Radboud Universiteit Nijmegen

Institute for Computing and Information Sciences
Software Science (SwS)

Investigating students’ concurrent
programming strategies

Master Thesis

Bartjan Zondag

Supervisors:

prof. dr. Erik Barendsen
dr. Sjaak Smetsers

Final version

Nijmegen, November 2017

This research focusses on finding the programming strategies students apply while working on
a concurrency assignment. There are different strategies one can apply to create a program,
three of which are highlighted in this thesis: trail-and-error, adaptation strategy, and
reflection-in-action. The strategy used influences the way students learn from working on an
assignment. Therefore, it is important for teachers to know which strategy students use and
when. However, there is no standardized method to find the strategy that students use. The
method described in this study can be used to find the strategy students use based on
programming related activities of students while working on a programming assignment. A
case study is used to validate the method and to get more insight in the strategy students use
while working on a concurrency assignment. Parts of the assignment show trial-and-error
behavior while other parts show a mixture of adaption and reflection-in-action strategies.
Several directions to increase the distinguishability of these strategies are suggested, which

can enhance the results the method yields.

This thesis is the final product of the Information Sciences master at the Radboud University
Nijmegen. | would like to thank my supervisors Erik Barendsen and Sjaak Smetsers for their

support, time and valuable feedback.

| would like to thank my girlfriend, Fanny, for her continued emotional support and linguistic
guidance. Finally | would like to thank my family, especially my father and mother, and friends

for their support.

Index

1

2

3

4

5

T (e o [¥ Tt o] o EO U UOPRPPUPTOPRPRPPR 6
Background infOrmMationooocuiiiiiiiiie e e e e 8
2.1 CONSTIUCTIVISIM L..eiiieieeeeeee e e e e e st e st e e s et e e s e e e e s ennees 8
2.2 (00T o [ol=Y o) {UF: | BN o 1Tt 4SRRI 8
2.3 How do novices apply their KNOWIEAEZEcooovuiiiiiciiiieeeeee e 9
2.4 SOLO TaXONOMY .. s 11
2.5 Programming KNOWIEAEZEeeeiieiiie ittt e e e s eaaeeen 12
2.6 KNowIedge VS MICro Strat@gYccueeiieciiiie ettt e st e e e are e e e aaa e e e e aaee e 14
2.7 Y Lol Co T o - | (=T =4 =T PPN 14
2.8 CONMCUITBICY et s s 16
2.9 DiffiCUIties fOr NOVICES ..ccviiiiie ettt st s 16
Bl 23] U T« 1Y R 19
3.1 T CE: [ol o =Jo = | RS 19
3.2 The assignment of the StUAENTS......cocciiiiiiiiiecce e 20
IMEENOM.....c..eeeeeee ettt et ettt sttt e b e r e e s e aneeneen 22
4.1 Annotating knowledge in recorded datacccceeeieiiiiiiciiiii e 22
4.1.1 Structured @PPrOACK ...cccc et eerae e e e eans 22
4.1.2 Gathering iINformMatioN..........occviii i e 23
4.1.3 IMPIEMENTATION. ... et e e e e 24
4.1.4 ASSESSIMENT...eiiiiiiiiiiiiiiii e 25
4.1.5 L@ IR T 1Y SRR 25
4.2 Macro strategies and programming CONCEPLS ..uuvvvieiieeciiiiiieee e e errreere e e 29
4.2.1 MacCro Strategy PatlernS. e 29
4.2.2 Finding Macro strategy per programming ConCeptcccceeevcvveeeecveeeeeiveeeeennnen 32
RESUIES ..t s e et e e e e s b e e s ab e e sabe e e nee e s reeenneeens 35

5.1 Programming KNOWIEAZEooeeiiiiie ettt et e e saaee e 35
5.1.1 Runnable and threads ... 35
5.1.2 SYNCAIONIZATION ..eeiiiiiiee e e e e s bee e e e e 37

5.2 Macro strategy per programming CONCEPT ...cvvvrrrrrerirriiriiieereeereereeerrreerrrererrerrrrre—... 43
5.2.1 RUNNGDIE Lttt s s re e 43
5.2.2 TREEAUS ...ttt st sttt e 43
5.2.3 SYNCAIONIZATION ..eeiiiiiiee et e e e s rae e e e ean 44
524 Comparing SEQUENCES PEI BIOUPD ceeeeeerruuririeeeeeernsinrrreeeeesssssssrereeesessssnssseeseeessns 47

L O T 1Y of 1Yo] o PSPPSR PP PP PPOTPP 50

6.1 RSO 10 I =" o T o o 3'0 1 50

6.2 Reflecting on the case StUAYcc.vviiiiiiii i 52

6.3 Macro strategy fiNGEIrPriNto s eaae e 54

6.4 Reflecting on the MEethod ... e 55

T CONCIUSION ettt sttt et b e bt e s bt sae e e at e e beesbeesbeesaeesabeeabeebeebeenbeas 56

1 Introduction

Introductory programming courses are full of challenges for novice programmers (Kolikant,
2001). With the goal to create ‘new’ programs a novice programmer has to learn which code
needs to be added, changed or deleted in order to realize a program. However, only creating
code is not enough, a novice has to gather and understand information about the syntax of the
programming language and programming concepts, and learn how they intertwine in a
program (Whalley J. L., 2006). After this the novice writes and assesses parts of the program to
see if it fits the goal the programmer initially had in mind. The way a novice programmer
combines these activities is what we call in this study the ‘macro strategy’ he or she uses to
create a program, though a programmer can be unaware that he is using a certain macro

strategy.

One of the strategies we use in this study is ‘reflection-in-action’, which focusses on finding the
reason why code is behaving in a certain way. By examining a this behavior and using prior
understanding, a programmer tries to come up with reasons why the code gives a certain
result. This way of thinking can also be applied beforehand by making ‘test cases’ that need to
be fulfilled in order to check the correctness of the program (Edwards S. H., 2004). The second
strategy is the ‘adaptation’, or sometimes called the copycat, strategy, in which the
programmer searches for example solutions that can be integrated in the program (Hou,
Jablonski, & Jacob, 2009). This strategy can lead to the introduction of bugs and duplicate
code, it also does not guarantee that the copied code in question is understood by the
programmer. The last ‘strategy’ we use in this study is trial-and-error which uses a simple
structure of code that is repeatedly written (trial) and found inadequate (error), until the
solution is “good enough” (Lénnberg, Berglund, & Malmi, 2009). In this study we treat trial-

and-error as a strategy that can be used by novices.

Each of these strategies influences the way novices create a program but also how much they
learn from it. Before a novice can use reflection-in-action to predict the outcome of a piece of
code, he already needs to master basic comprehension and analysis skills regarding the topic
at hand (Buck & Stucki, 2000). Buck & Stucki state that expecting this behavior too early could
be harmful for the learning process rather than helpful. However, when reflection-in-action
can be used properly it is a ‘strong’ strategy that can lead to new understanding in a short

amounts of time (Edwards S. , 2003). If used correctly the adaptation strategy guides novices in

the right direction. Additional procedural guidance and example code assist students in
creating a solution. Giving too much guidance can impede the need for novices to increase
their programming skills to solve the task at hand (Yadin, 2011). The last ‘strategy’ trial and
error is suitable for beginners in a disciple, but if they keep on using it for extended periods it
can become a handicap (Edwards S. H., 2004). This handicap can best be seen in programs with
increased complexity were seemingly ‘random’ changes do not lead to acceptable solutions

(Kolikant, 2005).

As we can see each of these three strategies each have their own focus. Trial-and-error and
adaptation can be well suited to solve the problem; this does not mean that a novice optimally
learns from this experience. However as a teacher how do you know which strategy students
employ to work on an assignment? While multiple strategies may be suitable to solve the
problem, not all strategies are desired since they do not increase the programming skills of

novice programmers.

In this study we showcase a method that can identify strategies students use while working on
a programming assignment, this is done by looking at the sequences of programming activities.
With this method in mind, a distinction can be made of the strategy students use for different
programming concepts within an assignment. This can assist teachers to verify if the students

use the strategy that is best suited for the assignment at hand.

2 Background information

The first three sections of this chapter describe how the knowledge of students is tied to
strategies they use while working on a programming assignment. Section 2.4, 2.5 and 2.6 focus
on the SOLO taxonomy and how this is used in this study. Section 2.7 describes different
strategies that are found in other studies. Section 2.8 focuses on difficulties encountered by

students while working on programming assignments.

2.1 Constructivism

Constructivists interpret students learning as the development of personalized knowledge
frameworks that are continually refined. According to constructivism, a student must actively
construct knowledge, rather than absorbing the knowledge from textbooks and lectures
(Davis, Maher, & Noddings, 1990). While constructing this knowledge, each student develops
their own set of rules, or “alternative frameworks” (Ben-Ari, 2001). These alternative
frameworks “naturally occur as part of the transfer and linking process” (Clancy, 2004),
represent the prior knowledge of students, essential to construct new knowledge (Smith,
diSessa, & Roschelle, 1992). “When learning, the student modifies or expands his or her

framework in order to incorporate new knowledge” (Eckerdal, et al., 2006).

2.2 Conceptual Aspects

Programming tasks involve the use of a variety of programming knowledge concepts (Schwill,
1994) (Tew & Guzdial, 2010). A source of programming difficulties can be explained through
the lack of understanding of these programming knowledge concepts (“misconceptions”).
Another source can be explained by a personal view of the notional machine, an idealized,
conceptual computer whose properties are implied by the constructs in the programming
language employed (Boulay, O'Shea, & Monk, 1981). Novices programmers do not completely
understand what the notional machine can be instructed to do and how it manages to do it.
This mismatch between the personal abstraction of novice programmers and the actual

working of the notional machine can explain a variety of misconceptions (Sorva, 2013).

The notional machine and execution model that are used to create concurrent programs are
considerably more complicated than similar sequential programs. Novice programmers have
difficulties to envision and comprehend the parallel and dynamic behavior of concurrent

programs. When novice programmers work on a concurrency assignment, the discrepancy

between the actual and mental model of novice programmers of the notional machine
become visible. The novice programmers’ assessment of concurrent execution can give rise to
incorrect views on the correctness of his concurrent program (Kolikant, 2005). This is seen
back by novice programmers, as they tend to interpret a single successful test run on a
characteristic input as sufficient evidence for correctness of their program. Novice
programmers often confuse method execution and scheduling. They have difficulties
recognizing the execution sequence of threads. For example multiple threads that access the

same variable at the same time introducing situational bugs.

2.3 How do novices apply their knowledge

This study focusses on the knowledge of novice programmers, how and when they use
programming knowledge and what knowledge they still need to ‘gather’. When applying this
knowledge, novice programmers can encounter difficulties. Below a set of common difficulties

is explained.

Novices encounter difficulties while applying programming knowledge. Different sources of
these difficulties are the cognitive load, the amount of ‘new’ information novice programmers
have to process, another source is misconceptions about language constructs, the way a
programing language is described compared to a natural language. Spohrer and Soloway
(1986) analyze these two difficulties, they state that the cognitive load of novice programmers

have a bigger impact on programming errors than misconceptions about language constructs.

This study focusses on concurrency programming, which brings its own additional set of
difficulties for novice programmers. These difficulties tend to focus on choosing the
appropriate synchronization mechanisms and primitives to meet certain synchronization goals,
which are required for concurrent programming. Additional to this, novice programmers have
trouble reasoning why the combined use of these synchronization primitives leads to the

expected behavior (Xie, Kraemer, & Stirewalt, 2007).

Each student has their own approach in the way they deal with these difficulties. Some spend
more time on gathering information about the concepts they are working with, before
applying them in their own project. Others tend to start by implementing their code, without
knowing how concepts exactly work or fit together. Robins, Rountree and Rountree (2003)

argue that most novice programmers spend little time planning. For the case of concurrency,

Lonnberg, Berglund and Malmi (2009) found that some students even consider designing
unnecessary or even impractical. As a result such students tend to rely on a trial and error
strategy (Lonnberg, Berglund, & Malmi, 2009). By not creating designs or plans students are
forced to combine plans on the flight, increasing the cognitive load while they are working on

assignments.

The above described difficulties novice programmers can have. Experts do not have these
difficulties. Bransford, Brown and Cocking (2000) describe serval key principles of experts’

knowledge:

1. Experts notice features and meaningful patterns of information that are not noticed by
novices.

2. Experts have acquired a great deal of content knowledge that is organized in ways that
reflect a deep understanding of their subject matter.

3. Experts’ knowledge cannot be reduced to sets of isolated facts or propositions but,
instead, reflects contexts of applicability: that is, the knowledge is “conditionalized” on a
set of circumstances.

4. Experts are able to flexibly retrieve important aspects of their knowledge with little
attentional effort.

5. Though experts know their disciplines thoroughly, this does not guarantee that they are
able to teach others.

6. Experts have varying levels of flexibility in their approach to new situations.

(Bransford, Brown, & Cocking, 2000)

The above principles can be explained as follows, when an expert needs to solve a ‘new’
problem, he can rely on his experience to find the best suited patterns and apply these to
create a solution. Combining these different patterns creates a cognitive load, one has to recall
different patterns and combine these with the new information, the problem, at hand.
However there is a limitation on how much ‘new’ information a person can process at a time.
Since an expert only needs to process limited amounts of new information this forms no
obstacle. However this is different when we look at novice programmers. Novice programmers
do not have a collection of patterns that they can use to solve a new problem. This in term
means that the cognitive load increases, not only must the student create patterns, he or she

also has to combine them on the flight, thus increasing the chance of defects to occur.

10

2.4 SOLO Taxonomy

SOLO, Structure of Observed Learning Outcomes, is a way to classify learning outcomes in
terms of their complexity and by doing so it focusses on quality, rather than how many lines of
code are correct (Biggs & Collis, 2014). This taxonomy is prominently used for the skill
programming (Whalley, Clear, Robbins, & Thompson, 2011). SOLO has five levels of

complexity:

e Prestructural/incompetence, lack of knowledge or failing to grasp an understanding of
the subject

e unistructural, novices pick up only one or a few aspects of the task

e multistructural, novices see several aspects, however they are unrelated

e relational, multiple aspects of the task are integrated into a whole

e extended abstract, the aspects needed for a task can be applied to a new task

Ginat (2004) created a table that links algorithm designs to the SOLO classification levels, see
Table 1. In this study we refer back to this table to link the works of novices to the SOLO level

as described by Ginat.

SOLO LEVEL Algorithmic design

Prestructural (P) Substantial lack of knowledge of selection
and implementation of generic design
patterns.

Unistructural (U) Direct translation of the specifications into a

straightforward implementation of a generic
design pattern

Multistructural (M) A translation of the specifications into flexible
manipulation of a generic design pattern; or a
simple, elementary composition of more than
one generic pattern.

Relational (R) A valid well-structured solution that involves
the composition of two or more design
patterns, integrated in a non-simple,
interleaved manner, to form a logical whole.

Extended Abstract (E) Insightful capitalization on hidden task
characteristics; and/or a generalized
structure that encapsulates abstraction
beyond the required solution.

Table 1 SOLO classification for algorithm design (Ginat, 2004)

In the study of Izu et al. (2016) they created a similar table, this time with the focus on code
design, Table 2. In Table 2 we can see that Izu uses the term ‘building blocks’, with this he
means code snippets that represent the knowledge that is necessary to complete the

programming assignment and exam.

11

SOLO LEVEL Code design

Prestructural (P) Substantial lack of knowledge of basic
building blocks and their use to solve the
given task.

Unistructural (U) Use of one building block or template to
partially or completely solve the given task.

Multistructural (M) Modify/extend a building block, or combine

sequentially two or more blocks to partially
or completely solve the given task.

Relational (R) Combine and integrate in a non-simple
manner two or more building blocks to solve
the given task.

Table 2 Generic SOLO classification for code design (Izu, Weerasinghe, & Pope, 2016)

In this study we use both Table 1 and Table 2 to determine what code novices are working on,

and in what SOLO level the algorithm of the novices are.

2.5 Programming knowledge

According to the Oxford dictionary the term knowledge is defined as follows:

Facts, information, and skills acquired through experience or education; the theoretical or practical

understanding of a subject.

The ideal case would be to study all the aspects of knowledge that novices use during the
assignment, however ones intellect, the knowledge a person possesses, is not directly
measurable. However we can observe interactions of a person with the world that give a hint
to the knowledge this person possesses. For this we use the SOLO taxonomy with the focus on
programming knowledge as described in section 2.4. However we are not only interested in
the code novices create but also in the way they gather information and assess their own
program. We therefore focus on three ‘activity types’ related to programming knowledge:

gathering information, implementation, and assessment.
The three activity types are described as follows:

Gathering information: Gathering information describes all information accessed outside the
programming environment. The programming environment is the development tool the
programmer uses to create the program, this can be an IDE or a text editor. Examples of
gathering information are, accessing google.com or stackoverflow.com to inquire information

about programming knowledge concepts, but also looking into a problem statement or

12

assignment (the reason why the program needs to be written) or asking help from a third

party, a student assistant or teacher.

Implementation: Implementation describes the situation of writing, editing, and removing
code by the programmer. Examples of implementation are, adding or editing a class, or
function of a program, but also removing lines of code. Different studies have used the SOLO
taxonomy to give structure to the way they capture implementations of novices. In this study

we use the SOLO taxonomy based of Table 1 and Table 2 of section 2.4.

Assessment: In this study we use the word assessment instead of evaluation, so it is not
confused with the evaluation stage of the bloom taxonomy. Assessment describes all the
instances that involve code or the resulted documents (automatically generated by the
program), and output of program without changing the code. Examples of assessment are
looking at the output of a program to see if it gives the desired result or examining a line of

code to see if there is a defect.

The three activity types are depicted in Figure 1. As described above, gathering information
describes the interaction of external sources, and how they influence internal knowledge,
implementation is the exertion of knowledge into the real world, and assessment describes
how a person assess their own code and checking or changing their internal knowledge

accordingly.

Assessment

Gathering
information

> knowledge >
Implementation

Figure 1 The box represents the internal knowledge of a person. Three interactions are depicted as gathering
information, implementation and assessment. A person can exert one’s knowledge into the real world and by doing
so changing the world, this interaction is called implementation. To assess the correctness of the implementation
one can assess their own work, and as such giving hints of constructing or ‘changing’ his own knowledge.

13

2.6 Knowledge vs micro strategy

Davies (1993) distinguishes between programming knowledge, for example being able to state
how a “for” loop works, with programming strategies, and the way knowledge is applied in a
program, for example the way the “for” loop is used in a program. As seen in the example
above, a micro strategy is the way knowledge is applied to a program. This in term means that
a novice programming ability rests on a foundation of knowledge and how to use this

knowledge to come up with a micro strategy.

However these micro strategies are subject to interpretation, when does code belong to one
micro strategy and not another. To solve this problem we look to the study of Izu,
Weerasinghe & Pope (2016) who focused on a topic close related to micro strategies, called
building blocks. These building blocks describe the complexity and correctness of code
snippets of the solution in a structured well mannered way. An example of these building

blocks are described can be seen in Table 3.

Table 3 List of building blocks (Izu, Weerasinghe, & Pope, 2016)

Building Block Description

Conditional loop While(true) with break statement

while with simple condition (ie. n > 0) where the
variable tested has been initialized, and it will be
updated in the body.

Basic input Accept number from user input

Assignment Simple assignment, i.e. x =1

Each building block has a specific, yet abstracted, piece of code tied to it. This helps connecting
written code to a concept. For each piece of code the correct approach is described, which can

also be used to find approaches that do not work.

2.7 Macro strategies

In this study we are interested in the different macro strategies students employ to come up
with solutions while working on an assignment. In this section we describe different macro

strategies that students use.

Reflection-in-Action

The Reflection-in-action strategy focusses on thinking before acting. Before you make a

change, a “time out” is taken to reason what this change would do to different aspects of the

14

application. This reasoning process relies on experience and knowledge of the programmer to
understand which consequences the change has. However this way of thinking does not
always come natural. To assist in this process different methods are created, for example TDD
(“test-driven development”). TDD enforces the programmer to write tests that check the
outcome of parts of an application before the actual code is written. This way the programmer
is forced to reason if the code he or she writes adds functionality to fulfill these tests.

(Kolikant, 2001) (Tew & Guzdial, 2010).

Adaptation or Copycat Strategy

Adaptation or copycat strategies focus on finding complete or partially complete solutions for
the problem at hand. The goal behind the strategy is that someone already made a solution
and the easiest way to solve the problem is by applying the found solution to the new
problem, with minimal changes necessary. Different studies show that students try to find
solutions they can copy from slides and other material provided by the teacher (Edwards S. H.,
2004). The works of Spohrer and Soloway (1986) show that examples given in a textbook were
copied for the assignment, expecting the behavior of the copied work to be correct. However
the students in question did not take the extra requirements of the assignment into account,

but they did not notice this.

Trial and error

Trial and error is a well-established technique for beginners in any discipline, and it is no surprise that
this is where students start out. But why do students persist in this practice long after it becomes a

handicap? (Edwards S. H., 2004)

As seen in many studies, trial and error is a common practice while novices are working on
programming assignments. Trial and error strategies focus on changing individual pieces of
code and testing if the working of the program is as expected (Lonnberg, Berglund, & Malmi,
2009). However trial and error strategies have the downside of becoming less effective if the
problem at hand is large and complex. This can be seen in programming exercises that require
multiple changes before the program works correctly (Edwards S. H., 2004). So while trial and
error has its place to solve certain problems it is inadequate to solve larger and complex

problems.

15

Combination of macro strategies

Based on different works we see that multiple strategies are combined to come up with a
solution. For example it is typical that if the adaptation strategy is used an iteration of the trial-
and-error strategy may follow to fit the found example to the problem at hand (Kolikant,
2001). The method we suggest in this paper takes into account that multiple strategies can be

applied within the context of one assignment.

2.8 Concurrency

There are many reasons to introduce concurrency, people want to make optimal use of the
computers processing power, need to control several objects at the same time, want to create
independent objects to create a realistic simulation. For instance, someone might want to play
a game and he has to press a key on the keyboard and move the mouse at the same time.
Someone else might want a program that simulates multiple cars that drive at the same time.
These coordinated and/or simultaneous activities are difficult (if not impossible) to program
using a traditional or ‘sequential’ program. The problem is that traditional languages are based
on a single process that executes instructions one at a time. This sequential paradigm does not
match the way the real world works: People and animals act in parallel, objects interact in
parallel. As a result, many real-world activities cannot be modelled in a natural way with
sequential programming. The ideal solution is to use a concurrent or parallel programming
language, that is, a language that allows programmers to control multiple, interacting
processes. However working with concurrency brings its own downsides. One of the biggest

downsides is that shared data can be corrupted if multiple threads access it at the same time.

2.9 Difficulties for novices

This section provides a rundown of difficulties that can occur for novices while working on a

programming assignment.
Assignment decomposition problems

As described in section 2.3 'How do novices apply their knowledge’, there can be a multitude
of reasons why a student cannot decompose the problem into smaller parts. One of these
reasons can be explained with statements of Bransford (2000) “Experts are able to flexibly

retrieve important aspects of their knowledge with little attentional effort”. When a teacher

16

creates an assignment he or she believes parts of the assignment are trivial, however this is
not the case for the students. This in term makes it harder for the student to find the individual

tasks in a larger assignment.

Misinterpretation of the assignment

Next to splitting up an assignment it could also be that the assignment is misinterpreted. For
example the teacher has a clear goal of what he wants to teach the students. The student
however, interprets the goal of the assignment in a different way, leading to the ‘wrong’

solution or the student gets stuck because he does not understand what he has to do.

Missing content knowledge

Some problems students have are related to knowledge they have of a certain programming
knowledge concept. It could be that they have no understanding of a programming knowledge
concept, or that they know the theory of a concept, but cannot apply this to various situations.
The only way to combat this problem is by accessing external sources that can guide, teach, or

assist the student (Bransford, Brown, & Cocking, 2000).

Next to these problems, Resnick (1991) and Kolikant (2001) describe concurrency specific

issues that we take into account, below is a highlight of them.

Identification of Synchronization goals

As described in chapter 2.8 ‘Concurrency’, data can be corrupted if multiple threads access the
common resource at the same time. The solution to this problem is to apply synchronization, a
semaphore is an example of this. A semaphore is a variable or abstract data type used to
control access to a common resource. Resnick (1995,1996) and Kolikant (2001) showed that
students have problems identifying the right common resource. Instead students focus their

efforts on solutions that shift the problem to a new area rather than solving it.

Centralized and Decentralized synchronization solutions

Applying synchronization can oppose challenges to novice programmers, and if done
incorrectly this can lead to corrupt data. The corrupt data is caused by multiple threads

changing data individually and for example overwriting each other’s results.

17

Centralized solutions and decentralized solutions are both ‘correct’ ways to solve this and
other synchronization problem. However both of them come with their own set of rules that
students have to follow to implement them. When applying the concept of synchronization, as
explained in the previous point, there are two options to do this. Option one is a centralized
solution: in the end there is one resource that is edited. The synchronization in this case is
handled by the object, computer or database that is responsible for the actual alteration of the
resource. As an example, multiple computers want to edit a record in a database. When the
database gets the first request it locks the record and only releases it when the computer is
done with it, making sure that it can never happen that multiple computers edit the same

record.

The second option is decentralized. As an example multiple computers want to edit a record in
a database. Before they do this they tell each other that they are going to edit the record, then
actually edit the value, and in the end they tell all the computers that they are done editing the
record. The main downside of this solution is that if one computer does not comply by the

rules multiple computer can still edit the data at the same time (Kolikant, 2001).

Inventing new operations

Some students attempted to solve the synchronization problem by inventing new functions,
with the goal to replace a semaphore. These new functions consisted of an unwieldy way to
achieve the same as a semaphore, or they ‘solved’ it erroneous. Kolikant (2001) believes the

origin of this problem is found in the translation from natural language.

18

3 This study

Now that we have established the current status of the research field and have given an
overview of the relevant literature, we will now focus on the specific aims of this paper. The
first section of this chapter describes the goal of this study. To reach the goal of this study,
observations of students working on a programming assignment are made (how these
observations are made and how they contribute to the research goal will be described in detail
in the next chapter). The specific programming assignment used here will be shown and

discussed in the second section of this chapter.

Each of these two parts have their own goal. The first part tries to give answer to the main

research question

How can we determine what macro strategy students use for different programming

knowledge concepts?

The second part explains the case study that is used, where we focus on what the method tells

us about this specific case.

3.1 Research goal

The goal of this study is to contribute to a better insight into what macro strategies students
use while learning the skill programming. The macro strategy influences how students create
an assignment and what they learn from the assignment while working on it. However, finding
the macro strategy for each student costs a lot of time which is not available for most
teachers. With this method we attempt to strike a balance between the time needed to find
these strategies and the results this method gives. The method of this study accomplishes this
by recognize macro strategies students use while working on a programming assignment in a

systematic way.

One of the key characteristics of the method we suggest in this study is that it can be applied
to any type of programming assignment. The expectation is that because of the generic
approach different students can be compared in a systematic way rather than in an

interpretive way.

19

By looking at the structure and sequence of activities of students we can find indications of the
macro strategies students use. Three macro strategies are highlighted in this study: reflection-
in-action, adaptation strategy, and trail-and-error. Multiple strategies can be combined by
students to come up with a solution. One of the goals of the method of this study is to find the
macro strategy students use for each programming concept. This helps teachers to find the

concepts that the students still has problems with.

3.2 The assignment of the students

In this study two groups of students were observed to gather the data. These students follow
the course ‘object oriéntatie’, object orientation. The assignment the students have to solve is

as follows:

Imagine that a certain number of travellers (between 60 and 90) arrive at a train
station. These people must continue to their final destination, a holiday resort, by
taxi. Four taxis are available: two with a capacity of four and two with a capacity of
seven people. The taxis ride back and forth as long as there are still people waiting
at the station. Each taxi transports as many people as it can, or possibly less,

depending on the actual number of people still waiting.

The aim of the program the students have to make is to determine how long it will take to
transport these passengers. Next to this problem statement students received a UML class
diagram showing a sequential solution for the problem, and a code base written in JAVA
containing a sequential solution to transport passengers from the train to the station and taxis
taking the passengers from the station to the destination. The goal for the students is to
change the sequential behavior of the program to a concurrent, parallel or multi-threaded,

solution. When looking at the solutions of the students we take the following into account:

“There are two kinds of synchronization goals: (a) prevent instructions of two or more processes from
executing at the same time, and (b) prevent a set of instructions from being executed until a condition is
satisfied. Synchronization goals are achieved if two conditions are fulfilled: (a) no bad scenarios (those
forbidden by the synchronization goals) are possible, and (b) all good scenarios (those not forbidden by
synchronization goals) are possible. A synchronization mechanism uses special instructions to achieve

synchronization goals.” (Kolikant, 2001)

This means that students should not only apply synchronization in the right areas, but also

make sure that it is not applied in areas it does not belong to.

20

The students in question are in the last semester of their first year. They already finished an
assignment about the use of threads in JAVA, and the main focus of the assignment is to teach
the students about the check-then-act pattern, shared values, and synchronization. This
assignment is a learning exercise were ‘new’ knowledge is necessary to complete the task at
hand. Therefore the students will most likely use information from external sources to assist
them, one of these documents is created by the teacher to guide them. This document is
called ‘the six step plan’, this document describes six steps that the student can follow to guide

them in the creation of a concurrent program. The six steps are as follows:

1. Problem analysis: investigate if concurrency is suitable for solving the problem.

Class design: Identify the objects and their responsibilities, and represent these in a UML class
diagram.

3. Active classes: determine the classes representing active objects (i.e. objects that have their own
thread of execution).

4. Modelling thread communication: represent the concurrent task in an activity diagram together
with the data structures which are used for communication.

5. Synchronization: protect shared data from being corrupted by adding appropriate
synchronization instructions. If necessary, combine synchronized methods if no context switch is
allowed between successive calls.

6. Reflection: analyze your solution (does it work as expected?), and reflect on the chosen
approach (could we have done better?)

21

4 Method

In this chapter the method used in this study is described. This method is applied in the next
chapter to a concurrency programming assignment for first year students as described in
section 3.2. The first section deals with to the method used to annotate the knowledge that
students use in the observations. The first part of the second section describes how macro
strategies are found, based on activities described in section 2.5 “Programming knowledge”.
The second part of the second section describes the method used to analyze the sequence of

the knowledge. These sequences give hints to the macro strategy students use.

While working on assignments novices have to combine and use programming concepts and
apply theoretical knowledge to practice. To assist novices in these processes different
strategies are used. In this method we look at three widely used strategies, reflection-in-aciton,
adaptation strategy, and trial-and-error. Lye & Koh (2014) reviewed different strategies and
how they impact different aspects of the learning process of novices. Lye & Koh state that with
regular interval there are discrepancies in the approach of students compared to the strategy
that was initially intended. Next to this a means to capture a large group of students is missing
to find out if the found results are in line with the naturalistic classroom settings, which are still
not well-understood. This method provides a structured way to find the strategy that students
employ for different parts of the assignment. Knowing if there is a difference lets teachers
change their course material to create a better fit towards the strategy they want students to

employ.

4.1 Annotating knowledge in recorded data

In this annotation process three activity types are used, gathering information,
implementation, and assessment as described in section 2.5. We first describe the reason why
we opted for this approach. For each activity type we describe how we find them. The last part
of this section describes the case study specific programming concepts that we pay attention

to.

4.1.1 Structured approach
In this study we focus on three different activity types, gathering information, implementation,
and assessment. Each of these activities need to be annotate in a structured way that can be

applied to a variety of programming assignments in the same manner. To accomplish this we

22

took the approach of lzu, Weerasinghe & Pope (2016), described in section 2.6, which
describes a structured way to connected pieces of code to abstract programming concepts,
which will be used below in the implementation section. A variant of this annotation process
can be used for gathering information and assessment which will be explained in the sections

below.

4.1.2 Gathering information

Students access external sources to acquire or verify knowledge. In the activity type gathering
information we focus on these external sources by directly observing them in the recorded
data. To prevent ambiguity a strict list of words is assigned to each programming concept, for
example runnable and threads. This list of words contains variants of the programming
knowledge concept, for example runnable, run, and runnables. This list helps to increase the
coherency between multiple annotaters. Information can come from the computer and
information can come from ‘real life’ sources. The first focusses on websites, pdf files, etc.
(‘documents’) on the computer. The latter focusses on the interaction between people. This
means that every time the students speak or search for a word that is related to a
programming knowledge concept an annotated block can start. To structure this approach the

following rules are used to decide what data to annotate:

Gathering information from the computer:

e An annotated block starts when the students access a:

o Website: relate name of webpage/main question to programming knowledge
concept or assignment. This relation is based on the list of words for each
programming knowledge concept.

o PDF: relate slide to programming knowledge concept or assignment. If not
possible relate document name to programming knowledge concept or
assignment. The relation is based on the list of words for each programming
knowledge concept.

e Document visible for more than 10 seconds

e A new annotation section starts if the student accesses a different website that
contains a word on a different programming knowledge word list.

e The annotation section ends if the students leave an external document

Gathering information from ‘real life’ sources:

e Annotation section starts when, the student or students ask a third person about
programming knowledge, or a piece of code they have written based on Table 4 or
students access a book, or other offline documents.

23

e A new annotation section starts if a word from a different programming knowledge
word list is used or a different document is accessed
e Anannotation section ends when: the document or third party is no longer involved.

External documents or interaction with people are not coded if they do not explicitly state the
programming knowledge concept they belong to, this is based on the list of words as described
above. If explicit code, based on Table 4, is seen an additional tag “explicit code” is added to
the annotation. The time, duration, source (website, pdf, or third person), and the
programming knowledge concept that is used in the recordings is annotated. An annotation is

also made for every time the assignment document is accessed in the observation.

4.1.3 Implementation

With the implementation activity type we focus on hints of programming knowledge in the
writing and deletion of code by students that are directly observable in the recorded data. The
programming knowledge concepts have explicit pieces of code that represent the

implementation of the concepts in the programming language JAVA, as described in Table 4.

In the annotation process these definitions for each code piece are used to annotate the
specific timeframes in which students interact with that piece of code. Every time a student
adds, removes or edits (‘implements’) a line of code that involves the explicit pieces of code,
the time and duration are annotated. For example, a student writes a line of code that changes
the function run() of the class taxi. The annotation block start when the student writes the first
character and ends when he or she does not write code anymore or starts implementing code
in a different function or class. The maximum interruption of the writing is twenty seconds, if

the interruption is longer the block ends.

Each annotated block is given tags that describe the part of the code that is changed (‘scope’),
and what programming knowledge this change gives hints to. An example of this is a student
who edits the run() function of the class taxirunner. The annotated data would contain the
following tags: implementation, runnable, class_taxirunner, func_run. In case the students
only remove a part of the code, the tag “removed” is added. If a student implements code that
is not related to any of the programming knowledge as defined in Table 4, the tag “misc” is

added.

24

4.1.4 Assessment
The third activity type describes the assessment of the code by students. The assessment is
divided into two different categories, output of code and assessing code. The output for this

assignment is printed in the console. Here the students can see:

e The number of passengers each taxi takes with them each trip
e Each time the train ‘arrives’ with ‘new’ passengers
e How long the total simulation took.

Assessing code is done by looking at code without changing it. We only annotate data for

assessing code if the following points are true:

e Code area is visible for more than 5 seconds and students did not type code for the
last 20 seconds in the visible area
e Codeis selected

When students look at a new coding segment a new annotation starts. Assessing code uses the
same coding style as described in the implementation section, the class and function are
added to the tags. If it is uncertain what function a programmer is looking at, because it is not

highlighted or multiple functions span the screen, all functions are added to the annotation.

415 Case study

For this case study we divide the assignment of the students into two parts each with its own
goal, the goal of the first part is for students to recognize and construct active classes, the
second goal is for students to add synchronization to said active classes. The assignment is split
because each part has its own relevant set of programming knowledge which is annotated

independently.

Based on the assignment of the students we focus on the following three key programming
knowledge concepts: runnable, thread, and synchronization. Each of these concepts
represents mandatory programming knowledge that is necessary to complete the assignment.
For each of these concepts we use the official documentation of the programming language
JAVA. For example variables and functions can only be placed at certain places within the
computer code, and they follow a strict format that cannot be deviated from. This method is
similar to the study of Izu et al. (2016) were they used code snippets, called building blocks, to

determine the correctness and complexity of the assignments of students. However in this

25

study we focus on the key programming concepts described above rather than the ‘smaller’

code pieces as in the study of Izu.

Table 4 Programming knowledge linked to explicit pieces of code as described in the official JAVA documentation.

Programming knowledge Explicit code

Runnable (Oracle, Runnable, 2017) e (Class ‘name’ implements runnable
e Public/private void run(){....}

Thread (Oracle, Thread, 2017) e The creation of a New thread/runnable
e Variable Thread.* (start, stop, etc.)

Synchronization (Oracle, syncmeth, 2017) e Public/private synchronized ‘return type’
‘function name’
e Function(){... synchronized(‘value’){...}

)

26

First part of the assignment: threads and runnable

The first part of the assignment is about recognizing and constructing active classes. There are
two important programming knowledge concepts for the parts runnable and threads as
explained in Table 4. The important classes of this part of the assignment are the ‘taxi’ class
and the ‘train’ class as described in the chapter 3.2 ‘The assignment of the students’. In Figure
2 the three activity types are represented with the programming knowledge, classes and

functions that are important for each activity type.

Assessment
Taxi (class)

® Taxirunner (class)
® Train (class)

® Trainrunner (class)
[

L. . Simulation (class)
Gathering information

e Runnable

e Threads

e Assignment

e Sequential code

> knowledge >
Implementation

® Runnable (struc. Know.)
- taxirunner (class)
- trainrunner (class)

® Threads (struc. Know.)
- Simulation (class)
- constructor (func.)
--taxirunner
--trainrunner
- step (function)

Figure 2 The three activity types combined with the programming knowledge. Shows the expected classes and
functions that are interacted with and the programming knowledge that is accessed of external sources.

Second part of the assignment: synchronization

The second part of the assignment is about synchronizing the active classes. There are three
important programming knowledge concepts for this part synchronization, check-then-act and
shared values as explained in Table 4. There are two possible ways to come up with a solution
because of the nature of synchronization called decentralized and centralized as described in

section 2.9 ‘centralized vs decentralized’. In Figure 3 this different approach is shown below

27

the activity type assessment and implementation. The important classes of the decentralized

approach are taxi and train, whereas for the centralized solution this is the station class.

Assessment
Decentralized Centralized
® Taxi ® Station

Gathering ¢ [Train

information

e Synchronization

e Check-then-act

e Shared values

e Assignment

> Internal knowledge

Implementation

Decentralized Centralized
e Taxi(class) ® Station

- takepassengers -getNrOfPassengersWaiting
* Train(class) -leaveStation

- getOff

Figure 3 The three activity types combined with the programming knowledge concepts and code snippets.

28

4.2 Macro strategies and programming concepts

In this section the method to find the macro strategy is described and how this is tied to
programming concepts. In section 4.2.1 patterns of the three macro strategies used in this

study are explained. Section 4.2.2 shows how we find these patterns.

4.2.1 Macro strategy patterns
In this section an explanation of what patterns each macro strategy has. For each of the three
macro strategies: reflection-in-action, adaptation, and trial-and-error, we describe the key

characteristics we can observe using the method in the coming sections of this chapter.

As in section 2.5 “Programming knowledge” we pay attention to three activities related to
programming: gather information, implementation, and assessment. The goal of this study is
to showcase a method that uses these three activities to get hints of the macro strategy
students use. Based on literature we describe our interpretation and create example patterns

that are related to each of the strategies.

Reflection-in-action

Reflection-in-action, as described by Edwards (2004), differs from trail-and-error since the
cycle of writing code and assessing on code is interrupted by longer pauses which may contain
gather information sections to acquire new information about a programming concept. Since
the students think beforehand how code changes we expect to see almost no to none ‘remove
code blocks’ as seen in Figure 4. In the ideal situation students spend more time on
assessment and gathering information than implementation, since the students think

beforehand what has to change rather than ‘just trying’.

29

Example

0 1 2 3 4 5 6 7

M Gather information H Implementation M Assessment

Figure 4 Reflection-in-action. Based on the preference of the group the group starts with gathering information or
creates code first. After finding out that the solution is inadequate they gather more information and apply this
directly to the code or they assess the code again to see how they have to change it in order to come to a right
solution.

Adaptation strategy

The adaptation strategy focusses on finding examples or guidelines from other works and
applying them to the situation at hand. Were reflection-in-action focusses on reasoning why
code functions as it does, adaptation focusses on trying to find ‘explicit’ pieces of code that can
be used in the solution. In the next section we go into further detail to make these differences
clear. The pattern that describes the adaptation pattern is show in Figure 5, first the
programmer searches for code examples after which he applies them to his own code. In an
ideal situation the found code can be instantly applied to the program at hand, however as
seen in Figure 5, it could be that there are remove code parts because students detected that
the code does not function properly, after which it is removed or edited to fit the solution

better.

30

Example Group

0 2 4 6 8 10 12
B Gather information Gather information: exact code
H implementation M assessment

B remove code

Figure 5 Adaptation strategy pattern. First information is gathered and example code is found, after this the
example code is applied to the code base of their own program after which the programmer checks if the
implemented solution gives the desired result.

Trial-and-error

Lonnberg, Berglund & Malmi (2009) saw the following pattern in their study that they
described as trial-and-error, “code is repeatedly written (trial) and found inadequate (error),
until the solution is “good enough”. When translated to a sequence of activities the following
would appear as seen in Figure 6. Implementation sections (trial) followed by assessment
(error) sections after which the students remove code or add code again. Remove code
sections are a sub activity type of the implementation activity were code is removed rather

than added which will be explained in detail in the next section.

31

Example Group

0 2 4 6 8 10 12 14
Time in minutes

H Implementation M Assessment B Remove code

Figure 6 Trial-and-error example. A repeating pattern of Implementation activities followed by assessment, and
possibly followed by removing code again without any or almost no gather information sections.

There are two varieties of trial-and-error that we pay attention to, the first is ‘centralized’ trial-
and-error were the students rewrite code in one particular function, changing small parts of
the code. The second variant is that code is written in a wide variety of functions. This
difference can help to determine the cause of this approach, were a centralized approach can
suggest that the students know where to change code, but not how, and a decentralized
approach could mean that they do not know where they need to change code, and possibly

also not what they have to change.

Combination of strategies
Multiple of the strategies above can be used within one assignment. For example a student
can start by finding an example on the internet but when he tries to apply it to his own

program it fails. The student then starts a trial-and-error strategy to make the code work.

4.2.2 Finding Macro strategy per programming concept
This section focusses on the sequence of building blocks used by students and how this gives
hints to the macro strategy used. As mentioned before, the goals are to study what macro

strategies students use, and what knowledge is used in these strategies.

In this study we divide the plan the students have to make in three pieces. These pieces are
represented by the three programming knowledge concepts as defined in Table 4. By
combining the pieces, as described in the start of this section, with the sequence of activity

types: gathering information, implementation, and assessment, we can find hints to the way

32

macro strategies are used by the students. While studying the strategy we focus on finding
reoccurring patterns, or the lack of this. An example of a reoccurring pattern is: multiple
iterations of an implementation block followed by an assessment block followed again by an
implementation block. The example gives us hints that a trial and error strategy is used. After
this, the sequences of each programming knowledge concept are compared to the patterns of
the other programming knowledge concepts to find overlapping patterns or differences
between them. The goal of this comparison is to find hints of reoccurring patterns that are
overarching and consequently giving hints of possible strategies that are used. The sequences
are extracted from the recorded data based on the tags assigned to the annotation blocks

from section 4.1.

Start and end of a sequence

Each programming knowledge concept has its own sequences of activity types. In this case
study we did not interview the students afterwards, this means that we could not ask the
students when they started to work on a programming concept. We therefore resorted to the
first time a programming knowledge concept tag is used, since this is the first time the
students showed they were working on said programming concept. A sequence ends if the
next annotated code block of the observation contains one of the other programming
knowledge concept tags. Multiple sequences for one programming knowledge concept are
combined into one sequence for the analyses. The end result is one long sequence of multiple

annotated code blocks.

Macro strategy per programming knowledge concept

The sequence of each programming knowledge concept separately tells us something about
the macro strategy students use per programming knowledge type. For example, some groups
might go for a trial and error strategy, characterized by a reoccurring pattern of implementing
code, assessing the code, and deleting parts of the code if it did not give the expected results
(Lonnberg, Berglund, & Malmi, 2009). For this study this would mean that the activity type
implementation is followed by the assessment type after which an implementation type
follows again. Other groups create plans by gathering information of examples they find on the
internet or in the slides they received from the lectures of the course they are following
(Lonnberg, Berglund, & Malmi, 2009). This approach can be seen when the activity type

gathering information comes before an implementation type, after which the student does not

33

remove code from the previous implementation. According to literature, trial and error
behavior is one of the most common approaches to create plans. In particular this strategy is
often applied when a person has little experience in a subject. In this study we are interested

to see if this pattern is also visible or if different patterns occur.

Overlap and differences of found macro strategies
The macro strategy of each programming knowledge concepts are compared with each other.
The focus of the comparison is on overlapping patterns of the activity types and differences

between them. The similarities and differences tell us two things:

1. Similarities between different programming knowledge suggest an overarching
strategy the students use for all different parts of the plan
2. Differences give us hints to a different approach per piece of the plan.

Possible explanations for these similarities and differences found in literature are: students
have a better understanding of some programming knowledge concepts, students found
examples that they could adjust to the new situation, or problems combining different

programming knowledge concepts (Lonnberg, Berglund, & Malmi, 2009) (Whalley J. L., 2006).

To further aid the findings of these patterns we pay attention to:

the total duration students spend on the different programming knowledge concepts
The time students spend on a programming knowledge concept relative to
other programming knowledge concepts can be a possible explanation why
certain approaches to plans are used.
e the average duration of annotation blocks
e the amount of annotation blocks per programming knowledge concept
the average time students spend on annotation blocks and the amount of
annotation blocks can give hints to the strategy students used to come up with
plans
e the order in which students work on programming knowledge types, the sequence or
mixture of programming knowledge types
The order or mixture of programming knowledge types tells us something
about the way the different pieces, programming knowledge concepts, are
combined. By doing so this order gives us hints to the approach of different
pieces of plans.

34

5 Results

This chapter describes the results of the case study obtained during this research, using the
method described in chapter 4. Section 5.1 describes the programming knowledge students
use while working on the concurrency assignment. In section 5.2 the macro strategy of the

student is presented and found patterns in the approach are described.

5.1 Programming knowledge

This section contains the results of the analyses of the recorded data. The assignment has two
goals each with their own set of programming knowledge concepts. The two goals each have
their own section called ‘recognizing and constructing active classes’ which uses the
programming knowledge concepts runnable and threads, and ‘synchronizing concurrency
tasks’ which describes the programming knowledge concept synchronization and the check-

then-act pattern.

5.1.1 Runnable and threads

In this section the results of the annotated data of students while working on recognizing and
constructing active classes goal of the assignment is shown. As described in section 0, the
important classes for this section are the taxi class and the train class. Both require an active
class that allows them to be executed in a thread. Next to this the step(), and constructor()

function of simulation needs to be edited to accommodate this new behavior.

Gathering information

Both group 1 and 2 started with gathering information about the assignment, see Figure 7 and
Figure 8 showing the information group 1 and 2 gathered respectively in the first thirty
minutes that they spend on the assignment. The annotated data shows that group 1 spend
around 9 minutes, of the 30 minutes, gathering information from the assignment. Group 2
spend around 8 minutes gathering information of the assignment. Group 2 also spends around
10 minutes gathering information about programming knowledge runnable. The topics the
students gathered information about were in line with the example solution. There are two
sources students rely on for the programming concepts runnable: stackoverflow.com and
slides of the lectures. Group 1 did not gather information about runnable or threads from

external sources, group 2 gathered information about this from external sources.

35

90,00% 90,00%

80,00% 80,00%
70,00% 70,00%
60,00% 60,00%
50,00% 50,00%
40,00% 40,00%
30,00% 30,00%
20,00% 20,00%
10,00% . 10,00%

0,00% I 0,00%

0:10 0:20 0:30 0:10 0:20 0:30
M assignment M assignment M Struc_Runnable

Figure 7 Gathering information group 1 of first 30 min. Figure 8 Gathering information group 2 first 30 min

Implementation
Group 1 started with implementing the class taxirunner, which is the active class for taxi that
implements runnable. Group 1 spend around 1 minute and 20 seconds on this. When

implementing the taxirunner they added code in one part.

After this group 1 started to add threads to the step() function of the simulation class. They
spend around 5 minutes and 30 seconds on this. This time is spend in five different parts. The

first part, 4 minutes and 12 seconds, was significantly longer than the other four parts.

Group 2 started with implementing the class taxirunner as well. They spend around 2 minutes

and 30 seconds on this. The implementation of runnable is split up in three parts.

Group 2 spend around 1 minute and 50 seconds, in five parts, on adding threads. In the first
two parts they applied and removed threads to the constructor() function of simulation. They
spend 40 seconds and 19 seconds on this respectively. After this they added threads for the
taxirunner to the step() function of simulation. They first added threads 30 seconds, then they
edited code twice, without a part that only removed code. The implementation of both groups

are in line with the assignment as given in section 3.2.

36

Assessment

Group 1 and 2 had different approaches to assess their program. As seen in Figure 9, group 1
mainly looked at the output of the program, a total of 4 minutes and 10 seconds on this. Next
to this they 24 seconds looking at the function calcTotalTime of station, after which they
looked at the output again. They also looked at the function takepassengers from Taxi for

about 1 minute and 30 seconds.

Group 2 showed less time spend on the output of the program and more on the functions of
the program. As seen in Figure 10, group 2 started with looking at different functions of the
sequential program. After the first 10 minutes they only showed assessments of the

takeapassengers function of taxi.

50,00% 50,00%
40,00% 40,00%
30,00% 30,00%
20,00% 20,00%
10,00% . 10,00% .
0,00% L 0,00%
0:10 0:20 0:30 0:10 0:20 0:30
taxi: func_takePassengers M taxirides: func_main M train: func_getin
. . B simulation: func_step taxi: func_takePassengers
M station: func_calcTotalTime
taxi M station
M output
M output

Figure 9 The way group 1 assess their implementation. Figure 10 The way group 2 assess their implementation

Both group 1 and 2 spend time assessing the functions of the class station. This is a

discrepancy between the found results and the example solution.

5.1.2 Synchronization

The second part of the assignment focusses on the synchronization of the shared resource, the
persons waiting at the station. Like the previous section the focus is on the similarities and
differences between both groups of students. Both groups give hints that they are working on
a decentralized solution, after an intervention of a student assistant one group ‘switched’ to a

centralized solution.

37

Gathering information

Both groups gathered information about the programming knowledge check-then-act. The
source they gather this information from are the slides from the course 0O, with the topic
check-then-act. However we can see a clear difference in the amount of time both groups
spend on this. The first group spend only a few minutes on this topic, as seen in Figure 11. We
can see that time spend on the check-then-act pattern (‘Struc_checkThenAct’) is around 3
minutes. However if we look at the time spend of group 2, Figure 12, this is around 11 minutes.
As in the first part, group 1 spend less time on gathering information than group 2. At the 1:50
mark we can see that group 2 gathered information from a third person, a student assistant.
While not all audio was captured of this conversation, we could see that they were looking at
the station class, in particular the functions getNumberOfPassengers and leaveStation. These
are the two functions that need to be combined, following the check-then-act pattern, for a

centralized synchronization solution.

90,00% 90,00%
80,00% 80,00%
70,00% 70,00%
60,00% 60,00%

0,
50,00% 50,00%

40,00%
40,00%

30,00%
30,00%

20,00%
20,00%

10,00%
. 10,00%

0,00%
QO O NV © 0O O O O 0 0,00%

YOO VWD ’
SFFFFFFHSE 0:10 0:30 0:50 1:10 1:30 1:50 2:10 2:30
M assignment M Struc_RaceCondition M assighment M Struc_checkThenAct
B Struc_checkThenAct & Struc_synchronized Struc_synchronized B student_assistant

Figure 11 Gathering information by group one. Time Figure 12 Gathering information by group 2. Time spend
spend looking into different programming knowledge looking into different programming knowledge concepts
concepts

38

Implementation

First the observations from group 1 regarding synchronization are shown. As seen in Figure 13,
group 1 focused mainly on adding, editing, and removing synchronization. The first minute
group 1 changed code that did not belong to any of the programming knowledge concepts as
defined, therefore this is under miscellaneous (‘misc’). As seen Figure 15, group 1 first focused
on applying synchronization to the step() function and the taxi. After this they applied
synchronization to almost every function of both taxi, and station, at one point both taxi and
station almost only had synchronized functions. At the 1:00 mark the students removed all
synchronizations they added to the program and focused on the takePassengers function of
taxi, again reverting all the changes made in the end. Between 1:20 and 1:30 they focused on
the station class and added synchronization to five functions, isClosed, leaveStation, close,
enterStation, and getNrOfPassengersWaiting. However as described in section 0 , for a

centralized solution, getNRofPassengersWaiting and leaveStation need to be combined.

0,6 0,6
0,5 0,5
0,4 0,4
0,3 0,3
0,2 0,2
0,1 0,1
0 - 0
0:40 0:50 1:00 1:10 1:20 1:30 1:00 2:10 2:20 2:30 2:40
Struc_synchronized ® Misc. Struc_synchronized B Struc_checkThenAct

Figure 13 Implementation section of group 1 regarding Figure 14 Implementation section of group 2 regarding
synchronization. Showing the programming knowledge synchronization. Showing the programming knowledge
group 1 used. group 2 used.

39

0,6 60,00%

50,00%

30,00%

0,5
0,4 40,00%

[
0,3
0,2 20,00%
0,1 l l= 10,00% -
o - 0,00% I

1:10 1:220 1:30

0:40 0:50 1:00 1:00 2:10 2:20 2:30 2:40
Train: func_getin B Taxi: func_takePassengers

Train: func_closeStation W Station: func_telEnVertrek
Taxi: func_getNrOfTrips Station: func_getTotalNROfPassengers
B Taxi: func_takePassengers
B Station: func_isClosed
W Station: func_close W Station: func_close
W Station: func_leaveStatino B Station: func_leaveStatino
B Station: func_enterstation -

B Station: func_getNrOfPassengersWaiting
Station B Station: func_getNrOfPassengersWaiting

B Station: func_isClosed

B Station: func_enterstation

Figure 15 Implementation section of group 1 regarding Figure 16 Implementation section of group 2 regarding
synchronization. Showing the functions that group 1 synchronization. Showing the functions that group 2
changed changed

We now take a look at the implementation section of group 2. Like group 1 all
implementations that they do involve synchronization, as seen in Figure 14. The programming
pattern check-then-act is shown in the last 20 minutes (2:30-2:40), this is a specific form of
synchronization. Group 2 started with implementing synchronized in the takePassengers
function of the taxi, after adding and removing synchronized a few times they ended up
removing all code they implemented here. They then switched over to apply synchronized to
all functions of the station, and removing them again after they looked at the output of the
application, this will be explained further down in this section. As stated in the gathering
information part above, the students ended up applying the check-then-act pattern to a new
function they made ‘telEnVertrek’, translated to countAndLeave. As the name can suggest,
group 2 combined the functions of getNrOfPassengersWaiting, and leaveStation to be called
from one synchronized function. This way the ‘correct’ amount of people will be on the station
and moved by the taxi’s. This observation also contains some differences compared to the
expected ‘centralized’ solution. The observations did not contain group 2 editing the

takePassengers function of the taxi class. Here the call to getNrOfPassengersWaiting, and

40

leaveStation need to be combined to telEnVertrek. Also the function enterStation needs to be

synchronized, since this function also edits the shared value.

Assessment

The assessment section of the synchronization of group 1 is visualized in Figure 17. Group 1
spend around 60 per cent of their assessment time on the output of the application, this totals
out to almost 14 minutes. The percentages group 1 spend on assessing functions is mainly
weighted towards two functions, step() in simulation and takePassengers in taxi, spending
around 4 for step and 3 minutes for takePassengers. Group 1 spend between 30 seconds to 1

minutes and 30 seconds on the other functions each.

90,00%
80,00%
70,00%
60,00%
50,00%
40,00% -
30,00%
20,00%
= -
0,00%
0:40 1:10 1:20 1:30
W output M station
W station: func_calcTotalTime station: func_leaveStation

W station: func_getNrOfPassengersWaiting m taxi: func_takePassengers
B simulation: func_step M taxirunner: func_run

M train

Figure 17 Assessment of synchronization part, group 1.

Group 2 shows a different pattern compared to group 1. Figure 18 visualizes the time group 2
spend on different parts of the assessment. Take note that the time shifts from 1:10 to 1:50,
this is because the students took a break. AlImost 70 per cent of the observed assessments is
group 2 assessing the function takePassengers from the class taxi, this is around 25 minutes. At
1:50 they spend one big block of 6 minutes on assessing the step() function of simulation. They
spend around 1 minute on assessing the functions leaveStation and getNrOfPassengersWaiting
of the station class. Compared to group 1 they spend a short time assessing the output of their

program, less than 1 minute.

41

0,9

0,8

0,7

0,6

0,5

0,4

0,3

y .

__

., 1 R B =
0:40 0:50 1:00 1:10 1:50 2:00 2:10 2:20 2:3

M output M station: func_leaveStation
W station: func_getNrOfPassengersWaiting | taxi: func_takePassengers

B simulation: func_step

Figure 18 Assessment of synchronization part, group 2.

:30

2:40

42

5.2 Macro strategy per programming concept

In this section the sequence of the three programming knowledge concepts are described. For
each programming knowledge concept we look at the similarities and discrepancies between
the two observed student groups. After this the sequence of the three programming
knowledge concepts per group is compared. The programming knowledge concepts are

ordered on chronological order, runnable, threads, and as last synchronization.

5.2.1 Runnable

The first programming knowledge concept of the observation is runnable. In Figure 19 the
sequence of group 1 and 2 are shown. The blue blocks represent the information group 2
gathered for runnable. The yellow represents the time group 1 and 2 spend on implementing
the taxiRunner, the class that implements runnable. Group 1 had only one implementation
block, while group 2 had two implementation blocks, surrounded by gathering information
blocks. Before the first implementation block exact code was seen in the gather information
block, based on Table 4. The total time both groups spend on implementing runnable is around

the same.

Group ' -
0 1 2 3 4 5 6 7 8 9 10 1

Minutes

1

= gathering information: runnable gathering information: runnable exact code

= implementing:taxiRunner

Figure 19 Sequence: Programming knowledge concept Runnable

5.2.2 Threads

The sequence of the second programming knowledge concept, threads, is shown in Figure 20.
The yellow blocks represent the time the groups spend on implementing threads, both did this
in the step function. The grey tints represent the assessment blocks, light grey represents the
time students spend on looking at the output, the two types of dark grey represent the time

students spend assessing functions. The blocks with blue tints represent the information

43

students gathered, and lastly the red blocks represent the time students spend on removing

code.

Both groups started with implementing threads into the step function. After this both groups
assessed the output of the application, and group 2 assessed the function takePassengers.
After the assessing blocks both groups removed code, had another assessment block, group 1
used the output, group 2 assessed takePassengers, another implementation block. Group 2 did
not look at the output of the program after the second implementation section. Group 1 did
look at the output, and removed code from the step function. After this a sequence of

gathering information and assessment of code started, ending with a small implementation

block, followed by assessing the output of the program.

Group 1

Groupz -.-
1 2 3 4 5 6

0 7 8 9 10 11 12 13 14 15
Minutes
Implementation: step function m Removing code: step function
® Assessment: takePassengers ® Gathering information: threads
m Gathering information: race condition m Assessment: step

Assessment output
Figure 20 Programming knowledge concept threads. Time spend by groups in minutes.

5.2.3 Synchronization

The sequences of synchronization are described here. First a comparison is made of the global
sequence, after which the sequence of the two groups are described. The blocks are described
using the overarching tags, implementation synchronization or check-then-act, this is done
because of the vast number of different functions both groups changed, the functions that are

changed will be described.

As seen in Figure 21, and looking at the sequence as a whole the two groups show a ‘wildly’
different sequence compared to each other. To start with the two main differences between
group 1 and 2, first the average ‘size’ of the blocks is very different, and the second difference
is that group 1 has a much higher density of blocks compared to group 2. When looking at the
patterns of the sequences, similar patterns can be found, implementation blocks are followed

by a remove code block or an assessment block.

44

Most of the blocks of group 1 are around 1 minute or less, the exceptions are the gather
information blocks and some assessment blocks. A slight deviation of yellow is used to show

the difference of implementations blocks that follow each other.

45

o l“ .I HIl‘Il“ll‘lII
o - I I_ _

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76

Minutes
M Gathering information W Assessment: functions B Assessment: output Implementation: synchronization
W Removing Code M Student assistant M Implementation: check-then-act M Gathering information: synchronized exact code

Figure 21 Sequence of the synchronization programming knowledge concepts of both groups. Slightly darker and brighter colors are used to show different blocks of the same type that
are next to each other.

Group 1 started with gathering information about the programming knowledge concept
synchronization. After which they assessed different functions, step, takePassengers, and
multiple functions of station. After this the group started to apply synchronization to the
takePassengers function, after which they removed the added code again. They gathered more
information about the check-then-act pattern and started to implement synchronization in all
the functions of the station class. After adding synchronization to all the functions of station
they assessed the output, and implemented synchronization to the step function and to
takePassengers. After this group 1 shows a pattern where they added synchronization to a
part of the program, assessed the output of the program, and removed the synchronization
they added. They did this for around 10 minutes, ending up removing all the synchronizations
they added, this can be seen from the 20 minute mark to the 30 minute mark, after which the

observation stopped.

Group 2 shows a different sequence. As seen in Figure 21, they spend the first 15 minutes
gathering information about synchronization, and the check-then-act pattern. Before
implementing code group 2 gathered information about code for synchronization. The first
two implementation blocks focus on the takePassengers function. In the last two
implementation blocks group 2 created a new function that combines the functionality of
getNrOfPassengersWaiting and leaveStation, and they applied synchronization to this new
function. They started implementing this after they spoke with a student assistant, while
talking to the student assistant they looked at the functions step and takePassengers, however
we could not hear what the student assistant or the students said due to the bad audio quality.
Therefor it remains unclear what the student assistant said to help the students, this could
range from him explaining certain terminology to giving the students the answer to their

problem.

5.2.4 Comparing sequences per group
In this section the three programming knowledge concepts, per group, are compared. Key
aspects that are compared are: total spend time, patterns, amount of blocks, and average time

spend on blocks.

Total time spend

Group 1 started with a ‘quick’ implementation of runnable (1:30 minutes), the observed time

spend on threads is 15 minutes and synchronization 30 minutes.

Group 2 spend more time on runnable (10:30 minutes) than on threads (6:30 minutes),

However the biggest part of time spend is on synchronization with 76 minutes.

The total time of the observation of group 1 was 1:38:57, this time includes a 30 minute break
in the middle and 20 minutes inactivity at the end. Taking this time into account around 50
minutes are left that could be annotated. For group 1 this means that over 90 per cent of the

observation is annotated.

The total time of the observation of group 2 is 2:38:08, this time includes a 45 minute break in
the middle and 5 minutes of inactivity at the end. Taking this into account around 100 minutes
of the observation could be annotated. This means that for group 2 also around 90 per cent is

annotated.

Patterns

Group 1 did not show any consistent iterations of different types of blocks for runnable and
threads. However for the programming knowledge concept synchronization they show
patterns of implementation, assessment, remove code, which repeats in rapid succession. This
pattern can be seen as trail-and-error behavior (Kolikant, 2005) (Lonnberg, Berglund, & Malmi,
2009) (Spohrer & Soloway, 1986). This pattern is also visible at the start of the programming
knowledge concept threads. The first implementation blocks at the start of the timelines, of

each programming knowledge concept, are longer than those at the end.

Group 2 shows a sequence of gathering information and implementation for runnable. When
looking at threads and synchronization this sequence is no longer seen. Group 2 has multiple
‘same’ block sequences, gathering information from multiple sources, or assessing different

functions after each other.

Group 2 give hints to a possible second pattern that can be seen in the concepts runnable and
synchronization. This pattern consists of gathering information blocks followed by an

implementation block. This can be seen twice for both concepts.

Amount of blocks and average time spend

Group 1 and 2 show differences when looking at the amount of blocks and the duration of the

blocks. On average group 2 spends three times the amount of time on gathering information,

48

and assessment blocks. When looking at the implementation blocks the average time is around
the same. Group 1 shows an increase in blocks for each programming knowledge concept.
Group 2 has the around the same blocks for runnable and threads, and an increase in blocks

for synchronization.

Order of programming knowledge types

Group 1 and 2 both show a similar order in their approach of the assignment. The annotated
data shows a clear transition between the programming knowledge concepts. The order that
both groups worked on the assignment is as follows, first the students worked on the concept
runnable, after this the concept threads, and lastly the concept synchronization. There is no
annotated data that shows that students used previous concepts once they transitioned to the

next concept.

49

6 Discussion

This chapter contains the discussion points regarding this study. The first part of the discussion
focuses on the case study, where we take a look at the data and what this tells about this
specific case. The second part of the chapter focuses on the method used, here we look back
at the method and see how it holds up to the expectations and how the method can be

improved upon.

The first section focusses on the assignment and how the students complied with the
guidelines in it. In the second section we discuss what levels of the SOLO taxonomy we can see
of the works of students. The third section contains possible reasons why certain parts of the
assignment are difficult for the students and how this can be improved upon using the SOLO

taxonomy. The fourth section focuses on the method used in this study.

6.1 SOLO taxonomy

In this section we look at the results of the case study from a different angle, with the SOLO
taxonomy, for this we use the works of Izu, Weerasinghe & Pope (2016) further described in
section 2.4. To complete the case study assignment students have to integrate multiple
programming concepts/aspects into a structure, this is the relational level of SOLO. The
assignment is not extended abstract since students do not have to create a program from
scratch, but rather apply knowledge they know within a certain context already available.
While we can classify the whole assignment in one go we can also classify each programming
concept separately. For this we use two sources, Table 1 “Algorithmic design” will be described
as AD ‘level’ and Table 2 “Code design” will be described as CD ‘level’. In our case study we
look how students apply building blocks to the existing code, and in which areas they apply the
building blocks. These observations can be used to see several competences associated with
the different levels of SOLO: applying, analyzing, comparing, describe, integrate and
combining. Students need to be able to integrate each concept separately to the assignment
after which we can look at the whole assignment to if the students combined all the concepts

in the right way.

Runnable

Both groups adapted the runnable pattern to the situation described at hand. They created a

new class to fulfill the goal and integrated this into the current solution. For this both groups

50

had to comprehend the structure of the original code, regarding the taxi class, and how the
new code could be applied to this. The patterns were applied to the correct areas of the code,

showing the AD multistructural knowledge of the concept runnable and a CD relational level.

Threads

Both groups apply threads to the step function, which makes it so that a new thread is created
every time the step function is called. They also show an understanding of the sequential code
that the thread replaces. This shows that the students also have a AD multistructural

understanding of threads and a CD relational level.

Synchronization

The programming concept ‘synchronization’ had a different outcome per group, which is why
we look at both groups separately. Group 1 applied synchronization in different areas, not
always the correct area, however the concept itself and the building block belonging to it was
applied correctly. No ‘advanced’ patterns like check-then-act were detected; the maximum AD
level detected was unistructural, since group 1 only applied a direct translation of the
specifications rather than adapting it to the situation at hand. When looking at the CD level we
see that the students used the ‘default’ implementation on a seemingly random structure

which also indicates a unistructural level.

Group 2 ended up with combining a few building blocks, however not a complete integration
was made which indicates a CD rational level. These building blocks were applied on the right

areas which shows an AD multistructural level.

Complete assignment

Group 1 managed to combine multiple building blocks, however they did not integrate the
concept synchronization in the solution. This means that they did not come up with a valid
well-structured solution and end up with an AD multistructural level for the complete

assignment.

If we look at group 2 we see the same before the intervention of the student assistant. They
did not manage to integrate the concept ‘synchronization’. However after the intervention

they do manage this. They applied synchronization to the right area and started to integrate

51

this in the solution. Group 2 ended up with AD level ‘relational’, which means that they can

come up with a valid well-structured solution.

6.2 Reflecting on the case study

In this section we discuss how we think that the method helps teachers to improve the
assignment. We start out with interpreting the data collected after which we come with
possible improvements to the assignment from a teachers perspective. In section 6.4 we

reflect on the method itself.

The first step we take is to determine which concepts the student do and do not understand.
We start by finding the code that is tied to a specific programming concept in the assignment
of the student. The results of section 5.1 are used for this. In this case study the concepts
‘runnable’ and ‘threads’ are used in correct areas by both groups, however synchronization is
not. By looking at the results described in section 4.2.2 “Macro strategy per programming
concept”, we can see that both groups used a different strategy for the programming concept
synchronization. Group 1 mainly used a trial-and-error strategy while group 2 shows hints of
the adaptation strategy. By looking at the programming activities, the grouped building blocks,
we can see that the taxi class was the main focus of the change for both groups. However both
groups also applied synchronization to functions that had no influence on the workings of the

program. This behavior can possibly be explained by:

1. Alack of understanding of the concept by the students

2. Students understand the concept but it is unclear for the students that the passengers
‘waiting’ in the station class is the crucial variable in the case of synchronization.

3. Students re-evaluate from the end result back to come up with a solution, leading

them to the taxi class that takes passengers. Here the students ‘stop’ looking further.

We now look which of these points are more likely to be a possible cause for the students to
not finish this assignment correctly, for this we use the SOLO taxonomy (Biggs & Collis, 2014).
The students have shown that they already know a way to implement synchronization,
however this is done in the wrong spot, which makes ‘a lack of understanding’ unlikely.
Described in the terms of the SOLO taxonomy, the students are able to identify that
synchronization is needed (Unistructural), and that they can implement the code at different

locations that are related to each other (Multistructural) (Lister, Simon, Thompson, Whalley, &

52

Prasad, 2006). However students do not show that they can apply, relate, or justify the

generated code in a correct manner (Relational).

With this in mind we can now look for possibilities to assist the students. There are two ways
we can approach the problem, we can try to come up with possible solutions and to adjust the
macro strategy of the students to fit this solution, or we can use the strategy of students as a
starting point and create a solution per strategy. Both of these solutions need to take into

account that the students are potentially not at the ‘relational’ level.

To make sure that the students understand which value is important and which functions are
related to this we suggest that it is mandatory for students to first answer a few questions
before they are allowed to work on the assignment. The focus of these questions is to trigger a
reflection-in-action strategy were the students have to analyze, relate, justify and reason,
rather than only applying knowledge. We think that this would assist the student in case of
point 2 and 3 in the list above. The first question should point the students in the direction of
the shared value, the passengers waiting at the station, with the expectation that the student
already understands that there are multiple taxi’s that change a single value. This question
should help as a starting point to show a central building block to the students in a
unistructural way. After this the functions that interact with the shared values need to be
‘exposed’ by the students. This has as goal to make students understand were to apply the
synchronization. This first question has as focus to extend the building block to the functions
that are connected to it and to combine these blocks. The last question focusses on the ‘check-
then-act’ pattern and should force the students to think beforehand which functions need to
be combined, to make sure that data cannot be manipulated by multiple taxi’s at the same
time. The last question should also assist in pointing students to the direction of relating the
different blocks in the way that the student can reason why they need to add synchronization;
creating a relational level of understanding. One could say that asking these questions reduces
the complexity of the problem. However following the logic of the SOLO taxonomy relating,
justifying, and analyzing the problem all exist in the relational level of SOLO, which is the same
as applying knowledge to the problem, and should therefore not reduce the complexity but

rather approach it from a different angle.

53

Since the students already show that they understand the individual building blocks we think
that the questions above provide different angles to help the students to understand which

links they are missing in order to finish the assignment.

6.3 Macro strategy fingerprint

While processing the data for this study we found a potentially interesting way to look at the
time students spend on an assignment. For this we looked at the time students spend on the
three different programming activities: gathering information, implementation, and
assessment. In Figure 22 and Figure 23, time spend by group 1 and 2 respectivly on
programming activities, we can see that the total time spend is different for both groups. One
of the things we noticed is that the time spend on the activity assessment is almost the same,

while the time spend on implementation and gathering information is almost inversed.

Group 1 Group 2

= Gathering Information = Gathering Information
= Implementing = Implementing
= Assessment = Assessment

Figure 22 Total time spend on each programming activity, Figure 23 Total time spend on each programming
group one activity, group two

While group 1 showed indications of using an overall strategy of trial-and-error, group 2 mainly
showed indications of an adaptation strategy combined with reflection-in-action. It is possible
that these differences are seen back in the ‘fingerprint’, the percentage in time spend in
comparison with the total time spend by students. This could help future studies in finding the
most likely strategy used by students. Another upside of these fingerprints is that they can be
easily compared between assignments of the same students and they can be used to find

similarities and differences between different students.

54

6.4 Reflecting on the method

In this section we discuss the pros and cons of the method suggested in this study. We pay
attention to how detailed the method can tell us something about the strategy students use,
and with what ease we think this method can be applied to new situations. While we reflect on

the method, we keep the goal and sub goals of this study in mind.

The first point we discuss is how detailed the method can describe the macro strategies used
by students. In this study we made the choice to group building blocks based on activities. One
of the goals is to get an optimum between annotation speed and information we gather
mostly succeeded. Some fine tuning of this grouping is still required, because some actions are
not tagged (when tagged a code is added to a block) in the annotation process. We think a big
improvement would be to tag if students created/typed the code themselves, if they copied
the code from an external source or if they copied/moved it from a different part of the code
base itself. Also for the ‘gathering information’ part additional tags should be added. The goal
of this is to further distinguish if students are looking at or talking about code, and if they want
to copy the code or if they want to learn about the structure of the code. So while we already
can see different patterns with the current method, we think that the additional tags above

would give us even more insight in the macro strategies used by the students.

For this method to work, a minimum number of annotation blocks are required, based on the
patterns as described in section 4.2.1. Each pattern has a different amount of sequenced
activities associated to it. Based on the sequences of activities we expect that around 5 to 10
annotated activities are necessary to capture any one of the patterns described in the method
of this study. The trial-and-error pattern can be clearly seen, however when a mixture of

strategies is used a better distinction between activities is necessary to create a clear picture.

55

7 Conclusion

In this study it was investigated if a new method could be used to identify the macro strategies
students use while working on a programming assignment. To achieve this goal, a case study is
performed on two groups of students working on a parallel programming assignment. The first
part of this chapter summarizes the conclusions specific to the case study, the second part

focusses on the viability of method itself.

In the case study the strategy of two groups were captured. The first group indicates a trial-
and-error strategy and did not successfully finish the assignment, the behavior of the second
group point to a combination of the reflection-in-action and adaptation strategy and ended up
with an almost complete solution. The different results can mainly be seen at the
programming concept synchronization, with the focus on the shared value. While the
successful group showed the creation process of a correct centralized check-then-act pattern
the unsuccessful group did not. The main focus of the unsuccessful group was the taxi class
where they applied a trial-and-error strategy to come up with a solution. However the problem
was multi-staged which means that a single line edit could not give a correct solution, making

finding this solution by trial-and-error highly unlikely.

We now answer the research question regarding the in this study described method: how can
we determine what macro strategy students use for different programming knowledge

concepts?

The method that is described in this study is suited of finding different strategies student use
while working on a programming assignment. The method gives indications of differences
between reflection-in-action, adaptation strategies, and trial-and-error strategies. While with
the current form of the method trial-and-error strategy is clearly distinguishable, the nuance of
indicators between reflection on action and the adaptation strategy, needs to be made more
clear. For this, a recommendation is the use of additional indicators, regarding the way
programmers use information they find. For example: if they copy code or find explanatory
texts about programming concepts. The method becomes increasingly reliable for sequences

with a higher number of different activities.

56

With this work, we expect to contribute to giving better insight for teachers and researchers in
the way students work on resolving programming assignments. This creates an opportunity for

teachers to change course material to better fit the strategy they want students to employ.

57

Cited Works

Anderson, J. (2000). Cognitive psychology and its implications. New York: Worth Publishing.

Anderson, J., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from working
memory. Human-computer interaction 1,2, 107-131.

Ben-Ari, M. (2001). Constructivism in computer science education. Computers in Mathematics and
Science Teaching, 45-73.

Biggs, J. B., & Collis, K. F. (2014). Evaluating the quality of learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). Academic Press.

Boulay, B. d., O'Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting computing
concepts to novices. International Journal of Man-Machine Studies, 237-249.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn.

Buck, D., & Stucki, D. J. (2000). Design early considered harmful: graduated exposure to complexity and
structure based on levels of cognitive development. ACM SIGCSE Bulletin, 32(1), 75-79.

Clancy, M. (2004). Misconceptions and attitudes that interfere with learning to program. Computer
Science Education Research, 85-100.

Davies, S. (1993). Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39, 237-267.

Davis, R., Maher, C., & Noddings, N. (1990). Constructivist views of the teaching and learning of
mathematics. Monograph, 336-341.

Eckerdal, A., McCartney, R., Mostrom, J. E., Ratcliffe, M., Sanders, K., & Zander, C. (2006). Putting
threshold concepts into context in computer science education. /TICSE, 103-107.

Edwards, S. (2003). Rethinking computer science education from a test-first perspective. Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 148-155.

Edwards, S. H. (2004). Using software Testing to move students from trial-and-error to reflection-in-
action. ACM SIGCSE Bulletin, 36(1), 26-30.

Ginat, D. (2004). Noivce Loop boundaries and Range Conceptions. Computer Science Education,
14(3):165-181.

Hou, D., Jablonski, P., & Jacob, F. (2009). CnP: Towards an Environment for the Proactive Management
of Copy-and-Paste programming. Program Comprehension, 238-242.

Izu, C., Weerasinghe, A., & Pope, C. (2016). A study of code design skills in novice programmers using the
SOLO taxonomy. In Proceedings of the 2016 ACM Conference on International Computing
Education Research, 251-259.

Kolikant, Y. B.-D. (2001). Gardeners and cinema tickets: High school students' preconceptions of
concurrency. Computer Science Education, 11(3), 221-245.

58

Kolikant, Y. B.-D. (2005). Students’ alternative standards for correctness. ACM, 37-43.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118-122.

Lénnberg, J., Berglund, A., & Malmi, L. (2009). How students develop concurrent programs. Australian
Computer Society, 129-138.

Lye, S. Y., & Koh, J. H. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 51-61.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of mental models held by
novice programmers. ACM SIGCSE Bulletin(39(1)), 499-503.

Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the comprehension of program
comprehension. ACM Transactions on Software Engineering and Methodology, 23-31.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., . . . Wilusz, T. (2001). A
multi-national, multi-institutional study of assessment of programming skills of first-year cs

students. ACM SIGCSE Bulletin(33(4)), 125-180.

Oracle. (2017). Runnable. Retrieved from Oracle:
https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html

Oracle. (2017). syncmeth. Retrieved from Oracle:
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

Oracle. (2017). Thread. Retrieved from Oracle:
http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

Or-Bach, R., & Lavy, I. (2004). Cognitive activities of abstraction in object orientation: an empirical study.
ACM SIGCSE Bulletin(36(2)), 82-86.

Rist, R. (1995). Program structure and design. Cognitive Science, 19, 507-562.

Schwill, A. (1994). Fundamental ideas of computer science. Bulletin of the European Association for
Theoretical Computer Science, 53:274-274.

Sleeman, D., Putnam, R., Baxter, J., Kuspa, & Pascal, L. (1981). high-school students: A study of
misconceptions. Education computer research, 221-226.

Smith, J., diSessa, A., & Roschelle, J. (1992). Misconeptions reconceived: A constructivist analysis of
knowledge in transition. Learning Sciences, 115-163.

Soloway, E., Spohrer, J., & Littman, D. (1988). Generating alternative designs. Teaching and learning
computer programming, 137-152.

Sorva, J. (2013). Notional machines and introductory programming education. ACM Transactions on
Computing Education, 13(2):8.

Spohrer, J. C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct?. ACM (29.7), 624-
632.

59

Tew, A. E., & Guzdial, M. (2010). Developing a validated assessment of fundamental CS1 concepts. In
Proceedings of the 41st ACM technical symposium on Computer science education, 97-101.

Whalley, J. L. (2006). An Australasian study of reading and comprehension skills in novice programmers,
using the bloom and SOLO taxonomies. Proceedings of the 8th Australasian Conference on
Computing Education-Volume(52), 243-252.

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions to code
writing problems. Conferences in Research and Practice in Information Technology Series,

114:37-45.

Xie, S., Kraemer, E., & Stirewalt, R. E. (2007). Design and evaluation of a diagrammatic notation to aid in
the understanding of concurrency concepts. ICSE, 727-731.

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course. ACM inroads, 2(4),
71-76.

60

