MASTER THESIS COMPUTING SCIENCE

Event Driven Architecture
in software development projects

Author: Supervisor Radboud University:
Maxime Klusman Prof.dr.ir. Rinus Plasmeijer

Supervisor Sogyo:

Drs. Ralf Wolter

RADBOUD UNIVERSITY, NIJMEGEN
April 8, 2016

Table of Contents

1. Introduction
1.1. Problem statement
1.2. Relevance
1.3. Research goal
1.4. Research method
1.5. Scope
1.6. Thesis outline

2. Introduction to software architecture

2.1. History and definition
2.2. Architectural representation . . .

2.2.1. Architectural ‘views’ . . .

3. Introduction to Event Driven Architecture

4. Selection of quality criteria

4.1. Long-list of quality criteria oo
4.2. Exclusion of criteria
4.2.1. Functionality
4.2.2. Theoretical assessment of quality criteria
4.2.3. Relevance exclusion L oo
4.3. Short-list of quality criteriao oo
4.4. Methods of measuremento o
4.4.1. Efficiency
4.4.2. Structuredness and Understandability
4.4.3. Audit trail
4.4.4. Maintainabilityo

5. Case study: Set-up

5.1. Way of working

5.2. Case description

5.2.1. Functional requirements .

6. Case study: Original architecture

6.1. Processview

6.2. Development view

6.3. Problems and Hypotheses

6.3.1. Timeliness and Scalability

11
11
13
13
15
18
19
21
22
22
22
22

23
23
24
24

6.3.2. Maintainability L 29

7. Case study: New architecture 29
7.1, Process Viewo e e e 30
7.2. Development view 31
7.3. Extent of implementation 33
7.4. Module descriptions 33

7.4.1. EventStore module o 33
7.4.2. SAPImport module 35
7.4.3. Gateway module 36
(4.4. ViewModel modules 37
7.5. Designnotes 37
7.5.1. Top-level design change 37
7.5.2. Versioning systemo 38
7.5.3. Entity-Relationship differences 40

8. Case study: Measurement methods and results 43

8.1. Change-scenarios« . o v v v it 44
8.1.1. Scenario 1 e e e 44
8.1.2. Scenario 2 e e e 45

8.2. Codemetrics i i e e e e 46
8.2.1. Linesof Codeo 47
8.2.2. Cyclomatic Complexity 47
8.2.3. Class Coupling 48
8.2.4. Depth of Inheritance 49
8.2.5. Maintainability Index L. 50

8.3. Time measurements e 51

8.4. Resource measurementso e 54

9. Case study: Interpretation and comparison 57

9.1. Efficiency 57
9.1.1. Time behaviour o 57
9.1.2. Resource behaviour. oo 59

9.2. Structuredness and Understandability 63
9.2.1. CONCISEINESS . .« © « v v o v v e e e e e e e e e e e e e e e 63
9.2.2. Consistency e 64
9.2.3. Modularity 64
9.2.4. Simplicity 65
9.2.5. Self-descriptiveness 67
9.2.6. Analysability and Diagnosability 67

9.3. Audit trail 69

9.4. Maintainability Lo 70
9.4.1. Repairability 70

9.4.2. Modifiability and Extensibility 70

9.4.3. Scalability 71

9.4.4. Testability 74
10.Conclusions 75
10.1. Generalization from used Messageframework 75
10.2. Differences attributed to use of messages 76
10.3. Differences attributed to asynchronous communication 7
10.4. Differences attributed to event-characteristics 78
10.5. Recommendations 79
10.6. Future work e 81
Bibliography 81
Appendices 84
A. Definitions of quality criteria 84
B. Full measurement data 89

1. Introduction

This section gives the motivation for doing this research project and shows its relevance
with respect to earlier conducted research. It then presents the research goals and chosen
methods to achieve these goals. Subsequently, the scope of the project is outlined by
describing some decisions that were made about what is and what is not included within
this project. Finally, the organisation of the rest of this thesis is explained.

1.1. Problem statement

In computer systems, the standard communication method is request-response, where
one part of the system instructs another part to perform some action or retrieve certain
data by calling one of its methods [1]. The traditional way to design an information
systems is to use this communication style exclusively throughout the program (for
example using an Object-Oriented design) and combine it with a relational database
to store the data. Alternatives to this approach are lesser known and may therefore

be overlooked, even if they would fit better. One of the possible alternatives is Event
Driven Architecture (EDA) [2]. EDA is an architectural software pattern concerning the
communication methods in a system. It differs from a request-response approach, like
a completely Object-Oriented approach, in that it separates the system into units that
communicate through events instead of method calls.

This research project was performed at software company Sogyo [3]. Sogyo has been
doing software project since 1999. Since 2002, events have played a role in their develop-
ment, but complete EDA was only experimented with once for an internal application.
From this experiment, clear benefits of EDA were observed, which lead to the hypothesis
that using EDA in the small to medium sized information systems could have substan-
tial benefits, especially in the area of post-developmental changes and extensions to the
system. However, more research was needed for Sogyo to gain enough confidence and
experience to use this approach in external projects. EDA has already been shown to
work well for inherently event-driven applications. For example, applications where con-
stant input from sensors is used to make decisions and invoke actions, like in [4] and the
experiment at Sogyo.

This project investigates whether the noticed benefits of EDA carry over to standard
information systems, where EDA would not immediately be an obvious choice. Based on
the results, members of future development projects can better assess which architecture
suits their requirements the best.

1.2. Relevance

Event-driven applications have already been around for a longer time, but have recently
gained more popularity [5], especially in combination with Service Oriented Architecture
(SOA) for enterprise-wide applications [5, 6]. In this project, EDA is studied in a different
setting. Instead of enterprise-wide applications, we look at the development of custom
software for small to medium size information systems. Also, EDA is studied on its own
instead of in combination with SOA. Empirical research on EDA in this setting has not
been found in current literature.

1.3. Research goal

The goal of this research project is to determine the advantages and disadvantages of
using EDA for a development project as opposed to a more traditional approach, and to
produce some general recommendations about the use of EDA based on these findings.

Specifically, the development projects targeted in this research are those for small to
medium sized information systems.

By the traditional approach, we mean an architecture where communication is done
synchronously and through commands/requests and replies. Since the currently most
used method is an Object-Oriented design, this is taken as the more specific traditional
alternative to compare against EDA. The differences between these approaches have
multiple aspects, which is distinguished in the conclusions.

1.4. Research method

As the main research method, we perform a case-study. This case-study involves the
comparison between systems that are equivalent in terms of functional requirements, but
use different software architectures. One has the standard, request-response (Object-
Oriented), approach and the other has an EDA approach. For the request-response
system, a pre-existing system made by Sogyo is used. The EDA system is designed and
partially implemented specifically for this research project.

The two systems are compared on a selected set of quality attributes. The selection
process involves the collection of a broad set of possible criteria and then narrowing
them down by relevance until a manageable set is obtained. The selection process is
described in detail in section 4.

For the comparison of the two systems on these quality attributes, quantitative mea-
surements are combined with qualitative observations. To get conclusions that fulfil the
research goals, the results are generalized where possible.

1.5. Scope

To keep an appropriate scope for this research project, choices were made about what
to include and and what to leave out.

The first scoping choice is to investigate a single case study in this project. More cases
would give a better foundation for generalized conclusions, but including more than one
was not feasible due to time constraints for this project.

Also, for the comparison done in the case study, a selection of the most relevant quality
attributes was made (see section 4), instead of considering all of them.

Another scope-limiting choice was one regarding the extend of the implementation (see
section 7.3). Making an implementation that covers more of the architecture would

mean more data for a comparison and less extrapolation. On the other hand, a larger
implementation would take up more time, which then cannot be spent on other aspects
of the research project, so a trade-off needed to be made. Therefore, it was decided
to build the implementation incrementally; the size was increased bit by bit until the
point where the added value was expected to be low compared to the extra time and
effort required. This way, results from the partial implementation could be generalized
with high confidence, without needing to spend an excessive amount of time on the

implementation.

When selecting the change-scenario’s to use in the comparison (see section 8.1), some
scoping decisions also had to be made. More change-scenario’s would provide more com-
parison data. Initially, two scenario’s were selected. They proved to be time-consuming,

so due to time constraints, no more were added.

Finally, the theoretical research consisted of a literature study about quality attributes,
background research about software architecture and most importantly, an extensive
study on the topic of EDA.

1.6. Thesis outline

Since the subject of this project is software architecture, an introduction on this subject
is given in section 2. Section 3 introduces EDA. Subsequently, in section 4, the selection
of a suitable set of quality criteria is described.

The case study is described in sections 5-9. First, section 5 gives the general overview
of how the case study is conducted and which system is used for it. Next, sections 6
and 7 give a description of the original architecture and the newly designed event-driven
architecture respectively. Section 8 presents the results of the measurements made on
both systems and section 9 gives an interpretation of these results and compares the two

systems.

In section 10, the conclusions of the case study are generalized to give overall conclusions
and make recommendations about the use of EDA in development projects. Finally,
appendix A gives definitions of quality criteria used in section 4 and appendix B presents
the complete measurement data.

2. Introduction to software architecture

In this section, the concept of software architecture is introduced. Additional focus
is placed on how architecture can be described, since this is needed in this research

project.

2.1. History and definition

In the late 1980s, the term software architecture was introduced to denote large-scale
structures of software systems. This was the result of software intensive systems be-
coming increasingly larger and therefore their internal structure becoming increasingly
important [7]. Software architecture extended other concepts like information hiding
and modularization [8].

Initially, the area of software architecture largely existed of qualitative descriptions of
structural principles that had proven useful in practice. Since then, the field has grown
to envelop a broad set of notations, tools, and analysis techniques [8]. Nowadays, there
is also a variety of different structures that are referred to as software architecture by
different people. It is a generally acknowledged fact that there is no standard definition
of Software Architecture [9]. The often cited Bass et al. [10] define it as follows:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them. [...]
An architecture is foremost an abstraction of a system that suppresses details
of elements that do not affect how they use, are used by, relate to, or interact
with other elements.

According to this definition, every software system has an architecture, because a system
always consists of elements and interactions. This even holds in a trivial way for a system
consisting of a single monolithic unit. The existence of an architecture is independent
of whether it is described or documented in any way, or given any consideration in the
development process. A description of the architecture and explicit consideration of
its design can be of great value [10], for example when maintaining the system after
its initial development. This importance of architecture increases for more complex
systems.

2.2. Architectural representation

An architectural representation provides a way to describe and analyse the high-level
properties of a complex system [7]. This gives developers a way to reason and com-
municate about these high-level properties. It is also a basis for communication with
stakeholders and can serve to get a better grasp on the requirements of the system.
Furthermore, the architecture often forms the foundation for the realisation of desired

quality attributes [10, 11]. When it is considered explicitly, this provides opportunities
to evaluate these quality attributes to some extent early in the development process
and make changes if needed. The architecture consists of properties of the system that
are hardest to change later on, so explicit consideration of architecture early in the
development process is very important.

2.2.1. Architectural ‘views’

What was originally often contained in the concept of an architectural description, were
different types of information that became mixed in the architectural representation.
For example, the division of the system into smaller parts can be done in terms of the
development modules (e.g. division into projects or, finer grained, division into classes or
functions) or in terms of runtime units (e.g. division into applications or, finer grained,
division into runtime processes) [10]. When these different types of information are
mixed together into a single architectural description, it easily gets confusing. To solve
this, the concept of views was introduced; each view represents one type of information
in a separate description.

A well-known example of this separation is the 441 view model from [12]. The 4+1 model
describes software architecture using five concurrent views. In it, the descriptions of the
architectural decisions are organized around four views: logical, process, physical and
development, which are illustrated with a few selected scenarios (the fifth view).

In an architectural view model, the views are never completely independent. They
have certain relationships and connections, which should also be included in the overall
architectural description. The architectural descriptions in sections 6 and 7 make use
of a suitable set of views. A complete 4+1 view description would be excessive here,
so only the process and development views from the 441 view model are used. The
architectures are described in terms of the individual views, as well as the connections
between them.

3. Introduction to Event Driven Architecture

In this section, the architectural pattern Event Driven Architecture (EDA) is described.
The description includes theoretical strengths and weaknesses found in literature. These
are used in section 4.2.2 to assess quality criteria on theoretical grounds, and in sec-
tion 6.3 to make concrete hypotheses about the results of the use of EDA in the case-
study.

EDA is a software pattern that can be used when designing the architecture of a software
system, it deals with communication within the system. In EDA, the system is divided
into a set of so-called modules. This division is primarily on an executional level, dividing
the system into separate runtime units. Between these modules, the communication is
achieved by event notifications (‘events’). These events often take the form of messages.
An event is a record of something notable that happened within the scope of the system
[2, 6]. It is generated by an event source and broadcast into the system [1]. Each
module can define which events should be acted upon. In the interested modules, the
event triggers some action, while other modules simply ignore it. The nature of events
is descriptive; they convey what happened, but do not in any way specify what actions
should be taken as a result, or by which or how many modules [1].

Modules do not have any information about each other. The principles of EDA dictate
that a sending module should have no knowledge of the way its events are processed.
The knowledge that is shared between modules, is about the events themselves: the
types of events that are sent in the system, what kind of information they contain and
in what form this information is present. This has some consequences. First of all, it
makes it possible for the modules to be extremely loosely coupled [2, 6], which is often
a desirable quality. Also, it makes EDA work very well with asynchronous flows of work
and information [2]; if receiving module(s) of an event are busy, there is no inherent
need for the sending module to wait. The advantages of this are that modules have to
spend less time waiting and that there is potential for horizontal scaling; work could be
divided between different copies of the same module. On the other hand, it decreases the
amount of information and assumptions that can be made within modules. Additionally,
some amount of synchronization may be required in a system, which then needs to be
handled explicitly in an EDA system.

The EDA set-up also means that new information is pushed around the system rather
than provided on demand. Consequently, updates are made in reaction to changes, which
is useful in many systems. It means there is no need to poll for any changes elsewhere
in the system, which can improve timing properties. On the other hand, it also means
modules that need information on demand, need to keep a copy of it themselves. This
increases the overall storage load.

Finally, in an EDA system, actions are less sequential. This means it is suitable for
situations where a change has multiple consequences, which can be processed more or
less independently of one another. It also means the total behaviour of the system is
likely to be more difficult to analyse, since the order in which things happen is less
defined and can differ between equivalent runs of the system.

10

4. Selection of quality criteria

This section describes the process of selecting a suitable set of quality criteria to use when
comparing the two case study systems. The following steps are used in this process:

(a) collecting a broad set of possible quality criteria from literature,
(b) narrowing down this list to a feasible set of relevant criteria,
(c) defining the way each remaining criterion is measured.

Section 4.1 defines the result from step (a) in the form of a long-list of quality criteria.
Section 4.2 follows up with an explanation of the process of step (b). The result of this
step is shown in the form of a short-list in section 4.3. Finally, section 4.4 elaborates on

step (c).

4.1. Long-list of quality criteria

The starting point is a list of possible criteria that can be used in general to determine
the quality of software and software architecture. To make this list, information about
quality attributes that can be used to evaluate software systems and architectures is
collected from the following sources: [13, 14, 10, 15, 16, 17, 18, 19, 20, 21]. The collected
information is then combined and aggregated to produce a custom grouping, shown in
table 1. Only the entries marked) are included in the short-list. The rest are excluded
for various (numbered and color-coded) reasons, which are further explained in section
4.2. Table 18 in appendix A shows the definition of each quality attribute, as well as the
direct source it was adapted from.

The quality criteria, their grouping, and their definitions are already somewhat modified
towards convenient use in subsequent steps, but are still included in a way that is rela-
tively close to the source materials. As in the source materials, a group of sub-criteria
does not always form a complete description of its main criterion. Also, some criteria
have overlapping definitions. For example, Maintainability contains a sub-criterion of
Evolvability, which overlaps with Modifiability and Extensibility. Also, the notion of
Scalability, the ability to improve a system’s performance by adding more resources, is
part of Maintainability but missing from the list of sub-criteria. For the short-list (see
section 4.3), the remaining criteria are further modified to make them more suitable for

measurement on real systems.

11

) Functionality

) Traceability

(1)

(1)

(1) Suitability
(1) Appropriateness

(1) Correctness / Confor-
mance

(1) Completeness

(2) Usability

2) Operability

(2) Appropriateness Rec-
ognizability

(2) User Error Protection
() Attractiveness

(2) Communicativeness

(2) Learnability

1) Portability
4

4

Machine Independence

4) Installability

4) Adaptability

(
(
(
(
(
(4

)
)
) Replaceability
)
)
)

Software System Inde-
pendence

) Security

() Accountability

(4) Authenticity

() Integrity

(5) Non-repudiation

() Confidentiality / Pri-
vacy

() Reliability

(4) Robustness

() Maturity

() Accuracy / Precision
(5
() Recoverability
() Availability

) Fault Tolerance
)

(*) Maintainability
() Testability

(*) Modifiability

(*) Extensibility / Aug-
mentability

(*) Repairability

(*) Evolvability

) Compatibility
(4) Co-existence
) Interoperability

() Reusability
() Generality
(5) Self-containedness

*) Audit trail

*) Efficiency

) Capacity

) Performance / Timeli-
ness

(*) Resource Behaviour

*) Structuredness

(*) Consistency / Unifor-
mity

(*) Conciseness

*) Modularity

(*) Understandability
(3) Legibility
(*) Analyzability

() Simplicity

(*)

*) Self-descriptiveness

Table 1: Long-list of quality criteria

12

4.2. Exclusion of criteria

A portion of the quality criteria are excluded for the comparison performed in this
research project. The different reasons for exclusion are numbered and color-coded in
table 1.

First of all, the functional criteria marked (V) are excluded. This is explained in section
4.2.1. Additionally a number of non-functional criteria are also excluded. They are first
filtered on a theoretical basis; for each criterion it is determined whether or not it is
affected by a change from a request-response architecture to EDA. This is done based
on the following three arguments:

(2) Criteria that involve Usability focus on the user experience. This only involves the
external behaviour of the system and is therefore independent from the architectural
structure [22]. Hence these criteria are irrelevant for the comparison that we want to
make in this project.

(3) A few criteria consist only of properties of the implementation (choices made on the
programming level) and are therefore independent of the architecture.

() Criteria may be dependent on whether the architecture has specified certain features,
but if these features are independent of the internal structure, they are not relevant for
the current comparison; they could be added to or removed from a system with either
architectural structure.

The exclusion of criteria based on () and) is fairly straightforward and is not further
explained. The assessment of the remaining criteria regarding (¥ is explained in section
4.2.2.

Finally, some of the remaining criteria are of less interest to Sogyo with respect to this
research topic. These are excluded to keep a manageable scope for this project, and are
marked (°) in the table. The considerations that lead to these choices are clarified in
section 4.2.3.

4.2.1. Functionality

In this project, functionality plays a slightly different role than the other, non-functional,
quality attributes. Bass et al. [10] describe the relationship between functionality and
architecture as follows:

“Functionality may be achieved through the use of any of a number of possible
structures. In fact, if functionality were the only requirement, the system
could exist as a single monolithic module with no internal structure at all.

13

Instead, it is decomposed into modules to make it understandable and to
support a variety of other purposes. In this way, functionality is largely
independent of structure.”

Similarly, the functionality that can be provided by the use of the principles of either
EDA or request-response, can be shown to be the same. The most fundamental dif-
ference between the two is the semantics, which is mainly reflected by how things are
named. However, these choices only influence the way people think about and under-
stand the concepts used in a system and do not limit the possible functionality in any
way. Another, more concrete difference that often (but not necessarily) occurs between
the two principles, is synchronous versus asynchronous communication. EDA combines
well with asynchronous communication, because the sender is not responsible for how,
where and when the event is received and can usually continue execution as soon as it
has given off its event notification to the underlying framework. These two communica-
tion methods can also be shown to be equivalent. As explained by [23], asynchronous
communication can be modelled by synchronous communication by introducing a buffer.
This buffer means the message can be sent at any moment by the sender, and is stored in
the buffer. The receiver can collect it whenever it is ready to, without the sender having
to wait. The other way around, as mentioned by [24], synchronous communication can
be modelled by hand-shaking of asynchronous processes. This means that in terms of
functionality, the two principles are interchangeable.

A formal method of conversion from request-response to EDA is unlikely to provide
major benefits in terms of non-functional quality attributes. To achieve real benefits,
the architecture needs to be reconstructed with an event-driven mindset. Along the
same lines, Bass et al. [10] add:

“Software architecture constrains [the allocation of functionality] to structure
when other quality attributes are important. [...] The interest of function-
ality is how it interacts with, and constrains, those other qualities.”

This view corresponds to the importance of functionality in this project. It does not lie
in how well functionality requirements can be achieved through different architectures,
but rather it lies in the way non-functional quality attributes are influenced by the
architectural method chosen, when constrained by the functional requirements. For
the purpose of this project, this means the functional attributes from table 1 are not
appropriate as quality criteria. Instead, functional requirements being satisfied is a
prerequisite to start assessment of non-functional criteria for the architecture.

14

4.2.2. Theoretical assessment of quality criteria

The following paragraphs explain for each criteria group the reasons why the contained
criteria are or are not excluded on theoretical grounds.

Portability and Compatibility

All criteria in the Portability group have to do with the system’s independence from its
environment. The same holds more or less for the Compatibility criterion Co-existence;
this criterion restricts the way the system influences parts of its environment and re-
sources that it shares with other systems. The environment that is meant here is the
environment of the system as a whole. This environment is for example an operating
system or a web browser. The mentioned criteria view the behaviour of the whole system
with respect to factors that originate from outside of the system.

On the architectural level, satisfying the above mentioned criteria requires mechanisms,
that act as a layer between the core of the system and some part of its environment, to
be specified by the architecture. Examples of such a mechanism for the criterion Adapt-
ability are genericity and parametrization [22]. The mechanisms depend on technical
details of the environments and the system itself. They are not dependent on the princi-
ple behind the communication method (events versus request-response). This is because
the communication method between the layer around a part of the environment and
the part of the environment itself does not qualify as communication between modules
of the system. Therefore it is not restricted and can be the same in both architectural
methods (EDA and request-response). The communication method used on the bound-
ary between the layer around the environmental component and the rest of the system
is restricted, but here the only thing that is important is the content of the information
that is exchanged and not the semantic form. Since both communication method are
able to convey the same information (see section 4.2.1), they are equivalent in this re-
gard. Therefore the criteria in this group do not provide a good basis for comparison of
these architectural communication principles.

The same argument does not hold for the Compatibility criterion Interoperability. Here,
domain information needs to be exchanged between systems. The technical details of
the information exchange are in principle independent of EDA. However, the exchange
of information between systems may be linked to the internal exchange of information of
the system. If a pair of interoperating systems do not share a communication principle
(either event- or request-response-driven), a semantic translation may be needed before
the systems can communicate effectively. On the other hand, if both systems adopt
EDA, the communication could be achieved with relatively little effort by listening to
one another’s events. This criterion therefore is theoretically relevant in the comparison

15

between communication methods in this project.

Security

Some features of Security (Non-repudiation, Accountability) rely on the ease of keeping
an audit trail, discussed above.

Authenticity and Integrity, on the architectural level, require a mechanism for authen-
tication to be present which verifies that entities are who they say they are. This
mechanism can be completely encapsulated within a single module and is therefore not
dependent on communication method between modules. This makes the quality crite-
rion Authenticity irrelevant for this project. Integrity additionally requires the system
to keep track of the verified identity of an entity and provide or deny access to certain
features based on it. This relies on implementation details, but can also be dependent on
communication between modules. For example a module may be required to know which
user is logged in to provide or deny access to some data. However, this information can
be conveyed with either communication strategy, so this criterion is also not relevant for
the comparison. Confidentiality / Privacy can be seen as a sub-criterion of Integrity, so
the same reasoning applies.

Reliability

The Reliability criterion Robustness is concerned with the behaviour of the system under
conditions that are not explicitly specified by the specification. This means, for example,
how the system handles inappropriate user input. Even if these conditions are not
explicitly specified by the specification, the way they are handled in the architecture
is the same as for specified conditions. Therefore, where architecture is concerned,
Robustness can be treated as a sort of extension of functionality and is independent of
communication strategy. As a result, this criterion is excluded from the list.

The Reliability criteria that have not been excluded up to this point, are dependent
on communication method. This is because in a system with EDA, redundancy can
be achieved by having multiple run-time modules that provide the same functionality
(implemented either in the same or a different way). None of the other modules need
to be changed because of this. If one of these redundant copies fails, the other(s) can
provide the functionality to keep the system running correctly. Also, if all events in the
system are recorded, the system state can be recovered after a failure by reconstructing
it from these events [1].

16

Efficiency

The Efficiency criteria are all dependent on the use of EDA. A system with EDA is well
suited for asynchronous communication and therefore also for parallelization [2]. Both
can greatly enhance performance.

Additionally, with EDA, state keeping is usually handled in a significantly different
way.[1] Instead of requesting data from one central source each time it is needed, all
modules that need access to certain data keep a local copy. Whenever the source expe-
riences a change, it generates a corresponding event. All modules that keep a copy of
the affected data, respond to the event by updating their copy. Whenever these modules
need access to a piece a data, they can access it locally. This form of redundancy means
that the resource usage for an EDA system is higher. The performance and capacity are
higher, because modules never have to wait for response from the source. Therefore the
data source never becomes a bottleneck even when many other modules need its data
at the same time.[1]

Audit trail

For a system with request-response, setting up an audit trail during run-time of a system
requires extra logging effort. In a system with EDA, it is easy to track and analyse all
interaction between modules by capturing all events that are created in the system [1].
This information can be used on its own or in combination with other logging informa-
tion. This means this criterion is dependent on the communication method and therefore
theoretically relevant in the comparison.

Structuredness

EDA demands a certain degree of Structuredness. The division of the system into mod-
ules that only communicate through events, makes the modules very loosely coupled |2,
1], which provides a high Modularity. It also provides top-level architectural Consistency.
Conciseness could potentially also be heavily influenced by the choice in communication
strategy, because certain functionality may be expressed more easily and with fewer code
in one strategy compared to the other. These criteria are therefore all relevant in the
comparison.

Understandability

All main architectural choices naturally influence the Understandability of the whole
system. For EDA specifically, the control flow may be harder to distinguish, since in the
source of an event, it is not known what responses it triggers [2, 7]. On the other hand, in

17

an EDA system it is easier to track and therefore analyse all interactions that have taken
place between modules (see Audit trail, page 17). Also, events tend to be descriptive,
so they inherently convey information about their purpose. Understandability criteria
(aside from Legibility, which is defined on the implementation) are therefore relevant in

the comparison.

Maintainability

Maintainability concerns the ease for a system to be changed with respect to different
aspects. The reparation of faults (Repairability) and changes in functional features
(contained in Modifiability, Extensibility, Evolvability) are mainly dependent on the
criteria described in Structuredness, page 17 and Understandability, page 17.

The ease of verification of changes in the system (Testability) is also dependent on Struc-
turedness because highly independent modules can be tested separately. Additionally, it
is dependent on the ease of keeping an audit trail (Audit trail, page 17). This is because
test cases can easily be constructed from recorded sequences of events. It is further
dependent on the choice in communication method, because EDA allows for less static
validation. As a result less errors can be found at build-time, so they have to be found

through run-time testing.[1]

An increase in desired capacity or throughput of the system (contained in Extensibility,
Evolvability) is dependent on parallelization and possibility for distribution, which are
both influenced by the chosen communication strategy [2]. Together this means all of
the Maintainability criteria are relevant in the comparison.

Reusability

Reusability is influenced by aspects of Structuredness (page 17), because loose coupling

improves reuse [1, 14]. Part of this is because any module can be introduced in an
event-driven system simply by registering it for the system’s events [7]. Reusability is
also dependent on the way the functionality is distributed over several modules, which
is influenced by the communication strategy. Therefore, these criteria are theoretically

relevant in the comparison.

4.2.3. Relevance exclusion
Of the remaining criteria, some are more relevant to this research project than others.

For Sogyo, the main importance for this research topic lies in the possible improvement in
the criteria in the Maintainability group. Nowadays there are often rapid changes in user

18

requirements as well as technology and environment. This means that a software system
is continuously being changed throughout its lifetime. It is therefore very important
that a system can be relatively easily modified to accommodate these changes, while
maintaining architectural integrity. If the integrity is not maintained, the cost of further
modification increases. This makes maintainability aspects an important concern for
virtually every software system.

Additionally, there is an interest in Efficiency aspects. EDA has a very different approach
to information distribution and storage compared to traditional request-response systems
that often rely on a central relational database. It is difficult to predict how much this
difference in approach influences the time and resource behaviour. Specifically for the
case-study project, there are issues with reaction times, which may be solved by an EDA
approach.

Since these mentioned criteria are together heavily dependent on the criteria in groups
Structuredness, Understandability and Audit Trail, the criteria in these groups are also
kept. The other criteria are not explicitly evaluated in order to keep a manageable scope
for this research project.

4.3. Short-list of quality criteria

When all excluded criteria are removed from the long-list, a short-list is obtained. These
remaining criteria are used to compare both architectural approaches in the case study.
Some criteria are redivided in a more complete and less overlapping set of sub-criteria.
Since several criteria are dependent on other criteria, a graph-like structure is appropriate
for the representation of this list. This representation is shown in figure 1. In this figure,
A —» B means that A influences B, i.e. B depends on A. The dashed arrows mean a
conditional form of influence; time and resource behaviour depends on scalability only
when the system actually needs to be scaled up. The definitions of all the (possibly
modified) remaining sub-criteria are shown in table 2. In the reformed structure, the
set of criteria is better suited for the next step of the research process: the definition of
measurement methods for the different criteria.

19

Testability Repairability
A

Time Behaviour Resource Behaviour

Audit Trail Conciseness

Ly X
e g
Tl i
I
Extensibility Modifyability Scalability
A A
Diagnosability Analysability
Self-descriptiveness Simplicity mmem Efficiency
Maintainability
T \ = Understandability
Structuredness
Consistency Modularity mmmm Audit Trail

Figure 1: The short-list of criteria, in graph from to show dependencies

Time Behaviour

degree to which the response and processing times and
throughput rates of a system, when performing its func-
tions, meet requirements

Resource Behaviour

degree to which the amounts and types of resources used by
a system, when performing its functions, meet requirements

ease with which errors can be located and repaired in an op-
erational program while maintaining architectural integrity

ease with which existing features can be changed to suit
changes in requirements in an operational program while
maintaining architectural integrity

ease with which new features can be added to meet added
requirements in an operational program while maintaining
architectural integrity

ease with which the system can be changed to accommodate
and increase in scale: more data / users / nodes, while
maintaining architectural integrity

ease with which test criteria can be established for a sys-
tem or component and tests can be performed to determine
whether those criteria have been met

20

Diagnosability

ease with which deficiencies can be diagnosed and causes of
failure can be located

Analyzability

ease with which the parts to be modified for an intended
change can be identified

Self-descriptiveness

extend to which objectives, assumptions, constraints and
in-/outputs can be inferred from the code alone (without

comments)

Simplicity

ease with which the overall structure (elements and interac-
tions) and the control-flow of the system can be understood

Audit Trail

degree to which actions performed during the system run-
time can be reproduced

degree to which changes in one module have the least impact
on other modules

degree to which uniform design and implementation tech-
niques and notation are used

degree to which the implementation of functionality is pro-
vided with a minimum amount of code

Table 2: Custom definitions of short-list quality criteria

4.4. Methods of measurement

In order to compare different architectural approaches based on the selected criteria,

these criteria need to be measured. To this day, there is no evaluation method that is

completely objective, extremely precise and also requires very little effort to use [11].

Therefore, a set of appropriate techniques that give a reasonable balance between accu-

racy and effort, are chosen. This section briefly describes the different chosen techniques.

Some methods include metrics that are measured on the implementation, either on the

code base or on the running system. Since the alternative solution using EDA is only

partly implemented, a comparable set-up for both systems needs to be created. This

is done by selecting part of the functionality and creating set-ups for both versions

of the system that include only the parts that are necessary to provide the selected

functionality.

21

4.4.1. Efficiency

The most reliable way to measure both time and resource behaviour, is by measuring
these quantitatively during runtime of both versions of the system.

The time behaviour is assessed by specifically measuring the completion time of a set
of user actions. Since all user actions for the selected system are server requests, the
completion times are measured in terms of loading time of the request. These loading
times are measured with a browsed-based tool called HttpWatch (Basic Edition 10.0.20)
[25].

The resource behaviour is assessed by manually calculating the total amount of used
RAM and disk space used by both methods at different characteristic times during
runtime of the system.

4.4.2. Structuredness and Understandability

The below mentioned metrics on the source code is calculated using Visual Studio Code
Metrics Powertool. The results are aggregated and viewed in Code Metrics Viewer.

e Conciseness is measured by the metric Lines of Code.
e Modularity is measured by the metric Class Coupling.
e The Maintainability Index gives an indication of Diagnosability and Analyzability.

Cyclomatic Complexity and Depth of Inheritance is used to give an indication of
Simplicity.

4.4.3. Audit trail

For the ease of creating a recollection of notable things that occur at runtime, no real
quantitative measures were found. Instead, a qualitative comparison is made, which
describes the points of difference between the two approaches.

4.4.4. Maintainability

For the assessment of Modifiability and Extensibility, a scenario-based approach is used.
This involves the construction of several change-scenarios and evaluation of the amount
of effort it would take to apply these changes to the system. The approach is based
on the methods described in [26], [27] and [28]. The actual scenarios that are used are

based on actual changes that have happened in the original system, so that they are as

22

realistic as possible. To determine these scenarios and the amount of work they took in
the original system, the source control repository is used.

Scalability is determined by analysing how the system’s behaviour changes depending
on size characteristics. The time and resource behaviour measurements are used for part
of this analysis.

In accordance with figure 1, the results for some of the other quality criteria are also
used and combined to make statements about Maintainability aspects.

5. Case study: Set-up

In this section, the case study is introduced. Section 5.1 describes the way the case study
is conducted. In section 5.2, a brief description of the background of the used case is
given, along with the general functional requirements.

5.1. Way of working

This case study provides a comparison of two systems that fulfil the same functional
requirements, but have different underlying architectures; one has a traditional architec-
ture and the other is event-driven. This comparison is then used to make more general
statements about the advantages and disadvantages of EDA.

The starting point of the case study is an existing solution that was previously designed
and built by Sogyo. We call this existing solution the original system. The original
system takes a more traditional approach and is not event-driven. Section 6 describes
the architecture of this original system.

With the same functional requirements as the original system, an alternative solution
is designed using the EDA pattern. This alternative solution is called the EDA-system.
Part of the designed EDA-system is also built as an application, using an existing event-
framework that was previously made by Sogyo for the purpose of experimenting with
EDA. By actually implementing part of the EDA application, the practical lower-level
implications of the top-level design can be seen. Additionally, the implementation can
be used for (quantitative) measurement. Section 7 describes the architectural design of
the EDA-system.

Finally, the original system and the EDA-system are compared using the quality criteria
selected in section 4. The results of this comparison are presented in section 8.

23

As introduced in section 2.2.1, the structure of a system’s architecture can be described in
different views. To make comparison between the two systems easier, their architectures
are described using the same set of views. The used views are the following;:

e The process view shows the division into runtime execution units that run in parallel,
like applications, processes and/or threads.

e The development view shows the division of the system into development units like
libraries, projects, namespaces and/or classes.

5.2. Case description

The chosen case is a system requested by a company (the client) that sells products to
stores, which in turn sell them to consumers. These stores are called the company’s
customers. Contact with a customer is handled by a sales person. The customers
are divided into areas and each area is represented by one sales person. This person
maintains the relationship with the customer and establishes which products they want
to buy. This is captured in so-called budget proposals. Budget proposals are made once
a year; each is a signed agreement with a customer, which describes what products the
customer will buy in the upcoming year. Additionally, a sales person tries to enlist new
customers.

One of the main purposes of the system is to assist each sales person in their sales
process. A sales person wants to be able to view comparisons between the number of
sales estimated in budget proposals and the actual turnovers for the same customer
and time periods. This helps them make more accurate budget proposals for upcoming
years. The system is also meant to provide the director and area managers with data
to support decisions and changes in policies.

5.2.1. Functional requirements

The system takes the form of a SalesPortal, which provides a set of features to users ac-
cording to their role. There are four available roles: sales person, area manager, director
and administrator. The global actions they can each perform using the SalesPortal, are:

e A sales person can (1) enter new customers into the system, (2) view different kinds of
data about their customers (contact details, characteristics, budget proposals, actual
turnovers, etc.), and (3) make budget proposals.

e An area manager can view different summaries about the status of business in his/her
areas.

e The director is able to see summaries about the entire set of areas.

24

e The actions for the administrator are (a) management of SalesPortal users, (b) cor-
recting the imported data, and (c) checking whether the system functions correctly.

The system should additionally be able to process input data from an external system
(in this case SAP), which the client also uses to support their business processes.

6. Case study: Original architecture

This section gives a description of the original system’s architecture. As described in
section 5.1, the architectural description is divided into a process view (section 6.1) and
a development view (section 6.2). Additionally, section 6.3 presents the weak points of
the original system and hypothesize about how EDA could improve upon them.

6.1. Process view

The process view shows the division into runtime execution units. A schematic repre-
sentation of this view for the original system is shown in figure 2. In this figure, the
green entries are separate runtime execution processes and the orange entries are forms
of data storage and exchange.

In this view, the system is divided into an database server (Microsoft SQL Server) and
three separate applications that connect to it. The way this connection is handled, is
described in the development view. Two of these applications, the batchimport and the
batchpdfcreator, are processes that are run overnight at predefined times. The third is
the web application that provides the interaction with the users of the system. The web
application is hosted on an ISS Express server and an arbitrary number of users can
connect to it to use the system.

The batchimport process handles the import of data from SAP. This data is presented
in the form of XML files, which are read in by the batchimport application and stored
in the database.

The batchpdfcreator uses data from the database to generate a set of PDF and HTML
tables. These are stored on disk and used by the web application to include in certain
web pages that are sent to the user. This means some tables in the web application
are pre-generated by the batchpdfcreator. However, there are also tables in the web

application that are not generated by the batchpdfcreator, but instead are generated on
demand (pull-based).

25

database

N

database access N batchpdfcreator
(Microsoft SQL Server) application
4 \
PDF / HTML
tables
*

/ el client (—)ﬂ
batchimport web application client < 5 &
application (IIS Express server) g

(L8
N e
3 client <>
*) . o M Ah
client <>
XML files :
/ o
URLs
SAP <&
IIS Express server client
~
HTML pages

Figure 2: Original system — schematic representation of the process view

The web application is constructed using ASP.NET MVC, further described in the de-
velopment view. The client-server interaction is shown in more detail in the (*) labelled
dashed box in the figure. It is handled in the following way:

A user specifies the URL of the page they want to view, either by clicking a hyperlink or
typing it in manually. The URL specifies which action on which controller on the server
should be executed. This action results in the creation of an HTML page that is sent
back to the client and shown to the user.

6.2. Development view

The development view shows the division of the system into development units. A
schematic representation of this view for the same system is shown in figure 3. In this
figure, the dashed boxes are separate projects / libraries. Dark blue represents the
developed software, while light blue represents imported third-party libraries. The red
entries denote relevant C# classes to show connections between the projects.

First of all, the batchimport and batchpdfcreator projects in this view directly corre-
spond to the applications of the same name in the process view.

26

asPNETMVCL © (viewpage Je— 3 controller Y 1 1 I

]

| ep05|tor I
| Domain.Sales interfaces Services Entities l

L St Sl e o}
l_______:'___"_ ______________ B el b e by _‘____i
| Repository. -

| NHibernate Repositories l
|, L R

. Query Class Session /
NHibernate < syntax , persistence transaction

Figure 3: Original system — schematic representation of the development view

Additionally, this view shows how the ASP.NET MVC library is incorporated into the
SalesPortal project to construct the web application. The MVC library provides base
classes for the Controllers and the Views. Each controller implementing this class, can
define a set of actions that are initiated by the client by navigating to the corresponding
URL. These actions each connect to a view, which defines the HTML page that is
constructed and sent back to the client. The connection between controller and view is
provided by the MVC library. The ViewModels can be used as an easy way to transfer
data from the controller to one of its views. They are called ViewModels instead of
just Models (as they are called in MVC) because they do not correspond to the actual
domain entities. Instead, they correspond with how the data is organized as it is shown
to the user.

Finally, the three mentioned projects make use of a set of layers that handle the con-
nection to the SQL database. The top layer consists of the sales domain. It contains
classes for the entities that exist in the system domain, defines a repository interface for
each of these entities and also defines a service for some of the more important entities.

The entity classes are directly linked to the database by using the class-persistence
functionality of the NHibernate library [29]. This functionality provides get and set
operations on specified attributes to be automatically translated to database queries.

27

The repository interfaces define a set of queries to be performed on the collection of
records of their corresponding entity type. These repository interfaces are realized by a
set of actual repositories in the Repository.NHibernate layer. They use the functionality
from the NHibernate library to perform these queries on the database. The services
use multiple repositories to provide more complicated queries on the data. Finally, the
NHibernate library also contains functionality to define sessions and transaction with
respect to the database. This functionality is directly accessed by the other projects for
initialization purposes.

6.3. Problems and Hypotheses

The original system functions adequately, but there are a few issues that could be im-
proved upon. This section highlights these issues and speculate as to how an event-driven
solution would improve them.

6.3.1. Timeliness and Scalability

One of the main problems in the original project, is that some user actions take a
long time to complete, in the order of seconds. For users, the tolerable waiting time
for information retrieval is approximately 2 seconds [30], and this is exceeded in some
places. The user actions that take a long time are actions where a set of data needs to
be displayed (usually in a report/table) and this data needs to be collected at the time
of the request. Since it involves large amounts of data that are distributed over multiple
database tables, this takes a while to complete. While this happens, the user is waiting
for their report to load.

Additionally, the batchpdfcreator process takes over two hours time to complete every
night (in previous versions even longer). The batchpdfcreator creates a set of pdf and
html reports overnight. These reports are built from scratch every time and the old set
of files is overwritten. Again, a large amount of data needs to be collected and combined.
Here, the user is not waiting while these actions are completed, but another timing issue
arises. The batchpdfcreator process can only be started once the batchimport process
has been finished, and the import in turn can only start once the XML files from SAP
are available. The web application is offline during these processes, so the longer the
combined task takes, the higher the risk that it has not finished yet at the time the users
want to start using the web application again in the morning. Both these issues have
recently been improved upon, but the performance is still not optimal. They both get
increasingly worse as the amount of data grows over time.

28

An event-driven approach could solve both issues by saving a copy of the data necessary
for each report in separate modules. The main data storage managed by a main module.
This module generates events once some part of the data changes, and all affected reports
are updated by their respective modules in response. This first of all means that the
data does not need to be collected over and over. Consequently, the time it takes to
generate the reports is not affected by the total amount of data in the system. Secondly,
the processing of data, and updating of reports, is done as soon as new data is available
rather than at the time a report is requested by the user.

6.3.2. Maintainability

Another thing that could be improved is the ease with which certain changes in the
requirements can be implemented. The client makes these changes relatively frequently
and they usually involve the change or addition of some columns in a set of reports
shown by the system. Sometimes these changes can be made by simply making some
changes in the ViewModels and Views of the web application. However, sometimes the
changes are made by changing the domain and the structure of the database, which
involves at lot more work. Also, some reports are created overnight and loaded from a
file and others are created by the web application itself. If a report needs to be changed,
it is not immediately clear where the change should be made.

This could be improved by using the same EDA set-up mentioned for the previous issues.
The main data storage should be kept as general as possible and save as much information
as is available. The way the information is displayed, can then be changed by changing
only the module corresponding to the involved reports, letting them respond to different
events if necessary. This means the domain would only need to be changed if the types
of data provided to the system change, and not when the data is used in a different
way. This would also mean that all reports are made in the same way, so changes would
require similar actions for all reports. Since modules are separate parts of the system
that only communicate via events, the addition or removal of ‘report’-modules would
not affect the data-storage module, input modules or other ‘report’-modules in any way.

7. Case study: New architecture

This section describes the design of the alternative architecture. The architectural de-
scription is again divided into a process view (section 7.1) and a development view (sec-

tion 7.2). Section 7.3 describes the extent of the built implementation. The different
modules in the architecture are elaborated upon in section 7.4. Finally, some noteworthy

29

things encountered during the design process are explained in section 7.5.

The alternative architecture uses the EDA pattern as a basis. As motivated in section
6.3, the division into modules is as follows.

e one central data storage and management module (the EventStore module)
e one input module for the data from SAP (the SAPImport module)

e a ViewModel module for each type of report

e one ‘front end’ module (the Gateway module)

7.1. Process view

A schematic representation of this view for the EDA-system is shown in figure 4. Just
as in figure 2, the green entries are separate runtime execution processes and the orange
entries are forms of data storage and exchange. The four different (types of) modules
in the system are highlighted by four dotted boxes with different colors. These boxes in
the same colors are also used in the schematic representation of the development view
(figure 6) to show the connection between the two views.

EventStore ViewModel
EventStore module module
server Toaar

EventStore
data

events

Sy 1
EventStore 1 ViewModel N
module 1 modules I
SAPImport Gateway
[- e e —] module module

i by rm——

SAPImport Gatewayl R | I
module I I module Owin server I ,,,,,,,,,,,,,,,

h—JL—J _———-—J

client

XML files client

client

b

-
SAP > client <>

Figure 4: EDA-system — schematic representation of the process view

The core of the system, the modules that communicate via events, are shown in two dif-
ferent representations. The representation in the dashed box shows how all modules send
their events into the system and all other modules can receive them. The representation
outside the box shows which modules actually exchange information. For example, there

30

is an arrow from the EventStore module to the ViewModel modules. This means there
are events of certain types (in this case the types “EntityChanged”) that are sent by
the EventStore module and received and reacted to by one or more of the ViewModel
modules.

7.2. Development view

A schematic representation of this view for the EDA-system is shown in figures 5 and 6.
Just as in figure 3, the dashed boxes are separate projects / libraries. Dark blue repre-
sents the developed software, while light blue represents imported third-party libraries.
The red and orange entries denote respectively relevant C# classes and JavaScript
scripts, to show connections between the projects.

The used Messageframework was previously developed by Sogyo. It contains base classes
with which message sending and receiving can be implemented.

module

| |
J

| Module Payload i ! SSSSssssssssooooo o

|\ i ____= — | TTeeeTTTTe—-SIIIITTTeSSEEIIIInocee e
: | | '. ! |
: 1 1 1

—— SO F ot Ittt o= N Vi = . !
N / 1
: / vent sending Versioning Extraction . |
: / R < R

: Helper : / functionality functionality -Qf event da;’ >C Entitite) : |
M / 1
> 1
N 1

< 7/

: /'
Message- Message ~Jf Message- ~ S
framework : GilterScript) (Payload } >(Creator } >CM855396)<

Figure 5: EDA-system — schematic representation of the connection between the modules

and the Messageframework in the development view

31

,_____,_____________________ - —_————————

: |

| EventStore g EventStore R VRN EventStore- III| v|ewModeI module |

module Payload Connecter I| modules Payload |

___________ A ——— P___. B o e i o e e I

EventStore. : EventStore |IEventStore- ke e ke K Ik & b b b b & L &
ClientAPI : Event Connection /! | : | Mi ft

|I| Gateway : Gateway [I(CJ::I)iSnO ’ I

L — e —— — — — — II module Payload | Hostln'g I

B I

L o\
FrontEnd : (ViewModel- __ JavaScript

II SignalR (Hubs)< { Startup) scripts l
A =

1 1

______________II v !
————————————— T V I
I| SAPImport SAPImport : II M;grpoﬁé)tft. Hub jquery.signalR jI
I| module ‘ Payload I Il SignalR |]

I__;_;_;;_;_;_;_______ R L AT E L Y L e r e s L L L EC

Figure 6: EDA-system — schematic representation of the modules in the development
view

In figure 5, the connection between the modules and the Messageframework is shown.
Each module contains a Payload class that inherits from the abstract Payload class in
the Messageframework. The framework also provides a Message class that represents the
events that are sent between modules. Additionally, the MessageCreator class is used to
create and send events and the MessageFilterScript can be used in module Payloads to

receive events.

The knowledge that is shared between all modules is contained in a separate Helper
library. It contains for instance representations of the Entities the way they are contained
in events. It also contains the different event-types that exist in the system and methods
to add and retrieve specific information from events.

Figure 6 shows the four modules and their dependence on other libraries. As mentioned
in the process view paragraph, a set of coloured dotted boxes is used to highlight the
different modules.

The EventStore module uses the EventStore.CientAPI library to access an EventStore
and store and retrieve data. For the Gateway module, a separate FrontEnd project
was developed that uses the SignalR library [31] to establish a connection between a
Microsoft Owin [32] server and JavaScript code on the client. This FrontEnd project, as
well as the Microsoft.Owin.Hosting library, are used by the Gateway module to run an
Owin web server.

32

7.3. Extent of implementation

Some details of the architecture described in the previous section, are derived from the
implementation process. For example, the choices of event-framework, server etc., were
all made for practical reasons. These choices are reflected in the libraries used and shown
in the process view. This also means that the parts that were not implemented are less
detailed in the architectural description given in this thesis.

The implementation covers first of all the core of the system, which consists of all func-
tionality for sending and receiving events and the storage, front-end and SAP import
modules. Additionally, it contains two ViewModel modules: one for an area overview
and one for a customer overview per area. All other ViewModels modules are omitted,
because their implementation was expected to be analogous to the already implemented
ViewModel modules. Another thing that was not implemented, is all functionality re-
garding accounts, logins and user roles. This functionality required substantial additional
research and is relatively independent of the event-driven characteristics of the system.
In the just mentioned implemented functionality, some of the domain model entities do
not play any role and are therefore also not included in the system (see section 7.4.1).

7.4. Module descriptions

The different modules are explained in more detail in the next few sections.

7.4.1. EventStore module

The central data storage and management module receives any external changes to the
EDA-system as events and stores the information in a persistent way. As storage mech-
anism, an event store is chosen. This has the advantage that instead of just the current
state, the entire evolution of the state is saved and can be used for various purposes. In
addition, the information from incoming events can be stored in a semantically similar

way, so no complicated transformations are needed.

The used event store implementation is called EventStore [33]. It contains a client API
for C# so that it can be interacted with from within the program.

The incoming events for this module denote the creation, change or deletion of a set of
entities that are present within the domain of the EDA-system. These entities, with the
respective actions that can be performed on them, are shown in table 3. Some additional
entities are processed by the original system, but left out in the implementation of the
EDA-system because it was scaled down to a smaller version in which these entities did

33

not play a part. These left out entities can be seen by comparing figures 9 and 11 in
section 7.5.3. The concept of User, which is similar to an entity, was also left out in the
EDA-system implementation.

For BudgetProposals and Turnovers, the create actions are not defined. These entities
have a periodic aspect and have to do with monetary values. To the outside, an entry
for each valid period is presented as if it exist, with a default value of zero if it has never
been edited. Internally, they are only stored once they have been edited.

For UploadBatches, only create actions are defined, because they represent a record of
an upload happening, which is not something that can later be changed.

Entity

Customer Create Change Delete
BudgetProposal Change
Turnover Change
SalesPerson Create Change Delete
Area Create Change Delete
ProposalYear Change

UploadBatch Create

Table 3: Entities and the actions that can be performed on them

Along with the actual event store, this module contains a mechanism to construct an
object-representation of (parts of) the current state. This is used to build the complete
new state as result of an incoming change in order to send it out as a new event again.
Additionally, where possible, the state-changes are specified in terms of “delta’s” rather
than overrides. For example for monetary values, this means that the difference in value
is included in the event, instead of the new total value. On the other hand, if the name of
a Customer changes, this cannot be expressed as a “delta” and the new name is simply
sent as an override of the previous value.

The output of this model consists of events containing the complete state-change as
result of each of the received inputs. However, if the state is not changed, no outgoing
event is sent, because nothing noteworthy has happened.

Each type of event that is received by the EventStore module has a corresponding type
of event that is sent out by the EventStore module as a result of it. For example, when a
user changes a customer’s data, a “CustomerChangelnputted” event is sent. This event
is processed by the EventStore module and if the incoming event really results in a state
change, a “CustomerChanged” event is sent by it. These two events seem similar, but
their meaning differs. The “-Inputted” events carry the meaning of an external action; a
user or external system (e.g. the SAP system) inputs some information about an entity

34

in the system. On the other hand, the events that are generated by the EventStore
module mean that the state of the system has actually undergone a change.

7.4.2. SAPImport module

This module reads in XML files that are produced by the SAP system and translates
them to events. These XML files contain new data that serves as input for the EDA-
system.

Currently, the data contained in the XML files that needs to be entered into the EDA-
system, is a set of turnover values. To keep a record of this process, a set of Up-
loadBatches are used. These are sent in separate events at the beginning of the import
process and are received and stored in a straight forward way by the EventStore module.

The main structure of the XML files is as follows. The entries are on top level separated
by date and category. Below that, there is a set of salespersons (number + name), which
each contain a set of customers (number + name). For each customer, there is a single
turnover value.

This first of all means that the data needs to be turned inside-out. In the EDA-system,
turnovers are first sorted by customer and within a certain customer, they are separated
by date and category.

Secondly, SAP does not know the identifiers that are used within the EDA-system, so
these need to be inferred by using the available data. To accomplish this, data in the
XML files representing incomplete EDA-system customers and salespersons, are first put
into separate incomplete entities. These are denoted by the prefix “Unknown”, since the
EDA-system does not know yet which specific entity is meant.

The subsequent import of a SalesPerson, one of its Customers and a Turnover for this
customer is shown in figure 7. When the XML file references a specific EDA-system Sales-
Person, the SAPImport module creates an UnknownSalesPerson with a newly generated
identifier, and put its number and name into it. This UnknownSalesPerson is included
in an event and sent. The EventStore module then receives this and matches it to an
actual SalesPerson that already exists within the system. When the SAPImport subse-
quently sends an UnknownCustomer that was contained in that (Unknown)SalesPerson,
it includes the identifier that it gave to that UnknownSalesPerson. The EventStore
then deduces the actual SalesPerson for the Customer from that identifier it previously
matched. The UnknownCustomer is matched to an actual existing Customer by using
the SalesPerson it belongs to and its own number and name. When the SAPImport
sends the turnover data belonging to that Customer, it similarly uses the identifier of

35

SAP import process

UnknownSalesPersoninputted

UnknownSalesPerson =

UnknownSalesPersonID = B
SalesPersoniD = A

UnknownCustomerinputted

id=D UnknownCustomer =

salespersonID = B
number = ...
name = ...

UnknownCustomerlD = D
CustomerID = C

[Turnoverinputted

customerlD = D ? Turnover = customerlD = C
value = ...

Figure 7: EDA-system — schematic representation of part of the SAP import process

the UnknownCustomer to link it to the actual Customer and enter the turnover data as
a Turnover object belonging to that Customer.

7.4.3. Gateway module

The Gateway module contains the user interface and handles all user interaction. In the
original system, this was done using an MVC library. However, for the EDA-system,
this is not possible. The MVC library runs the web application on an ASP.NET server.
This server is not compatible with the used Messageframework, so the library could not
be used.

As an additional requirement, to accomplish the event-driven characteristic of the new
system, the user interface should be able to react and change upon changes in the internal
state of the system. To accomplish this, the SignalR library was used and the application
is hosted locally using Owin. The SignalR library enables method calls between the C#
code on the server and JavaScript code on the client. This way, if a user is viewing a
page, it can be updated in response to an event.

The part of the Gateway module that actually uses the SignalR library to deal with
the connection between client and server, is contained in a separate .dll. This .dll is

36

referenced by the main part of the module. The main part contains the connection to the
Messageframework. It receives events from the View-model modules (see section 7.4.4)
and also handles requests from the client. For this purpose, it saves data from events
so that this data can be provided to a client that requests it. Additionally, when the
clients submit data that needs to be passed into the system, an event is generated and
sent.

7.4.4. ViewModel modules

Each view module collects the data for one specific type of report that can be viewed by
the user. This data is put into the desired format and an event is generated whenever
a change occurs. These events are used by the Gateway module to provide the data
to clients. All view-model modules are completely independent of each other. For each
type of desired view-model, a new module can be constructed and added to the system.

7.5. Design notes

Some relevant choices, considerations and observations made during the design process
are described in the following sections.

7.5.1. Top-level design change

There is a single difference between the initial and final top-level designs. This difference
lies in the communication between the view-model modules and the front-end. Initially,
the design was to have the view-model modules save their data in the form of JSON
files. Whenever a client requests a piece of data, it is extracted from the corresponding
JSON file by the front-end. This way, the view-data would also be persistent.

In the final design, this was changed to a communication through events. This means
that the current state of the view-models while the system is running is duplicated an
extra time, because it is now kept in both the respective view-model module, as well as
the Gateway module.

The main reason for the change was the fact that the persistence of the view-data is not
desirable. Whenever a view-model module is restarted, this data should be reconstructed
from the current state of the EventStore module. Otherwise, inconsistencies can arise.
This means it is better to keep the view-data as internal state of the view-model modules,
rather than save it persistently. Additionally, this change also meant that the front-end

37

would become a real module because it communicates via events with the rest of the
system.

7.5.2. Versioning system

The system used a versioning system, which is used for two purposes. One is the deter-
mination of event order and the other is conflict resolution through expected versions.
Both are explained in the next paragraphs.

Event order

In the EDA pattern, there are no guarantees on the order of arrival of events. The events
that are received by a certain module are not guaranteed to arrive in the same order as
they were sent.

This property has different consequences for different modules, depending on the way
they keep their internal state. The EventStore module keeps a record of all events it
receives. Because of that, out-of-order arrivals can be corrected when building the state
from the event store. Consequently, the module can treat create-events and change-
events differently.

On the other hand, there are modules that internally just keep some state that they
use for other actions. A change-event for a particular entity could arrive before its
create-event. Because of this, each change-event needs to be handled in a way that, if
the entity did not exist yet in the internal state of the module, it could be created in
that instance. When created this way, only the data from the change is incorporated
and the data from any previous events is added retroactively (as soon as it is available).
Therefore, the difference between create- and change-events effectively disappears and
they are treated the same.

Additionally, a delete event could potentially arrive before the create event of the same
entity. This means that as part of the state of a module of this type, deletions need to
be remembered, so that their result can be executed at a later time.

Expected versions

In the EDA-system there are two kinds of external input events: those with an expected
version and those without.

Expected versions are a mechanism to solve a specific type of conflict. They are needed
when updates on an entity are done based on the current version of this entity. For
example, a user who wants to update customer details needs to see the current customer

38

details and then change the desired fields. The conflict occurs when the customer details
change between the time the user views them and the time their update arrives in the
rest of the system. In this case the update is based on outdated information. Instead of
accepting the update and applying it to the current state, it is desirable to dismiss this
update and inform the user. To diagnose cases where an update is based on outdated
information, each state contains a version. When an update that relies on an earlier state
is submitted, the version of this previous state is sent with the update as an expected
version of the current state. These are therefore input events with expected version. In
the EDA-system these input events are used when the input is done by a user.

Input without an expected version is done when the update is independent of the previous
state. This type of update in the EDA-system is used for the updates from SAP, since
the data from the XML files is not based on the state inside the EDA-system.

A situation of conflict resolution by using expected versions is depicted in figure 8. The
red entries stand for some form of state, e.g. the customer information of a customer
in the system. The green entries are actions. Both users have previously received the
current state from the data storage module. They both update it and submit this
update. The submit that is received first by the storage module gets processed without
problem. The expected version is checked against the current version and they match,
so the update is incorporated in the new current state. When the update from the other
user arrives, the version check fails, because the expected current version does not match
the real current version. The update is not incorporated and a notification is sent to
make the user aware of this. The user will also have received the updated state, so if the
changes they wanted to make are still correct, they can enter and submit them again.

Versioning conflict resolution

User A EventStore module User B

update

elxpected
varsion = 1

updatle
expected vefsion = 1

outdated

s

Figure 8: EDA-system — example of a versioning conflict

39

Since in the event-driven system changes in state are propagated to the clients, the
depicted conflict only arises if the actions of both users happen within a small time
window. However, since no guarantees can be made about how long it takes for events
to reach their destination and therefore how small the time window is, this situation still
needs to be accounted for.

Versioning system approaches

The versioning system that was used in the EDA-system was changed a few times due
to new insights gained during the development process. At first, the version of an event
was derived from the lastUpdate property of the entity that was included in it. This
property took the form of a simple timestamp: the time that the last change to the
entity was made, with a precision of milliseconds. This proved to be insufficient.

One of the problems was that the situation where two events received the same times-
tamp because of millisecond rounding was found to be practically possible, and occurred
specifically during the SAP import process when a large amount of updates were send
in rapid succession. This meant that the order of these events with the same timestamp
could not be determined, which lead to arbitrary orderings and non-determinism, which
caused problems in the system. To solve this, the version was extended to, aside from
the timestamp, include a version number to solve collisions on the timestamp.

7.5.3. Entity-Relationship differences

The entity relationships of the original system are shown in figure 9. In this schematic
representation, the red connection diamonds represent foreign key database table con-
nection, while the orange ones represent a connection based on name (not enforced by
the database). The green blocks represent enumerations, which do not have their own
database table, but are referenced by name consistently throughout the other database
tables.

40

I Contact I I Address I

| UploadBatch |

L 4

>

CoopModel

over

MainTurnoverCategory

HomePageText

Figure 9: Original system — entity relationships

In the implementation of the EDA-system, the system was scaled down to scope the
research project. As mentioned in section 7.4.1, some entities that occur in the original
system are excluded as a result of this. To make a proper comparison, the original
system was also scaled down in a similar way. The entity relationships in this reduced
original system are shown in figure 10.

I Contact I I Address I

| UploadBatch |

CoopModel

one per month

ProposalYear
MainTurnoverCategory

Figure 10: Original system — scaled down version of the entity relationships

In the EDA-system, the entities are defined for each module separately. Some modules
may use the same representation, but this is not required. The representation of each
entity within events sent between modules is knowledge shared throughout the system,
but the representation within each module is only known to that module itself. The

41

entity relationships for the EDA-system discussed in this section are those used in the
EventStore module, since this is where the domain model is located. The entities used in
the communication between modules is virtually the same, with a few small differences,
caused by limitations of the Messageframework.

The entities and their connections in the EDA-system are shown in figure 11. Because
the database used in this system is not a relational database but an event store, the
connection diamonds have slightly different meanings.

I Contact I I Address I CoopModel
| UploadBatch | 4(7 tj

CoopModelAbbreviation

o suzerrorera bo
.
(0]

one per category per year

L 2

Turnover

one per category per month

TurnoverCategory
]
ProposalYear

MainTurnoverCategory

Figure 11: EDA-system — entity relationships in the (scaled down) implementation

The red connection diamonds represent entities that are stored in separate streams in
the event store, but contain a link via identifiers. This means the entity in one of the
streams contains a property that contains the identifier of the associated entity in the
other stream. This is similar to a foreign key connection, but is not enforced by the
database in any way.

The dark blue connection diamonds represent a connection between objects that are
stored in the same stream. Between them, there is a “has a” relationship. For example,
the relationship between Customer and BudgetProposal is that each BudgetProposal is
linked to one customer. This means that the relationship is more asymmetric, because
the contained entities (in the example this would be the BudgetProposal) exist in the
stream of the containing entity and are therefore dependent on it.

The light blue connection diamonds represent an even more dependent relationship.
Here the contained entity is just a property of the containing entity. For example, the
relationship between Customer and Address is that each Customer has an Address (or
in this case three addresses, which could be the same). Here, the contained entity is
not considered a separate entity any more and is, in the top-level design, treated as any
other property of the containing entity. They are still displayed as separate entities in

42

the figure to show the differences with the original system.

The orange connection diamond is again a connection based on name and the green
blocks represent enumerations, which only occur in the database as a named property,
but are consistently used throughout the domain.

The main difference between the two systems is that the original system treats every
piece of data that has its own class as a separate entity in the domain model. These
entities are all stored in separate database tables and connected by their keys. This has
the advantage of being able to put restrictions on the entities, which is enforced by the
database. On the other hand, it does mean that whenever the data is required, extra
actions are needed to get all required data together. In the EDA-system, only some
entities are stored completely separately. Others are stored within the same event store
stream. This makes it easier to gather all necessary data, but the event store does not
enforce any restrictions, so wherever needed, this needs to be explicitly done within the
system.

8. Case study: Measurement methods and re-
sults

In this section, the measurement methods are described and results of these measure-
ments are presented. The used measurement methods are already briefly mentioned in
section 4.4, but they are described in more detail in this section. The results of large
measurements are summarized; the corresponding complete numeric data can be found
appendix B. An interpretation of the results and comparisons between both systems is
given in section 9.

The changes in the change-scenarios were actual changes in the requirements of the
system. Therefore, the code metrics as well as the time and resource measurements
were conducted on the post-change-scenario systems, as these are the forms closest to
the system desired by the client. All measurements on the original system were carried
out on the reduced version of it, to make the results comparable to the results from the
EDA-system, which does not have an implementation of the whole system.

The reduced original system and the EDA-system provide almost the same amount of
functionality, with one notable difference. The original system also includes account
functionality, i.e. users that can log in and roles with certain permissions. It would
have been desirable to remove this from the reduced form of the original system, but
within the ASP.NET design, this was very much woven into the core of the design
and therefore not trivial to remove. The choice was made to leave it in, because the

43

impact on measurement results was expected to be small and time constraints meant
that spending effort on this meant less effort could be spent on other aspects. The
alternative of adding this functionality to the EDA-system would require even more
effort because of the use of a different kind of web server for which this functionality
was less integrated. This difference between the two systems is expected to have little
influence on the measurement results, but it should still be considered when comparing
the results. This is done explicitly in section 9 for quality aspects where it is expected
to be of significant importance.

8.1. Change-scenarios

As mentioned in section 4.4.4, a small set of change-scenarios is used to evaluate the
Modifiability and Extensibility of the two systems. For the scenarios, actual changes
that have been made in the original system in reaction to changes in the requirements,
are used. The used change-scenarios are first described and then the amount of effort
they required in both systems is evaluated. This amount of effort is expressed in the
total amount of added and removed lines, the amount of adapted classes and the amount
of modified development units (namespaces and modules). The amount of effort for the
original system is gathered from the SVN repository and is adjusted to correspond with
what would have been changed in the reduced version of the system.

8.1.1. Scenario 1

The first change-scenario consists of a change in the information that is displayed in
one of the reports. This report shows some specific information about each Customer
in a selected area. It is presented in a table where each column specifies a piece of
customer information that is displayed in the report. In the original system, this report
is generated on demand, it does not pass through the batchpdfcreator. Initially, two
of the columns in the report contained data combined from the BudgetProposals of the
Customer. These columns were no longer necessary in this report and instead, telephone
numbers needed to be displayed.

In the original system, this meant a change in the MVC part of the system. One
Controller, ViewModel and View needed to be slightly changed. Additionally, a function
in one of the Services was no longer used after the change. It had not been removed
in the actual system, but here it is still counted as being removed. This is done for
consistency between the systems.

In the EDA-system, the change was made by reforming the corresponding view-model
module. Because this specific change meant the information was much easier to gather,

44

there were quite a few deletions involved. Specifically, the previous ViewModel needed
information from BurgetProposals, but the new one no longer did. Therefore, all code
involving the receiving and processing of BudgetProposal events could be removed. In
addition, a small change in a front-end JavaScript file was required in order to display
the new report correctly.

Table 4 shows the required effort for both systems. The complete data can be found in
tables 19 and 22.

modules namespaces classes additions deletions

Original system (reduced) 2 4 4 22 30
EDA-system 2 2 7 15 442

Table 4: Results of change-scenario 1

8.1.2. Scenario 2

The second change-scenario involves a change in the way customers are handled. Origi-
nally, customers where completely independent from one another. However, it occurred
that several customers existed that were actually different departments of the same
customer. These were split up because they were handled by different SalesPersons in
different Areas. This meant that the basic information about these customers had to be
managed in several different places and kept consistent manually. The desired situation
was one where a set of common fields was defined that would be the same for a set of
these. To achieve this, the concept of customer ‘linking’ was introduced, where linked
customers would share part of their information. The change-scenario is actually split
into two parts. The first is the domain change to allow for and handle linked customers.
The second is the functionality that allows for the act of creating a linked customer. A
third thing that needed to happen in practice, but is left out of the change-scenario, is
the reformation of the existing data in the system and adding links between customers
where needed.

In the original system, this was achieved by changing the Customer entity to mean the
collective of linked customers. For the information that was not shared between them,
the concept AreaCustomer was introduced. What previously was a Customer, was now
uniquely defined by the combination of a Customer and an Area. This meant that the
database structure needed to be reformed in addition to the source code. The new entity
relationship diagram for this situation (still in the scaled down form) is shown in figure 12.
Just as in figure 10, the red connection diamonds represent foreign key connections and
the green boxes are enumerations, which do not have their own database table.

45

| UploadBatch |

AreaCustomer

s

Turnover P

Customer+Area

< BudgetProposal PO

one per category per year

>

one per category per month

<

TurnoverCategory 04

one per month

BudgetProposal_Turnovers

= o=y
MainTurnoverCategory ProposalYear

Figure 12: Original system — entity relationships after the customer link change-scenario

In the EDA-system, it was achieved in a different way. The concept of Customer was
kept the same and the link between them was achieved by adding a linking event to the
respective event store streams. Then, when one of the streams receives an update on a
shared field, the update is applied to all other customer streams that it is linked to as
well. This required some modifications to the event store storage conventions to make
sure expected version checking would still behave as desired.

Table 5 shows the required effort for both systems. An additional entry marked (*) is
added here, because even though some of the required changes fell outside of the scope
of the reduced system, they correspond with features that, would they have been added
into the EDA-system implementation, they would almost certainly not require additional
changes in this change-scenario. What this table does not show is that, in addition to
modifications to source code, the original system also required the database structure to
be changed for this scenario. The complete data can be found in tables 21, 20 and 23.

modules namespaces classes additions deletions

Original system (reduced) 4 6 15 1035 310
Original system (*) 4 8 23 1114 371
EDA-system 3 4 16 367 90

Table 5: Results of change-scenario 2

8.2. Code metrics

As mentioned in section 4.4.2, for both systems a few code metrics were determined, using
Visual Studio Code Metrics Powertool and Code Metrics Viewer. The tool calculates the
metrics based on an intermediate representation made by the compiler, so they do not

46

always correspond directly to the source code. It can determine the metrics on various
scopes from module-scope to method-scope. For each metric, the scope or scopes are
chosen where the metric gives useful information with respect to the chosen quality
attributes. The tool itself also gives some interpretation in the form of two thresholds
per metric. Values within the first threshold have a good score (“green”), those between
the thresholds have a moderate score (“orange”) and those outside the second threshold
have a low score (“red”).

The results are given in a frequency-based way. This section mostly includes histograms
to visualize the data, while appendix B contains complete numeric data.

8.2.1. Lines of Code

This metric is fairly simple. It counts the number of lines of program source code. As
mentioned earlier, the tool used some intermediate representation, so the line counts do
not correspond directly to the actual number of lines in the source code. For example,
comments and line-breaks within a statement are not counted as extra lines.

For this project, only the total number of lines for both systems are included, because
information about the way the lines are distributed is not useful with respect to the
aspect of Conciseness, for which this metric is used. The results are shown in table 24.

Lines of Code

original system 3787
EDA-system 3974

Table 6: Lines of Code metric results

8.2.2. Cyclomatic Complexity

This metric is a measure for the number of decision points. The metric makes most
sense to measure on the method-scope, since there it gives an idea about the complexity
of a set of a unit of instructions. A higher value means more decision points, so higher
complexity, which means a lower score. The thresholds given by the tool are at the
values of 10 and 20.

The results are shown as histograms in figures 13 and 14. Here, instead of showing the
value for each individual rating, the ratings are added together over small ranges. The
full results can be found in table 24.

47

1200
1050
1000
800
2 600
c
[
>
g__)400
200
52911 1 2 1
0 mm ° 0 0 O 0
CILSLSRSLSES
~ /L
CILNEEFET T

Cyclomatic Complexity

Figure 13: Original system —
Cyclomatic Complexity

8.2.3. Class Coupling

frequency

1200

1109
1000
800
600
400
200
. 372110000000
SIRRSSEeRES S

/
CILI VL TR IR ETE

Cyclomatic Complexity

Figure 14: EDA-system —

Cyclomatic Complexity

This metric measures the amount of references of one class to other classes. A higher
value means more dependency on other classes, which means a lower score. The thresh-
olds given by the tool are at the values of 9 and 49.

The results are shown as histograms in figures 15 and 16. Just as with the Cyclomatic
Complexity results, the frequencies for the ratings are added together over small ranges.

The full results can be found in table 24.

48

60 60
51

frequency
3]
frequency
o 6 8 8 & &
.
I
- B
]
=24 . IS
=29 . IS
~44 .w

llmmlooooo0o0
TSI IRIIBIBIRR
o w I |/ I L
SIRAEEIPBBBERN
Class Coupling Class Coupling
Figure 15: Original system — Figure 16: EDA-system —
Class Coupling Class Coupling

8.2.4. Depth of Inheritance

This metric measures the depth of the inheritance tree of classes. A higher value means
a class has more ancestors, which means a lower score. The thresholds given by the tool

are at the values of 2 and 4.

The results are shown as histograms in figures 17 and 18. The full results can be found
in table 24.

49

120 120

103
100 96 100
80 80
))
$ 60 $ 60
=] 3
o o
8 8
40 40
20 n 20 .
4 3 2
0 - ! I —— 0 - 0 -— 0 0 0 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Depth of Inheritance Depth of Inheritance
Figure 17: Original system — Figure 18: EDA-system —
Depth of Inheritance Depth of Inheritance

8.2.5. Maintainability Index

This metric gives the results of a formula, originally presented in [34]. The formula
combines other metrics into one maintainability score. The formula used in the used
tool is slightly modified. The scale is divided by ten and the optionally included metric
about the percentage of lines of commentary in the original formula is removed. The
formula has since received criticism. It is based solely on empirical fitting and takes the
average of metrics like the Cyclomatic Complexity, for which the average does not give a
good indication of the overall quality [35]. For these reasons, not too much importance

should be placed upon this metric. It is still included here to give a rough indication of

some maintainability aspects.

In contrast with the other metrics, here a higher value means better a better score.
The metric is used to give a rough indication, so it is applied on module-scope. The
thresholds given by the tool are at the values of 20 and 10, which is far below any of the

measured values.

The results are shown in figure 19. Arealist and CIFIndexList are the two implemented
ViewModel modules (see section 7.4.4).

20

100

% 89 89 83
83 84 g3 83
79 80
80 76
70
60
50
X
Q
2 40
2
3 30
g
g 20
=
g 10
0
@ 2 ~ N & @ N & *~ *
g # 5§ £ &g £ §F & 57
& 9 Q g § 9 g £ F &
L S 9 %) Iy o Q = 9
S > #J 7 D () X <
o S g g
< $ %) IS &) N
IS S Y ¢
N §
§ < M Original system
& W EDA-system

Figure 19: Maintainability Index

8.3. Time measurements

The main time measurement involves web page loading times. For both systems, the
page showing the report mentioned in section 8.1.1 was loaded for a set of different
areas. Each area contains a different number of customers, as shown in table 7. As
previously mentioned, this report is generated on demand in the original system, while
in the EDA-system, it is pre-generated like every other report. The original system does
contain reports that are also pre-generated, but for the comparison it is more interesting
to look at a report which highlights the differences between both systems.

area no customers

100 907
20 175
63 120
34 66

Table 7: Areas and the number of customers they contain

o1

As mentioned in section 4.4.1, the loading times were measured using a tool called
HttpWatch. With this tool, the HTTP loading times were measured, as well as the
completion times of requests to the server.

The measurements for both systems were conducted by running the system four times,
each time taking twelve consecutive measurement point. Each measurement point mea-
sured the HT'TP loading time of a page, as well as the server request completion time.
The twelve measurements points were divided into four sets of three. Each set measured
the loading time of the page for one specific area, and this measurement was repeated
three times. For example, one run would be:

20, 20, 20, 100, 100, 100, 34, 34, 34, 63, 63, 63,

where each measurement point is indicated by its corresponding area number. For each
run, the order in which the areas were measured was changed, to see if any aspects of
the order influenced the measurements. The measurements of the same area are grouped
together for practical purposes; in the original system, switching between areas requires
logging out and back in to the system.

For each system, the results of these measurements are shown in two different graphs.
The first shows the measurement points of each run in chronological order, while the
second has the measurement points sorted by area. The complete numeric data can be
found in tables 25, 26 and 27.

Original system

The two graphs of the results for the original system are shown in figure 20 and 21
respectively. Figure 20 shows both the HTTP load times and the server response times
for each run. figure 21 shows only the server response times.

HTTP load time 1
HTTP load time 2
s HTTP |0ad time 3
e HTTP load time 4
server time 1
server time 2
server time 3
= server time 4

time (sec)

—_——

—_—

o B N W M 00 o N

1 2 3 4 5 6 7 8 9 10 11 12

measurement points

92

Figure 20: Original system — loading time measurements

6 Run 1

5 Run 1

Run 1

4 Run 2

I Run 2
Q

2 3 Run 2

o Run 3
£

= 2 Run 3

Run 3

1 . HRun 4

|
: R
®Run 4
Area 100 Area 20 Area 63 Area 34

Figure 21: Original system — loading time measurements grouped by area

EDA-system

The two graphs of the results for the EDA-system are shown in figure 22 and 23 respec-
tively. For the EDA-system, the HT'TP load times were equal to the server response
times. This is because the page building is done by JavaScript code, which lies outside
of the measuring capabilities of HttpWatch.

0.08
0.07
0.06
0.05

m— Run 1
0.04 N Run 2
0.03 — RUN 3
0.02 / — RUN 4

time (sec)

0.01

0
1 2 3 4 5 6 7 8 9 10 11 12

measurement points

Figure 22: EDA-system — loading time measurements

93

0.08 ERunl

0.07 ERunl
0.06 HRunl

Run 2

- 0.05 Run 2
§ o004 Run 2
g 0.03 B Run3
= : B Run 3
0.02 B Run 3
0.01 B Run 4

B Run 4

0 ¥ Run 4

Area 100 Area 20 Area 63 Area 34

Figure 23: EDA-system — loading time measurements grouped by area

8.4. Resource measurements

Resource measurements are conducted on a few different aspects of the systems. First
of all, the disk storage space of the databases is measured. The results are shown in
table 8. As shown in the table, of the event store, only the occupied space on the disk
is known, but not how much of it is actually used.

database type database size (MB) used space (MB)
original system relational database 673.69 225.38
EDA-system event store 256 unknown

Table 8: Database sizes

Secondly, the amount of memory used during runtime is determined. To do this, two
methods were used. The first is a rough measurement through the Windows Task Man-
ager. The second is using C# functionality that counts the total memory in use at
specific times during runtime. This functionality is temporarily incorporated within the
source code of the two systems. This means this measurement method could slightly
influence the behaviour of the system. However, no large differences were observed, so
the effect is most likely negligible.

The second method is not possible for the extra processes that need to run besides the
main program. For the original system, this is the SQL server and for the EDA-system,
it is the EventStore server. The memory usage of these extra processes could therefore
only be roughly determined. The results, combined with the rough measurements of the
main processes (the web servers) of both systems, are shown in table 9.

54

system process average memory usage (K)

original system SQL server 1.4 x 10°
original system web server 0.3 x 10°

EDA-system EventStore 2.4 x 10°
EDA-system web server 1.0 x 10°

Table 9: Process memory usage from Windows Task Manager

For the main programs of both systems, the second approach was used to do more
systematic measurements. First of all the base memory usage of both systems was
measured after start-up of the systems. To simulate usage, the same set of pages that was
used in the time measurements is used. The influence on the memory usage while loading
these pages is monitored. The complete numeric data can be found in tables 28, 29
and 30.

Original system

For the original system, just as in the time measurements, the memory measurements
were done in four different runs. There are two different kinds of measurement points:
ground points and peak points. Ground points are points where the stable memory usage
at that point during runtime is measured. Peak points are points where the memory
usage is measured just after an intensive task, in this case the loading of a report. The
runs consist of alternating ground and peak points, so that the increase in memory
usage for a peak can be determined, as well as the effects of page loading on the ground
memory usage. The pages for different areas are loaded in different orders for different
runs to determine any effects of the order on the measurements.

Figure 24 shows the four runs, including peak points and figure 25 shows only the
ground points for the four runs. In both figures, the x-axis represents the progression of
measurement points; measurement point 1 is the first measurement, measurement point
2 is the measurement after that, etc.

95

9E+6
8E+6
7TE+6
6E+6

SE+6 = Run 1

4E+6 Run 2
3E+6 m—— RUN 3
= RUNn 4

memory (bytes)

2E+6
1E+6

OE+0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

measurement point

Figure 24: Original system — memory consumption measurements

4.0E+6

3.9E+6

3.8E+6

3.7E+6 =

3.6E+6 — = Run 1
3.5E+6 Run 2

3.4E+6 = Run 3
3.3E+6 = RUN 4

memory (bytes)

3.2E+6
3.1E+6

3.0E+6
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

measurement point

Figure 25: Original system — memory consumption measurements without the peaks

EDA-system

In the EDA-system, the order of the areas was also varied between measurement runs.
Here, the measurements of the same area are not grouped because in the EDA-system,
switching between areas is easier than measuring the same area consecutively.

No peaks are observed, so the results are shown in a single graph (see figure 26). Again,

the x-axis represents the progression of measurement points. Since not all runs contain
an equal amount of measurement points, the longer runs are truncated in this graph.

o6

6.14E+7

6.12E+7

6.10E+7

6.08E+7 —_—Run 1
§ 6.06E+7 —— Run 2
D; 6.04E+7 — 23: i
% 6.02E+7 BN 5
€ 6.00E+7 —RUN6

5.98E+7 Run 7

5.96E+7

5.94E+7

1 2 3 4 5 6 7 8 9 10

measurement point

Figure 26: EDA-system — memory consumption measurements

9. Case study: Interpretation and comparison

In this section, the results presented in section 8 are interpreted and a comparison with
regard to the quality criteria selected in section 4 is made between the two systems. The
measurements from section 8 were all made on the implementations, which implement
only part of the total architectures. Therefore, some generalizations are made where
applicable, in order to make statements about the whole architectures. Also, according
to figure 1, some quality aspects are dependent on other aspects. To avoid repetition, for
aspects that depend on others, only additional measurements or insights are presented.

9.1. Efficiency

To compare the Efficiency characteristics of both systems, the data from time measure-
ments (section 8.3) and resource measurements (section 8.4) are used.

9.1.1. Time behaviour

For the time measurements, the average loading time for each area is calculated for both
systems, so they can be compared.

For the original system, figure 20 shows that the order of the areas does not matter,
except for the fact that the very first measurement in a run is always a little higher than

o7

other measurements for the same area. This can also be seen in figure 21, where each
area has one slightly higher bar, which corresponds to the very first measurement in a
run. This is probably because some extra actions are required the first time a report is
constructed, for example regarding the connection to the database. To obtain accurate
averages, any factor regarding the order of the measurements should be taken out where
possible. Therefore, in calculation the averages, this first measurement of a run is left

out. The results are shown in table 10.

area no HTTP load time (sec) server response time (sec)

100 5.563 5.272
20 1.270 1.109
63 0.908 0.781
34 0.581 0.463

Table 10: Original system — average loading times per area

For the EDA-system, figures 22 and 23 show no dependence on the order of the mea-
surements, so all data points are used in calculating the averages. The results are shown
in table 11.

area nr server response time (sec)

100 0.039
20 0.042
63 0.039
34 0.045

Table 11: EDA-system — average loading times per area

In the comparison, for the original system, the server response time is taken, since the
nature of the time measurements taken in the EDA-system correspond most closely to
that measurement. When comparing tables 10 and 11, it is clear that the server response
times of the EDA-system are significantly smaller than those of the original system. This
was expected, since the original system makes the requested report at the time of the
request, while the EDA-system collects and prepares all necessary data beforehand.

In addition to the measured page load times, other timing aspects of the system can also
be considered. First of all, the long batchpdfcreator process that is run every night in
the original system is no longer needed in the EDA-system.

On the other hand, the EDA-system takes a significantly longer time on start-up before
all data is available throughout the system. In the current implementation, it takes

o8

about 5:30 minutes, but this was not precisely measured. The explanation for the long
start-up time is that on start-up, all available data needs to be extracted from the event
store and pushed into the rest of the system by the EventStore module. The amount
of time would be even larger than in the current implementation if the entire system
would have been implemented and all modules are run at the same node. However, if
the data pushing is not done too quickly (so that the modules have time in between to
process other events), the system can already be used during this time, if users take into
account that not all data may be available yet. Additionally, the system does not need
to be restarted frequently. This only needs to happen when a failure occurs, or if some
developmental changes to the system are put into production.

Finally, the SAP import process takes a bit longer in the EDA-system, because the
data is immediately processed and distributed to all modules. This would again increase
further if the entire system would have been implemented. Also, like during the start-
up, the system can still be used while the import process takes place, if users take into
account that incomplete data may be displayed meanwhile. In contrast, in the original
system the SalesPortal is shut down during import (overnight).

9.1.2. Resource behaviour

First of all, the average starting memory usage of both systems is calculated from the
measurements and shown in table 12.

system starting memory usage (bytes)
original system 3255110
EDA-system 60431568

Table 12: Average starting memory usage

To analyse the additional memory measurement results, two aspects were analysed.
These were the memory peaks (which only occurred in the original system) and the
increase in ground level memory usage as result of page loading.

The original system contains peaks in memory usage whenever a report page is loaded.
This means that during the construction of the report, extra memory is required by the
system, which is released again after the report construction is finished. To determine
how much extra memory is required for each report, the height of the peaks relative to
the ground memory usage is calculated. The results are displayed in figure 27. This
figure shows five outliers, four of which correspond to the first measurement in each run.
The fifth corresponds to the first measurement of area 20 in run 1. In all these outlying

99

points, some additional actions were most likely performed that caused the system to
use extra memory. Therefore, these points are not included when calculating the average
values shown in table 13.

5000000 —
7 4500000 mRunl
> 4000000 ERun1l
© 3500000 Run 2
& 3000000 Run 2
2 2500000 Run 2
E 2000000 : EB: 2
£ 1500000 = Run 3
£ 1000000 = Run 4
][R
© 0 ®Run 4
Area 100 Area 20 Area 63 Area 34

Figure 27: Original system — peak memory usage relative to ground memory usage

area nr peak memory usage (bytes)

100 4516945
20 1140054
63 690803
34 384605

Table 13: Original system — average peak memory usage

The increase in ground level memory usage for the original system is calculated by
subtracting the ground memory usage before a peak from the ground memory usage
after the peak. The results are shown in figure 28, where the same outliers as in the
peak analysis are observed. Additionally, the figure shows no real correlation between
area and increase in ground memory usage. This means all dependence on the area (and
therefore on the number of customers) is in the peak memory usage and not in the ground
level increase. The average ground memory usage increase is therefore not calculated
per area, but for the complete set of measurements as a whole. In this calculation, the
outliers are again left out. The resulting average increase in ground memory usage is
7952 bytes.

60

difference in memory usage (bytes)

The EDA-system contains no peaks, so only the differences in ground memory usage
are determined. Since the runs for these memory measurements were not all equally
long, the data are more clearly displayed as lines instead of bars (see figure 29). As seen
in the figure, the increase in memory is dependent on area and the noise level in the
measurement is relatively high. To still get representative averages, a larger number of
measurement points were gathered, hence the longer measurement runs. The calculated

400000 ERunl

350000 HERuni1
300000 ®Runl
Run 2
250000 Run 2
200000 Run 2
150000 ®Run3
B Run 3
100000 ®Run3
50000 B Run 4
0 La. — — = Run 4
B Run 4

50000 Area 100 Area 20 Area 63 Area 34

Figure 28: Original system — increase in ground memory usage

averages are shown in table 14.

difference in memory usage (bytes)

350000

300000 > >
4 N g »>"b> BB> BEBRRRRE B >»»»»»»»’»»»»,’,
> »!

250000 >

200000 » Area 100
Area 20
150000 ¥ Area 63

100000 Area 34
v

50000 v A X

YYYVy VY YV VVIVVYSTY_VYVYY YYVYVYYY vvvvvwvvaw'v'v'v

v

0 v
-50000

Figure 29: EDA-system — increase in ground level memory usage

61

area nr increase in memory usage (bytes)

100 275438
20 58543
63 39246
34 20815

Table 14: EDA-system — average ground level memory usage increases

When comparing the resource behaviour data from both systems, a few different things
can be noted. First of all, table 12 shows that the starting memory usage of the original
system is significantly smaller than that of the EDA-system. This was expected, since the
EDA-system prepares all reports beforehand and keeps them in memory. This difference
would be even larger if the entire system would have been implemented.

Additionally, only the original system showed peaks in memory usage when loading
report pages. This is as expected, since the original system creates the reports on page
request and needs extra memory to do so. This memory is no longer needed once the
report is completed. It is also as expected that this extra peak memory is dependent
on the area and therefore on the number of customers contained in the report, because
more customers means more data necessary to create the report. Since all this extra
memory is released afterwards, it is not surprising that the increase in ground memory
usage in the original system is relatively small and independent of area. This memory
increase is probably the result of some sort of recollection of data exchange between the
system and the database and/or between the server and the client.

In the EDA-system, the increase in (ground) memory usage is dependent on the area.
This is probably the result of communication between server and client. In some runs,
the memory usage suddenly dropped back down to the starting level, so the extra mem-
ory usage seems to be temporary. It could be a temporary storage of transferred data
between client and server. The fact that the same thing is not observed in the original
system could have multiple explanations. The first is the fact that in the original system,
the web server part is not explicitly included in the system, but is managed by ASP.NET,
S0 its memory usage may not be included in the scope of the C# measurements. Alter-
natively, the different used web servers and ways of client-server communication could
have different memory usage conventions.

On a larger scope, tables 9 and 12 are combined to show the difference in results from the
two different memory measurement methods (see table 15). The table shows that the
memory measurements from both methods differ by a large amount. This is probably
because some extra memory is being used by the running processes that is outside of

the measuring scope of the C# functionality. This extra memory for both systems is of

62

comparable size, especially given the low precision in the measurement from Windows
Task Manager (WTM) and therefore also in the calculated differences.

system memory from WTM (K) memory from C# (K) difference (K)
original system 0.3 x 10° 0.03 x 10° 0.3 x 10°
EDA-system 1.0 x 10° 0.60 x 10° 0.4 x 10°

Table 15: Memory usage from different measurement methods

Table 9 also shows the memory required by the extra processes for both systems. The
EventStore process used in the EDA-system uses a significantly larger amount of mem-
ory, but the two are still within the same order of magnitude. Furthermore, all process
memory usages are still small compared to the memory usage of for example a stan-
dard web browser like Firefox or Chrome. This means that the differences, although
significant, is usually of little consequence on modern machines.

The same holds for the disk storage spaces from table 8. The total disk space used by
the SQL database from the original system is significantly larger than the space used by
the EventStore, but both are of very manageable size for modern machines.

9.2. Structuredness and Understandability

For both Structuredness and Understandability aspects, the data from Code Metrics
(section 8.2) are used. Additionally, observations are used for a qualitative comparison.

9.2.1. Conciseness

The Conciseness of both systems is mainly determined by simply looking at their relative
sizes. The results of the Lines of Code metric are used for this. When comparing the
results from table 6, only a small difference is observed, where the EDA-system uses a
little more lines.

A few notes need to be made regarding this comparison. First of all, as mentioned in
section 8, the original system provides a little more functionality. Therefore, the Lines
of Code value for the original system without this extra functionality would be a little
lower.

On the other hand, in the EDA-system many operations regarding the EventStore are
done manually. The need for part of these operations could have been avoided by
using more of the EventStore API. However, without spending a considerable amount of

63

effort, the information on which functionality was provided and how to use it could not
be extracted from the documentation of the used EventStore. Because of the limited
scope of the research project, this was not followed up on, but this decision considerably
inflates the size of the EDA-system.

All things considered, the difference in Conciseness between the two systems is relatively
very small, so both systems are about equally concise.

9.2.2. Consistency

For Consistency, no quantitative measurement methods were found, so a qualitative
comparison is given instead. The low-level Consistency regarding naming and notational
conventions is independent of higher-level design choices and is therefore not considered.

For high-level Consistency, there exists a difference between the modules in the way in
which reports are generated. In the EDA-system, the information for each report is
collected by a separate module. The information is updated whenever new information
is available. The collected information is stored on the server and delivered to the user
on request. This means for all reports, the same method is used. In the original system,
some reports are generated on user request by a Controller. Others are created in batch
overnight and are included as HTML tables in the web application. On this point, the
EDA-system is more consistent.

9.2.3. Modularity

To determine the Modularity of both systems, the results from the code metric Class
Coupling are used. Since it is an Object-Oriented metric, it measures modularity on a
lower level than the level on which modules in EDA are specified. Nonetheless, it can
measure the modularity within the top-level modules, which is influenced by the coupling
and cohesion on the higher level. It is therefore still relatively useful with respect to the

comparison.

Figures 15 and 16 show that a power distribution (as is used to analyse some of the
upcoming metrics results) does not quite fit here. This is expected, because a little
coupling between classes should be quite common, especially because the tool includes
classes from system libraries in the Class Coupling count.

A qualitative comparison between figures 15 and 16 shows that the Class Coupling in
the EDA-system is overall a little lower and has fewer high values. This indicates that
the Modularity within the EDA-system is a little better than in the original system, but
there exists no large difference.

64

One of the advantages of the EDA-system is that there is per definition no Class Coupling
between classes in different modules. In the original system, this is not the case, so
coupling between top-level modules is not regulated and can occur throughout the classes
within these modules. In the EDA-system, the coupling is in the form of events, which
are sent and received at specific spots within the modules and can therefore be monitored
more easily. This makes the EDA-system more modular on the top-level of the system.

9.2.4. Simplicity

To compare Simplicity between the two systems, the code metrics Cyclomatic Com-
plexity and Depth of Inheritance are used. Cyclomatic Complexity measures a form of
code complexity, which is useful since Simplicity is the absence of complexity. Depth of
Inheritance gives the amount of ancestors of a class. If a class has more ancestors, it
is more difficult to track all available and exposed methods and it is less clear how the
class functions.

The Cyclomatic Complexity is a low-level metric, but it measures the effect of the higher-
level design choices and is therefore relatively useful in the comparison. The Depth of
Inheritance is a very Object-Oriented metric, and its results can be less contributed to a
difference in high-level architecture between the systems. They still give some indication
of overall complexity and are therefore still included, but the results are not weighed
heavily in the comparison.

The results from the Cyclomatic Complexity are expected to follow a power law [35].
Therefore, averages and standard deviations are not useful to summarize the data pre-
sented in section 8.2.2. Instead, regression is used to approximate each set of data by a
power function, so that coefficients can be extracted. The results of the regression are
shown in table 16.

scaling factor power R?
original system 328.496 -1.682 0.8692
EDA-system 866.401 -2.393 0.9418

Table 16: Cyclomatic Complexity regression results

The R? values show a reasonable fit for the EDA-system. The fit for the original system is
less good, which is probably caused by a few outlying high values. Of the two coefficients,
the power is the one to look at, since it is a measure for how quickly the frequencies
decrease for higher Cyclomatic Complexity values. From a comparison between the two
powers, the one for the EDA-system is a little smaller, indicating a faster decrease and
therefore lower overall complexity.

65

The results from the Depth of Inheritance are also expected to follow a power law,
because a larger depth is increasingly unlikely. Only a fraction of the ground-level
classes will be inherited and only a fraction of the inheritors will be in turn inherited
again and so forth. Therefore, just like for the Cyclomatic Complexity, regression is used
to approximate each set of data by a power function. The results of the regression are
shown in table 17.

scaling factor power R?
original system 54.566 -2.161 0.7645
EDA-system 104.230 -3.580 0.9998

Table 17: Depth of Inheritance regression results

The R? values show a good fit for the EDA-system. The fit for the original system not
that good. This is probably caused by the use of libraries. Classes within the system can
inherit from classes within a library, but the classes from the libraries are not included
in the measurement results. This distorts the distribution somewhat. A comparison
between the powers coefficients shows that the one for the EDA-system is quite a bit
smaller. The before mentioned distortion of the original system’s distribution could have
made its coefficient a little larger, but the difference is most likely larger than this effect
can account for. Therefore, the EDA-system also is somewhat simpler in this regard
compared to the original system.

The two metrics give lower-level information, so some high-level observations regarding
Simplicity are also included. In the EDA-system, the highest complexity is found within
the EventStore module. Here, changes in state are processed and broadcast to other
modules. Because events can arrive in a different order than the order in which they
were sent, a large amount of possible but improbable situations can be distinguished. In
this specific system, this was increased even more by two distinct types of possible state
updates. Most updates rely on a previous state and therefore have an expected previous
version of the state that is sent together with the update (see section 7.5.2). However, the
updates that come from the SAPImport module work differently. These updates arrive
from the data in another system and no knowledge about a previous version of the state
in the EDA-system is included. Both types of updates need to be handled differently
and their combination further increases the amount of possible situations. Many of
these situations create circumstances that require extra effort to handle in the most
desirable way. Since the majority of these situations are extremely unlikely, it would
probably be best to simply reject the update for any situation that would otherwise
require complicated actions. This is however an analysis based on experience. In the
created EDA-system, the starting point was to be as general as possible with respect
to the allowed situations. This meant that the system becomes more complex than it

66

would have needed to be.

In the original system, most complexity seems to occur within the MVC part of the
system; in particular in the Controllers. The functionality is divided over the controllers
partly based on the entity it concerns and partly based on the structure of the web
application. This may increase the complexity of the design.

9.2.5. Self-descriptiveness

Since Self-descriptiveness is inherently a qualitative and somewhat subjective aspect,
it is difficult to measure quantitatively. A qualitative difference in high-level Self-
descriptiveness between the systems, is that the events used in the EDA-system carry
some descriptive information within them. This means some additional information
about what has previously happened in the system is included in the EDA-system com-
pared to the original system. This translates into method names like handleCustomer-
Created, which carry more meaning compared to, for example, a method called Index
on a Controller in the original system’s MVC part.

Another advantage of the EDA-system compared to the original system on the aspect
of Self-descriptiveness and Understandibility in general, is the higher correspondence
between the runtime and developmental division of the system. These divisions are
shown respectively in the process and development views, used in sections 6 and 7. For
the EDA-system, the process and development representations are very similar, which
makes the way they are connected more intuitive than in the original system. As a result,
understanding the runtime properties of the system based on developmental information
is more straight-forward.

On the other hand, the EDA-system does not directly show what happens as a result of
sending a message. Since recipients are not specified by the sender, it may be required
to look inside all modules to find out where a particular event is received. In this regard,
more effort is required to find out the complete set of actions taken by the entire system
as result of some input.

9.2.6. Analysability and Diagnosability

A rough indication of both Analysability and Diagnosability is given by the Code Metric
Maintainability Index. The results in figure 19 show that the EDA-system scored some-
what higher, but the scores lie relatively close together. As mentioned in section 8.2.5
the Maintainability Index has received criticism and should not be relied on too heavily.
Furthermore, only a rough measurement of both systems is taken. Therefore, some qual-

67

itative observations about these two quality aspects are also given. These observations
are derived from the experience of implementing the event-driven system and properties
of the existing implementation of the original system.

Observations about Diagnosability

First of all, in the EDA-system, some communication is done by event sending instead
of direct method calls. This means the origin of a system failure can be more difficult to
determine because of the lack of a complete stack-trace. The stack-trace is cut off at the
point of message communication. This means if the failure’s real origin spans between
modules, it becomes harder to track down. Also, if a message is not received by the
intended modules, there is no direct sign that something went wrong. This could lead
to problems staying undetected.

On the other hand, a stack-trace only gives information about what happened just
before the failure occurred. If some record of all sent and received events is kept by
the framework, it gives information about the entire history of the current system-run.
This information can be useful when diagnosing failures that are caused by a particular
chain of events within the system. The used Messageframework does contain some
functionality in this direction, but a full exploration of this area lies beyond the scope
of this project. It was therefore also not included in the EDA-system implementation.

Overall, which system is more easily diagnosed, depends on the types of failures that
occur. For problems within a module, there are no real differences in Diagnosability
between the systems. For problems between modules, it depends on how much history is
needed to understand what is causing the problem. In the EDA-system, there is also the
added difficulty that it is not always clear what part of the system causes the problem.
For example, if certain actions as result of receiving a certain event in some module do
not occur, the problem could lie with either the sending or the receiving module, or with
the event-framework. Keeping records of all events would also make problems like this
easier to diagnose.

In the EDA-system, the additional functionality for keeping records of all sent and
received events also required some extra effort. First of all, the used event-framework
needs to provide this functionality, or it has to be added manually. This functionality,
when used, increases the processing time for events, since an additional record about
them needs to be kept. Depending on the system, this could have some disadvantages.
In the case of this EDA-system, it would mean processes like the SAP import process
would take longer to complete, but it would most likely not cause any serious problems.

68

Observations about Analysability

The better high-level modularity makes it easier to determine which parts of the system
need to be modified for a desired change in the EDA-system. The division into modules
in this system is such that they each have a well defined part of the functionality, so as
long as the event-sending system in between does not need to be changed (this type of
change should be very unlikely once the system is totally developed), it is often very clear
which modules are affected by a change in requirements. Consequently, the EDA-system
is more analysable in this regard.

9.3. Audit trail

For this quality attribute, no measurements were conducted, so a qualitative comparison
is made between both systems.

The logging of runtime information about what happens in the system is traditionally
done by including log-statements in the source code that define what should be logged.
Depending on the logging method, the messages are separated into different warning
levels and they are written to file in some predefined format.

In an event-driven system like the EDA-system, this type of logging can still be applied
within each module separately. This was for example done to mark the end of the state
replay by the EventStore at system start-up. The difference between both types of sys-
tems is that, if the EDA modules exist in separate processes, there would be a separate
log file for each module, as sharing the same file would lead to synchronization compli-
cations which are not desirable in an event-driven system. In the EDA-system, dividing
the modules into separate processes ran into some problems (see section 10.1), so the
same file could still be used here. The separation of log messages from different modules
into different files could be an advantage or disadvantage, depending on what kind of
information the logs contain. When enough information is included in the messages,
multiple logs could be automatically combined into a single log and vice versa, so this
difference would only constitute a little bit of extra effort.

Additionally, depending on the used message framework, the events in a event-driven
system could themselves be used for audit purposes. The event framework contains
information about which events are sent from which module and where they are received.
If this information is saved into a log, it already provides a lot of information about what
has happened in the system, without the need to explicitly include log-statements. As
already mentioned in the part about Diagnosability in section 9.2.6, this possibility was
not fully explored in the EDA-system.

Alternatively, a kind of meta-messages could be produced by the framework and received

69

by a separate logging module that combines and processes them into the kind of infor-
mation that is wanted about the system during runtime. An actual implementation of
this also lies outside of the scope of this project. A drawback of this approach compared
to the direct use of information from within the used framework, is that a separate
module does not have any information about the sender of the events and cannot detect
messages being received.

9.4. Maintainability

For Maintainability aspects, different measurements and observations are used where
applicable.

9.4.1. Repairability

For Repairability, in most of the same observations apply as for Diagnosability, since
repairing a fault in the system first requires the problem to be located. Subsequently,
the problem also has to be fixed. It is difficult to make general statements about this
aspect, because it relies heavily on the type of problem encountered. Some observations
were made on the EDA-system implementation:

An observed advantage is that the problem is usually located within a single module
and therefore easier to fix. This especially reduces effort, because other modules do not
need to be checked when looking for all the locations where the fix requires changes in
the code. On the other hand, if the problem lies within the event-sending conventions,
for example in the versioning system or the way the information is included in an event,
changes are often required in many different places.

9.4.2. Modifiability and Extensibility

These two aspects both have to do with changes in requirements. Therefore they were
both measured through change-scenarios, covered in section 8.1. The results are mea-
surements of the amount of effort each change-scenario required in both systems. The
effort was measured on several levels of detail. The results of the first change-scenario
show comparable effort on all levels, except for the number of deleted lines, which is sig-
nificantly larger for the EDA-system. The number of deleted lines is the least significant
number, because deleting lines requires the least effort. This is especially true when the
lines are consecutive, because the only effort lies in locating spots where lines need to be
removed. The amount of removed lines mainly gives an idea about the effort needed for
the reverse change. This means this change-scenario required comparable amounts of

70

effort in both systems. The reverse change would have required some more effort in the
EDA-system than in the original system. This is mainly because the information sources
needed for the pre-change situation are somewhat more separated in the EDA-system,
because they are included in separate types of events. Receiving different types of events
requires some additional code in the EDA-system, so changes where the borders between
events are crossed in some way require more effort in the EDA-system. Other than that,

the change in the first change-scenario was relatively easy in both systems.

The second change-scenario included a larger, more fundamental change. It shows that
between the implementations of reduced size of both systems, the change in the original
system already required a significantly larger amount of effort. The required changes
were larger and somewhat more spread out. For an more extended implementation, the
difference in required effort is expected to be even larger and more spread out. This
change was therefore considerably more difficult in the original system than it was in
the EDA-system.

The first change scenario can be entirely put into the Modifiability category, because
it concerned changing the content of an already existing report. The second change
scenario can be seen as a combination between Modifiability and Extensibility. The
change in the internal workings of the system that allows for linked Customers falls
into the Modifiability category, but the additional functionality to allow a user to link
a Customer to another when entering details for it, can be seen as an extension to the
system and therefore attributed to Extensibility. For more accurate measurements of
both aspects, it would have been desirable to separate this change-scenario into two.
This was however not feasible, because the data about the change in the original system
were too much entangled.

Overall, the measurements show that the EDA-system scores somewhat higher on both
Modifiability and Extensibility, but it does depend on the type of change or extension.

9.4.3. Scalability

To determine Scalability characteristics, the behaviour of the two systems under in-
creased size is analysed. Ways in which an increase in size is relatively likely, is first of
all the amount of data that is stored and processed. This would for example mean more
Areas, SalesPersons and/or Customers. All of these would mean extra storage space
required in both systems.

Specifically for an increase in customers (per area), the time and resource behaviour
dependencies can more quantitatively be determined, because the time and resource
measurements were done for different areas.

71

For the original system, the dependence of the load time on the number of customers

(see table 7) is shown in figure 30. A clear correlation can be seen where for each extra

customer, about 0.006 extra seconds of load time are added.

server response time (sec)

6.000

f(x) = 0.0057065396x + 0.0973451197

5.000 R2=10.9999815346

4.000
3.000
2.000
1.000

0.000
0 100 200 300 400 500 600 700 800 900 1000

number of customers

Figure 30: Original system — server response time versus number of customers

For the EDA-system, figures 22 and 23 and table 11 all indicate no correlation between

the server response times and the number of customers. To show this even more clearly,

figure 31 contains the corresponding graph. The R? value shows the absence of a corre-

lation.

server response time (sec)

0.046
| f(x) = -4.38335240834417E-006x + 0.0427020227

0.044 R2 = 0.3790988151

0.042 TR

0.040 T
0.038

0.036

0.034
0 100 200 300 400 500 600 700 800 900 1000

number of customers

Figure 31: EDA-system — server response time versus number of customers

Regarding load times, the EDA-system is therefore much more scalable. An increasingly

large number of customers per area in the original system would mean increasingly large
load times, while this would not be the case in the EDA-system. On the other hand,
for the start-up time of the system, this dependence is the other way around. In the

EDA-system, it is dependent on the amount of data in the system, while for the original

72

system it not. This is however of less consequence, because a restart of the system is
only required under special circumstances.

The dependence on number of customers of the memory usage for the original system
lies only in the peak memory usage. This dependence is shown in figure 32. About 4826
extra bytes of temporary memory are needed per customer. The increase in ground level
memory usage is independent of the number of customers.

5000000
4500000 g§1j1;§§§32222232084x + 156809.90385421
4000000 —

3500000
3000000
2500000
2000000
1500000
1000000
500000
0

memory (bytes)

0 100 200 300 400 500 600 700 800 900 1000

number of customers

Figure 32: Original system — memory usage peak heights versus number of customers

As noted is section 9.1.2, for the EDA-system, the ground level memory usage is de-
pendent on the number of customers. This dependence is shown in figure 33. For each
additional customer, the increase in memory usage is about an extra 300 bytes. As also
mentioned in section 9.1.2, this extra memory is eventually released, so the memory
effects are not long term.

300000 —
f(x) = 300.4620200513x + 3264.3061964938

250000 R = 0.9997031829
200000

150000

100000 ///////////
50000 /./rj/

0 100 200 300 400 500 600 700 800 900 1000

memory (bytes)

0

number of customers

Figure 33: EDA-system — memory usage increase versus number of customers

73

Regarding memory usage, the size dependent effect are only short term. For the original
systems, the dependence on the number of customers is larger, but also of much shorter
duration. The overall relative scalability of both systems for this aspect is therefore
dependent on how the system is used. Additionally, both systems scale relatively well in
this regard, since resource problems are only expected to occur for a very large increase

in size.

For all discussed scalability aspects, a not yet mentioned difference is that in the EDA-
system, time and resource behaviour can be improved by adding additional nodes. For
the original system, this is significantly more difficult. Regarding disk storage, SQL
databases like the one used in the original system, cannot easily be distributed between
different nodes [36]. For the EventStore used in the EDA-system, this is easier, because
there are far fewer constraints on it. Regarding time and memory behaviour, in the EDA-
system each module can be run on a different node, with events travelling between them.
In the original system, distribution over different nodes require a significant amount of
extra effort, because the communication happens by direct method calls. Additionally,
a good division of processing effort over the different nodes is not immediately apparent.
Overall, the EDA-system therefore has better horizontal scalability.

9.4.4. Testability

Testability was also not measured in a quantitative way. However, tests were made for
both systems. Based on these, a qualitative comparison is made.

The higher level tests in the EDA-system take the form of separate testing modules.
Simple tests can be performed by sending a few events into the system and receiving
some events back to see whether the expected behaviour happens. This method also
makes it easy to test separate modules, because the tests can simply be run by only
including the modules to be tested, together with the test module(s). On the other
hand, tests that require a more complicated sequence of actions to happen, can become
more complex, making it harder to verify if the test itself is still correct. This can happen
especially in cases where the events sent by the test module are dependent on received
events, which was the case in many tests in the EDA-system, because of version-related
reasons. Additionally, these tests cannot be executed automatically by existing testing
tools, so they require a little more effort to run. Also, the tests require a little more
effort initially, because the testing module outline first needs to be constructed before
actual tests can be made.

74

10. Conclusions

In this section, the comparisons from the case-study are generalized to arrive at broader
statements about the use of EDA, which are part of the research goal. First of all,
the used event-framework provided the case-study EDA-system with a specific set of
possibilities. In order to make statements about EDA in general, it should be considered
that other event-frameworks might have different options or limitations. These are
explained in section 10.1.

Additionally, the two systems differ on multiple levels. First of all, the EDA-system uses
messages for top-level communication, while the original system uses only method calls
throughout the system. Secondly, the original system is totally synchronous, while the
EDA-system is mostly asynchronous in the communication between modules. Finally,
some characteristics are specifically part of the EDA pattern. For a more accurate
analysis, the results of the comparison are attributed to the level/aspect that most
likely causes them (sections 10.2, 10.3, 10.4).

The other part of the research goal is to collect recommendations about the use of EDA.
These are presented in section 10.5. Finally, section 10.6 highlights possibilities for future
research on this topic.

10.1. Generalization from used Messageframework

First of all, the used Messageframework has some limitations where other available
frameworks provide a broader set of possibilities, influencing the maintainability results
from the case-study.

The used Messageframework provided functionality for creating and receiving messages.
In creating messages, data could be included under different headers. Messages are
received per message-type and additional filters can be specified on properties of the
event contents. A limitation regarding this, is that the filters must be specified as literal
constants, so they cannot be determined with the use of any variables. This meant
that it was, for example, not possible to make a module template and parametrize it
with, for instance, an area number in order to only receive events regarding that area.
Other event-frameworks also have filters based on type and/or content of events ([37,
38], which are expected to be less static. Also, some frameworks (e.g. [37]) treat events
more in terms of streams, with operations that can be applied to the stream as a whole,
providing more options in how to use events.

The Messageframework provides the possibility to separate the modules into different

nodes (separate processes instead of separate execution threads within the same process),

75

by making a separate Visual Studio solution for each module. This also provides the
option to distribute the modules over several different machines. However, when applying
this to the implementation of the EDA-system made during the case-study, problems
were encountered. Some of the problems were the maximum amount of data allowed
within a single event and incorrect processing of events containing certain characters.
These problems could not be fixed without changing the Messageframework itself, which
lies outside of the scope of this project. Therefore, a node separation was not achieved
in the built implementation and runtime behaviour when using this aspect of EDA could
not be observed. However, high confidence assumptions about how it would have worked
could still be made, so this possibility is already included in the comparisons in section 9.
Other event-frameworks, like [38, 39], are available that provide this option, most likely
without the same problems.

Finally, the Messageframework did not provide any options for Complex Event Process-
ing (CEP). CEP is the aggregation and combination of multiple events that are related
in some way in content and/or timing, to create new higher-level events [40]. This
functionality was not needed in the case-study system, but there are event-frameworks
available that do provide this functionality [40].

Overall, the used Messageframework suffices for the implementation of the case-study
EDA-system, but other frameworks exist that provide a broader set of options on how
to deal with events in an EDA. More supported possibilities usually lead to better
maintainable systems, because any functionality already provided does not need to be
implemented in the system itself. It also separated functionality concerning the com-
munication principles from the business functionality of the implemented system. This
means the use of EDA could lead to more maintainable systems than would be expected
based on the case-study results.

Additionally, the used framework has an impact on the timing properties of systems
using it. The used framework had some limitations regarding throughput; when the
generated events were sent too close to each other in time, not all of them would arrive
at the other side. This had a negative effect on for example import times, as a small
delay had to be inserted to make sure all events arrived everywhere in the system. Other
frameworks are expected to have better properties regarding throughput, but this could
not be verified from literature research alone.

10.2. Differences attributed to use of messages
In this context, we define a message to be a bit of information that is sent from one

part of a system and received in another part, where it triggers a response. There is
no inherent coordination, continuation or context preservation between the two parts

76

[1]. The message could be directed towards a specific location, or could be sent to any
location that has declared to be interested in it. It can specifically request some action
to be taken by the receiving end or be purely descriptive.

The first comparison observation that is caused by the use of messages for top-level
communication in the EDA-system, instead of the method calls used in the original
system, is the lack of a complete stack-trace. This difference is discussed in the part
about Diagnosability in section 9.2.6. It means that part of the observed differences in the
ease of determining the source of a problem are due to this difference in communication
method. A non-EDA method that used messages instead of method calls would also not
have a complete stack-trace to track a failure; it would be cut off wherever a message is
used instead of a method-call. On the upside, such a non-EDA method would also have
the possibility of saving all messages sent in the system, providing more information
to use when diagnosing. However, if the messages were not as descriptive as events
generally are, it would still give less information than in an EDA system.

The lack of Class Coupling between classes in different modules can also be attributed to
the use of messages (as long as they are not embedded into the C# language). However,
just messages instead of real events can still cause a relatively high amount of coupling,
because messages can be directive, directed towards a specific target and expect a reply.
Systems using messages are therefore not necessarily more modular than systems using
calls.

The construction of an audit-log by collecting all messages sent in the system would also
be possible in a non-EDA system using messages. This aspect of improved Audit trail
(see section 9.3) capabilities of an EDA system could therefore partly be contributed
to the message aspect. However, general messages are not necessarily as descriptive as
events, and give a less useful view of the runtime history of a system. Also, in order to
use the method of constructing a separate logging module is only possible if messages
are broadcast throughout the system instead of directed towards an intended receiver,

which is not a required property of a system using message communication.

10.3. Differences attributed to asynchronous communica-
tion

The communication used in the case-study EDA-system is asynchronous in nature. Once
an event is sent, the sending module continues on without waiting for the message to
be received by any receiving modules. A property of the implementation that can be
attributed to this asynchronous communication, is the unknown order of arrival of events.
When a sending modules sends multiple messages in quick succession without waiting

77

for a sign of arrival, they can arrive in a different order. This has some consequences
on Simplicity, as discussed in section 9.2.4. This type of extra complexity may also be
experienced in non-EDA systems with asynchronous communication.

Also, some part of the communication between the front-end and the storage module in
the EDA-system needs to be synchronous, because it is desirable to know whether an
update done by the user is accepted and processed before moving on and doing possibly
another update on the same data. The modules are manually synchronized in these
situations by explicitly making the front-end wait for a specific event before moving
on. This explicit implementation makes the system somewhat less maintainable, first
of all simply because there is a need for extra code, but also because there may be
some unanticipated corner cases that are not handled correctly by this approach in the
current or a future version of the system. This means that asynchronous systems in
general decrease in maintainability somewhat if there is still a need for some form of
synchronous communication.

Additionally, asynchronous communication also leads to some uncertainty, because a
sender does not know whether its message has been received (yet). In other words, the
reduced error detection can be attributed to it. Message arrival could be tracked by the
used event-framework, or handled by some other method, but at a minimum, it means
some extra effort needs to be put in if certainty is required about the arrival of messages.

On the other hand, asynchronous communication has a (usually quite large) positive
effect on parallelization and therefore on timing behaviour and (horizontal) scalability.
Whenever two parallel executions need to synchronize, they need to wait for each other,
leading to less actual parallel computation. This problem is not encountered when using
asynchronous communication. Therefore, the better horizontal scalability of the EDA-
system can for a large portion be contributed to the used asynchronous communication.
This is also the case for the responsiveness of the system, because different parts do not
need to wait for each other.

Furthermore, asynchronous communication makes the different parts of the system less
connected and more stand-alone. The improved Testability, as discussed in section 9.4.4,
can be partly attributed to this.

10.4. Differences attributed to event-characteristics

Most of the remaining differences can be attributed to the specific characteristics of
EDA. First of all, EDA dictates that modules should have no knowledge about each
other whatsoever. This contributes to maintainability, as discussed in section 9.4.

Secondly, EDA is push-based; changes drive actions and are immediately propagated

78

throughout the system. Most of both the time and resource behaviour differences, dis-
cussed in section 9.1 can be attributed to this. The system completes actions when a
change occurs, instead of when something is requested. This means that request comple-
tion times are low in an event-driven system, since all needed information should already
be present in the module in which the request occurs. At the same time, it means this
module keeps a copy of all data that is needed within it. Considering the timing aspect,
the difference may not be substantial for systems that still require relatively large cal-
culations to be performed on the data within a module. This is because EDA does not
specify anything about the time at which intra-modular calculations should be executed.
If they are done on demand, it would still result in relatively long waiting times.

However, for a system where most of the completion time of actions is spent gathering the
necessary information together, EDA will perform well in comparison to the traditional
alternative. This is also the case in the case-study EDA-system, where reports are
often just a selection of data arranged in an practical way for users. For some reports,
adding monetary values together is required, but this is a relatively small portion of all
the needed operations in building the report. Therefore, the measured load times are
substantially smaller in the EDA-system, while the memory usage is considerably larger.
In many systems, trading in extra memory for shorter load times is beneficial, since the
cost of extra memory is relatively low nowadays. Especially if it can be added in the
form of extra machines (horizontal), which is usually the case with EDA. To be precise,
the total amount of processing time is not reduced, but shifted to different moments.
When a change occurs, an EDA system takes slightly longer to process it, but this time
is saved when a (user-)request is made.

The observed extra descriptiveness of the EDA-system can be completely attributed
to EDA, since the events contain descriptive information about developments during
runtime. In addition, the specific characteristics of EDA cause the system to have clear
connections between the developmental structure and the runtime structure, as discussed
in section 9.2.5. At the same time, the fact that events in EDA are not directed towards
a recipient, but broadcast throughout the system, makes it more difficult to find out the
cause and effect relationships in an EDA system. This causes the system to be more
difficult to understand and analyse.

10.5. Recommendations

The first recommendation in the consideration about whether to use EDA is the follow-
ing. The push-based approach of EDA is only beneficial if the needed information for
the possible actions/requests is known beforehand in the system. This is not the case
if, for example, users enter their own custom queries to be executed on the data. Even

79

if the framework allows for the message subscriptions to be changed during runtime,
events that were previously not of interest, but are now, have not been received, so a
user query cannot be executed in this way. In the case of such a system, no good module
separation can be found for EDA, because it is not possible to successfully separate the
front-end from the data storage. The EDA pattern is not a good fit for this type of
system.

Another point may be the importance of time and resources. For systems that are tight
on memory and/or storage space, EDA is not a good fit. The same goes for systems
where data can be requested in a large variety of ways. The mentioned custom queries
are an extreme case of this, but even when the data for each request can be prepared in
advance, it may not be worthwhile when there are a large number of possible requests
that are in practice requested very infrequently. In that case, it is most likely better to
use a pull-based set-up.

When EDA has already be decided on, there are also some things to keep in mind to
make implementing this pattern more successful. First of all, it is beneficial to have
the central data storage of the system keep as much information as possible. This way,
any future requirement changes in data requests and processing do not require changes
in the storage part of the system, making such changes less costly. An example of this
effect is seen in change-scenario 2 (section 8.1.2). These types of changes are expected

to be more likely than changes in the way data is supplied in the system. The latter
type of change would still be relatively expensive to make.

In addition, the whole set-up around event sending and arrival is best kept as general as
possible. Changing these aspects requires changes in many parts of the system, making
them expensive. For example, parts like a versioning system, which is required in one
form or another in many EDA systems, should be well thought out. It is beneficial if
it can support a variety of possible situations, possibly by including more information,
even if it seems unnecessary at first.

Using an event store as data storage mechanism fits in well with the properties of EDA
and should be considered. When using it, it is advantageous to consider the types
of input events that should be stored and imagine all general types of combinations
between them. If handling some rare combinations requires complicated solutions, it
may be better to reject these situations. This can be done by labelling certain events as
rejected when they occur in such a combination. For example in the built EDA-system, it
would have been beneficial to reject no-ops, i.e. updates where nothing changes, instead
of allowing them. Allowing them turned out to cause multiple complications and made
the system more complex.

80

10.6. Future work

Further research on the topic of EDA could include doing comparisons for more cases,

so better generalizations can be made. This would ideally include using different event

frameworks to see if there are significant differences and to give indications about which

ones are better suited for which kinds of problems. Also, other quality attributes could be

included in the comparison. For example, Security was excluded in this study, but could

potentially be interesting for other systems where EDA is considered in the development

stage.

It would also be beneficial to look at the benefits of Complex Event Processing, since it

likely adds very powerful possibilities for an event-driven system.

Bibliography

G. Hohpe. “Programming without a call stack — event-driven architectures”. In:
Objekt Spektrum (2006).

B. M. Michelson. “Event-driven architecture overview”. In: Patricia Seybold Group
2 (2006).

URL: http://www.sogyo.nl/.

L. Filipponi et al. “Smart City: An Event Driven Architecture for Monitoring Pub-
lic Spaces with Heterogeneous Sensors”. In: Sensor Technologies and Applications
(SENSORCOMM), 2010 Fourth International Conference on. 2010, pp. 281-286.
O. Etzion. “Towards an Event-Driven Architecture: An Infrastructure for Event
Processing Position Paper”. In: Rules and Rule Markup Languages for the Seman-
tic Web. Ed. by A. Adi, S. Stoutenburg, and S. Tabet. Vol. 3791. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2005, pp. 1-7.

S. Y. Ghalsasi. “Critical Success Factors for Event Driven Service Oriented Ar-
chitecture”. In: Proceedings of the 2Nd International Conference on Interaction
Sciences: Information Technology, Culture and Human. ICIS ’09. ACM, 2009,
pp. 1441-1446.

D. Garlan and M. Shaw. “An introduction to software architecture”. In: Advances
in Software Engineering and Knowledge Engineering. World Scientific Publishing
Company, 1993, pp. 1-39.

M. Shaw and P. Clements. “The golden age of software architecture”. In: Software,
IEEFE 23.2 (Mar. 2006), pp. 31-39.

D. Garlan, R. Allen, and J. Ockerbloom. “Architectural mismatch or why it’s hard
to build systems out of existing parts”. In: Software Engineering, 1995. ICSE 1995.
17th International Conference on. IKEEE. 1995, pp. 179-179.

81

http://www.sogyo.nl/

L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Pearson
Education India, 2007.

P. Bengtsson. “Towards maintainability metrics on software architecture: An adap-
tation of object-oriented metrics”. In: First Nordic Workshop on Software Archi-
tecture (NOSA’98), Ronneby. Vol. 10. 1998.

P. B. Kruchten. “The 4+1 view model of architecture”. In: Software, IEEE 12.6
(1995), pp. 42-50.

ISO. Systems and software engineering—Systems and software Quality Require-
ments and Evaluation (SQuaRE)-System and software quality models. ISO/IEC
25010:2011. Geneva, Switzerland: International Organization for Standardization,
2011.

J. A. McCall, P. K. Richards, and G. F. Walters. Factors in Software Quality.
Volume-II1. Preliminary Handbook on Software Quality for an Acquisiton Manager.
Tech. rep. DTIC, 1977.

M. Barbacci et al. Quality Attributes. Tech. rep. DTIC Document, 1995.

B. W. Boehm, J. R. Brown, and M. Lipow. “Quantitative evaluation of software
quality”. In: Proceedings of the 2nd international conference on Software engineer-
ing. IEEE Computer Society Press. 1976, pp. 592-605.

R. B. Grady and D. L. Caswell. Software metrics: establishing a Company-wide
program. Prentice Hall, 1987.

R. G. Dromey. “Cornering the chimera”. In: IEEE Software 13.1 (1996), pp. 33—
43.

M. Ortega, M. Pérez, and T. Rojas. “Construction of a systemic quality model for
evaluating a software product”. In: Software Quality Journal 11.3 (2003), pp. 219-
242.

E. Mnkandla and B. Dwolatzky. “Defining Agile Software Quality Assurance”. In:
International Conference on Software Engineering Advances. 2006, pp. 36-36.

H. Breivold, I. Crnkovic, and P. Eriksson. “Analyzing Software Evolvability”. In:
32nd Annual IEEE International Computers, Software and Applications Confer-
ence (COMPSAC). 2008, pp. 327-330.

F. Losavio et al. “Quality characteristics for software architecture”. In: Journal of
Object Technology 2.2 (2003), pp. 133-150.

M. Broy and E.-R. Olderog. “Trace-oriented models of concurrency”. In: Handbook
of process algebra (2001), pp. 101-195.

M. G. Hinchey. “A formal design method for real-time Ada software”. In: Ada:
Towards Maturity (1993), pp. 123-137.

URL: https://www.httpwatch.com/.

X. Liu and Q. Wang. “Study on application of a quantitative evaluation approach
for software architecture adaptability”. In: Quality Software, 2005. (QSIC 2005).
Fifth International Conference on. Sept. 2005, pp. 265-272.

82

https://www.httpwatch.com/

[28]

[29]
[30]

w
—_

W w w W
)

N A et

R. Kazman et al. “SAAM: A method for analyzing the properties of software
architectures”. In: Proceedings of the 16th international conference on Software
engineering. IEEE Computer Society Press. 1994, pp. 81-90.

P. Bengtsson and J. Bosch. “Scenario-based software architecture reengineering”.
In: Software Reuse, 1998. Proceedings. Fifth International Conference on. IEEE.
1998, pp. 308-317.

URL: http://nhibernate.info/.

F. F.-H. Nah. “A study on tolerable waiting time: how long are Web users willing
to wait?” In: Behaviour & Information Technology 23.3 (2004), pp. 153-163.
URL: http://signalr.net/.

URL: http://owin.org/.

URL: https://geteventstore.com/.

P. Oman and J. Hagemeister. “Construction and testing of polynomials predict-
ing software maintainability”. In: Journal of Systems and Software 24.3 (1994),
pp. 251-266.

1. Heitlager, T. Kuipers, and J. Visser. “A Practical Model for Measuring Main-
tainability”. In: Quality of Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the. IEEE. Sept. 2007, pp. 30-39.
R. Cattell. “Scalable SQL and NoSQL Data Stores”. In: ACM SIGMOD Record
39.4 (May 2011), pp. 12-27.

E. Meijer. “Reactive extensions (Rx): curing your asynchronous programming
blues”. In: ACM SIGPLAN Commercial Users of Functional Programming. ACM.
2010, p. 11.

P. R. Pietzuch and J. M. Bacon. “Hermes: A distributed event-based middleware
architecture”. In: Distributed Computing Systems Workshops, 2002. Proceedings.
22nd International Conference on. IEEE. 2002, pp. 611-618.

J. Armstrong. “Erlang”. In: Commun. ACM 53.9 (Sept. 2010), pp. 68-75.

D Robins. “Complex event processing”. In: Second International Workshop on
Education Technology and Computer Science. Wuhan. 2010.

DoD. Department of Defense Trusted Computer System Evaluation Criteria. DoD
Standard 5200.28-STD. U.S. Department of Defence, 1985.

83

http://nhibernate.info/
http://signalr.net/
http://owin.org/
https://geteventstore.com/

Appendices

A. Definitions of quality criteria

Table 18 gives the definitions used in this research project for all considered quality
criteria. The different sources these definitions were adapted from, are referenced by
number in the table. The numbers stand for the following:

adapted from [10]
adapted from [13]
adapted from [14]
adapted from [20]
adapted from [21]
adapted from [16]
adapted from [41]

N O O W N =

Functionality the ability of the system to do the work for which it was in-
tended!
Completeness degree to which the set of provided functions covers all the

specified tasks and user objectives?

Appropriateness degree to which the functions facilitate the accomplishment of
specified tasks and objectives?

Traceability degree to which the system provides a thread from the re-
quirements to the implementation with respect to the specific
development and operational environment?

Correctness / Con- degree to which the system satisfies its defined specifications®

formance

Suitability degree to which the system provides functions that meet stated
and implied needs when used under specified conditions?

Usability degree to which a system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satis-
faction in a specified context of use?

Learnability degree to which a system can be used by specified users to

achieve specified goals of learning to use the system with ef-
fectiveness, efficiency, freedom from risk and satisfaction in a
specified context of use?

84

User Error Protec-

degree to which a system protects users against making errors?

tion

Attractiveness degree to which a user interface enables pleasing and satisfying
interaction for the user?

Communicativeness degree to which the system provides useful inputs and outputs
which can be assimilated?

Appropriateness degree to which users can recognize whether a system is ap-

Recognizability propriate for their needs?

Operability degree to which a system has attributes that make it easy to
operate and control?

Portability degree of effectiveness and efficiency with which a system or
component can be transferred from one hardware, software or
other operational or usage environment to another?

Replaceability degree to which a system can replace another specified software
system for the same purpose in the same environment?

Installability degree of effectiveness and efficiency with which a system

can be successfully installed and/or uninstalled in a specified
environment?

Software System In-

degree to which the software system is dependent on the soft-

dependence ware environment (operating systems, utilities, input/output
routines, etc.)?

Machine Indepen- degree to which the software system is dependent on the hard-

dence ware system?

Adaptability degree to which a system can effectively and efficiently be
adapted for different or evolving hardware, software or other
operational or usage environments?

Security degree to which a system protects information and data so
that persons or other systems have the degree of data access
appropriate to their types and levels of authorization?

Integrity degree to which a system or component prevents unauthorized
access to, or modification of, computer programs or data?’

Accountability degree to which the actions of an entity can be traced uniquely

to the entity?

85

Confidentiality — /
Privacy

degree to which a system ensures that data are accessible only

to those authorized to have access?

Authenticity

degree to which the identity of a subject or resource can be
proved to be the one claimed?

Non-repudiation

degree to which actions or events can be proven to have taken
place, so that the events or actions cannot be repudiated later?

Reliability

degree to which the system or component performs specified

functions under specified conditions for a specified period of

time?2

Fault Tolerance

degree to which the system or component operates as intended
despite the presence of hardware or software faults?

Recoverability

degree to which, in the event of an interruption or a failure, the
system can recover the data directly affected and re-establish
the desired state?

Maturity

degree to which a system or component meets needs for relia-
bility under normal operation?

Accuracy / Preci-

degree to which the software or component provides the re-

sion quired precision in calculations and outputs®

Robustness appropriate performance of the system under cases not covered
by the specification*

Availability degree to which a system or component is operational and ac-
cessible when required for use?

Maintainability degree of effectiveness and efficiency with which a system can
be modified by the intended maintainers; modifications can in-
clude corrections, improvements or adaptation of the software
to changes in environment, and in requirements and functional
specifications?

Repairability effort required to locate and repair an error in an operational
program?®

Modifiability degree to which a system can be effectively and efficiently mod-

ified without introducing defects or degrading existing quality?

86

Evolvability

the ability of a system to accommodate changes in its require-
ments throughout the systems lifespan with the least possible
cost while maintaining architectural integrity®

Extensibility / Aug-
mentability

degree to which the software system enables the implementa-
tion of extensions to expand or enhance the system with new
capabilities and features with minimal impact to the existing
system5

Testability

degree of effectiveness and efficiency with which test criteria
can be established for a system or component and tests can be
performed to determine whether those criteria have been met?

Compatibility

degree to which a system or component can exchange infor-
mation with other systems or components, and/or perform its
required functions, while sharing the same hardware or soft-
ware environment?

Interoperability

degree to which two or more systems or components can ex-
change information and use the information that has been
exchanged?

Co-existence

degree to which a system can perform its required functions
efficiently while sharing a common environment and resources
with other systems, without detrimental impact on any other
system2

Reusability

degree to which an asset can be used in more than one system,
or in building other assets?

Generality

degree to which the software provides breadth in the functions
performed?

Self-containedness

degree to which a system or component performs all its explicit
and implicit functions within itself®

Audit trail

degree to which actions performed during the system runtime
can be reproduced”

Efficiency

performance relative to the amount of resources used under

stated conditions?

Performance /
Timeliness

degree to which the response and processing times and
throughput rates of a system, when performing its functions,
meet mquirements2

87

Capacity

degree to which the maximum limits of a system parameter
meet requirements?

Resource Behaviour

degree to which the amounts and types of resources used by a
system, when performing its functions, meet requirements?

Structuredness degree to which the system possesses a definite pattern of
organization®
Modularity degree to which a system or computer program is composed of

discrete components such that a change to one component has
minimal impact on other components?

Consistency / Uni-

degree to which uniform design and implementation techniques

formity and notation are used?

Conciseness degree to which the implementation of functionality is provided
with a minimum amount of code?

Understandability degree to which the purpose of different parts of the system is
clear to the inspector®

Analyzability degree of effectiveness and efficiency with which it is possible
to assess the impact on a system of an intended change to one
or more of its parts, or to diagnose a system for deficiencies or
causes of failures, or to identify parts to be modified?

Simplicity degree to which the software system provides functionality in

the most understandable manner?

Self-descriptiveness

degree to which the code contains enough information for a
reader to determine or verify its objectives, assumptions, con-
straints, inputs, outputs, components, and revision status®

Legibility

degree to which the code’s function is easily discerned by read-
ing the code®

Table 18: Definitions of quality criteria

88

B. Full measurement data

Change-scenario data

Tables 19, 22, 21, 20 and 23 show change-scenario results. They express the effort
required for each change-scenario in terms of modules, namespaces, classes and added
and deleted lines. The bottom row of each table gives the total values for each column.

modules namespaces classes lines
+ _
SalesPortal Models CIFIndexModel 11 19
Controllers CustomerController 1 5
Views Customer/Cif 10 6
Domain.Sales Services CoopModelService 0 15
2 4 4 22 30

Table 19: Original system (reduced) — change scenario 1

modules namespaces classes lines
+ _
Domain.Sales Entities Customer 263 171
BudgetProposal 18
Turnover 20
AreaCustomer 258 -
Contact 3 0
Services BurgetProposalService 40 0
Repositories TAreaCustomerRepository 12 -
IBudgetProposalRepository 7 0
ITurnoverRepository 1 0
Repository Repository AreaCustomerRepository 21 -
.NHibernate .NHibernate CustomerRepository 18 16
BudgetProposalRepository 12 2
TurnoverRepository 9 0
SalesPortal Controllers CustomerController 326 93
Views Customer/Edit 27 27
3 6 15 1035 310

Table 20: Original system (reduced) — change scenario 2

89

modules namespaces classes lines
+ _
Domain.Sales Entities Customer 263 171
BudgetProposal 18 0
Turnover 20 1
AreaCustomer 258 -
Contact 3 0
Services BurgetProposalService 40 0
Repositories TAreaCustomerRepository 12 -
IBudgetProposalRepository 7 0
ITurnoverRepository 1 0
INpsRepository 1
Repository Repository AreaCustomerRepository 21 -
.NHibernate .NHibernate CustomerRepository 18 16
BudgetProposalRepository 12 2
TurnoverRepository 9 0
NpsRepository 42 36
SalesPortal Controllers CustomerController 326 93
ReportController 0
BudgetController 1
ProposalOverviewController 0
Views Customer/Edit 27 27
batchpdfcreator BatchPdfCreator PdfGenerator 6 12
Program 14 8
TableClasses TableFactory 10 3
4 8 23 1114 371

Table 21: Original system (*) — change scenario 2

90

modules namespaces classes lines
+ —
CIFIndexList CIFIndexList MessageConvHelper 0 12
CIFIndexList_Payload 4 72
StateManager 0 68
BPModel Transformer - 24
BudgetProposalModel - 31
CIFIndexModel 2 209
CIFIndexTransformer 5 0
Gateway FrontEnd scripts ciftable.js 4 26
2 2 7 15 442

Table 22: EDA-system — change scenario 1

modules namespaces classes lines
+ _
EventStore EventStore EventNames_Store 2 0
Customer_Store 15 0
EventStorage 34 13
EventStoreWrapper 173 20
EventStore_Payload 2 1
DataExtracter 16 4
MessageSender 10 0
StateBuilder 20 21
ImportStorage 2 2
Gateway Gateway Gateway_Payload 28 3
FrontEnd_SignalR CIFHub 7 0
FrontEnd scripts index.js 27 13
cifform.js 1 0
Helper Helper EventNames_Message 5 4
MessageConversion 14 6
3 5 16 356 87

Table 23: EDA-system — change scenario 2

91

Code Metrics data

The complete frequency results for some of the code metrics are shown in table 24.
Values for which the frequencies in both systems were zero are omitted from the table.

Class Original EDA- Cyclomatic Original EDA-
Coupling system system Complexity system system
0 11 18 1 790 812
1 5 3 2 135 145
2 6 10 3 95 76
3 11 12 4 38 50
4 8 8) 32 26
) 8 6 6 14 14
6 12 6 7 12 11
7 6) 8 14 3
8 6 7 9 6 6
9 5 6 10 6 3
10 4 2 11 7 1
11 6 2 13 1 1
12 2 4 14 1 0
13 2 2 16 1 0
14 1 2 17 0 1
15 2 2 21 1 0
16 0 3 25 0 1
17 2 1 42 1 0
19 1 1 46 1 0
20 1 1 49 1 0
21 1 0 59 1 0
22 1 0
23 2 0 Depth of Original EDA-
24 1 3 Inheritance system system
25 0 1 1 96 103
26 1 0 2 11 9
27 0 3 3 1 2
28 1 0 4 4 0
29 1 0 5 3 0
30 2 0 6 0 0
32 0 1 7 1 0
33 1 0
34 0 0

92

35
41
42
43
45
46
47
20
67
76

_ = = O R = O O =k O
SO OO R O O~ = ==

Table 24: Code metrics frequency results

Time measurement data

Tables 25 and 26 show the time measurements for the original system. For each measure-
ment, the report for the respective Area is loaded and both the HTTP load time and the
server response time in seconds are measured. Table 27 shows the time measurements
for the EDA-system. Here, for each measurement, the report for the respective Area is
also loaded, but here, the server response time and the HI'TP load time were the same
(see section 8), so only one measured time is shown per measurement point.

Run 1 (time) Run 2 (time)
Area HTTP load server response | Area HTTP load server response
time (sec) time (sec) time (sec) time (sec)
100 5.936 5.631 20 1.468 1.336
100 5.625 5.349 20 1.280 1.141
100 5.639 5.274 20 1.258 1.121
20 1.330 1.098 100 5.645 5.362
20 1.305 1.145 100 5.691 5.396
20 1.263 1.100 100 5.709 5.412
63 0.876 0.757 34 0.586 0.472
63 0.902 0.780 34 0.589 0.474
63 0.916 0.813 34 0.584 0.468
34 0.564 0.476 63 0.911 0.783
34 0.580 0.470 63 0.911 0.785
34 0.554 0.444 63 0.906 0.789

Table 25: Original system — time measurement data, runs 1 and 2

93

Run 3 (time) Run 4 (time)

Area HTTP load server response | Area HTTP load server response
time (sec) time (sec) time (sec) time (sec)
63 1.112 0.663 34 0.772 0.992
63 0.905 0.448 34 0.555 0.748
63 0.944 0.460 34 0.566 0.787
34 0.619 0.776 63 0.895 0.448
34 0.563 0.793 63 0.917 0.454
34 0.633 0.785 63 0.906 0.483
100 5.555 1.088 20 1.231 5.270
100 5.512 1.079 20 1.230 5.238
100 5.529 1.060 20 1.195 5.252
20 1.330 5.146 100 5.438 1.152
20 1.273 5.102 100 5.388 1.099
20 1.270 5.186 100 5.467 1.115

Table 26: Original system — time measurement data, runs 3 and 4

Run 1 (time) Run 2 (time) Run 3 (time) Run 4 (time)

Area time (sec) ‘ Area time (sec) ‘ Area time (sec) ‘ Area time (sec)

100 0.056 20 0.052 63 0.023 34 0.052
100 0.071 20 0.056 63 0.032 34 0.052
100 0.026 20 0.021 63 0.056 34 0.046
20 0.045 100 0.059 34 0.050 63 0.063
20 0.049 100 0.033 34 0.061 63 0.059
20 0.009 100 0.033 34 0.029 63 0.023
63 0.029 34 0.066 100 0.025 20 0.065
63 0.021 34 0.018 100 0.032 20 0.059
63 0.050 34 0.058 100 0.042 20 0.024
34 0.022 63 0.036 20 0.028 100 0.032
34 0.049 63 0.027 20 0.029 100 0.027
34 0.038 63 0.054 20 0.065 100 0.031

Table 27: EDA-system — sever response time measurement data

94

Memory measurement data

Table 28 shows the memory measurements for the original system. The measurement
points represent the memory just after loading the report page for the respective Area.
The measurement points with no Area are points where the welcome-page is loaded to
get ground level memory usage points. Tables 29 and 30 show the memory measurements
for the EDA-system. The measurement points again represent the memory just after
loading the report page. Here, no in-between measurements were taken, because no
memory peaks were observed. Run 2 was a very long run and is therefore displayed in
a separate table.

Run 1 (memory) Run 2 (memory) Run 3 (memory) Run 4 (memory)
Area memory Area memory Area memory Area memory
(bytes) (bytes) (bytes) (bytes)

3284080 3251080 3250064 3235216

100 7970940 20 4728876 63 4285748 34 3983160
3476056 3607392 3587324 3616280

100 7990404 20 4746900 63 4300256 34 4000136
3478980 3592276 3592408 3620680

100 7994152 20 4748220 63 4281344 34 4003640
3484800 3617884 3623872 3625200
3459060 3598004 3601648 3608568
3490148 3665184 3634612 3616324

20 4784096 100 8180424 34 4016340 63 4308060
3654872 3677316 3613420 3627024

20 4791084 100 8190880 34 4010880 63 4314012
3659436 3681976 3642772 3632324

20 4796964 100 8195280 34 4025632 63 4321356
3665136 3686672 3648960 3638476
3649436 3658188 3626452 3622388
3672848 3685208 3663644 3642312

63 4361220 34 4069652 100 8197584 20 4783700
3680456 3693632 3694112 3653760

63 4367216 34 4075232 100 8207596 20 4790468
3684524 3698244 3698992 3658304

63 4372852 34 4084832 100 8214076 20 4796624
3689864 3707596 3704864 3664452
3673016 3708972 3682792 3648628
3700324 3712704 3710920 3692500

34 4084836 63 4402128 20 4850624 100 8216544

95

34

34

3709408
4090828
3713204
4096428
3719136
3721008

63

63

3721404
4409244
3726220
4414704
3731840
3733492

20

20

3719496
4856688
3724836
4862876
3730692
3708328

3713432
100 8226572
3716008
100 8231080
3722432
3712548

Table 28: Original system — memory measurement data

Run 1 (memory)

Run 4 (memory)

‘ Run 5 (memory)

Area memory (bytes) ‘ Area memory (bytes) ‘ Area memory (bytes)
60047488 60057192 60054404
20 60431180 100 60640496 34 60456444
34 60443032 63 60683572 20 60453820
100 60723704 20 60745628 100 60734532
63 60770632 100 61028032 34 60762788
34 61055368 100 61042960
Run 3 (memory) 20 61118460 63 61089948
60054312 34 61149948 20 61153576
100 60651188 63 61186224 63 61189824
34 60684460
63 60712168 Run 6 (memory) Run 7 (memory)
20 60775776 60064608 60079676
34 60803064 63 60461416 63 60445536
100 61085528 100 60739216 20 60489824
20 61157324 34 60766700 63 60535216
63 61185224 63 60813548 100 60817404
34 61206976 20 60877368 34 60843092
100 61481792 34 60906708 20 60907320
20 61537740 20 60970688 34 60936276
100 61809492 100 61242444 100 61207404
63 61844476 63 61281840 63 61246824
34 61871932
20 61918924
34 61937560
63 61976972
100 62248672

96

20 62304724
63 62340248
Table 29: EDA-system — memory measurement data, except run 2
Run 2 (memory)
Area memory memory memory memory memory
(bytes) (bytes) (bytes) (bytes) (bytes)
60048380
20 60453724 64326500 68314456 72227088 76146380
34 60446312 64348276 68334484 72248824 76168136
100 60726780 64623112 68608968 72523660 76442992
63 60772872 64662492 68656424 72563040 76482392
20 60833888 64743132 68704764 72643380 76538416
34 60864444 64740344 68726200 72656896 76560172
100 61146656 65015108 69000868 72915328 76835028
63 61182940 65054444 69040612 72954916 76874344
20 61263420 65110512 69096780 73010512 76930412
34 61244580 65132288 69118556 73040804 76952148
100 61519172 65415172 69393372 73307552 77227036
63 61555580 65446504 69458204 73346932 77266436
20 61607424 65510752 69488816 73402944 77714544
34 61634048 65524220 69510272 73424528 77736300
100 61900860 65799056 69784960 73699296 78011108
63 61936440 65838436 69824348 73738676 77996208
20 61989256 65894520 69880400 73794760 78067424
34 62009800 65916256 69902156 73816516 60319036
100 62281424 66191092 70176972 74091332 60589992
63 62320804 66230024 70215924 74130712 60618196
20 62374184 66286556 70272136 74186828 60669000
34 62392276 66324696 70294212 74208512 60684228
100 62666988 66583128 70569028 74483348 60959056
63 62703232 66622540 70608428 74522728 60998144
20 62759224 66678552 70664172 74578580
34 62781000 66700328 70685864 74600344
100 63063056 66975196 70960660 74875140
63 63094832 67014556 70998412 74914560
20 63167280 67070660 71051328 74970604

97

34 63172632 67092396 71072776 74992380
100 63447448 67367232 71347492 75267176
63 63486612 67406632 71386932 75326084
20 63560356 67462676 71442976 75379076
34 63564384 67484412 71472964 75384132
100 63839200 67759248 71777180 75658952
63 63878388 67800308 71778968 75698332
20 63934608 67932556 71835012 75764668
34 63956236 67978416 71856808 75776100
100 64255632 68228216 72131624 76050936
63 64270416 68267468 72171024 76090016

Table 30: EDA-system — memory measurement data, run 2

98

	Introduction
	Problem statement
	Relevance
	Research goal
	Research method
	Scope
	Thesis outline

	Introduction to software architecture
	History and definition
	Architectural representation
	Architectural `views'

	Introduction to Event Driven Architecture
	Selection of quality criteria
	Long-list of quality criteria
	Exclusion of criteria
	Functionality
	Theoretical assessment of quality criteria
	Relevance exclusion

	Short-list of quality criteria
	Methods of measurement
	Efficiency
	Structuredness and Understandability
	Audit trail
	Maintainability

	Case study: Set-up
	Way of working
	Case description
	Functional requirements

	Case study: Original architecture
	Process view
	Development view
	Problems and Hypotheses
	Timeliness and Scalability
	Maintainability

	Case study: New architecture
	Process view
	Development view
	Extent of implementation
	Module descriptions
	EventStore module
	SAPImport module
	Gateway module
	ViewModel modules

	Design notes
	Top-level design change
	Versioning system
	Entity-Relationship differences

	Case study: Measurement methods and results
	Change-scenarios
	Scenario 1
	Scenario 2

	Code metrics
	Lines of Code
	Cyclomatic Complexity
	Class Coupling
	Depth of Inheritance
	Maintainability Index

	Time measurements
	Resource measurements

	Case study: Interpretation and comparison
	Efficiency
	Time behaviour
	Resource behaviour

	Structuredness and Understandability
	Conciseness
	Consistency
	Modularity
	Simplicity
	Self-descriptiveness
	Analysability and Diagnosability

	Audit trail
	Maintainability
	Repairability
	Modifiability and Extensibility
	Scalability
	Testability

	Conclusions
	Generalization from used Messageframework
	Differences attributed to use of messages
	Differences attributed to asynchronous communication
	Differences attributed to event-characteristics
	Recommendations
	Future work

	Bibliography
	Appendices
	Definitions of quality criteria
	Full measurement data

