Yine €

(] '
\;\9 Ny
S
Yerren

RADBOUD UNIVERSITY NIJMEGEN

MASTER THESIS

NEWHOPE for ARM

An Efficient Implementation of the Post-Quantum Ephemeral Key
Exchange NEWHOPE for the ARMv6-M Architecture

Author: Supervisor:
Philipp JAKUBEIT Dr. Peter SCHWABE

A thesis submitted in fulfillment of the requirements
for the degree of MSc Computing Science

i the

Digital Security
Institute for Computing and Information Sciences

August 6, 2016

http://www.ru.nl/
http://www.cryptojedi.org
http://www.ru.nl/ds/
http://www.ru.nl/icis/

Declaration of Authorship

I, Philipp JAKUBEIT, declare that this thesis titled “NEwWHOPE for ARM
- An Efficient Implementation of the Post-Quantum Ephemeral Key Ex-
change NEWHOPE for the ARMv6-M Architecture” and the work presented
in it are my own. I confirm that:

This work was done wholly while in candidature for a research degree
at this University.

Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other in-
stitution, this has been clearly stated.

Where I have consulted the published work of others, this is always
clearly attributed.

Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

il

“If quantum mechanics hasn’t profoundly shocked you, you haven’t under-
stood it yet.”

Niels Bohr

iv

RADBOUD UNIVERSITY NIJMEGEN

Abstract

Faculty of Science

Institute for Computing and Information Sciences
MSc Computing Science

NewHoPE for ARM
An Efficient Implementation of the Post-Quantum Ephemeral Key
Exchange NEWHOPE for the ARMv6-M Architecture

by Philipp JAKUBEIT

In this thesis we provide the mathematical background information and
details of our ARM Cortex-M0 implementation of the post-quantum key
exchange NEWHOPE. NEWHOPE was designed and published in 2015 by
Alkim, Ducas, Poppelmann and Schwabe [1]. It bases its security claims on
lattice problems, the ring-learning-with-errors problem which is reducible
to the shortest vector problem. The security claims provided by these prob-
lems are not related to the factorization problem or the discrete-logarithm
problem. Therefore, Shor’s algorithm does not affect them and no other
quantum algorithm is known which could solve them in polynomial time.
Actors like the NIST [58], the NSA [59] or the Tor project [50] have
recognized the relevance of post-quantum cryptography. Key exchanges
prove relevant as they form the basis of forward secrecy in a world with
large-scale quantum computers at the horizon. These key exchanges must
be designed and proven to be efficiently implementable. We performed
an implementation of NEWHOPE on the embedded ARMv6M architecture
based Cortex-MO and increased the cycle count for the full key exchange
by 37%. The main computation of the key exchange lies in computing the
multiplication of polynomials. We optimized this multiplication realized by
the number theoretic transform by 54% compared to the reference imple-
mentation and by 6% to 45% compared to research in the literature.

HTTP://WWW.RU.NL/
http://www.ru.nl/science/
http://www.ru.nl/icis/

Acknowledgements

I want to thank my supervisor Peter Schwabe, for the scientific insights
and assistance he provided during the whole period of writing this thesis.
I want to thank Lejla Batina for taking the time to be the second reader
of my thesis. I want to thank Erdem Alkim for insights into the target
architecture and for working out Keccak together. I want to thank Pol
van Aubel for getting me started with microcontrollers on Arch-Linux and
Joost Rijneveld for assistance in figuring out communication issues with
the Cortex-MO. I want to further thank my family and friends for reading
parts of my thesis, and providing valuable feedback as well as supportive
and encouraging words. Thanks to all of you.

vil

Contents

Introduction 1
Preliminaries 3
2.1 Complexity 3
2.2 Post-Quantum Cryptography 5
2.2.1 Classical Cryptography 5
2.2.2 Symmetric Cryptography 6
2.2.3 Asymmetric Cryptography 6
2.2.4 Quantum Computation 9
2.2.4.1 Quantum Cryptanalysis 10
2.2.4.2 Post-Quantum Primitives 11
2.3 Lattices 11
2.3.1 Lattice Problems 12
2.3.1.1 Shortest Vector Problem (SVP) 12
2.3.1.2 Closest Vector Problem (CVP) 13
2.3.1.3 Complexity of SVP and CVP 14
2.3.1.4 Learning-With-Errors (LWE) Problem . . . 14
2.3.1.5 Ring-Learning-With-Errors (RLWE) Prob-

lem 15

2.3.1.6 RLWE based Key-Encapsulation Mechanism
(KEM) o 16
2.4 Instantiations of the RLWE Problem based KEM 18
241 BCNS 19
242 NEWHOPE 19
2.4.2.1 NewHopPE Error Distribution 20
2.4.2.2 NeEwHOPE Error-Recovery Mechanism . . 21
2.4.2.3 NEWHOPE Number Theoretic Transform . 24
2.4.2.4 Optimization Measures for the NTT 28
NeEwHOPE for the ARMv6-M architecture 31
3.1 The ARM Cortex-M0 (ARMv6-M) 31
3.2 NEwHOPE Building Blocks 32
3.3 Adapting NEWHOPE for the Cortex-M0O 34
3.3.1 Architectural Constraints 34
3.3.2 Communication 36
3.4 Optimization Details per Building Block 37
341 NTT ..o 37
3.4.1.1 Multiplying the Coefficients 40
3.4.1.2 BitReversal 40
3.4.2 Error Reconciliation 40
3.4.2.1 Generation of the Help Vector 41
3.4.2.2 Reconciliation 42

X

3.4.3 Polynomial Arithmetic 43
3.4.3.1 Polynomial Addition and Pointwise Multi-

plication 43

3.44 ChaCha20 43

345 Keccak. 44

3.5 Results. 44
Conclusion 49
4.1 Reflection 49
4.2 Future Work 50
A Executing NEWHOPE on the Cortex-MO 53

List of Figures

2.1

2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13

Al

An example graph for the relation of the two functions f

and ¢ for which holds f(n) = O(g(n)). Inspired by [67]. . .
Visualization of the complexity problem classes P and NP

based on either the equality or inequality. Taken from [34].
A brief model of symmetric cryptography.
A brief model of a public-key scheme.
A brief model of a synchronous key-exchange scheme.
A part of a lattice in the two-dimensional plane.
Two bases of the lattice, Bp and By.
An example of a CVP with z = (1,1) and v = (1.1,0.9).

A brief model of an asynchronous key-exchange scheme.

A part of the lattice Dy. Taken from [1].
Discretezation of the gray Voronoi cell (3, 3) into
cells for the 2-dimensional lattice with a discretezation value

of r =2. Taken from [1].
Possible values per vector v in Zg x Zg. Taken from [1]. . .
A depiction of the butterfly operation on two coefficients x;

sub-

Connections of the USB-TTL adapter to the development
board. Taken from [36]

X1

List of Tables

3.2

3.3

3.4

3.5

3.6
3.7

Operation counts on the client and the server side of the
NEWHOPE key exchange.
Communication pattern for client and server side of the
NEWHOPE key exchange on the Cortex-MO0.
Cycle counts per operation, together with overall perfor-
mance, of the NEWHOPE key exchange. Additionally, the
percentage of improvement is presented.
Performance comparison of the error sampling.
Performance comparison of the NTT husiplication- - - - - « -+ -
Performance comparison of the NTT.

xiii

List of Abbreviations

BCNS Bos, Costello, Naehrig and Stebila
CVP Closest Vector Problem

DFT Discrete Fourier Transformation
DLP Discrete Logarithm Problem
DMA Direct Memory Access

ECC Eliptic Curve Cryptography

FFT Fast Fourier Transformation
GPIO General Purpose Input / Output
KB Kilo Byte

KEM Key-Encapsulation Mechanism
LWE Learning With Error

NP Non-deterministic Polynomial time
NTT Number Theoretic Transformation
P Polynomial time

PA Pin Array

RLWE Ring Learning With Error
RNG Random Number Generator
ROM Read-Only Memory

ROM Random-Access Memory
RSA Rivest, Shamir and Adleman
RXD Read Data

SVP Shortest Vector Problem
TLS Transport - Layer Security
TTL Transistor - Transistor Logic
TXD Transmit Data

UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

XV

Introduction

In 1994, Peter Shor published an algorithm which is known by the name of
‘Shor’s algorithm’ |77]. It is intended to compute the prime factorization of
large integers and is a so called quantum-algorithm. A quantum-algorithm
is an algorithm which performs its computations on a quantum computer,
a computer based on quantum-mechanical phenomena. The breakthrough
Shor’s algorithm provides is that it is able to compute the prime factors
of an arbitrary long integer number in a reasonable amount of time, poly-
nomial time to be explicit. This was not possible before and leads to it
constituting a threat to the contemporary security backbone of the Inter-
net.

Due to contemporary cryptography used on the Internet not being able to
withstand the implications of Shor’s algorithm, research is conducted on al-
ternative approaches. One of such promising approaches are cryptographic
schemes which are based on lattices. One computationally hard problem
based on lattices to build cryptography on is the so called ‘ring-learning-
with-errors (RLWE) problem’. A theoretical concept of a key exchange was
first published by Ding, Xie en Lin [18] in 2012. The specific key exchange
we are investigating was published by Peikert [65] in 2014. After an in-
stantiation performed by Bos, Costello, Nachrig and Stebila, researchers at
Microsoft [7], a second, faster and more secure instantiation was published.
It was named, due to the possibility of providing a secure alternative for
the Internet, a NEWHOPE |[1].

Future-proof secure communication is not only relevant for personal com-
puters and servers, but also for embedded hardware. Therefore, it is essen-
tial for cryptographic primitives to be efficiently computable on those re-
stricted environments. We chose the low end Cortex-MO0 with its ARMv6M
architecture as target device to provide an efficient implementation of
NEwWHOPE.

The remainder of this thesis is split into two major parts, the background
context needed to understand the content of this thesis and the description
of the implementation we performed. The first part, the preliminaries,
are split into two subparts. The first describes the mathematical basics
on which the security of the cryptographic scheme NEWHOPE is build.
The second dives into the scheme and elaborates it and relevant design
decisions in detail. The second part, our implementation, presents the main
contribution of this thesis. It first introduces the target architecture and
continues with elaborating our implementation in detail. We start from the
changes we needed to perform to get it running on the restricted hardware.
We continue with the description of the specific optimization measures we
performed and end in a comparison of our optimized version with the non-
optimized version and comparable results from the literature.

Preliminaries

This section explains the relevant mathematical basics to understand the
following sections and the essence of the research we performed. A reader
who already possesses background information about the necessity of post-
quantum cryptography, lattices and the hard problems forming the basis
of RLWE might want to skip this section. First, basic information about
complexity theory is given. The goal is to enable every reader to under-
stand further assumptions and claims made on the basis of complexity
analysis. Second, the concept of post-quantum cryptography is elabo-
rated on, from its origins to its implications. Third, the mathematical
concept of lattices in general gets introduced. Then the concepts of the
shortest vector problem, the closest vector problem and the closely related
learning-with-errors (LWE) problem are provided. The concept of LWE
is then extended to RLWE, which is performed on lattices with a certain
algebraic structure. Fourth, instantiations of RLWE are discussed and
the key exchange (NEWHOPE) used for our fast ARM implementation will
be introduced. Additional information on relevant mathematical concepts
regarding NEWHOPE will also be presented in this subsection.

2.1 Complexity

In computer science complexity can be considered from two perspectives;
The first is describing the running time of an algorithm, the second is
describing the memory usage of an algorithm. Within this section we
will focus on the first perspective, the time complexity. The symbol to
represent complexity is O. It is called ‘big-O’ notation and is part of
the family of Landau notations, which allows a more specific complexity
analysis. f(n) = O(g(n)) is defined for the functions f and g applied on a
sufficiently large n as follows [67]:

de>03kVn>k: 0< f(n) <c-g(n).

In words; g defines an upper bound function, which is multiplied by a
constant ¢ greater zero, for the function f evaluated for the same input
n, which needs to be sufficiently large (n > k). This implies that from
a given threshold value k on, ¢ g(n) is always greater or equal to f(n).
A depiction of this can be seen in Figure 2.1. In the remainder of this
thesis we will describe in words that some algorithm 4 has a complexity of
O(upper bound of A) to refer to this definition of time complexity.

One variant needs to be introduced, which is f(n) = O(g(n)). It is used
to omit logarithmic factors and is defined as

Az : f(n) € O(g(n) log” g(n)).

We will briefly introduce three time complexity categories by name: Sub-
quadratic time is used to categorize algorithms running in greater than
linear time (O(n)), but less than quadratic time (O(n?)). Polynomial time
is used to categorize algorithms running in 2¢0°8™) and is computable in
a reasonable amount of time. Sub-exponential time is used to categorize
algorithms running in O(2"™) for 0 < € < 1 and is impractical to compute
for large enough parameters n.

FIGURE 2.1: An example graph for the relation of the
two functions f and g for which holds f(n) = O(g(n)).
Inspired by [67].

In complexity theory one distinguishes two kinds of problems: The ‘search
problem’ and the ‘decision problem’. The former is to find a solution
to a certain instance of a problem. The latter is to provide a yes-or-no
answer to an instance of the problem. Regarding decision problems two
complexity classes can be distinguished, P (polynomial time) and NP
(non-deterministic polynomial time). A problem P belongs to class P if it
can be decided on a deterministic Turing machine [30] in polynomial time.
The problem P belongs to class NP if the ‘yes’ instances can be verified
by a deterministic Turing machine in polynomial time. This implies that
P € NP. Whether these two complexity classes are equal or unequal is still
an unsolved problem in computer science. Figure 2.2 depicts the relation
of the set of problems in either case.

NP-Hard

NP-Complete

NP

NP-Hard

P=NP =
NP-Complete

Complexity

FIGURE 2.2: Visualization of the complexity problem
classes P and NP based on either the equality or inequal-
ity. Taken from [34].

As can be seen in Figure 2.2 the concept of NP-hardness and NP-
completeness need to be clarified. The concept of an NP-hard problem
is that any problem in NP can be reduced to it in polynomial time. The
concept of an NP-complete problem is that it is both, NP-hard (thus ev-
ery problem can be reduced to it in polynomial time) and it is in NP (thus
an answer can be verified in polynomial time).

2.2 Post-Quantum Cryptography

The term ‘post-quantum cryptography’ is a combination of words rooted
in Latin (post-quantum) as well as old Greek (cryptography). The prefix
‘post’ can be translated to ‘after’, while the term ‘quantum’ describes the
smallest quantity of radiant energy in physics. In the context of this thesis,
it is used as a reference to quantum computers. These are computers
which do not base their computations on binary states (e.g. realized by
electrical current) as classic computers do, but are based on quantum-
mechanical phenomena. In the remainder of this thesis, we will use the
terms quantum and classical as antonyms, e.g. classical computers and
quantum computers. The Latin part (post-quantum) provides the context
for the Greek part (cryptography), a context describing a situation ‘after
quantum computers exist’. The Greek part is a composition of the word
‘crypto’ and ‘graphy’. The first, ‘crypto’, can be translated to ‘hidden’ or
‘concealed’, while the later, ‘graphy’ can be translated to ‘to write’ or ‘to
represent’. Together they consequently describe the field of science which
studies possibilities to hide the written or to conceal representations of
information.

2.2.1 Classical Cryptography

Classical cryptography has been used for at least 4000 years [52]. Writ-
ten notes date back to Mesopotamia where the ‘At-bash’ cipher was used
and, of course, to Greek and the Roman empire, from which the ‘Polybius

Square’ and the ‘Caesar cipher’ are still known today [12]. However, the
application and complexity of methods used to conceal information varied
through the centuries. Until the early 20th century especially the military
and diplomats made use of this science. In the second half of the 20th cen-
tury business applications, mainly the financial sector, extended the circle
of users. At the end of the 20th century with the Internet at the horizon,
classical cryptography became part of everyday life.

Classical cryptography can be divided into two subfields, symmetric cryp-
tography and asymmetric cryptography. The historical examples are all
situated in the field of symmetric cryptography. Only advances in the field
of logic made it possible for asymmetric cryptography to be thought of,
as was done by William Stanley Jevons in his book ‘The Principles of Sci-
ence’ in 1874 [38]. However, it took nearly one more century until the first
asymmetric cryptographic scheme was instantiated, publicly accessible in
1976 by Diffie and Hellman [17]. Earlier the concept was proposed to the
British intelligence agency in 1970 by Ellis [23], which was made public in
1997.

2.2.2 Symmetric Cryptography

Symmetric cryptography is the subfield of cryptography most people have
in mind when confronted with the term cryptography. Represented in a
model it can be described as two parties, Alice and Bob, who want to
exchange information in a protected way. An illustration can be seen in
Figure 2.3.

Key Key

FIGURE 2.3: A brief model of symmetric cryptography.

Following from the terminology in Figure 2.3, the ciphertext is the en-
crypted information and is typically send via an insecure channel. Nowa-
days this channel could be the Internet, historically this could have been
a messenger traveling through enemy territory. Both parties, Alice and
Bob use the same key for encryption and for decryption. This, however,
only substitutes the problem of exchanging information by exchanging the
key.

2.2.3 Asymmetric Cryptography

Asymmetric cryptography is the subfield of cryptography, which can solve
the problem of exchanging the key. Three major scheme categories of
asymmetric cryptography can be distinguished. The category of signature
schemes, public-key schemes and key-exchange schemes. Signature schemes
can be understood as the category which enables correspondents to validate
each others authenticity. We will not elaborate on this category as it

exceeds the scope of this research. Public-key schemes are comparable
to the symmetric cryptography introduced in the previous section. They
differ in assuming not one key, but a key pair. This key pair consists of
a private and a public key, which are designed such that they are linked
mathematically. This enables the parties to communicate in a protected
way without the need to exchange a secret, because no secret key needs
to be transmitted. The public key is used as the key for encryption. The
only manner to decrypt the ciphertext is to use the corresponding private
key. An illustration can be seen in Figure 2.4.

Bob's public Key Bob's private Key

FIGURE 2.4: A brief model of a public-key scheme.

Key-exchange schemes are used to specifically solve the problem of ex-
changing the key. This category resides between the signatures and the
public-key schemes, because it requires authenticated correspondents and
actually performs the task of linking the keys mathematically. The idea is
to use the asymmetric properties of the public-key schemes to encapsulate
a key which can be used for further symmetrically secured communication.
Therefore, this category is also referred to as ‘key encapsulation’. The
schemes consist of public parameters called system parameters, Alice and
Bob both compute private secrets and compute their own public key with
the system parameters and their corresponding private secrets. Then they
exchange their public keys and derive a shared secret from the correspon-
dents public key and their own secret. An illustration can be seen in Figure
2.5.

System parameters (P)

-

Alice Bob
’ Compute secret A ‘ ’ Compute secret B ‘

l l

Compute public
key pkA from
A and P

Compute public
key pkB from
B and P

Compute shared
secret S from
pkB and A

Compute shared
secret S from
pkA and B

FIGURE 2.5: A brief model of a synchronous key-exchange
scheme.

In the case of a key exchange we can distinguish between actively and pas-
sively secure key exchanges. The active or passive refers to the capabilities

of the assumed adversary. A passive adversary can record and analyze mes-
sages which are send via an insecure channel, whereas an active adversary
is also assumed to be able to modify or inject messages [02]. An actively
secure key exchange makes its security claims with regards to an active
adversary, while a passively secure key exchange makes its security claims
only with regards to a passive adversary. A second way to distinguish key
exchanges further regards their synchronicity. Either the computation of
the public keys can be performed by both participants synchronously as
depicted in Figure 2.5 or the computation of the private keys depend on
each other. We will discuss this asynchronous key exchange in more detail
in Section 2.4. A third way to distinguish key exchanges even further is the
reusability of the system parameters and the derived shared secret.

The construction of asymmetric-cryptographic schemes introduces a new
attack vector, compared to symmetric cryptography, namely the compu-
tational effort needed to reconstruct the private key or private secret from
the publicly known information, e.g. the system parameters and the pub-
lic keys. To protect asymmetric-cryptographic schemes against this attack
vector they rely on the complexity of mathematical problems. At the
moment, the most commonly used schemes are based on either the factor-
ization problem or the discrete-logarithm problem.

The factorization problem, on which RSA-like asymmetric cryptographic
schemes are based |[71] relies on the fact that multiplying two integers
is easy while finding the prime factors of a product is computationally
hard. More formally, multiplying two integers of size n can be realized
in sub-quadratic time (e.g. by the Karatsuba algorithm [10] in O(n!°83)
or the Schonhage-Strassen algorithm [75] in O(nlognloglogn)). The
fastest classical algorithm to find the prime factors of a given integer prod-
uct, after years of research, is the number field sieve with a complexity

1 2
of about O(el9Uogn)3(loglogn)sy 1191 Thus prime factorization is still
sub-exponential in n and therefore impractical to compute if n is large
enough.

The discrete-logarithm problem (DLP) relies on the fact that exponenti-
ation is easy while finding the logarithm is computationally hard. More
formally exponentiation of an integer base of size n with an exponent k is
equivalent to k multiplications, thus it consists of k-times the complexity of
one multiplication. The fastest classical algorithm to find the logarithm of
a given integer product is, after years of research, also the number field sieve

with its complexity of about O(e!(°g n)3 (log o ")%) [12]. Finding the dis-
crete logarithm is therefore as well sub-exponential in n and consequently
also impractical to compute for a large enough parameter n. However,
if the DLP is defined on different groups, the complexity increases. An
example are elliptic-curve-based asymmetric-cryptographic schemes [50].
The best known algorithm to solve the DLP defined over elliptic curves is
the Pollard-p algorithm [68] with a time complexity of O(n%) [3], for n
being the group size.

2.2.4 Quantum Computation

Quantum computers make use of quantum-mechanical phenomena. Clas-
sical computers operate on so called bits. A bit is the measurement of
information as Shannon described it [76]. One bit can take the state 0 or
1 and thus classical computers perform their computations in the Boolean
domain. In the case of quantum computers the computations are per-
formed on so-called quantum-bits or qubits for short. We will use the term
‘qubits’ in the remainder of this thesis. Qubits can also take the (quantum)
states 0 or 1. However, qubits can also take the state of a superposition.
Superposition is the principle that additions of quantum states form a new
valid quantum state. Qubits can be represented in the Dirac notation [19]
as |0) and |1) for the case that a conversion to the Boolean domain al-
ways returns the 0 bit, or the 1 bit respectively. A superposition would be
denoted as |¢) = «|0) + B |1), for o and S being probability amplitudes,
which would be represented by complex numbers.

Quantum computation is a concept which is known to the literature since
1980, when Benioff and Feynman made the first publications in this field
of research |1, 27]. Even though the new field of science concerned with
quantum computations came a long way since then, it still remains hard to
construct a universal quantum computer. A wide variety of claims are made
regarding the amount of qubits and the size of numbers factored, as the
concept of factorization is relevant to cryptanalysis which was pointed out
in the previous chapter. The company D-Wave, receiving investments from
Google and the NASA, claims to have built a quantum computer consisting
of 1000 qubits [22]. Dattani and Bryan claim to have factored 56153 with
only 4 qubits [15] and Xu et al. [33] claim to have factored 143. However,
these factorizations are based on either side effects or a method called
‘adiabatic quantum computation’, which does not provide mathematical
guarantees if the numbers increase. In the case of D-wave the problem is
that their so called ‘quantum computer’ is not universal and even fails to
produce a quantum speed-up if the size of the problem increases [10]. The
largest number factored on a universal quantum computer is 21, by Martin-
Lopez, Laing, Lawson, Alvarez, Zhou and O’Brien [19] who additionally
reduce the qubits required by % The reduction of qubits was realized
by recycling the qubits. This recycling of qubits points into a possible
direction where fewer qubits are needed (only log n+1 qubits are required).
However, factorization performed on universal quantum computers is still
an open problem for reasonably large numbers. Researchers from IBM
estimate the arrival of large scale quantum computers within the next 15
years [31].

It is unclear how far the research genuinely is, since the development of
large scale quantum computers will have a severe impact on contemporary
cryptography as we will point out in Section 2.2.4.1. A document published
in the context of the Snowden revelations shows that the NSA classifies
the information about "Non-technical details (e.g., scheduling) regarding
NSA-conducted or -sponsored classified quantum computer research" as
confidential and technical details as well as "the existence of a specific
classified quantum computer research project" as secret [60]|. Additionally,

10

the option of higher classification is explicitly mentioned regarding specific
projects.

2.2.4.1 Quantum Cryptanalysis

The reason for the strict classification of information regarding quantum-
computer research can be explained to a certain degree by the impact
quantum computers have on contemporary cryptography. The two most
well known names related to quantum algorithms are Shor and Grover,
who both developed theoretical quantum algorithms.

Shor developed an algorithm known as Shor’s algorithm in 1994 [77]. It is
a so called quantum algorithm, indicating that it is designed for a quantum
computer. It combines a classical and a quantum part and makes use of the
quantum Fourier transform to extract the required information from the
superposition of quantum states. Shor’s algorithm is designed to perform
prime factorization. The groundbreaking aspect of Shor’s algorithm is
that it runs in polynomial time, to be explicit it can factor a number of
size n into its prime factors in O((logn)?(loglogn)(logloglogn)). Shor
[77] elaborates that his algorithm can also be used to efficiently solve the
discrete logarithm.

Grover published an algorithm known as Grover’s algorithm in his paper
‘A Fast Quantum Mechanical Algorithm for Database Search’, in 1996 [32].
It was intended, as the title of Grovers paper suggests, to search databases.
Classical algorithms need at least O(n) to search disordered domains of size
n, whereas Grovers quantum algorithms could perform the task in (’)(n%)
It provides therefore only a quadratic speedup, but will none the less affect
cryptographic primitives.

The subfield of symmetric cryptography is threatened only mildly by the
quantum algorithms known so far. Due to finding the key being a search
problem, Grovers algorithm can be used for quadratic speedups. This
implies the need of the security parameters to be adapted accordingly.
Papers as [39, 44| performed research on the quantum resistance of sym-
metric cryptographic schemes, however, they suggest that more research is
required in this field of study.

The subfield of asymmetric cryptography faces more severe consequences
due to the possibility of quantum algorithms used in cryptanalysis. In April
2016 Dridi and Alghassi used a quantum computer to factor all bi-primes
up to 200099 [20], which is still far away from being able to break real
world applications of cryptographic primitives based on the factorization
problem, but it illustrates that the scientific research is closing in on the
problem. Most asymmetric cryptography on the Internet used today is
either based on the problem of prime factorization (e.g. RSA, Rabin)
or the discrete-logarithm problem (e.g. Diffie-Hellman, Elliptic Curves),
which both can be computed in polynomial time by quantum computers.
Those primitives form the backbone of secure and private communication
of the Internet today. Proos and Zalka |[71] showed that the number of
qubits needed to break RSA are twice the amount of the key size, thus

11

to break RSA-2048 an amount of 4096 qubits would be needed. To break
elliptic curves approximately six times the amount of the key size is needed,
thus to break ECC-256 an amount of 1500 qubits would be needed.

2.2.4.2 Post-Quantum Primitives

"Is cryptography dead?", this question was asked by Bernstein at the be-
ginning of the book Post-Quantum Cryptography [6]. The book also
provides the answer; no it is not. Only certain primitives are threatened
by the development of quantum computers and the quantum algorithms
known today, e.g. the previously mentioned primitives based on integer
factorization and the discrete-logarithm problem. As pointed out earlier
in this section, most symmetric cryptographic primitives do survive a po-
tential development of a large scale quantum computer by adapting their
parameters. Further promising primitives, are

Hash based cryptography e.g. Merkle’s hash trees [53],
Code based cryptography e.g. McEliece’s hidden Goppa code [51],

Multivariate quadratic equation based cryptography e.g. Patarin’s
HFE [1],

Supersingular isogenies e.g. Feo’s, Jao’s and Plit’s proposal [16] ,and
Lattice based cryptography e.g. NTRU [35] or RLWE based approaches.

Within this thesis we focus on the last mentioned primitive, lattice based
cryptography based on RLWE.

2.3 Lattices

A lattice is a set of vectors which could be visualized as a periodically
spaced array of points in the two-dimensional plane (see Figure 2.6).

FIGURE 2.6: A part of a lattice in the two-dimensional
plane.

Figure 2.6 shows an example of a lattice in the two-dimensional plain R2.
In general, a lattice is defined as being a discrete additive subgroup in R™.

12

It can be generated from a basis B = {by,...,b,_1}, where b; are linear
independent vectors in R", for ¢ € (0,...,n —1). A lattice £(B) is the
following set of vectors:

a; € Z}

L(bg,...,b, {Zal

Different bases can define the same lattice. In Figure 2.7 two different

Bases can be seen. The basis By = {(0 1),(3,3)} is depicted with dashed
lines. The second basis By = {(—1,1)),(—3,—2)} is depicted with con-
tinuous lines.
0,1
(0,1)
|
|
I *
|,
,0) (170)

FIGURE 2.7: Two bases of the lattice, By and Bj.

It is crucial to emphasize that the same lattice can be defined by vari-
ous bases. This fact provides the logical precondition for the first of the
problems presented in the following.

2.3.1 Lattice Problems

Various problems can be defined in the scope of lattices, however, we will
only focus on four of them, being the relevant problems for the remainder
of this thesis. We will focus on the shortest vector problem (SVP) and
the closely related closest vector problem (CVP) of which we additionally
define gap versions and approximation versions. We then narrow down on
the LWE problem and the RLWE problem.

2.3.1.1 Shortest Vector Problem (SVP)

The SVP was formulated by Dirichlet in 1842; it is the search problem to
find a shortest non zero vector s in the lattice £(B) given a basis B, i.e. a
vector s € L£(B)\0 such that Vt € L(B)\0, ||s]| < [|t]| [55]. For || - || being
the ¢ norm defined for a vector x € R™ as ||x|| = (Y1, 27)z.

The decision version of the SVP problem is named GapSVP and translates
to asking the question whether a vector s exists that is shorter than a
parameter d. It gets the basis B and the maximum length d as parameters
and returns a binary answer. It return ‘yes’ if ||s|| < d or ‘no’ if ||s|| >

13

g(n) - d [31]. In all other cases the algorithm returns an error. The
function g defined as a function of the dimension is called the gap-function
and provides the name of the decision version.

The a-approximation version of the SVP and the GapSVP is expressed by
indexing the problem with an « (e.g. SVP,, GapSVP,) and describes the
search or decision version of the problem, which only needs to be solved
approximately by a factor of a.

2.3.1.2 Closest Vector Problem (CVP)

The CVP is the search problem to find the closest lattice point z of the
lattice £(B) to a non zero input vector v, given vector v and the basis
B. We define the distance function dist(v,z) to be the Eucildean distance
between the vectors v € R" and z € £(B) [78|. From this we can define
the closest vector to v regarding the lattice £L(B) to be:

dist(v,L(B)) = Zenzi(%){dist(v, z)}.

A visualization can be seen in Figure 2.8.

(070))

FIGURE 2.8: An example of a CVP with z = (1,1) and
v = (1.1,0.9).

The decision version of the CVP problem is named GapCVP and trans-
lates to asking the question whether a vector v has a distance to the lattice
L(B) that is shorter than a parameter d. It gets the basis B, the vector v
and the maximum length d as parameters and returns a binary answer. It
return ‘yes’ if dist(v, L(B)) < d or ‘no’ if dist(v,L(B)) > g(n)-d [31].
In all other cases the algorithm returns an error. The function g defined
as a function of the dimension is called the gap-function and also provides
the name of the decision version for CVP.

The a-approximation version of the CVP and the GapCVP are again ex-
pressed by indexing the problem with an « (e.g. CVP,, GapCVP,) and
also describes the search or decision version of the problem, which only
needs to be solved approximately by a factor of «.

14

2.3.1.3 Complexity of SVP and CVP

In 1981 van Emde Boas |[21] proposed a conjecture that the GapSVP
belongs to the class of NP-hard problems. This conjecture stayed unproven
till Ajtai proved that GapSVP is NP-hard to solve exactly for randomized
reductions, in 1997. If it is sufficient to approximate the GapSVP then
this does not hold true anymore. Lenstra et al. [1]] showed with the
famous LLL algorithm that it is possible to approximate GapSVP, in
polynomial time within a factor o = O((%)") Goldreich and Goldwasser
[31] went further claiming that the SVP is unlikely to be NP-hard for

n
logn

stays NP-hard for a < v/2.

factors a = O(). However, Micciancio showed in |51] that GapSVP,,

In 1981 van Emde Boas [24] further proved that the GapCVP belongs to
the class of NP-hard problems. Regarding the complexity analysis of the
GapCVP,, the numbers from GapSVP,, can be mapped to the GapCVP,,
because Goldreich et al. [30] showed that any algorithm efficiently approx-
imating GapCVP,, also efficiently approximates GapSVP, (for the same
factor o and with the same computational effort). However, it is unclear
whether the opposite holds true. Micciancio and Feige showed in [20] that

even with pre-processing GapCVP,, stays NP-hard for a < \/g .

2.3.1.4 Learning-With-Errors (LWE) Problem

In 2005 Regev published a paper with the title ‘On Lattices, Learning with
Errors, Random Linear Codes, and Cryptography’ [72] . It introduces the
concept of the LWE problem for lattices, which is a generalization of the
learning-parity-with-noise (LPN) problem. In his paper Regev also pro-
vided a quantum proof that solving the LWE problem implies an efficient
algorithm to solve GapSVP,, for a = n!-5. The parameters of this scheme
are n, which defines the security and the modulus ¢ > 2. If the modu-
lus is chosen to be equal to two and the error is chosen to be Bernoulli
noise, the LWE problem becomes an instance of the LPN problem. Regev
also suggests an asymmetric cryptographic scheme based on his contribu-
tions. Ding, Xie en Lin published a key-exchange scheme based on LWE
[1%]. Peikert presented an even simpler cryptosystem with tighter security
claims based on his proof that certain variants of the SVP problem can be
classically reduced to LWE problems [66]. As pointed out in Section 2.1,
two categories exist for computational problems like the LWE problem, a
search version and a decision version.

Search Version of LWE. In the search version of the LWE problem
pairs of vectors (a;,b;) are given, for which holds that a; < Zq and b; =
(s,a;) + e;. The task is to find the secret vector s € Zg. The error e; is
chosen from a probability distribution y defined on Z. The < operand
denotes that the vector a; is set to an uniformly random sample from Zg.
The idea is to determine s from several samples of the following form:

15

a; € Zg, b, :(s,a1> +e1
as € Zg, bo :(s,a2> + €2

Without the error e; being added to the inner product of s and a;, the
task could be efficiently solved by Gaussian elimination. Since there is an
error added, Gaussian elimination increases the problem to unmanageable
levels, since it takes linear combinations of n equations [73].

Decision Version of LWE. In the decision version of the LWE problem

the task is to distinguish between two pairs (a;, b;) and (a;, b;) for which
holds that a; € Z; and b; = (s,a;) +e;, and a;, b; € Zy. In words; Decide
for a given pair if the second vector is created from an inner product of the
first vector with some secret vector added to some error, or if the second

vector is uniformly random.

Regev proved in [72] that GapSVP,, can be reduced to LWE for a = O(%)
in the worst case. Regarding this reduction the chosen parameters are
two integers n and p, and a € (0,1) such that ap > 2\/n. Regev sets the
parameters for his cryptographic application top = O(n) and a = \/ﬁlng —.
This implies, that solving an instance of the LWE problem is at least as
hard to solve, in terms of complexity, as it is to solve a GapSVP@(%)

instance.

When used for cryptographic primitives the LWE problem is, however, in-
efficient. The major inefficiency is the key size. An instance of the LWE
problem with parameters comparable to the security of AES-128 would
require a key size larger than one megabyte [10].

2.3.1.5 Ring-Learning-With-Errors (RLWE) Problem

To make the concept of the LWE problem practical for cryptographic ap-
plication, the problem of the key size needs to be solved. RLWE provides
a solution to this at the price of introducing more structure. The key size
gets shrunk by a factor of at least 200 and is about two to five kilobytes
(depending on the choice of parameters). Thereby the lower bound of 2KB
is 4 times larger than a key for RSA-4096. As additional benefit, the matrix
multiplication gets faster due to the ring structure of the problem.

The introduction of more structure changes the security claims made by
the reductions mentioned in the previous section. However, the best known
attacks against RLWE do not exploit the ring structure [I]. Peikert, Regev
and Lyubashevsky additionally provide a reduction for RLWE resulting in
‘strong hardness claims’ |[18].

Subsequently to the explanation of how the inefficiency of the LWE prob-
lem gets solved and to the short summary of its hardness, we will continue
with the definition of RLWE based on the elaborations of Regev [73]|. The

16

quotient ring Ry = Z¢[X]/(X"™ 4 1) needs to be introduced, which can be
read as the ring of polynomials modulo X™ + 1 with each coefficient being
reduced modulo gq. The samples provided for the RLWE problem are of
the form (a,b = (s,a) +¢e) € Ry x R, for a € R, being chosen uniformly,
s € Ry being a fixed secret and e being chosen independently from some
error distribution.

2.3.1.6 RLWE based Key-Encapsulation Mechanism (KEM)

On the basis of the concept of the RLWE problem, Peikert proposed an
ephemeral and passively-secure key-encapsulation mechanism (KEM) in
his paper ‘Lattice cryptography for the Internet’ [65]. Based on the newly
introduced error-reconciliation method, one component in R, could be re-
placed by a more compact component in Re. The underlying insight is that
no explicitly chosen key needs to be transmitted, but just an approxima-
tion which allows both parties to derive the same, secure ephemeral session
key by error-reconciliation. The attributes of the key exchange, ‘passively’
and ‘ephemeral’ categorizes the key exchange with regards to the first and
third criteria to distinguish a key exchange we described in Section 2.2.3.
The key exchange makes its claims only about passive adversaries and the
key material must not be reused. The second way to distinguish a key
exchange we described in Section 2.2.3 is its synchronicity. The KEM pro-
posed by Peikert is an asynchronous key exchange as both parties cannot
compute their secrets on their own but depend on the computations of one
another. An illustration of the adapted model for an asynchronous key
exchange can be seen in Figure 2.9.

17

System parameters (P)

RN

Alice Bob

|

Compute secret A

and context C

|

Compute public

key pkA from
A and P

Compute secret B

in context C

|

Compute public

key pkB from
B and P

Compute shared
secret S from
pkB and A

Compute shared
secret S from
pkA and B

FIGURE 2.9: A brief model of an asynchronous key-
exchange scheme.

In the case of the KEM by Peikert the system parameters are ¢, n, and
x. Alice’s public key is b = as + e and Bob’s public key is u = as’ + €’
combined with the reconciliation information v’ as can be seen in Protocol

1.

Parameters: ¢q,n, x

KEM.Setup():

ad Ry

Alice (server) Bob (client)

KEM.Gen(a): KEM.Encaps(a, b):

s,e & x s, e, e & x

b«as +e L ucas +e
v+bs' + €’
v & dbl(v)

KEM.Decaps(s(u,v')): ¢ v/ = (V)9

p+rec(us, v')) p—| V12

ProTOCOL 1: Peikerts KEM as published in [65]. The

round function |-]3, the cross-round function (-)2, the ran-

domized function dbl(-) and the reconciliation function

rec(+,-) are used according to the specifications in the orig-
inal paper.

As pointed out in the introduction of this section the result of the combina-
tion of the private and public information of this scheme is only an approxi-
mation of the ephemeral key. For Alice it is the ring element us = ass’+¢’s

18

and for Bob it is the ring element v = bs’ + €’ = ass’ + es’ + €”. With
the help of the reconciliation information send by Bob, Alice and Bob are
able to use the error-reconciliation method described in [65]. By applying
the error reconciliation on their ring element, both are able to derive the
ephemeral session key p (being the shared secret S).

The <& infix operator used in Protocol 1 must be distinguished for three
cases depending on the second operand to understand the protocol and
to keep this thesis consistent with the NEWHOPE paper [l]. The first is
the uniform choice of coefficients for the second operand being R,. The

interpretation of a & R, is that all coefficients of the first operand a
are chosen uniformly from R,. The second is the case where the second

operand is the error distribution x. The interpretation of x & x is that
the first operand x gets sampled as x € R according to x. The third is
the case where the second operand is a probabilistic algorithm A. The
interpretation of y & A is that the output of A gets assigned to the
first operand y and A is running with randomly chosen coins. We see
the occurrence of all three cases in Protocol 1. In the setup phase the
coefficients of a are chosen uniformly from R,, Alice and Bob both sample
the errors from y, and the output of the algorithm dbl(-) running with
randomly chosen coins is assigned to V.

To put all three criteria to categorize a key exchange together, the KEM
proposed by Peikert is passively secure, asynchronous and does not allow
the reuse of the exchanged key. If instantiated correctly the major benefit of
this key exchange is that it is a post-quantum key exchange and thus guar-
antees forward secrecy for communication protected against adversaries
being equipped with storing capacities today and quantum computers in
the future. For that reason instantiations of this KEM are discussed as
concepts for a hybrid handshake in the Tor project |[79]. However, Peikert
does not provide specific recommendations for the parameter choices nor
an actual implementation. Therefore, the next step is to have a look into
actual instantiations.

2.4 Instantiations of the RLWE Problem based
KEM

Within this subsection we will introduce two instantiations of Peikert’s
KEM based on the RLWE problem. The first instantiation was published
in 2015 by Bos, Costello, Naehrig and Stebila [7]. We chose, again for
consistency with the original NEWHOPE paper, to name the instantiation
accordingly to the first letters of the authors, BCNS. The second instan-
tiation was first published in 2015 and revised in 2016 by Alkim, Ducas,
Poppelmann and Schwabe |[I| under the name NEWHOPE. This second
instantiation is also the main focus of this thesis as we implemented it on
the Cortex-MO.

19

2.4.1 BCNS

Bos, Costello, Naehrig and Stebila published the first instantiation of Peik-
ert’s RLWE-based passively secure KEM in 2015 [7]. The goal was to pro-
vide a 128 bit security level. The parameters they chose were n = 1024 and
g = 232 — 1. As discrete Gaussian error distribution they chose y = Dy »
for o = \/% ~ 3.192. Since the instantiation is based on the KEM pro-
posed by Peikert, the ephemeral session key is only received after error
correction. This results in a probability of 272" for the key not being
equal for Alice and Bob, the participants of the key agreement. The mes-
sages send between Alice and Bob are at least logy(q)n = 32 kilobytes for
the message b, a ring element, which Alice sends to Bob and 33 kilobytes
for the answer (u,v’) consisting of the ring element u and v’ being in Rs.
The cycle counts on an Intel Haswell architecture as presented by [I] are
~~ 2958995 for the server side and = 3995977 for the client side of the key

exchange.

2.4.2 NEWHOPE

Alkim, Ducas, Péppelmann and Schwabe published the second instantia-
tion of Peikert’s RLWE-based passively secure KEM in 2015 (after BCNS)
and a revised version in 2016 [I|. Compared to the BCNS approach it
provides faster computation, stronger security claims, and a noteable de-
crease in key and message size. For the detailed security claims we re-
fer to [1], where the authors provided a detailed security analysis of all
known and presupposed quantum algorithms for solving the underlying
SVP. The claim the authors make is to provide a security level of ‘128 bits
of post-quantum security with a comfortable margin’ [1]. As an additional
security enhancement the authors of NEWHOPE decided to generate the
system parameter a freshly in every run of the key exchange. This choice
prevents backdoors and all-of-the-price-of-one attacks for the price of a
slight computational overhead. The parameters they chose were n = 1024
and ¢ = 12289 < 2, which obviously improves the efficiency, but also
the security. As error distribution they did not chose the discrete Gaus-
sian distribution, but decided to use a centered binomial distribution ¥
for K = 16. We will elaborate on the error distribution in the following
subsection. Since the instantiation is also based on the KEM proposed by
Peikert, the ephemeral session key is only received after error correction.
This results in a probability of less than 276 for the key being not equal
for Alice and Bob, the participants of the key agreement.

Furthermore, the authors of NEWHOPE changed the reconciliation method
and proposed a new error-correction approach. The insight that led to the
changes made was that if 256 bits need to be decoded into n = 1024
coeflicients, four coeflicients can be used to decode one bit. This yields an
increased error-resilience which allowed them to use larger noise and thus
increase the overall security.

Additionally, they chose to specify encodings of the polynomials in the
domain of the Number Theoretic Transform (NTT), which eliminates some

20

of the NTT computations necessary. We will discuss the error-reconciliation
and the NTT in detail in the following sections. The messages send between
Alice and Bob are 1824 bytes for the message b, an element in the NTT
domain with the encoded seed for a, which Alice sends to Bob and 2
kilobytes for the answer (@, r) consisting of @ in the NTT domain with the
encoded r being in R4. The cycle counts are ~ 358 234 for the server side
and = 402 058 for the client side of the key exchange. These cycle counts
are on the same architecture for the server side computations by a factor
8.26 faster and for the client side computations by a factor of 9.94 faster
compared to the BCNS instantiation. The scheme of the NEWHOPE key
exchange can be seen in Protocol 2.

Parameters: ¢ = 12289 < 24 n = 1024
Error distribution: Wqg

Alice (server)

seed & SHA3-256({0, ..., 255}32)
a«+Parse(SHAKE-128(seed))

s, e & (LA

§NTT(s)

mg=encodeA (seed,b)

baos+NTT(e) o
ytes

mp=encodeB(l1,r)

(4, r)+decodeB(m;)
Ve NTT-!(108)
v<Rec(v',r)
pu—SHA3-256(v)

2048 Bytes

Bob (client)

P 3 n
s,€e,e <_,(7D16

(b, seed)<—decodeA(m,,)
a«Parse(SHAKE-128(seed))
tNTT(s)
G<aot+NTT(e)
veNTT '(bot)+e’

r & HelpRec(v)

v<Rec(v,r)
p—SHA3-256(v)

ProTocoL 2: The NEWHOPE protocol including NTT
and NTT~! computations and sizes of exchanged mes-
sages; o denotes pointwise multiplication. (Inspired by

(1)

2.4.2.1 NEWHOPE Error Distribution

As described above do the authors of NEWHOPE use the centered binomial
distribution Wi as error distribution. The centered binomial distribution
U, has a mean of u = 0 and a variance of ¢? = g For the parameter
k = 16 this results in a standard deviation of o = v/8 ~ 2.83. The authors
of NEWHOPE chose this error distribution to provide a faster sampling rate

and to protect the error sampling against timing attacks.

However, original reductions performed by Regev [72| for LWE and Regev,
Peikert and Lyubashevsky [15] for RLWE, state the security guarantees
only for continuous Gaussian distributions. The authors of NEWHOPE
claim in Theorem 4.1 [I] that this is not an issue and additionally provide
a proof in their appendix. The first aspect to notice is that to recover

21

the correct key u the pre-hashed key v is required, which can be seen in
the last row of Protocol 2. Their proven theorem then states that any
algorithm which would succeed in recovering v with probability p would
also succeed against an idealized version of the pgrotocol with a discrete

Gaussian error distribution with probability g = %. The attentive reader
might have spotted that we switched to a discrete Gaussian distribution
while the security reductions are only performed on continuous Gaussian
distributions. However, in [9] Brakerski extended the security reductions
to discrete Gaussian distributions.

2.4.2.2 NEWHOPE Error-Recovery Mechanism

The error-recovery mechanism and the analog error-reconciliation approach
chosen by the designers of NEWHOPE is based on the fact that solving a
CVP is easy for low dimensional lattices. It can be interpreted as Fuzzy Ex-
tractor, using helper data r to retrieve the same v from slightly different v
and v’'. The reconciliation method from NEWHOPE uses dimension d = 4,
thus the lattice Dy with basis B = (ug, uy,ug, g) for u; being the canonical
basis vectors of Z* (e.g. ug = (1,0,0,0),u; = (0,1,0,0),u; = (0,0,1,0))

and g = (%, %, %, %) The Voronoi cells ¥ of this lattice are 24-cells, called

icositetrachorons [13]. A target point gets mapped to a cell by the closest
vector algorithm, which solves the C’VPL§4 efficiently. A detailed expla-
nation, taken from |[l] can be seen in Algorithm 1, where the rounding

function is defined as |2] = |z + 3| for z € R.

Algorithm 1 Solving CVP; (v € R*)

Ensure: An integer vector z such that Bz is a closest vector to v: v—Bz €
4
if (|lv—|v]|l1) <1 then
return (|vo], [v1], [v2],0)! + [v3] - (=1, —1,—1,2)¢
else
return (|vo|, |v1], [v2], 1)t + |vs]) - (—1,—1,-1,2)¢
end if

Having defined Algorithm 1 the function producing the helper data for
the error-reconciliation, called HelpRec can be defined as,

r

2
HelpRec(v,b) = CVPp, (q(v + bg)> mod 27,

for b € {0,1} being a random bit, resulting in the algorithm running with
a fairly chosen coin, and r being the discretezation value, which we will
explain below and can be assumed to be r = 2. For dimension d = 4
this implies that r - d = 8 bits of reconciliation information need to be
transmitted per key bit.

To calculate the reconciliation a simplified algorithm needs to be intro-
duced, which returns the result modulo Z* and is called Decode. The
definition taken from |[!] can be seen in Algorithm 2.

22

Algorithm 2 Decode(x € R*/Z%)
Ensure: A bit k such that kg is a closest vector to x+Z* x—kg € ¥ +7Z*

I v=x—|x]|
2: return 0 if ||v||; <1 and 1 otherwise

Having defined Algorithm 2 the reconciliation function producing the
ephemeral key before hashing v from a vector x and a reconciliation vector
r € {0,1,2,3}*, called Rec can be defined as,

1 1
Rec(x,r) = Decode(&x — yBr).

To reduce a 1024 coefficient polynomial in R, to a vector in Dy the authors
of NEWHOPE take 4 coefficients at a time creating 256 different vectors in
Dy.

The Two-Dimensional Depiction. The original NEWHOPE paper elab-
orates the concepts of error-reconciliation on the example of the 2-dimensional
lattice Dy for illustrative purposes, since it can be drawn. The lattice D,
has the basis {(0,1),(3,3)} and the Voronoi cells become diamonds for
this lattice dimension. A fragment of this lattice can be seen in Figure
2.10, where the dashed lines depict the boundaries for the reconciliation

vector v € [0,1)2 C R.

FIGURE 2.10: A part of the lattice Dy. Taken from [1].

Since both parties of the key exchange, Alice and Bob have a slightly
different vector, v4;ce and vy the idea of the error-reconciliation used
by the authors of NEWHOPE is to let one of the participants, in this case
Bob, send the distance between his vector and the center of the Voronoi
cell as helper data or reconciliation vector r . Alice then simply adds this
vector r to her vector vgp. to move towards the center of the correct
Voronoi cell. This is required to produce the same output bit. It is set to 1
if the vector is in the gray Voronoi cell (v = (3, 1)) or set to 0 if the vector
is in the white Voronoi cell (v € {(0,0),(0,1),(1,0),(1,1)}).

However, this would require to send a full additional vector, hence did the
authors of NEWHOPE decided to use the concept of r-bit discretezation.

23

The concept relies on the idea of splitting each Voronoi cell into 2% subcells
and sending only the information in which subcell a vector vpgy, lies. A
depiction can be seen in Figure 2.11.

FIGURE 2.11: Discretezation of the gray Voronoi cell

(1, 1) into 29" sub-cells for the 2-dimensional lattice with
a discretezation value of » = 2. Taken from [I].

The last aspect of the error reconciliation we need to discuss briefly, is the
bias of the possible vectors. The problem is that we have q possible vectors,
since ¢ is a prime greater two it is odd and thus produces a small bias for
each key bit. To resolve this issue, the authors of NEWHOPE add the term
bg in the HelpRec function. In words, this adds the vector (%, z—lq) with
a probability % The result of this has just a marginally effect on most
outcomes, however, it does move v with probability % to another Voronoi
cell, which eliminates the bias. In the NEWHOPE paper ||, this concept
is called blurring and a depiction can be seen in Figure 2.12.

VLoV a o a NS
¥ v e

FIGURE 2.12: Possible values per vector v in Zg X Zg.
Taken from [1].

24

2.4.2.3 NEWHOPE Number Theoretic Transform

In this section we describe the NTT in detail. We will start with the most
general form, the Discrete Fourier Transform (DFT) and narrow down the
scope on the NTT and algorithmic optimization measures. Explicitly, we
will discuss the Fast Fourier Transform (FFT) and the negative-wrapped
negacyclic convolution. With these concepts as background information,
we are able to describe the in-place NTT algorithm based on Gentlemen-
Sande [29] butterfly operations used in the reference implementation of
NEwHOPE [1].

Discrete Fourier Transform (DFT). Following loosely the elabora-
tions of Fiirer [28], the n-point DFT can be described as linear mapping
of a vector x = (z9,x1,...,Tn—1) to another vector y = (Yo, ¥Y1,---,Yn—-1)
by b = w/*a for j > 0, k < n — 1 with a primitive n-th root of unity w.
This mapping can be defined by

n—1

Yp = Zaﬁj-wjk, fork € {0,...,n—1}.
§=0

An n-th root of unity w is characterized by satisfying
wh=1.

If n is also the smallest integer of k& € {1,...,n} for which holds that
wF =1, w is called a primitive n-th root of unity. Being a primitive n-
th root of unity grants several properties from which we will introduce

two:

Reduction Property If ¢ is a 2n-th root of unity, then ¥?> = w is an
n-th root of unity.

Inverse Property w™! = w1

We will relate to these properties in the following to elaborate the workings
of certain constructions. For now we take a look at the DFT, which can
be described as matrix multiplication, due to it being a linear mapping
by

Yo 1 1 1 . 1 o
1 1 w w? . w1 1
y2 | — |1 w? w ... w2(n=1) T9

| Yn—1] _]_ w1 w2(n—1) w(n—l)(n—l)_ | Zp1 |

The inverse of the DFT, DFT~!, is defined for cases in which n~! the
multiplicative inverse of n exists by

n—1

T; = n*IZyk-w*jk, forj € {0,...,n —1}.
k=0

25

Similarly to the DFT the DET ™! can be described as matrix multiplication
by

1 1 wt w2 .. w—(n=1) Y1
T2 —n 1|1 w2 w4 .. w™2(n=1) Y2

L1 1 w—(;z—l) w—Z('n—l) w—(n—.l)(n—l) Yn—1

From the inverse property it can be seen in the matrix representations
that the inverted w’s are simply calculated by restructuring the matrix of
the DFT (taking its complex conjugate transpose). For example, we can
see that the second column of the DFT matrix is exactly the same as the
transposed last row of the DFT~! due to the inverse property.

Another fundamental aspect of the DFT is that the vector x can be inter-
preted as polynomial

pe(2) =m0+ 212+ 2022 + -+ 212"

If we write the sum from the DFT definition above as
Y = T0 + 210" + 29w 4 -+ xR

it can easily be seen that yj, is the evaluation of the polynomial p,(w").
This shows that the DF'T relates the coefficients to the values of a polyno-
mial.

If we consider the interpolation theorem in Theorem 2.4.1 as described
by [25], we can see that four simple steps are required to multiply two
polynomials with the help of a DFT.

Theorem 2.4.1 The Interpolation Theorem for Polynomials. Given a set
Of n pO’Z?’LtS in the plane, S = (:EO’ y0)> (xla y1)7 ($27 y2)7 SER) (:L‘nfla ynfl);
such that the x;’s are all distinct, there is a unique n — 1 polynomial p(x)
with p(x;) = yi, fori € {0,1,...,n—1}.

As example we assume two polynomials p, and p of size n. We pad both
polynomials to size 2n to match the size of the resulting product polynomial
De = Pa - Pp- We will represent the polynomials by their corresponding
vectors a, b and ¢. The four steps required for multiplying two polynomials
with the help of a DFT are the following:

1. Evaluate the polynomial p, in 2n points by applying the DFT.

2. Evaluate the polynomial p, in the same 2n points by also applying
the DFT.

3. Compute the 2n products of the evaluated points.

4. Perform an DFT™! to compute p.’s coefficients from the values of
the polynomial.

The points derived at the third step represent the final polynomial accord-
ing to Theorem 2.4.1. The fourth step is thus needed to transform the

26

values to the coefficients of the resulting product polynomial. A product
polynomial p. = p, - p can thus be computed by ¢ = DFT~(DFT(a) o
DFT(b)) with o denoting the pointwise multiplication. In the remainder
of this thesis we will use the subscript ‘multiplication’ to differentiate the

DFT and the DFTmultiplication-

NTT. The NTT is a specialization of the DFT defined for vectors with
its elements being in the finite field. One such finite field is the quotient
ring Ry = Zq[X]/(X™ + 1) we introduced in Section 2.3.1.5. Multiplying
two polynomials inside the quotient ring can therefore be computed as
c =NTT}(NTT(a) o NTT(b)) for a,b € R,. Note that a primitive n-th
root of unity is guaranteed to exist if n divides ¢ — 1. This is the reason
for the parameter choice for NEWHOPE, as 12289 is the smallest prime
which satisfies ¢ = 1 mod n for n = 1024. If Z;L:_Ol w* =0, w is called
a principal root of unity. Every primitive root of unity defined over a
finite field is also a principal root of unity. This grants us the additional
Reflective Property for principle n-th roots of unity, which states that

n
wk+§ — _wk'

Algorithmic Optimization Measures. Two optimization techniques
of the NTT need to be defined, the FFT and the negative-wrapped nega-
cyclic convolution.

The FFT is an algorithm to compute the DFT efficiently and can also be
used to compute specializations of the DFT such as the introduced NTT.
In the literature the FFT for a sequence of arbitrary length was published
by Cooley and Tukey in 1965 [13], but was discovered several times before.
The earliest discovery dates back to Gauss in 1809 [33]. The idea is to
divide an n-point DFT, for n being divisible by 2, repeatedly by 2 until
only 2-point transforms are left. The amount of divisions required is logn
and defines the amount of levels the FF'T needs to perform. Each division
by 2 is realized by distinguishing the even and the odd elements. The first
division of the DFT can therefore be rewritten as

n—1 %_1 %_1
2 :xj . wjk’ _ 2 : Tom - w?mk + § : Tomi - w(?m-l—l)k_
7=0 m=0 m=0

This shows that we can rewrite the n-point DFT by two §-point trans-
forms. The variable k still ranges over n values, however, only 5 values
of the parity divided sums are required to be computed as both are peri-
odic in k with a period of § as can be seen from the reflective property.
This rewriting can be performed recursively logn times until only 2-point
transforms are left. Different approaches can be chosen to compute the
2-point transforms. The authors of NEWHOPE chose for an algorithm con-
sisting of Gentlemen-Sande butterfly operations [29] which combine the
two coefficients x; and x; in the following way:

27

; o
)L
z; w' (s —)

The indices ¢ and j are depended on the level I € {0,...,logn} which
defines the distance d = 1 < [with ‘<’ representing a binary left shift.
The start position of the range of the index 7 needs to be calculated per level
as start € {0,...,d}. For each element in start the index of i ranges from
the value in start to n with a step size of 2d. The index j is simply j = i+d.
The twiddle factor w® gets determined by the exponent ¢ € {1,...,%}. The
actual C code defining and looping over the indices can be found in Listing
3 in Section 3.4.1.

The origin of the name ‘butterfly’ can be understood with some creativity
from the Figure 2.13, which depicts the way x; and x; are combined to
produce the results 2} and 7.

Z Lj

Tl =z + v = wh(z; — zj)

FIGURE 2.13: A depiction of the butterfly operation on
two coefficients x; and x;.

The performance gain achieved by the FF'T is that it can be computed in
O(nlogn) whereas the naive approach to compute the DET (or NTT) has
complexity O(n?). Due to the FFT splitting the input according to its
parity the bits get reversed, at least if the FFT is calculated in-place. We
will illustrate that with a short example. A vector x = (xg, x1, T2, 3) gets
split into the two vectors Xeven = (%0, z2) and Xoqq = (21, x3). The new
bit ordering is therefore (xg,x2,x1,x3). This ordering, however, is a bit
reversal of the original values as 012 becomes 102 and vice versa (002 and
119 stay the same after reordering). Therefore, such an FFT takes either
bits in normal order and returns its output bits in reversed order or it takes
bits in reversed order and returns its output bits in normal order.

The product polynomial p. needs to be reduced such that ¢ € R, becomes
a ring element. The negative-wrapped negacyclic convolution deals with
the problem of reducing the product polynomial. From the reversal of the
reduction property we derive that we can choose 1 to be a primitive 2n-
th root of unity in Z, if we chose it to be ¢ = \/w. When we multiply
the vectors a and b by the powers of 1) we receive two new vectors a,, =
(ag, a1, agp?, ... an—19™ 1) and by = (bo, b1tp, batp?, ... bp_yp"). If
the resulting polynomial is multiplied by the inverted powers of 1, we get
the negative-wrapped negacyclic convolution. This optimization technique
does not require the padding of the input polynomials p, and p, and reduces

28

the result ¢ implicitly modulo X" +1. We could therefore perform the mul-
tiplication of two polynomials p, and py of size n and their corresponding
vectors a,b € R, such that p. is also of size n and ¢ € R4 by computing
c= (L, L ¢2 . . ")) o NTTH(NTT(ay) o NTT(by)).

The NEWHOPE In-Place NTT. From this section forward we will refer
to the FFT optimized NTT multiplication including the negative-wrapped
negacyclic convolutions as NTT uisiplication- The transforms will be denoted
by NTT and NTT ! respectively. In the case of NEWHOPE for n = 1024 we
deduce from the details provided above that logn = 10 levels are required,
each performing § = 512 Gentlemen-Sande butterfly operations. Each
Gentlemen-Sande butterfly operation is performing its computations on
two coefficients with an increasing step size per level. Therefore, also 3
powers of w are required. The primitive n-th root of unity is fixed by the
authors of NEWHOPE to w = 49 and consequently ¢ = /49 = 7. These
values fix also their inverses w™! = 497! mod ¢ = 1254 and ¢~ = 77!
mod ¢ = 8778. The only thing left to calculate is the scalar n=! mod g =
12277 to be able to compute the NTT~L. Due to the choice of Gentlemen-
Sande butterfly operations, the NTT and NTT~! both expect bit-reversed
inputs and produce normal-bit-ordered outputs.

2.4.2.4 Optimization Measures for the NTT

In the following we present four optimization techniques for calculating
the NTT nultiplication Which are already in place due to the decisions made
by the authors of NEWHOPE. These descriptions of the four optimization
techniques will be completed with respective mathematical concepts needed
to understand each technique.

The first optimization applied by the authors of NEWHOPE is that the bit
reversal required before the computation of each NTT is omitted, because
all inputs are randomly generated and therefore assumed to be in bit-
reversed order. The bit reversal cannot be omitted for the NTT~! and
needs to be computed before each occurrence.

The second optimization applied is that the reduction required after addi-
tion is replaced by a ‘short Barrett reduction’ [3]. The main idea behind
the ‘short’ approach is the realization that it is not required to fully reduce
the coefficient modulo ¢, but it is sufficient to reduce any 16-bit unsigned
integer to an integer congruent modulo ¢ of at most 14-bits [1]|. Since all
reductions must be performed modulo ¢ the pre-computation necessary for
the Barrett reduction can be hard-coded as parameter.

Barrett Reduction. The Barrett reduction was introduced by Barrett
in 1987 [3] for implementing RSA efficiently on a standard digital signal
processor. It computes r = x mod m for given x and m. Additionally

it needs a pre-computation, which makes it only efficient for many reduc-
. 2k
tions with a single modulus m. The pre-computation required is p = %.

By computing p the costly and otherwise needed division is not required

29

anymore and can be replaced by a multiplication. The Barrett reduction
can be seen in Algorithm 3 taken from [52], which assumes b > 3 .

Algorithm 3 Barrett reduction

INPUT: positive integers z = (zox—1...212Z0)p, m = (Mg_1...Mm1M0)p
. o b2k:
(with my_1 #0), and p = >—.
Output: r =2 mod m.
Lag =) e ap a3+ (58]
2. r1 <« mod bt 1y < g3 -m mod bFTL 1y — 1o,
3. If r < 0 then r < r + bFt+1.
4 While r >m do: r +r —m.
5. Return r.

The third optimization applied by the authors of NEWHOPE is to use the
Barrett reduction only every second (odd) level, which they call ‘lazy’. The
insight which lead to this optimization is that per addition a maximum of
one carry bit occurs. For 14-bit inputs this leads to a situation where the
output after addition of an even level is at most 15-bit. Since the Barrett
reduction can handle up to 16-bit inputs it suffices to perform it only every
second level. The addition performed in an odd level could lead to results of
at most 16-bit, which can still be handled by the Barrett reduction.

The fourth optimization applied is that the Montgomery representation
[57] is used within the NTTpyitiplication- Each arithmetic operation is per-
formed in Z,, therefore the Montgomery constant needs to be > 214 The
authors of NEWHOPE chose it to be R = 2'8. By not storing the pre-
computed powers of w but their Montgomery representation (28w mod ¢)
the result of a multiplication with a coefficient can be reduced by the fast
Montgomery reduction. Again, the randomly chosen input polynomials
are assumed to be already in the Montgomery domain. The implementa-
tion of NEWHOPE went even further by not completely reducing modulo
q, but just reducing it until the result is at most 14 bits, which is suffi-
cient for any unsigned integer in {0,...,2% —q(R—1) — 1} [I]. However,
this specific implementation does not work correctly for any 32-bit integer,
e.g. the addition returns 0 instead of 4095 when asked to reduce the input
232 _q(R—1) = 1073491969. This is no problem, due to the possible range
of input values as elaborated in [1].

Montgomery reduction. The Montgomery reduction was introduced
by Montgomery in 1985 [57]. It is a method of reducing 7' modulo m, a pos-
itive integer. Another integer R > m is needed, for which ged(m, R) = 1.
Montgomery described a method for computing TR™' mod m without
using the standard reduction algorithm. If R is chosen correctly, the
Montgomery reduction can be computed very efficiently. The algorithm
of the Montgomery reduction as presented in [52] can be seen in Algo-
rithm 4.

30

Algorithm 4 Montgomery reduction
INPUT: integers m = (mp—1...mimg), with ged(m,b) = 1, R = b,
m' = —m~! mod b, and T = (th—l .. .tlto)b < mR.
Output: TR~! mod m.
1. A«T.
2. For i from 0 to (n — 1) do the following:
2.1 u; + a;m’ mod b.
2.2 A+ A+ u;mb.
3. A« 4.
4. If A<m then A +— A —m.
3. Return A.

With this we conclude the preliminary section and hope to have provided
the reader with sufficient background information to dive into the im-
plementation details of our ARM optimized implementation of the post-
quantum key exchange NEWHOPE we will discuss in detail in the next
section.

NEWHOPE for the ARMv6-M
architecture

In this section we present an efficient implementation of the NEWHOPE key
exchange on the ARMv6-M architecture. We took the reference C imple-
mentation provided by the authors of NEWHOPE, examined the computa-
tional effort per building block, and carefully optimized them in assembly.
The architectural characteristics and the optimization of the NEWHOPE
building blocks, which are described in the following subsections, form the
main contribution of this Thesis.

First, we provide a short introduction to the target microcontroller and
elaborate on relevant characteristics of the ARMv6-M architecture in de-
tail. Second, we provide a summary of the core building blocks from an
implementation perspective. Third, we provide a summary of essential
changes to fit NEWHOPE on the Cortex-M0 and how we realized commu-
nication. Fourth, we describe optimization techniques per building block,
which are based on the structure presented Section 3.2.

3.1 The ARM Cortex-M0 (ARMv6-M)

As representative of the ARM Cortex-M family we chose the Cortex-MO
as target platform. It is the smallest processor provided by ARM [2]. It
is based on the ARMv6-M architecture which makes use of a combined
instruction set. It fully supports Thumb instructions and additionally pro-
vides support for a subset of the Thumb 2 instruction set. The Cortex-M0O
provides 13 general purpose registers, however, only Thumb 2 instructions
can make use of all of them. Thumb instructions can only make use of the
first 8 registers. It additionally provides three special registers, the stack
pointer r13, the link register r14, and the program counter r15. Each of
these registers is 32-bit wide, the general word size of the Cortex-M0. The
words are represented in little-endian. It allows for memory operations
to load and store N registers by using the STM and the LDM instructions
instead of the STR and the LDR instructions. The first take 1 + N cycles,
while the later take 2 cycles. Further, do the first two instructions increase
the pointer by default by N times ‘word length in byte’, which saves one
more add instruction. Another aspect of the Cortex-MO is that it does not
provide a random number generator (RNG).

We implemented and ran our tests and cycle counts on an STM32F0 Dis-
covery board. This board contains a STM32F051R8T6 microcontroller,
which we ran at 48MHz. It provides 8KB of RAM and 64KB of flash
memory. Connectivity is partly provided by the USB cable. We used it to

31

32

flash the microcontroller. To communicate with the board, a USB to TTL
serial adapter is used. The ground and 3.3 Volt power cables are connected
to the corresponding GPIO pins, RXD is connected to PA2 and TXD is
connected to PA3. The 5 Volt cable stays unconnected.

3.2 NEWHOPE Building Blocks

From a perspective which takes the implementation into account, one can
distinguish between the following building blocks of NEWHOPE: The gen-
eration of the public parameter a, the sampling of noise, the computation
of the NTT and the NTT~! including bit reversal, the multiplication of the
coefficients, the pointwise multiplication and addition, the error reconcil-
iation and the help vector generation for the reconciliation, and hashing.
In Table 3.2 the frequency per function can be seen per participant of the
key exchange. We will make a change in notation at this point consistently
with the change from the the overall model perspective to the actual im-
plementation perspective. We will, in the remainder, distinguish between
the server side and the client side of the key exchange, contrary to the so
far used participants of the key exchange, Alice and Bob. Please note that
that the server side corresponds to Alice as she initializes the key exchange
due to NEWHOPE being designed to fit into the TLS protocol.

TABLE 3.2: Operation counts on the client and the server side of the

NEWHOPE key exchange.

Operation Server-side | Client-side

Generating the public parameter a;

Sampling noise polynomials;

Computing the NTT;

Computing the NTT~! with bit reversal;

Multiplying the coefficients with 1 (respectively 1~1);
Computing the polynomial addition;

Computing the pointwise multiplication;

Computing the help vector r for error reconciliation;
Computing the error reconciliation Rec;

N — O = N W~ NN

Hashing.

[

o= =N NN W =N W

33

These building blocks can be grouped together according to the following
five concepts:

NTTmultiplicationa

Error Reconciliation,
Polynomial Arithmetic,
ChaCha20, and
Keccak.

We ordered the categories according to relevance due to cycle count and
frequency of the operation counts, except for the Keccak related functions,
because we make use of an already available assembly implementation pro-
vided by Noekeon [14]. Regarding the categorization, we have the following
structure:

The first category contains building blocks that are required to compute
the NTT hultiplication- This category includes the NTT, the NTT—L, the
multiplication of the coefficients with v before the NTT and with !
after the NTT~!, and the bit reversal. The NTT and NTT~! functions
differ only by their second parameter, which are the powers of w for the
NTT and the powers of w™! for the NTT~'. The bit reversal function
reverses the bits of the polynomial with the help of a look up table before
the NTT~!. We will categorize the pointwise multiplication, which belongs
to the NTT yutiplication, DOt here as it will fit better into the category of
polynomial arithmetic during our elaborations of the applied optimization
techniques.

The second category contains building blocks that are used for error rec-
onciliation. This category includes the generation of the help vector and
the error reconciliation itself. Both functions operate on another represen-
tation of the polynomial. As described in Section 2.4.2.2 the key agreement
is performed on the lattice Dy. The two functions are intertwined due to
their definition. The help vector generation takes a polynomial and noise
as input and returns the help-vector r. The reconciliation function com-
putes a key from such a help-vector and an approximate polynomial. The
formal definitions can also be found in Section 2.4.2.2.

The third category contains building blocks that perform polynomial
arithmetic. This category includes the polynomial addition and the point-
wise multiplication. The polynomial addition and pointwise multiplication
do exactly what one would expect. The polynomial addition performs n
additions of the coefficients and the pointwise multiplication performs n
multiplications of the coefficients.

The fourth category contains a building block that makes use of the ChaCha20
stream cipher. This category includes the error sampling from the centered
binomial distribution W14. The sampling is implemented by a call to the
ChaCha20 stream cipher. The parameters are a random seed, an 8-byte
nonce, which gets varied, and a buffer object which gets filled with the
coefficients.

34

The fifth category contains building blocks that are based on Keccak. This
category includes the generation of the public parameter a, which is realized
by the extendable output function SHAKE-128, and the hashing of the 32-
byte value v, which is realized by the secure hash function SHA3-256.

3.3 Adapting NEWHOPE for the Cortex-MO0

Two aspects need to be discussed before the optimization per building block
can be introduced. The first is to fit the NEWHOPE key exchange onto the
Cortex-MO with its architectural constraints. The second is to establish
communication with the Cortex-M0. Both concepts are straight forward;
First the building blocks of the key exchange need to fit on the Cortex-M0
to be computable on the device. Second the communication is needed to
derive the results of the exchange’s computations and to allow the concept
of exchange in general.

3.3.1 Architectural Constraints

The reference implementation of NEWHOPE is implemented according to
the structure which can be derived from the description of NEWHOPE in
Protocol 2. This also relates to naming of variables and the use of multiple
instances instead of reuse of variables.

The first aspect we had to adapt was that the Cortex-MO0 can only provide
either side of the key exchange, the functionality of the client side or the
functionality of the server side. We implemented both participants of the
key exchange in files named accordingly client.c and server.c.

The second aspect we had to adapt, derived from the choices in the refer-
ence implementation, was to restructure the server side computations and
the client side computations. The reference implementation makes use of
five polynomials for the key generation (a, s, b, e, and r), four polynomials
for the final server computations (v,b,s, and t) and eight during client-
side computations (b, a,s’,e’,e”,t,u, and v). Each polynomial is named
accordingly to its usage in the top level description of Protocol 2, except
t, which is a temporary polynomial. Each of these polynomials is repre-
sented as an array of its coefficients. We know that n = 1024 and that
each coefficient is smaller than ¢ = 12289, thus has at most 14 bits. Data
types need to be expressed in multiples of bytes on the Cortex-M0. This
knowledge combined implies that the most straight forward way to store
one polynomial is to have an array of length 1024 with a 16-bit (2-byte)
data type, an unsigned 16-bit integer uint16_t. This in turn implies that
each polynomial is represented by 2048 byte, thus 2KB. The final server
computations and the client side computations additionally have a 2KB
character array as one of their inputs. The architecture of the Cortex-MO0,
however, only provides 8KB of RAM. The initialization of the Cortex-M0
already requires memory and we also need some memory next to the repre-
sentations of polynomials. This implies that we have a maximum of three
polynomials, which can be used in parallel.

35

The change we performed is to adapt the data types used as parameters
according to our needs. The reference implementation makes use of charac-
ter arrays of 2048 byte as parameters to perform byte-wise communication
later on. We changed the type of these parameters to represent a polyno-
mial, internally defined as struct and named poly, the above mentioned
1024 element array of uint16_t types. By applying this change we gen-
erate an uninitialized polynomial already in the function parameters. We
could afterwards make use of this polynomial and restructure the code of
the client side and the code of the server side such that they only make
use of three polynomials. This could be realized straight forward for the
server side. For the computations on the client side, we were required to
restructure the call of subfunctions and to perform a swap of values at
the end which gives a slight overhead. Despite that, these implementation
changes enabled us to call the API functions provided by the reference
implementation with our adaptations, such that both the client side and
the server side of the NEWHOPE key exchange can be computed on the
Cortex-MO.

A drawback of the change of the parameter type is that the decoding and
encoding operations defined in the reference implementation do not work
for the new data type. We were therefore obliged to adapt those functions
accordingly. Next to the encoding and decoding of additional information,
the seed for a in the case of message A and the help vector r for message B,
the functions make use of two subfunctions which calculate a polynomial
from a byte array poly_frombytes and vice versa poly_tobytes. Inside
these functions the bits are shifted to the low end if we assume a little-
endian representation. We therefore replaced those two functions with a
densify and an amplify function. Both keep the bit order of the refer-
ence implementations poly_frombytes and poly_tobytes, however, the
densify and amplify functions operate on the same polynomial instead
of transferring the information into another data type, the character ar-
ray.

The third aspect we had to adapt was to replace the call to the ChaCha20
stream cipher. In the reference implementation, the generation of noise
polynomials takes a 32-bit seed and extends it by calling the ChaCha20
stream cipher with those seeds into a buffer of 4n = 4096 bytes. The
generation of noise polynomials is called on either side, the client or the
server, from a context in which three polynomials already exist in memory.
This implies that there is no space left for a 4KB buffer to be filled by the
ChaCha20 stream cipher. We solved this issue by calling the ChaCha20
function four times in a row with a buffer of 1KB, which fits into the
memory at this point of execution. However, since we call it with the same
seed, some source of entropy is needed to provide different outputs. The
reference implementation makes use of one single byte to produce different
noise polynomials from one noise seed by changing the first byte of the
8-byte nonce of the ChaCha20 stream cipher. We decided to incorporate
that concept and perform an additional change in the second byte of the
nonce. As value, we simply use the counter of our loop performing the
consecutive calls to the ChaCha20 stream cipher.

The fourth aspect we had to adapt was to replace the generation of the

36

seeds for the generation of the public parameter a as well as the generation
of the noise polynomials. As pointed out above, the Cortex-M0 does not
provide an RNG. Further, no default approach to generate randomness
exists on the Cortex-M(O. The reference implementation simply queries
/dev/random, which of course is not available on the embedded Cortex-MO.
We chose to allow a context specific implementation by providing an easy-
to-replace function in our C code randombytes inside the randombytes.c
file. If the key exchanged should be used in practice it is crucial to replace
our deterministic randombytes function by a true RNG.

3.3.2 Communication

We make use of two different concepts for the communication. We per-
form communication via the universal asynchronous receiver/transmitter
(UART) and via direct memory access (DMA). We started by using UART
communication with the libraries needed to establish the communication
from [37]. In the final version, we make only use of these libraries and
communication technique for speed and memory calculations. The exam-
ple code for communication we provide for the host, is realized via DMA
on the Cortex-M0 and makes use of the open cm3 library from [15]. This
enables the Cortex-MO0 to perform computations while data is transferred.
For the host side, we provide two Python scripts. One to respond to the
Cortex-MO initialized to perform as server side of the key exchange and a
second to respond to the Cortex-MO initialized to perform as client side
of the key exchange. In Table 3.3 can be seen which messages are ex-
pected, for either the client or the server side of the key exchange. All
values which are sent and received are in bytes. A guard parameter is
used, which has the decimal value 10. It is used to separate between the
independent messages which need to be transferred.

TABLE 3.3: Communication pattern for client and server
side of the NEWHOPE key exchange on the Cortex-MO0.

Client-side Size | Server-side Size
guard 1 guard 1
receive message A 1824 | send message A 1824
guard 1 guard 1
send message B 2048 | receive message B 2048
guard 1 guard 1
(response to key check 5 response to key check | 5)

The last row of Table 3.3 is put into brackets, because the key check
performed is only valid for the deterministic implementation we provide
as proof of concept with this work. In any real-world instantiation of our
Cortex-MO code, this key check would be canceled and instead the usage
of the just agreed ephemeral key could be started.

37

3.4 Optimization Details per Building Block

In this section, we give a detailed explanation of the optimization tech-
niques we applied. We structure it according to the categories we intro-
duced in Section 3.2. A general optimization technique we applied is
to make use of the benefits we could achieve from the word size of the
processor. Each of the coefficients used to represent a polynomial for the
NEWHOPE key exchange is 16-bit, thus one half-word. We could decrease
the amount of memory operations needed by loading full-words and mak-
ing use of the multiple load and store instructions. We do, however, have
to pay some overhead for loading full-word representations. If we want to
perform other than logical operations, we need to split the 32-bit value in
one register into two 16-bit values in two registers. In Listing 1 the exam-
ple of two full-word loads can be seen. In Listing la the load is realized by
using the multiple load LDM instruction, in Listing 1b the load is realized by
using four load register LDR instructions. The general observation we can
take is that it is more efficient to reduce the amount of memory operations
to its minimum.

Listing 1 Comparison of full-word and half-word loads for 64-bit.

(a) Usage of full-word loads and re- (b) Usage of half-word load register
quired splitting (7 cycles). instructions (8 cycles).
load_fullwords,ri: load_halfwords,ri:
LDM ri, [rx0,rx1] (3) LDRH rx0, {ri} (2)
UXTH rfreeO, rx0 (1) LDRH rfreeO, {ri,#2} (2)
LSR rx0, #16 (1) LDRH rx1, {ri,#4} (2)
UXTH rfreel, rxi 1) LDRH rfreel, {ri,#6} (2)
LSR rx1, #16 1)

Next to the savings achieved by loading full-words in a consecutive manner
we could also benefit from loading single full-words. If we assume a loop
that iterates over an array of 16-bit values, we can decrease the amount of
memory operations. We achieve this by loading two 16-bit values at once
and perform the computations of the body of the loop on both values.

3.4.1 NTT

The NTT is the most frequently called building block of the NEWHOPE
key exchange, as can be seen in Table 3.2. Furthermore, it does have the
largest cycle count of all building blocks from the key exchange. In the
C reference implementation provided by the authors of NEWHOPE [1] the
NTT is implemented as can be seen in Listing 3. It consists effectively
of three nested for-loops. The first is counting the levels from 0 to 10.
The second is counting the distance and the third the step size. Inside
of these three nested loops, a Gentleman-Sande butterfly operation [29],
summarized in Listing 2 and explained in Section 2.4.2.3, is performed. In
the case of the C reference implementation the levels are split into even and
odd levels, the lazy Gentleman-Sande butterfly operation, used in the odd
levels, is summarized in Listing 4 and explained in Section 2.4.2.4.

We further benefit from the efficiency considerations described in Sec-
tion 2.4.2.4, which the authors of NEWHOPE took into account. The NT'Ts

38

Listing 2 =Gentleman-Sande butterfly - all variables are uint16_t.

W = omegal[(1024 + j)/(2xdistance)];

temp = al[jl;

alj]l = bar((temp + al[j + distancel));

a[j + distance] = mon((W * ((uint32_t)temp + 3*PARAM_Q - a[j + distancel)));

Listing 3 =Structure of the NTT in the C reference implementation.

for(i=0;i<10;i+=2)

// Even level

distance = (1<<i);

for(start = 0; start < distance;start++)
for(j=start;j<1023;j+=2*distance)

do lazy butterfly

// 0dd level

distance <<= 1;

for(start = 0; start < distance;start++)
for(j=start;j<1023;j+=2+distance)
do butterfly

are faster due to not computing the bit reversal. The application of the
Barrett reduction [3] and the application of the Montgomery reduction in
step three and four of the butterfly operations |57] instead of the usage of a
straight forward modulo operator saves a lot of cycles. On the Cortex-MO
a reduction by the modulo operator ‘%’ specified by the C language would
take 210 cycles. Our assembly implementation of the Barrett reduction
can be seen in Listing Hd and takes 5 cycles. Our assembly implemen-
tation of the Montgomery reduction can be seen in Listing 5¢ and takes
only 6 cycles. The efficiency consideration to perform a lazy butterfly op-
eration every second level saves even more cycles by omitting half of the
the otherwise required Barrett reductions. We make use of this in our
assembly implementation, but decided to present the C implementations
due to code size and clarity (the lazy butterfly operation in Listing 4 and
the butterfly operation in Listing 2). With these optimization techniques
in place we had a solid base to build our architecture optimized assembly
code on.

The first change we made was the amount of butterfly and lazy butterfly
operations we perform inside the nested loops. We perform two butterfly
operations after one another. This can be translated to the C code in
Listing 3 that the ‘start’ loop-counter would need to be increased by 2
instead of 1. This yields us the benefit of the 32-bit word size of the target
architecture in combination with the 16-bit size of the coefficients of the
polynomial, the elements of array a. We can load two values a[j] and a[j+1]
simultaneously for the cost of one load, by using the LDR instruction instead
of using the LDRH instruction twice. The same holds for the store instruction
STR which can be used instead of two STRH instructions. Note that it is not
efficient in the context of the NTT to perform multiple loads/stores (LDM,
STM) due to the varying step size.

The second change we implemented was to unroll all levels. For the C
implementation this is equivalent to removing the outermost loop and ap-
pending the 10 levels after one another. This decreases the cycle count due
to omitting branch instructions of the outermost for-loop in the trade-off
for code size.

39

Listing 4 =Lazy Gentleman-Sande butterfly - all variables are uint16_t.

W = omegal[(1024 + j)/(2*distance)];

temp = al[j];

alj] = (temp + a[j + distancel]); // Omit reduction (be lazy)

a[j + distance] = mon((W * ((uint32_t)temp + 3*PARAM_Q - a[j + distance])));

Listing 5 Optimized reduction routines.

(¢) Montgomery reduction (for r@Q = (d) Short Barrett reduction (for r@Q =
12289 and rlog = 2'®). 12289).
mon, rln: bar, rlIn:

SUB rTmp, rQ,#2 LSL rTmp, rIn, #2

MUL rTmp, rIn ADD rTmp, rIn

AND rTmp, rlog LSR rTmp, #16

MUL rTmp, rQ MUL rTmp, rQ

ADD rIn, rTmp SUB rIn, rTmp

LSR rIn, #18

The third change we performed was to merge level 0 and level 1. The idea
behind this is to reduce the amount of load and store instructions needed.
Level 0 applies the butterfly operation on two consecutive elements. Level
1 applies the lazy butterfly operation on two elements with a distance of
two. Our first change implies that two elements are loaded simultaneously.
Therefore, a[0],a[1],a[2],a[3] are loaded into the registers in the first iter-
ation. This enabled us to perform level 0 twice. First on a[0] and a[l]
and second on a[2] and a[3]. After these computations we perform level 1
twice on the same elements. First on a[0] and a[2] and second on a[1] and
a[3]. After these computations we store the computed values, which consist
of the computations of the first iteration of level 0 and the computations
of the first iteration of level 1. This concept produces a slight overhead,
because we need to recalculate the correct w for both levels. However, it
saves double loading and storing of the values, which results in an overall
cycle count optimized version compared to non merged level 0 and level 1.
We also tried to apply this concept to the other levels. However, we are
confronted with architectural constraints. As mentioned earlier, we need
to recalculate the ws which generates some overhead, because we do not
have enough registers to hold all values in parallel. In the case of higher
levels the computations are not performed on consecutive elements, which
lets the overhead get out of proportion. For example, the first iteration of
level 3 would need to load a[0], a[1] and a[8], a[9]. Level 4, however, would
additionally need a[16], a[17]. The only thing achieved by this structure is
that one load instruction can be omitted (a[0], a[1] can be used for both
levels). However, this does not save enough cycles compared to the over-
head created by the required recalculations of omega and calculating the
right offsets with the limited register capabilities of the target architec-
ture.

The fourth change we performed was to minimize register reordering. As
pointed out earlier, the target architecture has only 8 full-purpose registers
and 5 usable high registers. For the NTT we make use of the high regis-
ters r8 to r12 and additionally make use of the link register r14, which
can be done since we do not have internal function calls and our assembly
function takes care of storing and restoring its value. We went through

40

our NTT code and optimized it such that constants and loop-counter are
placed in high registers where possible. We still need to shift some reg-
ister contents, however, we keep that to the minimum and it enables us
to make an optimal use of the capabilities of the limited target architecture.

3.4.1.1 Multiplying the Coefficients

Additional to the computations performed in the core function of the NTT
we also need to perform a multiplication of the coefficient with the precom-
puted s before each call to the NTT and a multiplication of the coefficients
with the precomputed ¢~ !s after each call to the NTT~!. We implemented
the multiplication of the coeflicients in assembly to benefit from the Cortex-
MO’s 32-bit word size. Extending this architectural benefit we make use of
the fact that the multiplication of the coefficients with the precomputed
coeflicients is a simple operation and does not need many registers. There-
fore, we were able to load 4 coefficients at once and also store them. With
this we decreased the amount of loads and stores required.

3.4.1.2 Bit Reversal

In the case of the bit reversal we do not provide an assembly version. A
more detailed explanation of how this could be achieved in an environment
with a larger flash, can be found in Section 4.1. The major problem why
we could not apply techniques similar to the optimization techniques used
for the combination of two polynomial is that the elements read from the
lookup table are not consecutive. This implies that we cannot benefit from
the architecture by loading full-word sized entries. What we could do was
to take the natural boundaries into account and do not loop over the last
33 elements, which do not get changed.

3.4.2 Error Reconciliation

The error reconciliation mechanism used in the NEWHOPE key exchange
makes use of two functions, the generation of the help vector for reconcilia-
tion and the reconciliation function itself. We will explain in the following
two accordingly named sections the implementation details of our opti-
mized assembly versions. The authors of NEWHOPE claim in the first
publication of the key exchange [!] that the error reconciliation method
used "can be implemented in constant time using only integer arithmetic -
which is important on constrained devices without a floating-point unit".
With the Cortex-MO at hand we face exactly the constraint of not having
a floating-point unit and could therefore benefit from this design deci-
sion.

41

3.4.2.1 Generation of the Help Vector

From an implementation point of view the generation of the help vector
can be compartmentalized into the following components.

First, the 32-byte seed is provided as parameter to the ChaCha20 stream
cipher, together with the 8-byte nonce described in 3.3.1 to sample an array
of 256 random bits b. For further detail on the ChaCha20 building block
please refer to the corresponding Section 3.4.4, for a reminder of the usage
of the random bit b please refer to Section 2.4.2.2.

Second, the help reconciliation function loops over the random-bit array
consisting of 32 character entries. The reference implementation therefore
loops 256 times, because every bit of each character needs to be processed.
This approach has some redundancy, which we removed in our assembly
implementation.

Third, the remaining body of the loop is computing the CVPﬁ4 algorithm
described in Algorithm 1. In the reference implementation this is realized
by calling a function £ which performs the first two steps and parts of the
third step of CVPm. k is then set to either 0 or 1 and the last two steps
of the CVPm are computed.

As hinted at in our description of the second component, the reference
implementation of the loop does contain redundant logic. We approached
this by restructuring the loop. We do not loop over 256 elements anymore,
but we perform the same call eight consecutive times for the 8 different
32-bit entries of the array of random bits. We chose to switch to loading
eight times 32-bit, contrary to the C implementation which has a thirty-
two element array of 8-bit. By this, we achieved the benefit from the
decrease of memory operations needed due to the architecture’s word size.
We continued by performing four times the same computations per byte of
the loaded random bits. Each of these computations in turn gets split into
four internal computations. Each of these internal computations, called
oneinternal in our assembly file takes the two least significant bits of the
32-bit random bits loaded from memory and shifts the other random bits
two to the right. In Listing 6, the macro can be seen. Overall it is called
128 times and reduces therefore the amount of calls, compared to the loop.
It stores the relevant registers and calls a function which processes the
internal computations of the help reconciliation function, those described
in the third component.

Listing 6 Structure of the oneinternal macro.

oneinternal rrandom32
MOV rhelp,#3
AND rhelp,rrandom32
LSR rrandom32,#2
PUSH {rarraypointer0,rarraypointerl,rarraypointer2,rrandom}
MOV rarraypointerl,rhelp
BL asm_helprec_internal
POP {rarraypointer0,rarraypointerl,rarraypointer2,rrandom}
ADD rarraypointerO,#4
ADD rarraypointer2,#4

42

The assembly function asm_helprec_internal performs the computations
of the C’VP]j4 algorithm on two entries opposed to the definition and the
reference implementation, where only one entry is processed per iteration.
This is the reason why we extract two of the random bits for each call.
Inside the asm_helprec_internal function this yields the benefit of the
32-bit architecture. It enables us to load and store two 16-bit coefficients
with one memory operation. Additionally, it decreases the amount of calls
to asm_helprec_internal we need to perform. This saves overhead for
the function call. We would rather omit calling the function completely
and replace it by a macro, which is not possible due to the architectural
constraints, flash size in this case.

3.4.2.2 Reconciliation

From an implementation point of view the generation of the help vector
can be compartmentalized into the following components.

First, the 32-byte key is initialized to zero.

Second, the reconciliation function defines a loop which iterates 256 times.
During each iteration it computes the input to the Decode function, which
we described in Section 2.4.2.2. To achieve this, the values from the two
input polynomials are loaded and multiplied by multiples of ¢ to satisfy
the parameters of Decode(éa: — 5 Br) by using integer arithmetic.

Third, the remaining body of the loop sets the 256 key bits of the Decode
function’s output per iteration of the loop.

Again the reference implementation relies on redundant logic. We took a
similar approach as we already did for the help reconciliation. We restruc-
tured the loop such that we do not loop over 256 elements anymore, but
we perform the same call eight consecutive times for the 8 different 32-bit
entries of the key array. We again chose to switch to loading eight times
32-bit, contrary to the C implementation, to benefit from the decrease of
memory operations needed due to the architectures word size. We contin-
ued by performing four calls to the asm_8bits_key function per byte of the
key, which still need to be determined. Each of these calls produces 8-bit of
the key which is shifted x bits to the left for 2 € {0, 8, 16,24} and combined
afterwards by a logical or. With this we only perform one store operation
per full-word of key bits to reduce the amount of memory operations to
the minimum. Inside the asm_8bits_key function we, therefore, perform
eight times the computations of one loop iteration of the reference imple-
mentation. Performing the computations an even number of times again
allows us to load full-word entries from memory, which in turn decrease
the amount of memory operations needed. Inside each of these instances
the body of the loop in the reference implementation gets executed. We
load the coefficients, multiply them by multiples of ¢ and input them to
the Decode function. The Decode function in turn calls a subfunction g
on all four input elements, together forming a vector in Dy. The distance
is computed and the most significant bit extracted and returned as entry

43

of the key. We need to perform a call to the asm_8bits_key function, be-
cause otherwise we would again face the flash size constraint of the target
architecture.

3.4.3 Polynomial Arithmetic

The polynomial arithmetic is used to combine two polynomials. The two
representatives of combining two polynomials are polynomial addition and
pointwise multiplication. We will discuss the optimization techniques ap-
plied in the following subsection.

3.4.3.1 Polynomial Addition and Pointwise Multiplication

Polynomial addition as well as pointwise multiplication are straight-forward
concepts. A simple loop iterates over the 1024 entries of the array repre-
senting the coefficients of two polynomials and either performing an addi-
tion or a multiplication. We decided to rewrite both functions such that
they make optimal usage of the target architecture, by making use of the
32-bit word size. We load and store two consecutive coefficients of the
polynomial and apply the calculations needed on each half-word. By doing
so, we only call half of the iterations of the main loop. In the case of the
addition, we even have enough registers to load and store 4 coeflicients with
one LDM or one STM instruction. In the case of the pointwise multiplication,
we were only able to load and store 2 coefficients simultaneously, because
we need to reduce the product after multiplication.

3.4.4 ChaCha20

The ChaCha20 stream cipher [5] is a standalone stream cipher presented
by Bernstein as a variant of the Salsa stream cipher in 2008. It is used for
noise generation in the NEWHOPE key exchange. All noise polynomials
get generated from a seed and a nonce. The fair coin behavior of the help
reconciliation algorithm is also based on a call to the ChaCha20 stream
cipher.

We based our architecture-specific implementation on the ChaCha20 im-
plementation by Neikes and Samwel [(1], which was specifically designed
for the Cortex-M0O. They optimized the core functionality of the ChaCha20
stream cipher in assembly, which fits well into our approach. However, we
still optimized two minor aspect.

The first aspect we optimized is based on the circumstance that the ChaCha20
core functionality operates on variables stored in little-endian. The refer-
ence implementations from the authors of NEWHOPE [!] and from Neikes
and Samwel [61] have two subfunctions which provide the ability to store
and load into the little-endian representation. As pointed out in Section 3.1
the default endianess of the Cortex-MO is already little-endian. This archi-
tectural benefit allowed us to omit these two functions.

44

The second aspect we optimized was to replace the two loops in the ChaCha20
body with a call to our substituting assembly function. It is no huge cycle-
count saving we derived, but the assembly version is much more elegant as
can be seen in Listing 7e compared to Listing 7f.

Listing 7 Reference and assembly implementation of two loops inside the
ChaCha20 stream cipher.

(f) Reference implementation of the

(e) Assembly implementation of the two loops, with ‘in” and ‘n’ being un-
two loops. signed characters.
LDM rn!,{rtempO,rtempl} for (i = 0;i < 8;++i) in[i] = n[il;
STM rin!,{rtempO,temp1} for (i = 8;i < 16;++i) in[i] = 0;

EOR rtempO,rtempO
EOR rtemp!,rtempl
STM rin!,{rtempO,rtempl}

3.4.5 Keccak

The assembly implementations of Keccak are taken from the Noekeon
repository [14]. We decided to do so because the development team be-
hind the Keccak family provides a version of their primitives for our target
architecture. At least that is what was claimed. After a mail correspon-
dence with the developer, an updated code version was provided which
actually compiled on the Cortex-M0. The next problem we faced was that
we do not have full block inputs for the computations of SHAKE-128 for
the generation of a and SHA3-256 for hashing the ephemeral key v. This
prohibits the usage of the predefined Squeeze and Absorb functions pro-
vided for the ARMv6M architecture. However, the header file inside their
code packages subdirectory SnP/SnP.h provides detailed information on
the inner workings. This enabled us to call their assembly subfunctions to
fulfill our needs. For absorbing we just call KeccakF1600_StateX0RBytes
with the correct parameters. For squeezing we need to make two func-
tion calls, a first one to KeccakF1600_StatePermute and a second to
KeccakF1600_StateExtractBytes. This suffices for SHA3-256 since we
do not absorb or squeeze more than one full block. However, the situation
for SHAKE-128 is different. The way NEWHOPE makes use of this func-
tion is either to squeeze one or four blocks. Therefore, we distinguished
between those cases and provide two fixed implementations. One function
calling the pair of assembly functions needed for squeezing once and a sec-
ond function calling the pair of assembly functions needed for squeezing
four times in a row. By doing so we were able to replace the computational
costly functions from the reference implementation specified in the fips.c
file by assembly functions provided by Noekeon [14].

3.5 Results

We compiled our implementation with arm-none-eabi-gcc version 5.2.0
and -0fast as compiler flag. By applying our assembly-optimized imple-
mentation and using the fast and efficient implementations of ChaCha20

45

and Keccak described in the previous section we gain significant speed-
ups, on the Cortex-MO0, compared to the adapted C version of NEWHOPE,
described in Section 3.3.1. These speed comparisons are performed by mea-
suring cycles, which we implemented on the Cortex-MO0 (according to [37])
by making use of the system timer SysTick. It is set to 12000000 in the
beginning and counted down while the function is called, of which the cy-
cle count needs to be determined. The value of the system timer after the
execution of the function in question gets subtracted from the value of the
system timer before the call to the function. Additionally, the value gets
decreased by 2, because calling no function yields a cycle count of 2.

In Table 3.4 we present the cycle counts per building block (summarized
and explained in Section 3.2) for the adapted C version which is able to
run on the Cortex-MO0 and for our assembly optimized implementation. In
a third column we present the percentage we saved by our implementa-
tion compared to the adapted C version. We further present the overall
cycle counts needed for the client side computations, the server side com-
putations, and the key exchange in total together with their percentages,
representing the overall speed-up we gained. Please note that the major
cycle count achievement of the generation of a and of the noise sampling
is a based on Keccak and ChaCha20 and is thus achieved by reusing and
optimizing the work of the before mentioned ARMv6-M implementation of

Keccak [11] and ChaCha20 [61].
TABLE 3.4: Cycle counts per operation, together with overall perfor-
mance, of the NEWHOPE key exchange. Additionally, the percentage
of improvement is presented.

Operation C on MO | Our implementation | Improvement
Generating a; 527293 328789 37.65 %
Sampling noise ; 234024 208 693 10.82 %
Multiplying coefficients ; 34842 15665 55.04 %
NTT; 327004 148 517 54.58%
Bit reversal; 19385 18 888 2.56%
Polynomial addition; 33822 13860 59.02%
Pointwise multiplication; 58 406 25652 56.08%
HelpRec; 79663 68170 14.43%
Rec; 69137 46 945 32.10%
SHA3-256. 29032 23999 17.34%
Client Side 2723353 1760837 35.34%
Server Side 2433238 1467 769 39.70 %
NEwHOPE 5156 591 3228606 37.39%

Additional to this internal comparison, we are thus comparing our own re-
sults with the adapted C reference implementation, it would be interesting
to perform an external comparison, thus comparing our results with results
achieved by other researchers in this field. In the literature various imple-
mentations of lattice-based cryptography on embedded microcontrollers

46

can be found (e.g. [70] targeting the AVR architecture, or [(9] targeting
FPGASs). To perform a direct and fair comparison is nearly impossible due
to many, often unsolvable constraints. Different architectures are used, the
implemented schemes vary and the security levels differ (no lattice-based
key exchange in the literature is as conservative in the choice of parameters,
and thus secure, as NEWHOPE).

When this thesis was written, we could identify two papers that optimize
lattice-based cryptography on ARM Cortex-M based microcontrollers. De
Clercq, Roy, Vercauteren, and Verbauwhede optimized RLWE-based en-
cryption on the Cortex-M4F microcontroller in [11] and Oder, Péppel-
mann, and Giineysu optimized the Bliss signature scheme in [63] also on
the Cortex-M4F microcontroller. The Bliss signature scheme is presented
in [21] by Ducas, Durmus, Lepoint, and Lyubashevsky.

Regarding the architecture, the Cortex-M0 (elaborated in Section 3.1) is
inferior to the Cortex-M4F. The ‘F’ specifies the fact that a floating point
unit is present. The Cortex-M4F microcontroller forms the upper end of the
Cortex-M family. The Cortex-M4F is based on the ARMv7-M architecture
and makes use of the 32-bit Thumb 2 instruction set, which allows it to
make full usage of the 13 general purpose registers and perform operations
like shifting a register in the same cycle as adding by extending the add
instruction. Additionally, store instructions on the Cortex-M4F require
only 1 cycle because the address generation is performed in the initial cycle
and the actual storing of data is performed while the next instruction is
executed.

Regarding the varying schemes implemented, the widely accepted and of-
ten applied technique to compare different schemes is to compare the
performance of subroutines. In the case of RLWE-based cryptography
the most relevant subroutines to compare are noise sampling and the
NTT nultiplications Which are the two most costly operations. A compari-
son of the error sampling with our results can be seen in Table 3.5.

TABLE 3.5: Performance comparison of the error sam-

pling.
Noise sampling®
Cortex-M0O (ours) 270
Cortex-M4F [11] 28.5
Cortex-MA4F [63] 2066

% Cycle counts for sampling one coefficient.

From Table 3.5 we can derive that our error sampling algorithm based
on ChaCha20 is 86.93% faster than the speed-optimized Gaussian sam-
pling based on the Ziggurat algorithm implemented by [63]. However, it
is 89.63% slower compared to the Gaussian sampling based on the Knuth-
Yao algorithm implemented by [11]. We could only realize error sampling
without a required floating point unit on the Cortex-MO0, which is the
first obvious reason for being slower than the Knuth-Yao algorithm imple-
mented by [I1]. A second reason is that the sampling algorithm used by
NEWHOPE, unlike the Knuth-Yao sampler, runs in constant time and is

47

thus inherently protected against timing attacks. Therefore, the decreased
performance on the Cortex-MO0 is a price to pay for compatibility with sig-
nificantly increased timing-attack-protected sampling performance on large
processors with caches. More detail on this can be found in [!].

The implementations presented in the papers |11, (3] perform the NTT
on 512-coefficient polynomials with the same modulus ¢ = 12289 that we
used. The usage of the parameter n = 512, compared to our case where
n = 1024, implies that we need to scale the cycle counts. As explained
in the Section 2.4.2.3, the NTT computations consist essentially of log, n
levels of Gentleman-Sande butterfly operations. Each level performs its
computations on 5 elements. The usage of twice as many coefficients
implies that the elements per level double and that an additional level
is required during the computation of the NTT. For comparison this has
the consequence that we need to scale the results of Clercq et al. [11] and
Oder et al. [63] by a factor of % & 2.22 to match the same dimensions we

used. A comparison of the NTT pnyitiplication 18 provided in Table 3.6.

TABLE 3.6: Performance comparison of the
NTTmultiplication-

NTTmultiplication
Cortex-M0 (ours) 537086
Cortex-MA4F [11] 528 451°
Cortex-M4F [63] 1130276°

b Number scaled from dimension 512 to dimension 1024 by multiplication with %U.

From Table 3.6 we can derive that the cycle counts we achieve on the
Cortex-MO to compute the NT T puitiplication are 53% faster than the imple-
mentation by [063] and 2% slower than the implementation by [I1]. The
reason for being 2% slower can be found in architectural constraints re-
garding the instruction set and parallelization. The cycle deficit lies in
the bit reversal, the polynomial multiplication and the multiplication with
coefficients. As we followed a strict compartmentalization, the memory
addressing of the same elements (for the NTT, both multiplications and
bit reversal, if the NTT~! is performed) proof to have a higher impact
on the performance of the Cortex-M0 than it has on the more advance
Cortex-M4F (e.g. storing takes only 1 cycle).

If we compare the cycle counts of the NTT directly, however, we receive an
overall faster result as can be seen in Table 3.7.

TABLE 3.7: Performance comparison of the NTT.

NTT
Cortex-MO (ours) | 148517
Cortex-M4F [11] | 157977°
Cortex-M4F [63] | 272486°

® Number scaled from dimension 512 to dimension 1024 by multiplication with %0.

With respect to the NTT the cycle counts we achieve on the Cortex-MO0 are
6% faster than the results on the Cortex-M4F from [11] and 45% faster than

48

the results on the Cortex-M4F from [63]. This shows that the optimization
measures applied by us enable inferior hardware to perform the best results
in calculating an NTT on ARM Cortex-M processors.

Conclusion

With this thesis we have provided a fast and efficient implementation of
the ephemeral key exchange NEWHOPE published by [I]. We have started
with a general overview of the terminology of post-quantum cryptography
and narrowed down our focus on lattice-based cryptography and the cor-
responding problems. From there we derived the passively secure KEM
proposed by [65] and discussed its instantiations, from which the second
is NEWHOPE. Subsequently we elaborated NEWHOPE in detail and pre-
sented our ARMv6-M optimized implementation on the Cortex-M0.

We achieved an overall performance gain for the key exchange of 37.39%
compared to the C reference implementation provided by the authors of
NEwHOPE [I]|, which we adapted to make it computable on the target
device. We achieved a performance gain of 35.34% for the client side com-
putations and a performance gain of 39.70% for the server side compu-
tations. As pointed out in Section 3.2, the main computational effort
from the NEWHOPE key exchange lies in the computation of the NTT.
We focused especially on this function and were able to achieve a 54.58%
faster implementation compared to the C reference implementation. Com-
pared to the literature we achieve an at least 6% faster implementation
even on slower Cortex-M processors as pointed out in Section 3.5. With
those cycle counts we provide a solid base for a potential application of the
NEWHOPE key exchange on small embedded ARM processors using the
ARMv6-M architecture.

4.1 Reflection

The implementation of NEWHOPE we performed on the Cortex-M0O was
focused on efficiency. However, we sometimes chose to not only look for
cycle counts but to take the best cycle count we can get without using to
much space in the ROM. The most suitable example is the case of the bit
reversal, which could be faster by unrolling it. However, the required space
needed in the ROM would be out of proportion. A similar situation can
be sketched for the error reconciliation. Instead of calling our assembly
function asm_8bits_key it could be realized by a macro on devices with
larger ROMs and in situations where pure cycle count measures are the
determining factor.

We also chose to not stick to the assembly implementation of the decoding
and the encoding of the polynomials to be send from server to client and
vice versa. With the current settings chosen by the authors of NEWHOPE
it only saves 700 cycles compared to the C version. This was different for

49

50

previous encoding schemes with different error distributions published ear-
lier by the authors of NEWHOPE (e.g. in the first release of the NEWHOPE
paper the error distribution Wg was chosen and the decoding and encod-
ing were realized differently, which granted us cycle counts which varied
by several thousands comparing the C reference implementation and our
former assembly version).

In general we chose for lower cycle counts, even if it means to discard
previously written code. We had, for example, an assembly implementation
of the ChaCha20 stream cipher. We unrolled the last iteration of the
loop and performed the addition and storing of the results immediately
to remove 48 memory operations. However, when we compared it to the
implementation by Neikes and Samwel [61] we chose for efficiency instead
of sticking to our code.

4.2 Future Work

During the implementation for this thesis and the process of writing it
we encountered several aspects which we could not find time for or which
extend the scope of our research. We elaborate the aspects we encountered,
which could be realized by future research, in the following:

The first aspect we already mentioned is the lack of an RNG on the Cortex-
MO. Future research could look into ways of retrieving randomness on the
Cortex-MO itself (e.g by using memory boot up patterns as was done for
the Cortex-M3 by [%2]) or compare external sources of randomness to find
the most appropriate.

The second aspect is the memory-speed trade-off we discussed earlier in
another context. In the case of a future work suggestion, one could remove
all or parts of the precomputed constants to compute the NTT and the
NTT~!, thus the ws and 1s. In one implementation we realized during the
development of our final code we were able to omit the 1KB of bit reversed
s in the Montgomery domain psis_bitrev_montgomery by increasing the
cycle count only by 700 cycles. Similar approaches could be realized by
reordering the output of the NTT~! to omit the inverted ws and computing
parts of the inverted s or even all constants on the fly.

The third aspect is that closely before we finalized this thesis Longa and
Naehrig from the research and development team of Microsoft published
a paper [17] which improves the NTT of the NEWHOPE key exchange.
They have provided a new reduction method, which does not require the
conversion to the Montgomery domain and omits not just half but all of
the Barrett reductions. This is achieved by increasing the size of the data-
type for the coefficients and making it signed. Each coefficient would be
of type int32_t. This of course rules out this optimization technique on
memory-constrained devices such as the Cortex-M0. The problem is that
we could fit only 1 polynomial with 1024 coefficients each being a full-word
in size into the RAM. Other versions of the Cortex-M0 with more RAM
could, however, benefit from the optimization technique. We were not able
to compare the NTT directly, since it is realized by Cooley-Tukey butterfly

51

operations instead of Gentleman-Sande butterfly operations as used in our
implementation. However, the NTT~! algorithm proposed by [17] is com-
parable to our implementation as it also uses Gentleman-Sande butterfly
operations. Due to using their new reduction approach the bit reversal
required before the NTT~! was also adapted. We performed a ‘quick and
dirty’ implementation of Algorithm 4 from [17]. We implemented the bit
reversal in assembly, replaced the Montgomery reduction by the K-RED
reduction in all levels, removed the Barrett reduction from all levels and
perform one single K-RED-2x reduction. With those changes in place we
predict that the modifications proposed by [17] should also make a differ-
ence on architectures with enough RAM in the magnitude of 10k cycles for
the NTT~! including bit reversal.

The second and third aspect show that faster implementations are possi-
ble, however, they will come for the price of larger memory requirements,
either ROM or RAM. The implementation we provide therefore stays the
fastest implementation of a lattice-based post-quantum key exchange on
constrained hardware due to its low memory requirement.

Appendix A

Executing NEWHOPE on the
Cortex-MO

Within this appendix we provide a guideline on how to build and run our
fast NEWHOPE implementation on the STM32F0Discovery development
board. As we started our journey with the elaborations on [36], we will fol-
low the presented build instructions loosely. Most operating system should
be able to cross compile our code. In the following guideline we assume a
Debian based operating system. The commands which install system wide
packages must be ran as privileged user (root). On the hardware side a
STM32F0Discovery development board, the corresponding USB cable, a
USB-TTL converter and the corresponding cables are required.

Installing the basic tools. First we need to install the low level virtual
machine and GNU compiler collection for ARM.

apt-get install 1lvm gcc-arm-none-eabi

Developing for 32-bit. Second we need to install the 32-bit development
libraries for AMDG64 (if we cross compile from this architecture).

apt-get install libc6-dev-i386

STMicroelectronics ST-link Tools Third we need to install the ST-
link tools for the Development board.

Installing Dependencies. We need to install the USB program-
ming library development files.

apt-get install libusb-1.0-0-dev

Cloning, building and installing the ST-link tools. We need to
clone the ST-link tools from its GIT repository, build and install
them afterwards.

git clone https://github.com/texane/stlink.git
cd stlink

./autogen.sh

./configure

make && make install

93

54 Appendix A. Executing NEWHOPE on the Cortex-M0

Connecting the STM32F0Discovery board. The converter gets con-
nected as described in Section 3.1. The ground and 3.3 Volt power
cables are connected to the corresponding GPIO pins, RXD is con-
nected to PA2 and TXD is connected to PA3. The 5 Volt cable stays
unconnected. The final setup can be seen on Figure A.1.

e |

F1GURE A.1: Connections of the USB-TTL adapter to
the development board. Taken from [30]

Clone and build NEwWHOPE for the Cortex-MO0. We need to clone
the source code of our NEWHOPE implementation and build it.

git clone https://bitbucket.org/phibyte/new-hope-arm.git
cd new-hope-arm
make

Running the benchmarks. We need to call one of the following scripts
to load either the memory or the speed test onto the Cortex-MO0.

./ [mem, speed] .sh

To get the ROM size required by our implementation we need to
query the archive size.

./arm-none-eabi-size -t libnewhope.a

Running NEwWHOPE. We need to execute the Python script, to interact
with either the client or the server side, on the host computer and
load the code via a corresponding script onto the Cortex-MO.

python Host\ Side/test_[client,server].py
./[client,server].sh

After performing these steps, the Python script will execute, communicate
with the Cortex-M0 and print a positive result. If any communication
issues occur, the ‘reset key’ on the development board needs to be pressed.
It will reset the client (or server) side loaded onto the Cortex-MO and the
Python script can begin to interact from the start.

Bibliography

[1]

2]
13l

4]

[5]

[6]

7]

8]

19]

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe. “Post-quantum
key exchange — a new hope”. In: to appear at USENIX. https://
cryptojedi . org/ papers/newhope - 20160328 . pdf. 2016 (cit. on
pp. v, 1, 15, 18-24, 28, 29, 37, 40, 43, 47, 49).

ARM Ltd. Cortex-M Series. www.arm.com/products/processors/
cortex-m/, (accessed 2015-12-10). 2015 (cit. on p. 31).

P. Barrett. “Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal Processor”.
In: Advances in Cryptology — CRYPTO ’86. Vol. 263. https://
choucroutage . com/Papers/SideChannelAttacks/crypto- 1986 -
barrett.pdf. 1987, pp. 311-323 (cit. on pp. 28, 38).

P. Benioff. “The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by
Turing machines”. In: Journal of Statistical Physics 22.5 (1980). https:
//www.researchgate.net/publication/226754042_Benioff PA_
The_computer_as_a_physical_system_a_microscopic_quantum_
mechanical_hamiltonian_model_of_computers_as_represented_
by _Turing _machines_J_Stat _Phys_225_563-591, pp. 563-591
(cit. on p. 9).

D. J. Bernstein. “ChaCha, a variant of Salsa20”. In: Workshop Record
of SASC 2008: The State of the Art of Stream Cliphers. http://cr.
yp.to/chacha/chacha-20080128.pdf. 2008 (cit. on p. 43).

D. J. Bernstein, J. Buchmann, and E. Dahmen. Post Quantum Cryp-
tography. http://wuw.e-reading. club/bookreader.php/135832/
Post_Quantum_Cryptography.pdf. Springer Science & Business Me-
dia, 2008 (cit. on p. 11).

J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. “Post-quantum
key exchange for the TLS protocol from the ring learning with er-
rors problem”. In: 2015 IEEE Symposium on Security and Privacy.
https://eprint.iacr.org/2014/599.pdf. 2015, pp. 553-570 (cit.
on pp. 1, 18, 19).

J. W. Bos, A. Dudeanu, and D. Jetchev. “Collision bounds for the
additive Pollard rho algorithm for solving discrete logarithms”. In:

Journal of Mathematical Cryptology 8.1 (2014). https://eprint.
iacr.org/2012/087.pdf, pp. 71-92 (cit. on p. 8).

7. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. “Clas-
sical Hardness of Learning with Errors”. In: Proceedings of the Forty-
fifth Annual ACM Symposium on Theory of Computing. http://
arxiv.org/pdf/1306.0281.pdf. 2013, pp. 575-584 (cit. on p. 21).

95

https://cryptojedi.org/papers/newhope-20160328.pdf
https://cryptojedi.org/papers/newhope-20160328.pdf
www.arm.com/products/processors/cortex-m/
www.arm.com/products/processors/cortex-m/
https://choucroutage.com/Papers/SideChannelAttacks/crypto-1986-barrett.pdf
https://choucroutage.com/Papers/SideChannelAttacks/crypto-1986-barrett.pdf
https://choucroutage.com/Papers/SideChannelAttacks/crypto-1986-barrett.pdf
https://www.researchgate.net/publication/226754042_Benioff_PA_The_computer_as_a_physical_system_a_microscopic_quantum_mechanical_hamiltonian_model_of_computers_as_represented_by_Turing_machines_J_Stat_Phys_225_563-591
https://www.researchgate.net/publication/226754042_Benioff_PA_The_computer_as_a_physical_system_a_microscopic_quantum_mechanical_hamiltonian_model_of_computers_as_represented_by_Turing_machines_J_Stat_Phys_225_563-591
https://www.researchgate.net/publication/226754042_Benioff_PA_The_computer_as_a_physical_system_a_microscopic_quantum_mechanical_hamiltonian_model_of_computers_as_represented_by_Turing_machines_J_Stat_Phys_225_563-591
https://www.researchgate.net/publication/226754042_Benioff_PA_The_computer_as_a_physical_system_a_microscopic_quantum_mechanical_hamiltonian_model_of_computers_as_represented_by_Turing_machines_J_Stat_Phys_225_563-591
https://www.researchgate.net/publication/226754042_Benioff_PA_The_computer_as_a_physical_system_a_microscopic_quantum_mechanical_hamiltonian_model_of_computers_as_represented_by_Turing_machines_J_Stat_Phys_225_563-591
http://cr.yp.to/chacha/chacha-20080128.pdf
http://cr.yp.to/chacha/chacha-20080128.pdf
http://www.e-reading.club/bookreader.php/135832/Post_Quantum_Cryptography.pdf
http://www.e-reading.club/bookreader.php/135832/Post_Quantum_Cryptography.pdf
https://eprint.iacr.org/2014/599.pdf
https://eprint.iacr.org/2012/087.pdf
https://eprint.iacr.org/2012/087.pdf
http://arxiv.org/pdf/1306.0281.pdf
http://arxiv.org/pdf/1306.0281.pdf

56

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Cho. “Quantum or not, controversial computer yields no speedup”.
In: Science 344.6190 (2014). http://katzgraber .org/currents/
media/press/2014-06-science_long.PDF, pp. 1330-1331 (cit. on
p. 9).

R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. “Effi-
cient software implementation of ring-LWE encryption”. In: Design,
Automation & Test in Europe Conference € Ezhibition, DATE 2015.
https://eprint.iacr.org/2014/725.pdf. 2015, pp. 339-344 (cit.
on pp. 46, 47).

F. Cohen. A Short History of Cryptography. http://web.itu.edu.
tr/~orssi/dersler/cryptography/Chap2-1.pdf, (accessed 2016-
04-03). 1990 (cit. on p. 6).

J. W. Cooley and J. W. Tukey. “An algorithm for the machine cal-
culation of complex Fourier series”. In: Mathematics of Computa-
tion 19.90 (1965). https://web.stanford . edu/class/cme324/
classics/cooley-tukey.pdf, pp. 297-301 (cit. on p. 26).

J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen. Keccak Code
Package. https://github.com/gvanas/KeccakCodePackage/, com-
mit c004b5d3fc9ddchae784fbe9abeb2f3e09811chHf. 2016 (cit. on pp. 33,
44, 45).

N. S. Dattani and N. Bryans. “Quantum factorization of 56153 with
only 4 qubits”. In: arXiv preprint arXiv:1411.6758 (2014). https:
//arxiv.org/pdf/1411.6758v3.pdf (cit. on p. 9).

L. De Feo, D. Jao, and J. Plit. “Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies”. In: Journal of
Mathematical Cryptology 8.3 (2014). https://eprint.iacr.org/
2011/506.pdf, pp. 209-247 (cit. on p. 11).

W. Diffie and M. Hellman. “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976). https://
ee.stanford.edu/ "hellman/publications/24.pdf, pp. 644-654
(cit. on p. 6).

J. Ding, X. Xie, and X. Lin. “A Simple provably secure key exchange
scheme based on the learning with errors problem.” In: JACR Cryp-
tology ePrint Archive 2012.1 (2012). https://eprint.iacr.org/
2012/688.pdf, p. 688 (cit. on pp. 1, 14).

P. A. M. Dirac. “A new notation for quantum mechanics”. In: Math-
ematical Proceedings of the Cambridge Philosophical Society 35.3 ().
http://www.ifsc.usp.br/~lattice/wp-content/uploads/2014/
02/Dirac_notation.pdf, pp. 416-418 (cit. on p. 9).

R. Dridi and H. Alghassi. “Prime factorization using quantum an-
nealing and computational algebraic geometry”. In: arXiwv preprint
arXiv:1604.05796 (2016). https://arxiv.org/pdf /1604 .05796.
pdf (cit. on p. 10).

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. “Lattice
signatures and bimodal Gaussians”. In: Advances in Cryptology —
CRYPTO 2013. Vol. 8042. https://eprint.iacr.org/2013/383.
pdf. 2013, pp. 40-56 (cit. on p. 46).

http://katzgraber.org/currents/media/press/2014-06-science_long.PDF
http://katzgraber.org/currents/media/press/2014-06-science_long.PDF
https://eprint.iacr.org/2014/725.pdf
http://web.itu.edu.tr/~orssi/dersler/cryptography/Chap2-1.pdf
http://web.itu.edu.tr/~orssi/dersler/cryptography/Chap2-1.pdf
https://web.stanford.edu/class/cme324/classics/cooley-tukey.pdf
https://web.stanford.edu/class/cme324/classics/cooley-tukey.pdf
https://github.com/gvanas/KeccakCodePackage/
https://arxiv.org/pdf/1411.6758v3.pdf
https://arxiv.org/pdf/1411.6758v3.pdf
https://eprint.iacr.org/2011/506.pdf
https://eprint.iacr.org/2011/506.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf
https://eprint.iacr.org/2012/688.pdf
https://eprint.iacr.org/2012/688.pdf
http://www.ifsc.usp.br/~lattice/wp-content/uploads/2014/02/Dirac_notation.pdf
http://www.ifsc.usp.br/~lattice/wp-content/uploads/2014/02/Dirac_notation.pdf
https://arxiv.org/pdf/1604.05796.pdf
https://arxiv.org/pdf/1604.05796.pdf
https://eprint.iacr.org/2013/383.pdf
https://eprint.iacr.org/2013/383.pdf

BIBLIOGRAPHY 57

[22] D-Wave. D-Wave Systems Breaks the 1000 Qubit Quantum Comput-
wng Barrier. http://www.dwavesys.com/press-releases/d-wave-
systems-breaks-1000-qubit-quantum- computing-barrier, (ac-
cessed 2016-04-03). 2015 (cit. on p. 9).

[23] J. H. Ellis. “The possibility of secure non-secret digital encryption”.
In: UK Communications Electronics Security Group (1970). http:
//cryptocellar.org/cesg/possnse.pdf (cit. on p. 6).

[24] P. van Emde Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. https://staff.
fnwi.uva.nl/p.vanemdeboas/vectors/pagel.html. Universiteit
van Amsterdam. Mathematisch Instituut, 1981 (cit. on p. 14).

[25] A. Emerencia. Multiplying huge integers using Fourier transforms.
http://www.cs.rug.nl/"ando/pdfs/Ando_Emerencia_multiplying_
huge_integers_using_fourier_transforms_paper.pdf, (accessed

2016-04-23). 2007 (cit. on p. 25).

[26] U. Feige and D. Micciancio. “The inapproximability of lattice and
coding problems with preprocessing”. In: Journal of Computer and
System Sciences 69.1 (2004). https://cseweb.ucsd.edu/ " daniele/
papers/GapCVPP.pdf, pp. 4567 (cit. on p. 14).

[27] R. P. Feynman. “Simulating physics with computers”. In: Interna-
tional Journal of Theoretical Physics 21.6 (1982). https://www.cs.
berkeley . edu/ “christos/classics/Feynman . pdf, pp. 467-488
(cit. on p. 9).

[28] M. Fiirer. “Faster integer multiplication”. In: SIAM Journal on Com-
puting 39.3 (2009). http://wwwmath . uni - muenster .de/u/cl/
WS2007-8/mult.pdf, pp. 979-1005 (cit. on p. 24).

[29] W. M. Gentleman and G. Sande. “Fast Fourier Transforms: for fun
and profit”. In: Fall Joint Computer Conference. Vol. 29. http://
cis.rit.edu/class/simg716/FFT_Fun_Profit.pdf. 1966, pp. 563—
578 (cit. on pp. 24, 26, 37).

[30] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. “Approxi-
mating shortest lattice vectors is not harder than approximating clos-
est lattice vectors”. In: Information Processing Letters 71.2 (1999).
https://cseweb.ucsd.edu/"daniele/papers/GMSS.pdf, pp. 5561
(cit. on p. 14).

[31] O. Goldreich and S. Goldwasser. “On the Limits of Non-approximability
of Lattice Problems”. In: Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing. http://www.wisdom.weizmann.
ac.il/"oded/PSX/1p.pdf. 1998, pp. 1-9 (cit. on pp. 13, 14).

[32] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-eighth Annual ACM Sympo-
stum on Theory of Computing. https://arxiv.org/pdf/quant -
ph/9605043.pdf. 1996, pp. 212-219 (cit. on p. 10).

[33] M. Heideman, D. Johnson, and C. Burrus. “Gauss and the history
of the Fast Fourier Transform”. In: IEEE ASSP Magazine 1.4 (Oct.
1984). http://ocw.nctu.edu. tw/course/fourier/supplement/
heideman- johnson-etall1985.pdf, pp. 14-21 (cit. on p. 26).

http://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier
http://www.dwavesys.com/press-releases/d-wave-systems-breaks-1000-qubit-quantum-computing-barrier
http://cryptocellar.org/cesg/possnse.pdf
http://cryptocellar.org/cesg/possnse.pdf
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/page1.html
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/page1.html
http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_paper.pdf
http://www.cs.rug.nl/~ando/pdfs/Ando_Emerencia_multiplying_huge_integers_using_fourier_transforms_paper.pdf
https://cseweb.ucsd.edu/~daniele/papers/GapCVPP.pdf
https://cseweb.ucsd.edu/~daniele/papers/GapCVPP.pdf
https://www.cs.berkeley.edu/~christos/classics/Feynman.pdf
https://www.cs.berkeley.edu/~christos/classics/Feynman.pdf
http://wwwmath.uni-muenster.de/u/cl/WS2007-8/mult.pdf
http://wwwmath.uni-muenster.de/u/cl/WS2007-8/mult.pdf
http://cis.rit.edu/class/simg716/FFT_Fun_Profit.pdf
http://cis.rit.edu/class/simg716/FFT_Fun_Profit.pdf
https://cseweb.ucsd.edu/~daniele/papers/GMSS.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/lp.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/lp.pdf
https://arxiv.org/pdf/quant-ph/9605043.pdf
https://arxiv.org/pdf/quant-ph/9605043.pdf
http://ocw.nctu.edu.tw/course/fourier/supplement/heideman-johnson-etal1985.pdf
http://ocw.nctu.edu.tw/course/fourier/supplement/heideman-johnson-etal1985.pdf

58

BIBLIOGRAPHY

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. N. Hoang. P versus NP: A Crucial Open Problem. http://www.
sciencedall .org/article/pnp/, (accessed 2016-04-03). 2013 (cit.
on p. 5).

J. Hoffstein, J. Pipher, and J. H. Silverman. In: Algorithmic Number
Theory: Third International Symposiun, ANTS-III Portland. http:
//grouper . ieee.org/groups/1363/1lattPK/submissions/ntru.
pdf (cit. on p. 11).

M. Hutter and P. Schwabe. Curve25519 for ARM Cortex-MO0. http:
/ /munacl . cryptojedi . org/ curve25519 - cortexm0 . shtml, (ac-
cessed 2016-04-03). 2013 (cit. on pp. 53, 54).

M. Hutter and P. Schwabe. Curve25519 for ARM Cortex-MO0. http:
//munacl.cryptojedi.org/data/curve25519-cortexm0-20150813.
tar.bz2, (accessed 2015-12-10). 2016 (cit. on pp. 36, 45).

W. S. Jevons. The Principles of Science. https://archive.org/
details/theprinciplesofOOjevoiala, (accessed 2016-04-03). 1874
(cit. on p. 6).

M. Kaplan. “Quantum attacks against iterated block ciphers”. In:
arXiv preprint arXiv:1410.1434 (2014). https://arxiv.org/pdf/
1410.1434.pdf (cit. on p. 10).

A. Karatsuba and Y. Ofman. “Multiplication of multidigit numbers
on automata”. In: Soviet physics doklady. Vol. 7. https ://wuw .
researchgate.net/profile/Anatolii_Karatsuba/publication/
234346907 _Multiplication_of_Multidigit_Numbers_on_Automata/
links / 00b495357e64391356000000 . pdf ? origin=publication _
detail. 1963, pp. 595-596 (cit. on p. 8).

A. K. Lenstra, H. W. Lenstra, and L. Lovasz. “Factoring polynomials
with rational coefficients”. In: Mathematische Annalen 261.4 (1982).
http://infoscience.epfl.ch/record/164484/files/nscan4.
PDF, pp. 515-534 (cit. on p. 14).

A. K. Lenstra, H. W. Lenstra, M. S. Manasse, and J. M. Pollard. The
development of the number field sieve. https://infoscience.epfl.
ch/record/164684/files/164684 .pdf. Springer, 1993 (cit. on p. 8).

J. Leys, E. Ghys, and A. Alvarez. Dimensions. http://www.dimensions-
math.org/, (accessed 2016-04-03). 2010 (cit. on p. 21).

H. Li and L. Yang. “Quantum differential cryptanalysis to the block
ciphers”. In: Applications and Techniques in Information Security.
https://arxiv.org/pdf/1511.08800.pdf. 2015, pp. 44-51 (cit. on

p. 10).
Libopencm3. Open-Source ARM Cortex M microcontroller library.

https://github.com/libopencm3/libopencm3, commit 492a943b7e
448469cd8e88f60fdadlef46aadb2a. 2016 (cit. on p. 36).

R. Lindner and C. Peikert. “Better Key Sizes (and Attacks) for LWE-
Based Encryption”. In: Topics in Cryptology - CT-RSA 2011. https:
//web . eecs.umich.edu/ “cpeikert /pubs/1lwe - analysis . pdf.
2011, pp. 319-339 (cit. on p. 15).

http://www.science4all.org/article/pnp/
http://www.science4all.org/article/pnp/
http://grouper.ieee.org/groups/1363/lattPK/submissions/ntru.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/ntru.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/ntru.pdf
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
http://munacl.cryptojedi.org/curve25519-cortexm0.shtml
http://munacl.cryptojedi.org/data/curve25519-cortexm0-20150813.tar.bz2
http://munacl.cryptojedi.org/data/curve25519-cortexm0-20150813.tar.bz2
http://munacl.cryptojedi.org/data/curve25519-cortexm0-20150813.tar.bz2
https://archive.org/details/theprinciplesof00jevoiala
https://archive.org/details/theprinciplesof00jevoiala
https://arxiv.org/pdf/1410.1434.pdf
https://arxiv.org/pdf/1410.1434.pdf
https://www.researchgate.net/profile/Anatolii_Karatsuba/publication/234346907_Multiplication_of_Multidigit_Numbers_on_Automata/links/00b495357e64391356000000.pdf?origin=publication_detail
https://www.researchgate.net/profile/Anatolii_Karatsuba/publication/234346907_Multiplication_of_Multidigit_Numbers_on_Automata/links/00b495357e64391356000000.pdf?origin=publication_detail
https://www.researchgate.net/profile/Anatolii_Karatsuba/publication/234346907_Multiplication_of_Multidigit_Numbers_on_Automata/links/00b495357e64391356000000.pdf?origin=publication_detail
https://www.researchgate.net/profile/Anatolii_Karatsuba/publication/234346907_Multiplication_of_Multidigit_Numbers_on_Automata/links/00b495357e64391356000000.pdf?origin=publication_detail
https://www.researchgate.net/profile/Anatolii_Karatsuba/publication/234346907_Multiplication_of_Multidigit_Numbers_on_Automata/links/00b495357e64391356000000.pdf?origin=publication_detail
http://infoscience.epfl.ch/record/164484/files/nscan4.PDF
http://infoscience.epfl.ch/record/164484/files/nscan4.PDF
https://infoscience.epfl.ch/record/164684/files/164684.pdf
https://infoscience.epfl.ch/record/164684/files/164684.pdf
http://www.dimensions-math.org/
http://www.dimensions-math.org/
https://arxiv.org/pdf/1511.08800.pdf
https://github.com/libopencm3/libopencm3
https://web.eecs.umich.edu/~cpeikert/pubs/lwe-analysis.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/lwe-analysis.pdf

BIBLIOGRAPHY 59

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

P. Longa and M. Naehrig. Speeding up the Number Theoretic Trans-
form for Faster Ideal Lattice-Based Cryptography. https://eprint.
iacr.org/2016/504.pdf, (accessed 2015-07-05). 2016 (cit. on pp. 50,
51).

V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: Advances in Cryptology — EU-
ROCRYPT 2010. http://www.di.ens . fr/ “lyubash/papers/
ringLWE.pdf. 2010, pp. 1-23 (cit. on pp. 15, 20).

E. Martin-Lopez et al. “Experimental realization of Shor’s quantum
factoring algorithm using qubit recycling”. In: Nature Photonics 6.11
(2012). https://arxiv.org/pdf/1111.4147 .pdf, pp. 773-776 (cit.
on p. 9).

N. Mathewson. Cryptographic directions in Tor. https://people.
torproject.org/ " nickm/slides/nickm-rwc-presentation.pdf,

(accessed 2016-06-20). 2016 (cit. on p. v).

R. McEliece. “A public-key cryptosystem based on algebraic”. In:
Coding Thv 4244.1 (1978). http://ntrs.nasa.gov/archive/nasa/
casi.ntrs.nasa.gov/19780016269.pdf, pp. 114-116 (cit. on p. 11).

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook
of Applied Cryptography. http://cacr.uwaterloo.ca/hac/. CRC
press, 20011 (cit. on pp. 5, 29).

R. C. Merkle. “A certified digital signature”. In: Advances in Cryp-
tology — CRYPTO’ 89 Proceedings. https://discovery.csc.ncsu.
edu/Courses/csc774-F11/reading-assignments/Merkle-Tree.
pdf. 1990, pp. 218-238 (cit. on p. 11).

D. Micciancio. “The shortest vector in a lattice is hard to approxi-
mate to within some constant”. In: STAM Journal on Computing 30.6
(2001). https://cseweb.ucsd.edu/~daniele/papers/SVP . pdf,
pp. 20082035 (cit. on p. 14).

D. Micciancio and P. Voulgaris. “Faster exponential time algorithms
for the shortest vector problem”. In: Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms. https://
cseweb.ucsd.edu/ daniele/papers/Sieve.pdf. 2010, pp. 1468-
1480 (cit. on p. 12).

V. S. Miller. “Use of Elliptic Curves in cryptography”. In: Advances
in Cryptology — CRYPTO ’85 Proceedings. https://www.docdroid.
net/58Q3zwX /miller-ecc-1ncs85. pdf . html. 1986, pp. 417-426
(cit. on p. 8).

P. L. Montgomery. “Modular multiplication without trial division”.
In: Mathematics of Computation 44.170 (1985). http://www . ams .
org/ journals/mcom/1985-44-170/S50025-5718-1985- 0777282 -
X/S0025-5718-1985-0777282-X . pdf, pp. 519-521 (cit. on pp. 29,
38).

National Institute of Standards and Technology. Workshop on Cy-
bersecurity in a Post-Quantum World. http://www.nist.gov/itl/
csd/ct/post - quantum- crypto - workshop - 2015 . cfm, (accessed
2016-03-11). 2015 (cit. on p. v).

https://eprint.iacr.org/2016/504.pdf
https://eprint.iacr.org/2016/504.pdf
http://www.di.ens.fr/~lyubash/papers/ringLWE.pdf
http://www.di.ens.fr/~lyubash/papers/ringLWE.pdf
https://arxiv.org/pdf/1111.4147.pdf
https://people.torproject.org/~nickm/slides/nickm-rwc-presentation.pdf
https://people.torproject.org/~nickm/slides/nickm-rwc-presentation.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf
http://cacr.uwaterloo.ca/hac/
https://discovery.csc.ncsu.edu/Courses/csc774-F11/reading-assignments/Merkle-Tree.pdf
https://discovery.csc.ncsu.edu/Courses/csc774-F11/reading-assignments/Merkle-Tree.pdf
https://discovery.csc.ncsu.edu/Courses/csc774-F11/reading-assignments/Merkle-Tree.pdf
https://cseweb.ucsd.edu/~daniele/papers/SVP.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://cseweb.ucsd.edu/~daniele/papers/Sieve.pdf
https://www.docdroid.net/58Q3zwX/miller-ecc-lncs85.pdf.html
https://www.docdroid.net/58Q3zwX/miller-ecc-lncs85.pdf.html
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

60

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

National Security Agency. NSA Suite B Cryptography. https://www.
nsa.gov/ia/programs/suiteb_cryptography/, (accessed 2016-03-
11) (cit. on p. v).

National Security Agency Central Security Service. Classification guide

for NSA/CSS quantum computing research 10-25. https://snowdenarchive.
cjfe.org/greenstone/collect/snowdenl/index/assoc/HASHd3c4.
dir/doc.pdf, (accessed 2016-01-04). 2011 (cit. on p. 9).

M. Neikes and N. Samwel. ARM implementation of the ChaCha20
block cipher. https://gitlab . science.ru.nl/mneikes/arm-
chacha20, commit 40fd6708. 2016 (cit. on pp. 43, 45, 50).

K. Neupane. “Two-party key establishment: From passive to active
security without introducing new assumptions”. In: Groups-Complexity-
Cryptology 4.1 (2012), pp. 1-17 (cit. on p. 8).

T. Oder, T. Poppelmann, and T. Guneysu. “Beyond ECDSA and
RSA: Lattice-based digital signatures on constrained devices”. In:
Design Automation Conference (DAC). https://www.sha.rub.de/
media/attachments/files/2014/06/bliss_arm.pdf. 2014, pp. 1-6
(cit. on pp. 46-48).

J. Patarin. “Hidden Field Equation and Isomorphism of Polynomi-
als”. In: Advances in Cryptology — EUROCRYPT ’96: International
Conference on the Theory and Application of Cryptographic Tech-
niques. http://www.minrank.org/hfe.pdf. 1996, pp. 3348 (cit. on

p. 11).
C. Peikert. “Lattice cryptography for the Internet”. In: Post-Quantum

Cryptography. https://web.eecs.umich.edu/ cpeikert/pubs/
suite.pdf. 2014, pp. 197-219 (cit. on pp. 1, 16-18, 49).

C. Peikert. “Public-key cryptosystems from the worst-case shortest
vector problem”. In: Proceedings of the forty-first annual ACM sym-
posium on Theory of computing. http://drops.dagstuhl.de/opus/
volltexte/2009/1892/pdf /08491 . PeikertChris . Paper . 1892.
pdf. 2009, pp. 333-342 (cit. on p. 14).

V. Pieterse and P. E. Black. big-O notation. http://www.nist.gov/
dads/HTML/bigOnotation.html, (accessed 2016-03-11). 2012 (cit. on
pp. 3, 4).

J. M. Pollard. “A monte carlo method for factorization”. In: BIT
Numerical Mathematics 15.3 (1975). https://www.cs . cmu. edu/
afs/cs.cmu.edu/Web/People/avrim/451f11/lectures/lect1122_
Pollard.pdf, pp. 331-334 (cit. on p. 8).

T. Poppelmann and T. Giineysu. “Towards Practical Lattice-Based
Public-Key Encryption on Reconfigurable Hardware”. In: Selected
Areas in Cryptography — SAC 2013. Vol. 8282. https://www.ei.rub.
de/media/sh/veroeffentlichungen/2013/08/14/1we_encrypt.
pdf. 2013, pp. 68-85 (cit. on p. 46).

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://snowdenarchive.cjfe.org/greenstone/collect/snowden1/index/assoc/HASHd3c4.dir/doc.pdf
https://snowdenarchive.cjfe.org/greenstone/collect/snowden1/index/assoc/HASHd3c4.dir/doc.pdf
https://snowdenarchive.cjfe.org/greenstone/collect/snowden1/index/assoc/HASHd3c4.dir/doc.pdf
https://gitlab.science.ru.nl/mneikes/arm-chacha20
https://gitlab.science.ru.nl/mneikes/arm-chacha20
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
https://www.sha.rub.de/media/attachments/files/2014/06/bliss_arm.pdf
http://www.minrank.org/hfe.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/08491.PeikertChris.Paper.1892.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/08491.PeikertChris.Paper.1892.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/1892/pdf/08491.PeikertChris.Paper.1892.pdf
http://www.nist.gov/dads/HTML/bigOnotation.html
http://www.nist.gov/dads/HTML/bigOnotation.html
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/avrim/451f11/lectures/lect1122_Pollard.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/avrim/451f11/lectures/lect1122_Pollard.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/avrim/451f11/lectures/lect1122_Pollard.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf
https://www.ei.rub.de/media/sh/veroeffentlichungen/2013/08/14/lwe_encrypt.pdf

BIBLIOGRAPHY 61

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

T. Péppelmann, T. Oder, and T. Giineysu. “High-Performance ideal
lattice-based cryptography on 8-bit ATxmega microcontrollers”. In:
Progress in Cryptology — LATINCRYPT 2015: 4th International Con-
ference on Cryptology and Information Security in Latin America.
https://eprint.iacr.org/2015/382.pdf. 2015, pp. 346-365 (cit.
on p. 46).

J. Proos and C. Zalka. “Shor’s discrete logarithm quantum algorithm
for elliptic curves”. In: arXiv preprint quant-ph/0301141 (2003). https:
//arxiv.org/pdf/quant-ph/0301141v2.pdf (cit. on p. 10).

O. Regev. “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography”. In: Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing. http://www.cims.nyu.
edu/"regev/papers/qcrypto.pdf. 2005, pp. 84-93 (cit. on pp. 14,
15, 20).

O. Regev. “The learning with errors problem”. In: Invited survey in
CCC (2010). http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.205.2622&rep=repl&type=pdf (cit. on p. 15).

R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtain-
ing digital signatures and public-key cryptosystems”. In: Communi-
cations of the ACM 21.2 (1978). http://web.mit .edu/6.857/
0ldStuff/Fall03/ref/rivest78method . pdf, pp. 120-126 (cit. on
p. 8).

A. Schonhage and V. Strassen. “Fast multiplication of large numbers”.
In: Computing 7.3 (1971). http://moonflare.com/misc/Schnelle’,
20Multiplikation%20gro%DFer’20Zahlen.html, pp. 281-292 (cit.
on p. 8).

C. E. Shannon. “A mathematical theory of communication”. In: The
Bell System Technical Journal 27.3 (1948). http://ieeexplore.
ieee.org/stamp/stamp. jsp?tp=&arnumber=6773024, pp. 379-423
(cit. on p. 9).

P. W. Shor. “Polynomial-time algorithms for prime factorization and
aiscrete logarithms on a quantum computer”. In: SIAM Journal on
Computing 26.2 (1997). https://arxiv . org/pdf / quant - ph/
9508027v2.pdf, pp. 1484-1509 (cit. on pp. 1, 10).

C.-L. Tian, W. Wei, and D.-D. Lin. “Solving closest vector instances
using an approximate shortest independent vectors oracle”. In: Jour-
nal of Computer Science and Technology 30.6 (2015). https: //
eprint.iacr.org/2014/545.pdf, pp. 13701377 (cit. on p. 13).

Tor Project: Anonymity Online. https://www . torproject . org/,
(accessed 2016-01-04) (cit. on p. 18).

A. M. Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Journal of Math 58.5 (1936). https://
www.cs.virginia.edu/"robins/Turing_Paper_1936.pdf, pp. 345—
363 (cit. on p. 4).

https://eprint.iacr.org/2015/382.pdf
https://arxiv.org/pdf/quant-ph/0301141v2.pdf
https://arxiv.org/pdf/quant-ph/0301141v2.pdf
http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://www.cims.nyu.edu/~regev/papers/qcrypto.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.2622&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.205.2622&rep=rep1&type=pdf
http://web.mit.edu/6.857/OldStuff/Fall03/ref/rivest78method.pdf
http://web.mit.edu/6.857/OldStuff/Fall03/ref/rivest78method.pdf
http://moonflare.com/misc/Schnelle%20Multiplikation%20gro%DFer%20Zahlen.html
http://moonflare.com/misc/Schnelle%20Multiplikation%20gro%DFer%20Zahlen.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6773024
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6773024
https://arxiv.org/pdf/quant-ph/9508027v2.pdf
https://arxiv.org/pdf/quant-ph/9508027v2.pdf
https://eprint.iacr.org/2014/545.pdf
https://eprint.iacr.org/2014/545.pdf
https://www.torproject.org/
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
https://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf

62

BIBLIOGRAPHY

[81]

[82]

[83]

J. Utsler. Quantum Computing Might Be Closer Than Previously
Thought. http ://www . ibmsystemsmag . com/mainframe/trends/
IBM - Research/quantum_ computing/, (accessed 2016-03-03). 2013
(cit. on p. 9).

A. Van Herrewege, V. van der Leest, A. Schaller, S. Katzenbeisser,
and [. Verbauwhede. “Secure prng seeding on commercial off-the-shelf
microcontrollers”. In: Proceedings of the 3rd international workshop
on Trustworthy embedded devices. https://eprint.iacr.org/2013/
304.pdf. ACM. 2013, pp. 5564 (cit. on p. 50).

N. Xu et al. “Quantum Factorization of 143 on a Dipolar-Coupling
Nuclear Magnetic Resonance System”. In: Phys. Rev. Lett. 108.13
(Mar. 2012). https://arxiv.org/pdf/1111.3726.pdf, p. 130501
(cit. on p. 9).

http://www.ibmsystemsmag.com/mainframe/trends/IBM-Research/quantum_computing/
http://www.ibmsystemsmag.com/mainframe/trends/IBM-Research/quantum_computing/
https://eprint.iacr.org/2013/304.pdf
https://eprint.iacr.org/2013/304.pdf
https://arxiv.org/pdf/1111.3726.pdf

	Introduction
	Preliminaries
	Complexity
	Post-Quantum Cryptography
	Classical Cryptography
	Symmetric Cryptography
	Asymmetric Cryptography
	Quantum Computation
	Quantum Cryptanalysis
	Post-Quantum Primitives

	Lattices
	Lattice Problems
	Shortest Vector Problem (SVP)
	Closest Vector Problem (CVP)
	Complexity of SVP and CVP
	Learning-With-Errors (LWE) Problem
	 Ring-Learning-With-Errors (RLWE) Problem
	RLWE based Key-Encapsulation Mechanism (KEM)

	Instantiations of the RLWE Problem based KEM
	BCNS
	NewHope
	NewHope Error Distribution
	NewHope Error-Recovery Mechanism
	NewHope Number Theoretic Transform
	Optimization Measures for the NTT

	NewHope for the ARMv6-M architecture
	The ARM Cortex-M0 (ARMv6-M)
	NewHope Building Blocks
	Adapting NewHope for the Cortex-M0
	Architectural Constraints
	Communication

	Optimization Details per Building Block
	NTT
	Multiplying the Coefficients
	Bit Reversal

	Error Reconciliation
	Generation of the Help Vector
	Reconciliation

	Polynomial Arithmetic
	Polynomial Addition and Pointwise Multiplication

	ChaCha20
	Keccak

	Results

	Conclusion
	Reflection
	Future Work

	Executing NewHope on the Cortex-M0

