, somewhere
in Chapter  (pages –), as well as the place where they fit into the framework,
thus somewhere in Chapter  (pages –).


abstract data type , 
accepting , 
algorithm , , 
alternation , 
amortized case , 
average case , 


backtracking , 
best case , 
bottom-up method , , 
branch-and-bound , 


communication , 
completeness , 
complexity , , 
computation , 
computer , 
concatenation , 
concurrency , , 
consistency , 
correctness , 


data , 
design , 
diagonalisation , 
dissection , 
divide-and-conquer , 


empirical studies , 
emulation , 
estimation , 
evaluation , 
experimentation , 


fairness , 


generating , 
greedy-approach , 


hierarchisation , , , 

L   




indentation , , 
information , 
information hiding , 
interpretation , 
iteration , 


language , , 
locality of objects , 
log-cost measure , 


measurement , 
metrics , 
model , 
modularisation , , , 


nesting , , 
non-determinism , 


order , 
orthogonalisation , 


parametrisation , 
parentheses , , 
performance , 
plane-sweep , 
problem , 
process , , , , 
processor , 

program , 


recursion , 
reduction , 
reliability , 


semantics , 
software , 
specification , 
structure , 
syntax , 
system , 


team work , 
termination , 
test , 
top-down method , , 
transformation , 
translation , 
tree , , 


unit-cost measure , 


validation , 
verification , , 


worst case , 




L     

Herewe list all concepts filtered from the curricula and guidelines discussed inChap-
ter . Concepts are grouped by category, as presented in Table ..

A

algorithm
algorithm representation
algorithm sharing
ambiguity
breadth first search
complexity
component
computationally unsolvable
concurrency
data processing
deadlock
decision
decomposition
depth first search
finite state machine
heuristic algorithm
information sharing
input
instruction
instruction sequence
instruction set
iteration
live lock
merge sort

output
parallel processing
parallel stream
parallelisation
pattern
performance
precision
problem solving
recursion
redundancy
repetition
resource
search algorithm
selection
sequence
sort algorithm
steps
task
tractability

A

apis
architecture
assembly code
binary form

L     



binary switch
bit
byte
chip
circuit
communication layer
compiler
computer
computer component
cpu
device
digital machine
digital value
electronic device
embedded system
emulator
execute
execution model
file io
file system
flip-flop
hand-held technology
hard disk
hardware
hardware component
hardware problem
hardware sharing
instruction representation
interpreter
logic circuit
logic gate
low level language
machine
memory
mobile device
monitor
moore’s law
mouse
numeric value
operating system
overflow
peripheral
personal computer
physical layer

processor
real time system
register
sampling
scheduling
single event system
software
system
system controlling
system design
thread
translation
virtual machine
von neumann architecture

D

array
audio format
big data
binary representation
character
character representation
compression
data
data error
data representation
data set
data storage
data type
data value
database management system
digital data
document format
file format
floating point
fraction
fraction representation
hexadecimal number
hexadecimal representation
image representation
information
information persistence
information representation



information system
integer
list (data structure)
lossless compression
lossy compression
mark-up language
number representation
persistence
query language
relational database
relational schema
representation purpose
representation sharing
retrieving information
sampling frequency
signed integer
sound representation
storage
string
table
text representation
two dimensional array
unsigned integer
word

E

chart
clarity
collaboration
communication
correctness
data analysis
development instrument
digital artifact
documentation
evaluation
feedback
flowchart
functional design
implementation technique
instances
object-oriented design
problem

problem exploration
problem statement
productivity tool
project
project management
prototype
refactor
requirement
scale
separation
software creation
software development (process)
software life cycle process
solution
specification
stakeholder
teamwork
technology resource
technology tool
test case
tool
validation
verification
version control system

G

image brightness
image contrast
image format
multimedia
multimedia tool
visual representation

I

artificial intelligence
computer vision
human intelligence
intelligent behaviour
language understanding
machine intelligence
robot component
robotics

L     



M

and
binary number
boolean
exclusive-or
graph
logic
logical expression
not
or
quantization
set
statistical function
tree
truth table

M

model
simulation

N

authentication
bandwidth
browser
client-server model
communication between machines
cookie
data communication
domain name service
error correction (network)
fault-tolerance (network)
firewall
http request
hyper link
internet
internet service
internet vs web
ip address
latency
mac address
mail header

network
network address
network component
network connection
network diagram
network functionality
network message
network path
network protection
network structure
network traffic
on-line resource
packet
packet switching
path (network)
peer-to-peer
point to point transmission
protocol
queue (network)
receiver
routing
search engine
search engine ranking
search query
server
server capability
shared resources (network)
spooler (network)
transmitter
url
web
web browser
web page
web page structure
web request
web site
web site address
web site name

P

application
argument (of function)
arithmetic operation



assignment
behaviour (of code)
boolean operation
bug
class
conditional
conditional jump
constant
context (of application)
control structure
data structure
divide by zero
efficiency
error
expression
function
high-level language
html
language
logical operation
looping (programming)
method
mobile computing application (pro-

gramming)
paradigm
parameter
procedure
program
program creation
programming language
programming technique
readability (code)
recursive function
scope
semantic error
signature
statement
string manipulation
syntactic error
usability (code)
variable

R

business
information flow (business)
organisation structure (business)
project structure
standard

S

access rights
cryptography
encryption
password
protection
secure storage
secure transaction
security
web safety and security

S

appropriateness
bias
career
commercial software
comprehensiveness
digital rights
ethical behaviour
experience
expression (communication)
free software
hacking
information right
interdisciplinary
international network (society)
law
legal behaviour
limitation of digital machines
open source development
open source software
ownership (privacy)
personal information
privacy

L     



productivity technology
proprietary software
public domain software
relevance
software license
software piracy
technology

U

adaptability
human computer interaction
user
user dialogue



R

ACM (). Computing Classification System. (Tech. Rep.). ACM. Available from
http://www.acm.org/about/class/

(). Computing Classification System. (Tech. Rep.). ACM. Available
from http://www.acm.org/about/class/class/

ACM/IEEE (). Computer Science Curricula : Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. (pp. –). Au-
thor. doi:./

Académie des Sciences (). Teaching computer science in France: Tomorrow
can’t wait. (Tech. Rep., no. May). Paris: Académie des Sciences.

Barendsen, E., Demo, B.,Grgurina,N., Izu, C.,Mannila, L.,Mirolo, C.,… Stupurienė,
G. (). Key Concepts in K- Computer Science Education. In th An-
nual Conference on Innovation and Technology in Computer Science Ed-
ucation. Vilnius: Manuscript in preparation.

Barr, V. & Stephenson, C. (). Bringing Computational Thinking to K-: What
is Involved andWhat is the Role of theComputer Science EducationCom-
munity ?. doi:./.

Bloom, B.S. (). Taxonomy of educational objectives: the classification of edu-
cational goals. New York: McKay.

Boersma, K., Eijkelhof, H., van Koten, G., Siersma, D., & van Weert, C. (). De
relatie tussen context en concept. Available from http://www.betanova.nl
/downloads/context/relatie__context__concept.pdf

R



Bruner, J.S. (). The Process of Education. Cambridge, Massachusetts: Harvard
University Press.

Bruning, L. & Michels, B. (). Concept- contextvenster. (Tech. Rep.). Enschede:
SLO.

CAS Working Group (). Computer Science: A curriculum for schools. (Tech.
Rep.). Kent: Computing at School.

Cohen, L., Manion, L., & Morrison, K. (). Coding and content analysis. In Re-
search Methods in Education. ( ed., pp. –). New York: Routledge.

CSTAStandardsTask Force ().CSTAK-Computer Science Standards. (Tech.
Rep.). New York: Computer Science Teachers Association.

De Block & Heene, J. (). Inleiding tot de algemene didactiek. Antwerpen: Stan-
daard Educatieve Uitgeverij.

Dillon, R.F. (). Issues in cognitive psychology and instruction. In Dillon, R.F. &
Sternberg, R.J. (Eds.). Cognition and Instrction. Orlando: Academic Press.

Fischer, R. (). Unterricht als Prozeßvon der Befreiung vomGegenstand: Visio-
nen eines neuenMathematikunterrichts. Journal furMathematik-Didaktik,
, –.

Harden, R.M. ().What is a spiral curriculum?.Medical teacher, (), –.
doi:./

IEEE (). A Guide to the Project Management Body of Knowledge. (Tech. Rep.,
pp. –). Author. doi:./IEEESTD..

ISO - (). Terminology Work—Vocabulary—Part : Theory and Applica-
tion. (Tech. Rep.). Geneva: International Organization for Standardiza-
tion. Available from http://www.iso.org/iso/catalogue_detail.htm
?csnumber=

KNAW().Digitale geletterdheid in het voortgezet onderwijs. (Tech. Rep.). Am-
sterdam: KNAW. Available from http://www.knaw.nl/Content/Internet
_KNAW/publicaties/pdf/.pdf

Krathwohl, D.R. (). A Revision of Bloom’s Taxonomy: An Overview. Theory
Into Practice, (), –. doi:./stip_

Ministère de l’Éducation nationale (). Enseignement de spécialité d’informa-
tique et sciences du numérique de la série scientifique - classe terminale.



Available from http://www.education.gouv.fr/pid/bulletin_officiel
.html?cid_bo=

Nievergelt, J. (). Computer Science for Teachers: A quest for classics and how
to present them. In Norrie, D.-H. & Six, H.-W. (Eds.). Lecture Notes in
Computer Science. Berlin, Germany: Springer.

OECD (). PISA  Draft Science Framework. (Tech. Rep.). OECD.

Ottevanger, W., Oorschot, F., Spek, W., Boerwinkel, D.J., Eijkelhof, H., de Vries,
M.,…Kuiper,W. ().Kennisbasis natuurwetenschappen en technologie
voor de onderbouw vo. (Tech. Rep., p. ). Enschede: SLO.

Oxford University (). Oxford dictionary of English. (rd editio ed.). Oxford:
Oxford University Press. doi:./acref/..

Schraw, G. (). Promoting general metacognitive awareness. Instructional Sci-
ence, (), –. doi:./A:

Schreiber, A. (). Bemerkungen zur Rolle universeller Ideen im mathematis-
chen Denken. Mathematica Didactica, , –.

Schwill, A. (). Fundamental ideas of computer science. European Association
for Theoretical Computer Science Buletin, , –.

(). Philosophical Aspects of Fundamental Ideas: Ideas and Concepts.
In Magenheim, J. & Schubert, S. (Eds.). Informatics and Student Assess-
ment–Concepts of Empirical Research and the Standardisation of Mea-
surement in the Area of Didactics of Informatics. Bonn: Köllen Druck +
Verlag.

SLO (). Examenprogramma informatica havo/vwo. (Tech. Rep.). Enschede:
Stichting Leerplan Ontwikkeling.

Strauss, A.L., Corbin, J.M., & Others (). Basics of qualitative research. (nd
ed.). Newbury Park, CA: Sage.

Tedre,M. ().TheScience of Computing: Shaping aDiscipline. Boca Raton: CRC
Press.

The National Research Council (). A Framework for K- Science Education.
(Tech. Rep.). Washington: National Academies Press.

Zendler, A. & Spannagel, C. (). Empirical Foundation of Central Concepts for
Computer Science Education. Journal on Educational Resources in Com-
puting, (), –. doi:./.

R



