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Abstract

As a project for Aia Software1, we investigated if Reactive Extensions can be used to
monitor a message stream. These additional monitors cause extra stress on the system
as they will also function as receivers. This may increase the delay time of the original
message stream or the loss of messages in the event that the system is overloaded. The
monitors might even prove to be unreliable. Different reactive systems have been studied
to investigate how they deal with unreliable receivers. A number of possible solutions were
selected that are available in Reactive Extensions and that allowed for implementation.
The level of performance of the solutions was tested in a simulation of the monitored
system. This has resulted in six solutions, each with its own advantages and drawbacks.
Two of these solutions proved to be suited and one performed especially well.

1Currently Aia Software, A Kofax Company
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1 Introduction

Data streams are everywhere on the internet. For example to request a web-page, view
a video, use a web-cam, receive stock market data or get live soccer results. Even email
can be regarded as a data stream.
Synchronous data streams provide information at a constant rate until consuming stops

(e.g. a web-cam). They can also provide a short stream with a clearly defined end such
as a web-page or an email message. Synchronous streams function in email by requesting
the latest status at certain intervals – a process which is known as polling. Each time a
request is made, an amount of new information is delivered. The overhead increases as
the number of requests goes up; with less frequent requests, delay times increase until
new data becomes available. All these streams are pull based, in other words they are
served upon request.
An asynchronous stream or event stream is a different type of data stream which is

push based. Asynchronous streams usually do not transfer data constantly and stay
open over time. They notify when new data is available. This makes them more useful
for live data like email or soccer results because there is no need for polling. Instead,
a notification will be issued in case of a new event such as a new email message. The
advantage of pushing data in this manner is the fact that it requires minimal overhead
and realises fast response times in case of new information.
The reactive programming paradigm is a key element in this thesis. Before presenting

it in more detail, other - more commonly used - programming paradigms will be discussed
first, i.e. imperative programming and two types of streaming models (streams/pipelines
and publisher/subscriber). This approach was chosen to create a better understanding
of the main reasons for the implementation of reactive programming.
Traditionally, imperative programming focuses on how a program works. It describes

every step of the process including all possible exceptions and deviations. IO calls are
hidden as synchronous activities and they will block the system until they are completed.
All data is handled monolithically. Once the data has been processed, blocking calls
return the results and the data is forwarded. This will then start off the next step in the
process. This circular process will continue in the same manner until output is realised.

Streaming model

A more flexible way to handle data is to evaluate it in a stream or a pipeline. In a
pipeline, the data is split up into separate messages and operators on the pipeline modify
one single message at a time. Programs are no longer written from the perspective of the
program flow but ‘data’ is the dominant principle. Often only the first and last messages
require a special case. In a synchronous stream, the size of the dataset is known as well
as the arrival time of the next message. Certain data parts may be skipped and earlier
parts can be retraced. In an asynchronous stream, the only available direction is forwards
as the source pushes data and the size of the dataset will only be known after the end of
the data stream.
Pipelines decouple data and asynchronous code decouples the time aspect (i.e.
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decouples synchronization). The publisher / subscriber pattern also decouples space
(i.e. decouples sender from receiver) and in this way fully decouples communication
between participants. The publisher does not need to have any information about
subscribers, it simply publishes data into a pipeline. Subscribers receive this data when
they subscribe to the pipeline. Multiple subscribers can be subscribed to a single
pipeline or none at all. This allows for greatly improved scalability.

Reactive programming

Working with asynchronous data streams is quite different from using synchronous data
streams. With an asynchronous data stream, it is not known whether the next piece of
data will arrive the next millisecond, the next second or the next day. Another difference
is that reactive code not only deals with timing but also produces timing-based events.
When code reacts to arriving data, this is called reactive programming. This, in contrast
with imperative programming where it is defined when something happens. Reactive
code, on the other hand, defines what to do when something happens.
The advantage of an asynchronous streaming model is huge. Because you only process

one element at a time, there is no history, but the space requirements are decreased to
a single element; time is constant for every element. Data can be processed as the first
element arrives and there is no need to wait for the complete result set. This enables
working with endless collections and the results can be shown as soon as the data is
available.
However, asynchronous programming poses difficulties because of the limited support

in a large number of programming languages. Often callbacks are used and a
continuation function is passed as a parameter. The flow of the program will continue
in the continuation function once the asynchronous call is completed. This disrupts the
normal control such as loops and if/then statements and causes the program to be
spread out over many functions. Loops can be generated but only by recursively calling
the continuation function. Programmers often refer to this situation as ‘callback hell’.
For a programmer that is used to imperative programming, it is often tempting to

switch back. Many libraries even require this because they do not support asynchronous
calls. Programmers who are used to the imperative process may find it difficult to come
up with the solution in a reactive style.
In addition to callbacks, a number of more modern techniques are slowly being

introduced in modern languages. Lambda expressions help with defining callback
functions; async/await structure allows imperative style code on asynchronous calls.
Task objects2 which represent the result of an asynchronous computation, mix callbacks
in a more Object Orientated style. They come with a library to run tasks in parallel,
chain them or run them recursively.
Despite all these new techniques, many problems remain unresolved. Debugging tools

need to be adapted because call stacks no longer point to the calling code but to the
scheduler that coincidentally scheduled the call. Tasks that are on hold, are no longer

2Task is used in C#, but Java has a similar structure with Future and Javascript with Promis etc.
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found in the active thread list but are hidden in a task queue on various threads or on
the schedulers. Testcases are hard to write because asynchronous calls might involve
waiting.
A library that aids writing reactive programs is Reactive Extensions[1] or Rx. This

is a library for writing queries on event streams. Rx uses Observables that represent
multiple results or a stream of results of an asynchronous call. Similar to Task object
that only holds a single result, Rx has many operators that chain, transform or otherwise
mix these Observables - allowing for easy composition of asynchronous calls. Schedulers
are introduced to abstract timing. With the test scheduler for example, test cases can
be written that span days but actually run in milliseconds.
It is worth mentioning that modern libraries are adding asynchronous calls and are

moving towards asynchronous programming. Synchronous is becoming less popular.

1.1 Overview of thesis

This thesis is part of a project for a company, i.e. Aia Software. They want to investigate
if reactive programming can be used in a reliable manner for a specific use case (chapter
2.3) using Reactive Extensions (Rx) (chapter 3). The important properties are explained
in section 4.1 and a simulation of the use case is introduced in section 4.2. Various
solutions (chapter 5) inspired by similar systems and other Rx implementations are tested
in the simulation. The results are stated in chapter 6 and the conclusions are described
in chapter 7.
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2 Background

This chapter introduces the use case from Aia Software that contains the problem that
is investigated. It shows the current situation and what problems are expected from the
system extension.

2.1 Aia Software

Aia Software provides an infrastructure for customer communication for companies that
want to automate customer communication. This enables businesses to send welcome
letters, insurance policies etc. Figure 1 shows the outline of this process to configure
the infrastructure. The company can generate text blocks, include specific paragraphs
for different situations or may create different versions of the same text. The system
puts together these text blocks in a single text and tailors the text to each individual
customer. The system also decides which message to send to whom and at what time.
For example, customers should not receive advertisements for products they already use.
After completing these steps, the actual email or letter is created and delivered.
While most work takes place in the first half of the process (creating the text and

setting up the integration rules and tailoring to individual customers) in the back end
most computer time is spent on executing these rules. The back end servers are rented
from cloud providers, companies that operate many servers and rent them out on demand.
In the cloud, the entire process of combining text blocks and tailoring them for specific
customers is a job that is executed on request.

Figure 1: The process to automate communication to the customer.
Source: Kofax.com

2.2 Current situation

Jobs are constantly sent to the cloud, where they have to be scheduled on the servers.
The Cloud Manager (CM) functions as a gatekeeper to the cloud; it receives and assigns
the jobs to the various servers. To allow monitoring, the Cloud Manager produces events
when work is processed and these events are shared to the Failover that monitors the
health of the cloud. If the current cloud fails, the Failover transfers all work to a different

8



cloud. This is a very invasive (and expensive) operation that should not be started
erroneously. This means that the message stream to the Failover must be reliable so no
wrong conclusions are reached. See figure 2.

Figure 2: Current cloud configuration

2.3 The use case

Currently, the Cloud Manager and the Failover form a closed system that cannot be
observed. The messages from the cloud stream directly to the Failover. However,
employees or clients may want to know how much work is flowing through the cloud
and how busy or how responsive the systems are. This information can also be
extracted from the event stream from the Cloud Manager to the Failover. Therefore the
Cloud Manager would need to share these events to monitor applications. A monitor
can show the progress of the work to employees or clients. See figure 3 for the new
situation.
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Figure 3: Cloud configuration for the use case

2.3.1 Technical details

Various users send jobs to the cloud, the Cloud Manager receives these jobs and
distributes them over the cloud based on pre-set rules, load numbers, etc. When jobs
start or stop, an event message is generated and is sent to the Failover. The Failover
uses these messages to track the health of the cloud.
In the use case, these events are shared with various monitor applications that display

the progress of various jobs to employees or clients. These monitor applications might run
on slow and unreliable hardware such as smart phones with poor connections. Moreover,
these platforms may cancel their connection at any time or disappear without notice.
It is also important for the Cloud Manager to communicate with the different listeners

without causing any delay itself. If the Cloud Manager becomes delayed, all jobs will be
delayed as well. Only the Failover is important enough to delay the work. However, in
general we assume that the Failover is fast enough to process all events from the Cloud
Manager at maximum speed.
In order to create this extension, the event stream to the Failover must be duplicated.
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This duplication may be necessary a number of times as there might be multiple monitors
at different locations. Currently the event stream is very simple; events are generated
by the Cloud Manager and are directly delivered to the Failover. No special messaging
service is required because this is a one-on-one relation. Furthermore, the Failover is
completely under control of Aia Software so its speed and reliability can be guaranteed.
In the new situation, the event stream becomes a one-on-many relation so a messaging

service is required. When duplicating a stream, the performance of the original stream
is also affected. Therefore, the messaging service must be able to duplicate the stream in
such a way that it does not affect the performance of the original stream too much. After
all, a disturbed stream can cause undesired results when the Failover reaches incorrect
conclusions as it will unnecessarily move the system to a different cloud.
Currently the Failover and Cloud Manager are written in C# so the extension should

also be written in this language.

2.3.2 Potential problems

A complicating factor when the Cloud Manager splits the datastream to the Failover and
shares it with the monitors, may be the fact that the monitors will run on potentially
slow systems that may have unreliable connections. They might also be (intentionally
or unintentionally) malicious and behave in unexpected ways. Because Aia Software
controls the Failover, they guarantee that it processes all messages faster than they are
generated. The newly added monitors do not give any such guarantees at all. This creates
additional difficulties for the messaging service as some monitors might not process the
stream as fast as it arrives. But it would still be desirable for the other monitors to
receive the data-stream as reliably and completely as possible.

2.4 Problem description

Aia Software wants to investigate if it is possible to monitor the Cloud Manager’s event
stream with multiple monitors without affecting Failover reliability as these monitors
are potentially unreliable. They may process events slower than they are generated and
they may process events with a delay. They may also be engaged in other work and
not process anything for some time. In that case, they have to catch up or they could
randomly get disconnected and completely disappear. Monitors can also be malicious
and deliberately try to disturb the system.
By default Rx does not provide answers on how to handle unreliable receivers.

Therefore a solution strategy needs to be found to avoid such issues.

2.5 Desired Properties of the new system

The goal is to find a way in Rx to connect to different observers. The essentional observers
(such as the Failover) should not get disturbed by the nonessentional observers (the
monitors) that are potentially unreliable, unresponsive or malicious. Nor should the
Cloud Manager run out of resources. Thirdly, well-behaving nonessential observers (i.e.
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those that perform well enough to keep up) should not be disturbed by poorly-performing
siblings.
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3 Overview of Rx

The Rx library, called Reactive Extensions or ReactiveX [2] supports programming on
event streams in a reactive way. It makes it possible to write (LINQ[3] style) queries
on event streams to easily transform and manipulate streams (map, filter, reduce, every,
etc). Rx has been ported to many languages: C#, Java, php, JavaScript and many
others. This thesis will focus on Rx.Net written in C# because this is most relevant for
the simulation.
In this chapter, some of the basic concepts behind Rx will be discussed. A way to

visualize streams and some query operations will be shown and the manner in which Rx
works internally with schedulers and concurrency will be explained.
Schedulers are especially important in understanding how Rx divides the work load.

They generate internal queues and manage the manner in which different operators can
support working with long queues.

3.1 Basic Ideas of Rx

Rx’s Observer pattern is dual to Iterator [4]. The observer pattern from Rx is very
close to the one known from the "gang of four"[5, p.326-338], but with the addition of a
completion message (either completed or error).
Reactive Extensions uses continuation-passing style [6] [7] where the system is

instructed how to act when a new event arrives on the stream. Before the arrival of a
new message, the system is engaged with other tasks. However, Rx leverages the input
(Producer/Publisher/Observable) and output (Consumers/Subscriber/Observer) to
first-class citizen, to avoid the unusual control structures introduced by the
continuation-passing style. In essence, this allows for simple reactive programming. The
next paragraphs show the differences between CPS, async/await and Rx code.
Callback (CPS):

private void onSave(err) {
if (err) {

//error handling
return;

}
console.log(’success ’);

}

public void save() {
Something.save(onSave );

}

First, code with a callback. The code starts with Something.save(onSave) but then
continues with onSave declared elsewhere. This breaks the flow of the program because
the program continues elsewhere.
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Lambda expression:

public void save() {
Something.save((err) => {

if (err) {
//error handling
return;

}
console.log(’success ’);

});
}

When lambda expressions are used, the code is already easier to follow. The code is all
declared together but the code inside the Lambda will only run after the save function
completes. Any code placed below the save function (outside the lambda expression)
would run in parallel with the save call.

Task async/await:

public Task save() {
Try {

var save = await Something.save ();
console.log(’success ’);

} catch (err) {
//error handling

}
}

With async/await the code looks much more like usual synchronous code, if
Something.save() had been a synchronous call, the code would have been the same
except the await keyword would have been missing and the return type of the function
would have been void. This function will return a Task object when it reaches the
await keyword and the code after the await keyword will only run once the save
function returnes.
Rx:

public IDisposable save() {
return Something.save()

.subscribe ((err) => {
//error handling

}, () => console.log(’success ’));
}

Finally, the same code in Rx. Rx seperates the callback for error and success, also (not
used in this example) as Rx works with streams, there is a third callback that will be
called for individual items on the stream. Also additonal operators can be added before
subscribe to modify the sequence. More on that later.
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3.2 Observer and Observable

An Observable is the source of the events, the publisher. The observer is the receiver, also
called the subscriber. The observable yields zero or more onNext events, and optionally
closes the stream with an onCompleted event or onError event. A stream of events is
also called a sequence. An observer can connect to an observable by subscribing to it.
The result is known as a subscription. The subscription manages the lifetime of this
connection.

3.3 Hot vs Cold observables

Cold observables function like a DVD. In this metaphor, subscribing can be compared to
placing a DVD in the player, which will then start playing after clicking on ‘play’. Once
the DVD is running, the DVD player "pushes" the video and it cannot be watched at
a faster or slower speed. Of course, the player may be equipped with a remote control
offering fast forward or rewind options but it is the operating system of the DVD player
that decides if this option is available.
Hot observables can be compared to a radio broadcast. If you turn it on today, it will

play a song but if you tune in tomorrow, it will play something else. Many people can
listen to the broadcast simultaneously without any additional side-effects on the source.
In computer terms, a cold observable is like reading a file from the disk. A hot

observable can be a mouse stream or a security camera feed.
Most observables are cold; they only become active when they are subscribed to. Only

during a subscription they generate a sequence. They generate a new sequence for every
new subscription and every sequence has its own execution context (but that sequence
typically contains exactly the same events). After the subscription ends, they dispose
their internal resources. A cold observable can be seen as a delayed execution: the
programmer defines what events will be created, with what values and at what time,
but these values will only actually be generated when an observer subscribes. There is a
subtle difference with a normal closure that is run later: a Cold observable keeps running
in the background once activated and can return values multiple times at any time (or
none at all). Common examples are observables that start a timer, query an external
resource or return a fixed list of items etcetera.
A hot observable shares side-effect between subscribers, there is only one execution

context and the results are shared (multi cast) between subscribers. They typically
describe live data. The hot observable multicasts the same source to every subscriber
and produces values regardless of subscription. For example, mouse movements are a hot
observable; there is only one mouse no matter how many times you listen to it. With
the help of certain techniques a hot observable can be made cold. Previous events can
be buffered for example and replayed to a later subscriber. Certain specialized multicast
operators can make a cold observable hot to allow multiple subscriptions to the same
source.
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3.4 Marble diagrams

To visualize Rx streams, marble diagrams are often used. In a marble diagram, time flows
from left to right and a horizontal line represents a stream, complemented with values
for every element and two special characters for a complete or error message (usually
a vertical line or a cross). Vertical or diagonal lines between streams can be used to
indicate how events are transformed between streams. Colour markings are also used at
times.

-o- Next
--| Completed
--X Error

As time flows from left to right in the marble diagram, vertically-aligned events happen
simultaneously. A simple example with the Select function, also known as Map:

---1---3---4---2---8-- o1
↓ ↓ ↓ ↓ ↓

---2---6---8---4---16- .select(e => e * 2)

In this example, two streams can be distinguished. The top stream o1 contains the
elements 1,3,4,2 and 8; it is transformed into the bottom stream by having every element
multiplied by 2, resulting in 2,6,8,4 and 16. Also see the marble diagram map (figure 4)
on page 20.

3.5 Transformations on Event Streams

There are a number of different operators on Rx. Most commonly used are the
transforming operators that transform one sequence to another. Next to transforming
operators, creating operators are also required; they can independently create
sequences. In addition to some utility methods, subscribe can also be used to activate a
sequence and match an observer with an observable.
Transforming operators transform a sequence, resulting into a new sequence. There

are methods that manipulate time (delay all events for 1 second, or collect all data for 1
second and group them), manipulate the stream (add one to every element, filter events
larger than 10) or combine streams (take all elements from both streams).
A typical way to write programs in Rx is to chain multiple operators. The stream

starts with a creating operator that creates an observer and every next operator
transforms the source stream into another stream that will act as source for the next
operator. Operators further on in the pipeline are sometimes referred to as the
downstream operators. Eventually all events flow through every operator and into the
attached observer.

3.6 Schedulers

All work in Rx is done on a scheduler, and the scheduler controls the concurrency
behaviour of the system. Scheduler is an abstract interface and by selecting a particular
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scheduler implementation, the concurrency behaviour of Rx can be changed. All
operators that schedule work3, take (optional) a scheduler as an argument, so the
programmer has full control over how the work load will be scheduled.
The scheduler interface allows work to be scheduled in the future. Operators that need

to work with timing inside the sequence, will use the available scheduler to schedule the
work load. If an operator needs to know the current time, it must request the time from
the scheduler interface. It is the responsibility of the scheduler to make sure that the
requested work is executed in a timely manner. With these properties, the scheduler has
full control over how and when work will be executed but the operator decides which
work is executed. If there is too much work, the scheduler will queue up the work and
schedule it when it has a thread available.
There are many possible schedulers and multiple options can be implemented. The

five most commonly used schedulers that are readily available are:

a) The thread pool scheduler operates a thread pool and schedules all requested work
on a pool of different threads;

b) The trampoline scheduler schedules all requested work on the current thread;

c) The new thread scheduler that uses a new thread each time instead;

d) The immediate scheduler that schedules all requested work directly on the threads
that tries to schedule it;

e) A test scheduler that does not schedule work based on time like the others but
leaves it to the creator of the test to advance time in the test scheduler, allowing
writing tests that span days and that are executed in milliseconds.

In addition to these five default schedulers, it is also possible to add other custom
schedulers. For example, an user interface might use a scheduler that schedules on the
user interface threads.
If no scheduler is selected, Rx follows the strategy of minimal concurrency. Operators

that do not need to introduce concurrency will not do so, unless explicitly requested by
the programmer. Operators that work with timing, like Delay, Sample and Throttle 4

must however schedule their work on a scheduler.

3.7 Control process in Rx

Rx is designed to run thread-free, which means code runs independently of which
thread it is called on. This is important for the schedulers (3.6) that can schedule work
on any thread. The Rx interface contract dictates that all events should be delivered
serialized (serialized means the next event will not be processed until the first one
returns). This way, Rx does not need to do any housekeeping on potential locking and
synchronization problems as usual with multithreaded code. Rx operators that

3As per Rx design guidelines [8, paragraph 6.9].
4These operators are explained in 3.11.
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introduce concurrency, should handle this locking internally so downstream operators
can assume that the sequence is run serialized. This allows Rx to process a message on
one thread and hand it over to another thread at some point for the next step in the
pipeline. This is allowed since the second thread processes a different set of operators in
the pipeline.
Sometimes this is even required: when a message needs to be delayed for 10 seconds,

it is not viable to let a thread wait 10 seconds before it continues because in that case
the next message will also be delayed 10 seconds and Rx can only handle one message
every 10 seconds. Instead, we want to shift the stream 10 seconds into the future but
we cannot guarantee that the current thread will be free 10 seconds from now. Because
of this, we schedule the work in the future. The Rx scheduler is then allowed to pick
another available thread to continue. In order to process work parallel within the Rx
contract, the work can be split to multiple observables that are processed in parallel. At
the end the results are merged again.
As a result of the previous propeties, two things can happen when one observer is

slow at processing messages. If concurrency was introduced and more work will continue
to be scheduled quicker than it is processed, it will result in an endless queue. If no
concurrency was introduced, Rx will delay new events until the last one was processed.

3.8 Interactive vs reactive

Imperative programs run at their own speed, they request (pull) the next bit of work
when they are ready to process it. Reactive programs work at the speed at which they
receive pushed data. Imperative programs can have more work available than they are
processing. They will only pull the work when they are ready to execute it. Thereby
they create so-called backpressure automatically. An imperative program can also have
no new work available, and block. The process cannot execute any other work for the
time that it is blocked. Reactive programs work in the opposite way: they get work
pushed onto them and start running and processing this work. They work exactly as fast
as work gets pushed. If no work gets pushed, they are available to perform other work.
However, they run into problems when more data is pushed than they can process as

they cannot implicitly create backpressure. In this case, they get non-blocking
backpressure where work keeps coming in uncontrolled.

3.9 Push-back and backpressure

As long as no concurrency is introduced into the pipeline, Rx will use the push-back
(blocking) model. This means that the next element will be delayed until the current
one is completely handled. When an operator introduces concurrency, Rx will use an
unbounded queue to store all resulting elements until the receiving observer is ready.
This is because of another important property of the Rx contract: all messages must
be serialized 5, which means messages cannot be forwarded concurrently. So to avoid
forwarding messages concurrently, they are stored. Rx assumes observers will be fast

5Rx design guideline [8, paragraph 4.2]
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enough to keep up with observables. If, however, an observer misbehaves and is unable
to process all values in time, the unbounded queue may slowly take up all memory.
Another disadvantage is that as messages get delayed longer, the observer receives older
messages. Therefore, a so-called backpressure strategy is required. This will be discussed
in more detail in Chapter 5.
There are various ways to release non-blocking backpressure. Some Rx operators such

as Throttle or Sample use lossy backpressure; they ignore values that are sent too quickly
after each other. That does help with a structurally slow client, however, it does not
necessarily guard against a stuck or otherwise misbehaving client.
In some cases it might not even be desirable to lose values; in that case, other solutions

like push-back should be introduced again.
Another model (used in the Java variant of Rx (RxJava)) is to switch to a pull model

when an observer runs behind. This has the advantage over the Sample operator that
an Observer can dynamically change its own load6.

3.10 Operators with unbounded Queue

Because of unbounded queues, all excessive values in the sequence will be stored for later
use. They are processed once resources are available. Different operators use an unbound
queue for different reasons. The most common one is the introduction of concurrency:
if a value is handed off to the scheduler, it is pointless to keep the current thread busy
until the next thread is done. Some operators use more complicated patterns. Buffer
for example stores all values in a sequence for the pre-set buffer time, Delay stores all
values received during the given delay. Some other operators also introduce unbounded
queues even without concurrency. Zip takes two sequences and combines the values from
both into one, if one of the two sequences produces significantly more values; these values
will all be stored until the first sequence has caught up. Even operators like GroupBy
and Merge use an unbounded queue under the hood when they split/merge multiple
sequences.

3.11 Explanation and example of different operators in Rx

To understand the uses of Rx, some Rx operators and examples will be shown. The
included marble diagrams should help to understand the operators. The operator naming
from C# is used but a few aliases from other implementations of Rx are also added such
as RxJs and RxJava.

3.11.1 Select

Select, better known as a map function, modifies an Observable<A> into Observable<B>
given a function with the type A->B. For example, if we take the function x => 10 ∗ x
and a list of 1,2,3. The result is 10,20,30, see figure 4. Note that this function did not
change the type of the Observable but did change the values.

6See also [9]
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Figure 4: Map marble diagram, alias for Select
Source: reactivex.io

3.11.2 SelectMany

One of the most important operators in Rx is SelectMany, alias flatMap or mergeMap.
SelectMany allows asynchronous queries, resulting in an observable of observables and
it flattens the results, see figure 5. There may be multiple inner observables that run
simultaneously, so the results from these inner observables may be intertwined.

Figure 5: FlatMap marble diagram
Source: reactivex.io

3.11.3 Where

The Where operators, alias filter, filters elements based on a condition. See figure 6.

3.11.4 Delay

Delay will project the sequence unmodified, but shifted into the future with a specified
delay.
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Figure 6: Filter marble diagram
Source: reactivex.io

3.11.5 Merge and Concat

Merge and Concat combine multiple sequences into one. Mergemight interweave elements
from different sequence whereas Concat emits all elements from the first sequence before
turning to the next one.

3.11.6 Buffer and Window

Buffer and Window collect elements from the source sequence and emit them in groups.
Buffer projects these elements onto arrays and emits those arrays when the buffer is
closed. Window emits these elements in nested observables. It will emit a new inner
observable when a window opens and will complete the inner observable when the window
closes. Notice that there can be overlap between multiple buffers and windows if the next
one opens before the last one closes. For example Buffer with a count of 2 and a skip
of 1 will emit the last 2 elements (count 2) for every element (skip 1), so the sequence
-1-2-3-4-| becomes --[12][23][34][4]|.

3.11.7 GroupBy

Similar to Window, GroupBy projects the sequence onto a number of inner observables
but as opposite to Window where all windows receive the same sequence, GroupBy will
emit elements only to one inner observable that is associated with the current element
based on a key selector function. See figure 7.

3.11.8 Amb

The Amb operator (stands for ambiguous), alias race, subscribes to a number of
observables and retrieves the first observable that yields a value, closing off all others.
For example, Amb can automatically select the best server to download from: Amb listens
to both servers and the first server that replies is used. See figure 8.
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Figure 7: GroupBy marble diagram
Source: reactivex.io

3.11.9 Debounce, Sample and Throttle

The following three operators, Debounce, Sample and Throttle are used to rate-limit
the sequence. They will filter out elements based on the timing. There is a difference in
how they exactly do that. Debounce will delay a value when it arrives and only emits
the last value in a burst of events after the set delay is over and no new event arrives
during this delay. Throttle will emit the first event from a burst and will ignore all
subsequent values that arrive during the set timeout. Sample will emit the latest value
on a set interval or emit nothing if no new value arrived during the last interval.

3.11.10 ObserveOn

ObserveOn is Used to switch to a different scheduler. For example, to switch to the user
interface scheduler (mandatory in many applications when mutating the interface).

3.12 Related work

There are various other systems that work with publisher/subscriber pattern and/or
asynchronous events. It is interesting to look at these systems. There is background on
other types of publisher/subscriber systems that aim at ‘full decoupling in time, space,
and synchronization between publishers and subscribers’[10]. Systems that deal with
huge volumes of data are also interesting to examine. For example, Splice[11] is a system
that works with radar data, producing high volume data streams that would quickly
exceed most bandwidth.
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Figure 8: Amb marble diagram
Source: rxmarbles.com/#amb

3.12.1 TPL

Whereas Rx focuses on asynchronous data driven programming, its sibling the Task
Parallel Library (TPL) [12] is used in a more imperative way. TPL is built around tasks
that are small work units for a thread pool or asynchronous operations. TPL contains
many functions similar to those in Rx and the signature of a Task is very similar to that
of an Observable. A Task yields no result (incomplete) or a complete state with a value
or error state with an error, while an observable can yield zero or more results, optionally
followed by a complete or error state. The signature of Task can be considered to be a
subset of that of Observable. Because of these similarities, it is very simple to convert a
Task to an Observable (there is a standard function to do so).
Because both Rx and TPL focus on asynchronous programming, they supplement each

other and it can be very useful to combine both paradigms.

3.12.2 iTasks

iTasks[13] is a system for task-oriented programming in pure functional language. A Task
in iTasks is actually a unit of work with observable intermediate values. Through Shared
Data, iTasks contains a publisher subscriber system that again can be compared to Rx
observables. A Task can start with no value and can then produce an unstable value,
i.e. a value that may still change or go back to no value. At one point, the latest value
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might become stable after which it can no longer change. A Data Share guarantees all
listeners that it broadcasts the latest known value. An Rx Observable can also update a
value with every onNext but the latest value can also become final when onComplete is
signalled. Going back to no value can be added by wrapping the data N in a Maybe<N>
type.
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4 The experiment

The experiment is based on the use case. The Aia Software use case is based on a real
world scenario. In the experiment, a simulation of this scenario will be carried out.
To recap section 2.3: the Cloud Manager manages the jobs on the cloud and shares

metadata about these jobs (when they start and finish) to the Failover. The Failover
uses this metadata to track the health of the cloud. If the cloud behaves unreliably,
the Failover can move all work to another cloud. This is an expensive and disturbing
operation that will cancel and reschedule all outstanding work. Therefore, it is essential
that the Failover receives all metadata reliably and without delay. Next to the Failover,
it is also preferable that this metadata is shared with other monitors.
These other monitors are only used for observations and are as such not essential.

Monitoring a system in this manner will cause disturbance, and it is essential that the
Failover continues to work reliably while the monitors may not function reliably
themselves.
Is it possible to build a system that can monitor an event stream with multiple receivers

without a number of nonessential receivers disturbing the essential receivers?
In the experiment, we built a simulation of this problem. We built a server that

generates an event stream of metadata that is sent to a client program that connects
multiple times, with different behaviour properties. The server and the client log all
relevant data of what is happening. By changing the sharing strategy in the server, we
can test different solutions to the problem and compare the results.

4.1 Important properties

Subscriptions of nonessential observers may not have noticeable side-effects on essential
subscribers.

• Q1: Is the solution suited?

– Essential subscribers do not skip any messages?

– Are essential subscribers not delayed by nonessential subscribers?

– Are messages to essential subscribers not delayed? (Over a threshold?)

– The system does not run out of resources? (CPU, memory)

If the solution is suited, then:

• Q2: How well does the system perform for nonessential subscribers?

– Well-behaving subscribers do not miss any messages?

– Do well-behaving subscribers get any delay? (How Much? Over a threshold?)

If the system performs satisfactorily:

• Q3: How does the system perform under high load?

– Are messages delayed? How long?
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– Is message generation delayed?

– What is the message throughput per second?

4.2 Test architecture

The test environment is loosely based on the setup of the use case with a generator that
generates job messages, simulating the messages generated by the Cloud Manager. There
are essential clients that simulate the Failover and nonessential clients that simulate the
monitors. These clients can be configured to simulate different behaviour, depending on
what scenario we want to test. For example a scenario can exists of one essential client
that processes events fast and one nonessential client that processes them really slow.

4.2.1 Design

The test environment consists of two programs. One is the server that generates all
messages, accepts connections from different clients (all simulated by the client program),
and measures, e.g. how fast these messages are processed and how much memory is used.
See figure 9. The server offers multiple implemented solution strategies on different ports.
The results depend on the activated solution: if a blocking solution is used, the generator
will be delayed and push-back will be observed. If a solution keeps all messages in a
backlog, memory consumption will increase. If a solution drops messages, the generator
may run at full speed.
The other program, i.e. the client program, simulates all clients and measures their

performance, namely the number of messages received; the number of messaged missed;
the delay between the generation of the messages on the server and the reception; how
long the client is waiting for the server and how long the server made the client wait.
The test software requirements list can be found in the attachments.

4.2.2 Concepts

The server- and client-side of the test environment each measure their own local effects.
To evaluate the solutions, it is required to aggregate different results to get meaningful
data.
The server measures the push-back: the time between when the data should have been

generated and when it was actually generated. The client observes time shift: the time
between when the data was generated and when it was received (and processed) by the
client. If we add both intervals, we know the total delay that was observed.
Clients also measure drop rate and message count. These two statistics are only useful

when combined. Drop rate indicates that messages are missed but it is also possible
that messages are not missed but that the client is behind. All messages have an index
number and when the client receives new messages with a higher index number, it can
conclude that messages where missed and not delayed. However, if no new messages are
received at all, it cannot make this distinction. Therefore, it is also important to compare
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how many messages should be received. The longer the delay, the more messages the
client is behind.

Figure 9: UML Class diagram of test program

4.3 Measurements

We measure the time that clients are inactive (sleep time); the time between creating
and receiving messages (time shift); the number of messages that are lost (drop rate); the
number of messages that are received (message count); the memory usage on the server
and the delay in generating messages (pushback).
The sleep time is especially interesting in order to assert whether clients are fast

enough. As long as they have sleep time (i.e.: they wait for the server), we know that
no holdup is generated by the client. We expect the well-behaving clients to have sleep
time. Measuring sleep time on the slow and malicious clients is meaningless because they
intentionally stay busy and make the server wait for them.
We also expect well-behaving clients to have no message drop (especially the one

marked essential). The slow and malicious clients should eventually get messages drop if
the solution allows it.
The message count will show how fast the clients operate.
Because we know how fast the server should be generating messages, the message count

can be compared to the expected value. By adding up the pushback, time shift (both
multiplied by the generation speed), drop rate and the message count, we should get a
value close to the expected number of generated messages.
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4.4 Scenario setup

Scenarios are pre-defined sets of clients with different behaviour patterns. To test different
behaviour against the solutions, a couple of variations of scenarios were used. Eventually,
one scenario setup was chosen that exposed a broad selection of problems in the solutions.
The final scenario has a fast essential subscriber and a number of nonessential

subscribers that behave in different ways, as described below:

• One nonessential subscriber with no delay (processes all events as fast as possible).

• A subscriber with a 10ms delay (processes 1 event every 10ms).

• A subscriber with a 10ms delay that disconnects and reconnects every second.

• A subscriber with a 20ms delay that crashes every 2 seconds but keeps the old
connection open while also starting a new connection (that will again crash after 2
seconds).

• A subscriber with no delay, pausing every 1 second and resuming 1 second later.

The purpose of these nonessential subscribers is to put stress on the server to determine
if the essential subscriber is affected.
We ran this scenario against different solutions, each time picking a solution for the

essential subscribers and one for the nonessential subscribers.
It is also interesting to observe how various nonessential clients perform. The client

with no delay will hopefully receive data at an equally reliable rate as the essential
subscriber, while the clients that pause, will end up losing messages (depending on the
buffer strategy of the solution). The goal of the disconnecting client is to put stress on
the server, while the crashing client continues to consume additional connections.

4.5 Test data

The test data are generated at a speed of ten items per ms, inflated to 5-6kb per package.
This means that as long as the clients are able to process ten items per millisecond, they
should not fall behind.
Initially a lower generation speed (1 message per 10ms) was used but this produced

less interesting results because almost all solutions were able to keep up with this speed.
By increasing the speed, even the most optimal solution was put under stress.

4.5.1 Data size

Even if no buffer strategy was used in the solution, the network connection already
allowed a bit of data to be buffered. In an initial setup, the test data was only 10-12
bytes large. With buffer of several hundred kilobytes, this allows thousands of items to
be buffered in the network layer. Therefore it was necessary to inflate the test data with
an extra field that contains 5-6Kb of random data.
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5 Possible solutions

A number of operators in Rx.net in C# were examined that offer solutions to handle
high load situations. In addition, solutions in other Rx implementations and other related
systems were studied that avoid backpressure in various ways.

5.1 The problem

Before trying to solve backpressure, it is paramount to understand what happens when
backpressure arises. It is also essential to gain insight into the reasons why this is
problematic (or not).
There are two mechanisms in Rx that come into play with backpressure is observed.

The first is push-back. When no scheduling is introduced, the Observable and the
Observer share the same thread and a slow Observer will delay the Observable. When
scheduling is introduced, Rx introduces a queue where one thread schedules new work
and another picks it up. This will be an unbound (endless) queue as the library always
assumes messages are processed faster than they are produced. The programmer is
responsible to make sure that this holds true. If the work is not processed fast enough,
the endless queue consumes all available memory and causes the program to crash.
Also, various operators are able to ignore elements based on the timing. Sample

only takes one element every time span. Debounce ignores elements received in rapid
succession. Windows and Buffer collects multiple elements and process them as a single
item.

5.2 Solutions in RxJava

Another source of inspiration is RxJava, the Java implementation of Rx. RxJava solves
the backpressure problem by introducing the Producer interface that pulls data,
automatically switches to pull mode when needed and back to push mode when the
observable has caught up. The producer interface adds a onBackpressure(Strategy)
option to specify a strategy that should be used when the buffer overflows.
Where Rx.Net uses unbound buffers, in RxJava the backpressure strategy specifies a

maximum buffer size. When the buffer size is reached, the observable switches to pull
based mode. Then all events are cached, up to the buffer size. While in pull mode, the
producer can request events when it is ready to process them. One buffer strategy is to
drop messages when they exceed the buffer size. Another is to terminate the subscription
in an error. A third option is to block the source observable. All these solutions require
that the source observable must support backpressure.
Because of the producer interface, RxJava is capable of signaling the Observable. It can

send a pause signal back to the Observable. In Rx.Net this is not possible because there
is no way to signal back at the Observable unless the Observable interface is overhauled.
This would require the entire library to be updated.
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5.3 Solutions requirements

We have implemented Various solutions in C#. Not all solutions are suited for both
the essential and nonessential subscribers. A solution for the essential subscriber may
not lose messages. The nonessential subscribers need to run against strategies that drop
messages before resources are exhausted because push-back is not allowed.
We assume that an essential subscriber processes messages faster than the generator

produces them. If it does not, it would be preferable if the solution slows down the
generator (push-back) in order to match the speed of the essential subscription. Failing
to do so will result in an out of memory exception. While push-back is an optional
requirement, it may still be interesting to try different solutions with the essential
subscriber to see how they perform in combination with strategies for nonessential
subscribers.

5.4 Solutions implemented in experiment

Nothing connects the observers directly to the source and follows standard Rx
behaviour. It is also known as the null-solution. Because observers are connected
directly to the source, they substantially influence production. All elements are
processed single threaded and a slowdown in one message immediately results in a
holdup for the entire sequence. That makes this solution suited for essential observers.
Even when they are slower, the generator will slow down (push-back).

WithObserveOn connects the observers through a thread pool (or other scheduler
specified in the ObserveOn operator). As long as the scheduler introduces concurrency,
observers will not interfere with each other. However, the system no longer has control
over the generator and uses an unbounded queue internally. Potentially consuming all
available memory. This solution is suited for the essential observers as long as the
essential observer is fast enough.

LockQueue works also on a thread pool but locks the generator when there are too
many elements in the queue. This spreads the processing time out over a longer period,
without locking the generator for every small hiccup.

WithSample uses the (in Rx) recommended operator Sample to prevent backpressure.
Sample only processes the latest element every time the sampler ticks (the sampler could
be a set interval). Because the Sample operator only holds at most one element, it will
ignore the elements arriving faster than the sampler interval and also ignore the elements
arriving faster than the processing speed of the observer. By setting the time span for
the sampler to zero, all elements will be processed as long as the observer is fast enough.
Interestingly enough, Sample does have push-back. When an element is processed, this

also ties up the current thread that may have been used by the generator as well. However,
Sample combines very well with the ObserveOn operator before it in the queue, while
ObserveOn introduces threading, WithSample will stop the unbound queue in ObserveOn
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from growing indefinitely. WithSample is not suited for essential observers because it
loses elements.

The following example of Sample shows that element 2 is ignored because the sampler
did not tick. * is used in the marble diagram to indicate the observer was busy.

-1---2----3-----|
---s---------s--|
↓ ↓

---1*--------3***|

In the next example, interesting behaviour can be observed when the sampler does
tick multiple times but the observer is not ready because it is busy.

-4--5--7--3----|
---s--s--s--s--|
↓ \-↓ \-↓

- - -4****5*****3***|

Element 7 is ignored because the observer was not ready.

DropQueue takes elements and queues them on another scheduler. When there are too
many elements in the queue, the oldest element is skipped. The dropQueue can also skip
elements when they are older than a certain interval.
DropQueue is not suited for essential observers because it can skip messages. However,

it is especially designed to serve nonessential observers.
In earlier attempts to implement DropQueue, the newest element was skipped. This

resulted in a problem when the DropQueue was used multiple times for different
observers; every DropQueue ended up keeping a unique list of elements when observers
hang at different moments in time, adding up to high memory pressure. By keeping the
latest element (and skipping the oldest), all DropQueue instances keep references to
only the most recent elements, allowing the program to garbage collect older elements.

5.5 Usefulness of solutions

As is clear from table 1, not all solutions have the required properties for the essential
subscribers. Essential subscribers cannot lose elements but can (and probably should)
have push-back. Nonessential subscribers probably should have message drop but cannot
have push-back. This eliminates the solution Nothing, LockQueue and WithSample for
nonessential subscribers.
WithSample with threading is also not viable. While it has no push-back for new

elements, it drops messages on processing thread so new messages pile up if the processing
thread is tied up in a long processing job.
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Solution Push-back Loses elements
Nothing yes no
WithObserveOn no no
LockQueue yes no
WithSample (no threading) yes yes
WithSample no yes
DropQueue no yes

Table 1: Overview of solutions
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6 Results

Various solutions were run against a number of scenarios. This resulted in data on how
much data throughput was available in different solutions, how much memory was used
and to what extent the various clients interfered with each other.
Figures 10 to 16 show the six subscribers described in the scenario in section 4.4. The

first part of the name indicates their behavior:

• Imp for the fast essential subscriber;

• Norm for nonessential subscribers;

• Disc for the subscriber that disconnects each time and

• Crash for the subscriber that cashes each time repeatedly.

The second part indicates the delay for each event, for example 10ms if it processes 1
event every 10ms or 0ms if it has no delay. Subscribers with repeating behaviour (e.g.
a disconnecting or crashing subscriber) indicate how often this is the case at the end of
their names. For example, the subscriber that crashes every 2 seconds and processes a
message every 20ms, is named Crash20ms2s.
Figures 16, 20, 24 and 28 show the number of processed messages by the essential

subscriber per solution.
Figures 17, 21, 25 and 29 show the number of processed messages by the nonessential

subscriber per solution.
Figures 18, 22, 26 and 30 show the message delay for essential and nonessential

subscribers per solution.
Figures 19, 23, 27 and 31 show the memory usage on the server per solution.
To see how essential subscribers are affected by nonessential subscribers under different

solutions, multiple runs are compared. Each time the essential subscriber is hooked to
the null solution. The null solution has no buffering or smoothing, so any hiccup from
the nonessential subscribers has a maximal effect on the output of the essential one. The
setup described in section 4.4 is used. The nonessential subscribers are all hooked to the
same solution. By changing the solution for the nonessential subscribers; it is possible
to compare the way in which the different solutions perform.
The following sections show the results from the test runs and answer how well the

various solutions performed based on the questions from section 4.1.

6.1 Solution: Nothing

When not using any solution, data is transmitted on the same thread that generates
the events. Since the generator used in the experiment does not introduce concurrency
itself and uses one thread to announce event to all observers, pushback is automatically
introduced.
It is expected that even a small delay in sending messages will also delay the generator

and all other observables.

33



Figure 10: Null solution.

In figure 10 we connected both the essential and nonessential subscribers to the null
solution (Nothing). The process hangs after 189 messages as the nonessential crashing
client is no longer processing messages and all other clients wait for the now crashed
client.

Figure 11: Null solution.

In figure 11, memory usage is stable and no pushback is observed. The graph ends
after 30 seconds. This is because the server hangs at this point.
It is observed that even while there is no buffering implemented, there is some

smoothing going on. Closer examination shows that this take place in the network
layer, see also 4.5.1.

• Q1: Is the solutions suited?
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– No, essential subscribers hang after 189 messages and 3 seconds. See figure
16.

6.2 Solution: WithObserveOn

Because this solution queues all work on an endless queue, it is not suited for nonessential
subscribers. As is clear from figure 13, memory usage on the server increases linearly as
all old elements are kept alive. The graph ends after 30 seconds because the server has
crashed.
For essential subscribers, the assumption is that they will be fast enough to process

all elements so it would be acceptable to store some elements for a short period of time.
Still, it is possible that the server runs out of memory if the essential subscriber does not
keep up.
Figure 12 shows the results of a run with ObserveOn for nonessential subscribers and

nothing for essential subscribers. Because the server crashed after 30 seconds, the clients
no longer receive data. Only the Norm10ms client continues to process some data but
this probably concerns messages that are still remaining in a buffer somewhere.

Figure 12: WithObserveOn for nonessential subscriber; Null solution for essential
subscriber.
The same graph is displayed twice with different y-axes because three clients
process significantly more messages. These are visible in the top graph and
quickly run out of the bottom graph.
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Figure 13: ObserveOn for nonessential subscriber; Null solution for essential subscriber.

• Q1: Is the solutions suited?

– No, the system runs out of resources (memory). In Figure 23 memory goes up
to 1972 MiB before the server crashes with an out of memory error. Figure
20 also shows that the essential subscriber only receives 171742 messages in
31 seconds before messages stop.

6.3 Solution: LockQueue

This solution is very similar to the previous one but has an upper limit in elements that
can be queued. As long as the queue size is large enough, this removes hiccups from the
essential subscribers but it is still unsuited for nonessential subscribers as these will lock
up the system at one point.

• Q1: Is the solutions suited?

– No, because nonessential subscribers can still hold up the essential one. This
solution would actually be suited for essential subscribers to add some
smoothing to the system.

6.4 Solution: WithSample

WithSample is only interesting when combined with threading. Without threading, it
cannot be used for nonessential subscribers because it has pushback but neither can it
be used for essential subscribers because it loses messages.
When combined with threading, WithSample works well in communicating with

observers that are too slow. However, WithSample surprisingly still failed on the
crashing observable because it only processes new elements once the previous one is
finished. The crashing observable simply stops processing messages so the queue grows
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forever. A fix for this problem is to add a timeout for the observables; if no new
messages are accepted for some time on the connection, the observable disconnect. This
does mean that all messages produced during one timeout period are buffered in the
memory, while WithSample will only send the newest element if it continues and,
therefore, will only need to buffer the newest element.
Another disadvantage of WithSample is that it is prone to losing messages because it

skips to the newest element each time.

• Q1: Is the solutions suited?

– Yes, it is suited. But with some remarks. The memory usage is rather bumpy,
see figure 27. It is also clear from figure 24 that the essential observable starts
off well but then slows down considerably as the system waits for hanging
subscribers to be disconnected and for the thread pool to be extended.

• Q2: How well does the system perform for nonessential subscribers?

– As seen in figure 25, the nonessential observer receives even less messages than
the essential one and 76% of the messages is dropped. The essential observer
receives 101,887 messages and the nonessential one 25,680.

• Q3: How does the system perform under high load?

– The 101k received messages in figure 24 are far less than the 15m that could
have been generated. (i.e. 10 messages per ms7 means 10,000 per second
means 15 million per 1500 seconds)

– As is clear from figure 26, there is considerable message delay, increasing
with big bumps of 300 seconds every 5 minutes. It is not surprising that the
message delay is almost equal to the run time because the client only processes
a fraction of the messages that it could have.

6.5 Solution: DropQueue

The DropQueue addresses some of the problems of WithSample. Mainly it dequeues
excess messages on the producing thread instead of the processing thread causing the
queue to grow up to the max queue size at most. It also allows smoothing the output a
little by allowing an actual buffer size. A small hiccup in the observer will not immediately
result in message drop but when an observable lags too far behind, it does skip messages.
It is also important not to set the buffer size too high as then it would send out old
messages.
In figure 14 and 15, we see the program runs smoothly with the DropQueue solution.

There is some pushback because the essential observer runs on the null solution and easily
adds pushback. When the essential subscriber disconnects at second 600, memory usage
becomes a little but more erratic because the generator is now generating messages at
full speed. Because the drop queue loses excessive messages at the same speed, memory

7section 4.5
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usage does not go out of control and the program did not crash as it did with previous
solutions.

• Q1: Is the solutions suited?

– Yes. The essential subscriber receives a large number of messages, Figure 28
and the memory usage stays stable, see figure 31

• Q2: How well does the system perform for nonessential subscribers?

– It shows good performance for well-behaving subscribers. See figure 29, the
nonessential subscriber receives the same number of messages as the essential
one.

• Q3: How does the system perform under high load?

– About 2.53 million messages are delivered in 609 seconds (10,000 generated
messages per second8 would result in 6.09 million messages in 609 seconds).
This means that 41% of the messages is delivered (2.53 million out of 6.09
million). Message delay (Figure 30) is 347 seconds out of 609, which is entirely
due to pushback

8section 4.5
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Figure 14: DropQueue for nonessential subscribers, Null solution for essential subscriber.
The same graph is displayed twice with different y-axes because three clients
process significant more messages. These are visible in the top graph and
quickly run out of the bottom graph.

Figure 15: DropQueue for nonessential subscribers, Null solution for essential subscriber.
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7 Conclusions

Is it is possible to monitor event streams? By monitoring an event stream, it is also
affected. At the very least it may slow down. In our scenario, the event monitor could
not keep up with the speed of the stream. At the same time we did not control our
monitors. Therefore, it was required to implement a strategy to multicast the event
stream without affecting it.
We selected different strategies and compared them in a simulation. Because the

stream was multicast, different strategies could be used for every receiver. Receivers
were split into two groups, essential and nonessential.
The nonessential group (i.e. the newly added (unreliable) monitors) should not affect

the original source or receiver. There will always be some effect on the stream but we
compared strategies on how severe they affected the stream.
The essential group (i.e. the original receiver) should receive the original stream

unaffected but should also continue to affect the source. It is important that the
original receiver can slow down (pushback) the source; in case the source produces
events faster than the receiver can handle, all messages have to be stored. Eventually
memory will run out and the delay between producing and processing messages may
become too large even earlier. This property is only of secondary importance because
we assume that our reliable receiver is fast enough.
The most naive strategy is to do nothing (null solution). This means that the receiver

is directly connected to the source. This also implies that any delay in the receiver will
delay the source. This strategy gave good results for the original receiver but failed for
the unreliable receivers that forwarded their unreliable behaviour.
The second strategy was to copy and buffer the entire stream. This works for the

original receiver and the monitors. However, it has the disadvantage that as soon as
the receivers are processing messages slower than they are generated by the source, the
receivers will receive older and older messages because the buffer grows. Eventually the
system runs out of memory.
Next we wrote the LockQueue that buffers only a limited number of elements from

the stream. Once the buffer is full, the source is delayed. The buffer gave a smoothing
effect to the original receiver, while still allowing it to delay the source. This slightly
decreases the total pushback when the original receiver has a hiccup. This solution was
not acceptable for the nonessential subscribers because they forward their unreliable
behaviour just like the null-solution.
Our fourth option was WithSample, an operator natively available in Rx. In theory, it

is a good operator but it is not suited because of its implementation. It became apparent
that WithSample uses the processing thread to process messages. Because this is the
thread that locks up when receivers are too slow, it ended up using a lot of memory and
only forwards a small percentage of the messages under high load.
The last strategy was a technique based on a combination of WithSample and

LockQueue. A number of messages are kept in memory to smooth out short hiccups. If
the queue size is exceeded, the receiving thread is used to dequeue (drop) excessive
messages so that the number of stored messages never exceeds the queue size. This
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solution worked quite well and was able to process 41% of the messages under high
load.
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Attachments

Requirements

The test environment simulates the use case. The test environment has the following
requirements:

• Server

– Generates example data from the CM.

– Takes inbound connections.

– Offers different solution.

– Accept multiple connections to the same solution.

– Logs the result:

∗ How much memory used.

∗ How many messages processed.

∗ How much delay (push-back) while sending.

∗ Etc.

• Scenarios

– Multiple scenarios are supported.

– Contains multiple clients with unique behaviour.

• Clients

– Can show different (configurable) behaviours.

∗ Connect as essential or nonessential client.

∗ Request a specific solution form the server.

∗ Process messages at a certain speed.

∗ Can change speed.

∗ Can simulate lock up (they wait).

∗ Can disconnect.

∗ Can repeat a list of actions.

– Logs the results:

∗ Wait time on server.

∗ Time in wait state.

∗ Number of messages processed.

∗ Number of messages missed.

∗ Delay between message generated and received.

∗ Etc.
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Graphs

The result graphs.

Figure 16: Nothing, essential subscribers. Figure 17: Nothing, nonessential
subscribers.

Figure 18: Nothing, message delay. Figure 19: Nothing, server memory.
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Figure 20: WithObserveOn, essential
subscribers.

Figure 21: WithObserveOn, nonessential
subscribers.

Figure 22: WithObserveOn, message
delay.

Figure 23: WithObserveOn, server
memory.

Figure 24: WithSample, essential
subscribers.

Figure 25: WithSample, nonessential
subscribers.
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Figure 26: WithSample, message delay. Figure 27: WithSample, server memory.

Figure 28: DropQueue, essential
subscribers.

Figure 29: DropQueue, nonessential
subscribers.

Figure 30: DropQueue, message delay. Figure 31: DropQueue, server memory.
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