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Abstract

Internet of �ings (IoT) is a new technology that is becoming increasingly popular.
With IoT, every device in a house can be connected to the Internet, which imposes
huge privacy problems. Also, it could be useful if a house could identify itself to other
parties using a�ributes. For instance, a mailman can use the address a�ribute of a
house to verify if a package is delivered to the right house and a boiler can retrieve
a certi�cation mark a�ribute if it is maintained correctly. IRMA is a privacy-friendly
a�ribute-based identity management system, developed by the Radboud University
and based on the Idemix technology. IRMA includes both a�ribute-based authentica-
tion and a�ribute-based signatures.

In this thesis, we will explore how we can use IRMA technology to provide a house
with its own identity and to control IoT devices in a house in a privacy friendly man-
ner. For this control, we make use of the Tippiq house rules. Tippiq is a project from
the company Alliander. We propose the needed adaptations in IRMA for some con-
crete IoT scenarios. One adaption in IRMA is about a�ribute-based signatures. �ese
signatures are used to ensure integrity and authenticity of Tippiq house rules with
IRMA a�ributes. We integrate all the components in a proof of concept to illustrate
how IRMA can be applied in a concrete IoT scenario: enabling access control to a
house using IRMA signatures and Tippiq house rules.
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Chapter 1

Introduction

Internet of �ings is a new and upcoming technology. Two aspects of this technology
are identi�cation and authentication. We start by introducing these two concepts in
Section 1.1. A�er this, we look at the IRMA technology and how it improves iden-
ti�cation schemes in Section 1.2. We introduce the company Alliander, along with
the Tippiq project in Section 1.3, where my internship for this thesis is done. Finally,
we show in Section 1.4 why all these concepts are useful for Internet of �ings de-
vices.

1.1 Authentication and identi�cation

�e concept of identi�cation is very common today: everyone is used to identifying
him/herself in a variety of di�erent situations. Identi�cation is about saying who you
are. However, just saying who you are is o�en not enough: you also need to prove who
you are. For example, when opening a bank account or booking a hotel, you have to
prove that you are who you say you are. Proving who you are is called authentication
and this will o�en involve revealing your complete identity. An example is buying
alcohol: here, you have to show your identity card to prove that you are old enough
to buy alcohol, but by showing this identity card, all the information that is listed on
this card is revealed. �is is not necessary and is in con�ict with data minimisation
that is required by the European Union.1

�e party that requests proof of identity usually provides something that a user re-
quests, and can therefore be seen as a service provider. For example, a bank provides
bank accounts and a hotel rents rooms to its customers. �e user has to prove his/her
identity to the service provider to obtain the service.

Identities are given out by a trusted party, the identity provider. �e identity provider
is trusted by both the service provider and by the person that provides a proof of
his/her identity. An example of an identity proof is showing a valid identity card.
�is card is given out by, for instance, the government who can be understood as a
trusted party that is the o�cial source of identity documents. �e government is in

1https://secure.edps.europa.eu/EDPSWEB/edps/EDPS/Dataprotection/
Glossary/pid/74
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this case the identity provider.

Some parties use their own identi�cation and authentication methods, rather than
relying on a ‘formal’ identity that is issued by a trusted authority. An example of a
custom identi�cation method is a discount program in a shop, where a discount can
be obtained on certain products a�er scanning a loyalty card. Banks also use their
own identi�cation and authentication methods in the form of a debit card. �is debit
card is used to prove that a payment is done by the card holder.

Authentication is also used in online scenarios. For example, the Dutch government
has developed the DigiD system,2 which is used as an online authentication system for
government services. In this case, the DigiD system provides an online identity, and
DigiD accounts are given out by the government. Most Dutch government services
use DigiD as their authentication system, which means that a Dutch citizen needs
to obtain only one online account (a DigiD account) for most of his/her government
services.

Other commercial parties are also involved in online authentication. A common ex-
ample is Facebook’s Single Sign-on solution.3 A service provider can let a user use
his/her Facebook identity to log in to their service with Facebook’s Single Sign-on. In
this case, Facebook can be seen as the identity provider.

A problem that o�en occurs with (both online and o�ine) authentication systems is
linkability. Linkability is the ability of an identity provider to link di�erent authen-
tication sessions of its users together. An example can be a public transport card,
where each user uses an electronic card to pay for his/her journeys. �is card links all
these journeys together, which is unnecessary and can be privacy problem. Another
example is Facebook’s Single Sign-on solution: Facebook can see which services the
user uses and service providers can cooperate together and link users between ser-
vices.

�ere has been a movement from a purely o�ine and physical identity to an identity
that is also usable online. We see that more and more services rely on an online
identity. For instance, DigiD allows government services to be accessible online. But
what would be the next step in identi�cation? Many believe that Internet of �ings
could be this next step.

Internet of �ings (IoT) is relatively new and still a developing technology. One part
of this technology is about identi�cation: each device could also be part of a person’s
identity or could even have an identity itself.

We have now seen examples of how identi�cation and authentication are used in prac-
tice in both online and o�ine scenarios. We saw that identi�cation can be wrongly
used in terms of privacy: for buying alcohol we o�en have to reveal a complete iden-
tity, while only an age proof is su�cient. Your age is the only part of your identity
that has to be revealed in this case.

In other scenarios, di�erent parts of an identity are needed. For example a name,
exact date of birth, nationality, whether someone is a student, et cetera. All these
parts together build up a complete identity. We will from now on call these parts
a�ributes. We can then de�ne an identity as a collection of a�ributes that hold for a

2https://www.digid.nl/
3https://www.facebook.com/notes/keith-watson/single-sign-on-notes/

10150294801872451/
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particular person.

If we use a�ributes for an identity proof, we can reveal only the minimal part of an
identity that is needed for the requesting service provider. For buying alcohol, only
an age proof is needed, and for a discount in a certain supermarket, only a proof
of a supermarket a�ribute could be enough to take part in the discount program of
that supermarket. Disclosure of a complete identity is certainly not needed in this
case.

We need to divide an identity into the right a�ributes to achieve the desired minimi-
sation. For buying alcohol, one could use an over18 a�ribute and for free traveling
with public transport as a student, one could use a student a�ribute. A complete set
of a�ributes could build up an identity, but one a�ribute on its own can be completely
anonymous. �is is the case with the over18 a�ribute. �en, the service provider ob-
tains only a proof that his/her customer is a person that is over eighteen years old and
nothing more.

1.2 �e IRMA project

IRMA is an ecosystem from the Radboud University that is using a�ribute-based au-
thentication. �is means that only the a�ributes that are really needed by the service
provider are revealed to the service provider. IRMA is an acronym for ‘I reveal my
a�ributes’. IRMA uses the Idemix technology developed by IBM [1].

All the IRMA a�ributes are stored on a secure token, which can be a smart card (as
an alternative to the ‘classic’ identity card), or a smartphone. �e underlying Idemix
technology allows someone to reveal an a�ribute by giving a zero-knowledge proof.
In this way, one can cryptographically prove that he/she possesses a certain a�ribute,
without revealing the corresponding private key or anything else beyond the re-
quested a�ribute. We will only consider the case where a�ributes are stored on a
smartphone.

A�ributes need to be obtained and stored on a secure token (smartphone), which is
a process we call ‘issuing’ and is done by an authority. We call this authority the is-
suer. An issuer can issue credentials, which are cryptographic containers that group
a�ributes. An example is a ‘Government root’ credential that contains a person’s
identity with a name, social security number and a date of birth a�ribute. �is root
credential is issued by the government, which is the identity provider for this creden-
tial.

Credentials are signed by the issuer’s private key and bound to the user’s private key
that is generated and stored during the initialisation phase of the user’s IRMA token.4
�e user’s private key is needed to provide an a�ribute proof to a service provider.
�is key is securely stored, which means that the user can use it to prove possession
of his/her a�ributes, but he/she is not supposed to directly access it. A�ributes are
therefore non-transferable: it is not possible to copy ‘your’ over18 a�ribute to some-
one else’s smart card or smartphone, because direct access to the private key is needed
to achieve this.

4See the link https://www.irmacard.org/wp-content/uploads/2013/05/Idemix_
overview.pdf for a short overview on how this mathematically works

3
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A website requested that you disclose some 
IRMA attributes.
Either scan the QR code with your phone, or 
press the card reader button to continue.

1) The website/verifier that wants an attribute 
proof from the user shows a QR code. The user
scans this code with his/her smartphone

2) The user allows the over18 attribute to 
be revealed to the verifier on his/her 
smartphone

3) Both the website and the user's smartphone will 
show a success dialog if the IRMA proof is successful

Figure 1.1: Example of the user interaction when disclosing IRMA a�ributes to a ver-
i�er

Besides being non-transferable, a�ributes are also unlinkable. Unlinkable means that
a service provider cannot link two non-identifying a�ribute proofs together, and can-
not determine which private key of which user is used in the proof (but note that the
issuer’s public key must be known to the veri�er).

�e service provider is the party that demands a proof of one (or multiple) a�ributes.
We call this party the veri�er : it veri�es that a�ributes are valid. It is important that a
veri�er does not request more a�ributes than needed to ful�l a required transaction.
�is restriction could be achieved by both technical and organisational measures. We
will not take this issue into account in our research.

Recall that a smartphone can act as a secure token containing a�ributes and that a
veri�er demands a proof of possession of some a�ributes. To achieve such a proof,
interaction between the two parties is needed, and therefore a communication channel
is needed. Since both parties normally have access to the Internet, IRMA uses the
Internet as communication channel.

If a veri�er wants an a�ribute proof from a user, it shows a QR code that contains a
URL with a session identi�er to the user. �e user scans this code with his/her IRMA
smartphone app to connect to the veri�cation server that is linked with the veri�er.
�e established link can be used by the veri�er to request a�ributes from the IRMA
smartphone app. �e user needs to give consent to reveal the requested a�ributes. If
he/she consents, then the a�ributes will be sent to the veri�er, and the transaction will
be logged on the phone. Figure 1.1 shows how this process looks for the user.

4



1.3 Alliander

Alliander is the parent company of Liander, a grid operator that distributes gas and
electricity to large parts of the Netherlands.5 �e main stock holders are regional
governments in the Netherlands. One of Alliander’s goals is to facilitate the en-
ergy transition towards sustainable energy production and smart autonomous power
grids.

In this section, we will brie�y explain what is meant with the term ‘energy transition’
and what it means for Alliander. A�er this, we will look into what Alliander’s cus-
tomers desire. �is will give the rationale that we will use to introduce Alliander’s
new research project, named Tippiq.6

1.3.1 Energy transition and communication

Fossil fuels are currently the main source for electricity. However, they will eventually
deplete, which causes the need for alternative electricity sources. Current alternatives
are mostly natural resources like water, wind and sun. �ese sources are variable
and volatile: solar panels, for example, only work when the sun is shining brightly
enough.

Also, electricity is more locally generated: customers have their own solar panels
on their houses, which will increasingly deliver electricity back to the power grid.
�is essentially makes each house a small power plant. From a grid operator’s per-
spective, this is hard to manage, because the power grid is not capable of handling
a two-way electricity �ow. �erefore, huge infrastructural investments are neces-
sary. Furthermore, electricity is hard to store so all the power that is produced must
be used instantly. �is is a balancing problem that will become more di�cult when
more volatile power sources are added to the grid.

To avoid the need for upgrading the whole power grid, which requires huge invest-
ments, it is possible to invest in a smart power grid. A smart power grid uses a two-way
information �ow, for locally balancing the demand and supply of electricity. �is
means that there exists a two-way communication �ow, which for instance can be
used to control devices in occupant’s7 houses. For example, the laundry machine
could only run when there is enough electricity available. Another example could be
temporarily storing electricity in the ba�ery of a parked electric vehicle. A survey of
the most important literature and background information about smart power grids
can be found in [2].

�e complete transition from fossil fuels to natural resources in combination with a
smart power grid is what we call the energy transition. Alliander is trying to facilitate
this transition with a portfolio of projects and initiatives.8

One challenge of a smart power grid is that potentially privacy sensitive informa-
5https://www.alliander.com/en/about-alliander
6http://www.tippiq.nl
7In this thesis, we frequently use the term occupant. With this term, we mean the people that live in a

certain house. We call the person that owns the house (the house owner) the main occupant of a house.
8See for a few examples the Dutch article at http://www.cstories.nl/c-stories/mt500/

2015/alliander-opent-duurzame-energiemarkten.427025.lynk
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tion from the customers is needed. For example, a grid operator needs energy usage
pa�erns of customers to balance the production of electricity to the grid in realtime.
In an ideal scenario, it is also desirable to control devices of customers: turn energy
heavy devices on when the power grid allows it and use the customer’s electric ve-
hicles’ ba�eries to store electricity. If a grid operator is going to exert such control
or is going to collect this information, then it will interfere with the privacy of its
customers.

Smart electricity meters are the �rst a�empt to provide the desired information to the
grid operators. Liander was obliged by law to roll out smart meters to every household
in �e Netherlands. Smart meters contain a data channel between the meter and the
grid operator to directly communicate the electricity that is used in a certain period.
It is technically possible to send usage updates every 15 minutes, but grid operators
and energy suppliers in the Netherlands are currently restricted by law to read out
these data at a maximum of once per two months.9 Electricity usage data are sensitive,
since these can for instance be used to detect what users are watching on television, as
shown in Greveler et al. [3]. So current smart meters certainly have a privacy problem,
and a customer can consequently not be obligated to replace his/her old meter with a
smart meter. Internal research of Alliander con�rms that many customers rejected a
smart meter because of the privacy problems.

Another challenge, besides the privacy laws, is the fact that, in the Netherlands, a
grid operator is not allowed to communicate directly with its customers: only the
energy supplier is allowed to do that.10 �is means that Alliander has to come up with
‘creative’ approaches to obtain the desired data in a privacy-friendly way.

Alliander also notices that other companies are struggling with the problem of com-
munication with occupants and the privacy problems that arise there as well. Other
companies see the adoption of IoT as well and want to make use of it. �ese companies
certainly desire a privacy-friendly trust platform that can be used to communicate to
occupants. �is trust platform has to guarantee that privacy sensitive information is
handled in the right way.

1.3.2 Customers

Liander’s customers mainly live in the Netherlands. As occupants of a house, they
are not interested in sharing information about energy. �ey only want that ‘it just
works’ and they certainly do not feel the need to spend extra time or e�ort in both
communication or disclosing information to a company that they hardly know, like
Liander.

However, occupants are interested in sharing information about other (slightly re-
lated) themes around their house. For example, topics like home safety and medical
care around and in houses are interesting for occupants. �ey are willing to share
privacy sensitive information in these cases, but only if they can retain control of
this information. Occupants want to be sure that the information will not be shared

9See §6.1.4 of https://autoriteitpersoonsgegevens.nl/sites/default/files/
downloads/med/med_20120518-besluit-gedragscode-persoonsgegevens-slimme-meter.
pdf

10See the Dutch article about the ‘StroomOpwaarts’ regulation in the Netherlands: http://www.
edsn.nl/wp-content/uploads/2012/05/MPM-Leveranciersmodel-v6.0.pdf
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with unknown third parties, and they prefer to know which information is shared for
which purpose. �ey also expect something in return: they want to know why they
have to share information and what they get in return for it.

An example case that shows how information sharing could be done is the Dutch
112 alert website,11 which was a pilot project of Tippiq, a project from Alliander that
we introduce in the next section. Occupants could give information about their house
(like in which room the children sleep and where the �ammable substances are stored)
to the 112 alert website. 112 alert will share this information with the �re department,
but only in case of a �re and it will in that case also send an sms to the occupant that
it shared information and why it shared this information.

112 alert was just a pilot that ran for a few weeks. It was very popular in those few
weeks and it indicated that there was a great demand for such a service. Besides the
popularity, it also con�rmed that occupants really chose di�erently when they had
the choice in information sharing. Some occupants provided information, but did not
choose to share information with the �re department, which apparently means that
they trusted 112 alert more than the �re department. �e pilot also showed that inte-
grating an extra ‘privacy step’ in the registration process did not lead to an increased
exit rate and that an external privacy protector ‘Tippiq’, led to additional trust among
the users.

�e information was still centrally stored at the 112 alert website in this pilot phase.
If 112 alert was implemented for real, then this would be changed to a decentralised
system, so that 112 alert cannot access the information when it is not needed.

1.3.3 Tippiq

In summary, Alliander wishes to facilitate the energy transition. In order to achieve
this goal, the company needs to communicate with its customers. It is di�cult for
Alliander to do so, because a grid operator is not legally allowed to. Alliander also
recognizes that customers are not interested in communication about energy (it is
a low interest product). Nevertheless, Alliander also sees that there is a need for a
privacy-friendly and trusted communication platform: both customers and commer-
cial partners demand this. Customers are in general not aware of the fact that a system
is needed that can balance energy locally. Customers are also not aware that access
to their devices is needed in order to do so. Otherwise, energy will become more
expensive.

On the other hand, we see that it is ge�ing increasingly important to handle customer
data with care. Alliander is very anxious and only wants to handle data when they
have explicit permission of the data owner, which is the customer. �erefore, they are
working to put a platform in place where data permissions can be set and managed
for all kind of data. For this reason, Alliander started the Tippiq project.

Tippiq is a project that will provide occupants insights in what is happening in their
residential area. �is will be done in two ways. �e �rst way is by broadcasting in-
formation to occupants. �is can for instance be messages about when the garbage
in the street will be picked up or messages about power outages in the city. All these
messages are di�erent for each physical house address. In order to provide this in-

11https://www.112alert.nu
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formation, Tippiq needs to digitalise the house addresses of its users. Using Tippiq,
an occupant will in the future be able to claim this address in order to manage the
data�ows around it.

�e second way is gathering information from occupants in a privacy friendly way.
Occupants should be able to choose what they want to share. For example, the website
thuisbezorgd.nl requires the house address where it needs to deliver an order and the
�re brigade would be more e�cient if it has access to the �oor plan of a house in
case of a �re. �e user should have the most important role, as he/she should get
complete control over his/her data, and over which party is allowed access to which
data. He/she should also be able to see when information is shared and for which
purpose. �is system has to be a decentralised system, where Tippiq could act as the
trusted party and the supplier for the needed devices and so�ware.

1.4 Internet of things

IoT is upcoming. Current studies are looking into how IoT can be utilised. See Bhu-
vaneswari [4] for an overview of current IoT technologies, possibilities and some ex-
amples of IoT.

IoT embodies the idea that many devices in a house will be connected with both each
other and the Internet. �ese devices contain not only sensors that collect informa-
tion, but also actuators that send out signals or control other devices in a house. Ex-
amples are an electronic lock on a door, an electronic thermostat and even a laundry
machine. A laundry machine could for instance send a signal to its owner when the
laundry is done. �ese examples indicate that IoT can be used for both access and
information control in a house.

�e sensors in IoT devices in our houses can collect a lot of privacy sensitive data. It
would be preferable if house owners have complete control over these data. In this
thesis, we propose the use of a ‘central house gateway’ that controls all the data that
�ows in and out of a house. �is gateway could then also control access to devices in a
house: if someone wants to open or control an electronic door lock, then the gateway
has to allow this action.

�e gateway acts as the central part of a house and could be seen as a device that
permits external parties to communicate with (devices in) a house. It also helps occu-
pants by giving them an easy way to control all their IoT devices. We can therefore
compare the gateway to a device that takes care of a house, which is almost the same
as the de�nition of a concierge.12 We will from now on call the house gateway the
‘concierge’ of a house.

For external parties, it can sometimes be desirable that a house can identify itself in
the same way as a person can. To allow identi�cation of a house, we could provide the
concierge with an identity. To allow authentication of a house to a service provider,
the concierge also needs to be able to prove its identity.

Recall that a person’s identity can be built using a�ributes. �is allows a person to
authenticate to service providers in a privacy-friendly way. We can also apply this
principle to houses and divide the identity of a house into di�erent a�ributes. A

12http://dictionary.cambridge.org/dictionary/english/concierge
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house can for instance contain an address a�ribute, which can be used to prove the
location of a house. �e data that was stored by 112 alert could also be stored in an
a�ribute. Another example are certi�cation marks for a house, for instance an energy
label or a certi�cation mark on the boiler of a house (to prove that it is maintained
correctly). A�ributes can also be used to couple occupants to their houses. If we issue
the same a�ribute to both the occupant of a house and the concierge of a house, then
an occupant can prove that he/she lives in a certain house.

One of Tippiq’s goals is to give occupants control over their data and IoT devices,
which can be done by only disclosing the a�ributes of a house that are really needed.
If thuisbezorgd.nl requires the delivery address of a house or if the �re brigade requires
the �oor plan of a house, then only the corresponding a�ributes could be revealed.
We introduced IRMA as an a�ribute-based identi�cation system. We can provide a
house with IRMA a�ributes and we can issue these a�ributes to the concierge to build
up an identity for a house. Since we are using IRMA as identity technology, we call
the concierge the ‘IRMA concierge’.

Tippiq is still examining how it can give occupants control in a reliable and secure
way. One way do achieve this goal is by building the central house gateway that can
control the data�ows and devices in the house. It should also be able to authenticate
to service providers that desire access to the devices, which can be done by disclosing
a�ributes. IRMA is a secure and privacy friendly system that uses a�ribute-based
identi�cation and authentication. In this thesis, we investigate how IRMA can be
integrated into Tippiq.We implemented a prototype using IRMA that can be used by
Tippiq as a way to reach their goals: providing information to occupants and give
occupants control over their data and IoT devices.

9



Chapter 2

Research goals

In our research, we investigate how we can adapt IRMA technology to make it useful
in an IoT and house context. We issue IRMA a�ributes to a house, to provide it with its
own IRMA identity. With this IRMA identity, a house can reveal a�ributes to service
providers. �is can be useful in di�erent scenarios.

Occupants should have maximal control over the data�ows around their houses, and
they should be able to select which a�ributes can be revealed to which service provider.
Besides control over data�ows, we also want to provide occupants control over their
IoT devices. We investigate how IRMA needs to be adapted to provide this con-
trol.

2.1 Research question

In our research, regarding the combination of the IRMA technology and the goals of
Tippiq, we will answer the following research question:

How can we use or adapt the IRMA technology in an IoT/house context, where a
house has its own IRMA identity and occupants have maximal control over access

and authorisation of their IoT devices and data?

2.2 Method & Sub questions

We investigate which IRMA roles are relevant in an IoT context, because IRMA in
houses di�ers from the normal situations. In ‘classic’ IRMA, we have on one side
users with an IRMA token containing credentials and on the other side issuers and
veri�ers, as discussed in Section 1.2. When we look in the IoT context, we have devices
which provide services. We regard a house as an IoT identity that can both provide a
service to its occupants and external parties, as well as identify itself to other devices,
occupants and external parties. Maybe, it would be even possible to let the IRMA
concierge issue credentials to other parties, making each house an issuer and identity
provider. All of this means at least that the separation between issuers and veri�ers
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is becoming a li�le bit ambiguous.

To solve this ambiguity, we have to specify which IRMA roles and a�ributes are rel-
evant in an IoT context, which leads to the �rst sub question:

1. Which IRMA roles are relevant in an IoT context?

A�er the IRMA roles have been de�ned, we analyse what is needed for the required
adaption of IRMA to houses. We investigate how IRMA would work in some typical
IoT applications by constructing protocols for some example scenarios using Message
Sequence Charts, which answers the second sub question:

2. What are relevant scenarios, and how can we apply IRMA technology to them?

�e Tippiq project wishes to implement a generic rule system for providing authorisa-
tion to the data that, for instance, could be provided by IoT devices in a house. We can
use IRMA a�ributes to couple an occupant to a house. We can also use these a�ributes
to preserve integrity and authenticity of Tippiq’s rule system system. Occupants can
in this case use their IRMA a�ributes to digitally sign a rule, when they add it to the
system. �is is a form of a�ribute-based signatures using IRMA. Chapter 3 explains
what IRMA signatures are and Chapter 5 demonstrates an example implementation.
�is leads to the third sub question:

3. How can we implement and use IRMA signatures to preserve integrity and au-
thenticity of Tippiq’s rule system?

At this point, we introduced many di�erent components that, when combined, could
work as a complete IRMA solution in an IoT context. However, we still have not
proved that this is a working solution. �erefore, we have to integrate all the concepts
into a practical service that acts as a proof of concept for our IRMA solution. �is proof
of concept is used to answer the fourth sub question:

4. How can we integrate the concepts into a practical service and, if possible, the
Tippiq project?

A�er we developed an example implementation, we evaluate it and analyse how a
house as identity that is built using a�ributes is used. Is it really necessary to provide
a house with an identity, or could we achieve the same without it? �is analysis is
completed by answering the �nal sub question:

5. What are the implications of perceiving a house as an identity with a�ributes?
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2.3 Outline

In the next chapter, we will provide some background knowledge about IRMA and in-
troduce a concept called IRMA signatures. A�er this, we will introduce some scenar-
ios in Chapter 4, which are used to answer the �rst three research questions. We will
also explain Tippiq’s rule system in this chapter. Chapter 5 presents our implementa-
tion of IRMA signatures that we use to provide integrity and authenticity for Tippiq’s
rule system, which answers the question on how we need to adapt IRMA to make it
usable with Tippiq’s rule system. A�er this implementation, we will, in Chapter 6,
demonstrate an example application that has all the components integrated into one
system. �is presents the integration of the di�erent concepts into a practical service
and will answer the fourth sub question. Subsequently, we will evaluate the system
and look at the implications of perceiving a house as an identity, which answers the
last sub question. We summarise our �ndings and conclude in Chapter 7.
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Chapter 3

Introduction to IRMA
signatures

In this chapter, we introduce an extension of the IRMA system, namely IRMA as an
a�ribute-based signature system, a concept that is introduced in Hampiholi et al. [5].
To understand this use case of IRMA, we �rst introduce some background concepts
that are used within IRMA and the underlying Idemix technology. A�er this intro-
duction, we will explain what digital signatures are and how IRMA can be used as
an a�ribute-based signature system. In this chapter, we limit us to the theoretical
background. We will discuss the practical details and our implementation of IRMA
signatures in Chapter 5.

3.1 Zero-knowledge proof

Possession of IRMA a�ributes is proved using a zero-knowledge proof. With a zero-
knowledge proof, a prover can prove knowledge of a secret to a veri�er, without re-
vealing this secret to this veri�er. However, the veri�er will be convinced by the
proof that the prover knows the secret. We will now give an introduction about how
zero-knowledge proofs are mathematically constructed.1

3.1.1 Schnorr’s zero-knowledge protocol

An example of a protocol that makes use of a zero-knowledge proof is Schnorr’s zero-
knowledge protocol [6], which is similar to IRMA’s zero-knowledge protocol. For
this protocol, we use a cyclic group G, that is generated by a generator g ∈ G with a
prime order n. A value x is randomly chosen from Zn (also notated as x ∈R Zn) as
the private key of the prover. A�er this x has been chosen, the public key h is de�ned
as h = gx. It is assumed that both the prover and the veri�er are already aware of
the values g, n and h. Only the prover knows x. It is computationally infeasible to

1Our introduction to zero-knowledge proofs is largely based on lecture notes of Berry Schoenmakers,
which are available here: http://www.win.tue.nl/˜berry/2DMI00/LectureNotes.pdf
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Prover Veri�er

u ∈R Zn

a← gu
a−−−−−−−−−−−→

c ∈R Zn
c←−−−−−−−−−−−

r ←n u+ cx
r−−−−−−−−−−−→

gr
?
= ahc

Figure 3.1: Schnorr’s zero-knowledge protocol

calculate x, given only h, g and n: this problem is also known as the Discrete Log
problem.

When the prover needs to prove his/her knowledge of x to a veri�er, he/she chooses
u ∈R Zn, calculates an announcement a ← gu, and sends this a to the veri�er as a
commitment. A�er receiving a, the veri�er calculates a challenge c ∈R Zn and sends
this to the prover. �e prover will now calculate r ←n u+ cx and sends r back to the
veri�er, see Figure 3.1 for a graphical representation of this protocol.

�e veri�er can use r to check if the prover has responded correctly to the challenge,
by checking if gr = ahc. �is check is valid, because:

gr = gu+cx = gu(gx)c ≡ ahc

�e veri�er must be convinced by the prover that the prover actually knows the secret
value x. �is is called the soundness property in zero-knowledge proofs.2 To show
this property, we have to prove that a malicious prover (who does not know secret x)
is not able to respond to a challenge c with a non-negligible probability a�er he/she
has commi�ed to an announcement a. To prove this, we �rst determine how we can
extract the secret x (also called the witness) using two di�erent runs of the protocol
with the same announcement a. Given two runs of the protocol with two di�erent
challenges c and c′ (c 6= c′), we obtain two conversations (a; c; r) and (a; c′; r′). �is
means that gr = ahc and gr

′
= ahc′ , hence g

r−r′
c−c′ = h = gx. We can now extract

x as x = r−r′
c−c′ . From this extraction, we can conclude that for every announcement

a that a (potentially cheating) prover can send to the veri�er, there is at most one
possible challenge that he/she can answer correctly without knowing x. If there are
two possible challenges that can be answered correctly with the same a, the witness
and private key x can be extracted from the two conversations, which means that
the prover has to know x. �is means that if the challenge c is chosen from a large
enough set (in this case Zn), the probability that a prover can answer correctly to this
challenge without knowing x is negligible.

We still need to prove why this protocol is zero-knowledge. Zero-knowledge means
in this case that the veri�er cannot obtain any information from the prover, besides

2See §1.2 of https://cs.nyu.edu/courses/spring07/G22.3220-001/lec3.pdf for
more information on the soundness property of zero-knowledge proofs.
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that the prover knows secret x. If this protocol is run multiple times, then the veri-
�er obtains multiple conversations (a, c, r). But the veri�er can also generate these
conversations him/herself, by using the public key h and choosing c and r randomly
from Zn (c, r ∈R Zn). Since we know gr = ahc, the veri�er can calculate a using r
and c:

a = grh−c

In this way, the veri�er can (without the prover) obtain a valid conversation (a, c, r).
Such generated conversations are also called simulated conversations. Simulated con-
versations cannot be distinguished from real conversations, because the probability
distributions of simulated and real conversations are identical, since both conversa-
tions use two random values from Zn:

Real: {(a; c; r) : u, c,∈R Zn; a← gu; r ←n u+ cx},
Simulated: {(a; c; r) : c, r ∈R Zn; a← grh−c}

However, it is important to notice that the challenge cmust be randomly chosen from
Zn. Since the veri�er chooses this c, he/she must be honest in choosing a random
c. �erefore, the Schnorr protocol is only zero knowledge if it is used with honest
veri�ers.

3.1.2 Fiat-Shamir heuristic

Schnorr’s zero-knowledge protocol requires interaction between the prover and ver-
i�er, which is sometimes not desired. Interaction can be removed by applying the
Fiat-Shamir heuristic [7] to the protocol, which converts Schnorr’s zero-knowledge
protocol into a non-interactive protocol.

To calculate a non-interactive proof, a prover has to obtain a challenge c that is nor-
mally provided by the veri�er. By applying the Fiat-Shamir heuristic, the prover gen-
erates the challenge c by calculating c ← H(a), where H is a secure one-way cryp-
tographic hash function and a ← gu;u ∈R Zn. �e hash function ensures that the
prover commits to a. If the prover �rst calculates c and r, he/she cannot reconstruct
a such that c = H(a) holds (this would break the pre-image resistance property of
the hash function). �e prover can now calculate r in the same way as in the non-
interactive protocol. A�er calculation, the prover sends the pair (c, r) to the veri-
�er.

Since a = grh−c, the veri�er can verify the output of the prover by recomputing a
and checking if the equation c = H(a) holds. If this holds, the veri�er accepts the
proof. It is important to notice that this protocol is not zero-knowledge, since there
is no way to simulate a non-interactive proof. Every non-interactive proof is always
generated by someone that knows the secret x.

While a prover is able to create valid proofs by using c ← H(a), this does not guar-
antee freshness. If an a�acker obtains a pair (c, r), he/she can reuse it in another
session. To solve this problem, a nonce n can be added to the hash function. �is
changes the challenge to c ← H(a, n). �e nonce can be provided by the veri�er to
ensure freshness.

As the nonce n can be any arbritrary message, it can also be replaced with a message
M . As the pair (c, r) that contains M can only be generated by a prover knowing x,
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it can be said that (c, r) can act as a digital signature on M . With a digital signature, a
veri�er can verify that only the prover can calculate this signature. �is can be used
to ensure the integrity of M . Using this property, the Fiat-Shamir heuristic can be
converted into a digital signature scheme. We introduce digital signatures and digital
signature schemes in Section 3.3.

3.2 Zero-knowledge proofs in IRMA

�e process of disclosing some a�ributes from a secure IRMA token to a veri�er is
called selective disclosure. In this case, the IRMA token proves knowledge of a secret (in
the form of a credential) that is issued to the token by an issuer. �is zero-knowledge
proof convinces the veri�er that a certain credential is valid and issued by the right
issuer.

Instead of the secret x, as part of the public key h = gx (as used in Schnorr), Idemix
uses credentials containing a�ributes. �ese credentials are Camenisch-Lysyanskaya
signatures (CL-signatures) [8]. �ey are provided by the issuer in the issuing phase.
CL-signatures allow a prover to prove in zero-knowledge that he/she possesses a valid
credential. Using proofs, only some selected a�ributes are revealed, while other at-
tributes in the same credential remain hidden. �e veri�er will be convinced by the
proof that the values of the revealed a�ributes are the same as the values that the
issuer issued to the IRMA token. �e veri�er will also be convinced that the non-
revealed a�ributes are present.

�e IRMA system uses the Idemix zero-knowledge disclosure protocol, which uses
the non-interactive version of Schnorr’s protocol as a basis. See Section 6.2 of the
Idemix Speci�cation [1] for a detailed description of the Idemix disclosure protocol.
At a very high level, the veri�er sends a nonce n, the user generates a challenge c
using n and responds with a non-interactive proof of knowledge on that challenge,
which proves the possession of the required a�ributes. To provide freshness, n must
be a fresh nonce.

3.3 Digital signatures

A digital signature scheme is a cryptographic scheme that is used to preserve the
integrity and authenticity of a digital message or document. A signature is created
with asymmetric cryptography and is constructed using someone’s private key (only
known to that person) when signing a message. �e public key is used to verify signed
messages. A signature guarantees that the content of a document is preserved in the
way it was meant by the signer at creation time. Only the signer knows the private
key and can therefore not deny that he/she signed the document, which provides a
property that is called non-repudiation.

Digital signatures can, for instance, be used to sign an online bank transaction. In this
example, the signature is used to preserve the integrity and authenticity of the trans-
action, meaning that no one else except the signer can alter the transaction. Because
only the signer is able to create the signature, it also provides non-repudiation, which
means that the signer cannot deny that he/she has performed the transaction. Other
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use cases of digital signatures are signing an e-mail, or signing an arbitrary �le where
a �le could for example be a PDF document containing a contract.

A veri�er of a signature needs the public key of the signer in order to check whether
a signature is valid. �is requires a complex infrastructure, because it is hard to make
sure that a certain public key belongs to a certain person or entity.

To formalize the way a signature is created and veri�ed, a digital signature scheme is
used. A digital signature scheme consists of three algorithms, namely a key genera-
tion algorithm, a signature generation algorithm and a signature veri�cation algorithm.
�e key generation algorithm generates the private and public key of the signer. �e
signature generation algorithm generates a signature using the private key and the
signature veri�cation algorithm describes how a signature can be veri�ed using the
signer’s public key.

3.4 Attribute-based signatures

A keypair of a signer normally belongs to a single person, which means that a person
can be identi�ed using his/her public key and that all signed messages are linked
and traceable to that single person. While this is sometimes desirable, it can also
be a privacy problem. A possible example is renting a house via AirBnB. Here, it is
desirable to sign a renting contract (with an obligation to pay), but it is not needed to
reveal a complete identity. It would be enough to sign the contract with, for instance,
only a name or bank account a�ribute. AirBnB can use this information in case of
damage: it can use the bank account a�ribute to retrieve money for damage recovery
and it can use the name to blacklist this person. Another example could be a medical
statement that is signed by a doctor. In this example, the doctor can be seen as a person
in a certain role. In a medical statement, the role is more important than the person
itself. It is important to notice that, these cases, non-repudiation is not completely
provided because the signer as person remains anonymous. �e only non-repudiation
that is provided in this case, is the fact that a person with certain a�ributes has signed
the statement.

Considering the examples from the previous paragraph, it seems logical to focus on a
person’s role rather than a person’s identity. We could use a di�erent signing key for
every role, but this makes a public key infrastructure even more di�cult to manage. A
be�er solution would be to use a�ribute-based signatures, that are introduced in [9].
With a�ribute-based signatures, we use a�ributes to sign a message.

We have already seen IRMA as an a�ribute-based identi�cation and authentication
system. Within an IRMA proof, a challenge is sent by the veri�er to the user, where
the user gives a signature as response that contains the required disclosed a�ributes.
�is response allows the veri�er to check that the user is in possession of the required
a�ributes, as explained in Section 3.2

Instead of using a random nonce as a challenge for an IRMA proof, we could also
send the hash of a message. By sending the hash of a message, we let the user sign a
message hash instead of a random challenge, which can be used to create a signature
using IRMA a�ributes. If we do this, only a few alternations are needed to the IRMA
protocol, which means that it is probably easy to implement this in the current IRMA
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ecosystem. �e idea of using IRMA for a�ribute-based signatures has been proposed
in [5]. From now on, we will refer to IRMA signatures if we use IRMA to create an
a�ribute-based signature.

3.4.1 �e IRMA signature scheme

To create a signature scheme for IRMA signatures, it is needed to implement the three
algorithms that together form a signature scheme. �e authors of [5] proposed to ex-
pand the key generation algorithm with an a�ribute issuance algorithm. Key generation
is done during initialisation of the IRMA token. At that moment, a private key is gen-
erated that is used to bind all the credentials (that will be issued later) to the IRMA
token. In the a�ribute issuance algorithm, new credentials will be issued to the token.
Issuers sign these credentials with their private key, where veri�ers use the corre-
sponding public key to verify the credentials during the disclosure protocol.

In the signature generation algorithm, the hash of a message is used as input for the
algorithm. �is hash is used instead of the challenge that an IRMA veri�er would
send to an IRMA user in a normal IRMA disclosure proof. Furthermore, the required
a�ributes are selected from the user’s token. �ese a�ributes and the hash are used
on the token to create an IRMA disclosure proof. �is IRMA disclosure proof will be a
non-interactive proof on hash of the message. �is disclosure proof is the main part of
the IRMA signature. Other parts of the IRMA signature are used to check if the IRMA
signature is created in compliance with its speci�cation. �ese parts are introduced
in Section 5.6.

For the signature veri�cation algorithm, the issuer’s public key is needed to verify
the disclosure proof in the IRMA signature. �e veri�er calculates the hash of the
message and uses the public key and some system parameters to verify this disclosure
proof. �e veri�er also needs to check if the other parts of the IRMA signature are
valid. �is is done by checking the signature speci�cation, which we introduce in
Section 5.2.3.

3.4.2 Diversi�cation between signatures anddisclosure proofs

It is desirable to support both signatures and ‘normal’ disclosure proofs, where the
normal disclosure proofs can still be used for authentication. In this case, it is essen-
tial to separate the signature domain from the disclosure proof domain. It must not
be possible that a hash of a message can be used in a disclosure proof because that
means that the user is signing something while he/she thinks that he/she is just au-
thenticating to a veri�er. �e authors of [5] proposed to append a Dbit in front of the
challenge. �is bit is set to one in case of a signature, and to zero in other cases. A
veri�er can use this bit in the reconstruction of the challenge to check if the proof has
to be veri�ed as a signature or as a normal disclosure proof.

However, we can improve on the proposed domain separation technique by using the
fact that, in the current IRMA protocol, the challenge that is sent to the user is ASN.1
encoded. ASN.1 describes a unique representation of the data that preserves type
information, which can be used to di�erentiate between the normal disclosure proof
and signature challenges. We can use di�erent data types for signatures and disclosure
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proofs. In Section 5.2.4, we describe how we exactly implemented the diversi�cation
between the two types of challenges.

3.4.3 Pre-selected vs self-selected attributes

In a normal IRMA disclosure proof protocol, the service provider, which acts as the
veri�er, determines which a�ributes are revealed by a user. A�er the veri�er has
determined which a�ributes are needed, he/she sends a request to the user containing
a challenge and the a�ributes that are required. �e user sends a response, which the
veri�er will check. If this response is valid, the veri�er will provide the user access to
a service or something else that the user has requested.

For signatures, this process could be the same. A party that requests a signature from
the user can be seen as a signature requester and could send a request to the user
containing the required a�ributes and a message that the user has to sign. We call
this request a signature speci�cation. �e user will send the signature back to the
signature requester, which will verify it, use it, and/or store it.

If a signature is stored, it can be veri�ed later by a signature veri�er. �is signature
veri�er is di�erent from the usual IRMA disclosure proof veri�er, because it does not
have to interact with the user (and send, for instance, a challenge to him/her). It only
has to check if an IRMA signature is valid by checking if the hash of the message
corresponds to the used challenge and if the signature is signed using the required
a�ributes that are speci�ed in the corresponding signature speci�cation. Another
di�erence between an IRMA disclosure proof and an IRMA signature is the fact that
an IRMA signature can be veri�ed by multiple signature veri�ers, where an IRMA
disclosure proof will usually only be veri�ed by one veri�er.

�e signature speci�cations that are sent by a signature requester already contain a
�xed set of a�ributes that the user has to reveal and include. �e signature requester
can also enforce certain values for a�ributes (for instance over18 must be yes). If the
user refuses to reveal or does not possess one of the a�ributes that is requested, then
he/she cannot create a valid signature that the service provider, or any other signature
veri�er that uses the same signature speci�cation, would accept. �is means that the
a�ributes of the signature are �xed.

However, signatures could also be created without a signature requester. If a user
would like to sign a message on his/her own initiative, then this must be possible
without requiring another party that sends a signature request to him/her. For this
use case, the user must be able to create such requests him/herself.

If a user creates a signature request him/herself, then he/she is able to choose ev-
ery a�ribute that he/she possesses. �is means that we can distinguish two types of
IRMA signatures, namely signatures with pre-selected a�ributes and signatures with
self-selected a�ributes. A signature veri�er will probably only verify signatures that
adhere to a known signature speci�cation, which means it will only accept signatures
with pre-selected a�ributes. For example, a veri�er of a signed renting contract would
require that this contract is signed with certain pre-selected a�ributes like the full
name of the signer.
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Chapter 4

Example use cases

In this chapter, we will elaborate on some example use cases. We make use of the
IRMA concierge as the central house identity. It can control the data�ows (from for
instance IoT devices) that go in and out a house. �e IRMA concierge also regulates
access to the house itself. Access can either be physical (through for instance a door
with an electronic lock) or digital to data and devices. We introduce some example
third parties that desire access to IoT devices and data in the house. We also explain the
house rules and IRMA credentials that can be used in typical IoT scenarios. In the next
section, we start by introducing some general components. A�er this introduction,
we elaborate on several scenarios in the next sections. We did not implement any of
the scenarios that are mentioned in this chapter. Instead, see Chapter 6 for a complete
implementation of a proof of concept that is based on the ideas and scenarios that we
present in this chapter.

4.1 Components for the scenarios

First, we introduce the components which are used to explain some scenarios. Since
we are using Tippiq’s generic ruling concept in the scenarios, we start with a de-
scription of this concept. A�er this description, we provide an overview of the IRMA
credentials that we use in the scenarios. Once the IRMA credentials are introduced, we
describe the notation we use to describe the protocols in the scenarios with Message
Sequence Charts. We also show how we apply IRMA signatures that we introduced
in the previous chapter.

4.1.1 Tippiq House Rules

Tippiq aims to use a generic ruling concept that we call house rules. A house rule con-
sists of �ve main parts and the generic form is constructed in the following way:

In my house holds:

[actor] is allowed to do [action] with [actee]
if [condition] to achieve [goal].
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A house rule is meant to o�er an easy to con�gure, yet powerful language for occu-
pants to control the data�ows of IoT devices in their houses and to control the IoT
devices themselves. �is means that house rules can also be used to regulate access to
the house. As we have shown in the generic form, house rules are constructed using
an actor, action, actee, condition and goal.

�e actor determines the who or what that is allowed to do an action and the
action determines what the actor is allowed to do. An action is normally done
with another actor, which is called the actee. Actions can be restricted to only be
allowed if a certain condition is met, which we specify with the condition.

A house rule is commonly created for a �xed goal. �is goal describes the intention
of the rule. �is intention is usually not checked when evaluating a rule, since it is
unknown at that moment. If a rule for instance describes access to a house, then
it will not be known what the person’s intentions are if he/she accesses the house.
However, the goal can be useful for auditing a�erwards. We can, for instance, log all
the applications of the house rules and check a�erwards if the corresponding actions
of the house rule that is applied are really taken. An example is a house rule that
allows a person access to the house for the goal ‘watering the plants’. If this person
did other things in the house as well, then this action will not match the goal of the
house rule anymore.

We can use house rules to de�ne concrete IoT scenarios. We can, for instance, con-
struct a house rule for the 112 alert case that we described in the introduction. �is
house rule will allow �re�ghts to retreive information about the occupant’s house if
it is on �re:

The firefighters are allowed to retrieve information
about my house and the occupants of my house if my
house is on fire to better prepare their rescue actions.

We can split this rule into the �ve parts that we discussed earlier:

actor �e �re�ghters
action are allowed to retrieve
actee information about my house and the occupants

of my house
condition if my house is on �re

goal to be�er prepare their rescue actions.

4.1.2 Basic IRMA credentials

Recall that we have de�ned both the occupants of a house and the house itself as
entities that have their own identity. �erefore, we will provide them both with their
own relevant credentials and a�ributes. Table 4.1 shows an overview of the used
credentials and a�ributes that we issue to them. Note that we call the IRMA identity
‘house’ the IRMA Concierge, because this is the device that both contains and veri�es
a�ributes that control access in a house to IoT devices and other parties.

We start by giving both the house and its occupants a credential. �e house obtains
a CHouse credential, containing an a�ribute with a unique and identi�able number
called the houseID. We also issue this houseID a�ribute to each occupant in an OHouse
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IRMA identity Credential A�ributes
Concierge CHouse houseID

address
Occupant Person personID

name
OHouse houseID

role

Table 4.1: �e basic IRMA credentials

credential, which couples the occupants to the house they live in. We should empha-
sise that the two credentials are di�erent, which explains why we call the credential
of the concierge CHouse and the credential of the occupants OHouse. We assume that
the houseID a�ribute can be used to look up a house, which means that a party can
connect and send data to a house once it knows the value of the houseID a�ribute of
that house.

A house has an address. It could be very useful to prove the validity of this address
to external parties, for instance to authenticate the house address to a post service.
�erefore, we also provide the house with an address a�ribute in the CHouse cre-
dential. For some scenarios, it could also be useful to add an address a�ribute to the
occupant’s IRMA token in the OHouse credential. However, we do not use this in our
scenarios so we decided to not include it.

As we have coupled an occupant to his/her house with the houseID a�ribute, it is
now possible for an occupant to prove that he/she lives in a certain house. However,
it could be useful to make a separation between the di�erent roles in a house. �e
house owner could for instance be allowed to sell the house, while a ‘normal’ occupant
is only allowed to access the house or to deliver a package to the house’s mailbox.
�erefore, we add another a�ribute to the CHouse credential, called the role a�ribute.
In our case, this could either be isOccupant for ‘normal’ occupants or isMainOccupant
for the house owner. �is a�ribute could in the future be expanded with other roles,
for instance an isGuest role.

Sometimes, it is desirable to uniquely identify a person without linking this identi�-
cation to the house he/she lives in. To allow this unlinkable identi�cation, we issue a
Person credential to the occupant’s IRMA token. �is credential contains the personID
a�ribute, which is a unique number. Besides the personID a�ribute, we also add a
name a�ribute to this credential.

We realise that the a�ributes of the Person credential overlap with the information
stored on a person’s identity card. �e IRMA team has already proposed a credential
that represents the information from a Dutch identity card using IRMA a�ributes.1 We
could use that credential instead of our Person credential. However, we try to keep
the protocols as simple as possible, which also means that we only specify a�ributes
that we really use in the scenarios.

�e a�ributes we de�ned in this section will be used as the basis for the scenarios we
describe in Section 4.2. However, for some scenarios, it will be needed to expand on
these a�ributes and issue extra a�ributes. We will explicitly mention these a�ributes

1See Github for the speci�cation of the Dutch MijnOverheid credential: https://github.com/
credentials/irma_configuration/tree/master/MijnOverheid
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in the scenarios when this is the case.

�e credentials we introduced (CHouse, OHouse and Person) need to be issued by a
trusted party. �e Person credential will probably be issued by the government, al-
though it needs to be expanded to contain all the a�ributes that are currently present
on an identity card (see for instance the MijnOverheid credential of the IRMA project
that we discussed earlier).

�e CHouse and OHouse credentials could be issued once you move into a new house.
Such movement is usually registered at the notary which could be a logical location to
issue house credentials. We could in that case also make each notary an issuer of these
credentials. Another solution could be making Tippiq an issuer of some credentials,
which especially in the beginning might be a viable alternative.

We also considered making each house its own issuer. If we would do this, then each
house could issue its ‘own’ OHouse credential. However, this would make scheme
management much harder (we discuss the IRMA scheme manager in Section 5.1.2).
Each participant of the IRMA protocol should have access to the IRMA scheme that
contains the credential descriptions and public keys of the issuers. If each house would
be an issuer, then each house must have a public key in the central IRMA scheme.
Maybe it would be possible to decentralise the IRMA scheme in the future, which
would make scheme management easier.

Another issue of making each house an issuer is about trust management. If each
house could issue its own OHouse credential, then a house can issue this credential
to anyone it wants. �is allows a house to add a ‘house owner’ credential to a person
that does not live in the house. If we centralise the OHouse credential at a trusted
party, such as the notary, then only this party can issue this credential. �is party
will only issue a�er the occupant is su�ciently checked by, for instance, showing an
ID document.

4.1.3 Message Sequence Charts

We describe all the scenarios with message sequence charts. A message sequence
chart (MSC) contains the �ow of the messages sent between di�erent parties. Each
arrow in the chart indicates a message, where we added the content of the message
above the arrow. Most messages are preceded with a number that corresponds to the
number in the description of the scenario.

Arrows that are connected in a grey box denote an established channel. Within this
channel, it is not possible to swap messages or IRMA tokens. �is prevention is en-
forced on a lower level in the IRMA so�ware library.

Besides arrows, we also have boxes. �ese boxes contain actions that do not require
communication and must be done by the entity itself.

An arrow with RV (xy) indicates that the sending party, where the arrow originates
from, sends a disclosure proof request containing a�ribute x from credential y to the
other party. A disclosure proof request is a request from a veri�er to a prover that asks
the prover to give a proof of possession of some (in the request) speci�ed a�ributes.
�e other party can respond with a disclosure proof containing a proof of the a�ributes
that are requested. Such a disclosure proof is denoted with SD(xy), which refers to
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a disclosure proof of a�ribute x from credential y.

We illustrate issuing by sending credential ‘directly’ from the issuer to the user. Is-
suing can only be done with full credentials (and not with single a�ributes). I(x)
therefore means that a party issues credential x to the other party. While we denote
issuing with only one arrow from the issuer to the user, this is not the case in reality.
�ere are multiple message sent between the two parties. However, since these details
are not relevant for our protocols, we omit those details.

Furthermore, we use IRMA signatures as introduced in Section 3.4.1. An IRMA signa-
ture is denoted as Sig(data)x, where data is the data that is signed and x is the set of
a�ributes that is used in the signature. We omit the credential in this case for brevity,
but we will always mention it in the corresponding scenario description. As we in-
troduced in Section 3.4.3, signatures can be created with self-selected or pre-selected
a�ributes. For the pre-selected case, a signature request must be sent by the signature
requester. A signature request is indicated by an arrow with RS(xy), where a signa-
ture with a�ribute x from credential y is requested. In some cases, a certain value for
an a�ribute is enforced by the signature requester. If this is the case, we will mention
this in the corresponding scenario description.

4.1.4 Application of IRMA signatures

As we introduced a notation for IRMA signatures for our MSC, we will use them in
our scenarios. We will use IRMA signatures for three di�erent cases:

• In the �rst case, we use IRMA signature to sign house rules. House rules are
used to control access to devices. We need to make sure that house rules can
only be added or changed by an authorised occupant. �erefore, we sign each
house rule with IRMA a�ributes from the occupant. IRMA signatures for house
rules are created on the occupant’s IRMA token and sent to the IRMA concierge.
For each house rule, we have to determine which a�ributes are needed in the
signature (a rule for allowing a mailman to deliver a package in the electronic
post box can for instance be allowed by every occupant, while a rule to allow
someone access to the house can be restricted to main occupants only). A�er
this has been determined, the required a�ributes for each house rule are �xed,
which means these signatures are signatures with pre-selected a�ributes.

• For the second case, IRMA signatures are used to authorise veri�ers to request
a�ributes from the IRMA concierge. Veri�ers can only retrieve a�ributes from
the IRMA concierge if occupants have authorised them beforehand. �is autho-
risation must be done beforehand, because the IRMA concierge must be able to
operate on its own. �is means that we cannot show a normal con�rmation
dialog to the occupant. �erefore, we let the user use his/her IRMA token to
authorise these veri�er requests by sending an IRMA signature containing this
authorisation to the IRMA concierge. �ese signatures are always signed us-
ing the houseID a�ribute from the OHouse credential on the occupant’s IRMA
token. Because this a�ribute is �xed, these signatures are also signatures with
pre-selected a�ributes. A�er a veri�er is authorised by an IRMA signature, it
can request the a�ributes from the IRMA concierge.

• In the third case, we use IRMA signature to sign o�cial contracts and docu-
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ments. Service providers require some documents and contracts to be signed
by the occupant. In these cases, service providers will send a signature speci�-
cation to their customers, which means that in this case, again signatures with
pre-selected a�ributes are used.

For adding a signed house rule to IRMA concierge, we use the following syntax in the
MSC charts of our scenarios (as introduced in Section 4.1.3):

Sig(houseRule)x

In this notation, x is the list of a�ributes that is included in the signature, and house-
Rule is the rule that will be signed. For brevity, we will in the scenarios only mention
the house rule that is signed, without describing the complete interaction between
the IRMA concierge and occupant to create a signed house rule. �is interaction will
always look as follows:

• �e occupant’s IRMA token sends a house rule that the occupant would like to
add/change to the IRMA concierge.

• �e IRMA concierge determines which a�ributes are needed to sign this rule.
When the required a�ributes are determined, the IRMA concierge sends a sig-
nature request to the occupant’s IRMA token.

• �e occupant’s IRMA token uses this request to create an IRMA signature, and
it asks the occupant for con�rmation to sign the house rule. If the occupant
agrees, then the IRMA token sends the signed house rule to the IRMA concierge.

• �e IRMA concierge adds the house rule and the signature to the database.

�ese steps are the same with each added/changed house rule, which justi�es our
decision to omit them and only mention the short signature notation.

For the second case (adding veri�er permissions), the same protocol as used for adding
house rules can be applied. However, since the included a�ribute in the signature is
�xed in this case, the signature speci�cation could also be created by the IRMA token
itself. Considering that in this section, we only propose some scenarios, we will not
look into detail in how this will exactly be implemented.

For the third case (o�cial contracts and documents by service providers), the signa-
ture speci�cation will be determined by the service provider. For this speci�cation,
we use the explicit notation ‘RS(xy)’, as speci�ed in Section 4.1.3.

4.2 Scenario: Ordering at an online shop

Our �rst scenario describes an occupant who orders a product at an online shop that
will be delivered to his/her house by a mailman. �is scenario consists of four parties,
namely the occupant, the IRMA concierge of the occupant, the mailman and the online
shop. All these parties desire validation of some a�ributes of other parties in order
to trust these other parties. We will �rst examine which trust relations are needed
between parties. A�er this, we will de�ne the needed IRMA a�ributes to achieve
these relations. With these a�ributes de�ned, we will describe the protocol of the
scenario itself.
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4.2.1 Trust relations

�e occupant has to pay the online shop to receive products that he/she ordered. �is
payment must be done securely and to the right party, which means that the online
shop has to prove its identity to the occupant. We could use IRMA for this proof,
which would mean that the online shop has to prove possession of an IRMA a�ribute
to the occupant.

However, IRMA is not needed in this case since there exists already a mechanism
that lets the shop prove its identity to its users. �is mechanism is called Transport
layer security and requires the shop to provide a TLS certi�cate to its online visitors.
�e shop has to prove its identity to a certi�cate authority in order to obtain such
a certi�cate, especially in the case of Extended Validation certi�cates.2 When the
occupant visits the website of the shop, he/she will see a green bar with the name of
the shop in the address bar in his/her browser if the shop provides an EV certi�cate
that is issued by a trusted certi�cate authority.

It would also be desirable for the occupant if the mailman could authenticate him/her-
self when delivering the product. A mailman is currently probably trusted if he/she
wears a mailman uniform, which seems to be enough in most cases. However, we
could add an electronic lock to a mailbox to prevent stealing of delivered mail and
packages. In that case, it is desirable that this box can only be opened by an au-
thenticated mailman if this mailman is delivering a package to the corresponding
house.

To authenticate the mailman, he/she could be provided with a mailman IRMA at-
tribute and reveal this if he/she delivers a package. �e electronic mailbox will in
this case only open a�er a valid proof of a mailman a�ribute and only if there is a
package to be delivered. �e mailman can use his/her phone or a physical smart card
as an IRMA token. In addition, the mailbox could be equipped with a screen that
shows a QR code, which is used to establish a connection between the mailbox and
the mailman’s IRMA token.

For the online shop, it would be desirable to obtain a proof of the house address of the
customer. �is would prevent delivery of packages to fake or non-existent addresses.
�e occupant can prove his/her address to the online shop by authorizing the shop to
retrieve the address a�ribute from the concierge. In this case, the shop is the veri�er,
and the concierge the IRMA user.

In addition, we could let the online shop issue an IRMA a�ribute to the occupant’s
IRMA concierge. �is a�ribute could be checked by the mailman when he/she is
delivering the package to the mailbox to be sure that the package will be delivered to
the right address.

4.2.2 Relevant IRMA attributes

In the previous section, we introduced the trust relations that are desirable. We also
suggested some possible solutions to create these relations. In this section, we will
show which IRMA a�ributes we use in the protocol. �ese a�ributes are summarised

2See for instance the Certi�cate Practice Statement of DigiCert about the validation they require for an
EV certi�cate: https://www.digicert.com/docs/cps/DigiCert_EV-CPS.pdf
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IRMA identity Credential A�ributes
Concierge CHouse houseID

address
Order orderID

Occupant OHouse houseID
role

Mailman MailmanID mailmanID

Table 4.2: �e IRMA credentials and a�ributes used in the online shop scenario

in table 4.2. In the next section, we will describe the protocol itself and show the MSC
chart corresponding to these a�ributes and this protocol.

�e protocol begins with an occupant that buys a product at the online shop. �e
shop desires a proof of the occupant’s address for this purchase. �is proof can be
provided with the houseID a�ribute on the occupant’s IRMA token. �e online shop
can use this a�ribute connect to the occupant’s IRMA concierge. A�er the occupant
has authorised the shop to retrieve the address a�ribute from the IRMA concierge,
this connection can be used to read out this a�ribute. We will later show how this
works in this protocol.

�e mailman needs to prove his/her identity to the IRMA concierge for which we will
use a mailmanID a�ribute. We choose an identifying a�ribute, to allow investigation
and logging of the mailman for the case that a package is lost. If someone possesses
this a�ribute, then this person can be seen as a valid mailman. �is means that if you
allow anyone with a mailmanID a�ribute to do an action, you allow everyone with
the role mailman to do this action. On the other hand, if you, besides only possession,
also enforce a speci�c value for themailmanID a�ribute, then you allow only a speci�c
mailman to do the action.

�e occupant has to give permission before the mailman is able to open the mailbox.
�is will be done using a Tippiq house rule, which is signed with the houseID and
the role a�ribute from the OHouse credential. �e value for this role a�ribute can
either be isOccupant or isMainOccupant, since both normal occupants as well as main
occupants are allowed to add this house rule. �e houseID a�ribute is needed to prove
that the occupant is really an occupant of this house.

�e mailman wants to check if he/she is delivering the package to the right house.
�is can be done by le�ing the shop issue an orderID a�ribute to the IRMA concierge.
�is identi�cation number will also be physically printed on the package itself, which
allows the mailman to do the check that is desirable by verifying this a�ribute from
the IRMA concierge.

�e IRMA concierge also wants to check the orderID of the package that the mail-
man delivers, before it allows the mailman to open the mailbox. It would therefore
be logical to also issue this a�ribute to the mailman’s IRMA token, which can then
be revealed to the IRMA concierge. However, this is hard to achieve, since it is not
beforehand known which mailman is going to deliver the package. �is means that is
not possible to issue this a�ribute to the right mailman. �is is also the case with the
mailmanID a�ribute that we discussed, but in that case we solved it by allowing every
mailman with a mailmanID a�ribute access to the mailbox. Another issue is that a
mailman would need multiple IRMA a�ributes per credential type (since he/she deliv-
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ers multiple packages with multiple orderID a�ributes). However, this would not be
an issue since it is recently possible to have multiple instances of the same a�ribute
on an IRMA token.3.

�erefore, we choose to only print this orderID on the package that the mailman will
deliver. �e mailman still needs to authenticate him/herself using the mailmanID
a�ribute and is only allowed to open the post box, if he/she possess a package with
a valid orderID. We enforce this in the house rule that we will discuss in the next
section.

4.2.3 �e protocol

As we have introduced both the trust relations and the needed IRMA a�ributes, we
can now propose an example protocol for this scenario. �e corresponding MSC can
be found in Figure 4.1.

We will describe the global overview of this scenario in a numbered list, where each
number refers to a message in the MSC:

1. �e occupant orders a product (with a certain orderID) at the online shop and
pays (using an electronic payment system).

2. �e shop requests a disclosure proof of the houseID a�ribute of both the oc-
cupant and the IRMA concierge. In this request, it also demands the address
a�ribute of the IRMA concierge. �e occupant has to allow this request on
his/her IRMA token. On this token, the occupant authorises the shop to re-
trieve the houseID a�ribute from his/her personal IRMA token. He/she also
authorises the shop to retrieve the houseID and address a�ributes from his/her
IRMA concierge. �is authorisation can be done in one con�rmation dialog on
the token. A�er con�rmation, the IRMA token will create an IRMA disclosure
proof and an IRMA signature. �e IRMA disclosure proof is used to send the
houseID from his/her personal IRMA token to the shop (step 3 of this scenario).
�e IRMA signature is sent to the IRMA concierge and is used to authorise the
shop to retrieve the houseID and address a�ributes from the IRMA concierge
(step 4 of this scenario).

3. An IRMA disclosure proof of the houseID a�ribute is sent from the occupant’s
IRMA token to the online shop. At this moment, the online shop has obtained
a validated houseID a�ribute from the occupant. �is a�ribute is needed to
connect to the occupant’s IRMA concierge. When the shop connects to the
IRMA concierge, it will retrieve the houseID and address a�ributes (step 5 of
this scenario). �e shop needs to check if the two houseID a�ributes match,
in order to verify that the occupant really is an occupant of the house that the
shop is connecting to.

4. �e occupant’s IRMA token sends an IRMA signature to the IRMA concierge.
�is signature authorises the online shop to request the houseID and address
a�ributes from the IRMA concierge. Since this message is used to authorise a
veri�er (the shop) to retrieve IRMA a�ributes from the IRMA concierge, this

3See this Git commit: https://github.com/credentials/irma_android_cardemu/
commit/bd8aabaa25f50f244bbc71573885b2f26d46ab10
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Mailman IRMA concierge Online shop Occupant

(1) $$$, orderID
(2) RV (hIDOHouse,
{hID, addr}CHouse)

Allow request
(3) SD(hIDOHouse)

(4) Sig(allow shop to retrieve
{hID, addr}CHouse)houseID

(5) RV ({hID,
addr}CHouse)
(6) SD({hID,
addr}CHouse)

(7) I(Order)
(8) product, mail, address, orderID

(9) Sig(I arrive for orderID y)mailmanID

Check signature
(10) Sig(houseRule)houseID

(11) SD(
mailmanIdMailman),

orderID

(12) Check

Open safe
(13) RV (orIDOrder)

SD(orIDOrder)

(14) Product

Figure 4.1: MSC: Ordering at an online shop
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message is signed with the houseID a�ribute of the occupant (note that only
occupants of the corresponding house are able to create such signatures, since
only they possess the right houseID a�ribute).

5. �e shop requests a disclosure proof of the houseID and address a�ribute from
the IRMA concierge. We assume that the shop (which is the veri�er) is au-
thenticated to the IRMA concierge. �is can either be done with TLS, or in the
future with IRMA veri�er authentication that currently is not implemented (see
Section 5.1.5 for details on veri�er authentication).

6. �e IRMA concierge allows this request (because it has received a signed mes-
sage from the occupant to allow requests from this shop). It will send a disclo-
sure proof with the requested a�ributes back.

7. A�er the veri�cation has succeeded, the shop will issue an orderID a�ribute (in
an Order credential) to the IRMA concierge.

8. Once the order has completed, the shop will hand it over to the mail service,
together with the destination address and the orderID printed on the package.

9. �e mail service sends a message to the occupant containing the order number
of the package. �is message is signed with a mailmanID a�ribute from a mail-
man. �is can be a di�erent mailmanID a�ribute than the mailmainID a�ribute
of the mailman that delivers the package. In the future, we could add a delivery
date to this message. �is date could then also be added to the house rule in the
next protocol step.

10. �e occupant checks the signature of this message, and adds a house rule to
the IRMA concierge that allows a valid mailman (validity can be checked by
requesting the mailmanID a�ribute) to open the mailbox if this mailman has to
deliver the package with the right orderID. �is rule is signed with the houseID
a�ribute of the occupant and consists of the following parts:

actor An authorised mailman
action is allowed to open
actee the mailbox of my house

condition if he/she has a package for my
house with orderID X

goal to deliver this package in my mailbox.

11. When the mailman arrives at the house to deliver the package, he/she needs to
prove to the IRMA concierge that he/she is the right mailman by sending over
a disclosure proof of the mailmanID a�ribute. He/she also needs to prove that
he/she possess the package with the right orderID. We already argued that it is
hard to use IRMA a�ributes for this, so we let the mailman send the orderID to
the IRMA concierge as a plain number, over the same channel as we send the
disclosure proof. �e mailman can retrieve the orderID by scanning a QR or bar
code on the package, which contains this number.

12. �e concierge veri�es the mailmanID a�ribute and stores it in a log �le. It
also checks the orderID that the mailman provided. If the mailmanID a�ribute
is valid, and if the orderID matches the orderID a�ributes was issued by the
shop, the concierge opens the safe and allows the mailman to verify the orderID
a�ribute.
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13. �e mailman sends a disclosure proof request for the orderID a�ribute, and will
get a disclosure proof back from the IRMA concierge.

14. If the veri�cation of this request succeeds, then the mailman will put the pack-
age into the mailbox. �e IRMA concierge records this action, and will from
now on disallow any other mailman that wants to deliver a package with the
same orderID, since this package is already delivered. A noti�cation to the oc-
cupant and the web shop can be sent if the package is delivered.

4.3 Scenario: 112 alert

In Section 1.3.2, we introduced 112 alert as an example and a working prototype that
was used to test the need for a platform such as Tippiq. �is prototype provided
control over data to customers. �e 112 alert service only shared the information that
is provided by customers to the �re brigade in case of a �re.

One problem with 112 alert is that it is a centralised system. Customers had to pro-
vide all their privacy sensitive information to 112 alert, so they had to trust 112 alert
completely with their data. It would be more privacy-friendly if these data are stored
locally, for instance on the IRMA concierge. While we normally prefer decentralised
control and storage, we should emphasise that in the case of a �re, it is very impor-
tant that the devices that control the data and house access, as well as the devices
that store the data must still remain working. �is means that these devices need to
be �reproof. If it is not possible to achieve this, then a centralised solution could be
preferable. In that case, it still needs to be considered whether the advantage of using
a centralised service is bigger than the loss of privacy and control.

Another problem is the fact that 112 alert still relies on a central emergency room for
the detection of a �re. In other words: it will provide the data to the �re brigade if
the emergency room noti�es 112 alert of a �re, and this will also happen in the case
of a false alarm. A be�er approach would be to use the sensors in a house to detect if
there is a �re.

If the house is equipped with a digital lock that can be controlled from the IRMA
concierge, then it might also be useful to automatically grant the �re�ghters that are
sent by the �re brigade access to the house in the case of a �re. When a house is on
�re, there is a chance that the IRMA concierge and other IoT devices in the house will
stop working. In that case, the �re �ghts will break the lock on the door, in the same
way as is done in a ‘non-digital’ house.

4.3.1 Trust relations & IRMA attributes

As with the previous scenario, we have an occupant and an IRMA concierge. We also
assume that the occupant’s house contains some sensors to detect �re. �e smoke
detectors can notify the IRMA concierge in case of a �re. We assume that this local
connection is done securely.

�e IRMA concierge noti�es the emergency room in case of a �re. It will include the
required house data in this noti�cation. To ensure integrity and authenticity, these
data need to be signed. We use an IRMA signature with the houseID a�ribute, to
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uniquely identify this house. We also include the address a�ribute. �is a�ribute is
used by the emergency room to send the �re �ghters to the right location.

�e emergency room will send �re�ghters to the house, and provide them with the
house data so that they know where for instance the children are sleeping. We assume
that the �re�ghters have their own IRMA tokens that contain a Fire�ghter credential
with a �re�ghter a�ribute. With this credential, they can prove that they are indeed
�re�ghters. We will use this to provide the �re�ghters access to the house in case of
a �re.

4.3.2 Protocol

Before any data can be shared, the occupant has to enter these data into the IRMA
concierge. �is is the same data as was sent in the 112 alert case, and we will refer to
these data as ‘house data’.

A�er entering the data, the occupant needs to create two house rules. One for allow-
ing the emergency room to retrieve the house data in case of a �re and one for the
�re�ghters to allow them to open the door of the house in case of a �re.

House rule #1:
actor �e IRMA concierge

action is allowed to send to the emergency room
actee my house data

condition if my house is on �re
goal so the �re�ghters can be�er prepare their ac-

tions.

House rule #2:
actor �e �re�ghters

action are allowed to open
actee the door of my house

condition if my house is on �re
goal to extinguish the �re in my house.

We allow every �re�ghter with a valid �re�ghter a�ribute to open the door, which
means that we only look at the role of these persons, instead of looking at speci�c
persons. �is is the same as with the mailmanID as we discussed earlier.

We will use these rules in the protocol that we will describe now. �e corresponding
MSC can be found in Figure 4.2.

1. �e occupant enters the house data in his/her IRMA concierge. �ese data are
signed with the houseID a�ribute, which is used to check if these data corre-
spond to the right house. If we only want to allow main occupants to add house
data, then we would also include the role a�ribute, which in that case can be
used to verify if an occupant is the main occupant of the house.

2. �e IRMA concierge will sign these data with the houseID and address a�ribute
(as discussed in the previous section) and store the data in its database. �e
reason that the IRMA concierge (re)signs these data instead of the occupant is
because only the IRMA concierge contains the address a�ribute.
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Occupant Fire alarm IRMA concierge Fire brigade Emergency room

(1) Sig(House data)houseID

(2) Sign data
(3) Sig(House rules)houseID

(4) Fire!

(5) Fire!, Sig(House data){hID, addr}

(6) Sig(House data){hID, addr}

(7) SD(firemanFireman)

(8) Open door

Figure 4.2: MSC: Allow �re�ghters access to house and house data
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3. �e occupant enters the two house rules in his/her IRMA concierge. �ese
rules are just as the house data signed with the houseID a�ribute. In this case,
we could also include the role a�ribute if we want only main occupants to be
able to add house rules about retrieving house data.

4. If there is a �re, then the �re alarm will send a signal to the IRMA concierge.

5. �e IRMA concierge noti�es the emergency room and includes the house data
that the occupant sent to it in message (1) in this noti�cation. Note that these
data are signed with the houseID and address a�ributes by the concierge. �e
address a�ribute is used to send the �re�ghters to the right and veri�ed loca-
tion.

6. �e emergency room checks the signature, sends the �re�ghters to the occu-
pant’s house, and provides them with the house data it received from the IRMA
concierge. If the signature does not verify, then the �re�ghters will probably
still be sent to the house, because it is important to extinguish the �re. However,
this is up to the emergency room to decide.

7. Once the �re�ghters reach the house, they disclose their �re�ghter a�ribute to
the IRMA concierge.

8. A�er disclosure, the IRMA concierge will open the door.

4.4 Scenario: rent out your house

Sometimes, it can be desirable to grant someone else access to your house. If the
house is equipped with an electronic lock, we could use IRMA a�ributes to allow
and revoke access. �is allows a house owner to rent his/her house to someone else,
without giving away a physical key. For renting a house, a contract could be signed,
for which we can use an IRMA signature.

4.4.1 Trust relations & IRMA attributes

In this scenario, we have three entities, namely the main occupant, the renter and the
IRMA concierge. We assume the IRMA concierge is connected to an electronic lock,
and is able to open this lock.

�e occupant and renter need to agree upon a renting contract, where the renter has
to prove possession of the personID a�ribute (although ‘anonymous’ renting would be
possible by choosing another non-identifying a�ribute). �e occupant has to prove
that he/she is the main occupant of the house that is going to be rented. �e occupant
can do so by proving possession of the houseID and role a�ribute.

4.4.2 Protocol

We will now describe the renting protocol. Figure 4.3 shows the corresponding MSC.

1. �e main occupant and the renter agree upon rental of the occupant’s house.
�is will in this case be done ‘in person’; we will later show an example where
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IRMA concierge Renter Occupant

(1) Commit on rent

(2) Connect IRMA tokens

(3) SD(personIDPerson)

SD(houseIDPHouse)

(4) Create and
sign contract

contract,
Sig(contract)personID

(5) Sign contract
Sig(contract)personID

(6) Check signature
(7) Sig(House rule){houseID, mainOccupant}

(8) SD(personIDPerson)

(9) Check
house rules

Open door

Figure 4.3: MSC: Allow a renter access to your house
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this is done digitally.

2. �e renter’s and the occupant’s IRMA tokens need to be connected with each
other. In the case that both IRMA tokens are equipped with an NFC reader, this
could be done by placing both phones back to back to establish a connection
using NFC. Another option is le�ing one phone scan a QR code on the other
phone.

3. Both parties need to disclose an IRMA a�ribute: the renter reveals his/her per-
sonID and the occupant reveals his/her houseID. In this way, the occupant proves
that he/she lives in the house and the renter proves his/her personal identity.

4. �e occupant creates a contract which contains the period, the costs and maybe
some other conditions. �is contract needs to be signed by the renter, which
means that he/she must be certain the right contract will be signed. �e oc-
cupant requests the renter to sign the contract with his/her personID a�ribute,
which means that this will be an IRMA signature with pre-selected a�ributes.
Signing happens on the IRMA token, which shows a dialog containing the mes-
sage that will be signed. �e message can either be the contract itself, or it can
link to the contract in an external �le. We show in Section 5.2.3 how this exactly
could be achieved. A�er creation, the occupant signs the contract with his/her
personID a�ribute and sends both the contract and the IRMA signature to the
renter.

5. �e renter veri�es the IRMA signature and reads the contract. If the signature is
valid and he/she agrees with the contents of the contract, he/she sends it back,
signed with his/her personID a�ribute.

6. �e occupant veri�es the signature on the contract.

7. �e occupant adds a house rule to the IRMA concierge that allows the renter
to open the door. �is will be done by allowing the personID a�ribute of the
renter access to the house with the following house rule:

actor Person with personID = X
action is allowed to open
actee the door of my house

condition between startDate and endDate
goal to enter my house that he/she rented.

�is rule needs to be signed with the houseID a�ribute and the role a�ribute set
to mainOccupant.

8. If, a�er some time, the renter wants to enter the house, then he/she will disclose
his/her personID a�ribute to the IRMA concierge.

9. �e IRMA concierge checks the corresponding house rules and opens the door if
the renter is allowed to access the house, since only main occupants are allowed
to give someone else access to the house.
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Occupant Airbnb.nl IRMA concierge

(1) Add house

(2) RV ({hID, role}OHouse,
{hID, addr}CHouse)

(3) Sig(allow Airbnb to retrieve
{hID, addr}CHouse)mainOccupant

Allow request

(4) SD({hID, role}OHouse)

(5) SD({hID, addr}CHouse)

Figure 4.4: MSC: Add a house to Airbnb

4.5 Scenario: Airbnb

�e rent a house scenario is limited, because it is required to meet in person to sign
the renting contract. In that case you can also physically hand over a key for the
house, so the use of an electronic lock does not add much value. We could improve
this scenario by integrating it into Airbnb.4 �e Airbnb platform allows its customers
to both rent and hire each other’s houses, where Airbnb is the party that connects
them.

We split this scenario into four parts, to make a clear separation between the distinc-
tive steps:

1. �e occupant adds his/her house to Airbnb.

2. �e renter �nds a house on Airbnb and rents it.

3. �e occupants obtains a con�rmation for the rent from Airbnb, veri�es this
con�rmation and provides the renter access to his/her house.

4. �e renter accesses the house by scanning a QR code on the touchscreen on the
door.

�e �rst step is adding a house to Airbnb. �e MSC can be found in Figure 4.4.

1. �e occupant adds his/her house to Airbnb.

2. Airbnb requests a proof of both the houseID and the role a�ributes from the
4https://www.airbnb.nl/
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Occupant Airbnb.nl Airbnb renter

(1) Select house

(2) Contract,
RS(personIDOHouse)

(3) Sig(contract)personID

(4) Signed contract

Figure 4.5: MSC: Rent a house on Airbnb

occupant’s IRMA token, to be sure that the occupant is the main occupant of
the house with the right houseID that he/she is adding to Airbnb. Airbnb also
desires a proof of the houseID and address a�ribute from the occupant’s IRMA
concierge. In this way, Airbnb can verify the address of the house that the
occupant is adding to Airbnb. �e occupant has to authorise Airbnb to retrieve
these a�ributes. �is can be done in the same way as with the online shop
scenario.

3. A�er scanning, the occupant sends an IRMA signature to the IRMA concierge
to allow Airbnb to retrieve the houseID and address a�ributes from the IRMA
concierge. �e occupant also allows the request to reveal the houseID and role
a�ributes from his/her own IRMA token.

4. �e occupant sends a disclosure proof containing the houseID and role a�ribute
to Airbnb.

5. �e IRMA concierge sends a disclosure proof of the houseID and role a�ribute
to Airbnb.

4.5.1 Rent house on Airbnb

�e second step consists of a renter that rents the house that has been added by the
occupant on Airbnb. �e MSC can be found in Figure 4.5.

1. If, a�er some time, a renter wants to rent the house, he/she will select the house
and enters his/her (payment) information.

2. To con�rm the agreement, the renter needs to scan a QR code, which creates a
link between the renter and Airbnb. If the link has been created, then Airbnb
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IRMA concierge Occupant Airbnb.nl Airbnb renter

(1) Check signature

(2) Sig(houseRule)houseID, mainOccupant

(3) Sig(houseRule)houseID, mainOccupant

(4) Rented!

Figure 4.6: MSC: Provide access to Airbnb renter

will send a contract to the renter and requests the renter to sign this with his
personID a�ribute from the OHouse credential. �is is a pre-selected signature:
Airbnb selects the a�ributes that are needed to sign the signature and also
shows the data (the contract) that has to be signed.

3. �e renter needs to sign this contract with his/her personID a�ribute, and sends
the IRMA signature back to Airbnb.

4. Airbnb sends the signed contract to the occupant and noti�es that his/her house
has been rented.

4.5.2 Provide renter access to the house

�e occupant will provide access to the house by adding a house rule a�er the house
has been rented. �e MSC of this protocol step can be found in Figure 4.6.

1. �e occupant veri�es the signature on the contract.

2. If the signature is valid, then the occupant will add a house rule to the IRMA
concierge to allow the renter access to the occupant’s house. �is rule is signed
with the houseID and role a�ributes and consists of the following parts:

actor Person with personID = X
action is allowed to open
actee the door of my house

condition between startDate and endDate
goal to enter my house that he/she rented.

3. �e occupant sends this house rule also to Airbnb as a con�rmation that access
has been provided.
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IRMA concierge Airbnb renter

(1) RV (personIDOHouse)

(2) SD(hIDOHouse)

(3) Check house rules

(4) Open door

Figure 4.7: MSC: Renter opens the house

4. Airbnb noti�es the renter that the request has been completed and that the
renter is allowed to access the house.

4.5.3 Renter accesses the house

�e �nal step consists of the Airbnb renter that will open the door of the house that
he/she rented. �e MSC can be found in Figure 4.7.

1. When the renter wants to access the house and stands in front of the door, the
IRMA concierge requests the renter to disclose his/her personID a�ribute to the
IRMA concierge.

2. A�er this request, the renter will give a proof of his/her personID a�ribute to
the IRMA concierge.

3. �e IRMA concierge checks if there is a valid house rule that allows this person
access.

4. If there is a valid house rule, then the IRMA concierge will send a signal to the
electronic lock, which will open the door.
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Chapter 5

Implementation of IRMA
signatures

In Chapter 3.3, we introduced IRMA signatures. In this chapter, we describe our im-
plementation of IRMA signatures. We will start by introducing some technical de-
tails of the current veri�cation protocol. �e explanation of these details is required
to implement the needed changes in the protocol that add support for IRMA signa-
tures.

5.1 Current veri�cation protocol

We �rst introduce the current veri�cation protocol. We will start by providing a high-
level overview of the di�erent parties and components in the protocol. A�er this
overview, we show how a�ributes are speci�ed. Using this speci�cation, we explain
how a complete IRMA veri�cation session is conducted.

5.1.1 High-level overview

As already introduced, the IRMA system consists of three main actors. �e �rst actor
is the user, who needs to prove the possession of some a�ributes to a service provider.
�e service provider acts in this case as the second actor, the veri�er. �e a�ributes
are issued by a third actor, the issuer, to the user. �e issuer is only involved during the
issuance of a�ributes; during an a�ribute disclosure proof, only the user and service
provider communicate.

Because of the direct communication between the three di�erent parties, it is required
that all parties support some parts of the IRMA protocol. Nowadays, every user has
a smartphone, which means that it is easy to provide each user with an IRMA smart-
phone application that can act as a secure IRMA token. However, this is not the case
for service providers, because they need to adapt their website to support the IRMA
protocol, which means they have to support the cryptographic IRMA operations. �is
requires an e�ort from their side, which should be avoided if possible.
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To make IRMA support easier to implement and maintain for service providers, the
IRMA team introduced a fourth party, namely the IRMA API server, which is used to
separate between the logic of the website of the service provider and the cryptography
that is needed to verify a�ributes. �e IRMA API server can be hosted by the service
provider itself, but this task can also be outsourced to another party.

�e communication between the three parties (user, service provider, IRMA API server)
proceeds as follows (Figure 5.1 shows an MSC chart of this protocol)1:

1. �e user visits the website of the service provider, who requests the user to
reveal some IRMA a�ributes.

2. In order to obtain these IRMA a�ributes, the service provider sends a disclosure
proof request to the IRMA API server. �is request contains the a�ributes that
the user has to reveal to the service provider. We will explain the disclosure
proof request data type in Section 5.1.3.

3. �e IRMA API server returns a session identi�er to the service provider. �is
identi�er is wrapped in a URL to the api server.

4. �e service provider communicates this URL to the user via a QR code.

5. �e user scans this QR code with the IRMA smartphone app. �e app will
follow the URL in the QR code, which connects the smartphone to the IRMA
API server.

6. �e IRMA API server requests the a�ributes from the user’s IRMA app by send-
ing the disclosure proof request to the user’s IRMA app.

7. �e IRMA app asks the user for consent. If consent has been provided, the
IRMA app sends a disclosure proof of the requested a�ributes to the IRMA API
server.

8. �e IRMA API server veri�es the disclosure proof and sends the result of this
veri�cation to the service provider in a signed JSON token. Note that the service
provider has to trust the IRMA API server completely, since it does not verify
the disclosure proof itself. �e service provider also has to possess the public
key of the IRMA API server, because this is used to verify the JSON tokens.

Issuance of credentials will follow almost the same protocol, except for the second
step: instead of a disclosure proof request, an issuing request will be sent. An issuing
request speci�es the values of the a�ributes in the credentials that will be issued to the
user. It can also request the user to �rst disclose some a�ributes, before the new cre-
dentials will be issued. Since issuing is a separate step and not relevant for our IRMA
signature implementation, we will not discuss the issuing protocol in detail.

5.1.2 Attribute speci�cation

It is required that issuers, veri�ers and the IRMA application of the users know which
credentials exist and how credentials are built (meaning which a�ributes are part of
a credential and which are not). It is also required to specify the issuer of a certain

1See Github for the original documentation on this protocol: https://credentials.github.
io/proposals/irma-without-apdus/
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User IRMA_api_server Service provider

(1) Visit website service provider
(2) Send

disclosure proof request
(3) Session identifier + URL

(4) Show QR code
(5) Connect to URL

(6) Request attributes with
disclosure proof request

(7) Send proof of attributes
(8) Verify & send result

Figure 5.1: MSC chart of IRMA disclosure protocol

credential. �e issuer’s public key needs to be distributed to all the parties as well.
All this information is combined in a scheme, which is managed by a scheme man-
ager. Currently, there exists only one scheme, named irma-demo.2 �is scheme is
managed by the IRMA team.

An IRMA scheme consists of a directory with XML con�guration �les. �e directory
structure is shown in Listing 5.1. �e root directory (SchemeManager) contains sev-
eral subdirectories (IssuerName) for each party that is allowed to issue IRMA cre-
dentials. �ese IssuerName directories contain three subdirectories: one directory
with the issuer’s private keys (PrivateKeys), one directory with the issuer’s public
keys (PublicKeys) and one directory containing the credentials that this issuer is
allowed to issue (Issues). Note that the PrivateKeys directory is normally not
present (because private keys remain private for each issuer), and only available in
the irma-demo scheme, which is a demo implementation of a scheme. �e Issues
subdirectory contains the credentials that an issuer is allowed to issue. Each credential
has its own directory (CredentialName) that contains a speci�cation in an XML
�le: description.xml. �is XML �le contains a short description of the creden-
tial, a unique ID, the name of the issuer and the included a�ributes. Each a�ribute
is described by a name and a description. Listing 5.2 shows an example of an issuer
XML speci�cation (with some less important XML tags omi�ed). �is listing provides
an example of a credential containing an over18 and a fullName a�ribute.
<IssueSpecification>
<Name>testIssuer</Name>
<CredentialID>testNameAgeCredential</CredentialID>

2See Github for the speci�cation of the IRMA schemes: https://github.com/credentials/
irma_configuration/tree/combined
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SchemeManager
+-- IssuerName
| +-- Issues
| | +-- CredentialName
| | +--- description.xml
| +-- PublicKeys
| | +-- 0.xml
| | +-- 1.xml
| +-- PrivateKeys (need not be present)
| | +-- 0.xml
| | +-- 1.xml
| +-- description.xml
| +-- logo.png
+-- description.xml

Listing 5.1: �e IRMA scheme (taken from github.com/credentials/irma_-
configuration)

<Description>
Short description of credential

</Description>

<Id>1</Id> <!-- ID of credential -->
<Attributes>
<Attribute>
<Name>over18</Name>
<Description>

Whether the holder is over 18 or not.
</Description>
<Name>fullName</Name>
<Description>

The holder’s full name
</Description>

</Attribute>
</Attributes>
</IssueSpecification>

Listing 5.2: Short version of XML issuer speci�cation

5.1.3 Disclosure proof request

In the second step of the veri�cation protocol, a disclosure proof request is sent from the
service provider to the IRMA API server. �is request is a JSON data type and contains
the list of a�ributes that the user has to reveal to the service provider, along with an
optional nonce and context string. Listing 5.3 shows an example of a disclosure proof
request. As pointed out in the listing, the disclosure proof request contains three �elds
at the top-level, namely nonce, context and content. We will now explain the
three �elds in detail.

�e content �eld is used to specify which a�ributes the user has to reveal to the
service provider. �is is speci�ed with a list of JSON objects, where each object con-
tains a label (label) and a list of a�ribute identi�ers (attributes). �e label is
just a text string that is shown to the user in the IRMA app. An a�ribute identi�er is
a string in the form Scheme-manager.Issuer.Credential.Attribute. In
our example listing we use a label Age: 18+, with two a�ribute identi�ers, namely:
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{ "nonce" : 123,
"context" : 123,
"content" : [

{ "label" : "Age: 18+",
"attributes" : [

"irma-demo.MijnOverheid.ageLower.over18",
"irma-demo.Facebook.onlineAge.over18"

]
},
{ "label" : "Name",

"attributes" : [
"irma-demo.MijnOverheid.Name.fullName"

]
}

]
}

Listing 5.3: An example disclosure proof request

irma-demo.MijnOverheid.age.over18 (referring to the over18 a�ribute of
the age credential, issued by MijnOverheid (meaning the Dutch Government)) and
irma-demo.Facebook.onlineAge.over18 (referring to the over18 a�ribute
of the onlineAge credential, issued by Facebook).

�e list of a�ribute identi�ers is interpreted as a disjunction: the user needs to pos-
sess/reveal only one of the a�ributes in the disjunction. However, multiple JSON
objects (with a label and a�ribute identi�ers) can be present at the same time. In
that case, a user has to reveal at least one a�ribute from each label/a�ribute identi-
�ers combination, which makes this list of JSON objects e�ectively a big conjunction
containing disjunctions, for instance:

(A ∨B) ∧ (C ∨D ∨ E) ∧ (F )

In this example, the disjunctions (so A ∨ B, C ∨ D ∨ E and F ) are the di�erent
JSON objects in the list, where each of them contains their own label and where A
until F are the a�ribute identi�ers. �is means that the user has to reveal at least
one a�ribute from each disjunction (so that the complete disjunction will evaluate to
true).

In our example from Listing 5.3, it means that the user has to reveal the fullName at-
tribute from the MijnOverheid credential and either the MijnOverheid over18 a�ribute
or the Facebook over18 a�ribute. �is allows a service provider to specify multiple is-
suers as valid identity providers for a certain a�ribute. Figure 5.2 shows how this
example disclosure proof request is communicated to the user in the IRMA applica-
tion: the user can choose between either the MijnOverheid over18 a�ribute, or the
Facebook over18 a�ribute.

One problem of specifying only the a�ributes itself in a list of disjunctions is that it is
impossible for the veri�er to enforce certain a�ributes values. �is means that a user
has to reveal the requested a�ributes, without knowing if they satisfy the require-
ments of the veri�er. An example is a service that requires its users to be older than
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Figure 5.2: Disclosure dialog: the user can choose between MijnOverheid’s and Face-
book’s over18 a�ribute

eighteen. Here, an over18 a�ribute could be used, where the value must be equal to
true. We solved this problem by also specifying conditions in the speci�cation. �is
allows the IRMA app to abort the signing protocol if some a�ribute values are not
met. We discuss this improvement in Section 5.2.3, where we describe the signature
speci�cation data type. Recently, the IRMA team has implemented their own solution
by adding a value tag to the disjunction.3

Besides thecontent �eld, we also have thenonce andcontext �elds. �enonce
�eld is used as challenge for the proof (see Section 3.2 for details). �e context �eld
contains the context string, which is a string that is used to list all the public param-
eters as well as the issuer’s public key. �e context string prevents values generated
during this proof to be reused in another veri�cation session, as explained in §4.2
of the Idemix Speci�cation [1]. Note that in the current IRMA implementation, the
validity of the context string is not checked. Also, the context string will in the cur-
rent implementation be set to the SHA256 hash of zero if no string is provided by the
service provider.4

5.1.4 Disclosure proof result

�e last step of the IRMA veri�cation protocol (Figure 5.1) is about sending the result
of the IRMA veri�cation session from the IRMA API server to the service provider.
�is result is a disclosure proof result data type, which is also a JSON data type. �is
result contains the status of the proof that shows whether the proof is valid. If the
user had to reveal a�ributes, their values will also be included in the result that is sent
to the service provider. A disclosure proof result JSON object is converted to a signed

3https://github.com/credentials/irma_api_common/commit/
75657837f0d659441a11048a2f023b5afd456ea3

4https://github.com/credentials/irma_api_common/blob/
2cf58261559db0f7c86d37b14ddb3a3b2c0db671/src/main/java/org/irmacard/
api/common/SessionRequest.java#L60-L62
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{
"exp": 1466682469,
"sub": "disclosure_result",
"jti": "data from service provider",
"attributes": {

"irma-demo.MijnOverheid.ageLower.over18": "yes"
},
"iat": 1466682409,
"status": "VALID"

}

Listing 5.4: Example disclosure proof result

JSON web token by the IRMA API server, before the object is sent to the service
provider.

Listing 5.4 illustrates a disclosure proof result, based on the disclosure proof request
that is shown in Listing 5.3. �e exp (expiry date), sub (subject), jti (unique identi-
�er) and iat (issued at) �elds are standard JSON web token �elds. �e attributes
�eld contains a list of the revealed a�ributes, along with their values. �e status
�eld indicates the result of the disclosure proof, which can be:

VALID �e proof was valid, which means that the service provider can reliably use
the a�ributes values can were sent with the proof.

INVALID �e proof was invalid, something went wrong so this result must be dis-
carded.

EXPIRED One of the a�ributes in the proof came from an expired credential. It is up
to the service provide if he/she wants to accept the proof.

MISSING_ATTRIBUTES One of the required a�ributes from the disclosure proof
request is missing and not revealed in the proof.

WAITING �e IRMA API server is still waiting for a proof from the user’s IRMA app.

5.1.5 Veri�er authentication

�e IRMA API server will only accept disclosure proof requests from allowed service
providers. �e IRMA API server enforces this by requiring the service provider to
sign the disclosure proof request (by enclosing it in a JSON web token). �e IRMA API
server maintains a list of the public keys of the allowed service providers, and rejects
requests of service providers that are not on this list. In addition, the IRMA API server
can also specify which service provider is allowed to verify which a�ributes.

Note that these signed JSON web tokens only authenticate the path between the IRMA
API server and the service provider (step 2, 3 and 8 from Figure 5.1). �e paths between
the user at one side and the IRMA API server and service provider at the other side
are not authenticated. �is means that every service provider can request a�ributes
from a user, if it sets up an IRMA API server itself. �e IRMA team has some plans to
add authentication for service providers in the future.
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�erefore, the user has to check the disclosure dialog (Figure 5.2) on his/her IRMA
app carefully to check if the request for a�ributes is logical (for instance an online
video portal that requests you to be older than eighteen does not need your social
security number to verify your age). �e user also currently has to check if he/she is
visiting the real website of the service provider, which can be checked by validating
the TLS certi�cate of the website. A service provider can also choose which IRMA
API server it uses. �e chosen IRMA API server can read all the a�ribute values of all
its users and must therefore be completely trusted by both the service provider and
the user, but for the user there is no way to check which IRMA API server is used.
�e authentication of both the service provider and IRMA API server to the user is
therefore still not present and needs to be worked out. �is requires both technical
and organisational measures which we will not discuss.

5.2 Implementation of an IRMAsignature protocol

In this section, we will elaborate on some important aspects of our implementation of
IRMA signatures (that we introduced in Section 3). We start by providing an informal
protocol overview that shows how an IRMA signature session looks for a user. A�er
this overview, we will describe the IRMA signature protocol itself, in the same way as
we did with the IRMA veri�cation protocol in Section 5.1.1. A�er the protocol, we will
de�ne the used data types and speci�cation. We will also show our implementation of
the domain separation technique, that we introduced in Section 3.4.2. When confusion
is unlikely, we o�en abbreviate the term ‘IRMA signature’ to ’signature’.

5.2.1 Informal protocol overview

Before we look into the exact protocol, we will �rst discuss how an IRMA signature
session is conducted in terms of user experience. For this, we �rst need to recall
an important di�erence in types of IRMA signatures: we actually have two types of
IRMA signatures, namely signatures with pre-selected a�ributes and signatures with
self-selected a�ributes. �e service provider (or any other ‘signature requester’) selects
the a�ributes in the case of signatures with pre-selected a�ributes, while on the other
hand the user can choose the used a�ributes him/herself in the case of signatures with
self-selected a�ributes. We will now informally show how such a signature session
could look for a user:

Self-selected attributes: Signatures using self-selected a�ributes require that the
user chooses the credentials that he/she wants to include. It is a very ad hoc way
of signing: if a user wants to sign some data (for example a document on his/her
computer), then it should be possible to do that. Since there is no interaction
with an external party like a service provider or api server, it is not possible
to scan a QR code and let an api server send some requests to the user’s IRMA
app. Instead, the user could send the document to his/her IRMA application, for
instance using the share bu�on/functionality that is present on smartphones.
�e IRMA application could then ask the user to select the a�ributes that the
user wants to include in the IRMA signature.

Pre-selected attributes: �e protocol �ow for creating a signature with pre-selected
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a�ributes looks much more like the IRMA veri�cation protocol �ow: if a user
wants (or, in this case, is even required) to sign some data for a service provider,
he/she could scan a QR code with the IRMA app. �e service provider can a�er
scanning send a request with the required a�ributes and the data that has to be
signed to the user’s IRMA app. �e user can then review the included a�ributes
and data that will be signed. A�er the user has approved, the IRMA app signs
the data and sends the IRMA signature back to the service provider.

Two two cases look very di�erent in terms of protocol �ow. However, they both either
create or obtain a signature speci�cation that lists which a�ributes are selected and
included in the signature. �is speci�cation is needed by the signature veri�er, to
check if the correct a�ributes are included.

To verify a normal disclosure proof, the veri�er uses the challenge, the public keys
of the issuers and the response of the user. �e challenge and the public keys of the
issuers can be retrieved from the disclosure proof request. Since IRMA signatures
are a special case of IRMA disclosure proofs, the signature veri�er also needs this
information to verify an IRMA signature. In addition, the signature veri�er needs the
original message (to calculate the hash of that message and thus the challenge) and the
signature speci�cation (to check if the correct a�ributes are included). Furthermore,
the signature itself is required.

5.2.2 IRMA signature protocol

Since we introduced how a signature session could look for a user, we can now discuss
our IRMA signature protocol, using a description of the di�erent steps and an MSC
chart. We will do this in the same way as we did with the veri�cation protocol in
Section 5.1.1.

For a signature scheme, we need to implement the three signature steps, namely key
generation, signature generation and signature veri�cation. �e key generation step is
already implemented, since we assume that the IRMA smartphone app already con-
tains some credentials.

For the signature generation step, it depends on the type of signature that we are going
to create, as pointed out by the previous section. We will �rst focus on signatures with
pre-selected a�ributes. We saw in Section 3.4.1 that we can in this case use almost the
same protocol as with IRMA veri�cation (introduced in Section 5.1.1), except for the
challenge that is sent to the user/prover. �is challenge is enclosed in the disclosure
proof request that we discussed earlier. We will instead include the values that are
needed to compute the challenge in the signature speci�cation �le, which will also be
a JSON data type, based on the disclosure proof request. We will specify this data type
in Section 5.2.3.

We will �rst show our implementation of a protocol for IRMA signatures with pre-
selected a�ributes, based on the protocol from Figure 5.1. Figure 5.3 shows an MSC
chart of this protocol:

1. Like with the veri�cation protocol, the user visits the website of the service
provider, which requests the user to sign some data with IRMA a�ributes.

2. In order to obtain an IRMA signature, the service provider sends a signature
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request to the IRMA API server. �is request contains the a�ributes that the
user has to include in the signature as well as the message that must be signed.
We will explain the signature request data type in the next section.

3. �e IRMA API server returns a session identi�er to the service provider. �is
identi�er is wrapped in a URL to the api server.

4. �e service provider communicates this URL to the user using a QR code.

5. �e user scans this QR code with the IRMA smartphone app. �e app will
follow the URL in the QR code, which connects the smartphone to the IRMA
API server.

6. �e IRMA API server requests the signature from the user’s IRMA app by send-
ing the signature request to the user’s IRMA app.

7. �e IRMA app shows the message to the user, and asks the user to sign this
message with the speci�ed a�ributes. If the user agrees to sign the message,
the IRMA app sends the IRMA signature to the IRMA API server.

8. �e IRMA API server veri�es the signature and sends the result of this veri-
�cation, along with the signature speci�cation and the signature itself to the
service provider in a signed JSON token. It is important to point out that the
service provider has to trust the IRMA API server for the veri�cation result, but
can also verify the signature itself if that is desirable. Like with the veri�cation
protocol, the service provider does also in this case have to possess the public
key of the IRMA API server, because this is used to verify the JSON tokens.

We also extended the IRMA API server with an API that allows a signature
veri�er to verify a signature a�er the protocol is completed. �is means that
a signature veri�er can always verify a signature using the IRMA API server,
without requiring to run its own IRMA so�ware, the veri�er only has to trust
the IRMA API server, like with the veri�cation case. We can imagine that in the
future, a standalone application or library can be developed that allows signa-
ture veri�ers to verify a signature.

�e other type of signatures are signatures with self-selected a�ributes. With this
type of signatures, there is no other party than the user involved, so the protocol can
be much simpler. We should emphasise that we did not implement this protocol. In
our implementation, we use IRMA signatures to preserve the integrity and authen-
ticity of the house rules and to sign a renting contract. While for the authenticity
of the house rules, an occupant could be free in choosing his/her a�ributes, we did
not implement this and used �xed a�ributes for the house rules. �is means that the
IRMA concierge always sends a signature speci�cation containing the a�ributes to
the occupant, which makes that we only have to deal with signatures with pre-selected
a�ributes.

However, the fact that we did not implement a protocol for signatures with self-
selected a�ributes does not mean that we cannot propose a protocol for them. A
protocol for this type of signatures could look as follows:

1. �e user sends the data to be signed to the IRMA app, via for example the share
bu�on on the phone.

2. �e IRMA app shows a dialog, which allows the user to select which a�ributes
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User IRMA_api_server Service provider

(1) Visit website service provider
(2) Send

signature request
(3) Session identifier + URL

(4) Show QR code
(5) Connect to URL

(6) Request signature with
signature request
(7) Send signature

(8) Verify & send
signature+result

Figure 5.3: MSC chart of IRMA signature protocol with pre-selected a�ributes

he/she wants to include in the signature.

3. �e IRMA app shows a �nal dialog to ask the user for con�rmation on this
signature.

4. A�er approval, the IRMA app asks to store the IRMA signature or share it with
another application.

�is protocol requires the user to somehow send the data that he/she wants to sign
to the device containing the IRMA app. �is is not the best thing to do in terms of
user experience. We could enhance this by for instance creating an IRMA desktop or
web ‘helper’ application. �is helper application can be used to create the signature
speci�cation. �e user can also use this helper application to send the data that will be
signed to the device by sending or uploading these data to the helper application. �e
helper application can show a QR code to connect to the IRMA app on the smartphone.
Note that the IRMA helper application does not need to do IRMA veri�cations or other
cryptographic operations. In summary, this protocol could look like this (Figure 5.4
shows an MSC chart of this protocol):

1. �e user adds or uploads data that he/she wants to sign to the IRMA helper
application.

2. �e user �lls in which a�ributes he/she wants to use to sign the data.

3. �e IRMA helper application shows a QR code containing a session identi�er.

4. �e user scans this QR code with the IRMA smartphone app. �e app will follow
the URL in the QR code, which connects the smartphone to the IRMA helper
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User IRMA helper application

(1) Upload/Send data
(2) Fill in attributes
(3) Show QR code
(4) Connect to URL

(5) Send signature request
(6) Send signature

Figure 5.4: MSC chart of IRMA signature protocol with self-selected a�ributes using
an IRMA helper application

application.

5. �e IRMA helper application will send a signature request to the user’s IRMA
app.

6. �e user’s IRMA app asks the user for consent and if he/she agrees, creates a
signature and sends it back to the IRMA helper application. �e IRMA helper
application can store the signature somewhere or can ask the user to store it
somewhere.

�e IRMA helper application needs to be directly reachable via the Internet for this
protocol to work. In the case of a web application, this is not a problem, since a
web application is by de�nition reachable via the Internet. However, using a web
application would mean that the owner of the application is able to see every signature
that is created with it. Another option would be to use a relay between the IRMA
helper application and the IRMA smartphone app. �is has been done in the past,
when IRMA was only implemented on a smart card.5

5.2.3 Signature speci�cation

In the previous sections, we referred to a signature speci�cation data type. We will
specify this data type in this section. As already described, the main use case for a
signature speci�cation �le is to specify which a�ributes will be included in an IRMA
signature to sign a certain statement. Listing 5.5 shows an example signature spec-
i�cation data type. Like with the disclosure proof request data type, it contains the
nonce, context and content �elds at the top-level in the data structure. In ad-
dition, it also contains a message and messageType �eld.

�e message and messageType �elds are used to communicate the message that
must be signed. �e messageType �eld determines the type of message in the

5See https://github.com/credentials/irma_web_relay
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{
"message" : "Message to be signed",
"messageType" : "STRING",
"nonce" : "Nonce, will be combined with context and

message hash to get challenge",
"context" : 456,
"content": [

{
"label": "Over 18",
"condition" : "true",
"attributes": [

"irma-demo.MijnOverheid.ageLower.over18",
"irma-demo.Facebook.onlineAge.over18"

],
"conditions" : [

{ "irma-demo.MijnOverheid.ageLower.over18
" : "yes" }

]
},

]
}

Listing 5.5: Example signature speci�cation

message �eld. Currently, we have only implemented the message type STRING,
which means that the message �eld directly contains the string that is to be signed.
A string can be shown directly to the user in the IRMA app. However, the message
type STRING is only useful for short messages without any forma�ing. We realise
that service providers would like to ask users to sign more data, like complete PDF
documents. �is could be achieved by for instance introducing a message type PDF.
In that case, the message �eld could contain a URL to a PDF �le, that the user has to
sign. �e IRMA app can obtain the PDF �le by visiting the URL, show the PDF �le to
the user (which allows the user to check that he/she is signing the right document),
and �nally sign the hash of the �le. However, signing arbitrary PDF �les can be a
security issue because PDF �les can be displayed di�erently in di�erent viewers (see
for instance [10] and [11]) and can also contain active and dangerous content. �is
means that a user could be tricked into signing something di�erent than what he/she
sees on his/her screen. �erefore, it is desirable to sign only plain text or close to plain
text documents. Further research is needed for a way to sign bigger and forma�ed
messages in a secure way.

�e content �eld is used to specify which a�ributes need to be included in the
signature. Just as with the disclosure proof request data type, it contains a label
�eld that is shown to the user in the IRMA app. It also contains a list of a�ribute
identi�ers in the attributes �eld, which is also the same as with the disclosure
proof request data type.

�e optional conditions �eld is used to enforce certain a�ributes values for the
a�ributes that are present in the disjunction list. As we discussed in Section 5.1.3, with
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the current veri�cation protocol it is not possible to enforce a�ribute values. For the
signature protocol, we solved this by including a conditions �eld in the content
�eld. �e conditions �eld contains, like the attributes �eld, a list of a�ribute
identi�ers, but each a�ribute identi�er is extended with a string value that contains
the required condition. �is allows the signer to abort the protocol if he/she does not
possess a�ributes with the required values to create a valid signature.

We also specify an optional condition �eld, that is used to specify a default non
a�ribute-speci�c conditions. �is condition is used if no other a�ribute-speci�c con-
dition is present for an a�ribute. However, if there is a a�ribute-speci�c condition
speci�ed, then it takes priority over the default condition.

Listing 5.3 shows an example of how these conditions work. In this example, the
required value for MijnOverheid’s over18 a�ribute is yes, as speci�ed by the corre-
sponding conditions �eld of, while Facebook’s over18 a�ribute does not have such
a �eld. Facebook’s over18 a�ribute value will therefore be enforced by the default
condition �eld, which in this case is true. �is means that the value for Face-
book’s over18 a�ribute should be equal to true. In summary, this means that if the
user want to sign a document in compliance with this speci�cation, he/she has to use
either Mijnoverheid’s over18 a�ribute, that must be equal to yes, or he/she has to use
Facebook’s over18 a�ribute, that must be equal to true.

Note that we could also include the condition values in the attributes �eld, to
avoid redundancy. �is redundant speci�cation allow us to also expand the disclosure
proof request data type with a conditions �eld in the future, without breaking
compatibility with older clients that do not support this �eld in veri�cation sessions.
However, with the very recent state of the IRMA project, this would probably not be
an issue anymore. But these developments in the IRMA project were done a�er we
constructed our speci�cation.

�e remaining �elds that we have not explained yet are the nonce and context
�elds. We will start with the explanation of context �eld. �e context �eld
contains a context string, which is used to list all the public parameters in a proof. It
also prevents values in a proof to be reused in another proof. We already introduced
the context string in Section 5.1.3. We also saw that the context string is still not
implemented in the IRMA veri�cation protocol. �is means that we cannot propose a
speci�cation of the context string for the IRMA signature protocol that is compatible
with the veri�cation protocol. We think it is an good idea to de�ne and implement
the context string at once for both the veri�cation and signature protocol. �erefore,
we decided to not include and implement the context string in our implementation
that only implements the IRMA signature protocol.

�e last �eld that we need to explain is the nonce �eld. With IRMA signatures, we
already use the hash of the message as the input for an IRMA proof. However, we still
want to guarantee freshness, which means that we need to include a nonce as well.
�e input for the proof will therefore be calculated as:

input = H(nonce, H(message))

We use SHA256 as the hash function H . �is double hashing seems to be unnecessary,
but as [5] explained, we want to keep the changes to the current IRMA protocol to a
minimum, which means that we need to use a double hashing technique to calculate
the input for the IRMA proof.
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Byte(s) Explanation
0x30 DER encoding follows
0x0D Number of bytes that follow

0x02 0x01 Integer follows (0x02) with length 1 (0x01)
0x03 Integer with value 3 (number of encoded values, which is 3)

0x02 0x01 Integer follows with length 1
0x01 Integer with value 1 (�rst encoded integer)

0x02 0x01 Integer follows with length 1
0x42 Integer with value 65 (second encoded integer)

0x02 0x02 Integer follows with length 2
0x04 0x01 Integer with value 1025 (third encoded integer)

Table 5.1: 1, 65 and 1025 are encoded into an ASN.1 byte sequence.

5.2.4 Domain separation

As we introduced in Section 3.4.2, we must make sure that signatures and disclosure
proofs are two completely di�erent domains that are strictly separated. �e signature
and disclosure proof context strings could be enough to separate these two domains
if we make them di�erent from each other. �is will make the �nal challenge also dif-
ferent in the two domains. However, we saw that the current IRMA implementations
do not validate the context string. Instead, they just accept the context string they
receive, without checking anything. �is becomes a problem if we add signatures to
the protocol, because this could allow an a�acker to use a signature when a ‘real’ dis-
closure proof is required. Vice versa, a disclosure proof could be used as a signature.
Even if we would implement the context string for both veri�cation and signature
sessions, we would still have the risk that old clients accept everything. �erefore,
we want to separate the two domains in a way that IRMA signatures surely break
compatibility with older clients.

�e challenge for IRMA disclosure proofs is encoded as ASN.1 As brie�y mentioned
in Section 3.4.2, ASN.1 describes a way to uniquely encode a data string. In this sec-
tion, we will brie�y introduce ASN.1 and we will show how it can be used to separate
the veri�cation and signature domains. If we look into the current IRMA implemen-
tation at how the challenge c is calculated, then we see that this is calculated as fol-
lows:

c = SHA256(ASN1(context, A, Z, n))

In this case, A and Z are �xed numbers used in the disclosure proof6 and n is the
input nonce, which is calculated by combining and hashing the nonce and message
string from the signature speci�cation together (as we saw in the previous section).
�e context variable is the previously discussed context string and is in the current
IRMA implementation set to the SHA256 hash of the empty string.

Before the four values will be hashed, they are ASN.1 encoded with DER encoding.
ASN1 is a notation that describes rules on how certain data should be encoded and
decoded during transfer [12]. Type information and the data structures will be pre-
served. �ere is only one correct way to encode a data string, which makes this encod-

6See the link https://www.irmacard.org/wp-content/uploads/2013/05/Idemix_
overview.pdf for a short overview on how this mathematically works
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Byte(s) Explanation
0x30 DER encoding follows
0x10 Number of bytes that follow (now 3 more)

0x01 0x01 Boolean follows (0x01) with length 1 (0x01)
0xFF Boolean with value true (to indicate that this is a signature)

0x02 0x01 Integer follows (0x02) with length 1 (0x01)
0x03 Integer with value 3 (number of encoded values, which is 3)

. . . From now on same values as with the disclosure proof example

Table 5.2: 1, 65 and 1025 are signature-encoded into an ASN.1 byte sequence.

ing unique. Within IRMA, the following ASN.1 structure is used for the calculation
of a challenge:

ASN1.Sequence< length(int), value(int), ...

Table 5.1 shows an example of how this encoding is used. In this example, the integers
1, 65 and 1025 are encoded into the following ASN.1 sequence:

0x30, 0x0D, 0x02, 0x01, 0x03, 0x02, 0x01, 0x01,
0x02, 0x01, 0x41, 0x02, 0x02, 0x04, 0x01

In order to support signatures with a proper domain separation, we need to change
this encoding in such a way that will never be compatible with the current encod-
ing. We can do this by adding a boolean (0x01) in front of the integer (0x02) that
represents the length. �is boolean will be set to true (0xff) in case of a signature,
while it does not exist at all in the case of a disclosure proof. Table 5.2 shows how
the previous example should be changed to ASN.1 encode the values for a signature,
which results in the following byte stream:

0x30, 0x10, 0x01, 0x01, 0xFF, 0x02, 0x01, 0x03, 0x02,
0x01, 0x01, 0x02, 0x01, 0x41, 0x02, 0x02, 0x04, 0x01

We can now look at the data type of the third octet (either integer or boolean), which
determines if we need to deal with a signature or a disclosure proof. �is ASN.1 en-
coding scheme allows for proper separation of the veri�cation and signature domains,
while still retaining compatibility with the current IRMA implementation.

5.2.5 Storing a signature

Signatures need to be stored and sometimes also transferred to other parties. For
disclosure proofs, the disclosure proof result data type is used. �at data type lists the
a�ribute values and the result of the proof. We can use this as a basis and de�ne a
signature proof result data type. For IRMA signatures, we also need to include the
signature itself in the data type. Furthermore, as we discussed before, the signature
speci�cation �le is needed to verify the signature. We want to avoid the need of
having two separate �les for one signature. �erefore, we decided to include the
signature speci�cation in the signature proof result data type. Listing 5.6 shows an
example IRMA signature that is in compliance with the earlier introduced signature
speci�cation.

As the listing shows, an IRMA signature has some overlap with a disclosure proof
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{
"exp": 1448636691,
"sub": "signature_result",
"jti": "data from service provider",
"attributes": {

"MijnOverheid.ageLower.over18": "yes",
},
"iat": 1448636631,
"status": "VALID",
"signature" : "<<disclosureProof>>",
"message" : "The message that has been signed by this

signature",
"messageType" : "STRING",
"nonce" : "Nonce, will be combined with context and

message hash to get challenge",
"context" : 456,
"content" : { // Original DisjunctionList with all

the attributes and conditions
}

}

Listing 5.6: Example IRMA signature in compliance with the earlier introduced
signature speci�cation

result data type. �e exp, sub, jti, attributes, iat and status �elds are the
same as with the disclosure proof result data type. �e signature �eld contains the
disclosure proof, which is a serialised version of the ProofList that represents an IRMA
disclosure proof.7 �is �eld can be seen as the mathematical signature itself, and can,
if combined with the challenge, be veri�ed stand-alone. Everything else is only needed
to verify if a signature is in compliance with the required speci�cation.

�e remaining �elds (message, messageType, nonce, context and content)
are included from the signature speci�cation �le and are used to calculate the chal-
lenge and verify the signature. �e condition �elds are in this case compared with
the a�ributes that will be returned from the signature veri�cation. Note that the at-
tributes �eld is redundant and can also be derived from the signature �eld. We
choose to also include it, because this makes it at least possible for service providers
that do not support IRMA to ‘read’ a signature.

5.2.6 Unimplemented parts

As [5] already suggested in §4.1, timestamps are required. A timestamp on a digital
signature determines when a document or statement is signed. It proves that the
content of the signed document has not been changed since it was signed and that
the document existed at that point in time. To properly use timestamping, we have to

7Source code of ProofList object: https://github.com/credentials/credentials_
idemix/blob/7f8b95fda07cc7b3e09a38708da4a38a5b17a847/src/org/irmacard/
credentials/idemix/proofs/ProofList.java
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use a trusted timestamp provider. We have not implemented this in our work, which
means that this is something that still needs to be done.

�e second important unimplemented part is revocation: if certain a�ributes get re-
voked at a point in time, then signatures should be revoked if they are created a�er
the a�ributes are revoked. �ere are a few ways to achieve revocation in IRMA. One
way is discussed by Lueks et. al in [13]. However, revocation also still needs to be
implemented for disclosure proofs, which is why we have not implemented this for
signatures. Although revocation is not implemented, it is already possible to detect
IRMA signatures that are created with expired a�ributes.

We discussed the di�erences between signatures with pre-selected and self-selected
a�ributes. We only implemented a protocol for signatures with pre-selected a�ributes.
However, we have proposed some protocols for signatures with self-selected a�ributes
as well. Since both types of signatures require a signature speci�cation, it will be
easy to add support for signatures with self-selected a�ributes, without breaking or
changing our implemented protocol for signatures with pre-selected a�ributes.

5.2.7 Integration with o�cial standards

In the case that IRMA signatures will be used in practice, it might be possible that
multiple implementations will be created for both the IRMA signature algorithms as
well as for other parts of the IRMA eco system. One important part in this case is stan-
dardisation, which means that di�erent implementations and di�erent types of IRMA
tokens should be able to create and verify each other’s signatures. In this section, we
will brie�y look if standardisation could be achieved for IRMA signatures.

For normal digital signatures, an o�cial8 standard exists, namely the Digital Signature
Standard [14]. However, this standard only describes the algorithms to generate and
verify a signature, by describing key generation, signature generation and signature
veri�cation. Storing a signature is not speci�ed in this standard, but an RFC stan-
dard is mentioned for RSA signatures: PKCS #1 [15]. PKCS #1 describes how RSA
encryption, decryption and signing is done and how the resulting data can be stored
in ASN.1 encoded byte sequences. A general and not algorithm-speci�c standard is
the Cryptographic Message Syntax, speci�ed in RFC 5652 [16]. �is standard is based
on PKCS #7.

IRMA is based on Idemix, and Idemix has a complete speci�cation [1]. At the lowest
level, IRMA still uses the same format for the disclosure protocols and a�ribute proofs.
However, IRMA extended on Idemix by for instance always adding a validity date and
some credential semantics.9 IRMA also introduced high-level protocols with di�er-
ent parties (for instance the IRMA app, the IRMA API server and the clearly distinc-
tive tasks of the service provider/veri�er), which we explained in Section 5.1. Since
these protocols are still work in process and since these protocols are still changed/ex-
tended, no speci�cation and complete documentation exist yet. Before IRMA signa-

8With o�cial, we mean in this case ‘technical’: a format on how signatures are generated and stored.
�ere also exist legal standards for digital signatures that describe the legal role of a digital signature, see
for instance the following EU regulation: http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG. We will only consider the technical
standard.

9See https://github.com/credentials/credentials_idemix for the low-level IRMA
layer that communicates with the Idemix layer.
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tures can be standardised, we think that it is important that the other IRMA protocols
are o�cially speci�ed �rst.

5.2.8 Source code

Our implementation of IRMA signatures is available on Github. We are still trying
to get it merged with the core IRMA so�ware. Here are the links of the relevant
components:

• https://github.com/koen92/credentials.github.io

• https://github.com/koen92/credentials idemix

• https://github.com/koen92/credentials api

• https://github.com/koen92/irma api server

• https://github.com/koen92/irma api common

• https://github.com/koen92/irma js

• https://github.com/koen92/irma android cardemu

• https://github.com/koen92/irma android library
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Chapter 6

Implementation of a Proof of
Concept

We have introduced some known IRMA techniques, as well as described how we im-
plemented IRMA signatures. We also introduced some scenarios where we make use
of IRMA in an IoT context. �ese scenarios, however, were still only a high-level
overview of how IRMA could work in an IoT context. Many details were ommi�ed,
as well as issues that might arise when a scenario was implemented for real.

�erefore, we implemented a complete proof of concept (PoC), which we will describe
in this chapter. �is PoC is used to show how the concepts can be integrated into a
practical service that is closely related to the goals of the Tippiq project. �is PoC is
based on the Airbnb scenario that we introduced in Section 4.5.

In the Airbnb scenario, we showed how an occupant can put his/her house on the
Airbnb website (Figure 4.4). A�er the house is available on the website, a renter can
rent it (Figure 4.5). A�er the renter agrees on the renting (by signing a contract), the
occupant provides him/her access to the house by adding a house rule to the IRMA
concierge (Figure 4.6). �e renter can subsequently access the house by proving to the
concierge that he/she is allowed to access the house. �e IRMA concierge will open
the door if the proof is correct (Figure 4.7).

We implemented a basic and slightly customised version of the Airbnb scenario into
a proof of concept. In this chapter, we will show some design and implementation
details. We will start by introducing the di�erent components we used in Section 6.1.
A�er this introduction, we show all aspects of the protocol in Section 6.2, which means
that we explain the used IRMA identities and the used Tippiq house rules. We will
elaborate on the protocol itself with UML sequence diagrams, which speci�es all the
user and device interactions. We also provide some screenshots of the complete PoC
setup. We �nish this chapter by suggesting some relevant improvements for our PoC
in Section 6.3.
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6.1 Components

With this PoC, we want to show how we can adapt IRMA to an IoT and house context.
We built a central house gateway that we call the IRMA concierge. We provided the
IRMA concierge with its own IRMA a�ributes.

However, we try to make our proof of concept as generic as possible. While we only
work out one scenario (Airbnb), we split the IRMA concierge into di�erent compo-
nents, that can be swapped for other components. �is approach allows Tippiq to
implement parts of our proof of concept in their product, without being dependent
on the complete PoC. In this section, we will introduce the di�erent so�ware com-
ponents. A�er that introduction, we will show the hardware components. When we
have showed both the hardware and so�ware components, we will introduce the used
IRMA a�ributes.

6.1.1 So�ware components

As we already pointed out in Section 4.5, we have the following parties:

Airbnb.nl �e Airbnb website. We will refer to this party as one independent com-
ponent. We let the other parties interact with the website, and will propose
only small changes for this website. Because changing something on the Airbnb
website requires cooperation from Airbnb in our project. We do not have this
cooperation. We did not implement this part of the PoC. However, we will men-
tion the required changes to the Airbnb website.

IRMA concierge �e IRMA concierge is the central house gateway, as we already
introduced. �e IRMA concierge will directly interact with all the other parties.
It will also store and evaluate the Tippiq house rules.

Occupant �e occupant is the owner of the house that is going to be rented. �ere-
fore, the occupant can control the IRMA concierge by adding and removing
house rules. �e occupant has a smartphone with the IRMA application, con-
taining his/her personal a�ributes. Note that these a�ributes di�er from the
a�ributes stored on the IRMA concierge (see Section 4.1.2).

Airbnb renter �e Airbnb renter will visit the Airbnb website to rent the occupant’s
house. He/she will also interact with the IRMA concierge, when he/she is enter-
ing the occupant’s house. However, there is no direct interaction between the
occupant and the renter. Like the occupant, the renter also has a smartphone
containing IRMA a�ributes.

�e IRMA concierge has to do various tasks: it interacts with all the other parties, it
veri�es IRMA a�ributes and signatures, it stores house rules, it checks house rules for
validity and it controls the electronic lock of the door. We will separate all these parts
into di�erent components. We let only one component do the IRMA veri�cations
and the interactions with the other parties. �is will be the IRMA module. Since we
are using a relatively simple electronic door lock, we will let the IRMA module also
control this door lock.

We could have o�oaded the IRMA-speci�c tasks to the IRMA API server (as intro-
duced in Section 5.1.1), but the IRMA API server did not exist at the time we developed
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this PoC. �erefore, we had to manually integrate all the IRMA libraries in our IRMA
module. �is also explains why we moved all the other non-IRMA tasks to di�erent
components.

�is separation means that we, besides the IRMA module, introduce three other com-
ponents:

House rules database �is component is just a database, where all the house rules
are stored. All the rules that are stored are signed with an IRMA signature. �e
reason for signing all the rules will be explained later.

Control API �is component checks if a house rule is valid. It retrieves requests
with input data from the IRMA module. Examples of such input data are the
actor that is standing in front of the house and the action that will be taken
(opening the electronic door lock). �e control API will, a�er a request, retrieve
the relevant house rules from the house rules database. It checks if one rule
matches the input data and is valid. If there is a valid rule, the control API
replies with yes to the IRMA concierge. Otherwise, it replies with no. It adds
the corresponding IRMA signature of the house rule to this reply. �is signature
will be checked by the IRMA module.

House rules API �e house rules API is the interface to the house rule database.
It allows occupants (and in the future maybe also service providers and other
third parties) to add house rules to the database by providing a web interface to
the occupants. It also requests the occupants to sign new and changed house
rules, before the rules will be inserted into the database.

All these components communicate with each other via a JSON API over HTTP. Since
all the components run on the same hardware device in our PoC, we did not imple-
ment authentication between these components. �e protocol for entering the house
(Figure 4.7) now looks as follows at a high level:

• �e IRMA module displays a QR code on the screen that is a�ached to the
outside of a house.

• �e renter scans this QR code. A�er the connection has been established, the
IRMA module requests the personID IRMA a�ribute from the renter’s smart-
phone (we will show later in this section which IRMA a�ributes are used by
which party).

• If the a�ribute is valid, then the IRMA module sends it to the control API, along
with the action (opening the door).

• �e control API retrieves the relevant house rules from the database, and checks
whether this person (with this personID) is allowed to open the door. If he/she
is allowed, then the control API replies with yes, otherwise with no.

• �e IRMA module veri�es the IRMA signature that is sent by the control API.
If this signature is valid, it sends a signal to open the door if it receives yes
from the control API. If it receives a no, then it will communicate this to the
renter/person in front of the door by showing this on the screen.

�e second part of the protocol is adding new house rules that are signed with an
IRMA signature. �ese rules are used to provide other people access to the house:

• �e occupant visits its ‘house rule portal’, where the house rules can be man-
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Figure 6.1: Overview of interaction between the di�erent components

aged.

• �e occupant �lls in the data about the renter/guest that will be granted access
to the house. �ese data are used to create a house rule. In this PoC, we used
the name of the renter/guest, the personID IRMA a�ribute, the start and end
date and the reason for access.

• �e house rules API constructs a house rule from these data and requests the
occupant to sign the house rule with his/her houseID a�ribute by showing a QR
code.

• �e occupant scans this code with his/her IRMA app, veri�es the house rule that
will be shown in the app, and con�rms. �e app will send the created IRMA
signature back to the house rules API.

• �e house ruled API veri�es the IRMA signature on the house rule and adds it
to the database.

Figure 6.1 shows a schematic overview of these two protocols, using the di�erent
components.

6.1.2 Hardware components

Although we separated all the components in so�ware, we still run them on the same
hardware device. Since all the components communicate with each other over HTTP,
they can be easily ‘moved’ to another device if necessary. We used the following
hardware:

Raspberry Pi V2 �is device runs all the so�ware. It contains connectors for both
an external screen and an GPIO connector that is used to open the electronic
lock.

Electronic lock For demonstration purposes, we used a simple electronic lock, with
just two wires. If we put a voltage of 12V on the wires, the lock will close.
Otherwise, it remains open.

12 Volt relay To transform the 5V voltage of the Raspberry Pi’s GPIO connectors to
the 12V voltage of the lock, we need to place a relay in between.
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Figure 6.2: Picture of the real PoC
hardware
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Figure 6.3: Schematic overview of the
hardware

Raspberry Pi touchscreen To communicate with the person that is standing in
front of the door, a touchscreen is used. �is screen displays for instance the
QR code that the person has to scan in order to open the door. Although not
implemented, it could also be used as a ‘door bell’ by adding a bu�on ‘ring’ to
the touchscreen.

USB WiFi device �e Raspberry Pi creates its own WiFi access point that allows
anyone nearby to connect and communicate with the device. In a real scenario,
this would be replaced by connecting the Raspberry Pi to the Internet, but for
easier demonstration purposes, we chose to use our own network.

Door We used a simple old window as a door, along with some wooden boards to
support all the other parts.

We connected all the hardware components to each other, Figure 6.2 shows a picture
of our PoC setup, and Figure 6.3 shows a schematic view of the hardware setup.

6.1.3 Used IRMA attributes

In Section 4.1.2 we introduced some basic IRMA credentials that we used in the sce-
narios. For our PoC, we will stick to these credentials. However, in our PoC scenario,
we did not implement the AirBnB part. �is part is the only part from the AirBnB sce-
nario where the IRMA concierge discloses an IRMA a�ribute (see Figure 4.4) from the
CHouse credential. Because we did not implement this part, we can omit the CHouse
credential from Table 4.1. By omi�ing the CHouse credential, we restrict ourselves in
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IRMA identity Credential A�ributes
Occupant and renter Person personID

name
OHouse houseID

role

Table 6.1: �e IRMA credentials used in our PoC

the PoC to only the Person and OHouse credentials. Table 6.1 shows these credentials,
along with their a�ributes.

�e the Person andOHouse credential contain the following a�ributes: personID, name,
houseID and role. �e personID and name a�ribute are included in the house rules
that provide access to the house. �e personID a�ribute is unique, and makes sure
that the right person will be added to the house rule. �e name a�ribute is used for
readability, so an occupant can quickly see which person is included in the house rule.
�e houseID and role a�ributes are used to sign the added house rules, as we explained
in Section 4.1.4.

Currently, it is not possible to use the houseID a�ribute to grant access, since in our
PoC, we still used the old IRMA protocol that does not support the modern disclo-
sure proof requests with the conjunction of disjunctions (which we explained in Sec-
tion 5.1.3). With the modern protocol, we could create a disjunction to request either
the personID or houseID a�ribute in a disclosure proof.

6.2 Protocol

In this section, we show how all the components interact with each other in our im-
plemented protocol. We start by showing the house rules that are used. A�er this,
we specify the protocol �ow with UML sequence diagrams. Such diagrams make sure
that we also cover the user interaction as extensively as possible.

In our PoC, we implemented two parts of which we described the high-level protocol
overview in Section 6.1.1:

• A person that accesses a house by showing his/her personID a�ribute.

• An example ‘control panel’ that allows the occupant to add house rules that
allow a person to access the house.

6.2.1 House rules

In our PoC, we only used one house rule. �is rule is used for controlling access to
the house:

actor Person with personID = 42 and name = Edward
action is allowed to open
actee the front door of my house

condition between startDate and endDate
goal to enter the house.
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�is house rule is constructed by the house rules API. A�er construction, it is stored
in the house rules database and evaluated and checked by the control API. We want
the house rule system to be as generic as possible, by making it easy to add other
house rules for other actors, actions, actees and conditions to the system. Each of the
�ve components of the rule will therefore be stored in a di�erent database column
in our house rules database. �e sixth column in the database will contain the IRMA
signature over the other �ve columns.

In our PoC, the control API retrieves the values of the personID and name a�ributes
from the IRMA module (see Figure 6.1). �e control API uses this input to check each
part of the house rule separately. It will only return yes if there is a matching rule. In
our PoC, this matching is done in a simple way:

actor �e actor is checked by spli�ing the actor part on spaces, and a�er this, by
spli�ing on the ‘=’ sign. �e results are pairs with a�ribute names on the le�
and a�ribute values on the right. In our example, this leads to (personID, 42)
and (name, Edward).

action In this PoC, we only store the action open, which means that we only need to
check if this action is equal to open.

actee �e actee is always ‘the front door of my house’. �erefore, we can just verify
whether this matches the actee of the rule in the database that is checked.

condition Condition is the hardest part to check. �ere is no generic function which
can catch all types of conditions. �erefore, we restricted ourselves in this PoC
to just checking a start date and end date. We check if the current time falls in
the period that is described by the start and end date of the house rule.

goal As mentioned before, the goal is not evaluated and only used for communication
with the occupant. But, since the complete house rule is signed by an IRMA
signature, the goal is included in the signature. �is requires a house rule to be
signed with a new IRMA signature if the goal is changed.

6.2.2 UML sequence diagrams

We will now describe the two protocols that are used in our PoC, using UML sequence
diagrams. As explained before, the IRMA concierge is separated into four main parts:
the control API, the house rules API, the house rules database and the IRMA module.
�e IRMA module also contains the user dialog via a web application that is shown
on the Raspberry Pi touchscreen. In order to show the interaction between the user
and the IRMA module, we separated the IRMA module and the web application in the
UML sequence diagram.

We will start with the �rst protocol: allowing a renter access to the house. �e UML
diagram can be found in Figure 6.4 and we will now provide a short description of
each UML function:

send_auth_req �e web application sends a request to the IRMA module to ob-
tain a token.

send_auth_conf �is token is converted into a QR code and sent to the web ap-
plication.

66



update_screen �e web application displays the QR code on the touchscreen.

open_app When the renter arrives at the door to access the house, he/she opens
the IRMA app on his/her smartphone.

scan_screen �e IRMA app scans the QR code from the touchscreen, which con-
nects the IRMA app to the IRMA concierge of the house.

send_data(connected) �e IRMA app sends a message that it is connected to
the IRMA module.

send_data(req_personID, req_name) �e IRMA module sends a request
to the renter’s IRMA app to reveal the personID and name a�ributes.

send_req(confirmation) �e IRMA app asks con�rmation to the renter to
reveal these a�ributes.

send_confirmation �e renter agrees with this request (if not, the protocol will
be aborted).

send_data(SD(personID), name) �e IRMA app sends a disclosure proof of
the requested a�ributes to the IRMA module.

send_req(open, personID, name) �e IRMA module sends a request, con-
taining the keyword ‘open’, along with the values of the two revealed IRMA
a�ributes to the control API.

req_houserule(personID, name) �e control API retrieves all the house
rules containing the actor with the used personID and name from the house
rules database.

send(houseRules) �e house rules database sends all the matched house rules
to the control API.

check(houseRules) �e control API checks all the rules, in the way we de-
scribed in Section 6.2.1.

send_conf(yes / no) �e control API sends the result (either yes or no) to the
IRMA module. �e IRMA modules relays this result to the web application.
Depending on the result, two action can be taken from now.

send_req(open_door) If the result is yes, then the application sends a signal to
the electronic lock to open the door.

update_screen(green / red) �e application updates the screen to display
a green icon if the result was equal to yes. Otherwise, a red icon will be displayed
on the screen.

show(green / red) �e IRMA module also sends the result to the IRMA app on
the renter’s smartphone. �is is also done in the form of either a green or red
icon.

�e second part of the PoC is the control panel, where the occupant allows a renter
access to the house. �is control panel is for this PoC developed in the form of a web
application that is hosted on the IRMA concierge of the house. We assume that the
occupant is already authenticated to this web application, which could for instance
be done by providing an IRMA disclosure proof. In the future, this web application
could be replaced by a ‘Tippiq Home App’ on the smartphone, or by a portal / touch
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Figure 6.4: UML sequence diagram of a renter accessing the house
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screen that is hanging inside the house (allowing everyone in the house to see the
house rules).

For the integrity and authenticity of the house rules itself, we use IRMA signatures
(as discussed before). �is provides an additional layer of security that allows only
people with the required a�ributes to add or change house rules.

�e web application is connected to the house rules API. �e house rules API adds
house rules to the house rules database (see Figure 6.1 for an overview). In the UML
diagram, we combined the web application and the house rules API, because other-
wise, the house rules API would in the diagram only be relaying messages between
the application and the database. However, we separated the screen from the web
application/API, to make clear what is shown on the screen to the user of the applica-
tion. �e UML diagram is shown in Figure 6.5, and we will now provide a description
of each function from this �gure:

visit_site �e occupant visits the web application portal of his house (as pointed
out before, we assume that he/she is already authenticated to open this portal).

get_house_rules �e house rules API will show all the house rules to the Oc-
cupant. In order to this, it needs to retrieve them from the database.

send_data(houseRules) �e house rules database will return all the house
rules a�er a request. In a real scenario, this could be a huge list. If that will
be the case, we probably need to let the house rules API be more speci�c in
which rules it requests, so that we only return the relevant part of the list of
rules.

update_screen(accessList) �e house rules API will display a list of all the
access rules on the screen. �is allows the occupant to edit or delete them.
He/she can also add new house rules in this screen.

edit_add_rule(houseRule) �e occupant edits or adds a new house rule to
the house rules API.

send_sig_req �is new house rule needs to be signed. For this, the house rules
API will issue a signing request to the IRMA module.

send_sig_conf(QR_code) �e IRMA module replies with a con�rmation mes-
sage, containing a QR code.

update_screen(QR_code) �e house rules API displays this QR code on the
screen.

open_app �e occupant now needs to open his/her IRMA app to sign the house
rule.

scan_screen �e IRMA apps scans the QR code on the screen, which connects
the IRMA app to the IRMA concierge of the house.

send_data(connected) �e IRMA app sends a message that it is connected to
the IRMA module.

send_data(reqSig_houseRule, req_houseID, req_mainOccupant)
�e IRMA module sends a signature request, containing a signature speci�ca-
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tion (as discussed in Section 5.2.3) to the occupant’s IRMA app.

send_req(confirmation) �e IRMA app asks con�rmation to the renter to
sign the house rule with the included a�ributes (houseID and mainOccupant).
�e complete house rule is displayed on the phone’s screen.

send_confirmation �e occupant agrees with this signing request (if not, the
protocol will be aborted).

send_data(houseRuleSig) �e IRMA app sends an IRMA signature of the
house rule to the IRMA module.

verify(houseRuleSig) �e IRMA module veri�es the received signature.

send_conf(validSig / (invalidSig, houseRuleSig)) �e result of
the veri�cation will be sent to the house rules API by the IRMA module. If the
signature is valid, the IRMA module also sends the signature itself to the house
rules API.

edit_update(houseRule, houseRuleSig) If the signature is valid, then
the house rules API sends the house rule and corresponding IRMA signature to
the house rules database.

send_conf(updated / changed) �e house rules database sends a con�rma-
tion of the update request to the house rules API. �is can either be updated, if
the database is updated or changed if a house rule that already exists is changed.

update_screen(green / red) �e house rules API updates the screen with
a green icon if the house rule that the occupant wants to add is indeed added
(and the signature is valid). Otherwise, a red icon with an error message will
be displayed on the screen.

show(green / red) �e IRMA module also sends the result to the IRMA app on
the occupant’s smartphone. �is is also done in the form of either a green or a
red icon with an error message. �is error message is only sent in this protocol
(adding a house rule), and not in the previous protocol from Figure 6.4. We do
this, because in the previous protocol, everyone can try to open the door, and
in that case we want to be as less verbose as possible about error messages.
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Figure 6.5: UML sequence diagram of an occupant providing a renter access to the
house
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Figure 6.6: Overview of a�ributes of
the renter that rents the house

Figure 6.7: Overview of a�ributes of
the occupant

6.2.3 Screenshots

In this section, we will illustrate the implemented parts or our PoC using screenshots.
We will show the three parts, namely the a�ributes overview of the IRMA app, the
�ow of entering the house and the �ow of adding and signing a new house rule.

Attributes overview

�e �rst part is the a�ributes overview. All the used a�ributes are listed in Table 6.1.
Figure 6.6 shows the a�ributes of the renter. He has a personID with value 42, and
a name a�ribute with value ‘Edward’. Both a�ributes are contained in the Person
credential. For simplicity and because it is not used in our PoC, we did not add a
OHouse credential to this person’s IRMA token.

�e second �gure (Figure 6.7) shows the a�ributes of the occupant. �e occupant has
the name ‘Koen’ and the personID 12. �e house that he will rent out to the renter has
houseID 5 and the occupant is the main occupant of this house, as shown in the role
a�ribute.
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Renter enters the house

�e second part is about entering a house. As we introduced in Section 6.1.2, we used
an old window as door, with the Raspberry Pi touchsceen a�ached to this window.
Figure 6.8 shows two pictures of this window. On the top it shows a picture of the
complete door, and on the bo�om a detailed picture of the touchscreen, where a QR
code is displayed. Everyone that wants to open the door to enter the house has to
scan this QR code. �e pictures of the real PoC hardware are in Dutch, because Tippiq
operates at this moment only in �e Netherlands.

A�er scanning the QR code, one has to reveal his/her personID a�ribute (Figure 6.9).
�is a�ribute will be checked by the IRMA concierge using the house rules. If the
person is allowed access, Figure 6.10 will appear on the touch screen.

Occupant adds house rule

�e third and �nal part is the management portal, where the occupant can add new
house rules. We implemented a very basic version of this portal in the form of a web
application. When the occupant visits this application, he/she sees an overview of the
house rules. Figure 6.11 shows a screenshot of this overview, with one enabled house
rule that allows the renter Edward access to the house.

A�er changing or adding a house rule, the new rule has to be signed. For this, we
need to scan a QR code, as shown in Figure 6.12. A�er scanning, the occupant has to
agree on his/her phone to sign this house rule. �e complete house rule is displayed
on the phone, so the occupant knows what he/she is signing. Figure 6.13 shows an
example con�rmation dialog.

If the house rule is signed correctly, the screen from Figure 6.14 will be displayed and
the house rule is added to the database.
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Figure 6.8: Our PoC with on the top a picture of the complete setup with door and
touchscreen, and on the bo�om a detailed picture of the touchscreen
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Figure 6.9: A person has to reveal his/her personID a�ribute, in order to open the door.

Figure 6.10: If there is a matching house rule containing the revealed personID at-
tribute, then this screen will be displayed and the door will be opened.
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Figure 6.11: �e management portal with one house rule for the house with houseID
5

Figure 6.12: �is QR code needs to be scanned to sign the new house rule.
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Figure 6.13: Before the house rule is signed, it is displayed on the occupant’s screen.
�e occupant also sees with which a�ributes the house rule will be signed. �e occu-
pant has to agree in order to sign this message. �e message is a Dutch translation of
the house rule that we introduced in Section 6.2.1.
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Figure 6.14: If the house rule is signed correctly, it will be added to the database and
this screen will be displayed.

6.3 Possible improvements

In this PoC, we demonstrated how IRMA can work in an IoT context, where a renter
is provided access to the house by disclosing an IRMA a�ribute, which is in real-
time checked with the house rules by the IRMA concierge. While there are many
improvements possible, we will point out a few important ones that we missed in our
PoC.

One important improvement is an audit log. It is important that an occupant can
check who at a certain timestamp has accessed the house. In the case of problems,
this could really help to solve con�icts.

Another important part we mentioned earlier is the integration with Airbnb. If we
could cooperate with them (or a similar party), then we could build a complete pro-
tocol that contains all the actions.

At this moment, access control relies solely on the personID a�ribute, which is rather
limited. For instance, occupants with the houseID a�ribute of the the house should
also be allowed access. We could even extend this by allowing ‘access classes’ of
persons access which can combine our PoC with the scenarios of Chapter 4. In this
way, we can for instance allow �re�ghters and house cleaners to open the door when
certain conditions are met.

Finally, the UI can be improved and extended. An option to digitally ‘ring’ the bell
could for instance be added to the touchscreen. Also, the management portal should
be improved and for instance be converted into a standalone smartphone applica-
tion.
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6.4 Source code

�is proof of concept is still built upon the old IRMA protocol stack (using a depre-
cated protocol based on smart card APDUs). While we implemented IRMA signatures
on both the old IRMA protocol and the modern IRMA protocol, we did not do this
with our PoC.

Because we do not want anyone to use this old protocol stack and code, we decided
to not publish the source code of our PoC on Github. �erefore, we have made all
the source code only available in a ZIP �le at the following link: https://vps.
koenvaningen.nl/files/2016/08/64azeQUHHfso.zip. �at link is only
provided for reference. �e code at that link should never be used in production. If
someone wants to use IRMA signatures, we recommend him/her to look at our IRMA
signature implementation for the modern IRMA protocol. In Section 5.2.8, we provide
links to the source code of that implementation.
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Chapter 7

Conclusions

In this thesis, we looked into how one can use and adapt the IRMA technology for an
IoT and house context. We did this by adding a central gateway to the house, called
the IRMA concierge. �is device can contain its own IRMA a�ributes. Instead of only
giving ‘real’ persons a�ributes, we extended IRMA by also giving an IoT device that
represents a home IRMA a�ributes. �is device is therefore multi-functional. It acts
as both an IRMA user, by disclosing a�ributes to other parties, as well as an IRMA
veri�er, by verifying a�ributes from other parties.

To allow �ne-grained access control to the house itself, the devices in the house and
the data in the house, we used Tippiq house rules. With several scenarios, we showed
in Chapter 4 that this concept can work in di�erent concrete IoT scenarios if we com-
bine house rules with IRMA technology where all the parties (IRMA concierge, oc-
cupants and other third parties) possess an IRMA token with IRMA a�ributes. �e
identity of all these parties is built up using only IRMA a�ributes, which allows them
to reveal only the required a�ributes needed for a particular action. We saw that it
can be really useful to provide a house with IRMA a�ributes, which for instance al-
low external parties to verify an address of a house. Also, occupants can be coupled
to a house by providing them the same houseID a�ribute that we also provided to the
IRMA concierge of their house.

Since Tippiq house rules form the basis for access control in the house, we want to
be sure that the integrity and authenticity of these rules are guaranteed. For this, we
sign them digitally. Since we build the identities of all the parties with only IRMA
a�ributes, we decided to use these a�ributes to sign house rules. �is is done with
IRMA signatures, a concept from the literature that we described in Section 3.4. We
showed that besides signing house rules, IRMA signatures can be used for more sce-
narios. For instance, signing a contract and allowing external parties access to data
and to a�ributes from the IRMA concierge.

IRMA signatures only existed in the literature. Because we wanted to use them in
our scenarios, we decided to propose a possible speci�cation for them that is compat-
ible with the current IRMA veri�cation and issuance protocols. We also implemented
this speci�cation, and described the details of our speci�cation and implementation in
Chapter 5. We saw that we can make an important distinction between IRMA signa-
tures with self-selected a�ributes and IRMA signatures with pre-selected a�ributes. We
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also had to make sure that a nonce from an IRMA signature session can never be used
in an IRMA veri�cation/authentication session and the other way around.

Based on the scenarios from Chapter 4 and using our implementation of IRMA sig-
natures from Chapter 5, we implemented a proof of concept that integrates all the
concepts into a practical service in Chapter 6. We divided the complete application in
separate components, which allows an easy integration with the Tippiq project. With
this proof of concept, we proved that IRMA can really work in a realtime IoT scenario
using Tippiq house rules. It showed that an a�ribute-based identi�cation and authen-
tication system like IRMA is very �exible and that it can be used in a broader se�ing
than only identifying people in a privacy-friendly way.
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