
Parallelism by means of multithreading in
Clean

Author:
J.J.H Groothuijse

Supervisor:
dr. P.W.M. Koopman

Second reader:
dr. P.M. Achten

Master’s Thesis
Computing Science

Radboud University Nijmegen
April 17, 2016

2

Abstract

The current generation of processors can execute multiple threads at once. In order to get all performance
from the current generation of processors, programs must leverage multithreading such that each processor
core gets a share of the work. Clean is a lazy pure functional programming language, which means
expressions in Clean can be evaluated independently of each other. This allows parallel evaluation to be
used without changing the semantics of a program.

However, the current implementation of Clean does not support either parallel evaluation or multi-
threading.

Using the par and pseq combinators, a Clean programmer is able to use multithreading to increase
performance, given that the program has portions that can be evaluated in parallel. This work presents
four variations of the par and pseq combinators, implemented in Clean.

The presence of a garbage collector complicates the design of the par and pseq combinator. The way
the garbage collector works, prevents us from sharing data directly between threads. Instead, data is
packed and copied, to allow the communication needed to distribute work and gather the results.

These combinators have been used to implement case studies, to give insight in the expected overhead
and scalability of the combinators. The case studies show that the combinators are suited to execute
Clean programs efficiently on multi core processors. Using a quad core processor, most case studies show
a significant speed-up.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Concepts . 9
2.2 Computer hardware . 10
2.3 Problems in utilizing hardware . 11
2.4 Goal . 13

3 Starting point 15
3.1 Runtime system support . 15
3.2 Concept of multithreading in Clean . 15
3.3 Limitations of the starting point . 16
3.4 Thread libraries . 17

4 Implementation of combinators 19
4.1 Thread creation . 19
4.2 Copying the graph . 19
4.3 Synchronization . 20
4.4 Variants of thread creation . 21
4.5 Asymmetry of operational semantics . 23
4.6 Strictness . 24
4.7 Uniqueness . 24

5 Case Studies 25
5.1 Fibonacci case study . 25
5.2 Parallel map case study . 28
5.3 Merge sort case study . 29
5.4 Traveling salesman problem case study . 30

6 Comparison with other languages 33

7 Related work 37

8 Future work 41

9 Conclusion 43

A Results for examples 49

B Cross language examples 51

5

6

Chapter 1

Introduction

In 2005, AMD introduced the first dual core CPU for the desktop market. Dual core CPUs essentially
are two processors sharing the same chip, doubling the maximum number of calculations per second
compared to a single core CPU. To harness this new calculation throughput, a program has to consist of
multiple threads, at least one for each core. Since then four, six and eight cores have become common
place, meaning single threaded applications can only utilize a fraction of current hardware.

Multithreading allows a program to be executed such that more than one piece of the program is
executed at once.1 Traditionally threads are used to run multiple tasks simultaneously by a program, for
instance to keep the interface buttons responsive while calculating something, or while having multiple
network or file system actions.

Clean is a functional programming language based on graph reduction. Together with Haskell, Clean
is one of the very few so called lazy pure functional programming languages. Being a lazy language means
that function arguments are only evaluated when needed. This contrasts with most other programming
languages which use eager evaluation, meaning that all function arguments are evaluated before calling a
function. Being a pure functional language means that there are no mutable variables and no side effects.
These restriction lead to referential transparency, enabling reasoning about equality of functions and
data. Referential transparency and free evaluation order make these languages in principle well suited for
parallel evaluation.

A Clean program is made up of reduction rules and a root graph. The reduction rules are specified
by functions. Graphs contain nodes, nodes have a node-id [Groningen, 1990]. Using node-ids allows for
nodes to be shared among graphs. Instead of evaluating a node multiple times, a shared node is evaluated
only once. Having a node-id also allows graphs to be cyclic [Nöcker et al., 1991b]. When executing the
program, the root graph is reduced using the reduction rules. When the graph can no longer be reduced,
it is said to be in normal form and the program is done. If a graph representing a data structure is
evaluated to head normal form, the structure of the root node of the graph is revealed, but no more
[Hartel et al., 1995]. In this thesis the words calculate, compute and evaluate all mean reduce.

The last major rewrite of Clean dates from the early 2000s, several years before multi cores became
available in the consumer market. Earlier versions of Clean, Concurrent Clean, allowed the programmer to
annotate graphs which could be evaluated in parallel [Nöcker et al., 1991a]. Concurrent Clean evaluated
parts of the reduction graph on different computers. The last rewrite ended support for parallel annotations
as used in the late 90s. Currently Clean does not actively support multithreading and no operators or
combinators exist to make use of multithreading.

The goal of this project is to make it easy to use multithreading in Clean by providing Clean primitives
to start new threads and to return the result to the current thread.

There are two challenges for the efficient execution of Clean programs on a multi core processor. The
first is to decide which parts of the program can be executed on another core. The second challenge is to
limit the interaction between cores working on the same program, so that threads don’t have to wait.
The first is solved by having the programmer explicitly annotate how work may be split. To solve the
second challenge, several variations of the combinator are implemented to see which interaction model is
best at limiting the interaction between cores.

1This was always possible by running the program multiple times at once, but using multithreading each thread gets
access to the same memory allowing these threads to collaborate more efficiently.

7

This report documents the process of executing the project, it warns for pitfalls and summarizes the
lessons learned. This document can be used as a guide and starting point for future attempts at providing
multithreading primitives in Clean.

Chapter 2 Background defines concepts used in this thesis, provides an overview of the problems
that this project addresses and states the goal of the project. In chapter 3 Starting Point the current
state of development in Clean is discussed, including work that was done to make Clean thread safe and
Clean modules that were adapted to serve in this project. It then goes on to outline which libraries were
used outside of Clean, why these are necessary and how these libraries are used. The steps needed
to implement the combinators are described in chapter 4 Implementation. In chapter 5 Use cases, a
few simple use cases illustrate usage of the combinators and what performance characteristics should be
expected in terms of overhead and scaling. In chapter 6 Comparison with other languages, one of the
use cases is implemented in C, C++, Java and Haskell, to compare speed-ups and efficiency. Chapter 7
Related Work discusses a selection of papers on the subject of graph rewriting, parallel programming,
distributed programming and concurrency. Chapter 8 Future Work outlines possible improvements and
additions to the current implementation. Chapter 9 Conclusion reflects on the process and the results,
with recommendations for possible future implementations.

8

Chapter 2

Background

The following sections first define concepts that will be used throughout this thesis, then use those
concepts to describe the environment of this project and the problems associated with multithreading,
before describing the goal of this project.

2.1 Concepts
The following concepts are used throughout this thesis.

Parallelism
Parallelism in the context of computing science means that a computation is split in parts, and that those
parts are executed at the same time. The ultimate goal is to have the computation take less time.

Process
A process is a running application [Vyssotsky et al., 1965]. A process has its own memory that no one
else can read from1 or write to. Multiple processes use inter-process communication, called IPC, to
communicate with each other. IPC can be provided by the operating system or through facilities like
the file system and network. IPC includes Pipes (Unix sockets), message queues and shared memory
[pipe, 2016, messagequeue, 2016, shm, 2016]. These facilities add overhead.

Thread
A thread is the smallest unit of program execution that can be managed by the operating system. A
process contains one or more threads [DaveMcCracken, 2002]. A thread shares its memory with other
threads of the same process. This enables communication between threads, without copying data. It also
gives rise to a number of things that can go wrong, which we discuss in section 2.3 Problems. Depending
on the available resources these threads can be executed interleaved or in parallel.

Garbage Collection
Memory management in Clean is done using garbage collection. When Clean needs new memory, it
is allocated on the end of the heap, which is a cheap operation. When the heap is full however, the
request for new memory starts Cleans garbage collector. The garbage collector inspects the heap to find
memory that can no longer be reached (garbage) to be reclaimed. Reclamation happens by compaction,
data is moved and references to data are updated accordingly [Groningen et al., 1991]. Moving data and
updating references is not something that can be done in parallel with another operation using that same
data.

1Forked processors can read from their parents memory due to copy-on-write semantics

9

2.2 Computer hardware
This section introduces the current state of affairs in computer hardware, outlining areas where the
problems discussed in the next section arise from.

CPUs
Legacy desktop CPUs2 can only work on one thread at a time. To create a multi tasking environment,
the operating system features task schedulers. These schedulers allow programs to run interleaved on the
CPU.

Processors with hyperthreading act as two processors to the operating system. These processors have
the administrative capacity to allow two threads to run simultaneously, but they lack the execution units
to allow two threads to run at twice the speed a single thread could run.

Current CPUs do have multiple cores. Multi core CPUs essentially are multiple processors on one
chip, sharing memory. In order to use all cores, each core must have its own thread to work on.

Memory
The state of the program is not only stored in memory. A crucial part is stored in the registers on the
CPU. Register values can be copied to and from memory. Registers allow faster access to data and
compilers try keep important and often used data in these registers. Registers are also essential to the
processor itself, it keeps track of the stack frame pointer and the program counter3.

Part of the memory is cached in the processor to speedup access. This means a copy of the memory
is made inside special cache memory. This cache memory resides on the CPU and has a very limited
capacity. This means it only copies a tiny portion of the memory. The CPU is responsible for copying to
and from memory and for administration.

Cache Hierarchy
Modern CPUs have multiple cores, each core is seen as a processor by the operating system. These cores
have their own execution units and registers and in general each core has its own cache, up to a certain
level of cache. So parts of the memory is copied to caches and registers, which are not shared among
cores, while the main memory itself is shared among cores. The memory topology is of vital importance
to the attained speedup of a multithreaded program. Caches keep a local copy of a tiny part of the
memory. When the threads mutate memory that is copied in the cache of another core, an effect known
as false sharing occurs, see figure 2.1 (a). Cache coherency mechanisms continuously force the other core
to clear its cache and fetch data from main memory. False sharing can result in performance degradation
compared to a single threaded version of a program.

The cache hierarchy is a result of a cost/performance trade off for CPUs, trying to get maximum
performance from a limited chip size. A larger cache requires the more logic for its address decodes, and
it has a longer critical path, increasing latency. So large caches tend to be slower than small ones. But
larger caches can store more data and thus have a better hit rate. Because of this, CPUs typically have a
small fast cache followed by a larger and slower cache. [Paul Genua, 2004]

To combat false sharing, different cores must access memory that is far enough away from each other,
see figure 2.1 (b).

2Consumer grade x86 processors commonly used in desktops and laptops
3Only the program counter is truly essential, programs can be written in assembly such that they do not require a stack

frame pointer.

10

(a) false sharing (b) no false sharing

Figure 2.1: Memory topology of a dual core processor. Illustration by Kim Weustink.

2.3 Problems in utilizing hardware

Single threaded applications utilize only a fraction of the computational hardware of modern PCs. To get
maximum performance out of ordinary desktop computers, we must use multithreading. Multithreading
introduces a number of problems, related to memory use, distribution of work and garbage collection.
Each of these problems is discussed in detail in this section.

Problems related to memory use

Sharing memory and allowing mutations of memory to happen in parallel gives rise to these problems:

1. When data structures are shared and mutated, some threads can see (partly) outdated memory.

2. Invariants cannot be guaranteed for shared data structures.

3. All global variables are shared by default, compounding the latter two problems.

1. Different threads typically run on different cores. Each core has cache containing a local copy of data
in memory, see subsection 2.2 for details. While CPUs do have a cache coherency, optimizations in CPUs
and compilers may change the order of execution of instructions, leading to inconsistency. Optimizations
that do not lead to inconsistency in a single thread, can lead to inconsistency when using multiple threads.
[Meixner et al., 2006] Furthermore, for registers no such coherency mechanism exists, so only load and
store operations propagate changes.

Another problem with mutating shared data is false sharing, which occurs when pieces of memory
in cache are updated by another core. This causes the cache coherency mechanism to invalidate cache
lines and thus reduce performance. When this happens frequently, the benefit of multithreading can be
completely negated. See section 2.2 for more details.

2. Using multithreading, memory is available to read from and write to, by multiple threads. To ensure
correctness of programs, programmers use invariants. Invariants are assertions that hold when entering
and exiting a block of code. [Hoare, 1972] While executing the block, the invariant may be broken, so
long as its restored before exiting. In normal programs that means that any code that is not inside the
code block, or called from without the block, can assume that the invariant holds. In multithreaded
programs this assertion does not hold for invariants concerning memory that is shared with other threads.

3. A global variable has a fixed memory location, because of this, all threads will always have access to
it, so all global variables are shared. In shared memory the previous two problems can occur.

To combat this situation, locks are introduced. Locks allow exclusive access to certain resources.
When a thread acquires a lock, other threads requesting that lock wait until the first thread releases
its lock. However, locks can lead to diminished performance and give rise to deadlocks, when not used
appropriately.

11

Problems related to the distribution of work
There is no obvious way to distribute work automatically, because one can not decide whether a
computation takes long enough to make parallelizing worthwhile.

Problems related to garbage collection
Garbage collectors delete and move data. While a garbage collection cycle is running, the heap can
be in an inconsistent state. This means that without special care, in a multithreaded program some
threads may see inconsistent data, due to garbage collection. Several garbage collection strategies are
implemented in other languages. For this project we focus on how to make it thread safe. Approaches by
other languages include pausing all threads in Java, parallel garbage collection Haskell and one shared
heap and a separate private heap per thread in OCaml.

12

eulerPlusFib :: Int → Int
eulerPlusFib n = x par y pseq (x + y)
where

x = fib n
y = euler n

Figure 2.2: Example of use of the par and pseq operators

2.4 Goal
The goal of this project is to make it easy to use multithreading in Clean.

Past versions of Clean, formerly called Concurrent Clean, allowed the programmer to specify parallel
evaluation by annotations. This suggests parts of the graph could be computed on a different computer.
A major rewrite ended this support for declarative parallelism. Currently Clean does not actively support
multithreading, so no operators or combinators exist to specify potential parallel evaluation.

To solve the distribution of work problem, the programmer needs to define the distribution explicitly.
To that end, the par and pseq combinators are selected as interface for explicit thread management
[Marlow et al., 2009]. Using par and pseq combinators, a Clean programmer is able to use multithreading
to increase performance, given that the program has portions that can be evaluated in parallel.

Reasons for choosing par and pseq include:

• They are well defined in literature.

• Other languages have successfully implemented them.

• They are low level enough to build other abstractions on.

• They are high level enough to encapsulate representations of threads and locks.

• They conceptually integrate well in lazy functional languages.

Semantics
The par and pseq combinators should have special operational semantics. Their presence should indicate
part of the calculation can be done by another thread.

(par) i n f i x l 2 :: a b → b
(pseq) i n f i x l 3 :: !a b → b

The operator par x y evaluates x to head normal form, on a different thread, while evaluating y on
the main thread. It returns y when both y and x are evaluated. The operator pseq x y first evaluates
x and then returns y. When par and pseq are used in expression x par (y pseq z), x is calculated
by another thread while y is simultaneously calculated by the main thread. When both x and y are
normalized they can be used in expression z.

This definition allows room for design decisions, which we explain in chapter 4 Implementation, where
we introduce four different variations. These semantics differ slightly from the par and pseq operator in
Haskell, see section 4.4 for details.

13

14

Chapter 3

Starting point

The starting point for this project is unpublished work that was done by John van Groningen.
John has made a version of the runtime system to support multithreading and created a number of

sample programs, to show the feasibility of multithreading in Clean.
This work has resulted in support in the runtime system, a conceptual model for using multiple

threads and a low-level implementation of an example. After a short recap of the problems surrounding
parallelism in Clean, the remainder of this chapter discusses each of these parts.

As stated in section 2.1, when multithreading is used all global variables become shared by default.
While Clean does not allow a user to specify such global variables, its runtime system uses global variables
for its internal bookkeeping.

The shared address space supplied by multithreading allows us to directly share graphs. However,
references to graphs can be invalidated by the garbage collector. This leads to a design where the graph
specifying work to be outsourced, is copied to the heap of another thread. Since graphs can have references
to other graphs, a deep copy is required. This involves packing the graph in a format such that it can be
copied to the destination thread, where it is unpacked.

3.1 Runtime system support

Clean uses a runtime system written in C. This runtime system uses a number of global variables, like
the stack pointer and heap pointer. The stack pointer and heap pointer are not meant to be shared and
the program becomes corrupted if multithreading is used. So, Clean is not thread safe. To make Clean
thread safe, John has modified the runtime such that each thread gets its own version of these global
variables, by providing a thread specific offset in a register. Each thread also has its own heap. The
runtime also contains an entry point function, to be called when a new heap and stack are allocated. This
allows Clean threads to run completely independent.

3.2 Concept of multithreading in Clean

The use of one garbage collector per thread solves many problems commonly associated with multithreading
in a garbage collected language, but it comes at a price: subgraphs must be copied from memory of one
thread to memory of the other thread.

Packing and copying the graph

Clean contains functions to pack graphs, these functions are used by the ITask [itasks, 2015] system. The
ITask system is a task-oriented programming toolkit, which uses the graph packing and copy functions
for persistent storage. We can not directly use these functions, as we need to be able to specify where the
packed graph will reside, in order to avoid problems with garbage collection. However, the core logic for
packing and unpacking the graph can be completely reused.

15

Example multithreaded programs
Using this thread safe version of Clean, John has implemented three programs demonstrating the use of
multiple threads. This program uses mostly ABC and machine code embedded in ABC, to let the threads
communicate with each other. This communication happens via memory allocated by an ABC instruction
to call malloc, its address is then transfered to each thread by a parameter of the pthread_create method.

The examples consist of three programs:

• One program to demonstrate how to copy a node from one heap to another.

• One program that does a sanity check using both multithreading and graph copying functions.

• A GTK(GIMP Toolkit, a multi-platform toolkit for creating graphical user interfaces [gtk, 2015])
program that calculates and draws a fractal using multiple threads.

Contained in the programs are small pieces of code, that do the following things:

• Create a thread, by calling a C function from the pthreads library.

• Share memory / resources, by calling the C function malloc and giving each thread the pointer that
malloc returned.

• A mechanism for waiting on other threads, using wait functions from the pthreads library (sem_open,
sem_post, sem_wait).

• A mechanism to copy Clean graphs into strings and from strings back into graphs again.

3.3 Limitations of the starting point
While these example programs demonstrate the use of multithreading in Clean, they lack any form of
abstraction layer. Changing the program now needs in-depth knowledge of the ad-hoc allocated memory
structure, so for now it contains no functionality that is useful to other programmers.

For this project that means it is the perfect starting point for creating those abstractions (primitives)
to add multithreading to Clean such that a programmer can easily use it. Problems that have been left
open include the following:

• To spark threads and use their results.

• Primitives for the programmer.

• A mechanism to cache threads (thread pools).

• A way to limit the total number of threads.

16

3.4 Thread libraries

It is common practice when creating software to use libraries of existing software, such that abstractions
for the hardware and operating systems are already made. This not only saves work during the project
itself, but also during maintenance, as those libraries get updated to reflect new hardware and operating
system changes. The choice for libraries can be very important in the long run, as some libraries eventually
disappear while others remain supported.

In my opinion, open source libraries are the safer option, because other people can continue development
after the original authors have stopped. Whether this actually happens depends on the state of the
project and the number of users.

This project uses two libraries. The first is the pthreads library, which is part of the POSIX standard
and abstracts the way threads are created on all major operating systems [DaveMcCracken, 2002]. The
second is the stdatomics library, part of the C11 ISO standard and used to abstract from hardware when
communicating between threads and thus possible communication between cores [Vafeiadis et al., 2015].
The remainder of this chapter focuses on these libraries and how they are used.

Pthreads

pthreads is a standard to manage threads in all major operating systems. This section briefly describes
the functions of pthreads that are used by multithreaded Clean and how they are used.

sem_open, sem_wait, sem_post

We use semaphores supplied by pthreads to coordinate multiple threads. Semaphores are a synchronization
primitive [DIJKSTRA, 1968]. Currently we use semaphores to give the ability for one thread to wait on
another thread. This was implemented in pthreads specifically for this purpose, so we assume it has
decent performance and that it is in fact thread safe. Moreover, in the documentation we read it uses
signals to wake up threads, ensuring limited overhead on the CPU [semwait, 1997].

Although a possible alternative approach is using pthread_join, using semaphores offers a better path
towards thread pools. This is because pthread_join waits until a child thread ends. When implementing
thread pools, we want a thread to do work and synchronize, and we don’t want a thread to end.

pthread_create

pthread_create(thread, attr, start_routine, arg) creates a new thread and makes it executable.
This includes making a new program counter and making the operating system aware of the presence of
this thread [pthreads, 1997]. In the start routine we supply the address of clean_new_thread, which is a
built-in Clean function to initialize a heap and stacks for a Clean program. In arg we supply a pointer to
a space where we store a pointer to a semaphore, a Clean function and the location of the copied graph.

C11 stdatomics

In C11, a recent C standard, stdatomics.h was added to the standard library, to standardize atomic
operations and sequential consistency. It ensures that compliant programs, when compiled by compliant
compilers, run as expected on every platform. It contains the functions needed to atomically read from
and write to shared variables, in the context of multithreading.

When a memory model is sequentially consistent, memory accesses by multiple threads are interleaved
and totally ordered. This contrasts all recent hardware architectures, in which only single threaded
programs are sequentially consistent [Vafeiadis, 2015].

According to the C11 standard, data races using non-atomic access result in completely undefined
behavior. Such data races are treaded as programming errors. Only programs without those data races
are C11 compliant programs [Vafeiadis, 2015].

C atomic_load(const volatile A* obj)

"Atomically loads and returns the current value of the atomic variable pointed to by obj. The operation
is atomic read operation" [atomicload, 2015]. This operation is used to get the current thread count. By

17

using this particular function, the memory reordering of both the compiler and processor are constrained
to force sequentially consistent behavior, while dealing with a shared variable.

_Bool atomic_compare_exchange_strong(volatile A* obj, C* expected, C desired)

"Atomically compares the value pointed to by obj with the value pointed to by expected, and if those
are equal, replaces the former with desired (performs read-modify-write operation). Otherwise, loads
the actual value pointed to by obj into expected (performs load operation)" [atomiccompare, 2015]. This
function is used to increment or decrement the thread count, knowing what the thread count was right
before executing. If the value has changed in the mean time, the function returns false and our local
variable gets updated to the current value (as if we called atomic_load again). We loop until this
function returns true. So we repeat until the value is not updated in the mean time (by other threads),
this makes sure no updates are lost. A process diagram of this process given in figure 3.1.

Figure 3.1: Process diagram of illustrating the typical atomic compare and exchange usage. The nodes
"Global value changed", "Update local value with current global value" and "Update global value" are all
implemented by _Bool atomic_compare_exchange_strong(volatile A* obj, C* expected, C desired
), and are all executed as one atomic operation.

18

Chapter 4

Implementation of combinators

This chapter outlines implementation details and ratio behind the implementation decisions.
As explained in section 2.4, the goal of the project is to make it easy to use multithreading in Clean.

This is implemented, by providing Clean primitives that split and divide work over multiple threads. The
par and pseq combinators are those primitives. The par operator expresses potential parallelism, x par
y means x and y can be evaluated in parallel. The pseq operator expresses sequentiality, x pseq y means
x is evaluated before y is evaluated. Informally, the operational semantics of x par y pseq z can be
described as follows:

1. Both x and y are evaluated in parallel.

2. After x and y are evaluated, z is evaluated and returned.

Evaluating x and y in parallel requires creating threads and moving work to those threads. In order
to evaluate x and y in parallel, the par operator evaluates x on a new thread while at the same time
evaluating y on the original thread. Threads are created using the pthread library discussed in chapter
3.4, the implementation details can be found in section 4.1.

Copying the graph is addressed in section 4.2.
To wait until both x and y are evaluated before evaluating z requires a mechanism to wait for thread

completion. The implementation, using the semaphores of the pthreads library, is detailed in section 4.3.
We experimented with several thread creation schemes. Section 4.4 provides an overview of these

variants. Section 4.5 explains how using a limited number of threads, can lead to asymmetry in the par
and pseq operators, with respect to CPU utilization and provides a solution. Strictness and uniqueness
of the operators are discussed in section 4.6 and section 4.7.

4.1 Thread creation
The pthread library, described in section 3.4, is used to create a thread such that the operating system
schedules its execution. To keep track of the thread in Clean, a small piece of memory, a 40 byte block, is
allocated to describe the thread. It contains the address of the Clean function to be executed, the size
of the heap for the thread (offset 8), 8 bytes of storage for the return value (offset 16), the address of
the semaphore (offset 24) and the address of the workload (offset 32). The purpose of the semaphore is
synchronization between threads, details can be found in section 4.3.

4.2 Copying the graph

How garbage collection works and why it is problematic
While Clean itself and its execution model are very well suited for parallel execution, its garbage collection
mechanism is not. To manage the heap, Clean allocates objects on the heap until it runs out of space.
Clean uses two garbage collection schemes [Groningen et al., 1991]. The copying collector uses only one
half of the heap. When this half is full, all nodes that are reachable are copied over to the other half.
While being very fast, this limits memory usage to half the heap. For programs that continuously use

19

almost half of the heap space, garbage collection gets triggered too often. So when that happens, Clean
switches to another collection scheme. The sliding compaction is a mark-scan scheme, which marks all
accessible nodes, then scans the heap twice. The first scan updates all forwarding pointers, the second
moves the nodes and updates backward pointers. Both of these schemes involve changing the heap by
moving nodes and updating pointers.

If we allow graphs to become shared among threads, this causes a problem. During a garbage collection
cycle, a shared graph can be deleted by the thread that created it. Even if a graph is not deleted it can
be moved, which also invalidates the pointer held by the other thread. Because of these problems, sharing
graphs among threads is not feasible with the current garbage collector.

Safe graph copying

The chosen concept of multithreading in Clean prevents cache problems by creating threads that work on
their own graph. When a thread is created, a graph to be reduced is moved to it. The copy_to_string
and copy_from_string functions provide the ability to store a graph in a string, and recreate the graph
from a string. These methods create and use a string in the heap, to store the graph. Since heap memory
can be reclaimed or moved by the garbage collector, a reference residing outside of heap H to a string
inside heap H can be invalidated each time the garbage collector runs. To alleviate this problem, a version
of copy_to_string and copy_from_string was made to store a graph in a separate piece of memory.
This piece of memory is called graph buffer from now on. Each thread gets its own graph buffer. The
graph buffer stores the graph in a packed representation.

The graph buffer is allocated outside of the Clean heap, see figure 4.1. Since the packing operation is
already necessary in order to move graphs across heaps, using this buffer imposes only minor additional
overhead. In the current implementation the size of the graph buffer is fixed.

Figure 4.1: Memory layout of a multithreaded Clean program. Illustration by Kim Weustink.

Hypothetically, instead of copying to the graph buffer, the heap of the newly created thread could also
be used to store the packed graph. Because the new thread has not yet started, no garbage collection cycle
will remove it. This requires much tighter integration with the ABC-machine, because the string should be
placed on the A-stack. Therefore, this option is not chosen for this project, but future multithreading
primitives in Clean may want to consider it.

4.3 Synchronization

After a thread is created, the function that created the thread returns immediately. The newly spawned
child thread starts reducing the graph. When the graph is in head normal form, it is packed again in the

20

graph buffer and the child thread signals its completion, using the sem_post function on the semaphore
pointer stored in its thread descriptor.

The parent thread first reduces its own graph to head normal form, and then waits for the child thread
to finish, using the sem_wait function. If the child thread was already finished this returns immediately,
otherwise execution waits until the child thread is done.

These actions of waiting and notifying when done allow synchronization between threads.

4.4 Variants of thread creation

Several variations of the par and pseq operator are created to test different implementation choices.
Experiments have been carried out with these variants, which are discussed in chapter 5.

pseq1 Default version

The default par and pseq1 implementation is based on the par and pseq, found in the Haskell module
Control.Parallel [Marlow et al., 2009].

par :: a → b → b
pseq :: a → b → b

In Haskell, the par function indicates its arguments may be evaluated in parallel and returns the
second argument. The pseq function specifies order, its first argument must be evaluated before its second
argument is evaluated and returned [Peyton Jones, 2008].

Our par and pseq1 support similar use, but work differently. Instead of the first two arguments to par
and pseq being evaluated implicitly (without data dependency), in this implementation the last argument
is a function that receives the first two arguments in head normal form. This approach is more consistent
with the lazy nature of the language.

// Simplified signature for par and pseq1
(par) i n f i x l 3 :: a (a → c) → c
(pseq1) i n f i x l 4 :: b (a b → c) → (a → c)

Because the second argument of pseq1 needs the types of both arguments of par to check for type
safety, the type signature of par and pseq1 had to change from the original operators like implemented
in Haskell. In the Haskell par and pseq, the last parameter is a graph of which the first two parameters
can be subgraphs. Because we chose to have the last parameter be a function that receives the first two
parameters in head normal form, we must make sure the type of this last parameter matches the first two.

pseq1 produces a function that is used as the second argument of par. The second argument of pseq1
is of type (a b → c). The a is repeated in the result type (a → c) of pseq1. Because this result type is
the argument to par, we can specify par such that it forces consistent type, forcing the second argument
of pseq to match the type of its first argument, a, with the type of the first argument of par, also named
a. The next example shows how par and pseq1 can be used to calculate two values simultaneously, using
multiple threads.

// Illustrative example of par and pseq1 usage

ack :: Int Int → Int
ack 0 y = y + 1
ack x 0 = ack (x-1) 1
ack x y = ack (x-1) (ack x (y-1))

Start :: String
Start = (ack 4 2) par (ack 4 1) pseq1 (λx y. "ack 4 2:" +++ toString x

+++ "ack 4 1:" +++ toString y)

The default par and pseq1 version uses only a fixed number of threads. If less than a certain number
threads are active, the par pseq1 operators cause one more thread to be used. If the maximum number

21

of threads is reached, the graphs are evaluated sequentially and no additional threads are created by par
and pseq1. This version is the default, because it is closest to the par and pseq combinators of Haskell.

These par and pseq1 operators are really a facade for another function, that takes three arguments
and does the actual work. The function that does the actual work is called parseq1 and takes 3 arguments.
Each variant has its own parseq function. Since parseq1 is called from pseq1 and not from par, we only
need one par function for all variants.

pseq2 Using an alternate graph instead of sequential execution
The pseq2 variant takes one more argument.

// Simplified signature for par and pseq1
(par) i n f i x l 3 :: a (a → c) → c
(pseq2) i n f i x l 4 :: b ((a b → c) , c) → (a → c)

This argument is an alternative way to compute the result. When the number of threads are exhausted,
this alternative graph is returned. This prevents attempts to parallelize deeper in the graph, thus saving
on overhead. In the next example a function called mfib calculates Fibonacci using multiple threads.
When all threads are in use, it switches over to a single threaded variant.

// Illustrative example of par and pseq1 usage

fib :: Int → Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

mfib :: Int → Int
mfib 0 = 1
mfib 1 = 1
mfib n = (mfib (n-2)) par (mfib (n-1)) pseq2 (+ , fib n)

In example above, if at any point no thread is available and fib n is evaluated, then it does not request
another thread again. This can decrease overhead, at the cost of potentially less resource utilization.

pseq3 Using a thread pool
A thread pool can be used decrease the overhead of creating new threads and semaphores each time
par and pseq1 are called. Starting new threads takes time, so reusing old threads can save time and
thus lower the overhead when repeatedly using multithreading. To this end, a thread pool is created.
Upon first use of a thread, a certain number of threads are initialized with corresponding semaphores and
graph buffers, one for each thread. When another thread is requested, it either gets a free thread or a
result indicating that no free thread is available at this time. In this latter case par reverts to sequential
execution. The two variants above do not use a thread pool, a third variant, pseq3, uses a thread pool.

// Simplified signature for par and pseq3
(par) i n f i x l 3 :: a (a → c) → c
(pseq3) i n f i x l 4 :: b (a b → c) → (a → c)

pseq4 Unlimited number of threads
If the algorithm already has a means to control the number of threads it will try to spawn, then the thread
counter and control logic of par pseq1 operators add unnecessary overhead. To remove this overhead a
version was created, that does not adhere to any maximum number of threads. The pseq4 variant spawns
a new thread on every call.

// Simplified signature for par and pseq4

22

(par) i n f i x l 3 :: a (a → c) → c
(pseq4) i n f i x l 4 :: b (a b → c) → (a → c)

4.5 Asymmetry of operational semantics

During experimentation a usage pattern was discovered, in which all threads where used, but only one
thread was still calculating. Figure 4.2 illustrates this situation and its effect on CPU usage.

Figure 4.2: The effect on productivity of reverting to one thread. Illustration by Kim Weustink.

The cause of this problem is that the operational semantics of the par pseq1 operators are asymmetrical.
This means that x par y pseq1 (λx y.z) is not operationally equivalent to y par x pseq1 (λy x.z). In
an attempt reduce the number of threads, these operators only create one new thread to evaluate two
tasks. One of the tasks is performed on the current thread. Specifically the first argument, x, is evaluated
on a newly created thread, while the second argument, y, is evaluated on the current thread. This means
that if the first argument is more work, contains potential parallelism and does so recursively, then it
drains all threads and proceeds to evaluate on 1 thread, while the other threads are waiting. Figure 4.3
shows a graph which would cause this.

Figure 4.3: In this graph each left branch is always more work than the right branch. Illustration by Kim
Weustink.

This is not an edge case. Unless the work can be split in two perfectly equal parts, this problem
occurs.

This asymmetry is a problem, because the user might not know which graph should be the first,
and which graph should be the second argument. One of the original problems explained in section 2.3,
computing for all two graphs, which graph takes longer to normalize, is undecidable. This also means we
can not assume the programmer is always able to know. So it makes sense to create a par pseq variant
that is symmetrical, such that we can parallelize efficiently, without knowing which part of the work takes
longer.

The solution is to limit only the number of active threads. In order to do so, when a thread needs to
wait, it decrements the thread count. This allows room for other threads to be spawned and increases

23

resource utilization. While a program still has potential parallelism behind the par and pseq operators,
the situation depicted in figure 4.2 does not occur.

This solution is only viable for the default par and pseq1 operators and the variant with an alternative
graph pseq2. In the other variants, because of their asymmetry, better performance is expected when the
second argument of par is more work than the first.

4.6 Strictness
The par and pseq operators are strict in both arguments. If any of the arguments do not normalize, then
the par or pseq operator does not normalize to head normal form. This is a departure from the par and
pseq in Haskell, which is only strict in the second argument of both functions [Marlow et al., 2009].

The par and pseq operators normalize the first two arguments to head normal form and then give
these normalized graphs to the third argument. In order to be able to do work in parallel, the first two
arguments must not be in head normal form. If they are in head normal form, then no work is left to
do in parallel. So the arguments to the par operator must not be annotated as strict, because doing so
forces the arguments to be in head normal form when par is called.

4.7 Uniqueness
All variants of the par and pseq combinator support uniqueness on both arguments.

Sharing work across threads is at odds with uniqueness. A unique node may, by definition, not be
shared. However, the par and pseq operators do not share graphs with other threads.

The par and pseq operators evaluate the graph of the second argument on the current thread. This
graph is not copied or passed to another function, so it preserves uniqueness. The other graph is packed
to be evaluated by another thread. After packing a graph, the original graph is no longer used. Thereby
only one reference to a graph is kept, and so the first argument also preserves uniqueness.

The following program demonstrates passing arguments to par and pseq1 and writes to two files in
parallel.

// Opens two files to append, writes "hello" to both in parallel and then closes the files again.
Start world
] (success , file1 , world) = fopen filename1 FAppendText world
| not success = abort ("Failed to open " +++ filename1)
] (success , file2 , world) = fopen filename2 FAppendText world
| not success = abort ("Failed to open " +++ filename2)
= (file1<<< "hello") par (file2<<< "hello") pseq1 (closeFiles world)
where

filename1 = "out1.txt"
filename2 = "out2.txt"
closeFiles :: *World *File *File → *World
closeFiles world x y
] (_ , world) = fclose x world
] (_ , world) = fclose y world
= world

In this case the function supplied to pseq1 is also unique since it captures world which is of type
*World. In order to allow par and pseq1 to be called this way, the types must be appropriately annotated.

// Actual signature for par and pseq1
(par) i n f i x l 3 :: .a .(.a → .c) → .c
(pseq1) i n f i x l 4 :: u:b v:(.a → .(u:b → .c)) → w:(.a → .c) , [w ≤ u ,w ≤ v]

The variant that uses an alternative graph instead of sequentially executing the first two arguments,
pseq2, also supports uniqueness, but this combination is very hard to use due to the presence of this
alternative graph. The example above can not be implemented using pseq2, since specifying an alternative
graph that does not reference the files, does not implement the desired behavior.

For pseq3 and pseq4 the example can be implemented, analogous to the version using pseq1.

24

Chapter 5

Case Studies

This chapter illustrates the usage of multithreading in Clean, using the par and pseq combinators. These
case studies show that the combinators work and that in some cases a speedup of 3.7 is possible. They
are not meant to show that one way of dividing work always performs better than some other way.

This chapter consists of examples demonstrating all par and pseq variations.

• The first case study shows the usage of all the par and pseq operator variants, using a naive
Fibonacci function. The Fibonacci function is used in other papers and lets us compare results
factoring in environment changes.

• In section 5.2 a more abstract example, a potential pmap function, is proposed. The pmap function
is a higher level combinator, its implementation shows abstraction layers can be build on top of par
and pseq.

• In section 5.3 a merge sort is implemented using the par and pseq combinator. The merge sort
algorithm exposes the biggest weakness of our implementation, because the data to work on is
copied repeatedly.

• A more concrete use case is given in section 5.4, where an implementation of the traveling salesman
problem are discussed. The traveling salesman problem is implemented using the pmap function,
showing that the abstraction works on more complex examples.

Measurements
All programs are tested on a quad core system, specifically an AMD Athlon II X4 635 processor using
Linux kernel 3.13.0 x86_64. The running time and CPU usage is measured using the linux utility
time. The time utility provides three metrics: system which is not used, real which is called elapsed
time and user which is called CPU time. Using these metrics to compare to a single threaded version, we
can measure overhead using CPU time and measure speedup using the elapsed time.

To improve accuracy and repeatability on each test run each program is executed and measured five
times. Of those five times the slowest result deleted. The rationale for the deleting the slowest result, is
that the running time increases, when another process on the test system get scheduled.

5.1 Fibonacci case study
Our first case study is the Fibonacci function. The Fibonacci function is used to demonstrate basic usage
of the different variants.

This Fibonacci was chosen for its simplicity, it can be used to demonstrate how to use par and pseq.
Furthermore, it is used in other papers, allowing some basis for comparison.

A non threaded version of fib:

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

25

pseq1: Parallel fib

In the parallel version, pfib, if n is high enough, then pfib (n-1) and pfib (n-2) are evaluated in separate
threads. The cutoff value for n is 25. For pfib calls with n smaller than 25, no threads are spawned.

pfib :: !Int → Int
pfib n
| n < 25 = fib n

= pfib (n-2) par pfib (n-1) pseq1 (+)

Since n only gets lower, it makes no sense to keep checking if n is low enough. Hence, we can improve
performance by having the algorithm switch to a non parallel version, once n is low enough.

pseq2: Alternative graph

As explained in 4.4, a variant of the par and pseq operators, pseq2, returns an alternative graph when
the maximum number of threads is reached.

pfib n
| n < 25 = fib n

= pfib (n-2) par pfib (n-1) pseq2 (+ , fib n)

pseq3: Threadpool

Another variant, discussed in section 4.4, used a fixed size pool of eight threads. An example program
using this thread pool looks as follows:

pfib n
| n < 25 = fib n

= pfib (n-2) par pfib (n-1) pseq3 (+)

pseq4: Limiting the number of threads in the algorithm

Another approach is to count and restrict the number of threads in the algorithm, to a more reasonable
number. The next example allows the user to set a bound on the maximum number of thread created.
By allocating twice as many threads to the most demanding recursive call, the work is better balanced.

pfib b 0 = 1
pfib b 1 = 1
pfib 0 n = fib n
pfib b n = pfib (b / 3) (n-2) par pfib (2 * b / 3) (n-1) pseq4 (+)

Start = pfib 12 42

In this example the first argument is the number of available threads. If the algorithm itself can limit
the number of threads being used, then not using the built-in thread counter reduces overhead and can
improve performance. That is why this example uses pseq4, which always creates a new thread.

Expectations

We don’t expect a speedup close to four. The number of recursive calls to par and pseq is high enough to
add significant overhead.

Of our variants we expect pseq1 to be the slowest, since all other variants have some strategy to
improve performance over pseq1. We expect pseq2 to be a minor improvement over pseq1, because while
reducing overhead, the algorithm misses potential parallelism after switching to the alternative graph.
We expect pseq3 and pseq4 to be the fastest performers. pseq4 distributes the work optimally, while
adding only a slight overhead. pseq3 also distributes work better than pseq1, but can potentially add
more overhead than pseq4.

26

Results by variant

0 0.5 1 1.5 2 2.5 3 3.5

fib.out

fib pseq1.out

fib pseq2.out

fib pseq3.out

fib pseq4.out

2.99

1.3

1.14

0.77

0.88

2.98

3.39

2.97

2.99

3.4

Time (s)Elapsed time CPU time

Figure 5.1: Test results using a quad core system, calling fib and pfib with 42 as argument n.

These results show that different parallel strategies make a difference in both the running time and the
system resource usage. pseq3 has the lowest latency while pseq2 incurs the least overhead. All variants
attain a speedup larger than three and the maximum measured overhead is 14% in this example.

As expected, pseq1 was the slowest and pseq2 offers a minor improvement in speed with very low
overhead. Both pseq3 and pseq4 are noticeably faster. We also expected pseq3 to have more overhead
than pseq4, but this is not the case. In fact, pseq3 has ten percent less overhead than pseq4 and is ten
percent faster.

Scaling
Using an alternative version of fib, we can count how many recursive calls are made:

nfib 0 = 1
nfib 1 = 1
nfib n = 1 + nfib (n-1) + nfib (n-2)

Using this number of recursive calls, we can calculate how many function calls per second a program
makes. When we compare theses numbers for different values of n, we can see how the programs scales.

We expect to see almost flat lines, indicating there is no problem with scaling.

35 36 37 38 39 40 41
0

0.2

0.4

0.6

0.8

1

1.2
·109

Argument of fib

N
um

be
r
of

ca
lls

pe
r
se
co
nd

Scaling with respect to the argument of the fib

pseq1
pseq2
pseq3
pseq4

Figure 5.2: Results for implementations across parameter values of the fib function

27

In figure 5.2, we can see that there is no performance degradation when the number of requests for
new threads increases. This means they scale well. The difference between the lines corresponds to the
previous result, pseq3 is clearly faster.

5.2 Parallel map case study

In this example we make a more abstract function. We define a parallel version of the map function, called
pmap. We do this to show that abstractions can be built on top of the par and pseq functions, meaning
that par and pseq can be used to create libraries.

Listing 5.1: parallel map function.

pmap f [] = []
pmap f [x:xs] = (f x) par (pmap f xs) pseq1 λx y. [x:y]

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Start = pmap (fib) [40 , 40, 40, 40, 40, 40, 40, 40]

The pmap function works by calculating f x in parallel with pmap f xs, so the tail is evaluated in
parallel. This implementation of pmap creates a new thread for every element of the list and it evaluates
the spine of the list almost instantly. That makes this pmap function strict in its list argument.

Listing 5.2: A single threaded version using map is used as reference.
Start = map (fib) [40 , 40, 40, 40, 40, 40, 40, 40]

We expect that pseq4 gets close to a speedup of four, because it spawns seven additional threads and
divides the work evenly among all threads. pseq2 is expected to not have a significant speedup, after
switching to the single threaded graph, there is still work with potential parallelism left. We expect that
both pseq1 and pseq3 have better resource utilization than pseq2, but worse than pseq4.

0 2 4 6 8

map example.out

pmap example pseq1.out

pmap example pseq2.out

pmap example pseq3.out

pmap example pseq4.out

8.93

3.29

5.47

3.33

2.53

8.91

8.72

7.63

8.95

8.71

Time (s)Elapsed time CPU time

Figure 5.3: PMap test results using a quad core system.

As expected in this example the pseq1 the speedups remain low, as we can see in figure 5.3. We can
see in the results, that pseq1 has the same overhead as pseq4, which was also expected. Due to lower
resource utilization, it has a lower speedup, 2.7 for pseq1 against 3.5 for pseq4.

pseq4 scores well, but slightly less than expected. Moreover, it creates a thread for every element,
which will not scale to very large lists.

28

5.3 Merge sort case study

Merge sort orders a collection, using a divide and conquer strategy. It takes an element 1 and divides the
collection into two parts, one part for all elements of the collection smaller than the chosen element and
one part for all elements larger than the choosen element. On these two parts, merge sort recursively
applies itself. Now merge sort only needs to append the two parts with the chosen element in the
middle, to return an ordered collection. Recursion stops when the collection size is less than two, because
collections of size zero and one are always ordered.

This case study was chosen because it fits our par and pseq implementation poorly. Our par and pseq
combinators require that data to be processed is copied. Merge sort works on large data sets. Copying
those datasets is very costly. This means that merge sort gives insight into how much overhead copying
adds, and what kind of algorithms are unsuitable for our par and pseq.

Our merge sort implementation uses unboxed arrays as collections and integers as elements. The
time complexity for the merge sort in our example is O(n ∗ log(n)), which is appropriate for merge sort.
However, its space complexity is also O(n ∗ log(n)), while merge sort optimally uses only O(n) space.
Instead of using two buffers and switching source and destination at every recursive call, each recursive
call in our implementation allocates its own (smaller) buffer. The extra allocations make this version slow
compared to the optimal merge sort.

Listing 5.3: merge sort, the mergeTo function merges two sorted arrays into one existing array.
mergesort data
] (size , data) = usize data
| size < 2 = data
] leftSize = size/2
] (data , left) = cpy 0 data 0 (createArray leftSize 0) leftSize
] rightSize = size-leftSize
] (data , right) = cpy leftSize data 0 (createArray rightSize 0) rightSize
= mergeTo data (leftSize - 1) (mergesort left) (rightSize - 1) (mergesort right)

Merge sort works by merging two sorted halves of a data set. The sorted halves are sorted by
recursion, which stops when the data size reaches one or zero. The merge action is not parallelized, only
the two recursive calls are executed in parallel. This limits the attainable speedup. The merge step has
O(n) complexity. When four threads are used, the last merge step is executed by one thread and second
to last merge step is still only executed by 2 threads. Only the deeper recursive calls are distributed over
4 threads, explaining the limited effect when going from two to four threads. This effect is illustrated in
figure 5.4.

Listing 5.4: parallel merge sort.
pmergesort data 0 = mergesort data
pmergesort data t
] (size , data) = usize data
| size < 2 = data
] leftSize = size/2
] (data , left) = cpy 0 data 0 (createArray leftSize 0) leftSize
] rightSize = size-leftSize
] (data , right) = cpy leftSize data 0 (createArray rightSize 0) rightSize
]! (left , right) = pmergesort left (t/2) par pmergesort right (t/2) pseq1 λx y.(x ,y)
= mergeTo data (leftSize - 1) left (rightSize - 1) right

We expect the additional resource utilization to be negated by the need to copy the data to and from
the graph buffer.

Due to the unique arrays, pseq2 could not be used. This is because pseq2 requires an alternative graph
to compute the solution, but when the original computation works on a unique array, the alternative
graph cannot work on that same array.

Due the size of the graph buffer, pseq3 could not be used. The threads in pseq3 are pre-allocated.
They have a smaller size graph buffer, to compensate for the fact that they are pre-allocated and thus
always take up this memory.

1elements can be randomly selected

29

Figure 5.4: Reduced effectiveness when parallelizing recursive calls in a divide and conquer algorithm.
Surface area represents execution time. We can see the top call is not parallelized, the second level is
only split in half.

0 0.1 0.2 0.3 0.4 0.5 0.6

pseq1 1 thread.out

pseq1 2 threads.out

pseq1 4 threads.out

pseq4 1 thread.out

pseq4 2 threads.out

pseq4 4 threads.out

0.5

0.48

0.44

0.5

0.49

0.45

0.43

0.5

0.58

0.41

0.49

0.58

Time (s)Elapsed time CPU time

Figure 5.5: Merge sort test results using a quad core system, ordering 2000000 numbers

We can see that the CPU time in figure 5.5 rises steadily when more threads are used. Since thread
creation is not a significant factor, this overhead must be attributed to copying data between threads.
Thread creation is not a significant factor, because we are only creating two or four threads.

Contrary to our expectations, using more threads did allow a small speedup. In figure 5.5 we see that
both pseq1 and pseq4 have a minuscule speedup using two threads, 1.04 times and 1.02 times respectively.
Furthermore, there is a minor speedup using four threads, 1.13 times and 1.11 times respectively.

5.4 Traveling salesman problem case study

In this case study we use the earlier defined pmap function, to solve the traveling salesman problem. This
case study is therefore more concrete, demonstrating a possible utility of the par and pseq combinators.

In this example we use a table to represent the costs of traveling from one city to another. This table
is symmetrical across the diagonal and the diagonal itself only contains zeros. So, we only need one half
of the table, minus the diagonal to store all costs. In our implementation we use a two dimensional array
of reals, where the arrays in the outer array are progressively smaller, e.g. for four cities we have and
outer array of size three with inner arrays of size three, two and one. Furthermore, we refer to cities using
integers.

Listing 5.5: Function to calculate costs between city src and city dst using table to lookup the costs..
cost :: {{ Real }} !Int !Int → Real
cost table src dst
| src == dst = 0.0
| src > dst = table. [src]. [dst]

= table. [dst]. [src]

generateTable :: Int → {{ Real }}

30

generateTable c = { { (toReal i) + (toReal j) * 10.0 \\ j ← [1..i + 1] } \\ i ← [0..c - 1] };

The algorithm itself uses no heuristic, it tries every option recursively and returns the route that
yields the lowest cost. By limiting the cities to be considered as the first city of the route, this task can
be slit across threads.

Listing 5.6: tsp calculating list with for every city the best route starting in that city.
tsp table [pos] = [(0.0 , [pos])]
tsp table toVisit = [

case tsp table (filter ((6=) pos) toVisit) of
[x:xs] = let (c , path) = foldl min x xs in

(c + cost table pos (hd path) , [pos: path])
\\ pos ← toVisit]

The tsp function returns a list of best routes, given a first city. From this list the best is selected
and returned as result of the program. In the single threaded version the best is selected using a normal
foldl. The parallel version applies pmap to the list with the best routes. The pmap function puts each
element of the list in head normal form, in parallel. The head of this list has a data dependency on the
rest of the list, computing the entire result. So each best route, given a first city, is calculated in parallel.

Listing 5.7: Singlethreaded version.
tsp_s table toVisit = case tsp table toVisit of [x:xs] = foldl min x xs ;

Listing 5.8: Multithreaded version, uses pmap to evaluate list in parallel.
tsp_p table toVisit = case pmap (id) (tsp table toVisit) of [x:xs] = foldl min x xs

We expect to see speedups similar to the pmap function, since we are using it as parallelize our
implementation.

0 2 4 6 8

tsp.out

tsp pseq1.out

tsp pseq2.out

tsp pseq3.out

tsp pseq4.out

7.78

4.28

5.75

3.6

2.68

7.7

7.75

7.11

7.87

7.85

Time (s)Elapsed time CPU time

Figure 5.6: TSP test results using a quad core system with 11 cities

As we can see in figure 5.6, in this example using the pmap function the speedup is just under three.
It hardly adds overhead and is well distributed across the resources.

Contrary to our expectation the speedups are much lower than in the pmap case study. This could
be due to higher memory usage outside of the caches, which causes the memory controller to become a
bottleneck. The memory controller is physically shared between all cores.

31

32

Chapter 6

Comparison with other languages

Other programming languages have similar features to use multiple cores. In this chapter we will compare
multithreading libraries of these languages with our own implementation. The remainder of this chapter
consists of implementation and experimentation notes, per language, and a discussion of the results in
section 6. The languages C, C++ and Java are chosen because they are widely used, the language Haskell
was added because of its similarity with Clean.

As an example program, the pfib function from section 5.1 is used. Because the Fibonacci function we
are using is not tail recursive, the functional languages do not have an unfair advantage in this scenario.
The complete source code for all of these examples can be found in the appendix B. Figure 6.1 shows the
results of the measurements.

C

C is the only language in this comparison that by itself does not offer any primitive for parallel programming.
The C11 standard gives primitives to make memory operations thread-safe and while it also prescribes
standard threads library, no compiler currently supplies this library.

Two language extensions are used to supply C with parallel programming primitives, OpenMP targeting
Fortran, C and C++ and Cilk targeting C and C++.

• Cilk

Cilk provides a language extension of C and runtime system based on a work-stealing sched-
uler [Blumofe et al., 1995]. The language extension consists of new keywords and even an list-
comprehension-like array-notation. It is the only primitive which ran a version of the Fibonacci
with an unlimited number of tasks, without error and in reasonable time using all cores. In our
example the keywords cilk_spawn and cilk_sync are used to express the fork and join.

• OpenMP

OpenMP consist of compiler directives and runtime functions [Dagum and Menon, 1998]. The compiler
directives are well integrated and compiler errors are generated when the directives are flawed, for
example when defining a variable which did not yet exist, as shared. Directives to indicate how
something is parallelized are decoupled from directives that indicate parallel execution is used. This
decoupling allows the same function with OpenMP directives to be used with and without parallelism.

The pragma task shared(n2) directive forks off the function call to parallel_fib(n - 2). The
pragma omp taskwait directive lets the program wait for any task in its scope. OpenMP’s task based
directive suffers the same operational asymmetry described in section 4.5. This means that if
parallel_fib(n - 1) is forked off on another thread instead of parallel_fib(n - 2), then the
performance degrades. On the machine we used for testing, the latency increases by 50%.

C++

C++ provides a number of primitives for parallel programming in its standard library, including a thread
library with locks and condition variables [Stroustrup, 2014].

33

• async

According to [Stroustrup, 2014] "with async() you don’t even know how many thread s will be used
because that’s up to async() to decide based on what it knows about the system resources available at
the time of a call. For example, async() may check whether any idle cores (processors) are available
before deciding how many thread s to use". By specifying std::launch::async as first argument to
the std::async function, we are asking for the job to be executed on another thread. Joining is
accomplished by the get operation, on the future of the task. This task was returned by our call
to std::async.

• packaged_task

A packaged task is slightly more low level. There is no logic to decide when threads are spawned,
the user supplies the threads directly to the task. A future is used to represent the out-sourced
computation. The get operation on this future will join and return this result. Templates are used
to ensure type safety of packaged_task and future.

Java

• ForkJoin

Introduced in Java 7, ForkJoin provides an object oriented interface to Tasks and Futures, targeted
at task parallelism. The example program uses a thread pool to reuse the threads, the size of the
pool was set to four.

• Parallel Stream

Introduced in Java 8, Parallel Streams allow operations to be applied to a stream, in parallel.
This results in parallel map and parallel reduce type functions. This primitive is targeted at data
parallelism. In the example program, the parallelFib function creates a parallel stream consisting
of the numbers n-1 and n-2, maps itself recursively over them and then sums up the results.

Haskell

Haskell provides a par and pseq functions in the Control.Parallel module for use in task parallelism.
The number of threads used by the program is specified at call time. The +RTS -N8 argument specifies
that eight threads should be used.

34

Cross language results

0 20 40 60 80 100 120 140

c cilk.out

c openmp.out

cpp async.out

cpp packaged task.out

clean threadpool.out

haskell parseq.out

java parallel stream.out

java forkjoin.out

0.79

0.95

1.59

1.48

0.83

36.71

1

2.36

3.1

3.24

3.94

3.47

3.01

141.21

2.79

8.57

Time (s)
Elapsed time CPU time

Figure 6.1: Cross language example results, all implemented the pfib function reverting to fib when n
was smaller than 25.

The Cilk example has the lowest latency in this test. It achieves this using a reasonable amount of
overhead. The Clean version using a thread pool comes in second, with less overhead than Cilk. OpenMP
and the Java Parallel Stream API take up third and fourth place, getting very close in terms of latency.
Java Parallel Stream API has the least overhead of all operators. All examples try to implement the
same algorithm. For Clean and OpenMP the lesser recursive call was forked off to another thread. This
variation was tested on all examples, but no other examples benefit from it. Cilk and OpenMP can also be
used with Fortran and C++, but here we tested C++ primitives found in the standard library.

35

36

Chapter 7

Related work

This chapter provides a short overview of work related to parallelism in pure functional languages.

Task parallelism
Task parallelism is parallelism by having multiple pieces of (sub)computation that can be computed
independently of each other. These tasks may have nothing in common, they could be different functions
and have different running times.

[Marlow et al., 2009] Provides an overview of Multicore Haskell. Glasgow Parallel Haskell, GpH,
consists of two combinators, par and pseq. The first argument of par is stored as a spark, in the spark
pool. A spark is work that can potentially be done in parallel. Idle processors can find useful work in
the spark pool. The pseq function is used for sequencing, it makes sure its first argument is evaluated
before the second argument. Our version of the par and pseq combinators was inspired by the Haskell
implementation. Haskells runtime system, the GHC, uses lightweight threads, Haskell threads, which are
multiplexed over operating system threads, worker threads.

The state of a Haskell thread, together with its stack, is kept in a heap-allocated thread state object,
TSO. For each CPU (or CPU core) one HEC, a Haskell Execution Context, is maintained. This HEC
contains, among other things, a message queue containing requests from other HECs, a local allocation
area, a worker pool of spare worker threads and the spark pool.

Garbage collection is done very differently, because Haskell uses one heap that is shared by all threads.
Haskell has a parallel garbage collector, but garbage collection only takes place when all HECs stop
together, and agree to garbage collect. In contrast, in our implementation each thread has its own heap
and the heaps are garbage collected independently.

[Kesseler, 1991] describes the early Concurrent Clean support for distributed computation. In these
early versions, a cluster of computers was used and the network was considered the most important
bottleneck. In current architectures, memory operations play a similar role. The paper presents an
implementation of the PABC machine, for a transputer rack from Parsytec. Garbage collectors work locally
and the problems of a global garbage collector are outlined. The system does not save registers when
a context switch happens, so in certain sections (basic blocks and garbage collection) context switches
are prohibited. This was accomplished by not using instructions that allowed context switches to occur.
Problems of among others copying graphs, routing and load distribution are left as not entirely solved,
though the discussion of copying graphs outlines the trade-offs. The par and pseq primitives described in
this thesis work around the problems related to global garbage collection mentioned in [Kesseler, 1991],
but are still confronted by the same trade-offs when communicating with other threads.

Instead of having the compiler decide what is done in parallel, this version of Concurrent Clean
uses annotations to allow the programmer to specify jobs [Nöcker et al., 1991b]. The P annotation of
Concurrent Clean serves a similar role to the par and pseq combinators. A P annotation indicates that
an expression should be evaluated in parallel [Nöcker et al., 1991b].

[Groningen, 1992] describes the process of copying graphs, waiting for results calculated elsewhere
and the various trade-offs of fine-grained and course-grained parallelism, polling and packing graphs.
Waiting is implemented by polling and the resulting overhead is measured. While varying from program
to program, the overhead remains quite low. The resulting programs are run on a system with sixteen

37

simulated processors, the measured speedup is between 0.78 and 8.4. Our par and pseq operators do
not use polling, instead they use signals, which are likely implemented as interrupts. As a result, the
measured overhead of the par and pseq is much lower when we compare the results of the fib function.

[Trilla and Runciman, 2014] describes way of using profiling feedback information when compiling,
so the compiler can determine which sparks should actually spark a new thread and which should not.
Profiling assisted optimized compilation can be used to solve problems that are undecidable, by trying out
variations on a representative workload. The downsides include the slower compilation times, difficulty
finding a truly representative workload and the result being too specifically optimized for the host system,
on which the compiler runs. The technique works on par and pseq combinators, like the ones implemented
by this project and therefore it can be implemented on top of the current primitives.

[Beemster et al., 1993] discusses clustered architectures, wraps up pieces of Concurrent Clean, the
Parallel ABC Machine and the Dutch parallel reduction machine project. It describes the hardware as
multiple computers which form a cluster using an intra-cluster shared memory, and multiple clusters
forming a network using the inter-cluster network.

A modern desktop PC roughly equates to a cluster in [Beemster et al., 1993] in terms of topology;
these clusters had multiple processors and shared memory, which effectively matches of modern day
multiple cores which share memory through multithreading.

Figure 7.1: On the left: a cluster in [Beemster et al., 1993], on the right: a dual core CPU. Illustration
by Kim Weustink.

In [Beemster et al., 1993] the sandwich primitive serves the same role as our par and pseq. The
difference between the two is negligible. In sandwich the first argument is a function taking two
arguments, in par and pseq the last argument is this function. Furthermore, in the sandwich primitive
both expressions spawn a parallel job, while the par function only evaluates the first argument in a new
thread.

Data parallelism

Data parallelism allows one operation (of any size) to be applied in parallel to a large dataset. This
concept, of one operation, is more restrictive than task parallelism, which allows any operation to run in
parallel. The fact that it parallelizes only one operation, allows it to scale automatically with the size of
the dataset.

[Chakravarty et al., 2007], [Jones et al., 2008] and [Chakravarty et al., 2008] provide the current state
of affairs of nested data parallelism in Haskell, based on NESL. Nested data parallelism allows data
parallelism to be used on recursive structures. This process involves flattening the data and generating
vectorized versions of the operations on the data. According to [Chakravarty et al., 2007] these vectorized
operations are only feasible to generate in pure languages. This is an alternative approach based on data
parallelism, our par and pseq primitives are classified as operators to specify task parallelism.

[Keller and Chakravarty, 1998] specifically discusses flattening of trees. This technique is used to
transform a tree-like structure to a flat array. It enables algorithms to use tree like structures, while
the parallelization mechanism works on flat arrays. This is an advanced technique for use in data
parallel primitives. It enables users to specify algorithms on recursive data structures and still have it
automatically parallelized.

While this should still not be considered the solution for all parallelization, it’s a very effective solution

38

when the amount of data to be processed large. The technique requires compiler changes and is therefore
deemed out of reach for this project.

[Zsók et al., 2011] discusses algorithmic skeletons for computations on D-Clean. D-Clean is a dis-
tributed version of Clean, running on multiple computers. It features primitives to coordinate the
distribution of work. These primitives operate on Channels, which act as streams or lists to send data
through the system for processing. The presence of channels implies a disposition towards data parallelism,
unlike our par and pseq operators which have a disposition towards task parallelism.

[Keller et al., 2012] explain a problem associated with flattening and vectorization1, which can cause
a performance penalty. Flattening of data involves vectorization all operations, so all scalar operations
are transformed into vector operations. While this enables SIMD usages, it can cause memory overhead
by introducing large intermediate structures.

Fusion is a technique to combat this situation. Fusion uses removes intermediate values by aggressive
in-lining. Fusion has its drawbacks, such as the resulting program becoming very large and the resulting
code can not be properly optimized by the GHC’s code generator. This paper introduces analysis which
allows the vectorization to be avoided when it offers no benefit.

1which is using the SIMD capabilities of processors to allow one core to do more calculations at once

39

40

Chapter 8

Future work

This chapter outlines a number of features that were not implemented in this project, but we expect
would provide useful additions.

Specializing on primitive return types
The current implementation uses the same copy mechanism regardless of types. Using Generics to
specialize on primitives we can prevent a graph_copy_to and graph_copy_from operation, by using the
pointer to the graph to store primitive data instead. Thus, this specialization improves the efficiency.

Platform independence
Assembly code was used in parts of this project. Because the assembly code has to interface with C, and
because the calling convention of C functions differs between Linux, Mac and Windows, this project only
works on Linux. Thus, the current implementation only works on 64 bit Linux using x86-64 processors.
Clean supports both 32 bit and 64 bit Linux, Mac and Windows. To get this project to work on the
remaining five platforms, the assembly has to be ported to each of those platforms.

Preventing double work
In case the graph that is reduced in another thread, is included in the graph that is reduced locally, as
illustrated in figure 8.1, we do not want to calculate that graph twice. Calculating the same graph twice
is a violation of the graph reduction semantics and it wastes CPU cycles. To prevent graphs from being
reduced twice, their contents is overridden after copying to the new thread took place.

Figure 8.1: Graph x is included in graph y. Illustration by Kim Weustink.

The graph reduced on new thread can be replaced by a node which waits for the other thread to finish
and then overrides itself with the correct value. Unfortunately, the graph reduced by the host thread can
not be replaced in the heap of the new thread. This is because the new thread never receives the graph
that its host is reducing. [Kesseler, 1994] presents a partial solution.

41

Skeletons for frequently occuring thread patterns
In the tsp example in section 5.4 parallelism is added using only a pmap over a list, this pmap was defined
earlier in Examples. More skeletons need to be defined. Skeletons are used to separate algorithms, from a
parallelization method [Danelutto et al., 1998].

Thread pool using more graph buffers
The current implementation the thread pool variant, pseq3, only uses a fixed number of graph buffers.
While the thread pool saves on allocation time, it also means threads cannot be reused until after the
result is read. Dynamically adding graph buffers while keeping the number of threads fixed, allows threads
to be reused sooner.

42

Chapter 9

Conclusion

Hardware development in recent years has changed how programs can extract maximum performance out
of a CPU. Each CPU now has several cores. These cores present themselves to the system as independent
processors sharing the main memory, allowing the system to execute code in parallel. A single thread
cannot be executed in parallel by multiple cores. In order to utilize all cores a program must have multiple
threads.

It is our goal to allow programmers to utilize multi core hardware while using the Clean programming
language. Clean currently has no convenient support for multithreading. This convenient support must
be able to split work into pieces. The implementation must then be able to create and destroy threads
and distribute those pieces of work over those threads.

By implementing the par and pseq combinators in Clean, we let the programmer specify where
parallelism could be used. Several variants of par and pseq are implemented, which have different thread
creation schemes.

The current implementation has some limitations. For example, the size of the work to be outsourced
is limited, and data must be copied to and from another thread. These limitations hinder the use of
the current implementation in data parallelism, where a relatively simple operation is applied to a large
dataset.

Using examples we confirmed the strengths and weaknesses of our implementation and the variations
on thread creations. In the traditional naive Fibonacci a speedup of three over a non multithreaded
version was measured using a quad core system. Using a pmap on relatively small lists, the speedup is
closer to four. When applied to data parallelism, the overhead increases but still allows some speedup.
Compared to combinators in commonly used other languages, the performance is on par. These latter
results depend on the inherent efficiency of the language, which in Cleans case is very good.

Of the four implemented variants, the pseq3, appears to be the most useful. This is the variant that
uses a thread pool. While some improvements can be made to it, in our examples it scores very well.
Moreover, it is very general and with the proposed improvements in place it will be as general as pseq1.

The current implementation only works on 64 bit Linux, but there are no known blocking issues
preventing the development of support on other platforms.

Allowing the programmer to specify which graph are reduced in parallel, can be added to Clean by
implementing a par and pseq combinator. The current implementation has much room for improvement,
but is already usable and offers a decent speedup over a sequential version.

43

44

Bibliography

[atomiccompare, 2015] atomiccompare (2015). atomic compare exchange weak, atomic compare exchange
strong - cppreference. http://en.cppreference.com/w/c/atomic/atomic_compare_exchange. Accessed:
2016-01-10.

[atomicload, 2015] atomicload (2015). cppreference. http://en.cppreference.com/w/c/atomic/atomic_
load. Accessed: 2016-01-10.

[Beemster et al., 1993] Beemster, M., Hartel, P., Hertzberger, L. O., Hofman, R., Langendoen, K. G.,
Li, L., Milikowsku, R., Vree, W. G., Barendrregt, H. P., and Muldert, J. (1993). Experience with a
clustered parallel reduction machine.

[Blumofe et al., 1995] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H.,
and Zhou, Y. (1995). Cilk: An efficient multithreaded runtime system. In Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP ’95, pages
207–216, New York, NY, USA. ACM.

[Chakravarty et al., 2008] Chakravarty, M. M. T., Leshchinskiy, R., Jones, S. P., and Keller, G. (2008).
Partial vectorisation of haskell programs.

[Chakravarty et al., 2007] Chakravarty, M. M. T., Leshchinskiy, R., Jones, S. P., Keller, G., and Marlow,
S. (2007). Data parallel haskell: a status report.

[Dagum and Menon, 1998] Dagum, L. and Menon, R. (1998). Openmp: An industry-standard api for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55.

[Danelutto et al., 1998] Danelutto, M., Cosmo, R. D., Leroy, X., and Pelagatti, S. (1998). Parallel
functional programming with skeletons: the ocamlp3l experiment. In In Proceedings of the 1998 ACM
Sigplan Workshop on ML, pages 31–39.

[DaveMcCracken, 2002] DaveMcCracken (2002). POSIX Threads and the Linux Kernel.

[DIJKSTRA, 1968] DIJKSTRA, E. (1968). Cooperating sequential processes. Technical report, Techno-
logical U., Eindhoven, The Netherlands.

[Groningen, 1990] Groningen, J. V. (1990). Implementing the abc-machine on m680x0 based architectures.
Technical report, University of Nijmegen, NL.

[Groningen, 1992] Groningen, J. V. (1992). Some implementation aspects of concurrent clean on dis-
tributed memory architectures. Technical report, University of Nijmegen, NL.

[Groningen et al., 1991] Groningen, J. V., Nöcker, E., and Smetsers, S. (1991). Efficient management in
the concrete abc machine. Technical report, University of Southampton, UK.

[gtk, 2015] gtk (2015). The gtk+ project. http://www.gtk.org/. Accessed: 2016-01-08.

[Hartel et al., 1995] Hartel, P. H., Hofman, R. F. H., Langendoen, K. G., Muller, H. L., Vree, W. G., and
Hertzberger, L. O. (1995). A toolkit for parallel functional programming.

[Hoare, 1972] Hoare, C. (1972). Proof of correctness of data representations. Acta Informatica, 1(4):271–
281.

45

http://en.cppreference.com/w/c/atomic/atomic_compare_exchange
http://en.cppreference.com/w/c/atomic/atomic_load
http://en.cppreference.com/w/c/atomic/atomic_load
http://www.gtk.org/

[itasks, 2015] itasks (2015). Itasks - clean. http://clean.cs.ru.nl/ITasks. Accessed: 2016-01-08.

[Jones et al., 2008] Jones, S. P., Leshchinskiy, R., Keller, G., and Chakravarty, M. M. T. (2008). Har-
nessing the multicores: Nested data parallelism in haskell.

[Keller and Chakravarty, 1998] Keller, G. and Chakravarty, M. M. (1998). Flattening trees.

[Keller et al., 2012] Keller, G., Chakravarty, M. M., Leshchinskiy, R., Lippmeier, B., and Peyton Jones,
S. (2012). Vectorisation avoidance. SIGPLAN Not., 47(12):37–48.

[Kesseler, 1991] Kesseler, M. (1991). Implementing the pabc machine on transputers.

[Kesseler, 1994] Kesseler, M. (1994). Uniqueness and lazy graph copying. copyright for the unique. In
In proceedings of the 6th International Workshop on the Implementation of Functional Languages,
University of East Anglia.

[Marlow et al., 2009] Marlow, S., Jones, S. P., and Singh, S. (2009). Runtime support for multicore
haskell.

[Meixner et al., 2006] Meixner, A., Member, S., Sorin, D. J., and Member, S. (2006). Dynamic verification
of memory consistency in cache-coherent multithreaded computer architectures. In In Proc. DSN,
pages 73–82.

[messagequeue, 2016] messagequeue (2016). mq_overview(7) - linux man page. http://linux.die.net/
man/7/mq_overview. Accessed: 2016-03-12.

[Nöcker et al., 1991a] Nöcker, E., Smetsers, J., van Eekelen, M., and Plasmeijer, M. (1991a). Concurrent
clean. In Aarts, E., van Leeuwen, J., and Rem, M., editors, PARLE ’91 Parallel Architectures and
Languages Europe, volume 506 of Lecture Notes in Computer Science, pages 202–219. Springer Berlin
Heidelberg.

[Nöcker et al., 1991b] Nöcker, E., Smetsers, S., van Eekelen, M., and Plasmeijer, R. (1991b). Concurrent
clean.

[Paul Genua, 2004] Paul Genua, P. (2004). A cache primer. http://www.google.nl/url?q=http://www.
nxp.com/files/32bit/doc/app_note/AN2663.pdf. Accessed: 2016-03-05.

[Peyton Jones, 2008] Peyton Jones, S. S. (2008). A turorial on parallel and concurrent programming in
haskell.

[pipe, 2016] pipe (2016). pipe(7) - linux man page. http://linux.die.net/man/7/pipe. Accessed:
2016-03-12.

[pthreads, 1997] pthreads (1997). pthreads. http://pubs.opengroup.org/onlinepubs/7908799/xsh/
pthread_create.html. Accessed: 2016-01-10.

[semwait, 1997] semwait (1997). semaphores. http://pubs.opengroup.org/onlinepubs/7908799/xsh/
sem_wait.html. Accessed: 2016-01-10.

[shm, 2016] shm (2016). shm_open(3) - linux man page. http://linux.die.net/man/3/shm_open. Ac-
cessed: 2016-03-12.

[Stroustrup, 2014] Stroustrup, B. (2014). A Tour of C++. Pearson Education, Inc.

[Sudkamp, 2005] Sudkamp, T. A. (2005). Languages and Machines: An Introduction to the Theory of
Computer Science (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Trilla and Runciman, 2014] Trilla, J. M. C. and Runciman, C. (2014). An iterative compiler for implicit
parallelism.

[Vafeiadis, 2015] Vafeiadis, V. (2015). Formal reasoning about the c11 weak memory model.

46

http://clean.cs.ru.nl/ITasks
http://linux.die.net/man/7/mq_overview
http://linux.die.net/man/7/mq_overview
http://www.google.nl/url?q=http://www.nxp.com/files/32bit/doc/app_note/AN2663.pdf
http://www.google.nl/url?q=http://www.nxp.com/files/32bit/doc/app_note/AN2663.pdf
http://linux.die.net/man/7/pipe
http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_create.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/pthread_create.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/sem_wait.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/sem_wait.html
http://linux.die.net/man/3/shm_open

[Vafeiadis et al., 2015] Vafeiadis, V., Balabonski, T., Chakraborty, S., Morisset, R., and Zappa Nardelli,
F. (2015). Common compiler optimisations are invalid in the c11 memory model and what we can do
about it. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 209–220, New York, NY, USA. ACM.

[Vyssotsky et al., 1965] Vyssotsky, V. A., Corbató, F. J., and Graham, R. M. (1965). Structure of
the multics supervisor. In Proceedings of the November 30–December 1, 1965, Fall Joint Computer
Conference, Part I, AFIPS ’65 (Fall, part I), pages 203–212, New York, NY, USA. ACM.

[Zsók et al., 2011] Zsók, V., Koopman, P., and Plasmeijer, R. (2011). Generic executable semantics for
d-clean. Electron. Notes Theor. Comput. Sci., 279(3):85–95.

47

48

Appendix A

Results for examples

program elapsed time (s) user time (s) CPU usage Speedup
fib.out 2.99 s 2.98 s 100 % 1.00
fib pseq1.out 1.30 s 3.39 s 261 % 2.30
fib pseq2.out 1.14 s 2.97 s 261 % 2.62
fib pseq3.out 0.77 s 2.99 s 390 % 3.89
fib pseq4.out 0.88 s 3.40 s 384 % 3.37

Table A.1: Fib test results using a quad core system

program elapsed time (s) user time (s) CPU usage Speedup
map example.out 8.93 s 8.91 s 100 % 1.00
pmap example pseq1.out 3.29 s 8.72 s 265 % 2.72
pmap example pseq2.out 5.47 s 7.63 s 140 % 1.63
pmap example pseq3.out 3.33 s 8.95 s 269 % 2.68
pmap example pseq4.out 2.53 s 8.71 s 343 % 3.52

Table A.2: Pmap test results using a quad core system

program elapsed time (s) user time (s) CPU usage Speedup
pseq1 1 thread.out 0.50 s 0.43 s 85 % 1.00
pseq1 2 threads.out 0.48 s 0.50 s 105 % 1.05
pseq1 4 threads.out 0.44 s 0.58 s 132 % 1.15
pseq4 1 thread.out 0.50 s 0.41 s 83 % 1.00
pseq4 2 threads.out 0.49 s 0.49 s 101 % 1.04
pseq4 4 threads.out 0.45 s 0.58 s 127 % 1.10

Table A.3: Mergesort test results using a quad core system sorting 2000000 ints

program elapsed time (s) user time (s) CPU usage Speedup
tsp.out 7.78 s 7.70 s 99 % 1.00
tsp pseq1.out 4.28 s 7.75 s 181 % 1.81
tsp pseq2.out 5.75 s 7.11 s 124 % 1.35
tsp pseq3.out 3.60 s 7.87 s 219 % 2.16
tsp pseq4.out 2.68 s 7.85 s 294 % 2.91

Table A.4: TSP test results using a quad core system visiting 11 cities

49

50

Appendix B

Cross language examples

program elapsed time (s) user time (s) CPU usage Speedup
c cilk.out 0.79 s 3.10 s 394 % 2.02
c openmp.out 0.95 s 3.24 s 341 % 1.68
cpp async.out 1.59 s 3.94 s 248 % 1.00
cpp packaged task.out 1.48 s 3.47 s 234 % 1.07
clean threadpool.out 0.83 s 3.01 s 363 % 1.92
haskell parseq.out 36.71 s 141.21 s 385 % 0.04
java parallel stream.out 1.00 s 2.79 s 280 % 1.60
java forkjoin.out 2.36 s 8.57 s 363 % 0.68

Table B.1: Cross comparison test results using a quad core system

C

Listing B.1: Source code for cilk.c, using the Cilk library and language extension in C.
// to be compiled with : gcc c i l k . c − f c i l k p l u s − l c i l k r t s

#include <s td i o . h>
#include <c i l k / c i l k . h>

int f i b (int n) {
i f (n < 2) return 1 ;
else return f i b (n − 1) + f i b (n − 2) ;

}

int pa r a l l e l_ f i b (int n) {
i f (n < 25) return f i b (n) ;
// Fork o f f work , p o s s i b l y to another thread .
int x = cilk_spawn pa r a l l e l_ f i b (n − 1) ;
// Compute the other s i d e on t h i s thread wh i l e wa i t ing .
int y = pa r a l l e l_ f i b (n − 2) ;
// Wait f o r k the forked work .
c i lk_sync ;
// Compute the r e s u l t .
return x+ y ;

}

int main () {
p r i n t f ("%d" , p a r a l l e l_ f i b (4 2)) ;
return 0 ;

}

Listing B.2: Source code for c_openmp.out, demonstrating the OpenMP compiler directives in C.

51

// to be compiled with : gcc −s t d=c11 −fopenmp openmp . c

#include <s t d l i b . h>
#include <s td i o . h>

int f i b (int n) {
i f (n < 2) return 1 ;
else return f i b (n − 1) + f i b (n − 2) ;

}

int pa r a l l e l_ f i b (int n) {
i f (n < 25) return f i b (n) ;
int n1 , n2 ;

// Fork o f f work , p o s s i b l y to another thread .
#pragma omp task shared (n2)
n2 = pa r a l l e l_ f i b (n − 2) ;

// Compute the other s i d e on t h i s thread wh i l e wa i t ing .
n1 = pa r a l l e l_ f i b (n − 1) ;

// Wait f o r k the forked work and compute f i n a l r e s u l t .
#pragma omp taskwai t
return n1 + n2 ;

}

int main () {
#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{

p r i n t f ("%i \n" , p a r a l l e l_ f i b (4 2)) ;
}

}
}

C++

Listing B.3: Source code for cpp_async.out, using the std::packaged_task library in C++.
#include <iostream>
#include <future>

int f i b (int n) {
return n < 2 ? 1 : f i b (n−1) + f i b (n−2);

}

int f ib_async (int n) {
i f (n < 25) return f i b (n) ;
// Ca l cu la t e f i b n − 1 asynchronously , p o s s i b l y on anther thread .
auto fib_n_minus_one = std : : async (std : : launch : : async , f ib_async , n−1);
// Compute the other s i d e on t h i s thread wh i l e wa i t ing .
int fib_n_minus_two = fib_async (n−2);
return fib_n_minus_two + fib_n_minus_one . get () ;

}

int main () {
std : : cout << fib_async (42) << std : : endl ;

}

Listing B.4: Source code for cpp_packaged_task.out, showing the std::async library in C++.
// To compile with g++ p l ea s e use : g++ −s t d=c++11 packaged_task . cpp − l p t h r ead

#include <iostream>

52

#include <future>

int f i b (int n) {
return n < 2 ? 1 : f i b (n−1) + f i b (n−2);

}

int f ib_task (int n) {
// I f n i s below a ce r t a in t h r ea sho l d we w i l l not use threads .
i f (n < 25) return f i b (n) ;

// We w i l l c a l c u l a t e f i b (n−1) on other thread and f i b (n−2) on t h i s thread .

// Spec i f y our ta sk .
std : : packaged_task<int (int)> fib_n_minus_one_task { f ib_task } ;
// Set r e f e r ence to ge t the r e s u l t o f the ta sk .
std : : future<int> fib_n_minus_one { fib_n_minus_one_task . get_future () } ;

// Create a thread , as s i gn i t s argument and execute the ta sk .
std : : thread task_thread { move(fib_n_minus_one_task) , n−1 } ;
// Detach so we don ’ t need to j o in a f t e r complet ion .
task_thread . detach () ;

// Ca l cu la t e o ther va lue on our thread .
// Wait f o r the other thread , ge t i t s va lue and return .
return f ib_task (n−2) + fib_n_minus_one . get () ;

}

int main () {
std : : cout << f ib_task (42) << std : : endl ;
return 0 ;

}

Listing B.5: Source code for clean_threadpool.out, using the par and poolseq operators.
module fib_pseq3

import StdEnv
import parseq

fib :: !Int → Int
fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

pfib :: !Int → Int
pfib n
| n < 25 = fib n

= pfib (n-2) par pfib (n-1) pseq3 (+)

Start = pfib 42

Haskell

Listing B.6: Source code for haskell_parseq.out, using the par and pseq operators found in Haskell.
import Control . P a r a l l e l

−− compile with : ghc −−make −threaded −r t s o p t s p a r s e q f i b . hs
−− and then run with : ./ p a r s e q f i b . out +RTS −N8
−− r ep l a c in g 8 with the de s i r ed number o f threads .

f i b 0 = 1
f i b 1 = 1
f i b n = f i b (n − 1) + f i b (n − 2)

53

pa r a l l e l F i b n = i f n < 25 then f i b n else n1 ‘ par ‘ n2 ‘ pseq ‘ r
where
n1 = pa r a l l e l F i b (n − 1)
n2 = pa r a l l e l F i b (n − 2)
r = n1 + n2

main : : IO ()
main = do putStrLn (show (p a r a l l e l F i b 42))

Java

Listing B.7: Source code for java_forkjoin.out, showing the ForkJoinTask framework introduced in Java
7.
import java . u t i l . concurrent . ForkJoinPool ;
import java . u t i l . concurrent . RecursiveTask ;
import java . u t i l . concurrent . ExecutionException ;

public class ForkJoinFib extends RecursiveTask<Integer> {

f ina l int n ;

ForkJoinFib (int n) {
this . n = n ;

}

@Override
protected I n t eg e r compute () {

i f (n < 25) return f i b (n) ;

// Create t a s k s .
ForkJoinFib n1 = new ForkJoinFib (n − 1) ;
ForkJoinFib n2 = new ForkJoinFib (n − 2) ;

// Fork o f f work , p o s s i b l y to another thread .
pool . invoke (n1 . f o rk ()) ;

// Compute the other s i d e on t h i s thread wh i l e wa i t ing .
I n t eg e r n2 r e su l t = n2 . compute () ;

try {
// Wait f o r k the forked work and compute f i n a l r e s u l t .
return n1 . get () + n2 r e su l t ;

} catch (Inter ruptedExcept ion | ExecutionException e) {
// I f anything went wrong , c a l c u l a t e i t the sa f e way .
return n1 . compute () + n2 r e su l t ;

}
}

stat ic f ina l ForkJoinPool pool = new ForkJoinPool (4) ;

stat ic int f i b (int n) {
i f (n < 2) return 1 ;
return f i b (n − 1) + f i b (n − 2) ;

}

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (pool . invoke (new ForkJoinFib (4 2))) ;

}
}

Listing B.8: Source code for java_parallel_stream.out, using Parallel Streams introduced in Java 8.
import java . u t i l . stream . Stream ;

/∗∗
∗ Using a data p a r a l l e l f e a t u r e o f Java8 , the p a r a l l e l stream .

54

∗/
public class StreamFib {

private stat ic int f i b (int n) {
i f (n < 2) return 1 ;
return f i b (n − 1) + f i b (n − 2) ;

}

private stat ic int pa r a l l e l F i b (int n) {
i f (n < 25) return f i b (n) ;
else return

Stream . o f (n − 1 , n − 2) // stream of 2 i n t s
. p a r a l l e l () // stream i s p a r a l l e l
. mapToInt (StreamFib : : p a r a l l e l F i b) // map recurs ion
. sum () ; // add up r e s u l t s

}

public stat ic void main (St r ing [] a rgs) {
System . out . p r i n t l n (p a r a l l e l F i b (4 2)) ;

}
}

55

	Introduction
	Background
	Concepts
	Computer hardware
	Problems in utilizing hardware
	Goal

	Starting point
	Runtime system support
	Concept of multithreading in Clean
	Limitations of the starting point
	Thread libraries

	Implementation of combinators
	Thread creation
	Copying the graph
	Synchronization
	Variants of thread creation
	Asymmetry of operational semantics
	Strictness
	Uniqueness

	Case Studies
	Fibonacci case study
	Parallel map case study
	Merge sort case study
	Traveling salesman problem case study

	Comparison with other languages
	Related work
	Future work
	Conclusion
	Results for examples
	Cross language examples

