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Abstract
We enroll more and more personal pervasive devices because these simplify our
everyday lives. In order to verify the identity of these devices we use authentica-
tion protocols. Although simple authentication often suffices, users would like to
remain anonymous during these authentications. Many privacy-preserving authen-
tication protocols have been proposed that claim security and privacy. However,
most of them are vulnerable in either their design or their proof of concept.

In this research, we focus on the design of a novel authentication protocol
that preserves the privacy of embedded devices. A Physically Unclonable Func-
tion (PUF) generates challenge-response pairs that form the source of authenticity
between a server and multiple devices. We rely on Authenticated Encryption (AE)
for confidentiality, integrity and authenticity of the messages. A challenge updat-
ing mechanism combined with an authenticate-before-identify strategy is used to
provide privacy. The major advantage of the proposed method is that no shared
secrets need to be stored into the device’s non-volatile memory. We design a pro-
tocol that supports server authenticity, device authenticity, device privacy, and
memory disclosure. Following, we prove that the protocol is secure, and forward
and backward privacy-preserving via game transformations. Moreover, a proof of
concept is presented that uses a 3-1 Double Arbiter PUF, a concatenation of repe-
tition and BCH error-correcting codes, and the AE-scheme KETJE. We show that
our device implementation utilizes 8,305 LUTs on a 28 nm Xilinx Zynq XC7Z020
System on Chip (SoC) and takes only 0.63 ms to perform an authentication oper-
ation.
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Chapter 1. Introduction

1.1 Introduction

Nowadays, [RFID}technology and the [Internet of Things (IoT)| are hot topics due
to the increasing desire to simplify our everyday lives via pervasive devices. Hence,
we see a shift from simple identification of devices towards complex authentica-
tion protocols, in which a challenging feature to implement is the protection of
the entity’s privacy. Because these entities belong to individuals who may want
to preserve their privacy, we notice a shift on focusing more on privacy-preserving
authentication protocols [I7]. With the use of state-of-the-art cryptographic tech-
niques, device-to-server authentication can be implemented while protecting the
privacy with respect to outsiders.

One solution is to use [Symmetric Key Cryptography (SKC), with a [pre-shared key
(PSK)|and a key-updating mechanism in order to randomize device credentials at

each successful authentication [33]. However, storing these requires
[Volatile Memory (NVM)|which, in the field of Hardware Security, is considered to
be easily compromised by an attacker. Another option is to use [Physically Unclon-|
[able Functions (PUFs)| physical entities that are similar to algorithmic one-way
functions. act on challenges, returning noisy [PUF] responses that are close
enough between equal [PUF]| instances, but far enough between different [PUF] in-
stances. Using one can refrain from storing a [PSK| in the device’s [NVM]
Instead, one only needs to store a challenge which, similar to the aforementioned
construction, is updated on a successful authentication. The strength of this con-
struction is that these challenges are not secret and can safely be stored in
By using a one needs to implement a [Fuzzy Extractor (FE)|that can pro-
duce an unpredictable key from the non-uniform and noisy [PUF]| responses. On
top of that, the [FE| provides for the recovery of old [PUF]responses from fresh [PUF]
responses using error-correcting codes.

In order to cover the need for anonymous authentication in the [[0T] research has
to be done into lightweight privacy-preserving authentication protocols. A [PUF}
based privacy-preserving authentication protocol might be the solution. However,
no such protocol exists yet that both claims security and privacy, and presents a
secure proof of concept.

1.2 Related Work

were first introduced as physical random functions by [Pappu et al| [52].

Since then, many constructions have been proposed [27, 130, 36} 22} [62]. Maes
researched for his PhD thesis, in which he gives a thorough explanation of

[PUF] constructions, properties and applications [42]. More recent, [Machida et al.
proposed a [3-1 Double Arbiter PUF (DAPUF)| which substantially decreases the
prediction rate of delay-based Stron{”EUﬂ responses [39].

!In contrast to a Weak |PUF| that can only generate a limited amount of responses, a Strong
can generate 2! [Challenge-Response Pairs (CRPs)l where I is the number of bits in the
challenge.




1.3. Scope and Contributions

Many based protocols have been proposed [44] 29] 48|, B]. [Majzoobi et al.

propose the Slender [PUF] protocol, an efficient and secure method to authenticate
the responses generated from a Strong [44]. Their protocol does not rely
on and error-correcting codes because response fragments are authenticated
using statistical methods. However, as pointed out, the implement-
ation of the Slender protocol is subjected to [Pseudo-Random Number Generator]
exploitation [I7]. Herrewege et al. propose a reversed putting the
computationally less complex generation procedure in the device, and the more
complex reproduction procedure on the server [29]. However less severe than the
exploit in the Slender protocol, their proof of concept is also subjected to a[PRNG]|
issue [I7]. Moriyama et al.| propose a provably secure privacy-preserving authen-
tication protocol that uses a different [PUF] response at every authentication, and
thus changing the device credential after every successful authentication [48]. @
et al.| [3] propose a provably secure protocol based on the protocols by Herrewege
et al|and |[Moriyama et al., Their protocol is optimized for resource-constrained
platforms like [Radio-Frequency Identification (RFID)|devices. The authors evalu-
ate the design using a [PUF|and [True Random Number Generator (TRNG )| based
on Static Random-Access Memory (SRAM)), a [Pseudo-Random Function (PRF)
using the SIMON block-cipher and a[Reverse FE (RFE)| based on|[Bose-Chaudhuri-
[Hocquenghem (BCH)|codes. While this is the first effort to describe an end-to-end
design and evaluation of a provable secure privacy-preserving [PUF}based authen-
tication protocol, their interleaved [FE] construction is vulnerable to linear equation
analysis [3, p. 12]. Moreover, the authors use an additional that does not
increase the entropy of the communicated messages. Thus, this additional [PSK]
can be considered overhead.

1.3 Scope and Contributions

This research focusses on improving the results of the most recent, aforementioned
[PUF}based privacy-preserving authentication protocol as proposed by
[3]. We do this by integrating a single, compact cryptographic primitive, namely
[Authenticated Encryption (AE)} into a [PUF}based privacy-preserving authentic-
ation protocol. In contrast to the protocol by we aim to construct a
secure [FE] and aim to abstain from using a [PSK| between server and devices. With
this, we hope to improve the overall efficiency of the protocol. Therefore, our main
research question is:

How does the integration of [Authenticated Encryption] in a[PUF}based
privacy-preserving authentication protocol affect its performance in re-
lation to other similar, existing authentication protocols?

For this, we design, prove and implement a novel [PUF}based privacy-preserving
authentication protocol using [AE] We summarize our contributions as follows:

e We present the theoretical design of a novel [PUF}based privacy-preserving
authentication protocol using [AE] By doing this we present a generic ap-
proach to create any implementation of the protocol provided the quality of

[PUF] responses.
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e We prove that the proposed protocol is mathematically secure, and forward
and backward privacy-preserving, under the condition on the security of the
[AE}scheme and the quality of the [PUF| responses. For this we define a new
type of [Strong Extractor (SE)| the [Entropy Accumulator (EA)| which is part
of the [FEL

e We present a proof of concept of the device on a development board and
the server on a [PC| such that we can elaborate on the performance of the
end-to-end design of the protocol. By doing this we present one of the first
use-cases of the lightweight [AEAD}scheme KETJE, which is part of the run-
ning |Competition for Authenticated Encryption: Security, Applicability and|

Robustness (CAESAR )l

e We make a comparison of the proposed protocol’s performance with other
similar, existing authentication protocols.

e We argue about the applicability of the proposed protocol in[REID}technology
and the [oTl

1.4 Research Methodology

In order to answer our research question, we use the following research methodo-
logy:

o Literature study. We carry out a literature study towards authentication
protocols in general, and the techniques used in the [PUF}based privacy-
preserving authentication protocol by [3] in particular. Moreover,
we study techniques that might improve the performance and security of the
protocol.

e Theoretical design. Based on the literature study, we design a [PUF}based
privacy-preserving authentication protocol using [AE] The aim is to replace
the [Symmetric Key Encryption (SKE)|[ and the [PRF| from Aysu et al.| [3]
with a single, compact cryptographic primitive (Authenticated Encryption
[with Associated Data (AEAD)) that provides for confidentiality of the |PUF
responses, authenticity of the devices and the server, and integrity of the
transmitted data. Moreover, a secure [PUF]| needs to be selected that forms
the basis for the design of a[FE]in particular and the protocol in general.

o Mathematical proof. We think that a novel protocol should be provably secure
and privacy-preserving. Hence, we give mathematical proof for both the
security as well as forward and backward privacy.

e Proof of concept. In order to evaluate the performance of the proposed pro-
tocol, we physically implement the device on a development board. On top
of that, we implement the server on a[PC|such that we create an end-to-end
design.




1.5. Relevance

1.5 Relevance

As mentioned before, RFID}technology and the [[oT] is emerging. While the tech-
nology often is not new, by interconnecting devices and entities in the
Web (WWW)| we create a new type of web, the [World-Sized Web (WSW)| [60].
In this [WSW] devices and entities are moving through the network, roaming from
access point to access point. One might consider that without proper privacy-
preserving authentication protocols, data gets leaked about the specific devices
and their locations in time. This traceability is a concern that affects everyone.
To illustrate this, the [Open Web Application Security Project (OWASP)| has in-
troduced a Top 10 [[oT] vulnerabilities, in which in the fifth place, there is “Privacy
Concerns” and in the second place, there is “Insufficient Authentication/Authoriz-
ation” [5I]. This shows that the online community realizes effort should be devoted
to both aspects of lightweight privacy-preserving authentication protocols, namely
privacy and authentication.

On the other hand, one might consider conventional use-cases for RFID}technology,
e.g. in supply chains or in access control. In these scenarios, the amount of devices
is substantially reduced in comparison with the [[oT] However, a company might
want to disclose articles that wear [RFID| tags and their locations to competitors.
Also, in access control, organizations might want to disclose to outsiders what
key figures entered where at what times. This demands for a lightweight privacy-
preserving authentication protocol.

In addition, this thesis is written in the partial fulfillment of the requirements for
the degree Master of Computing Science in Software Science. With this work the
author shows his skills in writing, reasoning, specifying, building and managing a
project.

1.6 External Validity

As mentioned, since the introduction of many authentication protocols have
been proposed that rely on key generation by However, many of them were
either not provably secure or were insecure in their proof of concept. Depending
on how successful this research proves to be, the protocol can be implemented in
nodes in the [[oT] or on a smaller scale in [RFID] devices in conventional use-cases.
With the protocol, a generic approach is presented to construct any instance of the
protocol provided the quality of the [PUF| responses, the desired maximum failure
rate for the authentications and the desired security level. A designer can choose
which [PUF] to use, which error-correcting codes and which [AEAD}scheme. This
way, the protocol might prove useful for a variety of applications.

In order to validate this research externally, a 20-page paper is submitted to the
Fifth International Workshop on Lightweight Cryptography for Security & Privacy
(LightSec 2016, Aksaray University, Cappadocia, Turkey).
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1.7 Outline

In Chapter [2| we describe the theoretical foundation for further chapters. This
chapter starts by giving notation and preliminaries before describing and defining
error-correcting codes, and [AE] In Chapter [3|we describe the proposed
privacy-preserving authentication protocol, which we call the [Concealing KETJE|
named after the lightweight scheme KETJE. This chapter
starts by defining the security considerations before presenting the [CKP| with all
of its elements. In Chapter [4] we first describe the security model and formal se-
curity definitions before presenting the security and privacy proof of the proposed
protocol. In Chapter [f|we describe a proof of concept of the [CKP} Chapter [ both
describes the results from the protocol as supported by the mathematical found-
ation as well as the results from the protocol supported by the proof of concept.
Finally, in Chapter [7] we present the conclusions, discussion and future work.




CHAPTER
TWO

BACKGROUND

In this chapter we describe the theoretical foundation for further chapters. The
information includes notation and preliminaries as well as theoretical background
on the topics addressed in this thesis.

We start by describing the notation that is used throughout this thesis in Section
Section [2.2] describes the preliminaries. Following, in Section [2.3] we describe
[Physically Unclonable Functions (PUFs), which is the component that forms the
basis of our privacy-preserving authentication protocol. Section[2.4] describes repe-
tition codes and [Bose-Chaudhuri-Hocquenghem (BCH)| codes, two error-correcting
codes that are being used in the [Fuzzy Extractor (FE)| which is one of the main
components in our protocol. [FEg are being described in Section The chapter
concludes in Section by describing |Authenticated Encryption (AE)|in general
and [Authenticated Encryption with Associated Data (AEAD)|in particular.
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2.1 Notation

In this section we describe the general notation that is used throughout this thesis.
For a detailed description of the specific notation used, please consult the Nomen-
clature starting at We use notation from Cryptography [33] 56], Coding
Theory [47, [63], 4T}, 28] and Information Theory [61}[55], the three theoretical found-
ations our protocol is mainly based on. In general, we use the following notation:

e Classes and sets are denoted by calligraphic letters, e.g. A, B, ..., Z.

e Vectors and (binary) variables/strings are denoted by capitalized roman let-
ters,e.g. Ac AABeB,...,Z€Z.

— Varying instances of variable A are identified using superscript (e.g. A,
Al or Aold)

— A =1[1,1,0] denotes a binary string with characters Ao = 0, A; = 1 and
Az = 1 with a(z) = 22 + 2 its polynomial.

— Bs_,( denotes the substring of B with characters Bs,B; and By.
— E = C || D denotes the concatenation of strings C' and D.

— |F| = n denotes the length n, or the amount of bits of F'.

I = G® H denotes the bitwise fexclusive-OR (XOR)|of strings G and H.

— (J, K) denotes a tuple of strings J and K.

e Functions are either denoted by function( -, ..., - ), where - denotes an
input to the function, or by calligraphic letters similar to setsﬂ

2.2 Preliminaries

In this section we give the preliminary definitions that are being used throughout
this thesis. Again, we use definitions from Cryptography [33] (6], Coding Theory
[47, [63, [41], 28] and Information Theory [61 [55]. We define the Hamming distance
and Hamming weight, Shannon entropy, min-entropy and statistical distance.

2.2.1 Hamming Distance and Hamming Weight

The Hamming distance, introduced by [Hamming [28] is defined as follows:

Definition 2.1 (Hamming distance). The Hamming distance between
two binary vectors Y, Y' < Y of the same length is the number of positions in both
vectors with differing values:

HD (Y, Y")| = [{i : Yi # Y/}

IThe context in which calligraphic letters are used clearly reveals the denotation.
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The distance metric dist(Y,Y”) over two binary vectors Y, Y’ < Y is defined by
the Hamming distance. Similarly, the Hamming weight is defined as [28]:

Definition 2.2 (Hamming weight). The Hamming weight of a vector
Y < Y is the number of positions with non-zero values:

HW )= [{i: Vi # 0}

Note that HW (Y @ Y') 5 HD(Y,Y")|

2.2.2 Shannon Entropy

The measurement of entropy we use is Shannon entropy, introduced by [Shannon
[61]:

Definition 2.3 (Shannon entropy). The Shannon entropy[H(Y )| of a discrete ran-
dom variable Y < ) is defined as:

H(Y) = — Y Pr(Y;) * log, Pr(Y;)
Y, ey

The entropy of a binary variable Y < {0,1}' with probabilities Pr(Y; = 1) = p
and Pr(Y; =0) =1—p (0 <i <) is defined in the binary entropy function

(p)]= —plogy(p) — (1 — p)logy(1 — p) (2:2.1)

Sometimes we use an approach that expects the worst outcome to Shannon en-
tropy, which is the min-entropy introduced by Rényi [55]. If Y € Y is uniformly
distributed, the Shannon Entropy and min-entropy are equal. However, if this is
not the case, the ‘worst-case’ scenario is taken for the min-entropy.

We define the min-entropy as follows [42] p. 206]:

Definition 2.4 (Min-entropy). The min-entropy of a random variable Y €
Y is defined as:

Hoo (Y)f = —log, max Pr(Y;)
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2.2.3 Statistical Distance

The statistical distance is a measure of distinguishability between two probability
distributions (e.g. random variables/vectors/strings).

We define the statistical distance as follows [19, p. 528]:

Definition 2.5 (Statistical distance). The statistical distance between
two probability distributions A and B is:

SD(A, B)|= % > [Pr(A=V)-Pr(B=V)|
Vey

where [Pr(z)| denotes the probability that = occurs and V denotes the set from which
the statistical distance is sampled using V.

2.3 Physically Unclonable Functions

are entities that are intrinsically embodied in physical structures. The main
characteristic of a [PUF]is that it should be easy to evaluate but hard to predict,
moreover, it should be practically impossible to duplicate. Because of its equi-
valence to algorithmic one-way-functions, might be ideal for cryptographic
purposes.

Although the following definition is somewhat decrepit, we can still use it to illus-
trate the general idea of a 21l p. 2]:

Definition 2.6 (Physical Unclonable Function). A Physical Unclonable Function
is a function that maps challenges to responses and that is embodied in a physical
object. It satisfies the following properties:

1. Fasy to evaluate: the physical object can be evaluated in a short amount of
time.

2. Hard to characterize: from a number of measurements performed in poly-
nomaal time, an attacker who no longer has the device and who only has a
limited (polynomial) amount of resources can only obtain a negligible amount
of knowledge about the response to a challenge that is chosen uniformly at
random.

This definition was superseded by numerous broader and often more complex defin-
itions of which |Armknecht et al.| [I] try to unify them all. For this thesis, we follow
Maes| [42] as he covers the main characteristics we need to describe a m

A[PUF]is mainly characterized by its reproducibility, uniqueness, identifiability, un-
clonability and unpredictability, which are defined by the intra- and inter-distance
of the responses [42, p. 20-23, 61-64].

Before we give these definitions, we first introduce the notion of a [PUF] class,
denoted as [P} which is the set of that share the same [PUF] construction type

10
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(see Section [2.3.5)). The set of all possible challenges | X|which can be applied to an
instance of [P]is denoted as Ap;.

2.3.1 Intra-distance and Reproducibility

When challenging a single PUF| multiple times with the same challenge, there is a
chance that the response bits are different in both responses. We call the probability
that a single bit is different between measurements the bit-error probability fpc} This
is one of the characteristics of a[PUF|and is defined by its intra-distance, which is
defined as follows [42] p. 20]:

Definition 2.7 (Intra-distance). A response intra-distance is modeled as a
random variable describing the distance between two [PUF| responses from the same
[PUH instance using the same challenge:

D () = dist ] Jpufl ([} {puth (x))

wz’th and / two distinct and random evaluations of instance - on the
same challenge [X| Additionally, the [PUF| response intra-distance for a random
[PUF instance and a random challenge is defined as the random variable:

_ qintra “ )@)

The intra-distance provides reproducibility of any unique[PUF|instancefpufh<;<, €
(where n is the total number of in the class[P]), which means that if
two measurements are performed on the same [PUF] then these responses are with
high probability close to each other. More precisely, reproducibility is defined as
follows [42], p. 61]:

Definition 2.8 (Reproducibility). A class [P| exhibits reproducibility if:

Pr is small) is high

Note that does not introduce a theoretical or experimental bound. For now,
an unbounded perspective suffices. We introduce a theoretical bound € in the
formal security definitions in Section [£.2]needed for the security and privacy proofs

in Section [4.3

11
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2.3.2 Inter-distance and Uniqueness
The inter-distance is defined as follows [42] p. 22]:

Definition 2.9 (Inter-distance). A response inter-distance is modeled as a
random variable describing the distance between two [PUF] responses from different
[PUF] instances using the same challenge:

D () = dist (Y] [ pufix) 1] «{ puf] (x)),
with [Y] and [Y] evaluations of the same challenge [X] on two random but distinct

instances and ( . Additionally, the response

inter-distance for a random challenge is defined as the random variable:
=08 (X« Am)

The inter-distance provides uniqueness of any 1nstance pufp<;<n in the
class [P| (where n is the total number of |PUFS in the [PUF] WSS P), which 1mphes
PUFs

that responses of measurements performed on different [PUF| (taking into account
that one of the might be fake) are with high probability far apart. More
precisely, uniqueness is defined as follows [42, p. 62]:

Definition 2.10 (Uniqueness). A class exhibits uniqueness if:

Pr is large) is high

2.3.3 Identifiability

Reproducibility of a m instance [puf} € P| and uniqueness between [PUEF] in
stances puf] m (where i # j) provides identifiability of [PUF] ﬁ instance
fl, 4 Pl More prec1sely, identifiability is defined as follows [42], p. 62]:

Definition 2.11 (Identifiability). A class |P| exhibits identifiability if it is
reproducible and unique, and in particular if:

Pr(DE™] is high

2.3.4 Unclonability and Unpredictability

For cryptographic applications, unclonability and unpredictability are essential.
The characteristic of unclonability assures that physically and technically, a [PUF]|
instance [puf], € P|is difficult (or even impossible) to create from an other
instance 5 More precisely, unclonability is defined as follows [42, p. 63]:

Definition 2.12 (Unclonability). A class exhibits unclonability it is hard
to apply and/or influence the creation procedure in such a way as to produce two

distinct [PUF] instances [puf][puf] §P| for which it holds that:
Pr(dist (Y]« pufl{x) [Y] (X)) < Diter (X)) is high,
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2.3. Physically Unclonable Functions

for[X]« Xp. Ultimately, it should be hard to produce two[PUF] instances for which
1t holds that:

Pr(dist(7] [l (&) > D) i tows

The characteristic of unpredictability ensures that unobserved responses remain
sufficiently random, even after observing responses to other challenges on the same
PUF| instance. More precisely, unpredictability is defined as follows [42], p. 64]:

Definition 2.13 (Unpredictability). A class exhibits unpredictability if it
is hard to win the following game for a random [PUF instance [puf| g P}

e In a learning phase, one is allowed to evaluate on a limited number
of challenges and observe the responses. The set of evaluated challenges is
Agp and the challenges are either randomly selected (weak unpredictability) or
adaptively chosen (strong unpredictability).

e In a challenging phase, one is presented with a random challenge X < g\
5. One is required to make a prediction r"d for the response to this
challenge when evaluated on [puf]l One does not have access to but
the prediction is made by an algorithm predict which is trained with the
knowledge obtained in the learning phase: Ted — predict.

e The game is won if:
P1r(distrEd — predict  puf(X)) < Qﬁter) is high

One way of carrying out this experiment is by using [Machine Learning (ML)| at-
tacks. Recent studies have shown that [PUF] responses can be predicted in some
practical scenarios [58, 57]. It is evident that a [PUF|should be designed carefully,
taking this risk into account.

2.3.5 PUF Construction Types

Various [PUF] construction types have been proposed, a few of them are being dis-
cussed in this section: [Static RAM (SRAM)|[PUFS| Arbiter [PUFS, [Ring Oscillator|

[PUFs (ROPUFSs)| and Non-Intrinsic (PUF-like) [42].

2.3.5.1 SRAM PUFs

SRAM||[PUFs| were first introduced by [27] and [Holcomb et al. [30].

SRAM|[PUFS are based on the principle that upon power cycling an [SRAM] cell, its
transient behavior either sets the value of the cell to 0 or 1. This transient behavior
is intrinsically introduced due to the random process variations in the production
of the cells. Hence, these variations are cell-specific and will (upon power cycling)
determine the state of the cell with a high probability to a certain value. This
value is called the preferred initial operating point and is introduced by a race
condition in the electrical flow upon powering the[SRAM] However, once in a while
this value will be different from the preferred initial operating point because of the
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Chapter 2. Background

race condition, which makes [SRAM]usable in a [PUF] construction. Challenges and
responses can be created by adhering to memory addresses as challenges and the
state of the SRAM] as the [PUF|response. Before challenging the [PUF| with a same
challenge (memory address), a power cycle needs to be executed. This construction
is closely related to a|One-Time Pad (OTP)| where addresses are mapped to the
state of the [33]. However, with each power cycle there is a chance that the
pad changes from the previous measurement.

2.3.5.2 Arbiter PUFs

Figure illustrates an Arbiter [PUF] a type of delay-based [PUF] which was first
introduced by Lee et al.|[36]. Here, the multiplexers that act on the same challenge
bit C; (0 < i < n, |C] = n) are called a switch block, and the two
ports are called an arbiter. An arbiter m is based on the idea that
there exists a race condition between signals of two digital paths on an
ICircuit (IC)} This race condition, or the delay of a path, is introduced by the
random process variations in the production of the [[C} This behavior makes the
measurements of the delays usable in a construction. An arbiter (usually a
simple latch) either sets the response to 0 or 1, depending on what signal arrived
first at the arbiter. Often, the paths are implemented using switch blocks (usually
multiplexers) that act on a challenge bit. These switch blocks either let signals
switch from digital paths or keep their paths. By concatenating a number of these
switch blocks, a challenge can be sent to the[PUF] In order for the response to have
sufficient length, a number of these race conditions can be measured in parallel.
For example, by measuring n arbiter in parallel using the same challenge,
a n-bit response can be obtained. It is evident that this solution substantially
increases the area of the [[C] Another option is to measure responses sequentially
using differing challenges. For example, one could append n bits to the challenge
address space to measure 2" responses, obtaining a 2™-bit response. It is evident
that this solution substantially increases the latency of [PUF| responses.

146 1461
N |

! <J i 5
H/H a

ISwitch Block

Figure 2.1: An arbiter as introduced by [Lee et al.| [36]. @ denotes the input

of the denotes the output of the

The responses of these can easily be predicted using [MI}attacks. [Machida
et al. have shown that conventional arbiter have a prediction rate of 86%[40].
However, arbiter are used in various constructions that provide for a good
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prediction rate (i.e. approximating 50%). One example is discussed in the next
section, various others by Machida et al.| [40].

2.3.5.3 Ring Oscillator PUFs

Figure 2.2] illustrates a ROPUF} another type of delay-based [PUF| which was first
introduced by |Gassend et al.| [22]. In this figure, the configurable delay can (for
example) be the delay introduced in the arbiter PUF]from Section [2.3.5.2]or a series
of inverters. This [PUF]is based on the measurements of the frequencies of digital
oscillating circuits. Again, the differences in these measurements are introduced
by the random process variations in the production of the [[C] Usually, a ROPUF]
consists of a number of ring oscillators and an equal amount of frequency counters
[43]. After measuring the frequencies of these oscillators, an ordering of these
frequencies, and an encoding of this ordering reveals a [PUF| response. A challenge
can be introduced by adding multiple oscillators in batches. This challenge, fed to
a multiplexer can indicate from which oscillator in the batch the frequency needs
to be measured.

lchallenge
response
Configurable .
Delay Counter —>
A
enable
Timer

Figure 2.2: A [ROPUF|as introduced by |Gassend et al.| [22].

2.3.5.4 Non-Intrinsic (PUF-like) PUFs

Various non-intrinsic (PUF)-like have been proposed that have randomness
that has been explicitly introduced. These are non-intrinsic because they are
not completely integrated in an embedding device and/or they are not produced in

the standard manufacturing process of their embedding device. [Tuyls and Skorié¢
[62] describe optical, coating and acoustic

2.3.5.4.1 Optical PUFs An optical [PUF|is based on either absorption, trans-
mission, reflection, scattering or a combination thereof, of a microstructural surface.
The idea is that this surface has random variations in one of these characteristics
introduced in the production of the surface. These random variations in the micro-
structural surface can be used in a [PUF] construction by challenging it at different
locations on the surface. An example is to shoot a laser through a transparent
material (e.g. glass) and observe the speckle pattern using a camera [62].
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2.3.5.4.2 Coating PUFs A coating [PUF] is based on the dielectric variation
of the coating of an[[C] During manufacturing, the coating is doped with dielectric
particles that respond with a different capacitance value on differing voltage inputs
with varying frequencies. These differing capacitance values can be used in a [PUF]
construction by challenging the [PUF] with different voltage inputs.

2.3.5.4.3 Acoustic PUFs An acoustic [PUH is a [PUH that is based on the
response of sending an acoustic wave to an object. The acoustic wave propagates
through the object and scatters on randomly distributed inhomogeneities that are
introduced during manufacturing of the object. These differing wave responses can
be used in a [PUF] construction by pointing the acoustic wave at different locations
on the surface of the object as challenges.

2.4 Error-Correcting Codes

When sending data over a noisy channel, there is a chance that this data might
be corrupted. For example, when sending a single bit, there is a probability
Pr(“bit flipped”) = p that this bit gets flipped. This is due to a|Binary Symmetric|

[63, p. 2], as depicted in Figure

Sender
(source)

Receiver
(sink)

Figure 2.3: The [BSC|

In this figure,
Pr(“1 received” | “0 transmitted”) = Pr(“0 received” | “1 transmitted”) = p, and

Pr(“0 received” | “0 transmitted”) = Pr(*1 received” | “1 transmitted”) = 1 — p.

The BSC| can be used to model various media, for example the aforementioned
noisy channel (tele-communications, satellite communication), a storage medium
or In this thesis we only consider the[BSC|in a[PUF]scenario where multiple
measurements on the same challenge return noisy responses. We require that the
protocol’s channel is ideal (i.e. no errors occur during communication).

In order to recover the original data from the possibly corrupted data, error-
correcting codes are used [41l p. 1]. Error-correcting codes have the ability to
correct up to t bits of original data from the transmitted information.

Although error-correcting codes are often used for transmitted data, we can also
use them for reconstructing PUF-responses.
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2.4. FError-Correcting Codes

Exam le 2. 4 1. Take two of the same [PUF] challenges [X] on the same :
l pu andl | pufl(X), with [Y} = [0,1,0,1,0,1,1,0] and [y =

. This can be seen as the transmission of |P F [PUF| response . usmg
the “ under the influence of a receiving the [PUF] response [Y]'. We
say that the error vector mdlcatlng which bits have been ‘corrupted’, of these two
response vectors is F =10,0,1,0,0,1,0,0]. <

One way of carrying out error correction to the errors that were introduced in the
example is to encode the response [Y} and decode the second [PUF| response
. Specific codes used in an encoding have the ability to carry out error detection
to the error(s) introduced by a[BSC| Error detection leads to error correction, which
helps us obtain the [PUF| response [Y] in a decoding.

We describe binary repetition codes and binary [BCH] codes which are used in our
proposed protocol to recover [PUF| responses.

2.4.1 Repetition Codes

One of the most basic error-correcting codes is the class of binary repetition codes,
or repetition codes. As the name suggests, the codeword for a bit is the repetition
of that bit such that probability indicates the original bit in a decoding.

We define binary repetition codes as follows:

Definition 2.14 (Binary Repetition Code). A binary linear code Crrp(n, 1,t)| with

codewords 0 = [0,0,...,0] and 1 = [1,1,...,1] is called a binary repetition code of

length n and error correcting capability t = [251].

2.4.1.1 Encoding

As we have mentioned before, the most basic form of encoding a string is by repeat-
ing its characters for a number of n times. There are more advanced techniques of
using repetition codes, of which one will be described in Section [3.5.3.1

Example 2.4.2. Take the binary repetition code with n = 3 and
t = |2%1] = 1. An encoding of the message M = [0,1,1,0] of length I, = 4
results in the codeword W = [0,0,0] || [1,1,1] || [1,1,1] || [0,0,0] of length Iy =
4xn=12. <
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2.4.1.2 Decoding

Decoding of a received codeword W/ =W @ FE of length Iy and error vector F is
performed by measuring the Hamming weight of the n-bit substrings of W'.

Take the binary repetition code Let us say a message M of length 5/
was encoded using this code. We can decode the received codeword W’ as follows

(for 0 < i < lp):

If HW( Z-'_n+(n_1)_)i,n) > t then we take M; = 1 and M; = 0 otherwise. (2.4.1)
This gives the highest probability that the decoding of the substrings represents
the original message. There is a chance that the decoding will be faulty, as more
than ¢ bits in the n-bit string might be corrupted in the channel. The probabilistic
foundation of repetition codes does not support detection of this faulty decoding.
For this, the more complex [BCH] codes can be used which will be described in
Section [2.4.2]

Example 2.4.3. Take the message M = [0, 1, 1, 0] and the codeword W = [0, 0, 0] ||
[1,1,1] || [1,1,1] || [0,0,0] from Example and an error vector E = [0,0,0] |
[0,0,1] || [0,1,0] || [1,0,1]. The received codeword results in W/ = W @ E =
[0,0,0] || [1,1,0] || [1,0,1] || [1,0,1]. Using Formula[2.4.1] a decoding of the received
codeword W’ results in the received message M’ = [0,1,1,1]. <

As we can see M} # My because HW (W3 _,;) > t, thus My = 1 whereas the
original bit was 0. In this specific case, the number of errors in the error vector was
higher than the error correcting capability ¢. In order to prevent this behavior, one
can use a better coding technique, a different code with a higher error correcting
capability (increasing the overhead on the channel), or one can use a concatenation
of error-correcting codes, which is being described in Section [3.5.3

2.4.2 BCH Codes

[BCH] codes are a class of cyclic error-correcting codes that are constructed using
finite fields. The algebraic foundation of [BCH| codes makes them ideal for error
correction.

For any positive integer m > 3 and ¢ < 2™ — 1, there exists a binary [BCH] code
with the following parameters [45] 47 p. 99]:

e The block-length of a code is the amount of bits that the code acts on. When
encoding a message larger than the block-length, the code is applied to a
multiple of the block-length. The block-length of the code is given by:

n=2"—1 (2.4.2)
e The number of parity-check bits is the number of bits that are used to detect
and correct errors in the code. The number of parity-check bits is given by:

n—k<m-t (2.4.3)
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e The minimum distance is the minimum of HD(U, V') over all distinct code-
words U and V. If the following condition holds, the decoder will always
decode correctly when there are ¢t or fewer errors.

donin > 2t + 1 (2.4.4)

We define a binary [BCH]| code as follows:

Definition 2.15 (Binary BCH Code). A binary [BCH code[Cpcu(n, k, t)| is called

a binary [BCH| code of order m, length n = 2™ — 1, distance d, error correcting

capability t = 951 | and primitive element o € GF(2™):

Cocalntl= (Wo,.... Wa1) € GRE™) | wlz) = Wo 12" 40+ Wiz + Vo

satisfies V1 <1 < 2t : w(a') = w(a?) = --- = w(a" V) =0}

2.4.2.1 Encoding

In order to encode a message M of length k we first need to construct the generator
polynomial.

Let ®;(x) be the minimal polynomial of «f, the primitive element. Then the
generator polynomial g(z) must be the least common multiple of ®1(x), ®2(x),
sy @gq (), Le.,

g(z) = LCM(®4(z), Pa(x), -+, Pg—1(x)) (2.4.5)

The degree of the generator polynomial g(z) is at most m - ¢, hence, the number
of parity-check bits (n — k) is at most m - t (Formula [2.4.3)).

Example 2.4.4. Let a be a primitive element of GF(2*) generated by the primitive
polynomial p(x) = z* + 2 + 1 [14]. The finite field table is given in Appendix
The minimal polynomials ®;(z) (1 <i < n) of « areﬂ
®1(z) = (z + a)(z + a®)(z 4+ a*)(z + ®)
=zt 4241
@3(2) = (z + o”)(z + o) (z + a'?)(z + o”)
=2t 42ttt a1
®5(2) = (z+ ) (z +a'?)
=2 4+a+1
®r(z) = (v +af)(2 + ') (z + ') (z + a'h)
=zt 4+’ +1

2Note that conjugates are omitted. A conjugate is a minimal polynomial ®,(x) that is equal
to ®;(z) (i < j). For example, in Example [2.4.4] ®1(z) = ®2(x) = P4(z) = Pg(x).
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Then, using Formula the double-error-correcting (t = 2, d = 5) code of
length n = 2% — 1 = 15 (Formula [2.4.2) is generated by:

g(r) = LCM(®4 (2), @3(x))
=@ v+ Dt +23 422+ +1)
=% +2" +20 +a2t +1

Hence, n — k = 8 such that this is a =Cpcu(15,7,2) code. <

The remainder polynomial r(z) that contains the parity-check bits is obtained by:
r(z) =2z" % . m(z) mod g(x) (2.4.6)

Example 2.4.5. Take the message M = [1,1,0,0, 1,1, 0] with message polynomial
m(z) = 2%+ 2° + 22 + x and generator polynomial g(z) = 2% + 27 + 25 + 2% + 1 as
calculated in Example the remainder polynomial r(z) is obtained by using
Formula

r(z) =28 +2° + 22 +2) mod 2® + 2" + 28 + 2t 41
=M 4B 4294 2% moda®+a2" +a2% 42 +1

=341

Finally, the code polynomial w(z) is obtained by:
w(z) = 2" *m(z) + r(x) (2.4.7)

Example 2.4.6. Take the message polynomial m(x) = 2° + 2% + 22 + z and the
remainder polynomial r(z) = z® + 1 as calculated in Example the code
polynomial w(x) is obtained by using Formula

w(z) =28z + 25+ 2% 4 2) 23+ 1
oM 184 10 L0 4 03 g

As a result, the codeword for the message M =[1,1,0,0,1,1,0] is given by
w=][1,1,0,0,1,1,0,0,0,0,0,1,0,0,1]. <
2.4.2.2 Decoding

As per Definition 2.15] the decoding is based on the following algebraic character-
istic:

V1<i<2t:w(a') =Wy 1a™ V4 41 Woa® +Wial+ Wy =0 (2.4.8)
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The decoding of a received codeword W' = W & E with codeword polynomial
w'(z) = W) _ja" ' + ... + W]z + W} and error polynomial e(z) = E, 12" 1 +
.-« + Eyx 4+ FEy is performed in four steps:

1. Compute the syndromes S; (1 <i < 2t).

2. Determine the error-locator polynomial o(x).

3. Find the error-locator polynomial coeflicients o1, 09, ...,0; (7 < ).

4. Carry out the error correction using the error correction polynomial €'(z).

Here, 7 is the actual number of errors in the code. We describe these four steps in
the following sections.

2.4.2.2.1 Syndrome Computation We can compute the syndromes S; (1 <
i < 2t) using:

S; = w'(a?)

i 0 . (2.4.9)
=W oV L WP 4+ W+ W

Example 2.4.7. Take the message M = [1,1,0,0,1,1,0] and its codeword W =
[1,1,0,0,1,1,0,0,0,0,0,1,0,0,1] as calculated in Section 2.4.2.1l By applying the
error vector £ =[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0] on this message, we obtain the
received codeword W' = [1,1,0,0,0,1,0,0,0,0,0,1,1,0,1]. Hence, the codeword
polynomial is given by: w'(z) = 2% + 213 + 2% + 23 + 22 + 1.

The four syndromes are computed using Formula [2:4.9] and Table [BI] from Ap-
pendix [B}
Si=a+a®+a’+af+a’+1
=a+1=at
So=a®+a®+a®+af+at+1
=a’+1=0a"
Ss=a2+a®+a¥+a°+ab+1
a1 =ald
Si=a®+a2+a +a2+a8+1

=«

2.4.2.2.2 Error Locator Polynomial Coefficients The error locator poly-
nomial can be expressed as follows:

o(z) = (1= Bra)... (1= faz)(1 = frz)

- (2.4.10)
=0,z +---+ o012+ 0o,

where 7 < t is the number of errors in the code.
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In the case 7 < t, the number of roots (of which the calculation is given in Section
is equal to the degree of the error locator polynomial. If we find a higher
degree of the error locator polynomial o(z), we can conclude that there were more
errors in the code than its error correcting capability ¢ (i.e. 7 > t). In this case, no
errors can be located. In order to prevent this behavior, one can use a better coding
technique, a different code with a higher error correcting capability (increasing the
overhead on the channel), or one can use a concatenation of error-correcting codes,
which is being described in Section [3.5.3

The coefficients of o(x) are:
gg = 1
or=0r+-+ b+ 5

oy = Br1Br + -+ B1P3 + B1P2
g2 :ﬂ‘r7257’715'r +"’+616254+515253 (2411)

Or :6162~-~ﬁ7

In order to solve the coefficients of the error locator polynomial, one has to solve
the Newton’s identities [47), p. 130]:

Si+o1=0
S+ 01851 =0
83+ 0182 + 0251 +03=0 (2.4.12)

Sr+01S0+ - +0,218 40,5 =0

The objective is to find the minimum degree polynomial o(x) whose coefficients
satisfy these Newton identities.

Various algorithms have been proposed to find these coefficients: the Peterson-
Gorenstein-Zierler algorithm [24], the Berlekamp-Massey algorithm [6] and Euclid’s
algorithm [54]. For the purpose of this thesis and because of the complexity of
these algorithms, we stop the description for finding the error-locator polynomial
coefficients here. For a detailed description, we encourage the reader to consult
Moreira and Farrell [47] or any of the papers these algorithms were introduced in
[A7, 24, 6, 54).

Example 2.4.8. Take the received codeword W' = [1,1,0,0,0,1,0,0,0,0,0,1,1,
0,1] and its syndromes S; = a?, S = o®, S3 = a!? and S; = « from Example
Using the Berlekamp-Massey algorithm we obtain the error locator polynomial
olx) =a2z? +a*z+1withog=1,0y =a+1l=ca*andoy =+ +a+1=
al?. <
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2.4.2.2.3 Finding Roots of Error Locator Polynomial The roots of the
error locator polynomial o(z) are 871, ..., 35 v By ! the inverse of the error loca-
tion numbers.

One way of solving the roots for o(z) is by brute-forcing the finite field elements
in the error locator polynomial and check whether the following condition holds:

o(a’) =0 (2.4.13)

This is called the Chien search, as introduced by |Chien| [15].
e If this condition holds, then there was an error at the inverse position of 4,
i.e. in position n — 1.

e If this condition does not hold, there was no error.

Example 2.4.9. Take the error locator polynomial o(z) = a'?2? + a*z + 1 with

oo =1, 01 = a* and 09 = a'? as computed in Example Evaluating o(z) for
2.4.2)

r=a,r=a? ..., z=a" (where n = 2™ — 1, Formula gives the following

set of equations:

ola) = a'?(a)* + a*(a) + 1
=@+ +(®+a)+1
=a®+al+a+2
=a*+a’+a
#0

o(a?) = a'2(a?)? + at(a?) + 1
=P+l +a+1
#0

a(aIS) _ al?(a15)2 +a4(a15) 41
=ad4+a’+1
£0

Solving these equations we find o(a®) = 0 and o(a'®) = 0. Hence, the roots of the
error locator polynomial o(z) = a'?z? 4+ a*z + 1 are ;' = 5 and f;' = 13 for
which Formula holds. <

2.4.2.2.4 Error Correction Once the roots 871,..., ﬁ;l, ﬁfl of the error
locator polynomial o(x) = 0,27 +-- -4+ 012 + 0p are found, we can obtain the error
correction polynomial:

e (x) =a" P o p B g (2.4.14)

Finally, we can obtain the recovered codeword polynomial w” (x):

w”(z) = w'(x) + € () (2.4.15)
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Example 2.4.10. Take the received codeword W’ = [1,1,0,0,0,1,0,0,0,0,0,1,1,
0,1] (w'(x) = 2" + 2% + 29 + 2% + 22 + 1) and the roots B; ' = 5 and 7 = 13 of
the error locator polynomial o(z) = o222 + oz + 1 from the previous exercises.
The error correction polynomial is given by using Formula
e (z) = 21975 4 £15-13
= 210 4 22
This gives us the error correction vector E' = [0,0,0,0,1,0,0,0,0,0,0,0,1,0,0].

We can see that £/ = FE (Exercise [2.4.7). Finally, we can obtain the original
codeword polynomial using Formula

W”(Z‘):($14+$13+$9+$3+JZ2+1)+($10+l‘2)
:x14+$13+x10+x9+x3+1

This gives us the recovered codeword W” =11,1,0,0,1,1,0,0,0,0,0,1,0,0,1]. We
can see that W” = W (Exercise [2.4.7)). Hence, we recovered the original message
M =[1,1,0,0,1,1,0]. 4

2.5 Fuzzy Extractors

[Fuzzy Extractors| (FEs) were first introduced to turn biometric information into
keys usable for cryptographic applications [I9]. This biometric data, for example
iris scans or fingerprints can be used as a key, where the key must be derived from
measurements that are slightly different. With the use of a[FE] this data is turned
into a key with nearly uniform randomness and helper data to recover this key using
another measurement of the biometrics. Even though were first introduced
for biometric information, a [FE] can be used to produce cryptographic keys from
any key that is not precisely reproducible and not distributed uniformly given that
these keys are ‘close enough’ to each other. For the purpose of this thesis, are
used to correct noisy [PUF| responses into unpredictable keys.

Using a generation procedure, the [FE| can convert the biometric input into an key
that is unpredictable. Moreover, using a generation procedure the [FE] can produce
public information about the biometric input such that this input can exactly be
recovered using error-correction codes. These two steps are performed in a
and al (]), respectively. A reproduction procedure can recover the
original biometric input from the public information produced by the generation
procedure of the Using the same [Strong Extractor (SE)| as was used in the
generation procedure, this biometric input is converted into the same key.
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2.5.1 Strong Extractor

The|Strong Extractor| (SE|) converts the noisy data that is not distributed uniformly
into a key that is unpredictable. We define a as follows [19, p. 528|:

Definition 2.16 (Strong Extractor]). An efficient (n,m’, k, €)-strong extractor is a
polynomial time probabilistic function Ext(W, X) : {0,1}" — {0,1}"™ such that for
all min-entropy m’ distributions W we have:

SD((Ext(W, X), X), (U, X)) < €, where

U, denotes the uniform distribution on an l-bit binary string and Ext(W, X) stands
for applying Ext to W using uniformly distributed randomness X .

In other words, a [SE] can extract a uniformly distributed key from non uniformly
distributed input W and uniformly distributed randomness X.

Practically, to obtain a high security level, strong assumptions about the min-
entropy of the randomness source have to be made. This is often impossible [43] p.
306] and multiple practical solutions have been proposed. Moreover, because we
need to use uniformly distributed randomness X which has to be shared between
generation and reproductions, large entropy losses need to be taken into account.
This makes the overall key generation as defined in Definition [2.16] impractical.

Some solutions are to use a cryptographic hash function [34] or a[Pseudo-Random)
[Function (PRF)| For example, one can append a random variable to the noisy
data and hash this into a key (salting). However still, one has to make strong
assumptions about the min-entropy of the noisy data.

We call these constructions [Average-case Extractors (AcEs), which we define as
follows [20] p. 10]:

Definition 2.17 (Average-case Extractor). Let Ext(W, X) : {0,1}" — {0,1}! be
a polynomial time probabilistic function which uses r bits of randomness. We say
that Ext(W, X) is an efficient average-case (n,m,l,€)-strong extractor if for all
pairs of random variables (W, I) such that W is an n-bit string satisfying H, =
(W | I) > m, we have

SD(<EXt(W, X)v X, I>7 <Ula Xa I>) < €,
where X is uniform on {0,1}".
In other words, if there is enough entropy in W (taking into account the entropy loss

introduced by I) and there is enough entropy in X, Ext(W, X) is indistinguishable
from random (U).
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2.5.2 Secure Sketch

The [Secure Sketch (SS)| converts the noisy data that is not distributed uniformly
into helper data that can be used to recover that same noisy data. Almost always,
use encoding of (a composition of) error-correcting codes as described in
Section 241

Let W be the set of all possible noisy and non uniformly distributed vectors with
distance function dist(W,W’) (W, W’ € W) as described in Section We
define a[S§| as follows [19, p. 529]:

Definition 2.18 (). An (W, m,m/,t)-secure sketch is a randomized map SS(X) :
W — {0, 1}* with the following properties:

1. There exists a deterministic recovery function Rec(W’' H) allowing to re-
cover vector W from its sketch H = SS(W) and any vector W’ close to W :
for all W,W' € M satisfying dist(W, W’) < t, we have Rec(W', SS(W)) =
w.

2. For all random variables W € W with min-entropy m, the average min-
entropy of W given SS(W) is at least m’. That is Hoo = (W | SS(W)) > m/.

In other words, we are able to recover a vector W using another vector W’ close to
W and the helper data H generated from the secure sketch H = SS(WW). Moreover,
the entropy loss during the construction of H = SS(W) is m —m/.

When using an error-correcting code C(n, k,t) for the knowledge of the helper
data H does not fully disclose the entropy of W, only n — k bits of this helper
data. Thus, we can use, store and communicate H publicly where it still has
H(W) — (n — k) bits of entropy left in H [43], p. 305]. The bit error probability
and entropy p of the determine the (composition of) error-correcting codes
used in the design of the[SS] This should be optimized such that no information is
leaked about the key.

2.5.3 Fuzzy Extractor

Now that we have described a [SE] and a[SS| we can start defining a [FE} As men-
tioned before the [FE] composes a generation procedure and a reproduction proced-
ure.

We define a[FE| as follows [19, p. 530]:

Definition 2.19 (Fuzzy Extractor)). A (W, m,l,t,¢€)-fuzzy extractor is a given by
two procedures (Gen, Rep).

1. Gen(W) is a probabilistic generation procedure, which on input W € W
outputs an “extracted” string R € {0,1}' and a public string H. We require
that for any distribution W on W of min-entropy m, if (R, H) + Gen(W),
then we have SD((R, H), (U, H)) < e.
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2. Rep(W’, H) is a deterministic reproduction procedure allowing to recover R
from the corresponding public string H and any vector W' close to W: for
all W,W’' € W satisfying dist(W,W') < ¢, if (R, H) + Gen(W), then we
have Rep(W', H) = R.

In other words, a random binary variable R can be constructed using noisy and
non-random input W using a generation procedure. Moreover, using a reproduc-
tion procedure, this randomness R can be recovered, given a second noisy and
non-random input W’ and the helper data H as constructed by the generation
procedure.

We can use Definition [2.17| (Average-case Extractor]), Definition () and Defin-
ition [2.19| (Fuzzy Extractor) to prove that we can construct a from 20, p.
13]:

Lemma 2.1 (Fuzzy Extractor] from |). Assume SS(X) is a (W, m,m/,t)-secure
sketch with recovery procedure Rec(W', H), and let Ext(W, X) be an average case
(n,m/, k,e)-strong extractor. Then the following (Gen,Rep) is a (W, m,l,t,¢€)-
fuzzy extractor:

1. Gen(W): set H = (SS(W), X), R = Ext(W, X), output (R, H)
2. Rep(W',(H,X)): recover W = Rec(W', H) and output R = Ext(W, X).

Proof. From Definition (]])
Ho (W|SS(W)) >m/

And since Ext(W, X) is an average-case (n,m/’, k, ¢)-strong extractor (Definition
2.17), from Definition [2.19] (Fuzzy Extractors) we get:

SD((Ext(W, X), SS(W), X), (U, SS(W), X)) = SD((R, H), (Ui, H)) < ¢

O

Corollary 2.1 (Fuzzy Extractor] from|). If Rec is an (W, m,m’,t)-secure sketch
and Ext is an (n,m’ —log,(5),l,€)-strong extractor, then the above construction

from Lemma (Gen,Rep) is a (W, m,l,t, e+ 0)-fuzzy extractor.
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2.6 Authenticated Encryption

Before [AE] protocol designers used a generic composition paradigm for which they
concatenate a privacy-only encryption scheme with a|Message Authentication Code|
[5, 33]. However, this naive approach demands multiple procedures which
substantially reduces efficiency of the protocols. [AE] improves efficiency by provid-
ing confidentiality, integrity and authenticity into a single, compact mode [56].
However, there was still a need to efficiently authenticate a message header be-
longing to the plaintext or cipher-text. [Authenticated Encryption with Associated)|
E| provides for this by additional authentication of data other than
the plaintext. We define an [AEAD}scheme as follows [56, p. 4]:

Definition 2.20 (AEAD-scheme). An authenticated-encryption scheme with asso-
ciated data scheme) is a three-tuple

= (K,ED).

Associated to 11 are sets of strings N C {0,1}* indicating the nonce, M C {0,1}*
indicating the message and AP C {0,1}* indicating the associated data, for example
a header.

o The key space K is a finite nonempty set of strings.

e The encryption algorithm & is a deterministic algorithm that takes strings
Kek, Nec N, M € M and A € AP and returns string (C,T) =
ENMNM) = Ex(N, A, M).

o The decryption algorithm D is a deterministic algorithm that takes strings
K eK, Ne N, Ae AP, C € {0,1}* and T € {0,1}* and returns

’DZ’A(<C’, T)), which is either a string in M or the distinguished symbol IN-
VALID.

We require that D%’A(Sg’A(M)) =M foral K € K, Ne N, M € M and
Ae AP.

3In this thesis, we refer to [AEAD| by referring to
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CHAPTER
THREE

PROTOCOL DESIGN

In this chapter we describe the proposed privacy-preserving authentication pro-
tocol, the |[Concealing KETJE Protocol (CKP)|l In this protocol a trusted server
and a set of deployed devices will authenticate each other where devices require
anonymous authentication such that they are untraceable. As a starting point
we take the PUF}based privacy-preserving authentication protocol as proposed by
[3]. However, we want to correct a few design-flaws in the protocol and
improve its overall performance. First, the protocol proposed by makes
use of a|Fuzzy Extractor (FE)[that can be broken using linear equation analysis as
pointed out by Becker [3, p. 12]. Moreover, the makes use of aF
(PSK)| which increases the overhead of the protocol. We design a new |[FE| that has
enough entropy in its output and that does not use a [PSK| Second, the protocol
uses two cryptographic primitives, namely [Symmetric Key Encryption (SKE)| and
[Pseudo-Random Function (PRF), of which for the [SKE| the SIMON block-cipher
is used, an encryption scheme introduced by the untrustworthy [National Security]
[18, p. 113] (Snowden revelations [25]). We replace these primitives
with a single, compact cryptographic primitive, namely |[Authenticated Encryption|
[with Associated Data (AEAD)|

In Section [3:1] we present the security considerations that play a role in the design
of the proposed protocol, which will be presented and elaborated in Section [3.3]
In Section [3:2] we present the considerations that we need to take due to the avail-
able hardware. Section describes the [3-1 Double Arbiter PUF (DAPUF)| as is
used in our protocol. The extraction of the device credentials together with the
construction of the helper data is described in the [Reverse FE (RFE)] Section [3.5]
Finally, our choice for the lightweight [AEAD}scheme, KETJE, will be described in
Section
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3.1 Security Considerations

In this section we present the security considerations that play a role in the design of
the proposed protocol. We identify the operational and cryptographic properties
that a device to be authenticated should adhere to, we present the trust- and
attacker model and we present the considerations we take providing the available
hardware.

3.1.1 Operational and Cryptographic Properties

For the security considerations of the operational and cryptographic properties we
follow Lee et al.| [38]. These properties describe what considerations need to be
made when designing a privacy-preserving authentication protocol in general and
an untraceable device in particular.

3.1.1.1 Scalability

Many protocols face the pitfall that they are not scalable because of the computa-
tional workload on the server that increases linearly with the number of devices.
Considering that these authentication protocols often work for a large amount of
devices, a thoughtful design is necessary. Our protocol is also subject to this risk,
which means that we elaborate on the design rationale to minimize this risk. More
about this in Section [6.3

3.1.1.2 Anti-cloning

It should not be possible to clone a device. One property that a device needs to
have is that it should have a key that is unique in the sense that it all the bits of the
credential should be unpredictable. This way, if an attacker succeeds to crack one
of the devices, he/she cannot use this secret to clone any of the other devices. We
base our countermeasure mainly on the use of a [Physically Unclonable Function|
At every authentication the device credentials are freshly generated to an
unpredictable value.

3.1.1.3 Security Against the Replay Attack

This property implies that an attacker should not be able to authenticate a device
using a replayed message (i.e. he/she should not be able to successfully carry
out [Man-in-the-Middle (MitM)|attacks). This implies that all communication over
the channel should have enough entropy. We base our countermeasure against
this attack mainly on the use of a [FE| The [FE] provides for a fresh key at every
authentication-try which has enough entropy considering the transmitted messages.
Moreover, the AEAD-scheme provides for confidentiality, integrity and authenticity
of the messages in the communication channel.
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3.1.1.4 Security Against the Tracking Attack

It should not be possible for an attacker to trace a device over multiple authentica-
tions. Moreover, it should not be possible to identify a device by probing the device
with challenges. This property ensures that our protocol is privacy-preserving with
respect to outsiders, which means that a device (and its owner) remain anonymous.
We base our countermeasure against this attack on a[lrue Random Number Gen-|

erator (TRNG)| by using the unpredictable responses both as input (seed)
and as output of the TRNG]

3.1.1.5 Backward/Forward Un-traceability

This property, that is stronger than the un-traceability property, implies that it
should not be possible to track a device in past or future communications, provided
that an attacker has cracked a device. If an attacker manages to recover a key from
a device, he should not be able to identify a particular device in the past or in the
future. This property ensures that a device (an its owner) remain anonymous al-
ways. We base our countermeasure on the authenticate-before-identify strategy we
adopted. Devices do not carry, store or communicate device specific
which is not needed because of the use of a that ensures
authenticity of the device. Moreover, all communication appears random to an
attacker.

3.1.2 Trust Model

In order to roll out devices, we present a trust model. Our trust model is mainly
based on |Aysu et al|[3], the starting point of our proposed protocol. We identified
the following trust bases:

e Devices are enrolled in a secure environment using a one-time interface.

e A trusted server and a number of devices will authenticate each other while
devices need to remain anonymous.

e Our channel is ideal, i.e. no errors will occur due in the [Binary Symmetric|
as described in Section

e After enrollment, the server remains trusted but devices are subjected to an
attacker.

e The attacker may not know the identity of a device such that the device
cannot be tracked.
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3.1.3 Attacker Model

In order to prove the security of the proposed protocol, an attacker model needs to
be constructed. Our attacker model is mainly based on |Aysu et al.|[3], the starting
point of our proposed protocol.

We identified that the attacker may have two goals:

1. The attacker may want to impersonate a device which will result in a violation
of the security.

2. The attacker may want to trace devices in between authentications which will
result in a violation of the privacy.

These two main goals will be the subjects of the proofs as described in Chapter [
We identified the following permissions and constraints for the attacker:
e An attacker can modify all communication between the server and devices.

e An attacker can know the result of the authentication.

e An attacker can access the [Non-Volatile Memory (NVM)| of the devices.

e An attacker cannot modify data stored in the NVM]of the devices.

e An attacker cannot perform implementation attacks on the device and the
server.

e An attacker cannot reverse engineer the PUF such that he can predict PUF
responses.

e An attacker does not have access to intermediate values on the device (i.e.
the registers on the device).

e An attacker cannot physically trace every device in between authentications.

e An attacker cannot use other (non-cryptographic) mechanisms to identify a

device (e.g. the one proposed by [37]).

3.2 Available Hardware

In order to give performance results of the proposed protocol, we implement the
device on a Zedboard by [2]. The basic specifications of the Zedboard
are given in Appendix[A] The main operating chip on the Zedboard is the Zyng®)-
7000 All Programmable [System on Chip (SoC)| by [Xilinx Inc. [64]. This [SoC] is
composed of a|Processing System (PS)| with two [Advanced RISC Machine (ARM)|
cores and 28 nm [Programmable Logic (PL)| that is equivalent to the Xilinx 7-series
[Field Programmable Gate Arrays (FPGAs)|

The Zedboard does not have|Static RAM (SRAM)|that can be power-cycled, which

means that we are restricted in the use of We propose to use an

existing and recently proposed [PUF| by [Machida et al|[39], which has promising
results for the design rationale of our proposed protocol.
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3.3 Protocol

The proposed authentication protocol is illustrated in Figure[3.2] its setup phase is
illustrated in Figure The protocol is based on a [PUF|that produces noisy, but
recoverable, responses on equal challenges due to the unique physical characteristics
of the|Integrated Circuit (IC)|[42]. Because of this behavior, the is identifiable
from other A [FE] can extract a key from this noisy data produced by the
PUF|using helper data generated from a previous key-extraction [I9]. However, the
recovery procedure is of a higher complexity than the generation of the helper data
that is used for this reconstruction. A reverse [FE|reverses this behavior by placing
the helper data generation in the device and the more complex reconstruction in
the server [29]. In order to preserve privacy, the device credential is updated at
each successful authentication, which results in fresh PUF responses, and thus fresh
keys.

The setup procedure is used to synchronize the [PUF| response of the the device
with the server. The responses in the server database will be used to exhaustively
search for a matching device. The setup procedure is illustrated in Figure 3.1 and
works as follows. In a trusted environment, the server produces a random challenge
X1. The device uses this challenge to produce a response Y which is being
sent to the server. The challenge is being stored in the device non-volatile memory.
The server stores the response in a database on index n, indicating the number of
the device. Notice that the response is stored at Y and Y°¢ in order to prevent
desynchronization.

Server S({(Y,Y°4)},) Device Dev;(puf,(-),X)
X!+ TRNG

Xl

SRR Y! « puf,(X1)
X =X!

Yl
KYOld>n — <Y1,Y1> R S
n:=n+1

Figure 3.1: Setup phase.

The authentication phase as illustrated in Figure works as follows. First, the
server generates an unpredictable challenge A and sends this to the device. The
device uses the challenge X stored in its non-volatile memory to produce a [PUF]
response Y'Y, From this response, helper data H and an unpredictable key R
is generated using the [FEJs generation procedure FE.Gen. Consecutively, a new
challenge X? is randomly generated by the device such that it can be updated on
a successful authentication. This challenge is fed to the device’s [PUF]in order to
receive a new response Y 2. Following, a nonce N is randomly generated such
that the PUF response can be encrypted using the [AEAD}scheme. The resulting
cipher-text C!, its tag 7' and the nonce N will be sent to the server. The server
performs an exhaustive search over the database, recovering a key for each index.
These keys are used to try to decrypt the cipher-text C'! using the tag 7', challenge
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Server S({(Y,Y°%1,) Device Dev;(puf,(-),X)
A<+ TRNG

e Y « puf;(X)
(R,H) + FE.Gen(Y'")
X2 + TRNG
Y? < puf,(X?)
N « TRNG
(€L, 1Y « g1 (v?)

1 1
T? «— TRNG M

for0<i<n:
R =FE.Rec(Y,H)
if Y2 DNICAer, )
(-T2 €54
<}/7 YOld>Z' = <Y2, Y>
“if no device was authenticated” :
“repeat search with old values”
T2

——— (LT e
if 72 ==1T72:
X :=X?

Figure 3.2: Authentication phase. |Al,|H|,|N|,|CY|,|T|,|T?| > k and PUF re-
sponses Y should contain enough entropy w.r.t. H s.t. |R| > k.

A and nonce N. If there is a successful authentication, the server produces another
tag T? using &, but with nonce N? || 1 instead of N2 || 0 in order to create another
instance of £. This tag is sent to the device. Moreover, the server updates the
old [PUF}response Y with the new response Y 2. If there were no successful
authentications, the server repeats the procedure over the previous [PUF| responses
in the database. If after this there were still no successful authentications, the
server responds with a random value for T2. Finally, the device checks the tag T2
with its own produced tag in order to reveal whether the authentication succeeded.
If the authentication succeeded, the device updates the old challenge X with the
new challenge X?2.

The remainder of this chapter is dedicated to present a generic approach to create
any instance of [CKP} This generic approach requires the quality of [PUF| responses
@, p), the desired maximum for the failure rate of the authentications pg,; and
the desired security level k in order to design the instance. We use the presented

examples to construct an instance that forms the basis of our proof of concept in
Chapter
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3.4 3-1 Double Arbiter PUF

The type of PUF]used in the protocol motivates most of the other design parameters
for the rest of the protocol. For example, depending on the bit-error-probability
of a[PUF] response-bit, the inter- and intra-distances of the PUF|responses, the
entropy of the [PUF| responses p and the desired maximum for the failure rate of
the authentications pi, both the number of [PUF] responses as well as the type
and size of error-correcting codes is motivated.

We implement the [DAPUF]| as proposed by Machida et al. [39] because its char-

acteristics are promising for the parameters of our protocol. We use 1275 [PUF]
responses on 64-bit challenges, of which 40 bits are used for the challenge, 12 bits
are used to obtain the 1275 unique [PUF]responses and 12 bits are used to produce
random numbers, including a seed for the[TRNG] that is updated at the beginning
of every authentication. More about this design rationale in Section [3.5.1

This section first presents the design of the[DAPUF]before elaborating on the main
characteristics of the [PUE as were described in Section

3.4.1 DAPUF Design

In Section[2.3.5.2) we have discussed the arbiter [PUF]which was illustrated in Figure
Recent studies have shown that [Machine Learning (ML)| attacks can predict
future responses [58] [57], violating the unpredictability characteristic of a

[PUF] as is described in Definition [2.13] Hence, proposed to alter the
design of arbiter in order to prevent [MI] attacks having effect.

In Figure 2.1] from Section we call the collection of switch blocks a selector
chain. Figure illustrates the [DAPUF] as proposed by The
[DAPUE] acts on 64-bit challenges, which means that a selector chain contains 64
switch blocks. The [DAPUEF]is composed of three of these selector chains all acting
on the same challenge Using an ‘enable’ signal E (E, and Fg), the competition
is started between the left signals Ej and the right signals Er. For each of the
combination of left- or right signals an arbiter is used to measure which signal
arrived first at the arbiter. After measuring these race conditions, the results are

exclusive-OR (XOR)fed to collect the 1-bit response By challenging the
[DAPUF] with 1275 different challenges, we obtain a 1275-bit [PUF] response.

We call the [PUF] class of the proposed [DAPUF]|[P;_]
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E 1

Egy\1

<

X X X
®+) Selector Chain1  |><» Selector Chain 2 Selector Chain 3
64 64 64
YiL Y1iR Yo Yo R YaL YaRr
Arbiter /bb{ter Arbiter
N/ ha
Arbiter Arbiter Arbiter
) 4
> < N
<

Figure 3.3: [DAPUF|as proposed by Machida et al.|[39]. €D denotes a bitwise
(™) denotes the input of the DAPUF|and @) denotes the output of the [DAPUF

3.4.2 Intra-distance and Reproducibility

As described in Section the intra-distance provides reproducibility of any
unique @Hinstance pufh<;<,, g P5.1] (where n is the total number of
in the [DAPUL class [P3)), which means that if two measurements are performed
on the same [DAPUF] then these responses are with high probability very close to
each other.

The reproducibility results (its inverse is called ‘steadiness’) are given in Table
[40]. In the table, steadiness is calculated by challenging the instance
number of m times with a set of n equal challenges[X] Of the m n-bit responses, the
Hamming distances between two arbitrary responses «~ Yy
is calculated (thus a total of (7;) combinations) and averaged. These distances
are equivalent to the intra-distance as is described in Definition Finally, the
calculated average is divided by the bit-length n of the responses. This way, we
immediately find the bit-error-probability [pJ] of [DAPUF] class [P3.;} This is the
average probability that a response bit is different between challenges. Ideally, the
average steadiness is 0%. From the table we see that the average steadiness is
approximately 12%, which means that the bit-error-probability @ is 0.12. These
results have been achieved by taking m = 128 and n = 128. The reproducibility is
100% — steadiness = 88%.
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Table 3.1: Results of the overall evaluation of the [3-1 Double Arbiter PUF| [40].

Metric FPGA Results
Prediction rate [%] A 56.47
(with 1,000 training B 57.45
data) C 56.75
Steadiness [%)] A 14.11
B 10.93
C 10.35
Uniqueness [%] A with B 50.60
B with C 51.34
C with A 48.78
Randomuess [%)] A 55.68
B 52.54
C 53.59

3.4.3 Inter-distance and Uniqueness

As described in Section [2:3.2] the inter-distance provides uniqueness of any [DAPUF|
instance [pufp<;<p in the @ collection (where n is the total number of
DAPUTS|in the DAPUT]| class [P 1)), which implies that responses of measurements
performed on different are with high probability far apart.

The uniqueness results are given in Table [40]. In the table, uniqueness is
calculated by challenging two instances and (i # j) on two
distinct a number of n times using randomly chosen challenges [X] Of
these two n-bit responses < Y, the the Hamming distances is
calculated. This distance is equivalent to the inter-distance as is described in
Definition [2.9] Finally, the distance metric is divided by the bit-length n of the two
responses. Ideally, the average uniqueness between instances is 50%. From
the table we see that the average uniqueness is approximately 50%, which is close
to ideal. These results have been achieved by taking n = 5,000 measurements.

3.4.4 Unclonability and Unpredictability

As described in Section [2.3.4] unclonability assures that physically and technically,

a[DAPUF] instance [pufj; is difficult (or even impossible) to create from an
other DAPUF] instance

Because of the characteristics explained in Section [2.3.5.2] arbiter and thus
also are hard to clone. There are several un-plausible techniques an
attacker might try [36].

e An attacker can try to clone the[PUF|by remembering all[Challenge-Response|
IPairs (CRPs)l However, this is implausible because this requires applying an

exponential amount of challenges.
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e An attacker can try to reproduce the [PUF] such that the behavior is equal
to the original [PUF] However, this is implausible because of the random
variations that are intrinsically introduced in the manufacturing process.

e An attacker can probe the PUF| physically such that delays can be measured
and a timing model can be constructed to predict future [PUF| responses.
However, probing with sufficient precision is likely to be very difficult, and
will likely cause the delays to be influenced by the probe.

e An attacker could build a non-invasive model, a so called “virtual counterfeit”.
However, until now, no such model has been proposed.

As described in Section [2.3:4] unpredictability ensures that unobserved responses
remain sufficiently random, even after observing responses to other challenges on
the same [DAPUEF] instance. This characteristic applies both to the prediction rate

of the  DAPUF] class [Ps.;| as well as the randomness of the [DAPUF| class [Ps_1]

First, from Table we see that the prediction rate is approximately 57%, which
approximates a random guess (i.e. 50%). This is a considerable improvement for
arbiter PUF] constructions because the prediction rate of conventional arbiter[PUFY|

is 86% [40l p. 8§].

Second, from the table we see that the randomness is approximately 54%. This
randomness is calculated by challenging a [DAPUF] instance a number of n
times with randomly chosen challenges Then, the Hamming weight of
the result is calculated, giving the number of ones in the PUF]response[Y] Finally,
this number is divided by the number of challenges n, giving the probability that
a [PUF| response-bit is [Y} = 1. The randomness of 54% (Pr(Y]} = 1) = 0.54) has
been achieved by taking n = 2'6 measurements. From this result, we can calculate

the entropy of the responses p using the binary entropy function [h(p)| from
Formula Section [2.2.2

p==—Pr(Y} =1)logy(Pr{Y} = 1)) — Pr({Y} = 0)log,(Pr(Y]} = 0))
= —0.541og,(0.54) — 0.46 log, (0.46) (3.4.1)
= 0.9954

The entropy of the [PUF] responses p = 0.9954 is an extremely good result consid-
ering true randomness is p = 1. From this entropy and the bit-error-probability
= 0.12 as calculated in Section [3.4.2] we conclude that the quality of the [PUF]
responses is @ = 0.12, p = 0.9954)1Ps_1} These findings will be used to motivate
the design of the [RFE]

3.5 Reverse Fuzzy Extractor

As mentioned in Section [3.3] we use a reverse [FE] construction with the computa-
tionally lighter generation procedure in the device and the computationally heavier
reproduction procedure on the server. In order to be able to recover the [PUF] re-
sponses, we use a concatenation of error-correcting codes as introduced by
[13], which is a technique to increase the correction rate while minimizing
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3.5. Reverse Fuzzy Extractor

the computational overhead. Our proposed [RFE] uses a concatenation code of a
repetition co = Crgp(5,1,2) and a[Bose-Chaudhuri-Hocquenghem|
[(BCH)| code[Crcn (n, k, t)| = Ccr (255, 139, 15). The 1275-bit IPUF|response is cut
into words of 5 bits, which are encoded using the repetition code. The first bit
of each word (total of 255 bits) is used to extract a key of 128 bits by using the
scheme with an empty message. The other four bits of each word (total of
1020 bits) are used to produce helper data that can recover the value of the first bit
of each word. In order to further decrease the failure rate of the authentications,
for these 255 recovered bits a[BCH] code with error correcting capability of 15 bits
is used.

3.5.1 RFE Design Rationale

In this section, we describe the design rationale of the parameters of the concat-
enation code. Our goal is to construct a 128-bit key from the [DAPUF] responses
with quality = 0.12,p = 0.9954). In this rationale, we assume that all bits of
the [PUF] response are independent.

3.5.1.1 Fail rate

We aim for a fail rate of pry = 107, which is considered an acceptable fail rate
for standard performance levels [42].

The probability that a received codeword of n bits has more than ¢ errors is given
by [26, [13]:

Pr(“>t errors” Z ( >pe (1—pe)™"
Z t |
Z < >p(= 1 - pe) -

1=0

(3.5.1)

where p, is the bit-error-probability.

When using a Crgp (5, 1, 2) repetition code, we can decrease the bit-error-probability
Pe = 0.12 to:

2

5 .
Pegip =1— ) (i>o.121(1 ~0.12)5"

i=0
= 0.01432

Using a Cpcn(255,139,15) code on top of that further decreases the bit-
error-probability p. rep = 0.01432 to a fail rate pg. of:

255
Prail = 1 — E ( ; )0 01432°(1 — 0.01432)2%5~*
=0

=1.176-10"°
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Chapter 3. Protocol Design

As a result, using a concatenation code of a Crgp(5,1,2) repetition code and a
Cpen(255,139,15) :BCH code achieves a fail rate that is acceptable for standard
performance levels [42].

3.5.1.2 Entropy

When implementing a concatenation code, careful considerations of the input en-
tropy is necessary, otherwise the output might yield zero leftover entropy [35].
When using a Crgp(5,1,2) repetition code on 5-bit words of the 1275-bit
response, 4-bits per word are disclosed as helper data. Hence, we have an entropy
loss of:

HRep 10ss = 4 - 255 = 1020 bits

The entropy loss of the Cpcpn (255,139, 15) code is introduced by the random
string that is needed to construct the code. Hence, we have an entropy loss of:

Hpc 1oss =1 — k = 255 — 139 = 116 bits

As a result, the total entropy loss of the 1275-bit [PUF] response by disclosing the
helper data is:

Hioss = HREP 10ss + HBCH 10ss = 1020 + 116 = 1136 bits

This leaves (1275 —1136) - p = 139-0.9958 = 138 bits of entropy left in the 255 bits
of the [BCH] codeword. These 255 bits will be compressed in a 128-bit key using

using the [AEAD}scheme.

3.5.2 Extraction

As mentioned in the previous section, the 255 bits (Rggp) will be compressed into
a 128-bit key. This method is similar to the construction of Maes et al.| [43] and
Kelsey et al] [34]. An advantage is that the [AEAD}scheme can be used for this
construction, minimizing the number of primitives that need to be implemented
on the device. Moreover, not using additional randomness decreases the amount
of data that needs to be communicated between server and device. However, the
amount of entropy in the input needs to be carefully considered.

For this construction we introduce the novel definition of a new type of Extractor,
the [Entropy Accumulator (EA)f

Definition 3.1 (Entropy Accumulator)). Let Acc(W) : {0,1}" — {0,1} (n < 1)
be a polynomial time probabilistic function. We say that Acc(W) is an efficient
(n,m, 1, €)-entropy accumulator if for all pairs of random variables (W, I) such that
W is an n-bit string satisfying Hoo = (W | I) > m, we have

SD((Acc(W), ), (U}, 1)) < e.
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We prove that we can construct a from k using Definition Entropy Accu-
mulator]), Definition () and Definition 2.19] (Fuzzy Extractor):

Lemma 3.1 (Fuzzy Extractor] from | II). Assume SS(X) is a

(W, m,m/ t)-secure sketch with recovery procedure Rec(W' H), and let Acc(W)
be an (n,m’, k, €)-entropy accumulator. Then the following (Gen,Rep) is a

W, m,l,t,€)-fuzzy extractor:

1. Gen(W): set H=SS(W), R = Acc(W), output (R, H)
2. Rep(W’, H): recover W = Rec(W', H) and output R = Acc(W).

Proof. From Definition (Secure Sketch)
Hoo(W[SS(W)) = m

And since Acc(W) is a (n,m/, k, e)-entropy accumulator (Definition , from
Definition [2.19] (Fuzzy Extractors) we get:

SD(<ACC(W)7 SS(W)>7 <Ul’ SS(W)>) = SD(<R7 H>7 <Ula H>) <e
O

Corollary 3.1 (Fuzzy Extractor] from|II). If Rec is an (W, m,m’, t)-secure sketch
and Acc is a (n, m’'—log,(5), 1, €)-entropy accumulator, then the above construction
from Lemma (Gen,Rep) is a (W, m,l,t, e+ §)-fuzzy extractor.

3.5.3 Secure Sketch

We use a concatenation code of a Crrp (5, 1, 2) repetition code and a Cpcp (255, 139,
15) code for the [Secure Sketch (SS)|[I3]. This section will describe both code

constructions in more detail.

3.5.3.1 Repetition Code

As mentioned in Section [2.4.1.1] there are more advanced techniques of using repe-
tition codes. Simply repeating bits of the [PUF] response will disclose information
in the helper data about this response.

3.5.3.1.1 Encoding Figure illustrates the repetition code encoding con-
struction. In this figure, Y denotes the 5-bit word of the original [PUF] response
and Hrgp denotes the 4-bit helper data that is used by the decoder to retrieve the
first bit of Y, Rgrgp.

Example 3.5.1. See Figure As an example we take Y = [1,0,1,1,0]. The
repetition code encoding construction gives the helper data Hrgp = [1,0,0, 1] and
secret value Rrgp = [1]. <
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Note that, as we have assumed in the calculation of the leftover entropy (Section
3.5.1.2)), the 4-bit helper data Hgrgp does not disclose any information about the
first bit of the 5-bit [PUF] response word Y.

The first bit of the 5-bit word Y, Rgrgp, will be encoded using the [BCH] code.

3.5.3.1.2 Decoding Figure illustrates the repetition code decoding con-
struction. In this figure, Y’ denotes the 5-bit word of the stored response,
Hggp denotes the 4-bit received helper data and S denotes the resulting syndrome
vector. If the Hamming weight HW of the syndrome vector S is larger than t,
chances are that the first bit of Y’ was faulty. Note that this construction will
wrongly correct a bit that was assumed faulty if the number of errors e > ¢t. Hence,
we need the [BCH] code construction on top of the repetition code construction.

vo[ofoftr]r]

RICIEYE!

Y |Y l{" lg
> >D>D

Y ¥V ¥V ¥  HW>2
1({1]1

S 0 I::> RREP

Figure 3.5: Repetition code decoding construction. @ denotes a bitwise

U™

Example 3.5.2. See Figure As an example we take Y = [1,0,1,1,0] from
Example and Y’ = [0,0,1,1,1]. The repetition code decoding construction
gives the syndrome vector S = [1,1,1,0]. The Hamming weight HW of the syn-
drome vector S is HW = 3 > ¢, thus, highly likely the secret value Rrgp equals
Rgrep = [1] <
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3.5.3.2 BCH Code

In order to further decrease the fail rate pei, a [BCH| code with error correcting
capability ¢ = 15 is applied over the binary string that contains the first bit of the
5-bit [PUF]response words. Then using Formulas [2.4.2] to [2.4.4) we take a[BCH]code
with order m = 8, block-length n = 2™ — 1 = 255, error correcting
capability ¢ = 15, message length k£ = 139, n—k = 116 parity-check bits and design
distance d = 2t + 1 = 31.

3.5.3.2.1 Encoding As mentioned in Section [2.4.2.1] for [BCH| encoding we
have to construct the generator polynomial g(z). This generator polynomial forms
the basis of the [Linear Feedback Shift Register (LF'SR)|design in the hardware of
the device, more about this in Section [5.2.2]

Let a be a primitive element of GF(2%) generated by the primitive polynomial
p(z) = 2* + 2% + 22 + 1. The finite field table is partially given in Appendix
Then, using Formula we find the generator polynomial g(z):

114 111 108 107 106 105

g(z) = g6 4 114 110 L o108 4 2107 | 106 4 2105 4 103 4 2102 4 o101
499 4 98 4 97 4 95 4 93 4 90 4 89, 88, 87 | 84 82
4T 42T 4™ 2™ 2™ 2T 20T 265 g6 268 4 50
48 5T 56 4 B4 B3 4 49 4 A8 L AT | 45 | A4 42
4ot 40 | 439 L 038 L 31 4 030 4 025 4 23 ) 22 ) 020 | 19

+l’18+1‘17+£€9+f£8+$4+1}3+1

Figure [3.6] illustrates the BCH] code encoding construction that we use. Note that
we use a random message polynomial m(x) of degree 139 to construct the remainder
polynomial r(z) (and thus the code polynomial w(z)) using the previously calcu-
lated generator polynomial g(z). This codeword W (the code polynomial w(x))
is then [KORJed with the binary string that contains the first bit of the all the
5-bit M response words Rrgp. The resulting string is the helper data Hpcp.
Using this construction, we can encode a 255-bit string instead of a 139-bit string
as described in Section 2.4.2]

Cgch(255,139,15)

h 4 HecH
w
[TRNG | —>{BCH.Encl~—>(D) ;@

139 255 255

Figure 3.6: code encoding construction. €D denotes a bitwise ()

denotes the input string and denotes the output string.
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3.5.3.2.2 Decoding Decoding is executed on the server. Figure illustrates
the [BCH] code decoding construction that we use. First the helper data Hgcp that
is received from the device is [XORJed with the string that contains the recovered
first bit of the all the 5-bit response words Ripp, this results in the received
codeword W’. Note that this string might still contain faulty bits. Then, this
received codeword W' is decoded into the recovered codeword W, which is[XORkd
with Hpcp to produce the recovered response bits R{;’\EP.

®

R'rep

CgcH(255,139,15)

w HecH
BCH.Dec |« J: @
255 255
W va
255

R"Rep)

255
Y

OUT,

Figure 3.7: |BCH| code decoding construction. @ denotes a bitwise @ @
denotes the input strings and denotes the output string.

3.6 KETJE

In our implementation of the protocol we use the AEAD}scheme KETJE, one of the
56 candidates in the [Competition for Authenticated Encryption: Security, Applic|
[ability and Robustness (CAESAR)| [7] which was announced in 2013 at the Early
Symmetric Crypto workshop in Mondorf-les-Bains, Luxembourg. Similarly to the
Advanced Encryption Standard (AES)|[16], the [European Network of Excellence in
Cryptology (ECRYPT)| Stream Cipher Project (eSTREAM, [4]), SHA-3 (Keccak
[8]) and the [Password Hashing Competition (PHC)| (Argon2 [12]), seeks

to select a portfolio of algorithms that enhances [AEAD] applicability.

We use the [AEAD}scheme KETJE for the [EA]in the [RFE] the encryption and de-
cryption of the second response Y2 and the computation of the authenticator
T2.

KETJE is an [AEAD}scheme that is aimed at constrained devices such as [Radio]
[Frequency Identification (RFID)| tags and nodes in the [Internet of Things (IoT)|
[I1]. The scheme is composed of KETJE JR and KETJE SR, of which KETJE JR is
an even more lightweight variant with a security level of 96 bits. However, for the
security level of our protocol (128 bits), we use KETJE SR. As a result, we describe
all metrics of KETJE SR. Also, when we mention KETJE we refer to the specific
instance of KETJE SR.

As with all [AEAD]| schemes, KETJE relies on nonce uniqueness in order for the
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crypto-system to be semantically secureﬂ For KETJE this is very important, as
it can be broken when messages are encrypted with the same nonce. For the
permutations, KETJE uses KECCAK-p, a permutation that relies on a round reduced
version KECCAK-f [§]. The construction that calls these permutations is called
MONKEYDUPLEX which is based on the duplex construction that is described by
Bertoni et al.|[9]. The mode that calls the MONKEYDUPLEX construction is called
MONKEYWRAP, which is similar and functionally equivalent to SPONGEWRAP,
also described by Bertoni et al.| [9].

3.6.1 KECCAK-p

The KECCAK cryptographic primitive is a subset of the SHA-3 cryptographic hash
function that has been standardized by the [National Institute of Standards and|
[Technology (NIST)|[49]. Hence, KECCAK-p(b, n,-) relies on a round reduced version
of KECCAK-f(b) which is defined by its width b = 252!, with b € {25, 50, 100, 200,
400,800, 1600}, and its number of rounds n, [8]. More specifically, KECCAK-
p(b,n,) consists of the last n, rounds of KEccak-f(b), when n, = 12+ 2.1,
KEcCAK-p(b,n,) = KECCAK-f(D).

During the permutations of KECCAK-p(b, n,.), there are five operations that act on
a state T (z,y, z) that is illustrated in Figure The size of this state is 7 (5,5, w),
with w = 2. For 0 < a,b < 5 and 0 < ¢ < w, we call T(z,b, 2) a plane, T (z,y,c)
a slice, T (a,y,z) a sheet, T(z,b,¢) a row, T (a,y,c) a column, T (a,b,z) a lane
and T (a,b,c) a bit. For KETJE, KECCAK-p(b, n,) with b = 400 and [ = 4 is used.
n,. varies per operation in the MONKEYDUPLEX construction, more about this in

Section [3.6.2

y z
4 hd state
&>

x

Figure 3.8: State T (z,y, z) of KECCAK-p.

The permutations of one round R(7) on the state T (z,y, z) are described by five
operations:

R(T) = u(T) o x(T) on(T) o p(T) 0 0(T) (3.6.1)

The operations in the x and y coordinates are in modulo 5, whereas operations in
the z coordinate is in modulo w.

1Here a system “[...] is semantically secure if whatever an eavesdropper can compute about
the cleartext given the cipher-text, he can also compute without the cipher-text.” [23].
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3.6.1.1 6H-operation
Figure illustrates the -operation. The f-operation is linear and aimed at
diffusion of the state. 6 is given by the following formula:

4 4

0T (x,y,2) =T(x,y.2)+ > T—1Ly,2)+ Y T+ly,z-1) (362)

y z L, . ; 7
+ /( s . . i ?
>
x

Figure 3.9: f-operation.

3.6.1.2 p-operation

Figure illustrates the p-operation. The p-operation consists of translations
within the lanes aimed at providing inter-slice dispersion. p is given by the following
formula:

MT@wwD=T(%%z—u+2f+m>, (3.6.3)

1
0

t
with ¢ satisfying 0 < ¢ < 24 and B ;)] {

} = [ﬂ in GF(5)?*?, or t = —1 if

AEANE ANC RN ANE AN

" EEEEY
NN NN

Figure 3.10: p-operation.
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3.6.1.3 m-operation

Figure illustrates the m-operation. The m-operation is based on a transposition
of the lanes that provides dispersion aimed at long-term diffusion. 7 is given by
the following formula:

Vz:n(T(x,y,2) =Ty, 2), (3.6.4)
. T 0 1] [#]
with M N {2 3} {y
[ ® X
[ ’ Ly
D) NON GQODD
* Py «
ol @ X
ke A °
e I o« [\
. 0 2
L Rl
e | ¥ ° v

Figure 3.11: m-operation.

3.6.1.4 y-operation

Figure illustrates the x-operation. The y-operation is the only nonlinear
mapping of KECCAK-p. x is given by the following formula:

Vy,z:x(T(x,y,2) =T (x,y,2) + (T (x,y,2) + 1) - T(x +2,y, 2) (3.6.5)

T

Figure 3.12: y-operation.
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3.6.1.5 (-operation

The t-operation consists of applying round-constants in order to disrupt symmetry.
¢ is given by the following formula:

T (z,y,2)) = T(x,y,2) + RC; (3.6.6)

Here, RC; is given by the following formula, indicating the round-constant for
round @: ‘
RC;(0,0,27 = 1) =rec(j + 7i), VO < j <1,

and all other values of RC;(z,y, z) are zero. The values rc(t) € GF(2) are given

by the [LFSR}

rc(t) = (z¢ mod 2® + 2% + 2% +2* +1) mod

3.6.2 MONKEYDUPLEX

In this section, we give a brief description of the MONKEYDUPLEX construction.
For a full description we encourage the reader to consult Bertoni et al.| [I1 [10].

The MONKEYDUPLEX construction was introduced by [Bertoni et al.| [10] and then
improved by the same authors [I1]. The construction is aimed at building stream
ciphers and authenticated encryption schemes. MONKEYWRAP, which describes
the AEAD}mode of KETJE builds on top of MONKEYDUPLEX, more about this in
Section [B.6.3

Figure[3.13]illustrates the MONKEYDUPLEX construction. In this figure, we see that
the MONKEYDUPLEX construction is composed of three operations: start, step
and stride. These three operations use a permutation function f (e.g. KECCAK-
p(b,n,)) with different number of rounds n,..

a; Z i a i A j
—t ——
ad X i
m m
flo. f
> VU » U >
Nstart, Nstep Nstride

Figure 3.13: The MONKEYDUPLEX construction.

The MONKEYDUPLEX(f, r, Nstart, Nstep, Mstride) construction works as follows:

start starts the MONKEYDUPLEX construction on an empty state of b bits. The
operation sets the state with the string I padded up to b bits. Here, in the
padding, a single bit 1 is appended to I, followed by the minimum number of
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bits 0 followed by a single bit 1 such that the length of the result is a multiple
of b. Subsequently, the permutation function f(nstart) is applied to the state.

step can process an injection of string o; of up to r — 2 bits, Here, equal to start,
padding is applied before an with the current state. Subsequently, the
permutation function f(nstep) is applied to the state. Finally, the first [ bits
of the state are extracted (where I <), denoted in the figure by | - |.

stride is similar to step, however, stride aims at providing resistance to output
forgery on top of providing resistance against state retrieval. As a result, we
require Nggep < Nstride-

3.6.3 MONKEYWRAP

In this section, we give a brief description of the MONKEYWRAP construction. For

a full description we encourage the reader to consult Bertoni et al.| [11].

As mentioned, the MONKEYWRAP construction acts as KETJE’s[AEAD}mode and
builds on top of the MONKEYDUPLEX construction. Equivalent to the encryption-
scheme & and decryption-scheme D of the AEAD}scheme II as described in Defin-
ition Section MONKEYWRAP is composed of a construction to wrap (€)
and a construction to unwrap (D). The wrapping construction takes as input a
message M and associated data A respectively and outputs a cryptogram C and
a tag T respectively. The unwrapping construction reverses this by taking the as-
sociated data A, a cryptogram C and a tag T as input and returning the message
M if the tag T is correct.

Figure illustrates the wrapping of a message and associated data using the
MONKEYWRAP construction. In this figure, the MONKEYWRAP key should be a
[Secret Unique Value (SUV)| which means that it is composed of the key K and a
unique nonce N. An advantage of the construction is that we can produce a tag T'
without cryptogram C' by inputting an empty message M. This is useful for the
of the and the computation of the authenticator 7 in our protocol.

+00 +00 [+01 !+1] !+1O

€
—
o

p |

siep|

st
smdel

-
| o R

Figure 3.14: The wrapping of a message and authenticated data using the MON-
KEYWRAP construction.

The start, step and stride operations in the figure are the operations in the
MONKEYDUPLEX construction as described in Section [3.6.2} For KETJE the per-
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mutation function is f = KECCAK-p(400), the input blocks are of size r = 32, the
number of rounds in start is ngtart = 12, the number of rounds in step is ngtep = 1
and the number of rounds in stride is ngtrige = 6.
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CHAPTER
FOUR

SECURITY

ANALYSIS

In this chapter we describe the security analysis of the proposed privacy-preserving

authentication protocol, the [Concealing KETJE Protocol (CKP)

We follow the

security analyses of the protocols described by |Aysu et al.| [3] and

Moriyama et al.

[48] because of the fact that our protocol is based thereon. By doing this, we

also base our security analysis on the indistinguishability-based

security model

of [Juels and Weis| [32]. Moreover, we consider an active attacker who is able to

desynchronize the shared secret between the device and the server

[50]. Hence, we

assume that the server and the device are able to execute an honest session before

and after the challenge phase in the privacy definition.

In Section we describe the security model. Section describes the formal

security definitions. Finally, in Section we prove the security
of the proposed protocol.

and the privacy
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4.1 Security Model

In this section we describe the security model, the formal description of the security
policy that describes the proposed protocol. We describe the communication model,
the theoretical security and the theoretical privacy.

4.1.1 Communication Model

With the security considerations described in Section [3.1] in mind, we take one
trusted server S({(Y,Y°!4)},) with n devices Dev;(puf;( - ), X). Here, the set of
n devices is denoted as A := {Devg,Devy,...,Dev,,_1}. We denote the security
parameter as k.

Following |Aysu et al.| [3] and [Moriyama et al.| [48], devices will be enrolled in a trus-
ted environment, this happens in a setup phase using a setup algorithm Setup(1%)
which generates public parameter P and shared-secret Y. Here P denotes all the
public parameters available to the environment (P := X! || N || (H, N2, C', T") ||
T2 in our protocol) and Y denotes the secret |Physically Unclonable Function (PUF )|
response. During the authentication phase, the server S remains trusted, however,
the devices A and the communication channel will be subjected to the actions of an
attacker. At the end of the authentication phase, both the server and the device will
output acceptance (By = 1) or rejection (By = 0) as result of the authentication.

We call the sequence of communication between the server and the device a session,
which is distinguished by a session identifier I. This session identifier I is the
transcript of the authentication phase (I := N! || (H,N2,C*,T') | T? in our
protocol). Whenever the communication messages generated by the server and the
device are honestly transferred until they authenticate each other, we call that a
session has a matching session (i.e. I is untampered with). The correctness of the
proposed authentication protocol is that the server and the device always accept
the session if the session has the matching session.

4.1.2 Security

Following |Aysu et al.|[3] and |[Moriyama et al.| [48], we consider the canonical security
level for authentication protocols, namely the resilience to the [Man-in-the-Middle]
(MitM)| attack. This means that the power of an attacker is modeled by letting
the attacker control all communication of the protocol. As mentioned earlier, if
and only if the communication message is honestly transferred, the authentication
results for both the server S and the device Dev; will be By = 1. Supplementary
to the security requirement of resilience to attacks, we permit the attacker
to access the information stored in the non-volatile memory of the device Dev; in
between sessions (X in our protocol).

Figure illustrates the security evaluation on a theoretical level. In this figure,
Expy°% (k)| denotes the security experiment between the proposed protocol ¥ and

an attacker A with security parameter k& (128-bits in our protocol).
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Expy i (k)

(P,Y) + Setup(1¥)

(Devi,I’) — A(Launch,SendServer,SendDev,Result,Reveal) (P,S, A)
By := Result(Dev;, I')

Output By

Figure 4.1: Security experiment [Expyg % (k)

After the setup phase, and thus after receiving (P, S, A), the attacker A can query
the server S and the device Dev; with the oracle queries
O := (Launch, SendServer, SendDev, Result, Reveal):

e Launch(1¥): Launch the server S to start a new session with security para-
meter k.

e SendServer(M): Send an arbitrary message M to the server S.
e SendDev(Dev,;, M): Send an arbitrary message M to device Dev; € A

e Result(G,I): Output whether the session I of G is accepted or not where
G e {S,A}

e Reveal(Dev;): Output all the information stored in the[Non-Volatile Memory

(NVM)| of Dev;.

The advantage of attacker A against U is defined as:
Advy®G (k):= Pr(Expg°} (k)| — 1| “I of G has no matching session”) (4.1.1)

We define security of an authentication protocol as follows:

Definition 4.1 (Security). An authentication protocol ¥ holds the security against
Mith attacks with memory compromise if for any probabilistic polynomial time
attacker A, |AdvyeS (k)| is negligible in k (for large enough k).

In other words, the security of authentication protocol W is based on the fact that
the advantage of an attacker is insignificant if k is large enough.

4.1.3 Privacy

Following |Aysu et al.| [3] and Moriyama et al.| [48], we define the privacy definition
using indistinguishability between two devices. Here, an attacker selects two devices
and tries to distinguish the communication, and thus the identification, between
the two devices.

We use the privacy experiment between an attacker A := (A1, Ay, A3) as illustrated
in Figure [£.2]

Similar to the security experiment described in Section the attacker can
interact with the devices and the server through the oracle queries
O := (Launch, SendServer, SendDev, Result, Reveal).
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Bl )

(P,Y) + Setup(1¥)

(Dev;;, 19, Devi, IV) + AQ(P, S, A)
b+ {0,1}

A’ := A\ (Devy,Devy)

1y < Execute(S, Devy)

11 < Execute(S, Devy)

(17, 1) A (S, A, I(Devy), vo, 1" b1, 1Y)
Y}, + Execute(S,Dev()
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By AD(S, Ay, 1%, 9, 1)
Output By

Figure 4.2: Privacy experiment Expg\la _b(k) in which it is allowed to communic-
ate with two devices.

After the setup-phase, and similar to the security experiment, the attacker interacts
with the server and two randomly chosen devices through the oracle queries O.
These two devices Devj, Dev] are being sent to the challenger who flips a coin
to choose with which device the attacker will communicate anonymously. This
anonymous communication is accomplished by adding a special identity Z which
honestly transfers the communication messages between A and Devy.

It is trivial that the attacker can trace devices in case the Reveal query is issued
when there are no successful authentications. Hence, we provide re-synchronization
before and after the anonymous access by adding the Execute query. This query
does a normal protocol execution between the server S and the device Dev;. Dur-
ing this execution, the attacker can not modify the communications, however the
transcript ; is delivered to the attacker.

The advantage of the attacker is defined as:

Advy L (k)= |Pr(ExpgT3“°(k) —1)— Pr(Expgiﬁ**l(k) - 1) (4.1.2)

We define privacy of an authentication protocol as follows:

Definition 4.2 (Privacy). An authentication protocol U holds forward and back-

ward privacy if for any probabilistic polynomial time attacker A, Adv{I,NB (k)| is
negligible in k (for large enough k).

In other words, the privacy preservation of authentication protocol ¥ is based on
the fact that the advantage of an attacker is insignificant if k is large enough.
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4.2 Formal Security Definitions

In this section, we describe the formal security definitions of the several protocol
components by following [Aysu et al|[3] and [Moriyama et al.|[48].

4.2.1 Physical Unclonable Function
We define a [PUF] using the definitions described in Section [2.3] and the definition
described by |Aysu et al.| [3, p. 24].

For this definition we use Y <+ puf;(X) € P as a notation for a PUF| puf; € P
which takes challenge X and produces response Y. To distinguish between multiple
devices, we denote theclass P as {puf,(-),pufy(-),...,puf, ()}, where
n is the number of devices. We denote the set of all possible challenges [X] which
can be applied to an instance of [P] as Ay We say that the [PUF] class P is a
(n,l,d, h,e)-secure class P if the following conditions hold:

1. For any instance puf;( - ) <~ P and for any input X < Xp,

Pr(dist(Y + puf,(X),Y' «+ pufi(X)) <d)=1—¢

2. For any two instances puf;( - ),puf;( - ) < P, where i # j and for any
input X < Xp,

Pr(dist(Y « puf,(X),Y’' < puf (X)) >d) =1—¢
3. For any instance puf,( - ) < P and for any two inputs X2, X® «+ Xp,
where a # b,
Pr(dist(Y < puf,(X%),Y’ < puf,(X®)) >d)=1—¢
4. For any instance puf;( - ) < P and for any input X + Xp,

Pr(Hoo (Y < puf,(X®) [ {Y7 < puf;(X®)}o<jcn, 0<b<t, iz, arp) > h) = 1—¢

These conditions provide that the intra-distance D%ma is smaller than d, the inter-
distance D™ (from two metrics) is larger than d and the min-entropy of the
class P is always larger than h.

Definition 4.3 ({n,l,d, h, €)-secure class P). A class P satisfies (n,1,d, h,€)-

secure [PUH class P if all the above conditions hold.

4.2.2 Fuzzy Extractor

We define a [Fuzzy Extractor (FE)| using the definitions described in Section
and the definition described by |Aysu et al.|[3] p. 24].
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A (d, h,e> consists of two algorithms: a key generation algorithm Gen and a
reconstruction algorithm Rec. Gen takes as input variable Z and outputs key R
and helper data H. For correctness, Rec recovers the key R from input variable
Z" and helper data H if the distance dist between Z and Z’ is at most d. The [FE|
provides unpredictable outputs if the min-entropy of input Z is at least h. In that
case, R is statistically e-close to a uniformly random variable in {0, 1}¥, even if the
helper data H is disclosed.

Definition 4.4 ((d, h, €)-secure [FE). A satisfies (d, h, €)-secure if the fol-

lowing conditions hold:
1. Pr(R:=Rec(Z',H) | (R,H) = Gen(Z), dist(Z,Z') < d) =1

2. If Ho(Z) > h, (R,H) = Gen(Z) is statistically e-close to (R, H) where
R' « {0,1}* is chosen uniformly at random.

4.2.3 AEAD-scheme

We take the definition of an [AEAD}scheme IT from Definition [2:20] Section [2:6]

The security of the[AEAD}scheme IT is defined by the following experiment (Chosen]
[Plaintext Attack (CPA)|) between a challenger and an attacker A:

1. First, the challenger randomly selects coin b < {0,1} and secret key K <+
{0,1}*.

2. The challenger then prepares a truly random function RF.

3. The attacker A can adaptively issue an oracle query to the challenger to
obtain a response of a function.

(a) If b = 1 and the attacker A sends message M <« {0,1}*, challenge
N + {0,1}* and associated data A < {0,1}*, the challenger responds

with (C,T) = EX4(M).

(b) On the other hand, if b = 0, the challenger inputs the message M <+
{0,1}*, challenge N < {0,1}* and associated data A <+ {0,1}* to RF
and responds with its result (C',T”).

4. Finally, the attacker outputs a guess b'. If b/ = b, the attacker wins the
experiment.

Similarly, this construction can be applied to test the security of the decryption
algorithm Dg’A«C, T)).

The advantage of the attacker to win the experiment is defined by Advg(k) =
|2-Pr(t/ =b) —1].

Definition 4.5 (e-secure|]AEAD{scheme). An|AEADfscheme is an e-secure

scheme if for any probablistic polynomial time attacker A, Advﬂ(k) <e.
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4.3 Security Proofs

In this section, we give the security proof and privacy proof for the proposed
protocol. We follow the proof by game-transformations as described by [Aysu et al.
[3] and Moriyama et al. [48].

4.3.1 Security

Theorem 4.1 (Security). Let instance puf”® < P be a (n,l,d, h,e1)-secure
be a (d, h, e2)-secure |FE| and the [AEAD}scheme be an es-secure

scheme. Then our protocol W_is secure_against [Mith] attacks with memory com-
promise. Especially, we have|Advyy (k)< 1-n-(e1 + €2 +e€3).

Proof. The aim of the attacker A is to violate the security experiment which means
that either the server or a device accepts a session without it being the matching
session. We call S; the advantage that the attacker wins the game in Game i. We
consider the following game transformations:

Game 0: This is the original game between the challenger and the attacker.

Game 1: The challenger randomly guesses the device Dev* < A. If the attacker
does not impersonate Dev™ to the server, the challenger aborts the game.
Thus, the attacker needs to participate in session I* and cannot tamper with
the communication.

Game 2: Assume that [ is the upper bound of the number of sessions that the
attacker can establish in the game. For 0 < j < [, we evaluate or change the
variables related to the session between the server and Dev™ up to the I-th
session as the following games:

Game 2-j-1: The challenger evaluates the output from the [PUF] instance
puf® implemented in Dev” at the j-th session. If the intra-distance is
larger than d, the inter-distance is smaller than d or the min-entropy of
the output is smaller than h, the challenger aborts the game.

Game 2-j-2: The output from the [FE| H is changed to a random variable.

Game 2-j-3: The output from the encryption algorithm Eguo’A(Y) of the
[AEAD}scheme is derived from a truly random function RF.

Game 2-j-4: The output from the encryption algorithm Sg”l’A( - ) of the
[AEAD}scheme is derived from a truly random function RF.

The strategy of the security proof is to change the communication messages cor-
responding to the target device Dev* to random variables. However, we must take
care of the PUF| construction and challenge-update mechanism in our protocol that
updates the secret [PUF]|response[Y] Hence, we must proceed with the game trans-
formation starting from the first invocation of device Dev*. The communication
messages gradually change from Game 2-j-1 to Game 2-j-4, and when these are
finished, we can move to the next session. This strategy is recursively applied up
to the upper bound of [ of the sessions that the attacker can establish.
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In short, if the implemented [PUF] instance creates enough entropy, the [FE] can
provide variables that are statistically close to random strings. Then, this output
can be applied as a key for the [AEAD}scheme which both authenticate the device
as well as encrypt the next sec response [YP. Finally, the server can be
authenticated using the [AEAD}scheme without encrypting a message.

Lemma 4.1 (Random Guess). So =n - Sy (where n is the number of devices).

Subproof. The violation of security means that there is a session which the server
or device accepts while the communication is modified by the attacker. Since we
assume that the number of devices is at most n, the challenger can correctly guess
the related session with a probability of at least 1/n. o

Lemma 4.2 (PUF|Response). [S1 — Sa.1.1| < €1 and [Sy.(j—1)-4 — S2-j1| < e for
any 1 < j<lif the instance puf” is a (n,l,d, h,€;)-secure .

Subproof. 'We now assume that the instance puf™ satisfies a (n,l,d, h, €1)-
secure in advance. This means that the intra-distance D%;‘“a is smaller than
d, the inter-distance D" is larger than d and the min-entropy of the class P
is always larger than h except the negligible probability €;. Since S1 and Sy (;_1)4
assume these conditions except the negligible probability €; and Ss.1.; and Sa_;4
require these conditions with probability 1, respectively, the gap between them is
bounded by €;. o

Lemma 4.3 (FE| Output). V 0 < j < I, |S2.j.1 — Sa.j2| < €3 if the 5 a
(d, h, ea)-secure |F'H|.

Subproof. From the subproof of Lemma[.2] we can assume that the PUF]instance
puf” provides enough min-entropy h. Then the property of the (d, &, e3)-secure
[FE] guarantees that the output for the [FE|is statistically close to random and no
attacker can distinguish the difference between the two games. o

Lemma 4.4 (Authenticated Encryption)). V0 < j < I, |Sa.j.2 — Sa.j.3] < Adv'i(k)
for a probabilistic polynomial time algorithm B.

Subproof. 'We construct the algorithm B which breaks the security of our AEAD}

scheme II. B can access the real encryption algorithm Eguo’A(Y), the real decryp-

tion algorithm Dg“o’A«Cl, TY)) or the truly random function RF. B sets up all
secret keys and simulates our protocol except the n-th session (the current session).
When the attacker invokes the n-th session B sends the uniformly random distrib-
uted challenge A < {0, 1}* as the output of the server. When the attacker A sends
the challenge A* to a device Dev;, B randomly selects a nonce N and issues this to
the oracle instead of the real computation of é'g“O’A(Y). Upon receiving (C,T), B
continues the computation as the protocol specification and outputs (H, N, C*, T!)
as the device’s response. When the attacker sends (H*, N*, cv, v ), B issues chal-
lenge A and nonce N* to the oracle oracle and obtains either Y or the distinguished

symbol INVALID.

If B accesses the real encryption and decryption algorithms (£, D), this simulation
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is equivalent to Game 2-j-2. Otherwise, the oracle query issued by B is completely
random and this distribution is equivalent to Game 2-j-3. Thus we have |S5.;.0 —
Sy_j3] < Advi(k). o

Lemma 4.5 (Authentication). ¥V 0 < j <, |S2.j.3 — S2.ja] < 2- Advg(k) for a
probabilistic polynomial time algorithm B.

Subproof. Consider an algorithm B which interacts with the encryption algorithm
5}1%/“1,,4( - ) and truly random function RF. B runs the setup procedure and sim-
ulates the protocol up to the n-th session. Similarly to the subproof of Lemma
M4 when the attacker invokes the n-th session B sends the uniformly random dis-
tributed challenge A < {0,1}* as the output of the server. B continues the com-
putation as the protocol specification and outputs (H, N,C!,T!) as the device’s
response. If the attacker A has sent the challenge A* to a device Dev;, B ran-
domly selects nonce N and issues this to the oracle instead of the real computation
5'2/“1"4( -). When the attacker sends (H*, N*,C'", T'"), B issues challenge A and

nonce N* to the oracle and obtains 72.

If B accesses the real encryption algorithm £, this simulation is equivalent to Game
2-7-3. Otherwise, the oracle query issued by B is completely random and this
distribution is equivalent to Game 2-j-4. Thus we have |S5.j.3—52.j.4| < Advg(k)‘

o

When we transform Game 0 to Game 2-/-4, there is no advantage of the attacker
to violate the security. Given the fact that the attacker knows the [PUF] challenge
X from the device’s the attacker cannot produce a valid [PUF|response. This
results in the fact that the attacker cannot produce a key R which matches any of
the keys in the server’s database. This means that the cryptogram produced by an
attacker will never by accepted by the decryption algorithm of the AEAD}scheme
in the server. Additionally, changing the authenticator T2 will only prevent the
device from updating its [PUF] challenge, this is why the server also performs an
exhaustive search over the old (j — 1) [PUF| responses.

Therefore, no attacker can successfully mount the attack in our proposed
protocol. O
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4.3.2 Forward and Backward Privacy

In this section, we give the privacy proof for the proposed protocol.

Theorem 4.2 (Privacy). Let instance puf” < P be a (n,l,d, h,e)-secure
be a (d, h,e2)-secure |[FE| and the scheme be an es-secure

scheme. Then our protocol ¥ holds forward and backward privacy.

Proof. This proof will be similar to the proof of Theorem [{.1] However, we remark
that it is important to assume that our protocol satisfies security first for privacy
to hold. This is because if security does not hold, a malicious attacker might be
able to desynchronize the secret response Y] of device Dev* to a chosen one.
In that case, even if the attacker honestly transfers the communication message
between Z(Dev™) and the server in the challenging phase the authentication result
is always Bg = 0 and the adversary can observe whether device Dev* was selected
as the challenge device.

Based on the same Game transformation that was describes in the proof of The-
orem [4.1} we continuously change the communication messages for the device Dev™,
however, we now call this device Dev]. We do a similar game transformation for a
second target device Dev;. In Game 1, the attacker can guess which device will
be chosen by the challenger in the privacy game with probability of at least 1/n?.
Upon continuing, the game transformation in Game 2 is applied to the sessions
related to device Dev] and device Devj. Then, all the message transcripts of the
Game transformations are changed to random variables and no biased informa-
tion which identifies the challenger’s coin is leaked. Also here, information stored
in the (X in our protocol) of devices Dev] and Dev} will not disclose any
information because these memories are updated from random sources.

Therefore, no attacker can distinguish any two devices with probability higher than
1/n2, hence, the proposed protocol satisfies forward and backward privacy. O
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CHAPTER
FIVE

PROOF OF CONCEPT

Following the protocol design as described in Chapter [3] this chapter gives a proof
of concept of the proposed protocol. To this end, we implement the device on a
Zedboard and the server on a Linux [PCl

In Section[5.]we describe the architecture of the system. Accordingly, in Section[5.2]
we describe the architecture of the device for which we describe the B-T Double At
[biter PUF (DAPUF)| [Bose-Chaudhuri-Hocquenghem (BCH)| encoder and KETJE
in more detail. Finally, in Section [5.3 we describe the server implementation.
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5.1 System Architecture

Figure[5.]illustrates the system architecture of the device and server. The device is
implemented on a Zedboard which contains a Xilinx Zyng-7000 All Programmable
[System on Chip (SoC)| XC7Z020-CLG484-1 (see Appendix for specifications).
The server is implemented on a Linux[PC| We design the system architecture using
Xilinx Vivado and the Xilinx Vivado [Software Development Kit (SDK)|

The Zynq is composed of 28 nm [Programmable Logic (PL)| and a [Processing]
System (PS)l which can both be programmed through the |Universal Serial Bus
(USB)|Joint Test Action Group (JTAG)l Apart from other components, the [PS
contains two [Advanced RISC Machine (ARM)}cores, of which one is used to:

1. control the communication between the device and the server by reading
and writing [Advanced Extensible Interface (AXI)Faddresses from the device
and sending and receiving serial data through the [Universal Asynchronous|
[Receiver/Transmitter (UART)}

2. update the [Physically Unclonable Function (PUF)| challenge on the device
[Non-Volatile Memory (NVM)| by re-writing to a card pugged into the
Zedboard.

The central communication travels through a bus, the [Central Interconnect (CI)|
which is connected with all the components on the Zynq. Communication between
the device and the [ARM]}core is supported with a 32-bit [AXI]

Device Server
1Zynq-7000 All Programmable S0C ~ je---mecmmemmeomnooaaas :—---:PC !
: ' ' 1 | sererside :
: [P PS v ¢ v, protocol ,
vl 1 1| | oot [ '
! 1

BCHE ' : 1 .
' CH Encoder DAPUF i JTAG | UART L :
' : 1 1
! H : 1
| - X ;
1 Ava 1 ' '
1 Device protocol Cl |1
1 P < AX'T 1 : PUF response :
! L database 1
! ¢ A4 [ '
! 1
: - v (<Y, Yoy, :
1 ) 1
1 Ketje . : :
] 1 ' '
1 1 ' '

S 1
Power Source ~ Power \ 4
+ control
Q—o/ SD Card

Figure 5.1: System architecture of the Device and Server.
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5.2 Device

In this section we describe the architecture of the device. We describe the architec-
tures of the [BCH| encoder and KETJE in more detail. The source code of
the device is given in Appendix We design the device in [VHSIC Hardware]
Description Language (VHDL)| using Xilinx [[ntegrated Development Environment,
(IDE)| for [High Level Synthesis (HLS)| and Xilinx [[SE Simulator (iSim )| for testing.

Figure[5.2]illustrates the floor-planning of the device as generated by Xilinx Vivado.
In this figure, in the top left, the full area of the [SoClis illustrated; on the right side
the area is illustrated that contains the device logic. The green area represents the
[PS|which uses the yellow, purple and pink logic to set and reset the[AXI|peripherals.
Furthermore, four [Physical Blocks (Pblocks)| have been defined to constrain the
component (white logic), the [ BCH| encoder (light blue logic), the KETJE
component (orange logic) and the controller (blue logic) to specific areas on the

The three selector chains of the DAPUF are clearly visible (in white).

HHUHH R s
TR ges] poramen—

Figure 5.2: Floor-planning of the device.

63



Chapter 5. Proof of Concept

The controller (blue logic) is composed of seven processes:

Main process : The main process handles all responses for the[DAPUF|and starts
the other processes accordingly. The order of the various subprocesses can
be summarized as follows:

1. Update the seed by challenging the DAPUF]
2. Generate the response vV by challenging the[DAPUF| Subsequently,

the repetition encoder process is started.

3. Generate the random value for[BCH]encoding by challenging the[ DAPUF}
Subsequently, the BCH] encoder process is started.

4. Generate the challenge N by challenging the[DAPUF] Subsequently, the
KETJE mode is set to accumulate the entropy of the response Y.
Finally, the KETJE process is started.

5. Generate the second challenge X2 by challenging the DAPUF

6. Generate the second response Y2 by challenging the DAPUF} Sub-
sequently, the KETJE mode is set to encrypt the second [PUF] response
Y?2. Finally, the KETJE process is started.

7. When the KETJE process is finished the KETJE mode is set to compute
the authenticator T2 and the KETJE process is started.

8. Finally, the process waits to receive the authenticator 72 from the server
and compares this with 72 . If they are equal, the challenge X is updated
with X2.

[DAPUEF] challenger process: This process challenges the DAPUF] by setting an
‘enable’ signal and the challenge at the first clock cycle. At the third clock

cycle, the response is either 0 or 1. This process is repeated every three clock
cycles.

[Linear Feedback Shift Register (LFSR)| process: This process feeds the[PUF]
challenge space. It can operate on two modes, either to feed challenges for
the 1275-bit [PUF] responses, or to feed challenges for the random variables.
For both modes, 12 bits have been reserved in the challenge space. As a
result the full challenge space of 64 bits is decreased to 64 — 12 — 12 = 40-bit
challenges per authentication. More about this, and about the distribution
of the bits, is explained in Section The [CFSR]is either reset with initial
value [0,1,0,1,0,1,0,1,0,1,0, 1], or with the seed as the initial value.

Repetition encoder process: The repetition encoder encodes the [DAPUEF] re-
sponse and sets the results to the output. The 255-bit [DAPUE] response is
fed to the [BCHI encoder.

[BCH] encoder process: The [BCH] encoder encodes the 255-bit using a random
number generated by the DAPUF]and sets the results to the output.

KETJE mode process: This process sets KETJE’s values according to a specified
mode. This mode either signals to accumulate the entropy of the [PUF] re-
sponse Yll, to encrypt the second response Y2, or to compute the
authenticator 72",
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KETJE process: This process feeds all input data to the KETJE component at the
correct clock cycles. Depending on the mode KETJE is running, inputting the
message M is skipped or not. As a result, the cipher-text and tag is received
or only the tag.

5.2.1 DAPUF

As mentioned in Section [3.4] we implement the [DAPUEF] as proposed by [Machida
et al.|[39]. We obtained the source code designed for a Xilinx Virtex-7 from Machida
et al.| and adapted this to work for the Xilinx Zyng. This design heavily relies on
the constraints that set the specific logic and location of the components in Vivado.
These constraints can be set using the following [Tool Command Language (Tcl)|
commands:

set_property BEL <logic-type> [get_cells <address>]
set_property LOC <slice> [get_cells <address>]

Where <logic—type> is replaced with the desirable type of logic, <slice> with
the desirable slice location and <address> with the specific address of the com-
ponent in Vivado’s Netlist. Without these constraints, Vivado will replace the
[Multiplexers (MUXes)| with [Look-Up Tables (LUTs)| because these require less
area and can operate on a higher frequency. The source code of the implemented

[DAPUEF]is given in Appendix[C.2.3] and the constraints in Appendix [C.2.4]

Figure[5.3a] illustrates the floor-planning of the first three switch blocks in the three
selector chains of the [DAPUF] as generated by Xilinx Vivado. In the top of the
figure, the two registers that contain the ‘enable’ signals F;, and Eg are illustrated.
Then, in three columns all[MUXes are constrained to their own logic slice such that
path-lengths are equal for equivalent paths.

Figure [5.3D] illustrates the floor-planning of the last switch blocks and the arbiters

of the DAPUF]as generated by Xilinx Vivado. Also here, all[MUXes| and negative-]
[ANDs (NANDs)| are constrained to their own logic slice such that path-lengths are

equal for equivalent paths.

Because of the fact that race conditions are undesirable in conventional [Field Pro]
[grammable Gate Array (FPGA)| designs, the following command should be
used as a pre-script to Vivado’s bitstream generation:

set_property SEVERITY {Warning} [get_drc_checks LUTLP-1]

Without this command, Vivado will not allow to generate the bitstream that is

needed to program the [PL] through the [USB|JTAG]
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Pl eCic ) ARLIF:: ©
(b) Floorplanning of the finish.

Figure 5.3: Floorplanning of |3—1 Double Arbiter PUF}
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5.2.2 BCH Encoder

The implemented encoder is designed using a paper by Mathew et al| [46].
The source code of the implemented [BCH] encoder is given in Appendix [C.2.5]

Figure [5.4] illustrates the [LESR] that is constructed using the generator polynomial
g(x) as was calculated in Section [3.5.3.2l We omitted the exponents 9 to 107 in
the formula and the figure for clarity:

glx) =M gt p ot 4 2108 4 a8 4t 423 11

Figure 5.4: Block diagram of the encoder. @ denotes an
(XOR) @ denotes the input bit, denotes the output bit. The indices cor-

respond to the bit locations and the exponents of the generator polynomial g(z).

Using this architecture, in 139 clock cycles, the coefficients of the random [BCH]
input polynomial m(x) are fed to the Once this is finished, in 116 clock
cycles, the coefficients of the redundancy polynomial r(z) are obtained. Finally, in
the controller these two can be concatenated to obtain the codeword polynomial
w(z).

5.2.3 KETJE

We obtained the source code of the KETJE hardware implementation from
et al.l The received implementation is designed for the [Competition for Authentic]
ated Encryption: Security, Applicability and Robustness| (CAESAR]) and thus fol-
lows the|George Mason University (GMU )| hardware|[Application Program Interface
(APT)| for authenticated ciphers [31]. Because this [Authenticated Encryption withl
Associated Data (AEAD )tcore is excessively large, we only use the KETJE cipher-
core. This cipher-core can perform encryption with message (C,T) = Eﬁ’A(M ),
encryption without message ( - ,T) = 8%”4( - ) and decryption D[]\{[’A(<C, T)).
Moreover, it supports sessions such that session based encryption and decryption
is possible. We need the KETJE hardware implementation for encryption (for which
we have fixed input sizes) but not for decryption. Although this cipher-core is still
too large for our purposes, we accept the overhead.
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5.3 Server

The server is implemented on a Linux [PC|using the Python programming language
version 2.7.10 [53]. The source code is given in Appendix

Algorithm [T] gives the server-side setup procedure, which is performed in a trusted
environment. We rely on serial communication between the [PC|and the Zedboard

through the [USB|[UART]

Algorithm 1 Server-side setup procedure

1: procedure MAIN

2 X! < TRNG(40) > generate random bit-string of length 40
3 DEVICE + X! > send serial data to device
4: Y! « DEVICE > receive serial data from device
5: YVin] + Y > n: number of devices
6 yold [’I’L] — Yl

7 n:=n-+1

8 return 1

Algorithm [2] gives the server-side authentication procedure. Note that because of
the conditional branches, this implementation does not prevent an attacker from
performing [Side-Channel Analysis (SCA)l However, for simplicity, in Section
we stated that an attacker can not perform any implementation attacks. In order
to prevent an attacker from successfully performing [SCA]attacks, one should design
a leakage resilient implementation using sound cryptographic engineering.

Also note that the authentication procedure both tries to authenticate devices over
the most recent [PUF] responses as well as the older [PUF|responses. This is needed
because in the event of a loss of connection (card tearing) in the last communication
(receiving the authenticator T2 from the server), a desynchronization will take place
between the server and the device.
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Algorithm 2 Server-side authentication procedure

10:
11:
12:

13

14:
15:
16:
: procedure AUTHENTICATETRY(Y, H,C', Tt A, N,T?)
18:
19:
20:
21:
22:
23:
24:

: procedure FE.REC(Y, H)

17

25

26:
27:
28:

29:
30:
: procedure REP.DEC(y, h)
32:
33:
34:
35:
36:
37:

31

1
2
3
4:
5:
6
7
8
9

: procedure MAIN

T? + TRNG(128) > generate random bit-string of length 128
By :=0 > set authentication result to 0
A < START
H,N,C',T' + DEVICE > receive serial data from device
for 0 <i<ndo > n: number of devices
Y « Y]]
By, T? <~ AUTHENTICATETRY (Y, H,C1, T, A, N, T?)
Y « yold [Z]
By, T? <~ AUTHENTICATETRY (Y, H,C', T*, A, N, T?)
DEVICE + T? > send serial data to device
return B
: procedure START
A <+ TRNG(40) > generate random bit-string of length 40
DEVICE <+ A > send serial data to device
return A

R+ FE.REcC(Y, H)
if Y2 < KETJE.DEC(R,C',T',N | 0, A) then

T? + KETJE.ENC(R,[],N || 1, A)

V[i] + Y?

yold M —Y

By :=1 > update the authentication result to 1
return By, T?

=]
for 0 <i < 255 do

R += [REP.DEC(Y[i-5:i 545, Hli-4:i-4+4))]
R + BCH.DEC(R', H)
return R

s := [y[0] xor y[i + 1] xor h[é] for ¢ in range(4)]

if sum(s) > 2 then > Hamming weight of the syndrome vector
e:=1

else
e:=0

return e xor y[0]
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CHAPTER
SIX

RESULTS

This chapter describes the research results of the protocol. We both describe results
from the protocol as supported by the mathematical foundation as well as results
from the protocol supported by the proof of concept.

In Section[6.1] we calculate the quality of the[Physically Unclonable Function (PUF)|
responses and compare these to the specified quality by Machida et al.| [39]. Sec-
tion [6.2] summarizes the hardware performance in terms of timing and utilization.
Following, in Section [6.3] we discuss the software performance. In Section [6.4] we
analyze our protocol using a benchmark for [PUF}based authentication protocols
[I7]. Finally, in Section we compare our protocol with the protocol proposed

by Moriyana et al 15| and [fysu ct al] .

71



Chapter 6. Results

6.1 PUF Response Analysis

Although in Section [3.5.1 we assumed that all the[PUF]|response bits are independ-
ent, we found out this is not the case. This is best illustrated with Figure
In this figure we see two [PUF] selector chains each having two data paths. These
selector chains have been initialized with two different challenges that only differ
at the |Least Significant Bits (LSBs)l We can see that by doing this, the length of
the path fragments that differ in both selector chains is very small. As a result, the
probability that the results of the arbiters are different is small. A possible reason
why this is not reflected in the results by [39] is that they challenge
the [PUF] instances with random challenges (weak unpredictability, see Definition
2.13} Section [2.3.4). Moreover, the [Machine Learning (ML)| algorithm is trained
with only 1,000 training samples, which means that the probability of having two
challenges with low Hamming distance is small.

A A N A

=

—> —>
%
-
(a) Differentiation at [LSBE. (b) Diffused differentiation.

Figure 6.1: Ilustration of dependency in response bits.

This characteristic means that the 12 bits that are used to retrieve the [PUF] re-
spomnses in the protocol need to be diffused throughout the challenge space resulting
in the highest probability of having different data paths. This construction is il-
lustrated in Figure Same holds for the 12 bits that are used to retrieve the
random variables in the protocol. Moreover, we found out that by feeding these
12 bits using a |[Linear Feedback Shift Register (LFSR)|instead of a counter, more
diffusion is created in the switch blocks.

Table [6.1] summarizes the quality of the[PUF]|responses that have been obtained by
challenging three [PUF] instances using the construction that is used in our proof of
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concept. Because of the limited amount of Zedboards available, we implemented
these three on the same [System on Chip (SoC)|at different locations. This
gives us a good approximation of the [PUF|response quality on distinct The
metrics are calculated similarly as did in their paper [39]. However,
our results have been achieved by challenging three [PUF]| instances with 40-bit
challenges multiple times, obtaining multiple 1275-bit responses. More specific-
ally, steadiness is calculated by challenging the [PUF| a number of m = 1275 times
with a set of n = 128 equal challenges. Of the 128 1275-bit responses, the Ham-
ming distances between two arbitrary [PUF] responses is calculated and averaged.
Uniqueness is calculated by challenging two [PUF] instances a number of m = 1275
times with a set of n = 500 randomly chosen challenges. Of each of these (520)
pairs of 1275-bit responses, the the Hamming distances are calculated and aver-
aged. Finally, randomness is calculated by challenging a [PUF] instance a number
of m = 1275 times with a set of n = 500 randomly chosen challenges. Then, the
Hamming weight of these 500 1275-bit results is calculated and averaged.

Table 6.1: Quality of the responses.

Metric DAPUF Results
Steadiness [%)| A 5.51
B 4.03
C 7.38
Uniqueness [%)] A with B 45.54
B with C 46.47
C with A 43.56
Randomness [%)] A 65.56
B 62.92
C 70.74

From this table, and Table [3.I] we can see that in the -1 _Double Arbiter PUF]
[DAPUF)|in our [SoC| the measure for steadiness is lower (6% versus 12%), which
means that our implementation has a higher reproducibility. Moreover, the ran-
domness of our implementation is higher (66% versus 54%), meaning that the prob-
ability of a response bit being ‘1’ is higher. To illustrate the effect of the measured
quality, we calculate whether enough entropy is left for the [Entropy Accumulator|
(Definition to construct a 128-bit key. Moreover, a recalculation of the
fail rate pg.;1 will indicate the performance of the authentications.

We recalculate the entropy of the [PUF] responses p using the binary entropy func-

tion from Formula [2.2.1] Section [2.2.2}

p=—Pr(Y} =1)log,(Pr{Y] = 1)) — Pr{Y]} = 0)log,(Pr (Y] = 0))
—0.661og,(0.66) — 0.341og, (0.34) (6.1.1)
= 0.9248
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Recall from Section [3.5.1.2] that 139 - p bits of entropy is left in the 255 bits of
the [Bose-Chaudhuri-Hocquenghem (BCH)|codeword due to entropy losses through
the communicated helper data. Thus, 139 - 0.9248 = 128 bits of entropy is left to
accumulate the 255 bits BCH]codeword, which is just enough to construct a 128-bit
key. As a result, no information about the key will be leaked through the helper
data.

Next, we recalculate the fail rate pgi using Formula [3.5.1] Section When
using the implemented Crgp(5,1,2) repetition code, we decrease the bit-error-
probability p, = 0.06 to:

2

5 . .
Perep=1-_ (i>0.061(1 —~0.06)>~"

i=0
= 0.001970

Using the implemented Cpcpn(255,139,15) code on top of that further de-
creases the bit-error-probability p. rep = 0.001970 to a fail rate pg,; of:

/255
Prait = 1 — z; ( ; )0.0019701(1 —0.001970)%%°7*
7=
=8.438-1071

This is a considerable improvement because we aimed for a fail rate of peay = 1076.

6.2 Hardware Performance

This section elaborates on the hardware performance of the proof of concept. The
results have been generated by Vivado without the use of [Block RAM (BRAM)|or
[Digital Signal Processors (DSPs)|and without optimization of the DAPUF]|design.
Synthesis settings are set at Default and optimization options are set at Area.
Furthermore, we allow race conditions to occur due to the nature of the DAPUF]

6.2.1 Timing

By using this specific DAPUF] timing results are suboptimal. Because of the long
paths the signals have to travel through the [DAPUF] the path delay is high. In
the worst case scenario, the data path delay is 76.509 ns which means that the
maximum frequency of the[SoC|is 12 MHz. Considering that some
[Encryption (SKE)|hardware implementations can run in the magnitude of GHz’s,
the achieved result is suboptimal. However, the authentication phase of the device
takes 8205 clock cycles, which on the frequency of 12 MHz takes 0.63 ms. As
a result, our proof of concept might not be applicable to devices in the [Internet]
of Things (IoT)| but only to conventional use in [Radio-Frequency Identification
(RFID)| systems.
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6.2.2 Utilization

Table summarizes the number of [Look-Up Tables (LUTs)| per component that
have been generated by Vivado without optimization in the implementation such
that the[DAPUEF]s design is kept. In total, our proof of concept utilizes 8,305
Similar to the timing results, these utilization results are suboptimal. In this case
the registers take a lot of area because of the long variables in the protocol. We
explicitly did not replace these registers with [BRAM] and [DSPs| because we want
to mimic a passive [RFID| device which normally does not have these kinds of
components.

Table 6.2: Number of per component.

Component LUTs
Controller 5,464
KETIJE 2,630
DAPUF 195
BCH]| encoder 16
Total 8,305

6.3 Software Performance

The computation time of the server-side protocol increases linearly in the number
of devices in the database. In our implementation the execution time of the server-
side protocol is 0.05 - n seconds. This means that our implementation might not
be applicable to devices in the [[oT] but only to conventional use in [RFID]|systems.

In a real world scenario, the server would be implemented in hardware which could
substantially decrease the execution time. We can not say anything about the
performance of a hardware implementation, but it is promising for [[oT|applications.
However, in [RFID] applications this protocol is more suitable because the number
of devices is lower and the maximum execution time is often larger.
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6.4 Benchmark Analysis

We analyze our protocol using the recently proposed benchmark for [PUF}based
authentication protocols [I7]. The benchmark results can be summarized as follows:

Resources: Our device uses a [PUF}, [True Random Number Generator (LRNG)|
|[Fuzzy Extractor (FE)Gen procedure, cryptographic primitive (AEAD}scheme)
and a one-time interface.

[PUF] type: Our [PUF|is a so-called Strong [PUF| indicating that the number of
Challenge-Response Pairs (CRPs)|is at most 2!, where [ is the number of bits
in the challenge.

#CRPst The amount of for n authentications is n + 1 because we use a
one-time interface for the setup.

Claims: The protocol supports server authenticity, device authenticity, device pri-
vacy, and memory disclosure.

# Authentications: The protocol can support d-authentications for a perfect pri-
vacy use-case and oo-authentications without token anonymity.

Robustness: Our[PUF]is noise-robust because of the error correction and modeling-
robust because of the [EAL

Authenticity: Mutual authentication provides for both server and device authen-
ticity.

[Denial-of-Service (DoS)| prevention: There is no internal synchronization which
means that our implementation is not susceptible to [DoS attacks.

Scalability: The execution time of the server per authentication is linear in the
amount of devices.

6.5 Protocol Comparison

Table . summarizes the comparison between the proposed protocol @
KETJE Protocol (CKP))) and the protocols by [48] and @
[3]. The characteristic that all these protocols have in common is that they are
all provably secure [PUF}based privacy-preserving protocols. However, the paper
by Moriyama et al.| only provides a theoretical basis for their proposed protocol,
instead of also giving a proof of concept. As a result, no sensible answer can be
given to the question whether their protocol is practical or not. On the other
hand, the protocol by uses the paper by Moriyama et al|as a basis.
As mentioned, this protocol is vulnerable to linear equation analysis of the [FE]
output [3, p. 12]. Their performance results would highly likely be worsened
because their [FE| needs to be redesigned. To this end, most likely they need more
[PUF] response bits to meet the failure rate requirements. As a consequence, their
hardware implementation needs more and might run slower. Moreover, their

implementation stores a key in[Non-Volatile Memory (NVM)|that does not increase
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the unpredictability of the communication messages. This overhead is eliminated

in our protocol.

Table 6.3: Comparison with previous work.

Reference | Moriyama [48] Aysu [3] CKP,
Proofs for security and v v v
privacy
Implemented parties X device, server device, server
Security flaws X \/! X
Reconfiguration X modify [SW] follow generic
method update approach,
microcode modify [HW] and
SW]
Demonstrator X
Security-level k 64-bit /128-bit 128-bit
[PUF]| challenge PUF| challenge PUF| challenge
& key & key
Device procedure Rec Gen Gen
PUF| type X Weak Strong [PUF
PUF| instance X DAPUF
Hardware platform X XCHVLX30 XCT77020
Communication inter- X bus, bus,
face
Execution time (clock X 18,597 8,205
cycles)
Logic cost (w/o [PUF]) X 1,221 |[LUTS 6,579 [LUTs

IDue to a vulnerability in their implemented

7
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7.1 Conclusions

In this research we have proposed a novel [PUF}based privacy-preserving authen-
tication protocol. We base the authenticity of a device on the [Challenge-Response|
of the [Physically Unclonable Function (PUF)| Because the responses
on equal challenges are not equal, error-correcting codes have to be applied to
recover previous [PUF] responses. Moreover, because the [PUF| responses are not
uniformly distributed, an |[Entropy Accumulator (EA)|is proposed to ‘compress’ the
response into a key. Additionally, confidentiality, authenticity and integrity is sup-
ported by an [AEAD}scheme. Privacy is preserved by using a challenge updating
mechanism in the device’s [Non-Volatile Memory (NVM)l We have evaluated the
protocol both by providing a mathematical proof as well as providing a proof of
concept.

We evaluated the security and privacy of the protocol using a mathematical proof.
We defined a communication model where we assume full control of the attacker
over the communication channel as well as read permissions of the device’s
We defined security with a security experiment in which the attacker can per-
form unlimited oracle queries to a device and server that have been setup already.
The correctness of the protocol is that the server and the device always accept
the session if and only if the session has a matching session. We defined privacy
using a similar construction. However in the privacy experiment, the attacker
communicates with two devices of which one of the devices honestly transfers the
communication messages to the attacker. A re-synchronization step is added in
the experiment to make sure successful authentications can occur. The experiment
can be won if the attacker can distinguish with which device he has been commu-
nicating. We prove security and privacy using a game transformation that shows
that all communication in the channel appears random to the attacker always.

We evaluated the applicability and practicality of the protocol by presenting a proof
of concept. We have seen that there is a dependency in [3-1 Double Arbiter PUF|
response bits when the challenges are close to each other. Also, we have
seen that the quality of the[DAPUF|responses differ on our [System on Chip (SoC)
with regard to the [Field Programmable Gate Array (FPGA)| used by Machida
[40]. However, these differences are small enough for our implementation
to be considered secure and thus privacy-preserving with respect to our security
considerations. Because of the use of the DAPUF] timing is suboptimal. However,
we still achieve an authentication delay of only 0.63 ms which might make our proof
of concept applicable to use for the |Internet of Things (IoT)| and to conventional
use-cases with technology (e.g. in access control and in supply chains).
Also, we have seen that because of the large intermediate registers, utilization is
suboptimal.

Concluding, we have seen that in comparison to other similar authentication pro-
tocols our implementation does not need a key in[NVM]and is simpler in its design.
Although our implementation is slower and consumes more resources, we claim to
have an implementation that is both secure and privacy-preserving with respect to
our security considerations.
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7.2 Discussion

Although the protocol is mathematically secure and privacy-preserving, we did not
achieve a faster and smaller proof of concept in relation to |Aysu et al|[3]. This
is mainly due to the implemented [PUF] which defines the design of the [Fuzzy Ex-
and the variable sizes in the protocol. Moreover, the authentication
time of the server is linear in the number of devices in the database, which makes
the protocol impractical with a substantially large number of devices. As a result,
our proof of concept might not be practical for use in the [[oT] but only for conven-
tional use with |[Radio-Frequency Identification (RFID)|technology. There might be
various options to design an instance that is applicable to the [[oT] We summarize
them as follows.

e We can optimize the KETJE scheme which is now a hardware implementation
extracted from the [George Mason University (GMU )| hardware [Application
Program Interface (API)| for [Competition for Authenticated Encryption: Se-
curity, Applicability and Robustness (CAESAR)| Because we use fixed in-
stances of the KETJE scheme, a lot of optimizations are possible.

e Another option is to optimize the controller of our device, which is now
implemented using various processes. Sound cryptographic engineering can
substantially optimize the area of the [SoC|

e With a Strong [PUF] that has higher quality, following the generic approach,
much smaller protocol variables can be achieved, decreasing the area con-
sumption on the [Integrated Circuit (IC)|

e A different type of[PUF] can substantially increase the operating frequency of
the [[C] which decreases the delay of authentication. One solution can be to
use a non-intrinsic [PUF| that are physically embedded in an [IC] for example

a coating [PUF]

e The server could run in parallel, substantially decreasing the time it takes to
authenticate a device.

These options can make the protocol more applicable for various use-cases. How-
ever, this is not guaranteed because we rely on a Strong [PUF] which is still in
a young research field. If it turns out that practically a Strong [PUF| cannot be
implemented, our [PUF}based protocol is only usable with a bounded amount of
authentications with respect to a Weak [PUF} However, the protocol can be used
without without token anonymity and can also easily be adapted to be used with
biometric sources like fingerprints and iris-scans.

7.3 Future Work

This research mainly focussed on designing a new type of [PUF}based privacy-
preserving authentication protocol, namely with the use of an [AEAD}scheme. Be-
cause our proposal provides a protocol design, a mathematical proof and a proof
of concept, three aspects can be further examined in future research.
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The design of our protocol might be optimized further. Similar to what this research
has achieved with relation to the protocol by |Aysu et al.| [3]. It would be interesting
to see whether we overlooked specific aspects that improve the protocol.

Moreover, our proofs are based on the advantage of a probabilistic polynomial time
attacker. Many scientists consider this asymptotic approach outdated and propose
a concrete or exact approach specifying precise estimates of the computational
complexities of adversarial tasks. It would be interesting to see whether our proof
can easily be adapted to this approach.

Our proof of concept might be optimized further. Mainly, future research has to
be carried out towards Strong [PUF]implementations, because these form the basis
of our protocol. A Strong [PUF| that has better quality of [PUF] responses can
substantially reduce the consumption of the device.

7.4 Closing Remarks

Although we have seen that the[Concealing KETJE Protocol (CKP)|is mathematic-
ally secure, it is questionable whether our proof of concept is secure because of the
implemented DAPUF] As mentioned, we discovered that the DAPUF|response bits
are dependent on the input challenge. This makes the [DAPUF] responses predict-
able when the challenges are adaptively chosen in a|Machine Learning (ML)|attack
(Definition Section . In a personal communication, Maes, who studied
for his PhD [42], even pointed out: “[...] there are not so much arguably
secure implementations of Strong it is even debatable whether they can be
build at all.”.

We close this thesis with a recent quote from Bruce a renowned specialist
in cryptography, security and privacy. This quote matches the conclusions of this
thesis and serves as subject for thought.

[...] math has no agency; it can’t actually secure anything. For
cryptography to work, it needs to be written in software, embed-
ded in a larger software system, managed by an operating system,
run on hardware, connected to a network, and configured and op-
erated by users. Fach of these steps brings with it difficulties and
vulnerabilities.

Bruce Cryptography Is Harder than It Looks, 2016 [59]
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Pseudo-Random Number Generator [used at
Processing System. [used at p. ,
pre-shared key. [used at p. l 2l 131 .\

Phys1cally Unclonable Function. |used at p. .—. . .
(3} B7HET, 62 [64 [68), [7T}H{73) [76) |7_7l BOHE2 05107 )

Quad-SPL [used at p. [103]

Pseudo-Random Function. [used at p l ' . 1

Random-Access Memory. [used at p 1
Reverse FE. [used at p. l l .

Radio-Frequency Identification. used at p.

Ring Oscillator PUF. [used at p. @I

Side-Channel Analysis. [used at p

Secure Digital. [used at p. *

Software Development Kit. [used at p.[62]
Strong Extractor. [used at p. l .—. 26} [101]
Symmetric Key Cryptography. [used at p.
Symmetric Key Encryption. [used at p. |4 ,
System on Chip. [used at p. |32} |62} |63} |73
Static RAM. [used at p.|§L 13] [14] [32] [7
Secure Sketch. [used at p. [24] [26] [27] |41f |101
Secret Unique Value. [used at p. |49
Software. [used at p.

BEnm

Tool Command Language. [used at p.
True Random Number Generator. [used at p.

Universal Asynchronous Receiver/Transmitter. [used at p.

%lvlersal-Serlal Bus. [used at p. l l -

Video Graphics Array. [used at p. [104]
VHSIC Hardware Description Language. [used at p. \

World-Sized Web. [used at p.
World Wide Web. [used at p. |5

Xilinx Analog to Digital Converter. used at p.

exclusive-OR. [used at p. ' . . W\
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AdvyT (k)

Advies (k)

CecH(n, k,t)
Crep(n,1,t)

%ter
%'ﬁra

EXpIND —b (k)

EXpSec (k)

NOMENCLATURE

Privacy advantage of attacker A on authentication protocol W.

[used at p.

Security advantage of attacker .4 on authentication protocol ¥,

i.e. the probability that [Expy° 4 (k)| outputs By = 1 on the
condition that I of G' has no matching session. [used at p.

Binary [Bose-Chaudhuri-Hocquenghem (BCH)| code of order m,
length n = 2™ — 1, distance d and error correctin i capability

t= %1, see Deﬁnltlon“ 2.15| [used at p. l .

Binary repetition code with length n and error correcting capa-

city t = [251], see Deﬁnition [used at p.

Inter—distance for a random challenge in class@ see Defin-

1t10n [used at p.

Intra-distance for a random [PUF instance and a random chal-

lenge in m PUF| class @ see Definition [2.7] E [used at p. |1 .

Indistinguishability privacy experiment of attacker A on authen-
tication protocol ¥ with security parameter k. [used at p.

b7

Security experiment of attacker A on authentication protocol ¥

with security parameter k. [used at p. I@

Binary entropy function of binary random variable Y + {0,1}
with probability p, see Formula [used at p. EI,
Shannon entropy of binary string Y < ), see Definition
[used at p. |§||

Min-entropy, or Rényi entropy of binary string Y <+ ), see
Deﬁmtlonn 2.4 [used at p. El

Hamming distance of binary strings Y,Y’ < ), see Definition

- [used at p'@..

Hamming weight of binary string ¥ < ), see Definition

[used at p. @
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Nomenclature

P31

Pr(x)
puf

SD(A, B)

PUF| class. [used at p. 55|
DAPUF]| class. [used at p.
Bit error probability. [used at p. 26,

il

Probability that « occurs. [used at p. \
instance [used at p. [11H13

Statistical distance between two probability distributions A and

B, see Definition 2.5} [used at p.
challenge. [used at p.
response. [used at p.
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APPENDIX

A

HARDWARE SPECIFICATIONS

A.1 Zedboard

This appendix contains the basic specifications of the Zedboard, illustrated in Fig-
ure [2]. The Zedboard includes a Zynq®-7000 by [64].
e Zyng®-7000 28 nm All Programmable [SoC| XC7Z020-CLG484-1

— Equivalent to Xilinx 7 Series Programmable Logic Artix®-7 [FPGA]
— 85K Programmable Logic Cells (~1.3M Approximate Gates)
~ 53,200

— 106,400 [Flip-Flops (FFs)|

560 KB Extensible Block [Random-Access Memory (RAM)| (140x36 Kb
Blocks)

— 220 Programmable [Digital Signal Processor (DSP)| Slices (18x25
[tiply Accumulators (MACCs))

e Memory
— 512 MB |Double Data Rate Type Three (DDR3)|
— 256 Mb |Quad-SPI (QSPI)|Flash
— 4 GB[SDlcard
Onboard [Universal Serial Bus (USB)KJoint Test Action Group (JTAG)| Pro-

gramming
10/100,/1000 Ethernet

e [USB[On-The-Go (OTG)]2.0 and[USB}{Universal Asynchronous Receiver /Trank-
mitter (UART)|
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Appendix A. Hardware specifications

e |Processing System (PS)| & [Programmable Logic (PL)|[Input/Output (1/0)|
expansion (FPGA Mezzanine Card (FMC)| [Peripheral Module (Pmod)| Com-
patible, [Xilinx Analog to Digital Converter (XADC)])

e Multiple displays (1080p [High-Definition Multimedia Interface (HDMI)| 8-bit
[Video Graphics Array (VGA)| 128 x 32 [Organic LED (OLED))

o [Inter-1C Sound (I2C)| Audio [coder/decoder (CODEC)|

SB
Power JL::'AG Audio I/O
I~ — W W

Pmods

u. zedboar d. org

el OLED

Loi2

Slide Switches Push Switches

* SD card cage and QSPI Flash reside on backside of board

Figure A.1: Functional Overlay of the Zedboard by [2].
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APPENDIX
B

GALOIS FIELD TABLES

B.1 GF(2%) generated by p(z) =2* + 2 +1

Table B.1: Galois Field table GF(2%) as generated by the primitive polynomial
p(z) = 2* + x + 1. REP denotes ‘representation’.

Power REP Polynomial REP Binary REP
0 0 {0,0,0,0}
1 1 {0,0,0,1}
« ! {0,0,1,0}
a? o? {0,1,0,0}
o? o? {1,0,0,0}
at a + 1 {0,0,1,1}
a® a? 4+ a {0,1,1,0}
af a® 4+ a? {1,1,0,0}
a’ o3 + a + 1 {1,0,1,1}
a® a? + 1 {0,1,0,1}
o’ o? + « {1,0,1,0}

ato > + a + 1 {0,1,1,1}
all ad 4+ a? + o« {1,1,1,0}
at? ad + a® + a + 1 {1,1,1,1}
ald a® + a? + 1 {1,1,0,1}
alt o? + 1 {1,0,0,1}
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Appendix B. Galois Field Tables

43?41

B.2 GF(2®%) generated by p(z)

Table B.2: Galois Field table GF(2%) as generated by the primitive polynomial

2* + 23 + 22 + 1. REP denotes ‘representation’.

p()

Binary REP

A A A A o Ay A Ay A A Ay
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APPENDIX

C

SOURCE CODE LISTINGS

This appendix lists the most relevant source code produced in this research. For
clarity, similar lines of code have been omitted which is indicated by comments.

C.1 Software

C.1.1 Server

©ON® U W

L
10 import commands

11 import timeit

12 import serial

13 import random

14  import struct

15

16 ser = 0

17

18 def init_serial():

19 global ser #Must be dec in Each Function
20 ser = serial.Serial()

21 ser.baudrate 115200

22 ser.port = '/ t MO’ #If Using Linux
23 ser.timeout = 10

24 ser.open () #Opens SerialPort

25

26

27 def xor_bitarray(a, b):

28 return map(lambda x: x[0] *~ x[1], zip(a, b))
29

30 def int_to_bitlist(n, length):

31 return [n >> i & 1 for i in range(length-1,-1,-1)]
32

33  def bitlist_to_int (bitlist):

34 out = 0

35 for bit in bitlist:

36 out = (out << 1) | bit

37 return out

38

39

40
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Appendix C. Source Code Listings

41 def int_to_hexstring(i, n):

42 string = hex(i);

43 if string[len(string)-1] == "L":

44 return string[2:len(string)-1].z£fill (2#n)

45 else:

46 return string[2:].zfill (2#n)

47

48 def int_to_bytelist(n, length):

49 return [ n >> (8xi) & Oxff for i in range(length-1,-1,-1)]

50

51 def bch_dec (a_prime, hd):

52 ’’’Code derived from Robert Morelos-Zaragoza: Encoder/decoder for binary BCH codes in C (Version 3.1, 1997)

53 using BCH(255,139,15)

54 NOTE: not in constant time!’’’

55 t =15

56 length = 255

57 n = 255

58 cw_prime = xor_bitarray(a_prime, hd)

59 cw = cw_prime[:]

60 # print ’cw_prime\t’, cw_prime

61 # index->polynomial form: alpha_to[] contains j=alpha*i;

62 alpha_to = [1, 2, 4, 8, 16, 32, 64, 128, 113, 226, 181, 27, 54, 108, 216, 193, 243, 151, 95, 190, 13, 26, 52,
104, 208, 209, 211, 215, 223, 207, 239, 175, 47, 94, 188, 9, 18, 36, 72, 144, 81, 162, 53, 106, 212,
217, 195, 247, 159, 79, 158, 77, 154, 69, 138, 101, 202, 229, 187, 7, 14, 28, 56, 112, 224, 177, 19,
38, 76, 152, 65, 130, 117, 234, 165, 59, 118, 236, 169, 35, 70, 140, 105, 210, 213, 219, 199, 255, 143,
111, 222, 205, 235, 167, 63, 126, 252, 137, 99, 198, 253, 139, 103, 206, 237, 171, 39, 78, 156, 73,
146, 85, 170, 37, 74, 148, 89, 178, 21, 42, 84, 168, 33, 66, 132, 121, 242, 149, 91, 182, 29, 58, 116,
232, 161, 51, 102, 204, 233, 163, 55, 110, 220, 201, 227, 183, 31, 62, 124, 248, 129, 115, 230, 189,
11, 22, 44, 88, 176, 17, 34, 68, 136, 97, 194, 245, 155, 71, 142, 109, 218, 197, 251, 135, 127, 254,
141, 107, 214, 221, 203, 231, 191, 15, 30, 60, 120, 240, 145, 83, 166, 61, 122, 244, 153, 67, 134, 125,
250, 133, 123, 246, 157, 75, 150, 93, 186, 5, 10, 20, 40, 80, 160, 49, 98, 196, 249, 131, 119, 238,
173, 43, 86, 172, 41, 82, 164, 57, 114, 228, 185, 3, 6, 12, 24, 48, 96, 192, 241, 147, 87, 174, 45, 90,
180, 25, 50, 100, 200, 225, 179, 23, 46, 92, 184, 0]

63 # polynomial form —-> index form: index_of[j=alpha”i] = i

64 index_of = [-1, O, 1, 231, 2, 207, 232, 59, 3, 35, 208, 154, 233, 20, 60, 183, 4, 159, 36, 66, 209, 118, 155,
251, 234, 245, 21, 11, 61, 130, 184, 146, 5, 122, 160, 79, 37, 113, 67, 106, 210, 224, 119, 221, 156,
242, 252, 32, 235, 213, 246, 135, 22, 42, 12, 140, 62, 227, 131, 75, 185, 191, 147, 94, 6, 70, 123,
195, 161, 53, 80, 167, 38, 109, 114, 203, 68, 51, 107, 49, 211, 40, 225, 189, 120, 111, 222, 240, 157,
116, 243, 128, 253, 205, 33, 18, 236, 163, 214, 98, 247, 55, 136, 102, 23, 82, 43, 177, 13, 169, 141,
89, 63, 8, 228, 151, 132, 72, 76, 218, 186, 125, 192, 200, 148, 197, 95, 174, 7, 150, 71, 217, 124,
199, 196, 173, 162, 97, 54, 101, 81, 176, 168, 88, 39, 188, 110, 239, 115, 127, 204, 17, 69, 194, 52,
166, 108, 202, 50, 48, 212, 134, 41, 139, 226, 74, 190, 93, 121, 78, 112, 105, 223, 220, 241, 31, 158,
65, 117, 250, 244, 10, 129, 145, 254, 230, 206, 58, 34, 153, 19, 182, 237, 15, 164, 46, 215, 171, 99,
86, 248, 143, 56, 180, 137, 91, 103, 29, 24, 25, 83, 26, 44, 84, 178, 27, 14, 45, 170, 85, 142, 179,
90, 28, 64, 249, 9, 144, 229, 57, 152, 181, 133, 138, 73, 92, 77, 104, 219, 30, 187, 238, 126, 16, 193,
165, 201, 47, 149, 216, 198, 172, 96, 100, 175, 87]

65 t2 = 2 % t; #2+ error correcting capability

66 # first form the syndromes

67 syn_error = False

68 s = [0 for i in range(t2+1)]

69 for i in range (1, t2+1):

70 for j in range (length):

71 if (cw_prime[j] != 0):

72 s[i] "= alpha_to[(i * j) % n]

73 if (s[i] != 0):

T4 syn_error = True

75 s[i] = index of[s[i]]

76 # print ’s\t’, s[l:]

7 # print ’syn_error\t’, syn_error

78 if syn_error:

79 # /% initialise table entries */

80 d = [0 for i in range(t2 + 2)]

81 elp = [[0 for i in range(t2 + 2)] for j in range(t2 + 2)]

82 1 = [0 for i in range(t2 + 2)]

83 u_lu = [0 for i in range(t2 + 2)]

84 drol 0; #/+ index form x/

85 dlr1ll = s[11; #/% 1 x form /

86 elp[0]1[0] = 0; #/* index form */

87 elp[1][0] = 1; #/+ polynomial form */

88 for i in range(1,t2):

89 elp[0] [i] = -1; #/+ index form +/

90 elp[1][i] = 0; #/+ polynomial form =/

91 1[0] = 0;

92 1[1] = 0;

93 u_luf0] = -1;

94 u_lufl] = 0;

95 u=0; 0 -> t2+1

96 while True:

97 u =1

98 if (d[u] == -1):

99 1fu + 1] = 1[u]

100 for i in range(l[u] + 1):

101 elp[u + 1][i] = elp[u][i]

102 elp[u] [i] = index_of[elp(u][i]]

103 else:

104 # search for words with greatest u_lulq] for

105 # which dlgq]!=0

106 g=u-1

107 while ((d[gq] == -1) and (g > 0)):

108 q-=1

109 # have found first non-zero dlq]

110 if (q > 0):

111 j=q

112 while True:

113 =1

114 if ((d[3] !'= -1) and (u_lulq] < u_lu[3])):

115 q = 3i
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C.1.

Software

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

x =

if not (3 > 0):
break
# have now found g such that d[u]!=0 and u_lu[g] is maximum
# store degree of new elp polynomial
if (1[u] > 10g] +u - q):
1fu + 1] = 1[u]
else:
1fu + 1] = 1[q] +u - g
# form new elp (x)
for i in range(t2):
elpfu + 1]1[i] =
for i in range(l[g] + 1):
if (elplgl[i] != -1):
elpfu + 11[i + u - gl = alpha_to[(d[u]l + n - dl[g]l + elplgl[i]) % n]
for i in range(lfu] + 1):
elp(u + 1][i] *= elp[ul [i]
elpfu] [i] = index_of[elp[u][i]]
uw_lufu + 1] =u - 1[u + 1]
4 form (utl)th discrepancy
if (u < t2):
# no discrepancy computed on last iteration
if (sfu + 1] != -1):
d[u + 1] = alpha_to[s[u + 1]]
else:
dfu+ 11 =0
for i in range(l,1[u+l]+1):

0
+

if ((sfu + 1 - i] != -1) and (elp[u + 1][i] != 0)):
dfu + 1] ~= alpha_to[(s[u + 1 - i] + index_oflelp[u + 1][i]]) % n]
# put d[u+l] into index form
d[u + 1] = index_of[d[u + 1]]
if not ((u < t2) and (L[u + 1] <= t)):
break

u += 1
if (1[u] <= t): # Can correct errors
# put elp into index form
for i in range(l[u] + 1):
elp[u] [i] = index_oflelplu][i]]
sigma = []
for i in range(l[u] + 1):
sigma += [elp[u][i]]
# print ’sigma(x) =\t’, sigma
# Chien search: find roots of the error location polynomial
reg = [0 for x in range(L[u]+1)]
root [0 for x in range(1l([ul)]
loc = [0 for x in range(l[ul)]
for i in range(l,1[ul+l):
regl(i] = elp[u][i]
count = 0
for i in range(1,n+1):
q=1
for j in range(1, 1[u]+1):
if (reg[j] != -1):
reglj] = (reg(j] + J) % n
q "= alpha_tolreg[j]]
if (g == 0): # store root and error location number indices
root [count] = i
loclcount] =n - i
count += 1
if (count == 1[u]):
# print ’'Roots:\t’, loc
print "\t#errors corrected BCH\t", str(len(loc))
for i in range(l([u]):
cwlloc[i]] ~= 1
else:
1 ==
print '\tBCH incomplete decoding: errors detected’
# print ‘cw\t’, cw
return xor_bitarray(cw, hd)

rep_decode (hd_rep, y_1):

errors = 0

e = [7, 11, 13, 14, 15] #faulty syndromes
rp=0

ry.p =20

for i in range (255):
hd = (hd_rep >> 4xi) & 0bl111l
vy = (y_1 >> 5%i) & 0blllll
y_pb = (y_1 >> 5xi) & Obl

if y_pb == 1: #compute syndromes
s = 0bllll ~ (y >> 1) * hd
else:
s=0" (y> 1) *~ hd

if s in e:
r pb =y pb ~ 1
errors += 1
else:
r_pb = y_pb

r_p += r_pb << i #LSB on right
print "\t#errors corrected REP\t", str(errors)

return r_p

random.randint (1,2*%64)
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213 x_list = int_to_bytelist(x, 16)

214 init_serial ()

215 ser.write([0x90]1)

216 ser.write(x_list[:4])

217 ser.write(x_list[4:8])

218 y_1 = ser.readline() [0:-1]

219 print "device set up:\t", y_1[-64:], "<Y> (showing rightmost 32 bytes)"

220 print " \n"

221 ser.close ()

222

223 while(1):

224

225 nl = random.randint (1,2%%128)

226

227 init_serial ()

228

229 nl_list = int_to_bytelist(nl, 16)

230 ser.write ([0x90])

231 ser.write (nl_list[:4])

232 ser.write (nl_list[4:8])

233 ser.write (nl_list[8:12])

234 ser.write(nl_list[12:])

235

236 print "challenge sent:\t\t", int_to_hexstring(nl,16), "<N1>"

237

238 hd_rep = ser.readline() [0:-1]

239 hd_bch = ser.readline() [1:-1]

240 c = ser.readline() [1:-1]

241 n2 = ser.readline () [1:-1]

242 t = ser.readline() [1:-1]

243

244 ser.close ()

245

246 print "responses received:\t", t, "<HD, N2, Cl, T1> (only showing T1)"

247

248 hd_rep = int (hd_rep, 16)

249 y_1 = int(y_1, 16)

250 hd_bch = int (hd_bch,16)

251 hd = int_to_bitlist (hd_bch, 255)

252 c = [c[i:i+8] for i in range(0,len(c),8)]

253 c.reverse()

254 c = "".join(c) # c is feeded in reverse

255 clen = 160

256 klen 16

257 nlen= 16

258 adlen = 16

259 tlen = 16

260 auth = False

261

262 start = timeit.default_timer ()

263 r_p = rep_decode (hd_rep, y_1)

264 a_prime = int_to_bitlist (r_p, 255)

265 r_pp = bch_dec (a_prime, hd)

266 r_pp = bitlist_to_int (r_pp)

267 r_pp_str = int_to_hexstring(r_pp, 32)

268

269 key = r_pp_str[:32] # left part of r_pp

270 nonce = n2

271 ad = r_pp_str[32:] # right part of r_pp

272 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] fad is feeded in reverse!

273 challenge = r"./Ketje_enc " + key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + " " + str(
adlen)# + c + str(clen) + t + str(tlen)

274 response = commands.getstatusoutput (challenge)

275 dev_key = response[1].split () [0]

276 # print "dev_key = [" + dev_key + "]"

277

278

279 nonce = int_to_hexstring(nl, 16)

280 ad = n2

281 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] fad is feeded in reverse!

282

283 challenge = r"./Ketje_dec " + dev_key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + " " +
str(adlen) + " " + c + " " 4+ str(clen) + " " 4+ t + " " + str(tlen)

284 response = commands.getstatusoutput (challenge)

285 y_2 = response[1].split () [0]

286 y_2 = [y_2[i:1+8] for i in range(0,len(y_2),8)]

287 y_2.reverse ()

288 y_2 = "".join(y_2) # y_2 is received in reverse

289

290 "noz£i11(320)):

291 random.randint (1,2x%128)

292 int_to_hexstring(y_1,160)

293

294 auth = True

295 v1l-=y2

296 nonce = int_to_hexstring(nl,16)

297 ad = int_to_hexstring(int(n2, 16) + 2%x127, 16)

298 ad = ad[24:] + ad[16:24] + ad[8:16] + ad[:8] fad is feeded in reverse!

299 challenge = r"./Ketje_enc " + dev_key + " " + str(klen) + " " + nonce + " " + str(nlen) + " " + ad + "

+ str(adlen)# + c + str(clen) + t + str(tlen)

300 response = commands.getstatusoutput (challenge)

301 t2 = response[l].split () [0]

302 t2 = int(t2,16)

303 end = timeit.default_timer ()

304

305 if auth:

306 print "\033[92mSUCCESFULL AUTHENTICATION\033[Om"
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307 print "PUF resp updated\t", y_2[-64:], "<Y> (showing rightmost 32 bytes)"
308 else:

309 print "\033[91mNO AUTHENTICATION\033[Om"

310

311 t2_list = int_to_bytelist (t2, 16)

312 init_serial ()

313 ser.write ([0x90])

314 ser.write (t2_list[:4])

315 ser.write (t2_list[

316 ser.write (t2_list[8:12])

317 ser.write(t2_list[12:])

318 ser.close ()

319 print "authenticator sent:\t", int_to_hexstring(t2,16), "<T2>"
320

321 print "Elapsed time:\t", (end-start)

322 print " "

323 raw_input ("\033[95mPress ENTER for a new authentication\033[0m")
324 print " "

C.2 Hardware

C.2.1 CKP Device

T
2 // RAuthor: J.G. (Gerben) Geltink // g.geltink@gmail.com

3 // Module: CKP Device // ckp_dev.c

4 7/ This module describes the device in the Conceiling Ketje Protocol as presented by the

5 /7 guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based

6 /7 Privacy Preserving Authentication Protocol".

T/

8 // Copyright (c) 2016 J.G. (Gerben) Geltink under MIT license

= T
10

11 #include "platform.h"

12  #include "xbasic_types.h"
13  #include "xparameters.h"
14 #include <stdio.h>

15

16  Xuint32 sbaseaddr_p = (Xuint32 «)XPAR_CKP_DEV_2_0_S00_AXI_BASEADDR;

17

18 void rcv_int (int a){ //receives a 32-bit word

19 int 1 = 0;

20 int val = 0;

21 for (i=0;1i<4;1i++)

22 val = val + (inbyte() << (8%(3-1)));

23 « (baseaddr_p+a) = val;}

24

25 void wait_rcv(){ //waits for a byte indicating the start of a word

26 for(;;)

27 if (inbyte() == 0x90)

28 break;}

29

30 int main() {

31 init_platform();

32

33 //Setup phase

34 wait_rev(); //wait for starting byte

35 rcv_int(1l); //receive left word of X1

36 rcv_int (0); //receive right word of X1

37 * (baseaddr_p+4) = OXFACADEOl; //set data ready

38 for(;;) //wait until data is ready

39 if (x(baseaddr_p+93) == 0xACCEDEO1)

40 break;

41 //send Y

42 xil_printf ("$08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08
x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n\r", = (baseaddr_p+133), «(baseaddr_p+132),
« (baseaddr_p+131), «(baseaddr_p+130), = (baseaddr_p+129), x(baseaddr_p+128), = (baseaddr_p+127), x(
baseaddr_p+126), = (baseaddr_p+125), = (baseaddr_p+124), = (baseaddr_p+123), «(baseaddr_p+122), x(baseaddr_p
+121), «(baseaddr_p+120), =*(baseaddr_p+119), x(baseaddr_p+118), x(baseaddr_p+117), x(baseaddr_p+116), x(
baseaddr_p+115), =*(baseaddr_p+114), =*(baseaddr_p+113), =*(baseaddr_p+112), x(baseaddr_p+111l), «(baseaddr_p
+110), «(baseaddr_p+109), = (baseaddr_p+108), = (baseaddr_p+107), «(baseaddr_p+106), = (baseaddr_p+105), = (
baseaddr_p+104), *(baseaddr_p+103), «(baseaddr_p+102), «(baseaddr_p+101), *(baseaddr_p+100), «(baseaddr_p
+99), «(baseaddr_p+98), =*(baseaddr_p+97), =*(baseaddr_p+96), +(baseaddr_p+95), =*(baseaddr_p+94));

43

44 //Ruthentication phase (repeat forever)

45 while (1) {

46 wait_rcv(); //wait for starting byte

a7 rcv_int (3); //receive leftmost word of N1

48 rcv_int (2); //receive next word of N1

49 rcv_int (1); //receive next word of N1

50 rcv_int (0); //receive rightmost word of N1

51 * (baseaddr_p+4) = OXFACADEO2; //set data ready

52 for(;;) //wait until data is ready

53 if ((baseaddr_p+93) == 0xACCEDE02)
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54
55
56

57
58

59
60

61

63
64
65
66
67
68
69
70
71

break;

//send HD_rep

xil_printf( 8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%508x%08x%08x%08x
508x%08x%08x%08x%08x%08x%08x%08x \n\r", «(baseaddr_p+36), *(baseaddr_p+35), =*(baseaddr_p+34), =x(
baseaddr_p+33), *(baseaddr_p+32), *(baseaddr_p+31), *(baseaddr_p+30), «(baseaddr_p+29), «(baseaddr_p
+28), «(baseaddr_p+27), = (baseaddr_p+26), = (baseaddr_p+25), «(baseaddr_p+24), «(baseaddr_p+23), *(
baseaddr_p+22), =*(baseaddr_p+21), =*(baseaddr_p+20), *(baseaddr_p+19), =*(baseaddr_p+18), x(baseaddr_p
+17), «(baseaddr_p+16), =(baseaddr_p+15), = (baseaddr_p+14), «(baseaddr_p+13), «(baseaddr_p+12), «(
baseaddr_p+11), =*(baseaddr_p+10), =*(baseaddr_p+9), = (baseaddr_p+8), x(baseaddr_p+7), x(baseaddr_p+6),
« (baseaddr_p+5) ) ;

//send HD_bch

xil_printf ("308x%08x%08x%08x%08x%08x%08x%08x\n\r", x(baseaddr_p+44), *(baseaddr_p+43), «(baseaddr_p+42), x(
baseaddr_p+41), «(baseaddr_p+40), = (baseaddr_p+39), «(baseaddr_p+38), »(baseaddr_p+37));

//send C2

xil printf("%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x
%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n\r", =*(baseaddr_p+84), x(baseaddr_p
+83), *(baseaddr_p+82), x(baseaddr_p+81), = (baseaddr_p+80), = (baseaddr_p+79), = (baseaddr_p+78), =*(
baseaddr_p+77), *(baseaddr_p+76), =*(baseaddr_p+75), *(baseaddr_p+74), =*(baseaddr_p+73), «(baseaddr_p
+72), «(baseaddr_p+71), = (baseaddr_p+70), = (baseaddr_p+69), x(baseaddr_p+68), «(baseaddr_p+67), «(
baseaddr_p+66), (baseaddr_p+65), *(baseaddr_p+64), *(baseaddr_p+63), «(baseaddr_p+62), = (baseaddr_p
+61), *(baseaddr_p+60), x(baseaddr_p+59), = (baseaddr_p+58), = (baseaddr_p+57), = (baseaddr_p+56), *(
baseaddr_p+55), *(baseaddr_p+54), *(baseaddr_p+53), »(baseaddr_p+52), »(baseaddr_p+51), «(baseaddr_p
+50), «(baseaddr_p+49), =*(baseaddr_p+48), x(baseaddr_p+47), =(baseaddr_p+46), =*(baseaddr_p+45));

//send N2

xil_printf ("$08x%08x%08x%08x\n\r", «(baseaddr_p+88), =*(baseaddr_p+87), x(baseaddr_p+86), =*(baseaddr_p+85));

//send T1

xil_printf ("$08x%08x%08x%08x\n\r", «(baseaddr_p+92), = (baseaddr_p+91), *(baseaddr_p+90), «(baseaddr_p+89));

wait_rcv(); //wait for starting byte

rev_int (3); //receive leftmost word of T2

rcv_int (2); //receive next word of T2

rcv_int (1); //receive next word of T2

rcv_int (0); //receive rightmost word of T2

* (baseaddr_p+4) = OxACCEDE02; //set data ready

} return 0; 1}

C.2.2 CKP Device Core

©ONO®U AW

-- Ruthor: J.G. (Gerben) Geltink -- g.geltink@gmail.com

-- Module: CKP Device Core -~ ckp_dev_core.vhd

-- This module describes the device core of the Conceiling Ketje Protocol as presented by the
-- guiding MSc thesis: Geltink, J. G. (2016). 1ceiling Ketje: A Lightweight PUF-based

- Privacy Preserving Authentication Protocol”.

-- Copyright (c) 2016 J.G. Geltink under MIT license

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

ENTITY ckp_dev_core IS
PORT ( clk : IN STD_LOGIC;

pdil STD_LOGIC_VECTOR (31 DOWNTO 0); —-public data input
pdi2 STD_LOGIC_VECTOR (31 DOWNTO 0);
pdi3 STD_LOGIC_VECTOR (31 DOWNTO 0);
pdid STD_LOGIC_VECTOR (31 DOWNTO 0);
pdi5 STD_LOGIC_VECTOR (31 DOWNTO 0); —-input instruction
pdol STD_LOGIC_VECTOR (31 DOWNTO 0); --public d. output
pdo2 STD_LOGIC_VECTOR (31 DOWNTO 0);

-- pdo2 to pdo87 OMITTED FOR CLARITY
pdo88 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
pdo89 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0); --output instruction
pdo90 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
—— pdo91 to pdol27 OMITTED FOR CLARITY
pdol28 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
pdol29 : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
)i
END ckp_dev_core;

ARCHITECTURE Behavioral OF ckp_dev_core IS
COMPONENT DECLARATIONS
COMPONENT DAPUF

PORT (
clk : IN STD_LOGIC;
rst_n IN STD_LOGIC;
idata IN STD_LOGIC_VECTOR (63 DOWNTO 0);
esig : IN STD_LOGIC;
Answer ¢ OUT std_logic

END COMPONENT;
COMPONENT bch255_139_31enc

PORT (
clk STD_LOGIC;
reset STD_LOGIC;
din STD_LOGIC;
vdin STD_LOGIC;
dout std_logic

)i
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110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

END COMPONENT;
COMPONENT ket jeSr --component received from Guido Bertoni
PORT (

clk : IN STD_LOGIC;

rst : IN STD_LOGIC;

npub IN STD_LOGIC_VECTOR (127 DOWNTO 0);

nsec IN STD_LOGIC_VECTOR (127 DOWNTO 0);

key IN STD_LOGIC_VECTOR (127 DOWNTO 0);

rdkey IN STD_LOGIC_VECTOR (127 DOWNTO 0);

bdi : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

exp_tag : IN STD_LOGIC_VECTOR (127 DOWNTO 0);

len_a : IN STD_LOGIC_VECTOR (63 DOWNTO 0);

len_d : IN STD_LOGIC_VECTOR (63 DOWNTO 0);

key_ready : IN STD_LOGIC;

key_updated : OUT STD_LOGIC;

key_needs_update : IN STD_LOGIC;

rdkey_ready : IN STD_LOGIC;

rdkey_read : OUT STD_LOGIC;

npub_ready : IN STD_LOGIC;

npub_read : OUT STD_LOGIC;

nsec_ready : IN STD_LOGIC;

nsec_read : OUT STD_LOGIC;

bdi_ready : IN STD_LOGIC;

bdi_proc : IN STD_LOGIC;

bdi_ad : IN STD_LOGIC;

bdi_nsec : IN STD_LOGIC;

bdi_pad : IN STD_LOGIC;

bdi_decrypt : IN STD_LOGIC;

bdi_eot : IN STD_LOGIC;

bdi_eoi : IN STD_LOGIC;

bdi_read : OUT STD_LOGIC;

bdi_size : IN STD_LOGIC_VECTOR (1 DOWNTO 0);

bdi_valid_bytes : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

bdi_pad_loc : IN STD_LOGIC_VECTOR (3 DOWNTO 0);

bdi_nodata : IN STD_LOGIC;

exp_tag_ready : IN STD_LOGIC;

bdo_ready : IN STD_LOGIC;

bdo_write : OUT STD_LOGIC;

bdo OUT STD_LOGIC_VECTOR (31 DOWNTO 0);

bdo_size : OUT STD_LOGIC_VECTOR (2 DOWNTO 0);

bdo_nsec : OUT STD_LOGIC;

tag_ready : IN STD_LOGIC;

tag_write : OUT STD_LOGIC;

tag : OUT STD_LOGIC_VECTOR (127 DOWNTO 0);

msg_auth_done : OUT STD_LOGIC;

msg_auth_valid : OUT std_logic

)i
END COMPONENT;
—-SIGNAL DECLARATIONS
SIGNAL esig_IN : STD_LOGIC --PUF enable SIGNAL
SIGNAL res : STD_LOGIC ;
SIGNAL challenge : STD_LOGIC_VECTOR (63 DOWNTO 0);
SIGNAL seedl : STD_LOGIC_VECTOR (11 DOWNTO 0) x"001"; TODO: into NVM
SIGNAL chall : STD_LOGIC_VECTOR (39 DOWNTO 0) (OTHERS => '0"); --TODO: into NVM
SIGNAL setup : STD_LOGIC := '0';
SIGNAL seed2 : STD_LOGIC_VECTOR (11 DOWNTO 0) (OTHERS => '0");
SIGNAL chal2 : STD_LOGIC_VECTOR (39 DOWNTO 0) (OTHERS => 70');
SIGNAL pufresp : STD_LOGIC_VECTOR (1279 DOWNTO 0) := (OTHERS => ’0');
SIGNAL cl : STD_LOGIC_VECTOR (1279 DOWNTO 0) : (OTHERS => '0');
SIGNAL pdi : STD_LOGIC_VECTOR (127 DOWNTO 0) (OTHERS => '07);
SIGNAL nce2 : STD_LOGIC_VECTOR (126 DOWNTO 0) (OTHERS => '0');
SIGNAL t1 : STD_LOGIC_VECTOR (127 DOWNTO 0) (OTHERS => '0");
SIGNAL t2 : STD_LOGIC_VECTOR (127 DOWNTO 0) : (OTHERS => '0");
SIGNAL bchrnd : STD_LOGIC_VECTOR (138 DOWNTO 0) := (OTHERS => ’0');
SIGNAL rep_res : STD_LOGIC_VECTOR (254 DOWNTO 0) := (OTHERS => ’'0');
SIGNAL hd_rep : STD_LOGIC_VECTOR(1019 DOWNTO 0) := (OTHERS => '0');
SIGNAL bch_cw : STD_LOGIC_VECTOR(115 DOWNTO 0) := (OTHERS => ’0');
SIGNAL dev_key : STD_LOGIC_VECTOR (127 DOWNTO 0) := (OTHERS => ’'07);
SIGNAL ctrl_puf_resp : STD_LOGIC ror;
SIGNAL ctrl_rst_puf : STD_LOGIC := ’0’;
SIGNAL ctrl_rst_rep : STD_LOGIC := ’0’;
SIGNAL ctrl_index : STD_LOGIC_VECTOR (11 DOWNTO 0) := (OTHERS => ’0');
SIGNAL ctrl_index2 : STD_LOGIC_VECTOR (7 DOWNTO 0) := (OTHERS => ’'0');
SIGNAL ctrl_cnt : STD_LOGIC_VECTOR (7 DOWNTO 0) := (OTHERS => ’0');
SIGNAL ctrl_rst_bch : STD_LOGIC := '0’;
SIGNAL ctrl_rst_ketje : STD_LOGIC := ’0’;
SIGNAL rst_bch : STD_LOGIC ror;
SIGNAL din_bch : STD_LOGIC r0";
SIGNAL dout_bch : STD_LOGIC;
SIGNAL ctrl_rst_lfsr : STD_LOGIC := ’'0’;
SIGNAL ctrl_lfsr : STD_LOGIC := '0’;
SIGNAL ctrl_comp_t2 : STD_LOGIC := '0’;
SIGNAL ctrl_checkandupd : STD_LOGIC := ’0';
SIGNAL 1lfsr : STD_LOGIC_VECTOR (11 DOWNTO 0);
SIGNAL ctrl_ketje_mode : STD_LOGIC_VECTOR (1 DOWNTO 0) : (OTHERS => '0');
SIGNAL npub_reg : STD_LOGIC_VECTOR (127 DOWNTO 0) (OTHERS => '0');
SIGNAL key_reg : STD_LOGIC_VECTOR (127 DOWNTO 0) := (OTHERS => ’'0');
SIGNAL ad_reg : STD_LOGIC_VECTOR (127 DOWNTO 0) : (OTHERS => ’0');
SIGNAL rst_ketje : STD_LOGIC := '0";
SIGNAL npub : STD_LOGIC_VECTOR (127 DOWNTO 0) := (OTHERS => ’'07);
SIGNAL key : STD_LOGIC_VECTOR (127 DOWNTO 0) (OTHERS => ’0');
SIGNAL bdi : STD_LOGIC_VECTOR (31 DOWNTO 0) (OTHERS => '0');
SIGNAL key_ready : STD_LOGIC := 0’;
SIGNAL key_needs_update : STD_LOGIC
SIGNAL npub_ready : STD_LOGIC
SIGNAL bdi_ready : STD_LOGIC
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149 SIGNAL bdi_ad : STD_LOGIC := ’0";

150 SIGNAL bdi_nsec : STD_LOGIC ror;

151 SIGNAL bdi_eot : STD_LOGIC ror;

152 SIGNAL bdi_eoi : STD_LOGIC := '0’;

153 SIGNAL bdo : STD_LOGIC_VECTOR (31 DOWNTO 0);

154 SIGNAL tag_write : STD_LOGIC;

155 SIGNAL tag : STD_LOGIC_VECTOR (127 DOWNTO 0);

156

157 UNUSED SIGNAL DECLARATIONS (will be synthesized out)

158 SIGNAL rst_puf : STD_LOGIC ror; PUF reset signal
159 OMITTED: vdin_bch_unused, nsec, rdkey, exp_tag, len_a, len_d, rdkey_ready, nsec_ready, bdi_proc, bdi_pad,

bdi_decrypt, bdi_size, bdi_valid_bytes, bdi_pad_loc, b
key_updated, rdkey_read, npub_read, nsec_read, bdi_read, bdo

_nodata, exp_tag_ready, bdo_ready, tag_ready,
rite, bdo_size, bdo_nsec, msg_auth_done,

msg_auth_vali,

160

161 ——-STATE DECLARATIONS

162 TYPE puf_state_type IS (idle,chall,exec,recv);

163 SIGNAL puf_state : puf_state_type := idle;

164 TYPE rep_state_type IS (idle,exec,set);

165 SIGNAL rep_state : rep_state_type := idle;

166 TYPE bch_state_type IS (idle,restart,exec,get,set);

167 STGNAL bch_state : bch_state_type := idle;

168 TYPE resp_state_type IS (idle,get_seed2,get_pufrespl,get_bchrnd,get_chal2,get_nce2,get_pufresp2,wtaeadenc,
checkandupd) ;

169 SIGNAL resp_state : resp_state_type := idle;

170 TYPE ketje_state_type IS (idle,ldkey,ldnce,initstate,ldad,wtad,comptag, ldmsg,wtmsg, lstmsg);

171 SIGNAL ketje_state : ketje_state_type := idle;

172

173 BEGIN

174 DAPUF_0: DAPUF PORT MAP (

175 clk => clk,

176 rst_n => rst_puf,

177 idata => challenge,

178 esig => esig_in,

179 Answer => res

180 )i

181 BCH_ENCODER: bch255_139_31lenc PORT MAP (

182 clk => clk,

183 reset => rst_bch,

184 din => din_bch,

185 vdin => vdin_bch_unused,

186 dout => dout_bch

187 )i

188 KETJE: ketjeSr PORT MAP (

189 clk => clk,

190 rst rst_ketje,

191 npub => npub,

192 nsec => nsec,

193 key => key,

194 rdkey => rdkey,

195 bdi => bdi,

196 exp_tag => exp_tag,

197 len_a => len_a,

198 len_d => len_d,

199 key_ready => key_ready,

200 key_updated => key_updated,

201 key_needs_update => key_needs_update,

202 rdkey_ready => rdkey_ready,

203 rdkey_read rdkey_read,

204 npub_ready => npub_ready,

205 npub_read => npub_read,

206 nsec_ready => nsec_ready,

207 nsec_read => nsec_read,

208 bdi_ready => bdi_ready,

209 bdi_proc => bdi_proc,

210 bdi_ad => bdi_ad,

211 bdi_nsec => bdi_nsec,

212 bdi_pad => bdi_pad,

213 bdi_decrypt => bdi_decrypt,

214 bdi_eot => bdi_eot,

215 bdi_eoi => bdi_eoi,

216 bdi_read => bdi_read,

217 bdi_size => bdi_size,

218 bdi_valid_bytes => bdi_valid_bytes,

219 bdi_pad_loc => bdi_pad_loc,

220 bdi_nodata => bdi_nodata,

221 exp_tag_ready => exp_tag_ready,

222 bdo_ready => bdo_ready,

223 bdo_write => bdo_write,

224 bdo => bdo,

225 bdo_size => bdo_size,

226 bdo_nsec => bdo_nsec,

227 tag_ready => tag_ready,

228 tag_write => tag_write,

229 tag => tag,

230 msg_auth_done => msg_auth_done,

231 msg_auth_valid => msg_auth_valid

232 )i

233

234  pdo8l <= nce2 (31 DOWNTO 0);

235 pdo82 <= nce2 (63 DOWNTO 32);

236 pdo83 <= nce2 (95 DOWNTO 64);

237 pdo8d <= 0’ & nce2(126 DOWNTO 96);
238 pdo85 <= t1(31 DOWNTO 0);

239  pdo86 <= t1(63 DOWNTO 32);

240 pdo87 <= t1(95 DOWNTO 64);

241 pdo88 <= t1(127 DOWNTO 96);
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pdi <= pdi4 & pdi3 & pdi2 & pdil;

1fsr_proc : PROCESS(clk, ctrl_rst_lfsr)
BEGIN
IF (ctrl_rst_l1fsr = ’1’) THEN
IF (ctrl_lfsr = ’1’) THEN
1fsr <= seedl (1l DOWNTO 1) & "1';
ELSE
1fsr <= x"001";
END IF;
ELSIF RISING_EDGE (clk) THEN
1fsr(0) <= 1lfsr(1ll);
1fsr(1) 1fsr(0);
1fsr(2) 1fsr(1l);
1fsr(3) <= 1fsr(2) XOR 1fsr(l1);
1fsr(4) <= 1fsr(3) XOR lfsr(l1);
1fsr(5) <= lfsr(4);
1fsr(6) <= 1fsr(5);
1fsr(7) <= lfsr(6) XOR lfsr(ll);
1fsr(8) <= 1lfsr(7);
1fsr(9) <= 1fsr(8);
1fsr(10) <= 1fsr(9);
1fsr(1ll) <= 1lfsr(10);
END IF;
END PROCESS; -—-p(x) = 1001100100001

resp_proc : PROCESS (clk)
BEGIN
IF RISING_EDGE (clk) THEN
CASE resp_state IS
WHEN idle =>
ctrl_rst_ketje <= 70’;
IF (pdi5 = x"facade0l") AND (setup = ’0’) THEN
chall <= pdil & pdi2(7 DOWNTO 0);
resp_state <= get_seed2;
ctrl_index <= x"000";
ctrl_rst_puf <= 717;
pdo89 <= x"facade01l"; --data not ready
ELSTF (pdi5 = x"facade02") THEN
pdo90 <= (OTHERS => ’0');
pdo91 <= (OTHERS => ’0');
pdo92 <= (OTHERS => ’0');
-—- pdo93 to pdol26 OMITTED FOR CLARITY
pdol27 <= (OTHERS => ’0');
pdol28 <= (OTHERS 0"y ;
pdol29 <= (OTHERS => '0');
resp_state <= get_seed2;
ctrl_index <= x"000";
ctrl_rst_puf <= 717;
pdo89 <= x"facade02"; --data not ready
END IF;
WHEN get_seed2 =>
IF (ctrl_index x"000") THEN
ctrl_rst_puf <= 70’;
ctrl_rst_lfsr <= '17;
ctrl_lfsr <='1";
—-challenge <= chall(39 DOWNTO 36) [ & chall(35 DOWNTO 33) & 1fsr(11) & '0’]+ EXAMPLE
challenge <= chall (39 DOWNTO 36) & chall (35 DOWNTO 33) & 1fsr(11) & "0’ & chall(32 DOWNTO 30) & lfsr
(10) & "0’ & chall(29 DOWNTO 27) & 1lfsr(9) & "0’ & chall(26 DOWNTO 24) & 1fsr(8) & 0’ & chall(23
DOWNTO 21) & 1fsr(7) & '0’ & chall(20 DOWNTO 18) & lfsr(6) & ‘0’ & chall(17 DOWNTO 15) & lfsr(5)
& '0’ & chall(14 DOWNTO 12) & 1lfsr(4) & "0’ & chall(ll DOWNTO 9) & 1fsr(3) & '0’ & chall(8
DOWNTO 6) & lfsr(2) & '0’ & chall(5 DOWNTO 3) & 1lfsr(l) & '0’ & chall(2 DOWNTO 0) & 1lfsr(0) &
ror;

END IF;
IF (ctrl_index = x"00c") THEN
resp_state <= get_pufrespl;
ctrl_index <= x"000";
seedl <= seed2;
ctrl_lfsr <='0’;
ELSIF (ctrl_puf_resp = ’1’) THEN
--challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & lfsr(l1l) & '0’]+ OMITTED
ctrl_rst_lfsr <= '0';
seed2 (TO_TNTEGER (UNSIGNED (ctrl_index))) <= res;
ctrl_index <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index) + 1);
END IF;
WHEN get_pufrespl =>
IF (ctrl_index = x"000") THEN
ctrl_rst_lfsr <= '17;
—-challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & /0’ & 1fsr(11)]+ OMITTED
END IF;
IF (ctrl_index = x"4fb") THEN
IF (pdi5 = x"facade0l") AND (setup = ’0’) THEN
resp_state <= idle;
setup <= "1’;
pdo90 <= pufresp (31 DOWNTO 0) ;
pdo91 pufresp (63 DOWNTO 32);
pdo92 pufresp (95 DOWNTO 64);
—— pdo93 to pdol26 OMITTED FOR CLARITY
pdol27 <= pufresp (1215 DOWNTO 1184);
pdol28 <= pufresp (1247 DOWNTO 1216);
pdol29 <= pufresp (1279 DOWNTO 1248);
pdo89 <= x"accede0l"; --data ready
ELSE
resp_state <= get_bchrnd;
ctrl_rst_rep 71’; --start repetition code in rep_proc
ctrl_index <= x"000";
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334 END IF;

335 ELSIF (ctrl_puf_resp = ’1’) THEN

336 --challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & "0’ & lfsr(1ll)]+ OMITTED
337 ctrl_rst_lfsr <= '0’;

338 pufresp (TO_INTEGER (UNSIGNED (ctrl_index))) <= res;

339 ctrl_index <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index) + 1);
340 END IF;

341 WHEN get_bchrnd =>

342 IF (ctrl_index = x"000") THEN

343 ctrl_rst_lfsr <= ’'1’;

344 ctrl_rst_rep <= '07;

345 ctrl_lfsr <='17;

346 --challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & lfsr(ll) & '0’]* OMITTED
347 END IF;

348 IF (ctrl_index = x"08b") THEN

349 resp_state <= get_chal2;

350 ctrl_rst_bch <= ’1’; --start bch code in bch_proc

351 ctrl_ketje_mode <= "01";

352 ctrl_index <= x"000";

353 ctrl_lfsr <='0';

354 ELSIF (ctrl_puf_resp = ’1’) THEN

355 --challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & lfsr(l1l) & '0’]* OMITTED
356 ctrl_rst_lfsr <= '0’;

357 bchrnd (TO_INTEGER (UNSIGNED (ctrl_index))) <= res;

358 ctrl_index <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index) + 1);
359 END IF;

360 WHEN get_chal2 =>

361 IF (ctrl_index = x"028") THEN

362 resp_state <= get_nce2;

363 ctrl_index <= x"000";

364 ctrl_lfsr <='0';

365 ELSIF (ctrl_puf_resp = ’1’) THEN

366 --challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & lfsr(ll) & '0’]* OMITTED
367 ctrl_rst_bch <= 07;

368 chal2 (TO_INTEGER (UNSIGNED (ctrl_index))) <= res;

369 ctrl_index <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index) + 1);
370 END IF;

371 WHEN get_nce2 =>

372 IF (ctrl_index = x"07f") THEN

373 resp_state <= get_pufresp2;

374 ctrl_rst_ketje <= ’1’; --start computing dev-key

375 ctrl_index <= x"000";

376 ctrl_lfsr <='0";

377 ELSIF (ctrl_puf_resp = '1’) THEN

378 --challenge <= chall (39 DOWNTO 36) [ & chall(35 DOWNTO 33) & lfsr(ll) & '0’]* OMITTED
379 nce2 (TO_INTEGER (UNSIGNED (ctrl_index))) <= res;

380 ctrl_index <= STD_LOGIC_VECTOR(UNSIGNED (ctrl_index) + 1);
381 END IF;

382 WHEN get_pufresp2 =>

383 IF (ctrl_index = x"000") THEN

384 ctrl_rst_lfsr <= '17;

385 --challenge <= chal2(39 DOWNTO 36) [ & chal2(35 DOWNTO 33) & '0’ & 1lfsr(11l)]x OMITTED
386 END IF;

387 IF (ctrl_index = x"4fb") THEN

388 resp_state <= wtaeadenc;

389 ctrl_index <= x"000";

390 ctrl_rst_ketje <= ’1’; —-start computing C*1,T"1

391 ctrl_ketje_mode <= "10";

392 ELSIF (ctrl_puf_resp = ’1’) THEN

393 ——challenge <= chal2(39 DOWNTO 36) [ & chal2(35 DOWNTO 33) & 0’ & lfsr(11)]+ OMITTED
394 ctrl_rst_lfsr <= '0’;

395 ctrl_rst_ketje <= ’0’;

396 pufresp (TO_INTEGER (UNSIGNED (ctrl_index))) <= res;

397 ctrl_index <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index) + 1);
398 END IF;

399 WHEN wtaeadenc =>

400 IF (ctrl_comp_t2 = ’1’) THEN

401 ctrl_rst_ketje <= '1’; --start computing T"2

402 ctrl_ketje_mode <= "11";

403 resp_state <= checkandupd;

404 pdo89 <= x"facade09";

405 ELSE

406 ctrl_rst_ketje <= ’0’;

407 END IF;

408 WHEN checkandupd =>

409 IF (ctrl_checkandupd = /1) THEN

410 pdo89 <= x"accede02"; --data ready

411 ELSE

412 ctrl_rst_ketje <= '0’;

413 END IF;

414 IF (pdi5 = x"accede02") AND (ctrl_checkandupd = ’1’) THEN
415 IF (pdi = t2) THEN

416 chall <= chal2;

417 pdo89 <= x"accede03"; --finished AND accepted

418 END IF;

419 resp_state <= idle;

420 END IF;

421 WHEN OTHERS =>

422 ctrl_rst_ketje <= ’0’;

423 END CASE;

424 END IF;

425 END PROCESS;

426

427  puf_proc : PROCESS (clk)

428 BEGIN

429 IF (ctrl_rst_puf = ’1’) THEN
430 puf_state <= chall;
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ELSIF RISING_EDGE (clk) THEN
CASE puf_state IS
WHEN chall =>
esig_in <= "1";
puf_state <= exec;
WHEN exec =>
esig_in <= '0’;
ctrl_puf_resp <= '1’;
puf_state <= recv;
WHEN recv =>
ctrl_puf_resp <= '0’;
puf_state <= chall;
WHEN OTHERS =>
END CASE;
END IF;
END PROCESS;

rep_proc : PROCESS (clk)
BEGIN
IF (ctrl_rst_rep = ’1’) THEN
rep_state <= exec;
ELSIF RISING_EDGE (clk) THEN
CASE rep_state IS
WHEN exec =>
FOR i IN 0 TO 254 LOOP
rep_res (i) <= pufresp(i*5);
hd_rep (i*4) <= pufresp(ix5) XOR pufresp (i+5+1);
hd_rep (i*4+1) <= pufresp(i*5) XOR pufresp (i*5+2);
hd_rep (i*4+2) <= pufresp(i*5) XOR pufresp (i*5+3);
hd_rep (i*4+3) <= pufresp(ix5) XOR pufresp (i*5+4);
END LOOP;
rep_state <= set;
WHEN set =>
pdol <= hd_rep (31 DOWNTO 0);
pdo2 <= hd_rep (63 DOWNTO 32);
pdo3 <= hd_rep (95 DOWNTO 64);
—— pdo4 to pdo29 OMITTED FOR CLARITY
pdo30 <= hd_rep (959 DOWNTO 928);
pdo31 hd_rep (991 DOWNTO 960) ;
pdo32 <= "0000" & hd_rep (1019 DOWNTO 992);
rep_state <= idle;
WHEN OTHERS =>
END CASE;
END IF;
END PROCESS;

bch_proc : PROCESS (clk)
BEGIN
IF (ctrl_rst_bch = ’1’) THEN
bch_state <= restart;
ctrl_index2 <= x"00";
ELSIF RISING_EDGE (clk) THEN
CASE bch_state IS
WHEN restart =>
rst_bch <= ’1’;
bch_state <= exec;
WHEN exec =>
IF (ctrl_index2 = x"8c") THEN
bch_state <= get;
ctrl_index2 <= x"00";
ELSE
rst_bch <= 70';
din_bch <= bchrnd (TO_INTEGER (UNSIGNED (ctrl_index2)));
ctrl_index2 <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index2) + 1);
END IF;
WHEN get =>
IF (ctrl_index2 = x"74") THEN
bch_state <= set;
ctrl_index2 <= x"00";

ELSE
bch_cw (TO_INTEGER (UNSIGNED (ctrl_index2))) <= dout_bch;
ctrl_index2 <= STD_LOGIC_VECTOR (UNSIGNED (ctrl_index2) + 1);

END IF;
WHEN set
pdo33 <= bch_cw (31 DOWNTO 0) XOR rep_res (31 DOWNTO 0);

pdo34 <= bch_cw (63 DOWNTO 32) XOR rep_res (63 DOWNTO 32);
pdo35 <= bch_cw (95 DOWNTO 64) XOR rep_res (95 DOWNTO 64);

pdo36 <= (bchrnd(ll DOWNTO 0) XOR rep_res (127 DOWNTO 116)) & (bch_cw (115 DOWNTO 96)

DOWNTO 96)) ;

<= bchrnd (43 DOWNTO 12) XOR rep_res (159 DOWNTO 128);

behrnd (75 DOWNTO 44) XOR rep_res (191 DOWNTO 160);
pdo39 behrnd (107 DOWNTO 76) XOR rep_res (223 DOWNTO 192);
pdod0 <= 70’ & (bchrnd(138 DOWNTO 108) XOR rep_res (254 DOWNTO 224));
bch_state <= idle;

WHEN OTHERS =>
END CASE;
END IF;
END PROCESS;

ket je_mode_proc : PROCESS (ctrl_ket je_mode)
BEGIN
IF (ctrl_ketje_mode = "01") THEN —-keygen
key_reg <= '0’ & rep_res (254 DOWNTO 128);
npub_reg <= 0’ & nce2;
ad_reg <= rep_res (127 DOWNTO 0);
ELSIF (ctrl_ketje_mode = "10") THEN --enc
key_reg <= dev_key;

XOR rep_res (115
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527 npub_reg <= pdi;

528 ad_reg <= '0’ & nce2;

529 ELSIF (ctrl_ketje_mode = "11") THEN --authenticator
530 key_reg <= dev_key;

531 npub_reg <= pdi;

532 ad_reg <= '1' & nce2;

533 END IF;

534  END PROCESS;

535

536  ketje_proc : PROCESS (clk)
537 BEGIN

538 IF (ctrl_rst_ketje = ’1’) THEN

539 ketje_state <= ldkey;

540 rst_ketje <= '1’;

541 ctrl_cnt <= x"00";

542 ctrl_checkandupd <= '0’;

543 ctrl_comp_t2 <= ’0';

544 ELSIF RISING_EDGE (clk) THEN

545 CASE ketje_state IS

546 WHEN ldkey =>

547 rst_ketje <= '0’;

548 key <= key_reg;

549 key_needs_update <='1’;

550 key_ready <='1";

551 ket je_state <= ldnce;

552 WHEN ldnce =>

553 key_needs_update <='0';

554 key_ready <='0';

555 npub <= npub_req;

556 npub_ready <='17;

557 ketje_state <= initstate;

558 WHEN initstate =>

559 npub_ready <='0";

560 IF (ctrl_cnt = x"0Oc") THEN --so total of 14 clk_periods
561 ctrl_cnt <= x"00";

562 ketje_state <= ldad;

563 ELSE

564 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED (ctrl_cnt) + 1);
565 END IF;

566 WHEN ldad =>

567 bdi <= ad_reg (TO_INTEGER (UNSIGNED (ctrl_cnt))*32+31 DOWNTO TO_INTEGER (UNSIGNED (ctrl_cnt))«32);
568 bdi_ready <= ‘17;

569 bdi_ad <="1';

570 IF (ctrl_cnt = x"03") AND (ctrl_ketje_mode = "10") THEN
571 bdi_eot <="1";

572 ELSIF (ctrl_cnt x"03") THEN

573 bdi_eoi <="1";

574 bdi_eot <="1";

575 END IF;

576 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED (ctrl_cnt) + 1);
577 ket je_state <= wtad;

578 WHEN wtad =>

579 bdi <= x"00000000";

580 bdi_ready <= ‘0’;

581 bdi_ad <= '0';

582 bdi_eot <='0';

583 bdi_eoi <='0';

584 IF (ctrl_ecnt = x"04") AND (ctrl_ketje_mode = "10") THEN
585 ketje_state <= ldmsg;

586 ctrl_cnt <= x"00";

587 ELSIF (ctrl_cnt = x"04") THEN

588 ket je_state <= comptag;

589 ctrl_cnt <= x"00";

590 ELSE

591 ketje_state <= ldad;

592 END IF;

593 WHEN ldmsg =>

594 bdi <= pufresp (TO_INTEGER (UNSIGNED (ctrl_cnt))*32+31 DOWNTO TO_INTEGER (UNSIGNED (ctrl_cnt))=32);
595 bdi_ready <= '1’;

596 IF (ctrl_cnt = x"27") THEN

597 bdi_eot <="1";

598 END IF;

599 ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED (ctrl_cnt) + 1);
600 ketje_state <= wtmsg;

601 WHEN wtmsg =>

602 bdi <= x"00000000";

603 bdi_ready <= "0’;

604 bdi_eot <='0';

605 bdi_eoi <='0';

606 IF (ctrl_cnt = x"28") then

607 ketje_state <= lstmsg;

608 <1 (TO_INTEGER (UNSIGNED (ctrl_cnt))*32-33 DOWNTO TO_INTEGER (UNSIGNED (ctrl_cnt))*32-64) <= bdo;
609 ctrl_ent <= x"00";

610 ELSIF (ctrl_cnt /= x"00") AND (ctrl_cnt /= x"01") THEN
611 <1 (TO_INTEGER (UNSIGNED (ctrl_cnt)) »32-33 DOWNTO TO_INTEGER (UNSIGNED (ctrl_cnt))*32-64) <= bdo;
612 ketje_state <= ldmsg;

613 ELSE

614 ket je_state <= ldmsg;

615 END IF;

616 WHEN lstmsg =>

617 IF (ctrl_cnt = x"01") THEN

618 c1(1279 DOWNTO 1248) <= bdo;

619 ketje_state <= comptag;

620 ctrl_ecnt <= x"00";

621 cl(31 DOWNTO 0);

622 cl(63 DOWNTO 32);

623 cl(95 DOWNTO 64);
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—- pdo44 to pdo76 OMITTED FOR CLARITY
pdo77 <= c1(1183 DOWNTO 1152);

pdo78 c1(1215 DOWNTO 1184);

pdo79 c1(1247 DOWNTO 1216);

pdo80 bdo;
ELSE

ctrl_cnt <= STD_LOGIC_VECTOR(UNSIGNED (ctrl_cnt) + 1);
END IF;

WHEN comptag =>
IF (tag_write = '1’) THEN
IF (ctrl_ketje_mode = "01") THEN --keygen
dev_key <= tag;
ketje_state <= idle;
ELSIF (ctrl_ketje_mode = "10") THEN —-enc
tl <= tag;
ctrl_comp_t2 <= ’17;
ket je_state <= idle;
ELSIF (ctrl_ketje_mode = "11") THEN --authenticator
t2 <= tag;
ketje_state <= idle;
ctrl_checkandupd <= ‘17;
END IF;
END IF;
WHEN OTHERS =>
END CASE;
END IF;
END PROCESS;

end Behavioral;

C.2.3 3-1 DAPUF
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// Buthor: J.G. (Gerben) Geltink // g.geltink@gmail.com

// Module: 3-1 DAPUF // dapuf.v

// This module describes the device DAPUF in the Conceiling Ketje Protocol as presented by the
// guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based

// Authentication Protocol".

//

// Copyright (c) 2015 Sakiyama, Machida, Iwamoto All Rights Reserved.
// Rdapted by J.G. (Gerben) Geltink, Copyright (c) 2016 under MIT license
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module DAPUF (clk, rst_n, idata, esig, Answer);

input clk; // Clock signal
input rst_n; // Reset signal
input [63:0] idata; // 64-bit challenge
input esig; // Input signal
output Answer; //l-bit response

[k ok kK k ko k ok xkxkxkxxxxx Wire/Register Definition DEgIn %%k & &k &k kkk ok k ok k ok k& k ok k ok ok ok ok ok k ok ox koo /

//reg [63:0] idata;

reg Answer_reg;

wire a0,al,a2,//// a3 to a64 OMITTED FOR CLARITY
wire b0,bl,b2,//// b3 to b64 OMITTED FOR CLARITY
wire c0,cl,c2,//// c3 to c64 OMITTED FOR CLARITY
wire d0,d1,d2,//// d3 to d64 OMITTED FOR CLARITY
wire e0,el,e2,//// e3 to e64 OMITTED FOR CLARITY
wire £0,£1,£2,//// £3 to £64 OMITTED FOR CLARITY
wire res_a,res_b,res_c,res_d,res_e,res_f;

/KRR KA KRRk KKK Rk KKK Rk Ak Rk kk k4 xk Wire/Register Definition DEeGIn skt txkkkdxknkstrshkdxhnkstrshktss/

kR kA ko kK ko kR ok kA kA kK kR kR ok ko ko k ko k Generate INput Signal DeGIn ko oxkkokkokokok ok ok ok ko ko kok ok ok ok ok ok ok ok kA ko ko kR ko ok

//assign idata = idata;

FDCE # (

JINIT(1’b0) // Initial value of register (1'b0 or 17bl)
) sig_reg_a (

.0(a0), // Dpata output

.C(clk), // Clock input

.CE(1'bl), // Clock enable input

.CLR(1'b0), // Asynchronous clear input

.D(esig) // Data input
)i

FDCE #(

JINIT(1'b0) // Initial value of register (1'b0 or 1’bl)
) sig_reg b (

.0(c0), // Data output

.C(clk), // Clock input

L.CE(1'bl), // Clock enable input

.CLR(1'b0), // Asynchronous clear input

.D(esig) // Data input
)i
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BT [ sekdok sk ke ko kK kK Kk A A KA K AR * GENETALE INPUL SLGNAL NG koo ok ok ok ko kK k Kk Kk kK kK k% k)
58

59 [k Rk kK Kk K K Kk K kR kK kR kK k ok ko kk ko xk ok k FAirst Selector Chain DEegin ko k kokok s kokok ok ok ok ok ok Kok ok ok Kok ok ok kK ok ok kk ok ok k /[
60 MUXF7 MUX_000(.0(al), .IO(a0), .I1(a0), .S(idatal[0])); // synthesis attribute keep of al is true;

61  MUXF7 MUX_001(.0(bl), .I0(c0), .I1(cO), .S(idata[0])); // synthesis attribute keep of bl is true;

62 MUXF7 MUX_002(.0(a2), .I0(al), .I1(bl), .S(idata[l])); // synthesis attribute keep of a2 is true;

63 MUXF7 MUX_003(.0(b2), .I0(bl), .Il(al), .S(idata[l])); // synthesis attribute keep of b2 is true;

64 //// MUX_005 to MUX_123 OMITTED FOR CLARITY

65 MUXF7 MUX_124(.0(a63), .I0(a62), .I1(b62), .S(idata[62])); // synthesis attribute keep of a63 is true;
66 MUXF7 MUX_125(.0(b63), .I0(b62), .I1(a62), .S(idata[62])); // synthesis attribute keep of b63 is true;
67 MUXF7 MUX_126(.0(a64), .I0(a63), .I1(b63), .S(idata(63])); // synthesis attribute keep of a64 is true;
68 MUXF7 MUX_127(.0(b64), .I0(b63), .Il(a63), .S(idatal[63])); // synthesis attribute keep of b64 is true;
BO ok xk kK KA KKK K KA KKK A KA A KKK KX AKX A XAk Kkk FITSE SELECLOL ChAain @A ik kkkdod ko ko ko ok kX K%k %k [
70

TL [ rxkkkkkr kA kR kA A A KRR A A A KRR A A A A KRR A A Ak Kk SECONA SELECLOT Chain DEGin ko ko kkkokk ko kkk ok k ok k koo k ok k ko [
72 MUXF7 MUX_128(.0(cl), .I0(a0), .I1(a0), .S(idata(0])); // synthesis attribute keep of cl is true;

73  MUXF7 MUX_129(.0(dl), .I0(c0), .I1(c0), .S(idata[0])); // synthesis attribute keep of dl is true;

74 MUXF7 MUX_130(.0(c2), .I0(cl), .I1(dl), .S(idata[l])); // synthesis attribute keep of c2 is true;

75 MUXF7 MUX_131(.0(d2), .I0(dl), .Il(cl), .S(idata(l])); // synthesis attribute keep of d2 is true;

76 //// MUX_132 to MUX_251 OMITTED FOR CLARITY

77  MUXF7 MUX_252(.0(c63), .I0(c62), .I1(d62), .S(idata[62])); // synthesis attribute keep of c63 is true;
78 MUXF7 MUX_253(.0(d63), .I0(d62), .Il(c62), .S(idata[62])); // synthesis attribute keep of dé63 is true;
79  MUXF7 MUX_254(.0(c64), .I0(c63), .I1(d63), .S(idatal[63])); // synthesis attribute keep of c64 is true;
80 MUXF7 MUX_255(.0(d64), .I0(d63), .I1(c63), .S(idatal63])); // synthesis attribute keep of d64 is true;
81 [ rxkkkkkr A AR R KA A KKK KA A KK I A A A KKK R A A Ak Kk SECONA SELECLOT ChAin €NA sk kk ko k ok Kk ok ok ke ko koK ok kK k ko [
82

83 [ krkxkkk Ak xRk A AR KA A ARk A ARk A xkkkx 4% Third Selector Chain DEeGin ks txx skt xsskstns kit ssnhktrshktsrnk/
84 MUXF7 MUX_256(.0(el), .I0(a0), .I1(a0), .S(idata[0])); // synthesis attribute keep of el is true;

85 MUXF7 MUX_257(.0(fl), .I0(c0), .I1(c0), .S(idata[0])); // synthesis attribute keep of fl is true;

86 MUXF7 MUX_258(.0(e2), .I0(el), .I1(f1), .S(idata(l])); // synthesis attribute keep of e2 is true;

87 MUXF7 MUX_259(.0(f2), .I0(fl), .Il(el), .S(idata(l])); // synthesis attribute keep of f2 is true;

88 //// MUX_260 to MUX_379 OMITTED FOR CLARITY

89 MUXF7 MUX_380(.0(e63), .I0(e62), .I1(f62), .S(idata[62])); // synthesis attribute keep of e63 is true;
90 MUXF7 MUX_381(.0(£63), .I0(£62), .I1(e62), .S(idatal[62])); // synthesis attribute keep of 63 is true;
91 MUXF7 MUX_382(.0(e64), .I0(e63), .I1(f63), .S(idatal[63])); // synthesis attribute keep of e64 is true;
92  MUXF7 MUX_383(.0(f64), .I0(f63), .Il(e63), .S(idatal[63]1)); // synthesis attribute keep of f64 is true;
OB [ kkkxkk kA A xR A ARk kA A Kk kA Ak kA A xk k4% Third Selector CRain end kx4 xxkktxkkkktxxhktxsnkhtsshksssnk/
94

OB [ hrkkkkkhkh Ak hh kA k kKA AA KA KA KA AAAA K GENETALE RESPONSE DEGIN #k ko ko ko kA A A KA KA KA KA KA AKX KA K]
96  SRL SRL_O0(.S(a64), .R(c64), .Q(res_a)); // synthesis attribute keep of res_a is true;

97  SRL SRL_1(.S(c64), .R(e64), .Q(res_b)); // synthesis attribute keep of res_b is true;

98 SRL SRL_2(.S(e64), .R(a64), .Q(res_c)); // synthesis attribute keep of res_c is true;

99  SRL SRL_3(.S(b64), .R(d64), .Q(res_d)); // synthesis attribute keep of res_d is true;

100  SRL SRL_4(.S(d64), .R(£64), .Q(res_e)); // synthesis attribute keep of res_e is true;

101  SRL SRL_S5(.S(f64), .R(b64), .Q(res_f)); // synthesis attribute keep of res_f is true;

102

103 assign Answer = Answer_reg;

104

105 always @ (posedge clk or negedge rst_n) begin

106 if (~rst_n) begin

107 //rst_n was unneccesary => changed by JGG

108 Answer_reg <= res_a“res_b“res_c*res_d*res_e*res_f;//1'b0; // Reset

109 end

110 else begin

111 Answer_reg <= res_a“res_b’res_c’res_d“res_e“res_f;

112 end

113 end

114 /akdkrkxkk ok r kA Ak ok kA A A KRR A KA KK I A A A4k ok RESPONSE GENETALING PATt ©Nd #k kkkkkkkkkkokkkkkkk ok k ok ok &k ke kA Ak k
115 endmodule

116 [ xrrrrrrhrhkhhhhhhhhhhh kA k ok k kA kA% 4x 3=1 DAPUF MOAULE NG * 55k hk ko ko dhdkhkdok ko kA A& A KA KA KKK KA KA K]
117

118

119 [ E KKk K kKKK KK KA KKK A KA A KK F Ak xkkxxkxxxxxxx SR Latch Module DEgin s#kskssx sk ks kxkxkk Ak k kX kKA KKK AR Kk KX FHh A K/
120 module SRL(S, R, Q);

121  input S,R;

122 output 0;

123 wire QB;

124

125 NAND2 NAND_O0(.IO0(S), .I1(QB), .0(Q)); // synthesis attribute keep of Q is true;

126 NAND2 NAND_1(.IO(R), .I1(Q), .O(QB)); // synthesis attribute keep of OB is true;

127  endmodule

128 [k ok ok kA k kKA KAk KKK A KKK KA KAk kA A x4k kkxx SR LAtCh MOAULE @Nd #kkk k% kkkkkkkkkhk k% kkkh kA %k kh kA KKK hAA KKK/
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C.2. Hardware

C.2.4 Constraints

B N
2  # Author: J.G. (Gerben) Geltink # g.geltink@gmail.com

3 # Module: Xilinx Design Constr # constr.xdc

4 # This module describes the design constraints of the device DAPUF in the Conceiling Ketije

5 # Protocol as presented by the guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A

6 # Lightweight PUF-based Authentication Protocol™.

T %

8 4 Copyright (c) 2016 J.G. Geltink under MIT license

L= T
10

11 ok ko K kK K KKK KKK K KKK K KKk Kk Rk xk ok ok xkkkxk STATT registers DEeGII #k kkk kkokok kok kK k k kK kKK kK KKk KKKk ok Kk ok ok x ko ox

12 set_property BEL BFF [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_al
13 set_property LOC SLICE_X56Y149 [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_al
14 set_property BEL AFF [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_b]
15 set_property LOC SLICE_X56Y149 [get_cells CKP_DEV_CORE_0/DAPUF_0/sig_reg_b]

16 frrkrk ok r kAR kAR AR AR AR AR R AR R ARk x SLALT LEUISTELS @NA *kdxkxkkknkdkh s ki hxkkkkx kA ARk A R AR AF AR
17
18  HxrkrrkkrkrrhArAkrhAARARAARAARAAARx FITST Selector Chain DEgin ks ks tsksxkskstsksrkshstrksrksnstrhrsd

19  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_000]

20  set_property LOC SLICE_X54Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_000]
21  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_001]

22  set_property LOC SLICE_X55Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_001]
23  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_002]

24  set_property LOC SLICE_X54Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_002]
25  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_003]

26  set_property LOC SLICE_X55Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_003]
27  #### MUX_004 to MUX_123 OMITTED FOR CLARITY

28  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_124]

29  set_property LOC SLICE_X54Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_124]
30 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_125]

31 set_property LOC SLICE_X55Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_125]
32  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_126]

33  set_property LOC SLICE_X54Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_126]
34  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_127]

35 set_property LOC SLICE_X55Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_127]

36 Frkkrkkkkkkkrhxkhrkhkhkkkxkxkxkxkkkkkxkxkxkx First Selector Chain end *x*rkkkkkkkkhkhkhkhhhhrhrhkhkhkrhrhrhff
37
B8 ffkkxkx kA xRk kAR k Rk A Ak Rk xkk kA xxhkkx Second Selector Chain DEegIn ks txkkkaskxksdxkkkdxhxhrhxrhkhrrri

39  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_128]

40  set_property LOC SLICE_X56Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_128]
41  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_129]

42  set_property LOC SLICE_X57Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_129]
43  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_130]

44  set_property LOC SLICE_X56Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_130]
45  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_131]

46  set_property LOC SLICE_X57Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_131]
47  #### MUX_132 to MUX_251 OMITTED FOR CLARITY

48  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_252]

49  set_property LOC SLICE_X56Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_252]
50 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_253]

51  set_property LOC SLICE_X57Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_253]
52  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_254]

53  set_property LOC SLICE_X56Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_254]
54  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_255]

55 set_property LOC SLICE_X57Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_255]

BB fkokkokkkokk ko k ko k ko Rk ok k ko k xRk kkkkkxkxxxk Second Sele T OCRALN ©NA ke kod ko ok ok ok ok ko koo ok ok ok ok ok ok ook ko ok o ko

58 3k ok ok ko ok ok ok ok ok ok ok k ok ok ko k ko ok Rk kok ok ko k ok kb Third Selector Chain DegIn ko ki ok ko ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok
59  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_256]

60 set_property LOC SLICE_X58Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_256]
61  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_257]

62  set_property LOC SLICE_X59Y148 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_257]
63  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_258]

64  set_property LOC SLICE_X58Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_258]
65  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_259]

66  set_property LOC SLICE_X59Y147 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_259]
67  #### MUX_260 to MUX_379 OMITTED FOR CLARITY

68 set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_380]

69  set_property LOC SLICE_X58Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_380]
70  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_381]

71  set_property LOC SLICE_X59Y86 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_381]
72  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_382]

73  set_property LOC SLICE_X58Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_382]
74  set_property BEL F7BMUX [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_383]

75  set_property LOC SLICE_X59Y85 [get_cells CKP_DEV_CORE_0/DAPUF_0/MUX_383]

76 Fakkkkkkkkkkkkkkkkkkkkkkkhxkxkxxxxxxxxxx Third Selector Chain end sk xkkkkkkkkkkkkkkkk k& k& k &k kkkkkkkkkkk
77
78
TO Bk kA kA AR A KA KRR AR R AR AR KA KA R AR5 GENETALE RESPONSE DEGLN 4k 4k 4k kkkkk Ak Ak Ak dhdhbhbhbhkhkhkhsthtd

80 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_0]
81 set_property LOC SLICE_X59Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_0]
82  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_1]
83  set_property LOC SLICE_X56Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_1]
84  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_1]
85 set_property LOC SLICE_X58Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_1]
86 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_0]
87 set_property LOC SLICE_X54Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_0/NAND_0]
88 set_property BEL C6LUT [get_cells CKP_DEV_CORE_O0/DAPUF_0/SRL_2/NAND_1]
89  set_property LOC SLICE_X54Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_1]
90 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_0]
91  set_property LOC SLICE_X56Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_1/NAND_0]
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92  set_property BEL C6LUT [get_cells CKP_DEV_CORE_O0/DAPUF_0/SRL_3/NAND_1]
93  set_property LOC SLICE_X57Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_1]
94  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_0]
95  set_property LOC SLICE_X58Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_2/NAND_0]
96  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_1]
97  set_property LOC SLICE_X59Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_1]
98  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_0]
99  set_property LOC SLICE_X55Y84 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_3/NAND_0]
100 set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_1]
101 set_property LOC SLICE_X55Y82 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_5/NAND_1]
102  set_property BEL C6LUT [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_0]
103  set_property LOC SLICE_X57Y83 [get_cells CKP_DEV_CORE_0/DAPUF_0/SRL_4/NAND_0]

T4 frwrbsokdkkdok ok ok ok k kA kKA KK KKk kK ko k GENETAtE RESDONSE NG # ki kk i bk kA ko k ko ko ko kb k4 ko k4 ko

a

3R]

C.2.5 BCH Encoder

1

2 Author: J.G. (Gerben) Geltink g.geltink@gmail.com

3 —-- Module: BCH encodeer bch.vhd

4 - This module describes the device BCH encoder of the Conceiling Ketje Protocol as presented by
5 the guiding MSc thesis: Geltink, J. G. (2016). "Conceiling Ketje: A Lightweight PUF-based
6 Authentication Protocol™.

-

8 - Copyright (c) 2016 J ltink under MIT license

9

10

11 - ring for encoder

12 LIBRARY ieee;
13 USE ieee.std_logic_1164.ALL;
14 USE WORK.const.ALL;

16 ENTITY ering IS
17 PORT (clk, rll, din: IN std_logic;

18 dout : OUT std_logic); tput serial data
19 END ering;

20

21  ARCHITECTURE eringa OF ering IS

22 SIGNAL rin, rout: std_logic_vector(0 TO nk-1) := (others => '0’); -- ring register
23 SIGNAL rin0: std_logic;

24 BEGIN

25 dout<= rout (nk-1);

26 rin0 <= (din XOR rout (nk-1)) AND rll;
27

28 rin(0)<= rin0;

29 rin(l) <= rout(0);

30 rin(2) <= rout (1);

31 rin(3) <= rout(2) XOR rin0;

32 rin(4) <= rout(3) XOR rin0;

33 rin(5) <= rout(4);

34 rin(6) <= rout(5);

35 rin(7) <= rout(6);

36 rin(8) <= rout(7) XOR rin0;

37 rin(9) <= rout(8) XOR rin0;

38 rin(10) <= rout(9);

39 rin(11l) <= rout(10);

40 rin(12) <= rout(1ll);

41 rin(13) <= rout (12);

42 rin(14) <= rout (13);

43 rin(15) <= rout (14);

44 rin(16) <= rout (15);

45 rin(17) <= rout(16) XOR rin0;

46 rin(18) <= rout(17) XOR rin0;

47 rin(19) <= rout(18) XOR rin0;

48 rin(20) <= rout (19) XOR rin0;

49 -- rin(21) to rin(99) OMITTED FOR CLARITY
50 rin(100) <= rout(99);

51 rin(101) <= rout (100) XOR rin0;

52 rin(102) <= rout(101) XOR rin0;

53 rin(103) <= rout (102) XOR rin0;

54 rin(104) <= rout(103);

55 rin(105) <= rout(104) XOR rin0;

56 rin(106) rout (105) XOR rin0;

57 rin(107) <= rout(106) XOR rin0;

58 rin(108) rout (107) XOR rin0;

59 rin(109) rout (108);

60 rin(110) rout (109);

61 rin(111) rout (110) XOR rin0;

62 rin(112) rout (111);

63 rin(113) rout (112);

64 rin(114) rout (113) XOR rin0;

65 rin(115) rout (114);

66 -- Generator polynomial: 100110001100000001111011010000110000001111101101110001101111000111010010111
67 - 011000010100111100101011101110111100100101
68 -- Number of XOR gates= 59

69

70 PROCESS BEGIN

71 WAIT UNTIL clk’EVENT AND clk='1’;

72 rout<= rin;
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75
76

78
79

81
82
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84
85
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88
89

91
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93
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95
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99
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114
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END PROCESS;
END eringa;

—— COUNTER MODULO n FOR ENCODER BCH CODE (n,k)
-- pe- parallel data in; rll-ring loop lock
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

USE WORK.const.ALL;

ENTITY ecount IS

PORT (clk, reset: IN std_logic;
vdin: OUT std_logic);

END ecount;

ARCHITECTURE ecounta OF ecount IS

SIGNAL cout: std_logic_vector(0 TO m-1); -- cout in GF(2"m); cout= L"count
SIGNAL vdinR, vdinS, vdinl: std_logic;
BEGIN

vdinR<= cout (0) AND NOT cout (1) AND NOT cout (2) AND NOT cout(3) AND NOT cout (4) AND cout(5) AND NOT cout (6) AND
NOT cout (7);
-- reset vdin if cout==k-1
vdinS<= ( NOT cout (0) AND cout (1) AND cout(2) AND cout(3) AND NOT cout (4) AND NOT cout (5) AND NOT cout (6) AND
cout (7)) OR reset;
-- vdinS=1 if cout
vdin<= vdinl AND NOT reset;

n-1

PROCESS BEGIN
WAIT UNTIL clk’EVENT AND clk='1';
IF vdinR='1/ THEN

vdinl<= 70’;
ELSIF vdinS='1’ THEN

vdinl<= 717;
END IF;
END PROCESS;

PROCESS BEGIN -- increment or reset cout in ring, cout=L”“count
WAIT UNTIL clk’EVENT AND clk='1';
cout (0) <= cout (m-1) OR reset;
cout (1) <= cout (0) AND NOT reset;
cout (2) <= (cout (1) XOR cout (m-1)) AND NOT reset;
cout (3) <= (cout (2) XOR cout (m-1)) AND NOT reset;
cout (4) <= (cout (3) XOR cout (m-1)) AND NOT reset;
cout (5) <= cout (4) AND NOT reset;
cout (6) <= cout (5) AND NOT reset;
cout (7) <= cout (6) AND NOT reset;
END PROCESS; --p(x) = 100011101

END ecounta;

-- ENCODER
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY bch255_139_3lenc IS
PORT (clk, reset, din: IN std_logic;
vdin, dout: OUT std_logic); --output serial data
END bch255_139_3lenc; -- vdin - valid data in - to enable external data shifting

ARCHITECTURE enca OF bch255_139_3lenc IS
SIGNAL vdinl, rin, rout, rll: std_logic;
—- rll-ring loop lock, pe-parallel enable din

COMPONENT ecount --counter encoder
PORT (clk, reset: IN std_logic; vdin: OUT std_logic);
END COMPONENT;
FOR ALL: ecount USE ENTITY WORK.ecount (ecounta);
COMPONENT ering --ring for encoder
PORT (clk, rll, din: IN std_logic; dout: OUT std_logic);
END COMPONENT;
FOR ALL: ering USE ENTITY WORK.ering (eringa);
BEGIN
cl: ecount
PORT MAP (clk, reset, vdinl);
rl: ering
PORT MAP (clk, rll, rin, rout);
rin<= din AND NOT reset;
rll<= vdinl AND NOT reset;
vdin<= vdinl;

PROCESS BEGIN
WAIT UNTIL clk’EVENT AND clk='1’;
dout<= (NOT vdinl AND rout) OR (vdinl AND rin);
END PROCESS;

END enca;
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